WO2023201862A1 - 一种正戊肝病毒属a泛基因型orf3蛋白及其应用 - Google Patents

一种正戊肝病毒属a泛基因型orf3蛋白及其应用 Download PDF

Info

Publication number
WO2023201862A1
WO2023201862A1 PCT/CN2022/098150 CN2022098150W WO2023201862A1 WO 2023201862 A1 WO2023201862 A1 WO 2023201862A1 CN 2022098150 W CN2022098150 W CN 2022098150W WO 2023201862 A1 WO2023201862 A1 WO 2023201862A1
Authority
WO
WIPO (PCT)
Prior art keywords
orf3
hev
protein
add
pan
Prior art date
Application number
PCT/CN2022/098150
Other languages
English (en)
French (fr)
Inventor
王文世
郭虹波
Original Assignee
徐州医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州医科大学 filed Critical 徐州医科大学
Publication of WO2023201862A1 publication Critical patent/WO2023201862A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/085Picornaviridae, e.g. coxsackie virus, echovirus, enterovirus
    • C07K14/10Hepatitis A virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to an orthohepatitis E virus genus A pan-genotype ORF3 protein and its application, and belongs to the technical field of hepatitis E virus detection.
  • Hepatitis E virus is the main cause of viral hepatitis worldwide.
  • the clinical manifestations of acute hepatitis E include asymptomatic infection, mild to moderate liver dysfunction and fulminant hepatitis.
  • Persistent hepatitis E can develop in immunocompromised people and, if left untreated, progress to cirrhosis.
  • HEV belongs to the Hepeviridae family, which includes two genera: Orthohepevirus and Piscihepevirus.
  • Hepatitis E that infects humans is mainly caused by Orthohepevirus species A (HEV-A), including eight HEV genotypes, namely HEV genotypes 1-8 (G1-8), respectively. Infects humans, pigs, wild boars, deer, rabbits and camels.
  • HEV is a positive-strand RNA virus containing three open reading frames (Opening Reading Frame, ORF): ORF1, ORF2 and ORF3.
  • ORF1 encodes ORF1 non-structural protein and participates in viral replication.
  • ORF2 encodes the viral capsid protein ORF2, which is mainly involved in the assembly of virus particles, binding to host cells and inducing the host to produce neutralizing antibodies.
  • ORF3 encodes the multifunctional phosphoprotein ORF3, which is mainly involved in the release of virions. Recent studies have shown that ORF3 is thought to form an ion channel that shares key structural features with class I virions required for release of virions from cells during infection. And ORF3 interacts with ORF2 and lipids to participate in the packaging formation and release of quasi-enveloped HEV virus particles.
  • ORF2 and ORF3 can stimulate the body to produce humoral immune responses.
  • the ORF2 capsid protein is highly conserved and highly immunogenic, and is also the main target of cellular immune responses.
  • ORF3 can also induce the body to produce immune responses and produce corresponding antibodies, but regarding its immunity There are no reports on its originality and whether it can be used as an antigen to detect antibody levels in patients. Therefore, at this stage, ORF2 is mainly used as an antigen to detect antibodies in patient serum.
  • the main component of the HEV vaccine is the polypeptide fragment of ORF2, which can effectively stimulate the body's immune response and produce antibodies against ORF2. Therefore, when using existing HEV serological detection reagents to screen for anti-HEV-ORF2 antibodies in the general population, it is impossible to distinguish between vaccine immunity and natural infection, which interferes with the assessment of the epidemiological status of HEV.
  • the present invention provides a HEV-A pan-genotype ORF3 protein, which is designed based on the ORF3 sequence of HEV-A gene types 1-8. This consistent sequence can retain the gene to the maximum extent. Immunogenicity of types 1-8.
  • pan-genome ORF3 as an antigen can effectively detect the IgG and IgM antibodies produced against HEV-ORF3 in HEV patients, and evaluate their antibody levels, which can effectively distinguish between viral infection and vaccine immunity. Different situations can further improve the current serological diagnostic methods of hepatitis E virus.
  • an orthohepatitis E virus genus A pan-genotype ORF3 protein which is characterized in that: the amino acid sequence of the orthohepatitis E virus genus A pan-genotype ORF3 protein is as shown in SEQ ID NO: 1 Show.
  • the monoclonal antibody or polyclonal antibody produced by the orthohepatitis E virus genus A pan-genotype ORF3 protein is used in HEV laboratory detection.
  • a kit for detecting hepatitis E virus which contains the orthohepatitis E virus genus A pan-genotype ORF3 protein;
  • the amino acid sequence of the Orthohepatitis E virus genus A pan-genotype ORF3 protein is shown in SEQ ID NO: 1.
  • An orthohepatitis E virus genus A pan-genotype ORF3 protein is composed of an amino acid sequence having at least 90% identity with the amino acid sequence shown in SEQ ID NO:1.
  • the amino acid sequence of the Orthohepatitis E virus A pan-genotype ORF3 protein is: MGSPCALGLFCCCSSCFCLCCPRHRPVSRLAAVVGGAAAVPAVVSGVTGLILSPPSPSPIFIQPTPSPPTSFHNPGLELALGSRPAHSAPLGVTSPSAPPLPPVVDLPQLGLRR.
  • Sequence identity is usually measured as percent identity (or similarity or homology); the higher the percent, the more similar the two sequences are.
  • Methods for aligning and comparing sequences are well known in the art. Various procedures and alignment algorithms are described below: Smith and Waterman, Adv. Appl. Math., 2:482, 1981; Needleman and Wunsch, J. Mol. Biol., 48:443, 1970; Pearson and Lipman, Proc. Natl. Acad. Sci.
  • the alignment tools ALIGN Myers and Miller, CABIOS 4:11-17, 1989
  • LFASTA Nearson and Lipman, 1988
  • ALIGN compares entire sequences to each other
  • LFASTA compares similarities in local regions.
  • these comparison tools and their respective tutorials are available on the Internet at the National Center for Supercomputer Applications (NCSA) website.
  • NCSA National Center for Supercomputer Applications
  • the Blast 2 sequence function can be performed using the default BLOSUM62 matrix set to default parameters (gap presence penalty of 11 and gap penalty of 1 per residue).
  • the alignment should be performed using the Blast 2 sequence function using the PAM30 matrix set to default parameters (open gap 9, extension gap 1 penalty).
  • the BLAST sequence comparison system is available, for example, from the NCBI website; see also Altschul et al., J. Mol. Biol., 215:403-410, 1990; Gish. & States, Nature. Genet., 3:266-272, 1993; Madden et al. . Meth. Enzymol., 266: 131-141, 1996; Altschul et al., Nucleic. Acids. Res., 25: 3389-3402, 1997; and Zhang & Madden, Genome. Res., 7: 649-656, 1997.
  • the HEV-A pan-genotype ORF3 protein can be used to detect the content of IgG and IgM antibodies in the serum of hepatitis E patients. After the serum is diluted 500 times, the IgG and IgM in the serum can still be detected with high sensitivity;
  • the HEV-A pan-genotype ORF3 protein can be used to detect the titers of IgG and IgM in the serum of patients after HEV genotype 1-8 infection;
  • ORF2 peptide is the main component of the HEV vaccine, the ORF2 antibody detection kit cannot distinguish vaccine-immune populations from infected populations; while HEV-positive cases detected with the ORF3 protein detection kit can all be judged as HEV naturally infected populations.
  • HEV-A pan-genome ORF3 protein By using the HEV-A pan-genome ORF3 protein to immunize New Zealand white rabbits, it can stimulate the body to produce corresponding antibodies, has good immunogenicity, and can be used as a potential vaccine component;
  • Monoclonal antibodies and polyclonal antibodies produced by HEV-A pan-genome ORF3 can be used for laboratory detection methods such as western blot, immunofluorescence and ELISA to detect the expression of ORF3.
  • HEV-A pan-genotype ORF3 protein is used as an antigen to detect HEV IgG and IgM in the serum of HEV-infected patients;
  • Pan-ORF3 polyclonal antibodies were diluted at ratios of 1:1000, 1:2000, 1:3000 and 1:4000 to detect eukaryotic expression of ORF3 protein;
  • Figure 10 Using flag antibody (1:2000) to detect eukaryotic expression of ORF3 protein;
  • the amino acid sequence of the HEV-A pan-genotype ORF3 protein is: MGSPCALGLFCCCSSCFCLCCPRHRPVSRLAAVVGGAAAVPAVVSGVTGLILSPPSPIFIQPTPSPPTSFHNPGLELALGSRPAHSAPLGVTSPSAPPLPPVVDLPQLGLRR.
  • the sequence number of the HEV-A gene type 1-8 ORF3 is as follows:
  • HEV-A genotype 1 HEV1a(AF051830), HEV1a(AF076239), HEV1a(AF185822), HEV1a(D10330), HEV1a(DQ459342), HEV1a(FJ457024), HEV1a(JF443719), HEV1a(JF443720) ,HEV1a(LC061267 ), HEV1a(M73218), HEV1a(X99441), HEV1b(AF444003), HEV1b(D11092), HEV1b(D11093), HEV1b(JQ655734), HEV1b(L08816), HEV1b(L25595), HEV1b(NC001434) ,HEV1c(JF443717 ), HEV1c(X98292), HEV1d(AY230202), HEV1e(AY204877), HEV1f(AB720035), HEV1f(JF443721), H
  • HEV-A genotype 2 HEV2a (M74506).
  • HEV-A genotype 3 HEV3a(AB074918), HEV3a(AB074920), HEV3a(AB089824), HEV3a(AB481228), HEV3a(AB591734), HEV3a(AF060668), HEV3a(AF060669), HEV3a(AF082843), HEV 3a(FJ426403 ), HEV3a(FJ426404), HEV3a(JN564006), HEV3a(JN837481), HEV3a(JQ679013), HEV3a(KF303502), HEV3a(KJ507955), HEV3b(AB073912), HEV3b(AB091394), HEV 3b(AB189071), HEV3b(AB222182 ), HEV3b(AB222183), HEV3b(AB222184), HEV3b(AB236320), HEV3b(AB246676), HEV3b(AB291955),
  • HEV-A genotype 4 HEV4a(AB197673), HEV4a(AB197674), HEV4a(EF077630), HEV4a(EU366959), HEV4a(FJ763142), HEV4a(GU119960), HEV4a(HQ634346), HEV4a(JQ655733), HEV4a(KC492825 ), HEV4a(KC692453), HEV4b(AB291964), HEV4b(DQ279091), HEV4b(EU676172), HEV4b(JX855794), HEV4b(LC042232), HEV4c(AB074915), HEV4c(AB080575), HEV4c( AB161717), HEV4c (AB200239 ), HEV4c(AB481227), HEV4d(AJ272108), HEV4d(AY594199), HEV4d(FJ610232), HEV4d(GU206559), HEV
  • HEV-A genotype 5 HEV5a (AB573435).
  • HEV-A genotype 6 HEV6 (ab856243), HEV6a (AB602441).
  • HEV-A genotype 7 HEV7 (KJ496143), HEV7 (KJ496144).
  • HEV-A genotype 8 HEV8(KX387865), HEV8(KX387866), HEV8(KX387867).
  • the ORF3 gene fragment with His tag was artificially synthesized, and the length of the gene fragment was 342 bp. Add 6 His amino acid sites before the stop codon at the end of ORF3 as a purification tag (DNA sequence: CATCACCATCACCATCAC), and add Xho I (CTCGAGGAGCTC) and Nhe I (GCTAGC) restriction sites at the front and back ends of the gene respectively.
  • This 378bp sequence was artificially synthesized (Suzhou Jinweizhi Biotechnology Co., Ltd.). The synthetic sequence is as follows:
  • the synthesized sequence was cloned into the pET21a(+) vector (completed by Suzhou Jinweizhi Biotechnology Co., Ltd.).
  • the plasmid map is shown in Figure 1.
  • the red area is the ORF3 sequence, which was cloned into the pET21a vector through Xho I and Nhe I.
  • the constructed plasmid was double-digested with Xho I and Nhe I (see Table 1 for the reaction system) and it was found that the target band and the vector were both correct ( Figure 2A). PCR was used to identify the target fragment and its size was consistent with the fragment ( Figure 2B) .
  • the recombinant expression plasmid pET21a-ORF3 was transformed into the E. coli expression host strain BL21, and isopropyl- ⁇ -D-thiopyran and galactopyranoside were added to induce expression. Finally, the bacterial fluid was collected, ultrasonic lysed and centrifuged to harvest the unpurified protein. , the specific steps are as follows:
  • Transformation Take 50 ⁇ L of E. coli competent cells BL21 and quickly melt it on ice. Add 1 ng of plasmid pET21a-HEV-A-ORF3, mix gently, and keep in ice bath for 30 minutes. Then immediately place it in a 42°C water bath and heat shock for 90 seconds without shaking to reach the accurate heat shock temperature. After heat shock, quickly transfer to ice, keep in ice bath for 1 to 2 minutes, add 650 ⁇ L LB culture medium and mix well. The competent cells transformed with the plasmid were placed in a 37°C incubator and cultured with shaking at a speed of 200 rpm for 1 hour. The shaken bacterial solution was centrifuged at 5000 rpm for 1 min at room temperature.
  • Cell collection Use a 50mL centrifuge tube to collect the cells, and centrifuge at 4000 rpm for 10 minutes to collect the precipitate. After multiple centrifugations, collect the cell precipitate into a 50ml centrifuge tube and freeze it at -20°C; take it out and freeze it. For the stored bacterial solution, add 50 ⁇ L of 100 ⁇ protease inhibitor (EDTA-free) and 50 ⁇ L of lysozyme (final concentration: 1 mg/ml) into each tube with 5 mL of PBS, mix thoroughly, and let stand for 30 minutes.
  • EDTA-free protease inhibitor
  • lysozyme final concentration: 1 mg/ml
  • Centrifugation Centrifuge the ultrasonic product at 11,000 rpm for 30 minutes at 4°C. Discard the supernatant after centrifugation.
  • Reagent name formula Lysis buffer 8M urea, 50mM NaH 2 PO 4 , 300mM NaCl, 10mM imidazole Wash buffer 5M urea, 50mM NaH 2 PO 4 , 300mM NaCl, 20mM imidazole Elution buffer 5M urea, 50mM NaH 2 PO 4 , 300mM NaCl, 250mM imidazole
  • the above-mentioned SDS-PAGE protein gel and Coomassie brilliant blue staining steps are as follows: (1) Prepare 12.5% separating gel and 4% stacking gel. First prepare the separating gel, mix it thoroughly and then pour it into the gel plate. Use absolute ethanol as a pressure Line liquid, wait for about 40 minutes, pour away the upper layer of absolute ethanol and use absorbent paper to absorb the remaining liquid, then prepare a concentrated gel, mix thoroughly and pour the upper layer, insert the forming comb, let it stand at room temperature for about 40 minutes, and collect after the glue is completely solidified. 4°C refrigerator, store for later use. (2) Place the gel plate into the electrophoresis rack, add the electrophoresis solution and remove the forming comb.
  • ORF3 has a His tag, His antibodies and ORF3-specific antibodies will be used to identify the purified protein.
  • the specific steps of Western blot are as follows: (1) Use wet transfer method to put the SDS-PAGE protein gel into the transfer mold, transfer the protein into the PVDF membrane, stabilize the voltage at 100V, and wet transfer for 100 minutes. (2) Soak the membrane in blocking solution (5% skimmed milk powder) and block on a shaker at room temperature for 2 hours. (3) After blocking, briefly clean the PVDF membrane, add the primary antibody diluted with 1% BSA (His tag antibody dilution 1:20000, ORF3 specific antibody dilution 1:2000), and place it at 4 After incubation at °C overnight on a shaker, rewarm on a room temperature shaker for 30 minutes, absorb the primary antibody, and wash with shaking 3 times with TBST washing buffer, 10 minutes each time.
  • BSA His tag antibody dilution 1:20000, ORF3 specific antibody dilution 1:2000
  • the ORF3 purified protein was identified and found to be an ORF3 protein with a His tag ( Figure 4).
  • Example 3 Establishing an ELISA method using the purified HEV-A pan-genotype ORF3 protein to detect IgG and IgM antibodies in the serum of HEV-infected patients
  • Blocking Use 5% skimmed milk powder in PBS as blocking solution, add 100 ⁇ L to each well, and incubate at 37°C for 1 hour, then shake off the liquid.
  • Patient serum samples Dilute patient serum 1 (see Table 4 for patient information) and healthy human negative serum with PBS to 500, 1500, 4500, 13500, 40500, 121500, 364500, and 1093500 times, and add 50 ⁇ L to each well. After incubation at 37°C for 2 hours, shake off the liquid and wash the plate three times with 0.05% PBST.
  • anti-human IgG and IgM secondary antibodies add 100ul of enzyme-labeled antibodies to each well (anti-human IgG antibody diluted 1:2000, anti-human IgG antibody 1:500 diluted), incubate at 37°C for 1 hour, shake off the liquid, and use 0.05 Wash the plate three times with % PBST.
  • Color development Add 100 ⁇ L of substrate chromogen TMB to each well, keep away from light at room temperature, and observe the color development. After about 2-5 minutes, add 100 ⁇ L of stop solution 1mol/L H 2 SO 4 to each well, mix well, and use immediately. The OD value was measured using a microplate reader at a wavelength of 450 nm.
  • test results are provided by the confirmed hospital, and the test method is hepatitis E virus IgG/IgM antibody detection kit.
  • Pan-genotype ORF3 was used as an antigen to detect the positivity rate of IgG and IgM in the serum of 11 positive patients.
  • Example 4 Using the purified HEV-A pan-genotype ORF3 protein to immunize New Zealand white rabbits and detect the immunogenicity of ORF3
  • the serum is named pan-genome ORF3 polyclonal antibody serum.
  • Blocking Use 5% skimmed milk powder in PBS as blocking solution, add 100 ⁇ L to each well, incubate at 37°C for 1 hour, and then shake off the liquid.
  • Color development Add 100 ⁇ L of substrate chromogen TMB to each well, avoid light at room temperature, and observe the color development. After about 2-5 minutes, add 100 ⁇ L of stop solution 1mol/L H 2 SO 4 to each well, mix well, and immediately Use a microplate reader to measure the OD value at a wavelength of 450 nm.
  • Blocking Use 5% skimmed milk powder in PBS as blocking solution, add 100 ⁇ L to each well, incubate at 37°C for 1 hour, and then shake off the liquid.
  • Color development Add 100 ⁇ L of substrate chromogen TMB to each well, avoid light at room temperature, and observe the color development. After about 2-5 minutes, add 100 ⁇ L of stop solution 1mol/L H 2 SO 4 to each well, mix well, and immediately Use a microplate reader to measure the OD value at a wavelength of 450 nm.
  • Example 5 Polyclonal antibodies produced after immunization with ORF3 protein can be used as HEV laboratory detection methods
  • the length of the ORF3 gene sequence is: 340bp.
  • Upstream primer AACCTCGAGATGGGATCACCATGTGCCCTAG
  • the diluted anti-rabbit IgG antibody at a dilution ratio of 1:5000 (the diluent is 1% BSA), incubate on a shaker at room temperature for 2 hours, absorb the secondary antibody, and shake with TBST washing buffer Wash 3 times, 10 minutes each time.
  • Example 6 Serum antibodies generated after immunization with ORF2 protein, the main component of HEV vaccine, cannot interact with ORF3
  • the p239 protein (aa368 ⁇ aa606) encoded by the recombinantly expressed ORF2 truncated gene is the main component of the existing HEV vaccine "Yikoning" and has good immunogenicity and antigenicity. After HEV ORF2 immunization, antibodies against ORF2 are produced. Therefore, when using existing HEV serological detection reagents (ELISA kits coated with ORF2 antigen) to screen the general population for anti-HEV-ORF2 antibodies, it is impossible to distinguish between vaccine immunity and natural infection.
  • the immunization process requires a total of 5 injections of emulsified ORF3 protein.
  • blood must be collected from the ear margin vein to test the titer of the antibodies produced after the previous immunization.
  • One week after the last immunization blood must be collected from the ear margin vein to test the titer. After that, 10ml 10 % chloral hydrate anesthetizes the rabbit, and collects all the rabbit's blood by cardiac blood sampling.
  • ORF2 protein and pan-genome ORF3 protein as antigens to detect serum after immunization with ORF2
  • Blocking Use 5% skimmed milk powder in PBS as blocking solution, add 100 ⁇ L to each well, incubate at 37°C for 1 hour, and then shake off the liquid.
  • Color development Add 100 ⁇ L of substrate chromogen TMB to each well, avoid light at room temperature, and observe the color development. After about 2-5 minutes, add 100 ⁇ L of stop solution 1mol/L H 2 SO 4 to each well, mix well, and immediately Use a microplate reader to measure the OD value at a wavelength of 450 nm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Communicable Diseases (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种正戊肝病毒属A泛基因型ORF3蛋白及其应用,该HEV-A泛基因型ORF3蛋白可以用于检测戊肝病人血清中IgG和IgM抗体的含量,血清分别稀释500倍后,依旧可以检测到血清中IgG和IgM,具有很高的灵敏度;由于ORF2多肽作为HEV疫苗的主要成分,因而利用ORF2抗体检测试剂盒不能区分疫苗免疫人群和感染人群;而依据ORF3蛋白检测试剂盒进行检测的HEV阳性病例均可判断为HEV自然感染人群。

Description

一种正戊肝病毒属A泛基因型ORF3蛋白及其应用 技术领域
本发明涉及一种正戊肝病毒属A泛基因型ORF3蛋白及其应用,属于戊型肝炎病毒检测技术领域。
背景技术
戊型肝炎病毒(hepatitis E virus,HEV)是全球范围内引起病毒性肝炎的主要原因。临床多表现为急性戊型肝炎包括无症状感染、轻中度肝功能障碍和暴发性肝炎。持续性戊型肝炎可在免疫功能低下的人身上发展,如果不及时治疗,会发展为肝硬化。HEV属于肝炎病毒科(Hepeviridae)家族成员,肝炎病毒科包括两个属:正戊肝病毒属(Orthohepevirus)和鱼肝病毒属(Piscihepevirus)。感染人类的戊型肝炎主要由正戊肝病毒属A(Orthohepevirus species A,HEV-A)引起,包括八种HEV基因型即HEV基因1-8型(Genotypes 1-8,G1-8),分别感染人类、猪、野猪、鹿、兔子和骆驼。
HEV是正链RNA病毒,含有三个开放阅读框(Opening Reading Frame,ORF):ORF1、ORF2和ORF3。ORF1编码ORF1非结构蛋白,参与病毒复制。ORF2编码病毒衣壳蛋白ORF2,主要参与病毒颗粒的装配、与宿主细胞结合并诱导宿主产生中和抗体。ORF3编码多功能磷酸蛋白ORF3,主要参与病毒粒子的释放。近期的研究表明,ORF3被认为形成一个离子通道,该离子通道与感染期间从细胞中释放病毒粒子所需的I类病毒粒子具有共同的关键结构特征。并且ORF3与ORF2和脂质相互作用参与准包膜HEV病毒颗粒的包装形成和释放。
ORF2和ORF3能够刺激机体产生体液免疫应答,ORF2衣壳蛋白高度保守,免疫原性强,也是细胞免疫应答的主要靶标;ORF3同样能诱导机体产生免疫应答,并产生相应的抗体,但是关于其免疫原性的研究和其是否能够作为抗原检测病人体内抗体水平尚无报道,因而现阶段主要以ORF2作为抗原来检测患者血清中的抗体。
多篇研究报道,目前国内外常用的HEV血清学检测试剂无论在检测抗HEV-ORF2产生的IgM还是IgG,其灵敏度和特异性差异均较大,抗体的阳性率差异可达10倍以上,并且检测结果的重复性有待提高。(中华实验和临床病毒学杂志,2007,21(1):59-61.中华微生物与免疫学杂志,2009,29(9):854-857.Cli Infect Dis,2010,51(3):e24-27.Intervirology,2015,58(5):283-287.J Med Virol,2017,89(6):1055-1061.)。
导致上述问题的一个主要原因是不同HEV基因型抗原存在差异,尽管HEV-A只有一种血清型,但研究证明,由于HEV-A分为1-8型,其氨基酸水平同源性有差异,不同基因型抗原检测抗体时,存在一定差异(Infect Genet Evol,2015,34:211-220.Hepat Mon,2016,16(8):e35312.)。目前国内外使用的检测试剂多为一种基因型的ORF2(HEV-A基因1型、3型或4型)作为抗原检测患者血清中针对ORF2蛋白的抗体(IgM和IgG)(戊型肝炎病毒抗体检测的现状、问题与展望[J].周潇滢,孟继鸿.病毒学报.2018(01))。
HEV疫苗的主要成分为ORF2的多肽片段,其能有效的刺激机体产生免疫应答,产生针对ORF2的抗体。因而利用现有的HEV血清学检测试剂对普通人群进行抗HEV-ORF2抗体筛查时,无法区别疫苗免疫和自然感染这两种不同的状况,对评估HEV的流行病学状况造成干扰。
发明内容
为了克服上述现有技术的不足,本发明提供了HEV-A泛基因型ORF3蛋白,该蛋白是根据HEV-A基因1-8型的ORF3序列所设计,该一致性序列能够最大限度地保留基因1-8型的免疫原性。除此之外,以泛基因组ORF3为抗原能够有效检测到HEV患者体内针对HEV-ORF3产生的IgG和IgM抗体,并能对其抗体水平进行评价,可以有效地区别病毒感染和疫苗免疫这两种不同的情况,能进一步改善目前戊型肝炎病毒血清学的诊断手段。
本发明是通过如下技术方案实现的,一种正戊肝病毒属A泛基因型ORF3蛋白,其特征在于:该正戊肝病毒属A泛基因型ORF3蛋白的氨基酸序列如SEQ ID NO:1所示。
所述的一种正戊肝病毒属A泛基因型ORF3蛋白在HEV感染病检测中的应用。
所述的一种正戊肝病毒属A泛基因型ORF3蛋白产生的单克隆抗体或多克隆抗体用于HEV实验室检测中的应用。
一种检测戊型肝炎病毒试剂盒,包含正戊肝病毒属A泛基因型ORF3蛋白;
所述正戊肝病毒属A泛基因型ORF3蛋白的氨基酸序列如SEQ ID NO:1所示。
一种正戊肝病毒属A泛基因型ORF3蛋白,该正戊肝病毒属A泛基因型ORF3蛋白是由与SEQ ID NO:1所示氨基酸序列具有至少90%同一性的氨基酸 序列组成。
所述正戊肝病毒属A泛基因型ORF3蛋白的氨基酸序列为:MGSPCALGLFCCCSSCFCLCCPRHRPVSRLAAVVGGAAAVPAVVSGVTGLILSPSPSPIFIQPTPSPPTSFHNPGLELALGSRPAHSAPLGVTSPSAPPLPPVVDLPQLGLRR。
根据本发明,第一氨基酸序列与第二氨基酸序列具有至少90%同一性是指第一序列与第二氨基酸序列具有至少90、91、92、93、94、95、96、97、98、99或100%同一性。序列同一性通常以百分比同一性(或相似性或同源性)来测量;百分比越高,两个序列越相似。用于比对比较序列的方法是本领域熟知的。各种程序和比对算法描述如下:Smith和Waterman,Adv.Appl.Math.,2:482,1981;Needleman和Wunsch,J.Mol.Biol.,48:443,1970;Pearson和Lipman,Proc.Natl.Acad.Sci.U.S.A.,85:2444,1988;Higgins和Sharp,Gene,73:237-244,1988;Higgins和Sharp,CABIOS,5:151-153,1989;Corpet等人Nuc.Acids Res.,16:10881-10890,1988;Huang等人,Comp.Appls Biosci.,8:155-165,1992;Pearson等人,Meth.Mol.Biol.,24:307-31,1994。Altschul等人,Nat.Genet.,6:119-129,1994提出了序列比对方法和同源性计算的详细考虑。举例而言,比对工具ALIGN(Myers和Miller,CABIOS 4:11-17,1989)或LFASTA(Pearson和Lipman,1988)可用于进行序列比较(Internet 1996,W.R.Pearson and the University of Virginia,fasta版本2.0,发布日期1996年12月)。ALIGN将整个序列进行相互比较,而LFASTA则比较局部区域的相似性。例如,这些比对工具及其各自的教程可在因特网上的国家超级计算机应用中心(National Center for Supercomputer Applications,简称NCSA)网站上获得。或者,为了比较大于约30个氨基酸的氨基酸序列,可以使用设置为默认参数的默认BLOSUM62矩阵执行Blast 2序列功能(空位存在罚分为11,每个残基缺口罚分为1)。当比对短肽(少于约30个氨基酸)时,应使用设置为默认参数的PAM30矩阵,采用Blast 2序列功能进行比对(开放空位9,延伸空位1罚分)。BLAST序列比较系统可从例如NCBI网站获得;还参见Altschul等,J.Mol.Biol.,215:403-410,1990;Gish.&States,Nature.Genet.,3:266-272,1993;Madden等.Meth.Enzymol.,266:131-141,1996;Altschul等,Nucleic.Acids.Res.,25:3389-3402,1997;和Zhang&Madden,Genome.Res.,7:649-656,1997。
本发明有益技术效果:
1)该HEV-A泛基因型ORF3蛋白可以用于检测戊肝病人血清中IgG和IgM抗体的含量,血清分别稀释500倍后,依旧可以检测到血清中IgG和IgM,具有很高的灵敏度;
2)检测了11位HEV感染患者的血清样本,其IgG的阳性率为100%,IgM的阳性率为90.9%;
3)该HEV-A泛基因型ORF3蛋白能够用于检测HEV基因1-8型感染后病人血清中IgG和IgM的效价;
4)由于ORF2多肽作为HEV疫苗的主要成分,因而利用ORF2抗体检测试剂盒不能区分疫苗免疫人群和感染人群;而依据ORF3蛋白检测试剂盒进行检测的HEV阳性病例均可判断为HEV自然感染人群。
5)通过利用HEV-A泛基因组ORF3蛋白免疫新西兰大白兔后,能够刺激机体产生相应的抗体,具有良好的免疫原性,可以作为潜在的疫苗成分;
6)利用HEV-A泛基因组ORF3产生的单克隆抗体和多克隆抗体,能够用于western blot、免疫荧光和ELISA等实验室检测手段检测ORF3的表达。
附图说明
图1.pET-21a(+)-HEV-A-ORF3质粒图谱;
图2.pET21a(+)-HEV-A-ORF3的双酶切和PCR鉴定;
图3.利用考马斯亮蓝染色SDS-PAGE对ORF3纯化步骤进行鉴定;
图4.利用His标签抗体和ORF3特异性抗体对纯化蛋白进行鉴定;
图5.HEV-A泛基因型ORF3蛋白作为抗原检测HEV感染病人血清中HEV IgG和IgM;
图6.测定不同包被ORF3抗原量对抗体检测水平的影响;
图7.不同免疫次数后兔血清中抗体效价的测定;
图8.ORF3的PCR结果;
图9.分别以1:1000、1:2000、1:3000和1:4000比例稀释泛ORF3多克隆抗体,检测真核表达ORF3蛋白;
图10.利用flag抗体(1:2000)检测真核表达ORF3蛋白;
图11.利用泛基因组ORF3蛋白多克隆抗体检测真核细胞内表达ORF3蛋白。
图12.ORF2免疫后产生的血清不能与ORF3产生相互作用。
具体实施方式
下面通过实施例和附图对本发明进一步说明。
实施例1
HEV-A基因1-8型ORF3氨基酸序列的比对及泛基因型ORF3氨基酸序列的设计
利用NCBI下载HEV-A基因1-8型ORF3的氨基酸序列,将所有序列导入Vector NTI(11.5.3)中,利用Alignment功能将所有序列进行比对,根据其氨基酸序列设计一致性序列(图1),该序列为HEV-A泛基因型ORF3蛋白的氨基酸序列。
所述HEV-A泛基因型ORF3蛋白的氨基酸序列为:MGSPCALGLFCCCSSCFCLCCPRHRPVSRLAAVVGGAAAVPAVVSGVTGLILSPSPSPIFIQPTPSPPTSFHNPGLELALGSRPAHSAPLGVTSPSAPPLPPVVDLPQLGLRR。
所述HEV-A基因1-8型ORF3序列号如下所示:
HEV-A基因1型:HEV1a(AF051830)、HEV1a(AF076239)、HEV1a(AF185822)、HEV1a(D10330)、HEV1a(DQ459342)、HEV1a(FJ457024)、HEV1a(JF443719)、HEV1a(JF443720)、HEV1a(LC061267)、HEV1a(M73218)、HEV1a(X99441)、HEV1b(AF444003)、HEV1b(D11092)、HEV1b(D11093)、HEV1b(JQ655734)、HEV1b(L08816)、HEV1b(L25595)、HEV1b(NC001434)、HEV1c(JF443717)、HEV1c(X98292)、HEV1d(AY230202)、HEV1e(AY204877)、HEV1f(AB720035)、HEV1f(JF443721)、HEV1f(JF443722)、HEV1f(JF443723)、HEV1f(JF443724)、HEV1f(JF443725)、HEV1f(JF443726)。
HEV-A基因2型:HEV2a(M74506)。
HEV-A基因3型:HEV3a(AB074918)、HEV3a(AB074920)、HEV3a(AB089824)、HEV3a(AB481228)、HEV3a(AB591734)、HEV3a(AF060668)、HEV3a(AF060669)、HEV3a(AF082843)、HEV3a(FJ426403)、HEV3a(FJ426404)、HEV3a(JN564006)、HEV3a(JN837481)、HEV3a(JQ679013)、HEV3a(KF303502)、HEV3a(KJ507955)、HEV3b(AB073912)、HEV3b(AB091394)、HEV3b(AB189071)、HEV3b(AB222182)、HEV3b(AB222183)、HEV3b(AB222184)、HEV3b(AB236320)、HEV3b(AB246676)、HEV3b(AB291955)、HEV3b(AB291962)、HEV3b(AB291963)、HEV3b(AB301710)、HEV3b(AB369689)、HEV3b(AB369691)、HEV3b(AB481229)、HEV3b(AB630971)、HEV3b(AB740232)、HEV3b(AP003430)、HEV3b(FJ527832)、HEV3b(KJ507956)、HEV3c(FJ705359)、HEV3c(KC618402)、HEV3c(KJ701409)、HEV3e(AB248521)、HEV3e(AB248522)、HEV3e(AB291958)、HEV3e(AB780453)、HEV3e(EU360977)、HEV3e(FJ998015)、HEV3e(HM055578)、HEV3e(JQ013795)、HEV3e(JQ026407)、HEV3e(JQ953665)、HEV3e (KF922359)、HEV3e(KP698919)、HEV3f(AB291961)、HEV3f(AB369687)、HEV3f(AB850879)、HEV3f(EU375463)、HEV3f(EU723512)、HEV3f(EU723513)、HEV3f(EU723514)、HEV3f(EU723516)、HEV3f(FJ653660)、HEV3f(FJ956757)、HEV3f(GU937805)、HEV3f(JN906976)、HEV3f(JQ953666)、HEV3f(KC166971)、HEV3g(AF455784)、HEV3h(JQ013794)、HEV3i(FJ998008)、HEV3j(AY115488)、HEV3ra(AB740220)、HEV3ra(AB740221)、HEV3ra(AB740222)、HEV3ra(FJ906895)、HEV3ra(FJ906896)、HEV3ra(JQ013791)、HEV3ra(JQ013792)、HEV3ra(JQ013793)、HEV3ra(JX565469)、HEV3ra(KJ013415)。
HEV-A基因4型:HEV4a(AB197673)、HEV4a(AB197674)、HEV4a(EF077630)、HEV4a(EU366959)、HEV4a(FJ763142)、HEV4a(GU119960)、HEV4a(HQ634346)、HEV4a(JQ655733)、HEV4a(KC492825)、HEV4a(KC692453)、HEV4b(AB291964)、HEV4b(DQ279091)、HEV4b(EU676172)、HEV4b(JX855794)、HEV4b(LC042232)、HEV4c(AB074915)、HEV4c(AB080575)、HEV4c(AB161717)、HEV4c(AB200239)、HEV4c(AB481227)、HEV4d(AJ272108)、HEV4d(AY594199)、HEV4d(FJ610232)、HEV4d(GU206559)、HEV4d(GU361892)、HEV4d(HM152568)、HEV4d(JQ655736)、HEV4d(KC163335)、HEV4d(KF176351)、HEV4e(AY723745)、HEV4f(AB220974)、HEV4g(AB108537)、HEV4g(AB369688)、HEV4g(AB698654)、HEV4h(GU119961)、HEV4h(GU188851)、HEV4h(JQ655735)、HEV4h(JQ740781)、HEV4h(KJ155502)、HEV4i(AB369690)、HEV4i(AB602440)、HEV4i(AB909125)、HEV4i(DQ450072)、HEV4i(EF570133)、HEV4i(HM439284)、HEV4i(JF915746)、HEV4i(JQ993308)。
HEV-A基因5型:HEV5a(AB573435)。
HEV-A基因6型:HEV6(ab856243)、HEV6a(AB602441)。
HEV-A基因7型:HEV7(KJ496143)、HEV7(KJ496144)。
HEV-A基因8型:HEV8(KX387865)、HEV8(KX387866)、HEV8(KX387867)。
实施例2:HEV-A泛基因型ORF3蛋白的原核表达与纯化
1.HEV-A泛基因型ORF3蛋白的表达质粒的构建:
人工合成带有His标签的ORF3基因片段,该基因片段长为342bp。在ORF3末端终止密码子前加入6个His氨基酸位点作为纯化标签(DNA序列:CATCACCATCACCATCAC),并在基因前端和后端分别加入Xho I(CTCGAGGAGCTC)和Nhe I(GCTAGC)酶切位点。将此378bp序列进行人工合成(苏州金唯智生物科技有限公司)。合成序列如下:
Figure PCTCN2022098150-appb-000001
(注:加粗字母ATG和TGA分别为起始密码子和终止密码子,下划线字母CTCGAGGAGCTC,CACCATCACCATCAC和GCTAGC分别为Xho I酶切位点,6×His-tag和Nhe I酶切位点。)
将合成后的序列克隆进入pET21a(+)载体(由苏州金唯智生物科技有限公司完成),质粒图谱如图1,其中红色区域为ORF3序列,通过Xho I和Nhe I克隆到pET21a载体中。
对构建的质粒利用Xho I和Nhe I进行双酶切(反应体系见表1)鉴定发现目的条带与载体均正确(图2A),利用PCR鉴定目的片段其大小与该片段一致(图2B)。
表1.Xho I和Nhe I双酶切反应体系:
COMPONENT 25μL REACTION
DNA 0.5μg
10X rCutSmart Buffer 2.5μL(1X)
XhoI 0.5μL(20units)
NheI-HF 0.5μL(20units)
Nuclease-free Water to 25μL
表2.PCR反应体系质粒中ORF3片段:
Figure PCTCN2022098150-appb-000002
2.HEV-A泛基因型ORF3蛋白的表达:
将重组表达质粒pET21a-ORF3转化到大肠杆菌表达宿主菌BL21中,加入异丙基-β-D-硫代吡喃和半乳糖苷诱导表达,最后收集菌液,超声裂解离心,收获未纯化蛋白,其具体步骤如下:
1)转化:取E.coli大肠杆菌感受态细胞BL21 50μL菌体使其迅速在冰上融化,加入1ng质粒pET21a-HEV-A-ORF3,轻轻旋转混合,冰浴30min。随后立即置入42℃水浴,热休克90s,勿晃动,使其达到准确热激温度。热休克后,迅速转移至冰上,冰浴1~2min,加入650μL LB培养液混匀。将转入质粒的感受态细胞放在37℃培养箱中以200rpm速度振摇培养1h。将振摇后的菌液以5000rpm转速在室温进行离心1min。离心后,弃上清600μL,余100μL菌液混匀,均匀加至Amp抗生素平板上并涂板,至平板无液体流动,正放10min,倒放平板37℃培养12~16h。
2)挑取菌落和扩大培养:观察菌落生长情况,挑取单个菌落,分别接种于5mL液体选择性LB培养基中,于37℃培养箱中以220rpm转速进行振荡培养12~16h。取2ml菌液加入装有200mL培养基的烧瓶中(200μL AMP,终浓度为100μg/mL),2.5h后测OD值,当OD 值达到0.6-0.8时,加入500μL 0.4M的IPTG。接着放回37℃摇床,继续培养3h。
3)菌体收集:用50mL离心管收集菌体,以4000rpm转速离心10min收集沉淀,多次离心之后,将菌体沉淀收至1个50ml离心管中,放入-20℃冻存;取出冻存的菌液,每管用5mL PBS加入50μL100×蛋白酶抑制剂(不含EDTA)和50μL溶菌酶(终浓度为1mg/ml),充分混匀,静置30min。
4)超声:将加入蛋白酶抑制剂和溶菌酶的菌液移入到10mL离心管,用超声仪进行超声45min。
5)离心:将超声后的产物以11000rpm转速在4℃条件下离心30min,离心后弃掉上清。
6)重悬:用5.5mL Lysis buffer(配方见表3)、55μL100×蛋白酶抑制剂(不含EDTA)和27.5μL 1M DTT重悬沉淀;在4℃放置30min,用1ml的注射器吹打混匀数次,然后在4℃放置15min。
7)离心收获蛋白:以12000rpm转速在4℃离心30min,收取上清,上清中为未纯化蛋白。
3利用Ni +-NTA亲和层析柱纯化HEV-A泛基因型ORF3蛋白并对纯化蛋白进行鉴定:
1)用3-5ml去离子水冲洗出Ni +-NTA柱子中的储存缓冲液,使用至少5ml的Lysis Buffer(配方见表3)平衡柱子。
2)将HEV-A泛基因型ORF3蛋白样品加入柱中,让该蛋白吸附在柱子中,取150μL流出液体检测蛋白与亲和层析柱结合情况。
3)用10-15ml Wash Buffer(配方见表3)冲洗柱子,取150μL流出层析柱的Wash buffer检测柱子清洗的情况。
4)用5ml Elution buffer(配方见表3)洗脱目的蛋白,将洗脱的蛋白用EP管进行收集,每管收集700-800μL,收集7次。
表3.蛋白纯化试剂配方
试剂名称 配方
Lysis buffer 8M尿素,50mM NaH 2PO 4,300mM NaCl,10mM imidazole
Wash buffer 5M尿素,50mM NaH 2PO 4,300mM NaCl,20mM imidazole
Elution buffer 5M尿素,50mM NaH 2PO 4,300mM NaCl,250mM imidazole
5)利用浓度为15%的SDS-PAGE蛋白胶,对过柱前、过柱后、流出清洗液以及洗脱的蛋白进行鉴定(图3),发现75%的蛋白能够与亲和层析柱进行结合,并利用洗脱液洗脱下来。洗脱过程中,第2-3号洗脱下来的蛋白量最高,对其进行定量,其浓度可达到1mg/ml。
上述SDS-PAGE蛋白胶与考马斯亮蓝染色步骤如下:(1)配制12.5%分离胶和4%浓缩胶,先配制分离胶,充分混匀后灌入凝胶板中,用无水乙醇作为压线液,等待约40min,倾倒弃去上层无水乙醇并用吸水纸吸去残余液体,再配制浓缩胶,充分混匀后灌注上层,插入成型梳后,室温静置约40min,胶完全凝固后收入4℃冰箱,储存备用。(2)将凝胶板放入电泳架,加入电泳液后拔去成型梳,每个凝胶孔加入10~20μL蛋白样品,其中一孔,加入蛋白Marker。将电泳架放入电泳槽,补足内槽外槽电泳液后开始电泳,70V电泳压线约30min,待样品电泳至浓缩胶与分离胶分界线时更改电压至120V,待溴酚蓝跑至分离胶底部时停止电泳。(3)配制考马斯亮蓝染色液(配方:R-250 1g,甲醇250mL,冰乙酸100mL,ddH 20定容至1L),将胶块取出浸泡在染色液中,在摇床上轻轻摇晃,过夜;将胶块取出,浸泡在清水中,放入微波炉。选用中高火,加热1h,煮至胶块的样品条带清晰。中间每隔20min,换1次水。
6)利用Western blot鉴定ORF3的表达:由于ORF3带有His标签,因此将用His抗体和ORF3特异性抗体对纯化的蛋白进行鉴定。
Western blot具体步骤如下:(1)利用湿法转膜将SDS-PAGE蛋白胶放入转模仪,将蛋白转入PVDF膜中,100V稳压,湿转100min。(2)将膜浸泡于封闭液中(5%脱脂奶粉),室温摇床封闭2h。(3)封闭结束后,将PVDF膜进行简单清洗后,加入用1%BSA稀释好的一抗(His标签抗体稀释度1:20000,ORF3特异性抗体稀释度为1:2000),置于4℃摇床孵育过夜后,室温摇床复温30min后吸取一抗,用TBST洗涤缓冲液震荡洗涤3次,每次10min。(4)加入稀释好的荧光二抗R-680和R-800,室温摇床孵育2h,用TBST洗涤缓冲液震荡洗涤3次,每次10min。(5)利用Odessey扫膜仪荧光频道进行扫膜。
通过ORF3纯化蛋白进行鉴定发现,该蛋白为带有His标签的ORF3蛋白(图4)。
实施例3:利用纯化后HEV-A泛基因型ORF3蛋白建立ELISA方法检测HEV感染病人血清中IgG和IgM抗体
1.包被抗原:用包被液(0.1M Na 3PO 4pH=9.0)将纯化后的ORF3蛋白稀释到终浓度2μg/mL后,以100μL每孔加入到ELISA板中,4℃冰箱过夜,次日取出放置37℃孵育1h后,甩尽液体,用PBS以200μL每孔洗涤ELISA板3次,每次3min。
2.封闭:用5%脱脂奶粉的PBS作为封闭液,每孔加入100μL,37℃孵育1h后,甩尽 液体。
3.加入病人血清样品:将病人血清1(病人信息见表4)和健康人阴性血清用PBS稀释到500、1500、4500、13500、40500、121500、364500、1093500倍,每孔加入50μL。37℃孵育2h后,甩尽液体,利用0.05%的PBST洗板三次。
4.加入抗人IgG和IgM二抗:每孔加入酶标抗体100ul(抗人IgG抗体1:2000稀释,抗人IgG抗体1:500稀释),37℃孵育1h后,甩尽液体,利用0.05%的PBST常规洗板三次。
5.显色:每孔加底物显色剂TMB 100μL,室温避光,观察显色情况,约2-5min后,每孔加终止液1mol/L H 2SO 4 100μL,混匀后,即刻用酶标仪在450nm波长测定OD值。
6.检测结果:HEV感染病人血清中的IgG和IgM均可以与泛基因型的ORF3蛋白进行结合(图5,绿色),该结合曲线呈剂量依赖性:OD值随着稀释度的增加而减少。健康人对照组血清不能与ORF3结合,证明HEV感染病人的血清能够特异性地与HEV-A泛基因型ORF3蛋白结合。基于以上结果,1:500倍稀释HEV感染病人血清能够成功检测HEV感染病人。
7.检测HEV感染患者血清能够与ORF3蛋白进行特异性结合
检测11位HEV感染患者的血清样本(患者信息见表4),将血清1:500稀释后,加入ORF3包被的ELISA板中,其ELISA实验步骤同实施例3步骤1-5,其中血清中IgG能够与ORF3相互作用的样品有11例,其阳性率为100%;血清中IgM能够与ORF3相互作用的样品有10例,阳性率为90.9%(表5)。
表4. 11名患者信息汇总
患者序号 性别 年龄 HEV检测IgG 1 HEV检测IgM 1
1 49 + 2 +
2 46 + +
3 48 + +
4 83 + +
5 42 + +
6 58 + +
7 59 + +
8 78 + +
9 52 + +
10 70 + +
11 67 + +
1该检测结果由确诊医院提供,检测方法为戊型肝炎病毒IgG/IgM抗体测定试剂盒。
2+为检测结果阳性,-为检测结果阴性。
表5.泛基因型ORF3作为抗原检测11例阳性病人血清中IgG和IgM的阳性率
  IgG IgM
HEV感染者抗体阳性个数 11/11 10/11
HEV感染者抗体检出率 100% 90.9%
实施例4:利用纯化后的HEV-A泛基因型ORF3蛋白免疫新西兰大白兔,检测ORF3免疫原性
1.利用纯化后的ORF3蛋白免疫新西兰大白兔
(1)将引进的新西兰大白兔置于普通级动物房间饲养观察一周,使其适应环境。
(2)注射免疫前从兔子耳缘静脉采血2mL,分离血清当做阴性对照,操作步骤如下:安抚兔子使其平静,然后小心剃去兔耳上的毛并用酒精棉球涂抹血管部位使血管膨胀,用一次性清洁注射器从耳缘静脉抽取2mL血液,后小心抽出针头,适当按压伤口以免流血,后用酒精棉球消毒伤口。
(3)免疫流程:将纯化好的ORF3蛋白1mg用生理盐水稀释至1mL与等体积1ml的弗氏完全佐剂乳化,在兔子背部多部位喷洒酒精消毒后皮下注射免疫,一般分为四个部位,每个部位注射250μL。2周后,第二次耳缘静脉采血10mL检测第一次注射免疫产生抗体的效价。将纯化好的ORF3蛋白1mg用生理盐水稀释至1mL与等体积1ml弗氏不完全佐剂乳化,第二次进行背部多部位注射免疫。免疫流程共需要注射乳化的ORF3蛋白5次,每次免疫前都要耳缘静脉采血检测上一次免疫后产生抗体的效价,最后一次免疫一周后耳缘静脉采血检测效价,之后用10ml 10%水合氯醛麻醉兔子,心脏采血采集兔子全部血液。
(4)HEV-A泛基因型ORF3蛋白血清抗体制备:
采取兔子血液后,不加入抗凝剂放在37℃,让血液凝固1到2小时后,放入4℃冰箱过夜,让血块固缩;当血清自然析出后,在4℃以3000转/分离心10分钟,分离血清,弃去不溶物;将血清移至一干净试管,并分装成小份,储藏在-80℃,将该血清命名为泛基因组ORF3多克隆抗体血清。
2.不同浓度抗原包被对抗体检测水平的影响
(1)包被抗原:用包被液(0.1M Na 2CO 3/NaHCO 3pH=9.0)将纯化后的ORF3蛋白稀释到终浓度4μg/mL,2μg/mL,1μg/mL和0.5μg/mL后,以100μL每孔加入到ELISA板中,每孔中包被蛋白量分别为400ng,200ng,100ng,50ng,并用包被液作为阴性对照(0ng)。包被后的ELISA板放入4℃冰箱过夜,次日取出放置37℃孵育1h后,甩尽液体,用PBS 以200μL每孔洗涤ELISA板3次,每次3min。
(2)封闭:用5%脱脂奶粉的PBS作为封闭液,每孔加入100μL,37℃孵育1h后,甩尽液体。
(3)孵育兔血清:将免疫前与免疫后采得的新西兰大白兔血清用PBS稀释10 2、10 3、10 4、10 5、10 6倍,每孔加入50μL。37℃孵育2h后,甩尽液体,利用0.05%Tween的PBST洗板三次。
(4)加入抗兔IgG:每孔加入酶标抗体100μL(用1%脱脂奶粉PBS将抗兔IgG抗体1:2500稀释),37℃孵育1h后,甩尽液体,利用0.05%的PBST常规洗板三次。
(5)显色:每孔加底物显色剂TMB 100μL,室温避光,观察显色情况,约2-5min后,每孔加终止液1mol/L H 2SO 4 100μL,混匀后,即刻用酶标仪在450nm波长测定OD值。
(6)结果分析:以400ng和200ng ORF3蛋白包板能够较高的OD值,以100ng,50ng ORF3包板其OD值随着包被量的下降而下降(图6)。因而,以200ng/孔包板为最优的包被量。
3.ORF3免疫后抗体水平的检测
(1)包被抗原:用包被液(0.1M Na 2CO 3/NaHCO 3pH=9.0)将纯化后的ORF3蛋白稀释到终浓度2μg/mL,以100μL每孔加入到ELISA板中,每孔中包被蛋白量分别为200ng。包被后的ELISA板放入4℃冰箱过夜,次日取出放置37℃孵育1h后,甩尽液体,用PBS以200μL每孔洗涤ELISA板3次,每次3min。
(2)封闭:用5%脱脂奶粉的PBS作为封闭液,每孔加入100μL,37℃孵育1h后,甩尽液体。
(3)加入兔血清检测免疫后血清效价:将免疫前与第三次、第四次和第六次免疫后采得的新西兰大白兔血清用PBS稀释10 2、10 3、10 4、10 5、10 6倍,每孔加入50μL。37℃孵育2h后,甩尽液体,利用0.05%Tween的PBST洗板三次。
(4)加入抗兔IgG:每孔加入酶标抗体100μL(用1%脱脂奶粉PBS将抗兔IgG抗体1:2500稀释),37℃孵育1h后,甩尽液体,利用0.05%的PBST常规洗板三次。
(5)显色:每孔加底物显色剂TMB 100μL,室温避光,观察显色情况,约2-5min后,每孔加终止液1mol/L H 2SO 4 100μL,混匀后,即刻用酶标仪在450nm波长测定OD值。
(6)抗体水平检测:第三次免疫后,将血清稀释1000倍,仍能与抗原产生很好的结合;第四次和第六次免疫后,稀释血清稀释10000倍,仍能与抗原产生很好的结合(图7)。
实施例5:ORF3蛋白免疫后产生的多克隆抗体可以作为HEV实验室检测手段
1.ORF3真核表达质粒pcDNA3.1-ORF3-flag构建:
1.1 ORF3基因序列长度为:340bp,以pcDNA3.1-Flag为载体,在其上、下游分别添加XhoⅠ和EcoRⅠ酶切位点,设计用于扩增基因序列的引物。
上游引物:AACCTCGAGATGGGATCACCATGTGCCCTAG
下游引物:AACGAATTCACGGCGCAGCCCCAGCTGG
1.2 PCR扩增ORF3全长片段(NCBI序列号:JQ679013.1)
(1)在0.2mL EP管中加入以下反应混合物,反应体系如表1:
表6.PCR反应体系
组分 体积
Primer STAR Max DNA polymerase 25μL
Forward Primer(10μM) 1μL
Reverse Primer(10μM) 1μL
Template 2μL
灭菌蒸馏水 21μL
Total volume 50μL
(2)将样品管置于PCR仪器中,反应程序见表2,循环数为35,ORF3蛋白PCR结果(图8)。
表7.PCR扩增反应程序
温度 时间
98℃ 10s
63.9℃ 30s
72℃ 40s
1.3 PCR产物的胶回收
(1)PCR产物经2%琼脂糖凝胶电泳后,在紫外灯下小心把目的胶块切下。
(2)将高压后的空1.5mL EP管进行称量并记录重量后,取目的胶块收入EP管中,再次称重,两次重量的差为目的胶块的重量。
(3)根据1ug胶+1μL Binding Buffer的要求加入正确量的Binding Buffer在EP管内。
(4)将其放入55℃水浴锅内,水浴10min后,取出EP管,仔细观察胶块是否完全溶解。若未完全溶解,可再次短暂加热,直至完全溶解。
(5)将DNA琼脂糖溶液转移至吸附柱内,静置2min,离心12000rpm/min,75s。(吸附柱每次仅能容纳700μL溶液,若单次不能全部加入吸附柱中,余下部分可待离心后加入吸附柱内)
(6)弃废液,向吸附柱内加入700μL Washing Buffer,离心10000rpm/min,75s。
(7)重复上一步。
(8)弃废液,空转10000rpm/min,2min。
(9)将柱子转移到一个新的高压后的1.5mL EP管内,打开盖子,静置2min。
(10)向柱子的中心加入30μL Elution Buffer,静置2min后,离心13000rpm/min,1min。
(11)测定回收产物的浓度,并记录在EP管管壁,储存于-20℃。
1.4目的片段和载体的酶切
(1)在0.2mL EP管中加入以下反应混合物。
表8.酶切体系
组分 体积
酶1 1μL
酶2 1μL
10x Buffer 2μL
DNA ≤1ug
灭菌蒸馏水 补足
Total volume 20μL
(2)按照反应体系混匀样品后,短暂瞬离。放入37℃培养箱,酶切3h。
1.5目的片段与载体片段的连接
(1)目的片段(340bp)与载体片段(约5500bp)物质的量之比为3~10,据此计算出目的片段所需的量,见表4。
(2)将样品置于连接仪内,16℃,连接过夜。
表9.连接体系
组分 体积
T4 DNA Ligase 1μL
10x T4 DNA Ligase Buffer 2μL
10x Buffer 2μL
目的片段  
载体片段 80ng
灭菌蒸馏水 补足
Total volume 20μL
1.6转化(DH5α)
(1)取大肠杆菌DH5α感受态细胞50μL菌体使其迅速在冰上融化,加入连接产物10 μL,轻轻旋转混合,冰浴30min。
(2)立即置入42℃水浴锅内,热休克90s,勿晃动,使其达到准确热激温度。
(3)迅速转移至冰上,冰浴2min。
(4)在超净台中加650μL LB培养基至样品管内轻轻混匀。
(5)将样品管置于摇床中,37℃,220rpm/min,振荡培养1h。
(6)5000rpm/min,室温,离心1min。
(7)弃上清550μL,余约150μL混匀,全部加至抗生素平板上并涂板,至平板无液体流动,正放10min,倒放平板37℃培养12~16h。
1.7将重组质粒送测序进行鉴定,结果正确为pcDNA3.1-ORF3-FLAG.
2.利用ORF3产生的多克隆抗体检测ORF3蛋白真核表达阳性细胞
2.1将1中构建的pcDNA3.1-ORF3-flag质粒转染HEK 293T细胞
(1)六孔板每孔接种6×10 5个细胞,加入2mL含10%胎牛血清的DMEM高糖培养基,充分混匀后放入37℃,5%CO 2细胞培养箱中培养,12~24h后,使细胞覆盖率达到80%。
(2)取4μg质粒和12μL脂质体PEI分别溶于100μL的DMEM高糖培养基,室温静置5min,将质粒溶液加入到脂质体溶液中,轻轻混匀后,室温静置20min。
(3)向六孔板细胞中加入DNA-脂质体混合物200μL/孔,充分混匀后放入37℃,5%CO 2细胞培养箱中培养,4~6h后更换为含10%胎牛血清的DMEM高糖培养基,即完成细胞转染。
2.2利用Western blot检测ORF3在细胞中的表达量:
(1)总蛋白的提取:弃去培养基,PBS洗涤细胞3遍,加入500μL胰酶细胞消化液,室温消化2min,弃胰酶,用1mL含10%胎牛血清的DMEM高糖培养基将细胞吹打下来,移入1.5mL EP管中。离心机提前4℃预冷,1000rpm/min,离心5min。弃上清,加入1mL PBS洗涤细胞,离心后,只留细胞沉淀。配置细胞裂解液,将RIPA、磷酸酶抑制剂、蛋白酶抑制剂(体积比100:1:1)混匀,加入200μL细胞裂解液/孔,轻轻吹打混匀,转移至1.5mL EP管内,冰上裂解30min。打开超声波破碎仪器,每管细胞超声裂解3次,4℃离心,13000rpm/min,10min,取上清至1.5mL EP管。加入相应量的5×蛋白上样缓冲液,混匀后煮样10min,冷却后,样品收入-20℃储存。
(2)SDS-PAGE电泳:配制12.5%分离胶和4%浓缩胶,先配制分离胶,充分混匀后 灌入凝胶板中,用无水乙醇作为压线液,等待约40min,倾倒弃去上层无水乙醇并用吸水纸吸去残余液体,再配制浓缩胶,充分混匀后灌注上层,插入成型梳后,室温静置约40min,胶完全凝固后收入4℃冰箱,储存备用。配制电泳液见表1,将凝胶板放入电泳架,加入电泳液后拔去成型梳,每个凝胶孔加入10~20μL蛋白样品,其中一孔,加入蛋白Marker。将电泳架放入电泳槽,补足内槽外槽电泳液后开始电泳,70V电泳压线约30min,待样品电泳至浓缩胶与分离胶分界线时更改电压至120V,待溴酚蓝跑至分离胶底部时停止电泳。
(3)Western blot蛋白质免疫印迹实验:裁剪与目的胶块大小相同的PVDF膜,放入甲醇中浸泡约30s,使PVDF膜充分激活,再将PVDF膜放入回收利用的湿转液中,浸泡3~5min。裁剪与胶块大小相同的白色滤垫,充分浸泡后放在湿转夹上,转膜在湿转电转仪中进行,排列顺序为:白板-海绵垫-白色滤纸-PVDF膜-胶-白色滤纸-海绵垫-黑板。接通电源,100V稳压,湿转100min。将膜浸泡于封闭液中(5%脱脂奶粉),室温摇床封闭2h。封闭结束后,将PVDF膜进行简单清洗后裁剪与目的蛋白大小一致,放入抗体孵育盒中,将ORF3多克隆抗体血清利用1%BSA分别稀释至1000、2000、3000、4000倍,加入到孵育盒中。置于4℃摇床孵育过夜,并利用flag抗体(1:2000)检测蛋白是否具有flag标签。第二天取出抗体孵育盒,室温摇床复温30min后吸取一抗,用TBST洗涤缓冲液震荡洗涤3次,每次10min。将PVDF膜置于抗体孵育盒中,加入稀释好的抗兔IgG抗体,稀释比例为1:5000(稀释液为1%BSA),室温摇床孵育2h,吸取二抗,用TBST洗涤缓冲液震荡洗涤3次,每次10min。
(4)利用ECL对Western blot进行显色,分析结果发现,稀释4000倍后,该泛基因组ORF3可以检测到真核细胞中表达ORF3蛋白(图9和图10)。
3.利用免疫荧光检测ORF3在细胞中的表达量:
(1)将pcDNA3.1-ORF3-flag质粒转染至293T细胞内48h后,弃细胞培养基,PBS洗两遍。
(2)加入4%多聚甲醛固定细胞,室温静置30min。
(3)弃掉多聚甲醛,沿侧壁加入PBS,洗2遍,洗掉剩余的多聚甲醛。
(4)加入0.1~0.3%Triton打孔,覆盖即可,室温静置15min。
(5)弃掉Triton,沿侧壁加入PBS洗两遍。
(6)向细胞孔中加入封闭液(5%脱脂奶粉),室温静置45min~60min。
(7)将泛基因型ORF3多克隆抗体以1:500,1:1000,1:1500,1:2000,1:2500,1:3000,1:3500,1:4000分别稀释,37℃孵育1小时。
(8)沿侧壁加入PBS,将孔板置于摇床上慢摇,洗3次,5min/次。
(9)避光加入再用Cora Lite 488/594偶联的抗兔IgG(绿色/红色)(稀释度为1:500)和Hochest(蓝色)(稀释度为1:500)对细胞进行染色,37℃孵育2小时。
(10)沿侧壁加入PBS,将孔板置于摇床上慢摇,洗3次,5min/次。
(11)在倒置荧光显微镜下观察拍摄。
(12)结果如图11所示:将泛ORF3多克隆抗体稀释4000倍依然能够检测ORF3蛋白的表达。由于pcDNA-flag载体没有ORF3基因且flag标签前没有起始密码子,因而该质粒不能表达ORF3和flag,为阴性对照。
实施例6:HEV疫苗主要成分ORF2蛋白免疫后产生的血清抗体不能与ORF3进行相互作用
重组表达ORF2截短基因编码的p239蛋白(aa368~aa606)是HEV现有疫苗“益可宁”的主要成分,具有良好的免疫原性和抗原性。HEV ORF2免疫后,产生针对ORF2的抗体。因而利用现有的HEV血清学检测试剂(以ORF2抗原包被的ELISA试剂盒)对普通人群进行抗HEV-ORF2抗体筛查时,无法区别疫苗免疫和自然感染这两种不同的状况。
为验证正戊肝病毒属A泛基因组ORF3蛋白能否与ORF2诱导产生的抗体进行结合,将HEV基因p239蛋白(aa368~aa606)免疫新西兰大白兔后,获得血清,并利用ELISA方法对其与ORF2和ORF3的结合进行鉴定发现,该血清能够与ORF2进行反应,但不能ORF3进行结合,以上结果说明该正戊肝病毒属A泛基因组ORF3蛋白不能与ORF2免疫后产生的抗体进行相互作用。结合病人检测结果(实施例3)说明,该ORF3蛋白能够用于区分HEV自然感染与HEV疫苗免疫后这两种不同的情况。
具体实验操作如下:
1.利用ORF2蛋白免疫新西兰大白兔
(1)免疫流程:将ORF2蛋白1mg用生理盐水稀释至1mL与等体积1ml的弗氏完全佐剂乳化,在兔子背部多部位喷洒酒精消毒后皮下注射免疫,一般分为四个部位,每个部位注射250μL。2周后,第二次耳缘静脉采血10mL检测第一次注射免疫产生抗体的效价。将ORF2蛋白1mg用生理盐水稀释至1mL与等体积1ml弗氏不完全佐剂乳化,第二次进行背部多部位注射免疫。免疫流程共需要注射乳化的ORF3蛋白5次,每次免疫前都要耳缘静脉采血检测上一次免疫后产生抗体的效价,最后一次免疫一周后耳缘静脉采血检测效价,之后用10ml 10%水合氯醛麻醉兔子,心脏采血采集兔子全部血液。
(2)ORF2蛋白血清抗体制备:
采取兔子血液后,不加入抗凝剂放在37℃,让血液凝固1到2小时后,放入4℃冰箱过夜,让血块固缩;当血清自然析出后,在4℃以3000转/分离心10分钟,分离血清,弃去不溶物;将血清移至一干净试管,并分装成小份,储藏在-80℃。
2.利用ORF2蛋白和泛基因组ORF3蛋白作为抗原检测ORF2免疫后血清
(1)包被抗原:用包被液(0.1M Na 2CO 3/NaHCO 3pH=9.0)将ORF2和ORF3蛋白稀释到终浓度2μg/mL后,以100μL每孔加入到ELISA板中,每孔中包被蛋白量分别为200ng,并用包被液作为阴性对照(0ng)。包被后的ELISA板放入4℃冰箱过夜,次日取出放置37℃孵育1h后,甩尽液体,用PBS以200μL每孔洗涤ELISA板3次,每次3min。
(2)封闭:用5%脱脂奶粉的PBS作为封闭液,每孔加入100μL,37℃孵育1h后,甩尽液体。
(3)孵育兔血清:将免疫前与免疫后采得的新西兰大白兔血清用PBS稀释100倍,每孔加入50μL。37℃孵育2h后,甩尽液体,利用0.05%Tween的PBST洗板三次。
(4)加入抗兔IgG:每孔加入酶标抗体100μL(用1%脱脂奶粉PBS将抗兔IgG抗体1:2500稀释),37℃孵育1h后,甩尽液体,利用0.05%的PBST常规洗板三次。
(5)显色:每孔加底物显色剂TMB 100μL,室温避光,观察显色情况,约2-5min后,每孔加终止液1mol/L H 2SO 4 100μL,混匀后,即刻用酶标仪在450nm波长测定OD值。
(6)结果分析(图12):以ORF2包被的ELISA能够与ORF2免疫后的兔血清反应(OD值~1.2),而以ORF3包被的ELISA不能够与ORF2免疫后的兔血清进行反应(OD~0.1)。

Claims (5)

  1. 一种正戊肝病毒属A泛基因型ORF3蛋白,其特征在于:该正戊肝病毒属A泛基因型ORF3蛋白的氨基酸序列如SEQ ID NO:1所示。
  2. 根据权利要求1所述的一种正戊肝病毒属A泛基因型ORF3蛋白在HEV感染病检测中的应用。
  3. 根据权利要求1所述的一种正戊肝病毒属A泛基因型ORF3蛋白产生的单克隆抗体或多克隆抗体用于HEV实验室检测中的应用。
  4. 一种检测戊型肝炎病毒试剂盒,其特征在于:包含正戊肝病毒属A泛基因型ORF3蛋白;
    所述正戊肝病毒属A泛基因型ORF3蛋白的氨基酸序列如SEQ ID NO:1所示。
  5. 一种正戊肝病毒属A泛基因型ORF3蛋白,其特征在于:该正戊肝病毒属A泛基因型ORF3蛋白是由与SEQ ID NO:1所示氨基酸序列具有至少90%同一性的氨基酸序列组成。
PCT/CN2022/098150 2022-04-19 2022-06-10 一种正戊肝病毒属a泛基因型orf3蛋白及其应用 WO2023201862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210408871.1 2022-04-19
CN202210408871.1A CN116003534A (zh) 2022-04-19 2022-04-19 一种正戊肝病毒属a泛基因型orf3蛋白及其应用

Publications (1)

Publication Number Publication Date
WO2023201862A1 true WO2023201862A1 (zh) 2023-10-26

Family

ID=86019815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098150 WO2023201862A1 (zh) 2022-04-19 2022-06-10 一种正戊肝病毒属a泛基因型orf3蛋白及其应用

Country Status (2)

Country Link
CN (1) CN116003534A (zh)
WO (1) WO2023201862A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328004A (zh) * 2011-01-10 2013-09-25 美国政府健康及人类服务部 感染性戊型肝炎病毒基因型3的重组体
CN104090105A (zh) * 2014-07-10 2014-10-08 广州市丰华生物工程有限公司 一种检测hev抗体的方法及试剂盒和该试剂盒的制备方法
CN104792987A (zh) * 2015-04-29 2015-07-22 中国食品药品检定研究院 用于诊断戊型肝炎病毒感染的方法和试剂盒
CN106939034A (zh) * 2017-03-22 2017-07-11 中国食品药品检定研究院 用于鉴定受试者所感染的hev基因型的方法和试剂盒
US20180328929A1 (en) * 2015-11-30 2018-11-15 Biomerieux Mutated hev polypeptides and the use thereof for assaying anti-hev antibodies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328004A (zh) * 2011-01-10 2013-09-25 美国政府健康及人类服务部 感染性戊型肝炎病毒基因型3的重组体
CN104090105A (zh) * 2014-07-10 2014-10-08 广州市丰华生物工程有限公司 一种检测hev抗体的方法及试剂盒和该试剂盒的制备方法
CN104792987A (zh) * 2015-04-29 2015-07-22 中国食品药品检定研究院 用于诊断戊型肝炎病毒感染的方法和试剂盒
US20180328929A1 (en) * 2015-11-30 2018-11-15 Biomerieux Mutated hev polypeptides and the use thereof for assaying anti-hev antibodies
CN106939034A (zh) * 2017-03-22 2017-07-11 中国食品药品检定研究院 用于鉴定受试者所感染的hev基因型的方法和试剂盒

Also Published As

Publication number Publication date
CN116003534A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2021254327A1 (zh) 一种包膜替换型病毒载体疫苗及其构建方法
Sui et al. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques
Wang et al. Prevalence, isolation, and partial sequence analysis of hepatitis E virus from domestic animals in China
Graff et al. Mutations within potential glycosylation sites in the capsid protein of hepatitis E virus prevent the formation of infectious virus particles
Wu et al. Clinical and epidemiological implications of swine hepatitis E virus infection
Johne et al. Characterization of two novel polyomaviruses of birds by using multiply primed rolling-circle amplification of their genomes
Favorov et al. IgM and IgG antibodies to hepatitis E virus (HEV) detected by an enzyme immunoassay based on an HEV‐specific artificial recombinant mosaic protein
Li et al. Characterization of self-assembled virus-like particles of human polyomavirus BK generated by recombinant baculoviruses
CN103239734B (zh) 用于预防和/或治疗呼吸道合胞病毒感染的疫苗
CN112724208A (zh) 一种SADS-CoV重组S蛋白胞外段及其制备方法与应用
CN116023506B (zh) Asfv非结构蛋白优势抗原表位融合蛋白及其试剂盒与应用
CA3065670C (en) Hcbi sequences as an early marker for the future development of cancer and diseases of the cns and as a target for cancer treatment and prevention
CN116041549B (zh) 一种副猪嗜血杆菌haps0901和waz融合蛋白及其应用
CA1341384C (en) Expression and diagnostic use of gag encoded peptides which are immunologically reactive with antibodies to lav
CN111848749A (zh) 猪细小病毒VLPs抗体检测试剂盒及其制备方法、应用
CN113999861B (zh) 腺相关病毒衣壳蛋白保守区多克隆抗体的制备方法及应用
Mankotia et al. Development of an immunoassay for detection of torque Teno virus (TTV) antibodies using the N22 expression product from TTV genotype 2
CN113817753A (zh) 表达SARS-CoV-2纤突蛋白或其变异体SΔ21的假型化VSV病毒构建和应用
WO2023201862A1 (zh) 一种正戊肝病毒属a泛基因型orf3蛋白及其应用
US20230375548A1 (en) Indirect enzyme-linked immunosorbent assay detection kit based on p30 protein and p22 protein of african swine fever virus
CN114778852B (zh) 一种检测prrsv plp2抗体的间接elisa方法
JP2004250385A (ja) 2型豚サーコウイルス特異的抗体検出用elisa抗原
CN110554187B (zh) 一种用于检测牛病毒性腹泻病毒抗体的表达蛋白、elisa试剂盒及其制备方法和应用
CN114957411B (zh) 一种正戊型肝病毒属基因c1型病毒orf2重组蛋白及其制备方法和应用
CN117417416B (zh) 用于检测非洲猪瘟病毒的重组抗原蛋白及其制备方法、elisa试剂盒和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938091

Country of ref document: EP

Kind code of ref document: A1