WO2023201652A1 - 信息处理方法及装置、通信设备及存储介质 - Google Patents

信息处理方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023201652A1
WO2023201652A1 PCT/CN2022/088279 CN2022088279W WO2023201652A1 WO 2023201652 A1 WO2023201652 A1 WO 2023201652A1 CN 2022088279 W CN2022088279 W CN 2022088279W WO 2023201652 A1 WO2023201652 A1 WO 2023201652A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
antenna structure
threshold
terminal
type
Prior art date
Application number
PCT/CN2022/088279
Other languages
English (en)
French (fr)
Inventor
牟勤
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/088279 priority Critical patent/WO2023201652A1/zh
Priority to CN202280001274.5A priority patent/CN117598008A/zh
Publication of WO2023201652A1 publication Critical patent/WO2023201652A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular, to an information processing method and device, communication equipment and storage medium.
  • the radio resource (New Radio, NR) Supplementary Uplink (SUL) carrier refers to an uplink carrier that is supplementary to the original carrier pair consisting of an uplink carrier and a downlink carrier.
  • the UL carrier in the carrier pair can be called the main UL carrier.
  • the SUL carrier is generally deployed at low frequency.
  • a supplementary uplink carrier of 800MHZ will be configured.
  • the main purpose of proposing SUL carriers is to expand uplink coverage and improve the performance of uplink transmission in power-limited areas such as cell edges by using low-frequency carriers.
  • the uplink bandwidth of non-SUL carriers will be much larger than that of SUL carriers.
  • the terminal can use the main UL carrier to obtain a higher rate.
  • the terminal can use the low-frequency SUL carrier to obtain better uplink transmission performance.
  • the terminal can only work on the main UL carrier or the SUL carrier at a time.
  • Embodiments of the present disclosure provide an information processing method and device, communication equipment, and storage media.
  • a first aspect of an embodiment of the present disclosure provides an information processing method, which is executed by a terminal.
  • the method includes:
  • the decision parameters and the measurement value of the downlink DL carrier it is determined to perform uplink transmission on the main uplink UL carrier or the auxiliary uplink SUL carrier.
  • a second aspect of the embodiment of the present disclosure provides an information processing method, which is executed by a base station.
  • the method includes:
  • Send network signaling including the decision parameter, where the decision parameter and the measurement value of the DL carrier are jointly used by the terminal to select uplink transmission on the main UL carrier or the SUL carrier.
  • a third aspect of the embodiment of the present disclosure provides an information processing device, wherein the device includes:
  • the first determination module is configured to determine the decision parameters according to the antenna structure of the terminal;
  • the determining module is configured to determine, based on the decision parameter and the measurement value of the downlink DL carrier, to perform uplink transmission on the primary uplink UL carrier or the auxiliary uplink SUL carrier.
  • a fourth aspect of the embodiments of the present disclosure provides an information processing device, wherein the device includes:
  • the second determination module is configured to determine the decision parameters according to the antenna structure type of the terminal
  • the sending module is configured to send network signaling including the decision parameter, where the decision parameter and the measurement value of the DL carrier are jointly used by the terminal to select uplink transmission on the main UL carrier or the SUL carrier.
  • a fifth aspect of the embodiment of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program.
  • the program executes the information processing method provided by the first aspect or the second aspect.
  • a sixth aspect of the embodiments of the present disclosure provides a computer storage medium that stores an executable program; after the executable program is executed by a processor, the information provided by the first aspect or the second aspect can be realized Approach.
  • the technical solution provided by the embodiments of the present disclosure determines the decision parameters based on the antenna structure of the terminal for the terminal to select the main UL carrier or the SUL carrier for uplink transmission, which can enable terminals with different antenna structures to have almost equal opportunities to perform uplink transmission. transmission.
  • the technical solution provided by the embodiments of the present disclosure determines the decision parameters based on the antenna structure of the terminal for the terminal to select the main UL carrier or the SUL carrier for uplink transmission, which can enable terminals with different antenna structures to have almost equal opportunities to perform uplink transmission. transmission.
  • load balancing between different carriers can be achieved, or terminal switching between UL carriers can be reduced, thereby reducing transmission delay.
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Figure 2 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Figure 3 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Figure 4 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Figure 5 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Figure 6 is a schematic flowchart of an information processing method according to an exemplary embodiment
  • Figure 7 is a schematic structural diagram of an information processing device according to an exemplary embodiment
  • Figure 8 is a schematic structural diagram of an information processing device according to an exemplary embodiment
  • Figure 9 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Figure 10 is a schematic structural diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include: several UEs 11 and several access devices 12.
  • UE 11 may be a device that provides voice and/or data connectivity to users.
  • the UE 11 can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the UE 11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or a "cellular" phone) and a device with
  • the computer of the IoT UE may, for example, be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station mobile station
  • mobile station mobile station
  • remote station remote station
  • access point remote UE ( remote terminal)
  • access UE access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user device
  • user UE user equipment
  • UE 11 can also be a device for an unmanned aerial vehicle.
  • the UE 11 may also be a vehicle-mounted device, for example, it may be a driving computer with a wireless communication function, or a wireless communication device connected to an external driving computer.
  • the UE 11 can also be a roadside device, for example, it can be a street light, a signal light or other roadside equipment with wireless communication functions.
  • the access device 12 may be a network-side device in the wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the access device 12 may be an evolved access device (eNB) used in the 4G system.
  • the access device 12 may also be an access device (gNB) using a centralized distributed architecture in the 5G system.
  • eNB evolved access device
  • gNB access device
  • the access device 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the access device 12.
  • a wireless connection can be established between the access device 12 and the UE 11 through the wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal.
  • the method includes:
  • S1110 Determine the decision parameters according to the antenna structure of the terminal
  • S1120 According to the decision parameter and the measurement value of the DL carrier, determine whether to perform uplink transmission on the main UL carrier or the SUL carrier.
  • the primary UL carrier is a UL carrier paired with the DL carrier on which the terminal currently receives SSB.
  • the SUL carrier is the auxiliary carrier of the main UL carrier and is not paired with the DL carrier on which the current terminal receives SSB.
  • the SUL carrier has a lower frequency than the main UL carrier.
  • the measurement values of DL carriers include but are not limited to: Reference Signal Receiving Power (RSRP) or Reference Signal Received Quality (RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Received Quality
  • the information processing method can be executed by a terminal, which can be various types of terminals. Different types of terminals may have different antenna structures, or terminals of the same type may have different antenna structures.
  • the antenna structures in working state may also be different.
  • the terminal may only have one receiving antenna in working state. If working in FR2, the number of antennas in the terminal working state may be 2, and there may be multiple antenna panels. In this way, terminals with different receiving antenna structures have different measurement values for the same DL carrier even at the same location.
  • the decision parameters are determined according to the antenna structure of the terminal.
  • the decision parameters are determined according to the antenna structure of the terminal in the working state. This decision parameter can be used to select the terminal to select the main UL carrier or SUL carrier to communicate with the base station.
  • the terminal will measure the DL carrier through the receiving antenna and obtain the aforementioned measurement values of RSRP and/or RSRQ. Specifically, the decision parameter and the measured value of the DL carrier are jointly used by the terminal to select a UL carrier for uplink transmission.
  • the UL carrier for uplink transmission may be a SUL carrier or a main UL carrier.
  • the DL carrier may be a carrier that forms a carrier pair with the UL carrier. Since the DL carrier and the UL carrier belong to the same carrier pair, the transmission attenuation of the carriers in space is similar, so the measurement value of the DL carrier can be used to measure the signal quality of the UE selecting the UL carrier for uplink transmission. Therefore, in the embodiment of the present disclosure, the main UL carrier or the SUL carrier is selected for uplink transmission based on the decision parameters and the measurement value of the DL carrier.
  • the SUL carrier is selected for uplink transmission, and/or, when the signal quality of the DL carrier is poor according to the decision parameter and the measurement value of the DL carrier.
  • the UL carrier is selected for uplink transmission.
  • the aforementioned poor signal quality and/or good signal quality can be determined by the conditions for the terminal to perform uplink transmission on the main UL carrier corresponding to the decision parameters and the DL carrier measurement value. That is, based on the decision parameters and the measured value of the DL carrier, if it is determined that the signal quality of the main UL carrier meets the conditions for terminal data transmission, the signal quality of the DL carrier can be considered to be good; otherwise, the signal quality of the DL carrier is poor.
  • the decision parameter includes a threshold of RSRP. When the measured value of RSRP of the DL carrier is greater than the threshold, it can be considered that the measured value of the current terminal's DL carrier satisfies the conditions for performing uplink transmission on the primary UL carrier.
  • the decision parameters determined based on the terminal's antenna structure are used for the terminal to select the main UL carrier or the SUL carrier for uplink transmission, which allows terminals with different antenna structures to have almost equal opportunities for uplink transmission.
  • load balancing between different carriers can be achieved, or terminal switching between UL carriers can be reduced, thereby reducing transmission delay.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal.
  • the method includes:
  • S1210 Determine the decision parameters according to the antenna structure of the terminal
  • S1220 According to the decision parameter and the measurement value of the DL carrier, determine to perform random access on the UL carrier or the SUL carrier.
  • the terminal will choose to perform random access on the main UL carrier or the SUL carrier.
  • the random access may include: 2-step random access and/or 4-step random access.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal.
  • the method includes:
  • S1320 According to the decision parameter and the measurement value of the DL carrier, perform small data transmission (Small Date Transmission, SDT) on the UL carrier or the SUL carrier.
  • This small data transmission is a special kind of data transmission, usually when the UE does not establish a connection with the network side, it uploads data through messages such as random access requests. For example, a random access message A is sent on the random access opportunity (Random Occasion, RO) of 2-step random access.
  • the random access message A carries a small amount of data, and the data carried by the random access message A is Small data is transferred.
  • determining the decision parameters according to the antenna structure type of the terminal includes:
  • the decision parameters include a first threshold and a measurement correction factor; the measurement correction factor is used to correct the DL carrier measurement value of the first terminal;
  • the antenna structure of the terminal is a second type of antenna structure, determining that the decision parameter includes the first threshold
  • the first threshold is a shared threshold between the terminal of the first type of antenna structure and the terminal of the second type of antenna structure.
  • terminals with different antenna structures share the same measurement value threshold, but terminals corresponding to the first type of antenna structure also have measurement correction factors.
  • the measurement correction factor can be used to adjust the DL carrier measurement value to obtain a correction value; then the correction value is compared with the first threshold to obtain a comparison result; based on the comparison result, uplink transmission is selected on the main UL carrier or the SUL carrier.
  • both the first type of antenna structure and the second type of antenna structure may be configured with measurement correction factors, but the correction values of the two measurement correction factors are different.
  • the measurement correction factors may include: coefficient factors and/or bias factors.
  • the coefficient factor may be multiplied by the measured value of the DL carrier to obtain a correction value that intersects with the first threshold.
  • the offset factor can be used to correct the measured value of the DL carrier through addition and subtraction operations to obtain a correction value.
  • the first type of antenna structure may include only one receiving antenna or two antennas; the second type of antenna structure may include: 2 or more receiving antennas.
  • the number of antenna elements on the antenna panels of the multiple antennas included in the second type of antenna structure may be the same or different. If the number of antenna elements included in the first type of antenna structure is the same as the number of antenna elements included in the second type of antenna structure, then usually a single antenna panel in the second type of antenna structure contains more antenna elements.
  • the first type of antenna structure is different from the second type of antenna structure.
  • the decision parameters configured according to the antenna structure may include the first threshold alone, or include the measurement correction factor and the first threshold at the same time, thereby achieving Configure decision parameters according to the suitability of the antenna structure to achieve load balancing on different carriers and/or reduce uplink transmission delay.
  • the measurement value of the DL carrier of the first type antenna structure with fewer receiving antennas or fewer antenna elements can be compensated.
  • determining whether to perform uplink transmission on the main UL carrier or the SUL carrier based on the decision parameter and the measured value of the downlink DL carrier includes: :
  • the correction value of the DL carrier is greater than or equal to the first threshold, it can be considered that the signal quality of the current DL carrier meets the conditions for the terminal to perform uplink transmission on the main UL carrier, and uplink transmission is prioritized on the UL. In this way, the terminal does not need to switch. Under the condition of the working frequency of the antenna, the UL carrier is quickly used to complete the uplink transmission. If the correction value of the DL carrier is less than the first threshold, it can be considered that the signal quality of the current DL carrier does not meet the conditions for the terminal to perform uplink transmission on the main UL carrier, and priority is given to uplink transmission on the SUL. In this way, the terminal's transmitting antenna is switched. After reaching the frequency point where the SUL carrier is located, uplink transmission is performed, thereby ensuring the transmission quality of the uplink transmission through SUL.
  • the measurement correction factors include:
  • the first type of correction factor is used to correct the measured values of the DL carrier for random access and SDT.
  • the first type of correction factor may be a shared correction factor, that is, a correction factor used regardless of what kind of uplink transmission the terminal performs.
  • the first type of terminals share the first type of correction factor when performing random access and SDT.
  • the second type of correction factor is used to correct the measurement value of the DL carrier for random access or SDT.
  • the second type of correction factors can be independent correction factors, that is, different uplink transmissions are configured with different correction factors.
  • the values of the correction factors for different uplink transmissions can be the same or different. If the measurement factor is a second type of correction factor, different correction factor values can be configured according to the transmission characteristics of different uplink transmissions to meet the transmission requirements of different uplink transmissions.
  • Upstream transmission includes:
  • the measured value of the DL carrier is less than the first threshold, it is determined to perform the uplink transmission on the SUL carrier.
  • the antenna structure of the terminal is a second type antenna structure.
  • the first threshold may be included separately in the decision parameters.
  • the measured value of the DL carrier is directly compared with the first threshold. If the measured value of the DL carrier is greater than or equal to the first threshold, it means that the signal quality of the DL carrier meets the aforementioned requirements for the terminal to perform uplink transmission on the main UL carrier. conditions, otherwise it can be considered that the aforementioned conditions for the terminal to perform uplink transmission on the primary UL carrier are not met.
  • the terminal can perform uplink transmission on the UL carrier without switching the antenna operating frequency. However, if the signal quality of the DL carrier does not When the conditions for the terminal to perform uplink transmission on the main UL carrier are met, the terminal needs to at least switch the working frequency of the transmitting antenna so that it can perform uplink transmission on the SUL.
  • determining the decision parameters according to the antenna structure type of the terminal includes:
  • the antenna structure of the terminal is a first type antenna structure, determining that the decision parameter includes a second threshold;
  • determining the decision parameter includes a third threshold.
  • the first type of antenna structure and the second type of antenna structure directly use different thresholds.
  • the second threshold may be smaller than the first threshold.
  • a lower threshold is used to determine whether the signal quality of the DL carrier meets the conditions for the terminal to perform uplink transmission on the main UL carrier.
  • Upstream transmission includes:
  • the measured value of the DL carrier is less than the second threshold, it is determined to perform uplink transmission on the auxiliary uplink SUL carrier.
  • the measured value of the DL carrier when the measured value of the DL carrier is not less than the second threshold, it means that the signal quality of the DL carrier meets the conditions for the terminal to perform uplink transmission on the main UL carrier, and the UL carrier is preferably selected for uplink transmission.
  • the UL carrier is selected for uplink transmission, that is, the uplink transmission is sent on the UL carrier.
  • the measured value of the DL carrier when the measured value of the DL carrier is less than the second threshold, it means that the signal quality of the DL carrier does not meet the conditions for the terminal to perform uplink transmission on the main UL carrier. This is very likely. The signal quality of the UL carrier is not good enough, so uplink insertion transmission is chosen to be sent on the SUL carrier.
  • the uplink is performed on the main UL carrier or the auxiliary uplink SUL carrier based on the decision parameter and the measured value of the downlink DL carrier.
  • Transmission including:
  • the measured value of the DL carrier is greater than or equal to the third threshold, determine to perform uplink transmission on the main UL carrier or the auxiliary uplink SUL carrier;
  • the measured value of the DL carrier is less than the third threshold, it is determined to perform uplink transmission on the auxiliary uplink SUL carrier.
  • the measured value of the DL carrier when the measured value of the DL carrier is not less than the third threshold, it means that the signal quality of the DL carrier meets the conditions for the terminal to perform uplink transmission on the main UL carrier, and the UL carrier is preferably selected for uplink transmission. , here the UL carrier is selected for uplink transmission, that is, the uplink transmission is sent on the UL carrier.
  • the measured value of the DL carrier is less than the third threshold, it means that the signal quality of the DL carrier does not meet the conditions for the terminal to perform uplink transmission on the main UL carrier. This is very likely. The signal quality of the UL carrier is not good enough, so uplink insertion transmission is chosen to be sent on the SUL carrier.
  • determining the decision parameters according to the antenna structure type of the terminal includes:
  • the decision parameter includes a fourth threshold and a first threshold correction factor; wherein the first threshold correction factor is used to correct the first type antenna
  • the decision parameters include a fourth threshold and a second threshold correction factor, where the second threshold correction factor is used to correct the second type of antenna.
  • the decision parameters may include: a fourth threshold and a threshold correction factor.
  • the threshold correction factor is used to correct the fourth threshold. After the fourth threshold is corrected, a corrected threshold value will be obtained.
  • the threshold correction factor includes the aforementioned first threshold correction factor and second threshold correction factor.
  • the value of the threshold correction factor can be any real number.
  • the threshold correction factor may be a coefficient factor and/or an offset factor.
  • the coefficient factor is multiplied by the fourth threshold to obtain the corrected fourth threshold.
  • the coefficient factor can usually be a real number from 0 to 1.
  • the offset factor can perform addition and subtraction operations with the fourth threshold.
  • the offset factor is a positive number.
  • the corrected fourth threshold will be obtained.
  • the positive bias factor can be added to the fourth threshold. For example, if the bias factor is a negative number, the fourth threshold and the bias factor are added together to obtain the corrected fourth threshold.
  • the correction amplitude of the first threshold correction factor to the fourth threshold is greater than the correction amplitude of the second threshold correction factor to the fourth threshold.
  • the corrected threshold value is used to compare with the measured value of the DL carrier for the terminal to select the main UL carrier or the SUL carrier for uplink transmission.
  • the first threshold correction factor and the second threshold correction factor are independent of each other, and the values of the first threshold correction factor and the second threshold correction factor are the same or different.
  • Upstream transmission includes:
  • the measured value of the DL carrier is less than the first threshold correction value, it is determined to perform uplink transmission on the auxiliary uplink SUL carrier.
  • the first threshold correction value here is obtained by correcting the fourth threshold using the first threshold correction factor.
  • the measured value of the DL carrier is greater than or equal to the first threshold correction value, it means that the signal quality of the DL carrier meets the conditions for the terminal to perform uplink transmission on the main UL carrier. Otherwise, it can It is considered that the conditions for the terminal to perform uplink transmission on the primary UL carrier are not met.
  • Upstream transmission includes:
  • the measured value of the DL carrier is less than the second threshold correction value, it is determined to perform uplink transmission on the auxiliary uplink SUL carrier.
  • the second threshold correction value here is obtained by correcting the fourth threshold using the second threshold correction factor.
  • the measured value of the DL carrier is greater than or equal to the second threshold correction value, it means that the signal quality of the DL carrier meets the conditions for the terminal to perform uplink transmission on the main UL carrier. Otherwise, it can It is considered that the conditions for the terminal to perform uplink transmission on the primary UL carrier are not met.
  • determining the decision parameter according to the antenna structure type of the terminal includes: determining the decision parameter according to the antenna structure type of the terminal and the protocol agreement.
  • terminals with different antenna structures have different decision parameters.
  • the decision parameters corresponding to different antenna structures can be agreed by the communication protocol. Therefore, the terminal can determine the decision parameters according to the protocol agreement.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a terminal.
  • the method includes:
  • S1420 Determine the decision parameters according to the antenna structure type and network signaling of the terminal.
  • S1430 Perform uplink transmission on the main UL carrier or SUL carrier according to the decision parameter and the measurement value of the DL carrier.
  • the correspondence between the antenna structure and the decision parameters may be indicated by network signaling.
  • the network signaling includes but is not limited to: RRC signaling and/or MAC layer signaling sent by the base station.
  • the MAC layer signaling includes but is not limited to: MAC Control Element (Control Element, CE).
  • the number of receiving antennas included in the first type of antenna structure is less than the number of receiving antennas included in the second type of antenna structure; and/or, a single antenna in the first type of antenna structure
  • the number of antenna elements contained in the panel is less than the number of antenna elements contained in a single antenna panel of the second type of antenna structure.
  • the measurement value of the DL carrier may be larger; if a single antenna panel contains more antenna elements, the measurement value of the DL carrier may be larger.
  • This measurement includes, but is not limited to, RSRP and/or RSRQ.
  • the terminals with the first type of antenna structure include: RedCap terminals with reduced capabilities.
  • the RedCap terminal may further be an enhanced capability reduction (eRedCap) terminal.
  • eRedCap enhanced capability reduction
  • the terminal with this first type of antenna structure can be: a terminal with one receiving antenna when the operating frequency band is FR1; and/or a terminal with fewer antenna panels when the operating frequency band is FR2.
  • the terminals of the second type of antenna structure are different from the terminals of the first type of antenna structure.
  • the terminals of the second type of antenna structure may be normal terminals.
  • the ordinary terminal includes but is not limited to: an enhanced Mobile Broadband (eMBB) terminal or a RedCap terminal with the same antenna structure as an ordinary terminal.
  • eMBB enhanced Mobile Broadband
  • RedCap RedCap terminal with the same antenna structure as an ordinary terminal.
  • the terminal of the second type of antenna structure may generally include multiple antennas, one antenna may include one or more antenna panels, and one antenna panel may include one or more antenna elements.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a base station.
  • the method includes:
  • S2110 Determine the decision parameters according to the antenna structure type of the terminal
  • S2120 Send network signaling including the decision parameter, where the decision parameter and the measurement value of the DL carrier are jointly used by the terminal to select whether to perform uplink transmission on the main UL carrier or the SUL carrier.
  • the method may be performed by a base station.
  • the base station includes but is not limited to eNB and/or gNB.
  • the decision parameters are determined according to the antenna structure type of the terminal, and the determined decision parameters are carried in network signaling and sent to the terminal.
  • the antenna structure type includes but is not limited to: the receiving antenna structure type of the terminal.
  • network signaling may include: RRC signaling and/or MAC layer signaling.
  • the network signaling may be broadcast signaling.
  • the uplink transmission includes: random access; and/or SDT.
  • the decision parameters determined based on the terminal's antenna structure are used for the terminal to select the main UL carrier or the SUL carrier for uplink transmission, which allows terminals with different antenna structures to have almost equal opportunities for uplink transmission.
  • load balancing between different carriers can be achieved, or terminal switching between UL carriers can be reduced, thereby reducing transmission delay.
  • the antenna structure includes: a first type of antenna structure and/or a second type of antenna structure.
  • the number of receiving antennas included in the first type of antenna structure is less than the number of receiving antennas included in the second type of antenna structure; and/or, in a single antenna panel in the first type of antenna structure
  • the number of antenna elements contained is less than the number of antenna elements contained in a single antenna panel of the second type of antenna structure.
  • the measurement value of the DL carrier may be larger; if a single antenna panel contains more antenna elements, the measurement value of the DL carrier may be larger.
  • the measurement values include but are not limited to RSRP and/or RSRQ; in this way, through decision parameters that match the antenna structure, it can be achieved that terminals with different antenna structures have almost equal opportunities for uplink transmission. At the same time, through flexible configuration of decision parameters, load balancing between different carriers can be achieved, or terminal switching between UL carriers can be reduced, thereby reducing transmission delays.
  • the terminal obtains the RSRP threshold related to the SUL carrier usage process. This threshold is shared by all terminals.
  • the responding terminal is a terminal with the first antenna structure.
  • the terminal corrects the RSRP measurement value obtained by measuring the DL carrier. It uses the corrected RSRP value to compare the RSRP value with the RSRP threshold and determines whether to use the SUL carrier for uplink transmission based on the comparison result.
  • Optional method 1 Use the modified RSRP value in both the RACH process and/or the SDT process to determine whether to use the SUL carrier for uplink transmission.
  • Optional method two The network or protocol is preset, and only the modified RSRP value is used for determination during the RACH process or SDT process. In other scenarios, the actual RSRP measurement value is still used to determine whether to use the SUL carrier for uplink transmission.
  • the correction method may be to add an offset value (offset) to the measured actual RSRP value.
  • This offset value may be predefined by the protocol or may be notified through higher-layer signaling.
  • the Offset used in both the RACH process and the SDT process is the same.
  • the Offset used in both the RACH process and the SDT process is different.
  • the first antenna structure includes only one receiving antenna under FR1, and under FR2, one antenna panel contains fewer antenna elements than one antenna panel of a normal NR terminal.
  • the embodiment of the present disclosure provides an information processing method, which may further include:
  • RSRP thresholds are configured for terminals with different antenna structures in both the RACH process and the SDT process.
  • the network or protocol presets only configure RSPR thresholds for different antenna structures during the RACH process or SDT process, and other uplink transmission scenarios still use the same RSRP threshold for determination.
  • the embodiment of the present disclosure provides an information processing method, which may further include:
  • the correction factor can be preset by the protocol or configured by the network.
  • the first antenna structure includes: an antenna structure with only one receiving antenna when the operating frequency band is FR1, and/or,
  • a single antenna panel contains fewer antenna elements than a single antenna panel of a normal NR terminal.
  • the information processing method provided by the embodiment of the present disclosure is enhanced for the RSRP threshold configuration of SUL carrier and UL carrier selection in the RACH process. On the one hand, it supports the progress of realizing the load between different UL carriers and SUL carriers through more flexible configuration. Balance, on the other hand, reduce unnecessary switching between different UL carriers and SUL, and reduce the terminal uplink transmission delay.
  • an embodiment of the present disclosure provides an information processing device, wherein the device includes:
  • the first determination module 110 is configured to determine the decision parameters according to the antenna structure of the terminal;
  • the determination module 120 is configured to perform uplink transmission on the primary UL carrier or the auxiliary uplink SUL carrier according to the decision parameter and the measurement value of the downlink DL carrier.
  • the information processing device may be included in the terminal.
  • the first determination module 110 and the determination module 120 may be program modules; after the program module is executed by a processor, the above operations can be implemented.
  • the first determination module 110 and the determination module 120 may be software-hardware combination modules; the software-hardware combination modules include but are not limited to: programmable arrays.
  • the programmable array includes but is not limited to: field programmable array and/or complex programmable array.
  • the first determination module 110 and the determination module 120 may be pure hardware modules; the pure hardware modules include but are not limited to: application specific integrated circuits.
  • the determining module 120 is configured to determine to perform random access on the UL carrier or the SUL carrier according to the decision parameter and the measurement value of the DL carrier; or, according to the The decision parameters and the measurement value of the DL carrier are used to determine whether small data transmission SDT is performed on the UL carrier or the SUL carrier.
  • the first determination module 110 is configured to determine that the decision parameters include a first threshold and a measurement correction factor when the antenna structure of the terminal is a first type of antenna structure; the measurement correction factor, used to correct the DL carrier measurement value of the first terminal; when the antenna structure of the terminal is a second type of antenna structure, it is determined that the decision parameter includes the first threshold; wherein, the first threshold is the sharing threshold between the terminal of the first type of antenna structure and the terminal of the second type of antenna structure.
  • the determination module 120 is configured to obtain the DL carrier based on the measurement correction factor and the measured value of the DL carrier. Correction value; when the correction value of the DL carrier is greater than or equal to the first threshold, it is determined to perform the uplink transmission on the main UL carrier; when the correction value of the DL carrier is less than the first threshold when, it is determined to perform the uplink transmission on the SUL carrier.
  • the measurement correction factors include:
  • the first type of correction factor is used to correct the measurement values of the DL carrier for random access and SDT;
  • the second type of correction factor is used to correct the measurement value of the DL carrier for random access or SDT.
  • the determination module 120 is configured to determine when the measured value of the DL carrier is greater than or equal to the first threshold. The uplink transmission is performed on the UL carrier; when the measured value of the DL carrier is less than the first threshold, it is determined that the uplink transmission is performed on the SUL carrier.
  • the first determination module 110 is configured to determine that the decision parameter includes a second threshold when the antenna structure of the terminal is a first type of antenna structure; when the antenna structure of the terminal is When the antenna structure is of the second type, it is determined that the decision parameter includes a third threshold.
  • the determination module 120 is configured to determine when the measured value of the DL carrier is greater than or equal to the second threshold. Uplink transmission is performed on the UL carrier; when the measured value of the DL carrier is less than the second threshold, it is determined to perform uplink transmission on the auxiliary uplink SUL carrier.
  • the determination module 120 is configured to determine when the measured value of the DL carrier is greater than or equal to the third threshold.
  • the UL carrier or the auxiliary uplink SUL carrier performs uplink transmission; when the measured value of the DL carrier is less than the third threshold, it is determined to perform uplink transmission on the auxiliary uplink SUL carrier.
  • the first determination module 110 is configured to determine that the decision parameters include a fourth threshold and a first threshold correction factor when the antenna structure of the terminal is a first type antenna structure; wherein, The first threshold correction factor is used to correct the fourth threshold for the terminal with the first type of antenna structure; when the antenna structure of the terminal is the second type of antenna structure, it is determined that the decision parameters include the fourth threshold and the third Two threshold correction factors, wherein the second threshold correction factor is used to correct the fourth threshold for the terminal with the second type of antenna structure.
  • the determination module 120 is configured to obtain a first threshold correction value based on the fourth threshold and the first threshold correction factor; When the measured value of the DL carrier is greater than or equal to the first threshold correction value, it is determined to perform uplink transmission on the main UL carrier; when the measured value of the DL carrier is less than the first threshold correction value, it is determined to perform uplink transmission on the main UL carrier. Auxiliary uplink SUL carrier for uplink transmission.
  • the determination module 120 is configured to obtain a second threshold correction value based on the fourth threshold and the second threshold correction factor; When the measured value of the DL carrier is greater than or equal to the second threshold correction value, it is determined to perform uplink transmission on the main UL carrier; when the measured value of the DL carrier is less than the second threshold correction value, it is determined to perform uplink transmission on the main UL carrier. Uplink transmission is performed on the auxiliary uplink SUL carrier.
  • the first determination module 110 is configured to determine the decision parameter according to the antenna structure type and protocol agreement of the terminal; or, according to the antenna structure type and network signaling of the terminal, Determine the decision parameters.
  • the terminals with the first type of antenna structure include: capability-reduced RedCap terminals;
  • the terminals of the second type of antenna structure are different from the terminals of the first type of antenna structure.
  • an embodiment of the present disclosure provides an information processing device, wherein the device includes:
  • the second determination module 210 is configured to determine the decision parameters according to the antenna structure type of the terminal;
  • the sending module 220 is configured to send network signaling including the decision parameters, where the decision parameters and the measurement value of the DL carrier are jointly used by the terminal to select uplink transmission on the main UL carrier or the SUL carrier.
  • the information processing device may be included in the base station.
  • the second determination module 210 and the sending module 220 may be program modules; after the program module is executed by a processor, the above operations can be implemented.
  • the second determination module 210 and the sending module 220 may be software-hardware combination modules; the software-hardware combination modules include but are not limited to: programmable arrays.
  • the programmable array includes but is not limited to: field programmable array and/or complex programmable array.
  • the second determining module 210 and the sending module 220 may be pure hardware modules; the pure hardware modules include but are not limited to: application specific integrated circuits.
  • the uplink transmission includes:
  • An embodiment of the present disclosure provides a communication device, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute the information processing method provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to store information stored thereon after the communication device is powered off.
  • the communication device includes: a UE or a network element, and the network element may be any one of the aforementioned first to fourth network elements.
  • the processor may be connected to the memory through a bus or the like, and be used to read the executable program stored on the memory, for example, at least one of the methods shown in FIGS. 2 to 6 .
  • FIG. 9 is a block diagram of a terminal 800 according to an exemplary embodiment.
  • the terminal 800 may be a mobile phone, a computer, a digital broadcast user device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communications component 816.
  • Processing component 802 generally controls the overall operations of terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to generate all or part of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at terminal 800. Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 806 provides power to various components of terminal 800.
  • Power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800.
  • Multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when terminal 800 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, and the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800. , the presence or absence of user contact with the terminal 800 , the orientation or acceleration/deceleration of the terminal 800 and the temperature change of the terminal 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 804 including instructions, executable by the processor 820 of the terminal 800 to generate the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an embodiment of the present disclosure shows the structure of an access device.
  • the communication device 900 may be the aforementioned base station.
  • communications device 900 includes a processing component 922, which further includes one or more processors, and memory resources represented by memory 932 for storing instructions, such as application programs, executable by processing component 922.
  • the application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the foregoing methods applied to the access device, for example, the methods shown in any one of Figures 2 to 6.
  • Communication device 900 may also include a power supply component 926 configured to perform power management of communication device 900, a wired or wireless network interface 950 configured to connect communication device 900 to a network, and an input-output (I/O) interface 958 .
  • the communication device 900 may operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种信息处理方法及装置、通信设备及存储介质。由终端执行的信息处理方法可包括:根据终端的天线结构确定判决参数;根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输。

Description

信息处理方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种信息处理方法及装置、通信设备及存储介质。
背景技术
无线资源(New Radio,NR)辅助上行链路(Supplementary Uplink,SUL)载波是指一个原有包含上行载波和下行载波构成的载波对之外补充的一个上行载波。载波对中的UL载波可以称之为主UL载波。
该SUL载波一般都部署在低频。例如,针对部署3.5GHZ频段的载波对,会配置一个800MHZ的补充上行载波。SUL载波提出的主要目的是扩展上行覆盖,通过使用低频载波提高小区边缘等功率受限区域的上行传输的性能。非SUL载波的上行带宽会比SUL载波的上行带宽大得多。
在空口质量比较好的情况下,比如,终端离基站距离很近,终端可以使用主UL载波来获得较高的速率。
在空口质量变得差的时候,由于低频载波路损较小,终端可以使用处在低频的SUL载波来获得较好的上行传输性能。
由于非SUL载波(即主UL载波)和SUL载波的频率差,通常情况下,终端一个时刻只能工作在主UL载波或者SUL载波上。
发明内容
本公开实施例提供一种信息处理方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种信息处理方法,其中,由终端执行,所述方法包括:
根据终端的天线结构确定判决参数;
根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输。
本公开实施例第二方面提供一种信息处理方法,其中,由基站执行,所述方法包括:
根据终端的天线结构类型,确定判决参数;
发送包含所述判决参数的网络信令,其中,所述判决参数与DL载波的测量值,共同用于所述终端选择在主UL载波或者SUL载波上进行上行传输。
本公开实施例第三方面提供一种信息处理装置,其中,所述装置包括:
第一确定模块,被配置为根据终端的天线结构确定判决参数;
确定模块,被配置为根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输。
本公开实施例第四方面提供一种信息处理装置,其中,所述装置包括:
第二确定模块,被配置为根据终端的天线结构类型,确定判决参数;
发送模块,被配置为发送包含所述判决参数的网络信令,其中,所述判决参数与DL载波的测量值,共同用于所述终端选择在主UL载波或者SUL载波上进行上行传输。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面或第二方面提供的信息处理方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面或第二方面提供的信息处理方法。
本公开实施例提供的技术方案,一方面,根据终端的天线结构确定的判决参数用于终端选择主UL载波或者SUL载波进行上行传输,可以使得不同天线结构的终端,具有几乎相等的机会进行上行传输。另一方面,可以通过判决参数的灵活配置,可以实现不同载波之间的负载均衡,或者减少终端在UL载波之间的切换,减少传输延时。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图3是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图4是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图5是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图6是根据一示例性实施例示出的一种信息处理方法的流程示意图;
图7是根据一示例性实施例示出的一种信息处理装置的结构示意图;
图8是根据一示例性实施例示出的一种信息处理装置的结构示意图;
图9是根据一示例性实施例示出的一种终端的结构示意图;
图10是根据一示例性实施例示出的一种通信设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE 11以及若干个接入设备12。
其中,UE 11可以是指向用户提供语音和/或数据连通性的设备。UE 11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE 11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE 11也可以是无人飞行器的设备。或者,UE 11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE 11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
接入设备12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,接入设备12可以是4G系统中采用的演进型接入设备(eNB)。或者,接入设备12也可 以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入设备12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入设备12的具体实现方式不加以限定。
接入设备12和UE 11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
如图2所示,本公开实施例提供一种信息处理方法,其中,由终端执行,所述方法包括:
S1110:根据终端的天线结构确定判决参数;
S1120:根据所述判决参数以及DL载波的测量值,确定在主UL载波或者SUL载波进行上行传输。
主UL载波是和终端当前接收SSB的DL载波是配对的UL载波。
SUL载波是主UL载波的辅助载波,和当前终端接收SSB的DL载波并不配对。通常SUL载波比主UL载波的频点更低。
DL载波的测量值包括不限于:参考信号接收功率(Reference Signal Receiving Power,RSRP)或者,参考信号接收质量(Reference Signal Received Quality,RSRQ)。
该信息处理方法可由终端执行,该终端可为各种类型的终端。不同类型的终端可能具有不同的天线结构,或者,相同类型的终端也可能有不同天线结构。
例如,一个终端工作在不同频点时,处于工作状态的天线结构也可能不同。
假设该终端为RedCap终端或者eRedCap终端,则工作在频点范围(Frequency Range,FR)1的情况下,则终端处于工作状态下的接收天线可能仅有1根。若工作在FR2的情况下,则终端处于工作状态下的天线根数可能是2根,且有多个天线面板。如此,不同接收天线结构的终端,即便在相同位置也对相同DL载波的测量值具有差异。针对这种差异,在本公开实施例中,会根据终端的天线结构来确定判决参数。
在本公开实施例中,会根据终端处于工作状态下的天线结构,确定判决参数。该判决参数可用于选择终端选择主UL载波或者SUL载波与基站进行通信。
终端会通过接收天线会对DL载波进行测量,得到前述为RSRP和/或RSRQ的测量值。具体地,该判决参数和DL载波的测量值,共同用于终端选择进行上行传输的UL载波,该上行传输的UL载波可为SUL载波或者主UL载波。
该DL载波可为与UL载波构成载波对的载波。由于DL载波和UL载波属于同一个载波对,因此载波在空间中的传输衰减类似,从而DL载波的测量值可以用于衡量UE选择该UL载波进行上行传输的信号质量。故在本公开实施例中,会根据判决参数和所述DL载波的测量值,选择主UL载波 或者SUL载波进行上行传输。
示例性地,在根据所述判决参数和DL载波的测量值确定出DL载波的信号质量差时,选择SUL载波进行上行传输,和/或,在所述根据所述判决参数和DL载波的测量值确定出DL载波的信号质量好时,选择UL载波进行上行传输。
前述信号质量差和/或信号质量好,可以由判决参数和DL载波测量值对应的用于终端在主UL载波上进行上行传输的条件确定。即,根据所述判决参数和DL载波的测量值,确定主UL载波的信号质量满足用于终端数据传输的条件,就可以认为DL载波的信号质量好,否则就是DL载波的信号质量差。例如,该判决参数包括RSRP的门限,则DL载波的RSRP的测量值大于门限时,可认为在当前终端的DL载波的测量值满足在主UL载波上执行上行传输的条件。
第一方面,根据终端的天线结构确定的判决参数用于终端选择主UL载波或者SUL载波进行上行传输,可以使得不同天线结构的终端,具有几乎相等的机会进行上行传输。
第二方面,可以通过判决参数的灵活配置,实现不同载波之间的负载均衡,或者减少终端在UL载波之间的切换,减少传输延时。
如图3所示,本公开实施例提供一种信息处理方法,其中,由终端执行,所述方法包括:
S1210:根据终端的天线结构确定判决参数;
S1220:根据所述判决参数以及所述DL载波的测量值,确定在所述UL载波或者所述SUL载波进行随机接入。
根据该判决参数以及DL载波的测量值,终端将选择在主UL载波或者SUL载波上进行随机接入。例如,该随机接入可包括:2步随机接入和/或4步随机接入。
如图4所示,本公开实施例提供一种信息处理方法,其中,由终端执行,所述方法包括:
S1310:根据终端的天线结构确定判决参数;
S1320:根据所述判决参数以及所述DL载波的测量值,在所述UL载波或者所述SUL载波进行小数据传输(Small Date Transmission,SDT)。该小数据传输为一种特殊的数据传输,通常为:UE不与网络侧建立连接的情况下,通过随机接入请求等消息上传数据。例如,在2步随机接入的随机接入时机(Random Occasion,RO)上发送随机接入消息A,该随机接入消息A携带有少量数据,该被随机接入消息A携带的数据即为被传输小数据。
以上对上行传输的举例说明,具体实现时不局限于该举例。
在一些实施例中,所述根据终端的天线结构类型,确定判决参数,包括:
当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第一门限和测量修正因子;所述测量修正因子,用于修正所述第一终端的DL载波测量值;
当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括所述第一门限;
其中,所述第一门限为第一类天线结构的所述终端和第二类天线结构的终端的共享门限。
在本实施例中,不同天线结构的终端共享相同的测量值门限,但是第一类天线结构对应的终端还具有测量修正因子。该测量修正因子可以用于调整DL载波测量值,得到修正值;然后修正值与 第一门限进行比较,得到比较结果;根据该比较结果,选择在主UL载波或者SUL载波上进行上行传输。
在另一个实施例中,所述第一类天线结构和第二类天线结构都可以配置有测量修正因子,但是两个测量修正因子的修正值不同。
所述测量修正因子可包括:系数因子和/或偏置因子。
所述系数因子可以通过与DL载波的测量值之间的乘积,得到与第一门限进行交的修正值。
所述偏置因子,可以通过加减运算修正所述DL载波的测量值,得到修正值。
该第一类天线结构可仅包括:一根接收天线或两根天线;该第二类天线结构可包括:2根或者2根以上的接收天线。所述第二类天线结构包括的多根天线的天线面板上的天线阵子个数可相同或者不同。若第一类天线结构包括的天线根数与第二类天线结构包含的天线根数相同,则通常第二类天线结构中单个天线面板包含的天线阵子数更多。
总之,第一类天线结构和第二类天线结构不同,在本公开实施例中根据天线结构配置的判决参数,可以单独包含第一门限,或者同时包含测量修正因子和第一门限,从而实现了根据天线结构适配性配置判决参数,实现不同载波上的负载均衡和/或降低上行传输延时。
通过测量修正因子的引入,可以使得较少接收天线或者较少天线阵子的第一类天线结构的DL载波的测量值得到补偿。
在一些实施例中,若所述终端的天线结构为第一类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主UL载波或者SUL载波进行上行传输,包括:
根据所述测量修正因子和所述DL载波的测量值,得到所述DL载波的修正值;
当所述DL载波的修正值大于或等于所述第一门限时,确定在所述主UL载波上执行所述上行传输;
当所述DL载波的修正值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
若DL载波的修正值大于或等于第一门限,可认为当前DL载波的信号质量满足用于终端在主UL载波上进行上行传输的条件,优先在UL上进行上行传输,如此,终端可以不用切换天线的工作频点的情况下,快速使用UL载波完成上行传输。若DL载波的修正值小于第一门限,可认为当前DL载波的信号质量不满足用于终端在主UL载波上进行上行传输的条件,优先在SUL上进行上行传输,如此,终端的发送天线切换到SUL载波所在频点之后,进行上行传输,从而通过SUL确保上行传输的传输质量。
在一些实施例中,所述测量修正因子包括:
第一类修正因子,用于随机接入和SDT的所述DL载波的测量值的修正。
第一类修正因子可为共享修正因子,即不管终端执行何种上行传输都使用的修正因子。例如,第一类终端在进行随机接入和SDT时都共用该第一类修正因子。
第二类修正因子,用于随机接入或者SDT的所述DL载波的测量值的修正。
第二类修正因子可为独立修正因子,即不同的上行传输配置有不同的修正因子,此时的针对不 同上行传输的修正因子的值可相同或者不同。若测量因子为第二类修正因子,则可以根据不同上行传输的传输特点,配置不同的修正因子值,从而满足不同上行传输的传输需求。
在一些实施例中,若所述终端的天线结构为第二类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主UL载波或者辅助上行链路SUL载波进行上行传输,包括:
当所述DL载波的测量值大于或等于所述第一门限时,确定在所述UL载波上执行所述上行传输;
当所述DL载波的测量值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
在本公开实施例中,若终端的天线结构为第二类天线结构。在判决参数可单独包括第一门限。DL载波的测量值直接与第一门限比较,若所述DL载波的测量值大于或等于所述第一门限,则说明DL载波的信号质量满足前述用于终端在主UL载波上进行上行传输的条件,否则可认为不满足前述用于终端在主UL载波上进行上行传输的条件。
若DL载波的信号质量满足用于终端在主UL载波上进行上行传输的条件,如此终端可以不切换天线工作频点的情况下,在UL载波上进行上行传输,而在DL载波的信号质量不满足用于终端在主UL载波上进行上行传输的条件时,终端至少需要切换发送天线的工作频点,从而可以在SUL上进行上行传输。
在一些实施例中,所述根据终端的天线结构类型,确定判决参数,包括:
当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第二门限;
当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括第三门限。
在本公开实施例中,第一类天线结构和第二类天线结构直接使用不同的门限。
示例性地,所述第二门限可以小于所述第一门限。
若终端的天线结构为第一类天线结构时,使用更低的门限进行DL载波的信号质量是否满足用于终端在主UL载波上进行上行传输的条件的判断。
在一些实施例中,若所述终端的天线结构为第一类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主UL载波或者辅助上行链路SUL载波进行上行传输,包括:
当所述DL载波的测量值大于或等于所述第二门限时,确定在主UL载波上进行上行传输;
当所述DL载波的测量值小于所述第二门限时,确定在所述辅助上行链路SUL载波上进行上行传输。
针对第一类天线结构的终端,DL载波的测量值不小于第二门限时,则说明DL载波的信号质量符合用于终端在主UL载波上进行上行传输的条件,优选选择UL载波进行上行传输,此处选择UL载波进行上行传输,即以UL载波发送上行传输。
针对第一类天线结构的终端,DL载波的测量值小于第二门限时,则说明DL载波的信号质量不符合用于终端在主UL载波上进行上行传输的条件,此时有极大的可能UL载波的信号质量不够好,因此选择在SUL载波上发送上行插传输。
在一些实施例中,若所述终端的天线结构为第二类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,在主UL载波或者辅助上行链路SUL载波进行上行传输,包括:
当所述DL载波的测量值大于或等于所述第三门限时,确定在主UL载波或者辅助上行链路SUL载波进行上行传输;
当所述DL载波的测量值小于所述第三门限时,确定在辅助上行链路SUL载波上进行上行传输。
针对第二类天线结构的终端,DL载波的测量值不小于第三门限时,则说明DL载波的信号质量符合用于终端在主UL载波上进行上行传输的条件,优选选择UL载波进行上行传输,此处选择UL载波进行上行传输,即以UL载波发送上行传输。
针对第二类天线结构的终端,DL载波的测量值小于第三门限时,则说明DL载波的信号质量不符合用于终端在主UL载波上进行上行传输的条件,此时有极大的可能UL载波的信号质量不够好,因此选择在SUL载波上发送上行插传输。
在一些实施例中,所述根据终端的天线结构类型,确定判决参数,包括:
当所述终端的天线结构为第一类天线结构,确定所述判决参数包括第四门限和第一门限修正因子;其中,所述第一门限修正因子,用于修正针对所述第一类天线结构的终端的第四门限;
当所述终端的天线结构为第二类天线结构,确定所述判决参数包括第四门限和第二门限修正因子,其中,所述第二门限修正因子,用于修正针对所述第二类天线结构的终端的第四门限。
在一些实施例中,判决参数可包括:第四门限和门限修正因子,门限修正因子用于校正第四门限,第四门限被校正之后,将得到校正后的门限值。该门限修正因子包括前述第一门限修正因子和第二门限修正因子。
示例性地,该门限修正因子的取值可以为任意实数。
该门限修正因子可以为系数因子和/或偏置因子。
系数因子与第四门限相乘,得到校正后的第四门限。此时,系数因子通常可为0到1的实数。
偏置因子可与第四门限执行加减运算,例如,该偏置因子为正数,第四门限和偏置因子之间相减之后,将得到校正后的第四门限。偏正因子可与第四门限执行加法运算,例如,该偏置因子为负数,第四门限和偏置因子相加后,得到校正后的第四门限。
在一些实施例中,所述第一门限修正因子对第四门限的校正幅度,大于第二门限修正因子对第四门限的校正幅度。
总之,该校正后的门限值,用于与DL载波的测量值进行比较,供终端选择主UL载波或者SUL载波进行上行传输。
在一些实施例中,所述第一门限修正因子和第二门限修正因子相互独立的,第一门限修正因子和第二门限修正因子的取值相同或不同。
在一些实施例中,若所述终端的天线结构为第一类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主UL载波或者辅助上行链路SUL载波进行上行传输,包括:
根据所述第四门限和所述第一门限修正因子得到第一门限修正值;
当所述DL载波的测量值大于或等于所述第一门限修正值时,确定在主UL载波上进行上行传输;
当所述DL载波的测量值小于所述第一门限修正值时,确定在辅助上行链路SUL载波进行上行 传输。
此处的第一门限修正值是使用第一门限修正因子校正第四门限得到的。
针对第一类天线结构的终端,若DL载波的测量值大于或等于所述第一门限修正值,则说明DL载波的信号质量符合用于终端在主UL载波上进行上行传输的条件,否则可认为不符合用于终端在主UL载波上进行上行传输的条件。
在一些实施例中,若所述终端的天线结构为第二类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主UL载波或者辅助上行链路SUL载波进行上行传输,包括:
根据所述第四门限和所述第二门限修正因子得到第二门限修正值;
当所述DL载波的测量值大于或等于所述第二门限修正值时,确定在主UL载波上进行上行传输;
当所述DL载波的测量值小于所述第二门限修正值时,确定在辅助上行链路SUL载波上进行上行传输。
此处的第二门限修正值是使用第二门限修正因子校正第四门限得到的。
针对第二类天线结构的终端,若DL载波的测量值大于或等于所述第二门限修正值,则说明DL载波的信号质量符合用于终端在主UL载波上进行上行传输的条件,否则可认为不符合用于终端在主UL载波上进行上行传输的条件。
在一些实施例中,所述根据终端的天线结构类型,确定判决参数,包括:根据所述终端的天线结构类型和协议约定,确定所述判决参数。
在一个实施例中,不同天线结构的终端的判决参数不同。不同天线结构对应的判决参数可由通信协议约定,因此,终端可以根据协议约定,确定判决参数。
如图5所示,本公开实施例提供一种信息处理方法,其中,由终端执行,所述方法包括:
S1410:接收网络信令;
S1420:根据所述终端的天线结构类型和网络信令,确定所述判决参数。
S1430:根据所述判决参数以及DL载波的测量值,在主UL载波或者SUL载波进行上行传输。
在另一个实施例中,天线结构和判决参数之间的对应关系可由网络信令指示。例如,该网络信令包括但不限于:基站发送的RRC信令和/或MAC层信令。该MAC层信令包括但不限于:MAC控制单元(Control Element,CE)。
在一些实施例中,所述第一类天线结构中所包含的接收天线数量,比第二类天线结构中所包含的接收天线数量少;和/或,所述第一类天线结构中单个天线面板中包含的天线振子数量,比第二类天线结构的单个天线面板中所包含的天线振子数量少。
若接收天线数量更多,则对于DL载波的测量值可能就越大;若单个天线面板包含的天线阵子数量越多,则可能对DL载波的测量值也就越大。该测量值包括但不限于RSRP和/或RSRQ。
示例性地,所述第一类天线结构的终端包括:能力缩减RedCap终端。该RedCap终端进一步可为增强型能力缩减(eRedCap)终端。
该第一类天线结构的终端可为:当工作频段为FR1时,具有1根接收天线的终端;和/或当工作 频段为FR2时,天线面板较少的终端。
所述第二类天线结构的终端不同于所述第一类天线结构的终端。
第二类天线结构的终端可为普通(Normal)终端。该普通终端包括但不限于:增强移动宽带(enhanced Mobile Broadband,eMBB)终端或者和普通终端具有相同天线结构的RedCap终端
第二类天线结构的终端通常可包括:多根天线,一个天线可包括一个或多个天线面板,一个天线面板可包括一个或多个天线阵子。
以上仅仅是对第一天线结构和第二天线结构的终端举例说明,具体实现时不局限于上述举例。
如图6所示,本公开实施例提供一种信息处理方法,其中,由基站执行,所述方法包括:
S2110:根据终端的天线结构类型,确定判决参数;
S2120:发送包含所述判决参数的网络信令,其中,所述判决参数与DL载波的测量值,共同用于所述终端选择在主UL载波或者SUL载波上进行上行传输。
在本公开实施例中,该方法可由基站执行。该基站包括但不限于eNB和/或gNB。
在本公开实施例中,会根据终端的天线结构类型来确定判决参数,并将确定的判决参数携带在网络信令中发送给终端。
该天线结构类型包括但不限于:终端的接收天线结构类型。
例如,网络信令可包括:RRC信令和/或MAC层信令。
再例如,该网络信令可为广播信令。
在一些实施例中,所述上行传输包括:随机接入;和/或,SDT。
通过这种方式确定供终端选择UL载波或SUL载波进行上行传输,具有如下效果:
第一方面,根据终端的天线结构确定的判决参数用于终端选择主UL载波或者SUL载波进行上行传输,可以使得不同天线结构的终端,具有几乎相等的机会进行上行传输。
第二方面,可以通过判决参数的灵活配置,可以实现不同载波之间的负载均衡,或者减少终端在UL载波之间的切换,减少传输延时。
在一些实施例中,所述天线结构包括:第一类天线结构和/或第二天线结构。
示例性地,所述第一类天线结构中所包含的接收天线数量,比第二类天线结构中所包含的接收天线数量少;和/或,所述第一类天线结构中单个天线面板中包含的天线振子数量,比第二类天线结构的单个天线面板中所包含的天线振子数量少。
若接收天线数量更多,则对于DL载波的测量值可能就越大;若单个天线面板包含的天线阵子数量越多,则可能对DL载波的测量值也就越大。该测量值包括但不限于RSRP和/或RSRQ;如此,通过与天线结构匹配的判决参数,可以实现可以使得不同天线结构的终端,具有几乎相等的机会进行上行传输。与此同时,可以通过判决参数的灵活配置,可以实现不同载波之间的负载均衡,或者减少终端在UL载波之间的切换,减少传输延时。
本公开实施例提供一种信息处理方法可包括:
终端获取SUL载波使用流程相关的RSRP门限,此门限为所有终端共享的门限。
响应终端是第一天线结构的终端,终端针对测量DL载波得到RSRP测量值进行修正,用修正后的RSRP值,基于RSRP值与RSRP门限比较,根据比较的结果确定是否使用SUL载波进行上行传输。
可选方式一:在RACH过程和/或SDT过程中都使用修正过的RSRP值进行是否使用SUL载波进行上行传输的判断。
可选方式二:网络或者协议预设,只在RACH过程或者SDT过程中使用修正的RSRP值进行判定,其他场景仍然使用实际的RSRP测量值进行是否使用SUL载波进行上行传输的判断。
修正的方式可以是针对测量到的实际RSRP的值加上1个偏移值(offset),这个偏移值可以是协议预定义的,也可以是通过高层信令进行通知的。
示例性地,在RACH过程和SDT过程中都使用的Offset相同。
又示例性地,在RACH过程和SDT过程中都使用的Offset不同。
第一天线结构包括在FR1下只有一根接收天线,在FR2下,一个天线面板所包含的天线振子比正常NR终端1个天线面板所包含的天线振子少。
本公开实施例提供一种信息处理方法还可包括:
针对不同天线结构的终端配置不同的RSRP门限。
示例性地,在RACH过程和SDT过程中都针对不同的天线结构的终端配置不同的RSRP门限。
进一步地,网络或者协议预设只在RACH过程或者SDT过程中分别针对不同的天线结构分别配置RSPR门限,其他上行传输场景仍然使用相同的RSRP门限进行判定。
本公开实施例提供一种信息处理方法还可包括:
针对不同天线结构的终端设置不同的RSRP门限修正因子。
修正因子可以是协议预设的,也可以是由网络配置的。
第一天线结构包括:当工作频段为FR1时,只有一根接收天线的天线结构,和/或,
当工作频段为FR2时,单个天线面板所包含的天线振子比正常NR终端单个天线面板所包含的天线振子少。
本公开实施例提供的信息处理方法,针对RACH过程中SUL载波与UL载波选择的RSRP门限配置进行增强,一方面支持进展能够通过更加灵活的配置,来实现不同UL载波和SUL载波之间的负载均衡,另一方面减少不同UL载波和SUL之间的不必要切换,降低终端上行传输的时延。
如图7所示,本公开实施例提供一种信息处理装置,其中,所述装置包括:
第一确定模块110,被配置为根据终端的天线结构确定判决参数;
确定模块120,被配置为根据所述判决参数以及下行链路DL载波的测量值,在主UL载波或者辅助上行链路SUL载波进行上行传输。
该信息处理装置可包含在终端中。
在一些实施例中,所述第一确定模块110以及所述确定模块120可为程序模块;该程序模块被处理器执行后,能够实现上述各个操作。
在另一些实施例中,所述第一确定模块110以及所述确定模块120可为软硬结合模块;该软硬结合模块包括但不限于:可编程阵列。该可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有些实施例中,所述第一确定模块110以及所述确定模块120可为纯硬件模块;该纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述确定模块120,被配置为根据所述判决参数以及所述DL载波的测量值,确定在所述UL载波或者所述SUL载波进行随机接入;或者,根据所述判决参数以及所述DL载波的测量值,确定在所述UL载波或者所述SUL载波进行小数据传输SDT。
在一些实施例中,所述第一确定模块110,被配置为当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第一门限和测量修正因子;所述测量修正因子,用于修正所述第一终端的DL载波测量值;当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括所述第一门限;其中,所述第一门限为第一类天线结构的所述终端和第二类天线结构的终端的共享门限。
在一些实施例中,若所述终端的天线结构为第一类天线结构,所述确定模块120,被配置为根据所述测量修正因子和所述DL载波的测量值,得到所述DL载波的修正值;当所述DL载波的修正值大于或等于所述第一门限时,确定在所述主UL载波上执行所述上行传输;当所述DL载波的修正值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
在一些实施例中,所述测量修正因子包括:
第一类修正因子,用于随机接入和SDT的所述DL载波的测量值的修正;
第二类修正因子,用于随机接入或者SDT的所述DL载波的测量值的修正。
在一些实施例中,若所述终端的天线结构为第二类天线结构,所述确定模块120,被配置为当所述DL载波的测量值大于或等于所述第一门限时,确定在所述UL载波上执行所述上行传输;当所述DL载波的测量值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
在一些实施例中,所述第一确定模块110,被配置为当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第二门限;当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括第三门限。
在一些实施例中,若所述终端的天线结构为第一类天线结构,所述确定模块120,被配置为当所述DL载波的测量值大于或等于所述第二门限时,确定在主UL载波上进行上行传输;当所述DL载波的测量值小于所述第二门限时,确定在所述辅助上行链路SUL载波上进行上行传输。
在一些实施例中,若所述终端的天线结构为第二类天线结构,所述确定模块120,被配置为当所述DL载波的测量值大于或等于所述第三门限时,确定在主UL载波或者辅助上行链路SUL载波进行上行传输;当所述DL载波的测量值小于所述第三门限时,确定在辅助上行链路SUL载波上进 行上行传输。
在一些实施例中,所述第一确定模块110,被配置为当所述终端的天线结构为第一类天线结构,确定所述判决参数包括第四门限和第一门限修正因子;其中,所述第一门限修正因子,用于修正针对所述第一类天线结构的终端的第四门限;当所述终端的天线结构为第二类天线结构,确定所述判决参数包括第四门限和第二门限修正因子,其中,所述第二门限修正因子,用于修正针对所述第二类天线结构的终端的第四门限。
在一些实施例中,若所述终端的天线结构为第一类天线结构,所述确定模块120,被配置为根据所述第四门限和所述第一门限修正因子得到第一门限修正值;当所述DL载波的测量值大于或等于所述第一门限修正值时,确定在主UL载波上进行上行传输;当所述DL载波的测量值小于所述第一门限修正值时,确定在辅助上行链路SUL载波进行上行传输。
在一些实施例中,若所述终端的天线结构为第二类天线结构,所述确定模块120,被配置为根据所述第四门限和所述第二门限修正因子得到第二门限修正值;当所述DL载波的测量值大于或等于所述第二门限修正值时,确定在主UL载波上进行上行传输;当所述DL载波的测量值小于所述第二门限修正值时,确定在辅助上行链路SUL载波上进行上行传输。
在一些实施例中,所述第一确定模块110,被配置为根据所述终端的天线结构类型和协议约定,确定所述判决参数;或者,根据所述终端的天线结构类型和网络信令,确定所述判决参数。
在一些实施例中,所述第一类天线结构的终端包括:能力缩减RedCap终端;
所述第二类天线结构的终端不同于所述第一类天线结构的终端。
如图8所示,本公开实施例提供一种信息处理装置,其中,所述装置包括:
第二确定模块210,被配置为根据终端的天线结构类型,确定判决参数;
发送模块220,被配置为发送包含所述判决参数的网络信令,其中,所述判决参数与DL载波的测量值,共同用于所述终端选择在主UL载波或者SUL载波上进行上行传输。
该信息处理装置可包含在基站中。
在一些实施例中,所述第二确定模块210以及所述发送模块220可为程序模块;该程序模块被处理器执行后,能够实现上述各个操作。
在另一些实施例中,所述第二确定模块210以及所述发送模块220可为软硬结合模块;该软硬结合模块包括但不限于:可编程阵列。该可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有些实施例中,所述第二确定模块210以及所述发送模块220可为纯硬件模块;该纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述上行传输包括:
随机接入;
和/或,
SDT。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的信息处理方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:UE或者网元,该网元可为前述第一网元至第四网元中的任意一个。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至图6所示的方法的至少其中之一。
图9是根据一示例性实施例示出的一种终端800的框图。例如,终端800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以生成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在终端800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当终端800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以生成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图10所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以为前述基站。
参照图10,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,如图2至图6任意一个所示方法。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信 设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (34)

  1. 一种信息处理方法,其中,由终端执行,所述方法包括:
    根据终端的天线结构确定判决参数;
    根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输。
  2. 根据权利要求1所述的方法,其中,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输,包括:
    根据所述判决参数以及所述DL载波的测量值,确定在所述UL载波或者所述SUL载波进行随机接入;
    或者,
    根据所述判决参数以及所述DL载波的测量值,确定在所述UL载波或者所述SUL载波进行小数据传输SDT。
  3. 根据权利要求1或2所述的方法,其中,所述根据终端的天线结构类型,确定判决参数,包括:
    当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第一门限和测量修正因子;所述测量修正因子,用于修正所述第一终端的DL载波测量值;
    当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括所述第一门限;
    其中,所述第一门限为第一类天线结构的所述终端和第二类天线结构的终端的共享门限。
  4. 根据权利要求3所述的方法,其中,若所述终端的天线结构为第一类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输,包括:
    根据所述测量修正因子和所述DL载波的测量值,得到所述DL载波的修正值;
    当所述DL载波的修正值大于或等于所述第一门限时,确定在所述主UL载波上执行所述上行传输;
    当所述DL载波的修正值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
  5. 根据权利要求3或4所述的方法,其中,所述测量修正因子包括:
    第一类修正因子,用于随机接入和SDT的所述DL载波的测量值的修正;
    第二类修正因子,用于随机接入或者SDT的所述DL载波的测量值的修正。
  6. 根据权利要求3所述的方法,其中,若所述终端的天线结构为第二类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输,包括:
    当所述DL载波的测量值大于或等于所述第一门限时,确定在所述UL载波上执行所述上行传输;
    当所述DL载波的测量值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
  7. 根据权利要求1或2所述的方法,其中,所述根据终端的天线结构类型,确定判决参数,包括:
    当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第二门限;
    当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括第三门限。
  8. 根据权利要求7所述的方法,其中,若所述终端的天线结构为第一类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输,包括:
    当所述DL载波的测量值大于或等于所述第二门限时,确定在主上行链路UL载波上进行上行传输;
    当所述DL载波的测量值小于所述第二门限时,确定在所述辅助上行链路SUL载波上进行上行传输。
  9. 根据权利要求7所述的方法,其中,若所述终端的天线结构为第二类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输,包括:
    当所述DL载波的测量值大于或等于所述第三门限时,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输;
    当所述DL载波的测量值小于所述第三门限时,确定在辅助上行链路SUL载波上进行上行传输。
  10. 根据权利要求1或2所述的方法,其中,所述根据终端的天线结构类型,确定判决参数,包括:
    当所述终端的天线结构为第一类天线结构,确定所述判决参数包括第四门限和第一门限修正因子;其中,所述第一门限修正因子,用于修正针对所述第一类天线结构的终端的第四门限;
    当所述终端的天线结构为第二类天线结构,确定所述判决参数包括第四门限和第二门限修正因子,其中,所述第二门限修正因子,用于修正针对所述第二类天线结构的终端的第四门限。
  11. 根据权利要求10所述的方法,其中,若所述终端的天线结构为第一类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输,包括:
    根据所述第四门限和所述第一门限修正因子得到第一门限修正值;
    当所述DL载波的测量值大于或等于所述第一门限修正值时,确定在主上行链路UL载波上进行上行传输;
    当所述DL载波的测量值小于所述第一门限修正值时,确定在辅助上行链路SUL载波进行上行传输。
  12. 根据权利要求10所述的方法,其中,若所述终端的天线结构为第二类天线结构,所述根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输,包括:
    根据所述第四门限和所述第二门限修正因子得到第二门限修正值;
    当所述DL载波的测量值大于或等于所述第二门限修正值时,在主上行链路UL载波上进行上行传输;
    当所述DL载波的测量值小于所述第二门限修正值时,确定在辅助上行链路SUL载波上进行上行传输。
  13. 根据权利要求1或2所述的方法,其中,所述根据终端的天线结构类型,确定判决参数,包括:
    根据所述终端的天线结构类型和协议约定,确定所述判决参数;
    或者,
    根据所述终端的天线结构类型和网络信令,确定所述判决参数。
  14. 根据权利要求3至12任一项所述的方法,其中,
    所述第一类天线结构中所包含的接收天线数量,比第二类天线结构中所包含的接收天线数量少;
    和/或
    所述第一类天线结构中单个天线面板中包含的天线振子数量,比第二类天线结构的单个天线面板中所包含的天线振子数量少。
  15. 一种信息处理方法,其中,由基站执行,所述方法包括:
    根据终端的天线结构类型,确定判决参数;
    发送包含所述判决参数的网络信令,其中,所述判决参数与DL载波的测量值,共同用于所述终端选择在主UL载波或者SUL载波上进行上行传输。
  16. 根据权利要求15所述的方法,其中,所述上行传输包括:
    随机接入;
    和/或,
    SDT。
  17. 一种信息处理装置,其中,所述装置包括:
    第一确定模块,被配置为根据终端的天线结构确定判决参数;
    确定模块,被配置为根据所述判决参数以及下行链路DL载波的测量值,确定在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输。
  18. 根据权利要求17所述的装置,其中,所述确定模块,被配置为根据所述判决参数以及所述DL载波的测量值,确定在所述UL载波或者所述SUL载波进行随机接入;或者,根据所述判决参数以及所述DL载波的测量值,确定在所述UL载波或者所述SUL载波进行小数据传输SDT。
  19. 根据权利要求17或18所述的装置,其中,所述第一确定模块,被配置为当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第一门限和测量修正因子;所述测量修正因子,用于修正所述第一终端的DL载波测量值;当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括所述第一门限;其中,所述第一门限为第一类天线结构的所述终端和第二类天线结构 的终端的共享门限。
  20. 根据权利要求19所述的装置,其中,若所述终端的天线结构为第一类天线结构,所述确定模块,被配置为根据所述测量修正因子和所述DL载波的测量值,得到所述DL载波的修正值;当所述DL载波的修正值大于或等于所述第一门限时,确定在所述主UL载波上执行所述上行传输;当所述DL载波的修正值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
  21. 根据权利要求19或20所述的装置,其中,所述测量修正因子包括:
    第一类修正因子,用于随机接入和SDT的所述DL载波的测量值的修正;
    第二类修正因子,用于随机接入或者SDT的所述DL载波的测量值的修正。
  22. 根据权利要求19所述的装置,其中,若所述终端的天线结构为第二类天线结构,所述确定模块,被配置为当所述DL载波的测量值大于或等于所述第一门限时,确定在所述UL载波上执行所述上行传输;当所述DL载波的测量值小于所述第一门限时时,确定在所述SUL载波上执行所述上行传输。
  23. 根据权利要求17或18所述的装置,其中,所述第一确定模块,被配置为当所述终端的天线结构为第一类天线结构时,确定所述判决参数包括第二门限;当所述终端的天线结构为第二类天线结构时,确定所述判决参数包括第三门限。
  24. 根据权利要求23所述的装置,其中,若所述终端的天线结构为第一类天线结构,所述确定模块,被配置为当所述DL载波的测量值大于或等于所述第二门限时,在主上行链路UL载波上进行上行传输;当所述DL载波的测量值小于所述第二门限时,确定在所述辅助上行链路SUL载波上进行上行传输。
  25. 根据权利要求23所述的装置,其中,若所述终端的天线结构为第二类天线结构,所述确定模块,被配置为当所述DL载波的测量值大于或等于所述第三门限时,在主上行链路UL载波或者辅助上行链路SUL载波进行上行传输;当所述DL载波的测量值小于所述第三门限时,确定在辅助上行链路SUL载波上进行上行传输。
  26. 根据权利要求17或18所述的装置,其中,所述第一确定模块,被配置为当所述终端的天线结构为第一类天线结构,确定所述判决参数包括第四门限和第一门限修正因子;其中,所述第一门限修正因子,用于修正针对所述第一类天线结构的终端的第四门限;当所述终端的天线结构为第二类天线结构,确定所述判决参数包括第四门限和第二门限修正因子,其中,所述第二门限修正因子,用于修正针对所述第二类天线结构的终端的第四门限。
  27. 根据权利要求26所述的装置,其中,若所述终端的天线结构为第一类天线结构,所述确定模块,被配置为根据所述第四门限和所述第一门限修正因子得到第一门限修正值;当所述DL载波的测量值大于或等于所述第一门限修正值时,确定在主上行链路UL载波上进行上行传输;当所述DL载波的测量值小于所述第一门限修正值时,确定在辅助上行链路SUL载波进行上行传输。
  28. 根据权利要求26所述的装置,其中,若所述终端的天线结构为第二类天线结构,所述确定模块,被配置为根据所述第四门限和所述第二门限修正因子得到第二门限修正值;当所述DL载波 的测量值大于或等于所述第二门限修正值时,确定在主上行链路UL载波上进行上行传输;当所述DL载波的测量值小于所述第二门限修正值时,确定在辅助上行链路SUL载波上进行上行传输。
  29. 根据权利要求17或18所述的装置,其中,所述第一确定模块,被配置为根据所述终端的天线结构类型和协议约定,确定所述判决参数;或者,根据所述终端的天线结构类型和网络信令,确定所述判决参数。
  30. 根据权利要求19至29任一项所述的装置,其中,
    所述第一类天线结构中所包含的接收天线数量,比第二类天线结构中所包含的接收天线数量少;
    和/或,
    所述第一类天线结构中单个天线面板中包含的天线振子数量,比第二类天线结构的单个天线面板中所包含的天线振子数量少。
  31. 一种信息处理装置,其中,所述装置包括:
    第二确定模块,被配置为根据终端的天线结构类型,确定判决参数;
    发送模块,被配置为发送包含所述判决参数的网络信令,其中,所述判决参数与DL载波的测量值,共同用于所述终端选择在主UL载波或者SUL载波上进行上行传输。
  32. 根据权利要求31所述的装置,其中,所述上行传输包括:
    随机接入;
    和/或,
    SDT。
  33. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至14或15至16任一项提供的方法。
  34. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至14或15至16任一项提供的方法。
PCT/CN2022/088279 2022-04-21 2022-04-21 信息处理方法及装置、通信设备及存储介质 WO2023201652A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/088279 WO2023201652A1 (zh) 2022-04-21 2022-04-21 信息处理方法及装置、通信设备及存储介质
CN202280001274.5A CN117598008A (zh) 2022-04-21 2022-04-21 信息处理方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088279 WO2023201652A1 (zh) 2022-04-21 2022-04-21 信息处理方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023201652A1 true WO2023201652A1 (zh) 2023-10-26

Family

ID=88418792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088279 WO2023201652A1 (zh) 2022-04-21 2022-04-21 信息处理方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN117598008A (zh)
WO (1) WO2023201652A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118582A (zh) * 2019-06-19 2020-12-22 中国电信股份有限公司 载波选择方法、系统和终端
CN112218383A (zh) * 2019-07-09 2021-01-12 华硕电脑股份有限公司 无线通信系统用于载波选择和早期数据传送的方法和设备
CN113906790A (zh) * 2019-07-03 2022-01-07 Oppo广东移动通信有限公司 用于传输小数据的方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118582A (zh) * 2019-06-19 2020-12-22 中国电信股份有限公司 载波选择方法、系统和终端
CN113906790A (zh) * 2019-07-03 2022-01-07 Oppo广东移动通信有限公司 用于传输小数据的方法及设备
CN112218383A (zh) * 2019-07-09 2021-01-12 华硕电脑股份有限公司 无线通信系统用于载波选择和早期数据传送的方法和设备

Also Published As

Publication number Publication date
CN117598008A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
JP2022529846A (ja) アンテナパネルの応用方法、装置及び記憶媒体
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
CN111095857A (zh) 无线通信方法、装置及存储介质
KR20240005098A (ko) 리소스 설정 방법, 장치, 통신 장치 및 저장 매체(resource configuration method and apparatus, communication device, and storage medium)
WO2023193211A1 (zh) Rsrp门限确定方法、装置、通信设备及存储介质
WO2022193194A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
US20240172021A1 (en) Method for measurement gap processing
WO2022104605A1 (zh) 调制与编码策略mcs的配置方法、装置及通信设备
WO2023184121A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2023201652A1 (zh) 信息处理方法及装置、通信设备及存储介质
CN112640559B (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022120649A1 (zh) 接入控制方法、装置、通信设备和介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2023201660A1 (zh) Rsrp门限参数确定方法、装置、通信设备及存储介质
WO2023205979A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023201741A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023230901A1 (zh) 保护间隔配置方法及装置、通信设备及存储介质
WO2023206504A1 (zh) 系统消息处理方法及装置、通信设备及存储介质
WO2023221025A1 (zh) 波束确定方法、装置、通信设备及存储介质
WO2024031382A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2023197327A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022178728A1 (zh) Drx周期的处理方法、装置、通信设备及存储介质
WO2023206227A1 (zh) 冗余版本rv的指示方法、装置、通信设备及存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001274.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937888

Country of ref document: EP

Kind code of ref document: A1