WO2022178728A1 - Drx周期的处理方法、装置、通信设备及存储介质 - Google Patents

Drx周期的处理方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022178728A1
WO2022178728A1 PCT/CN2021/077732 CN2021077732W WO2022178728A1 WO 2022178728 A1 WO2022178728 A1 WO 2022178728A1 CN 2021077732 W CN2021077732 W CN 2021077732W WO 2022178728 A1 WO2022178728 A1 WO 2022178728A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
cycle
drx
inactive
determining
Prior art date
Application number
PCT/CN2021/077732
Other languages
English (en)
French (fr)
Inventor
李艳华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/077732 priority Critical patent/WO2022178728A1/zh
Priority to CN202180000556.9A priority patent/CN115553001A/zh
Publication of WO2022178728A1 publication Critical patent/WO2022178728A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication technologies, and in particular, to a method, apparatus, communication device, and storage medium for discontinuous reception of DRX.
  • the shortest cycle (cycle) is usually used for monitoring.
  • the usually configured monitoring period is a specific discontinuous reception (Discontinuous Reception) , DRX) cycle and the minimum value of the default (default) DRX cycle.
  • the usually configured monitoring cycle is a specific DRX cycle, a default DRX cycle, and a RAN paging cycle.
  • Minimum call period In this way, it is equivalent to make the UE perform monitoring in a relatively intensive number of times.
  • the UE can try not to miss possible paging messages, it is very unfavorable for the consideration of power saving of the terminal.
  • Embodiments of the present disclosure disclose a DRX cycle processing method, apparatus, communication device, and storage medium.
  • a method for processing a DRX cycle is provided, applied to a UE, including:
  • the DRX cycle of the disconnected UE is determined.
  • an apparatus for processing a DRX cycle which is applied to a UE, including:
  • the processing module is configured to determine the DRX cycle of the UE in the disconnected state from multiple DRX cycles of the UE in the disconnected state.
  • a communication device comprising:
  • the processor is configured to implement the processing method of the DRX cycle of any embodiment of the present disclosure when executing the executable instruction.
  • a computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the DRX processing method of any embodiment of the present disclosure.
  • the DRX cycle of the non-connected UE may be dynamically determined from multiple DRX cycles of the non-connected UE; thus, compared to always selecting the shortest DRX cycle as the DRX cycle of the non-connected UE, It is not necessary to monitor paging messages based on relatively intensive times all the time, so that the consideration of power saving of the terminal can be greatly reduced.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • FIG. 2 is a schematic diagram illustrating a method for processing a DRX cycle according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram showing a method for processing a DRX cycle according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram showing a method for processing a DRX cycle according to an exemplary embodiment.
  • FIG. 5 is a schematic diagram illustrating a method for processing a DRX cycle according to an exemplary embodiment.
  • FIG. 6 is a schematic diagram illustrating a method for processing a DRX cycle according to an exemplary embodiment.
  • FIG. 7 is a schematic diagram illustrating a method for processing a DRX cycle according to an exemplary embodiment.
  • FIG. 8 is a schematic diagram illustrating a method for processing a DRX cycle according to an exemplary embodiment.
  • Fig. 9 is a block diagram of an apparatus for processing a DRX cycle according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a UE according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120.
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones (or "cellular" phones) ) and a computer with IoT user equipment, for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones (or "cellular" phones)
  • a computer with IoT user equipment for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called a new generation radio access network (New Generation-Radio Access Network, NG-RAN).
  • NG-RAN New Generation-Radio Access Network
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Medium Access Control (Medium Access Control, MAC) layer;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • a physical (Physical, PHY) layer protocol stack is set in the distribution unit, and a specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2X vehicle-to-everything
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME). Alternatively, the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • the UE in response to the UE being in the RRC idle state, the UE needs to monitor CN paging and system messages at the same time in the RRC idle state; the paging cycle configured for the UE is usually the minimum value of the specific cycle of the UE and the default DRX cycle .
  • the paging period configured by the UE is still the minimum value of the specific period of the UE and the default DRX period; wherein, the minimum value of the default period is relative to the specific period of the UE. Cycles are smaller.
  • the specific period of the UE here is non-access stratum (NAS) configured. In this way, in this embodiment, the UE performs monitoring in a relatively intensive number of times, which is very unfavorable for the consideration of power saving of the UE.
  • NAS non-access stratum
  • the RRC inactive state UE in response to the UE being in an RRC inactive state, the RRC inactive state UE needs to monitor both CN paging and RAN paging.
  • CN paging is only used when the network side and the UE are not matched; for example, the context is lost on the network side, and the network side thinks that the UE is in the RRC idle state and initiates CN paging.
  • the UE if the UE is in inter-RAT cell reselection, the UE returns to the RRC idle state in advance.
  • the UE in RRC inactive state needs to monitor CN paging and RAN paging at the same time; at this time, the paging cycle configured for the UE is usually the minimum value of the specific cycle of the UE, the RAN paging cycle and the default DRX cycle . In this way, in this embodiment, the UE also performs monitoring in a relatively intensive number of times, which is very unfavorable for the consideration of power saving of the UE.
  • the base station can estimate when it will arrive; therefore, the UE does not necessarily need to monitor according to the minimum DRX cycle, and also It can meet the paging requirements of the UE.
  • an embodiment of the present disclosure provides a method for processing a DRX cycle, which is applied to a UE, including:
  • Step S21 Determine the DRX cycle of the UE in the disconnected state from the multiple DRX cycles of the UE in the disconnected state.
  • the DRX processing method in the embodiment of the present disclosure can be applied to a UE, and the UE can be various mobile terminals or fixed terminals.
  • the UE may be, but is not limited to, a mobile phone, a computer, a server, a wearable device, a game control platform, or a multimedia device.
  • the UEs here include non-connected UEs.
  • the non-connected UEs include RRC idle UEs and/or RRC inactive UEs.
  • the multiple DRX cycles of the non-connected UE include but are not limited to at least one of the following: a specific cycle of the UE, a default DRX cycle, and a RAN paging cycle.
  • the specific period is a period configured by the NAS layer.
  • the default DRX cycle is a DRX cycle stored in the UE by default or a DRX cycle configured by the base station.
  • the DRX cycle of the UE in the non-connected state may also be a cycle determined in any other achievable manner.
  • it may be a DRX cycle pre-configured by the UE, or may also be a DRX cycle that has been used by the UE in the past, or the like.
  • the DRX cycle is used for paging monitoring for non-connected UEs.
  • the disconnected UE determines the DRX cycle of the disconnected UE from multiple DRX cycles of the disconnected UE; thus, the shortest DRX cycle is always selected as the DRX cycle of the disconnected UE. In other words, it may not be necessary to monitor paging messages based on relatively intensive times all the time, so that the consideration of power saving of the terminal can be greatly reduced.
  • a method for processing a DRX cycle according to an embodiment of the present disclosure, applied to a UE, may include: dynamically determining the DRX cycle of the non-connected UE from multiple DRX cycles of the non-connected UE.
  • the above step S21 includes: dynamically determining the DRX cycle of the non-connected UE from multiple DRX cycles of the non-connected UE.
  • the DRX cycle of the UE in the disconnected state can also be dynamically determined, the configuration of different DRX cycles can be implemented according to different application scenarios in the disconnected state, and the configuration of the service requirements of the UE in the disconnected state can be satisfied. Under the premise of realizing the flexible configuration of the DRX cycle.
  • the DRX cycle of the non-connected UE is dynamically determined, which may be, but is not limited to: according to the service status of the non-connected UE, according to the current power of the non-connected UE, and according to the current to be sent by the non-connected UE At least one of the data amounts dynamically determines the DRX cycle of the UE in the non-connected state.
  • the traffic of the non-connected UE is relatively large and/or the service is relatively important, it is determined that the DRX cycle of the non-connected UE is relatively small, if the traffic of the non-connected UE is relatively small and/or the service is relatively small. Not important, it is determined that the DRX cycle of the UE in the non-connected state is relatively large.
  • the number of services and/or the importance of services of the UE in the non-connected state are inversely correlated with the size of the DRX cycle of the dynamically determined UE in the non-connected state.
  • the dynamically determined DRX cycle of the non-connected UE is less than the first value; if the power of the non-connected UE is less than the second power value, the dynamically determined non-connected UE's DRX cycle is less than the first value; The DRX cycle is greater than the second value; wherein, the first power value is greater than the second power value; the first value is less than the second value.
  • the dynamically determined DRX cycle of the non-connected UE is less than the third value; if the current amount of data to be sent by the non-connected UE is less than the second data The dynamically determined DRX cycle of the non-connected UE is greater than the fourth value; wherein, the first data amount is greater than the second data amount; and the third value is less than the fourth value.
  • an embodiment of the present disclosure provides a method for processing a DRX cycle, which is applied to a UE, including:
  • Step S31 Switch the first cycle of the non-connected UE to the second cycle according to the multiple DRX cycles of the non-connected UE.
  • the first period may be the initial DRX period before the disconnected UE initiates the DRX cycle switch
  • the second period may be the target DRX cycle after the disconnected UE initiates the DRX cycle switch.
  • the first period and the second period may be the periods of the non-connected UE at any two time instants, as long as the first period and the second period are different.
  • dynamically determining the DRX cycle of the disconnected UE includes, but is not limited to, at least one of the following: determining the first cycle of the disconnected UE, determining the second cycle of the disconnected UE, and determining the DRX cycle of the disconnected UE.
  • the first cycle of the UE is switched to the second cycle.
  • the above step S21 may include: switching the first cycle of the non-connected UE to the second cycle according to multiple DRX cycles of the non-connected UE.
  • the UE in the connected state may switch the first cycle to the second cycle according to multiple DRX cycles of the UE in the non-connected state, so as to realize the dynamic determination of the UE in the non-connected state.
  • the embodiments of the present disclosure can satisfy the dynamic determination of the DRX cycle for monitoring paging in more application scenarios of the non-connected UE.
  • an embodiment of the present disclosure provides a method for processing a DRX cycle, which is applied to a UE, including:
  • Step S41 In response to receiving the switching command, switch the first cycle of the UE in the non-connected state to the second cycle.
  • the handover command is used to instruct the non-connected UE to perform DRX cycle handover.
  • the embodiments of the present disclosure directly perform DRX cycle switching based on the switching command.
  • the handover command carries a paging message or a paging advance indication message.
  • the embodiment of the present disclosure can perform DRX cycle switching in advance when the paging message arrives, so as to meet the requirement of the non-connected UE to monitor the paging.
  • the handover command carries information related to the configuration of the power saving signal.
  • the embodiment of the present disclosure can perform DRX cycle switching based on the power saving signal, so as to further save the power consumption of the UE in the non-connected state.
  • the handover command also carries, but is not limited to, at least one of the following:
  • the handover command here may be issued by the network side; for example, it may be issued by any network side device.
  • the handover command is issued by the base station; for another example, in another application scenario, the handover command is issued by a device in the wireless access network; another example, in another application scenario, the handover command is Issued by equipment in the core network; and so on.
  • the UE in the non-connected state can directly determine the second period after the DRX cycle switch occurs, the effective time and/or the second period after the DRX cycle switch occurs, directly based on the handover command effective time. In this way, more accurate DRX cycle switching can be achieved.
  • the handover command may be sent within a predetermined time range before the network side determines that the base station or the RAN sends the paging message. In this way, in the embodiment of the present disclosure, the non-connected UE can be made to switch the DRX cycle in time, so as to monitor the paging as much as possible.
  • switching the first period of the non-connected UE to the second period may include: in response to receiving the switching command, switching the first period of the non-connected UE to the second period .
  • the first period may be switched to the second period by receiving the handover command by the non-connected UE, so as to realize the dynamic determination of the DRX period of the non-connected UE.
  • different DRX cycles can be determined to monitor paging based on different application scenarios of the non-connected UE, so that the power consumption of the UE can be saved while meeting the monitoring requirements.
  • the handover command may be carried in physical layer signaling or RRC layer signaling.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: switching a first cycle of a non-connected UE to a second cycle in response to receiving a physical layer signaling carrying a handover command.
  • the physical layer signaling includes: paging downlink control signaling DCI, wherein the paging DCI further carries indication information, where the indication information is used to indicate paging advance or configure a power saving signal.
  • the indication information carried in the paging DCI may be a paging early indication (PEI).
  • PEI paging early indication
  • the first cycle of the disconnected UE may be switched to the second cycle by receiving the physical layer signaling carrying the handover command through the disconnected UE.
  • the DRX cycle of the non-connected UE is dynamically switched; in this way, the DRX cycle can be updated in advance before the paging message arrives, so that the non-connected UE can monitor possible paging and further save The power consumption of the disconnected UE.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: in response to receiving a radio resource control RRC layer signaling carrying a handover command, switching a first cycle of a non-connected UE to a second cycle cycle.
  • the RRC layer signaling includes: a paging message.
  • the first cycle of the disconnected UE may be switched to the second cycle by receiving the RRC layer signaling carrying the handover command through the disconnected UE.
  • the DRX cycle of the non-connected UE is dynamically switched; in this way, the DRX cycle can be updated before the paging message arrives, so that the non-connected UE can monitor possible paging and further save non-connected UEs. Power consumption of the connected UE.
  • the first period may be the first period in step S31
  • the second period may be the second period in step S31 , which will not be repeated here.
  • the above step S41 includes one of the following:
  • the first period of the UE in the non-connected state is switched to the second period.
  • an embodiment of the present disclosure provides a method for processing a DRX cycle, which is applied to a UE, including:
  • Step S51 Determine the first cycle of the UE in the disconnected state according to the multiple DRX cycles of the UE in the disconnected state.
  • the first cycle may be the first cycle described in step S31, and details are not described herein again.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: determining a first cycle of a non-connected UE according to multiple DRX cycles of a non-connected UE based on a pre-agreed agreement.
  • the idle state UE refers to the RRC idle state UE
  • the inactive state UE refers to the RRC inactive state UE
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: in response to a non-connected UE being an idle UE, determining an idle state based on a specific cycle of the idle UE and the maximum value of the default DRX cycle The first cycle of the UE.
  • the specific period of the UE in the idle state is a period configured by a non-access stratum (NAS).
  • NAS non-access stratum
  • the first cycle of the idle state UE may be: the maximum value of the specific cycle of the idle state UE and the default DRX cycle. In another embodiment, the first cycle of the UE in the idle state may be a value different from the maximum value of the specific cycle and the default DRX cycle of the idle state UE by a predetermined value.
  • the first cycle of the UE in the idle state can be determined according to the specific cycle of the UE in the idle state and the maximum value of the default DRX cycle. In this way, it can be determined that the DRX cycle of the UE in the idle state is relatively large, thereby making the idle state of the UE relatively large. The number of paging of the state UE is reduced. In this way, the embodiment of the present disclosure can save the power consumption of the UE in the idle state.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: in response to a non-connected UE being an idle UE, determining a first cycle of the idle UE based on a specific cycle of the idle UE.
  • the specific period of the idle state UE is the period configured by the NAS.
  • the first period of the idle state UE is a specific period of the idle state UE.
  • the first period of the UE in the idle state is a value different from the specific period of the UE in the idle state by a predetermined value.
  • the first cycle of the idle UE can be directly determined according to the specific cycle of the idle UE, so that it can be determined that the DRX cycle of the idle UE is relatively large, thereby reducing the number of paging of the idle UE . In this way, the embodiment of the present disclosure can save the power consumption of the UE in the idle state.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: in response to a non-connected UE being an inactive UE, based on a specific cycle of the inactive UE, a radio access network RAN paging cycle and the maximum value of the default DRX cycle to determine the first cycle of the inactive UE.
  • the specific period of the inactive UE is the period configured by the NAS.
  • the first cycle of the inactive UE is: the maximum value of the specific cycle of the inactive UE, the RAN paging cycle and the default DRX cycle.
  • the first period of the inactive UE is: a value different by a predetermined value from the maximum value of the specific period of the inactive UE, the RAN paging period and the default DRX period.
  • the first period of the inactive UE can be determined according to the specific period of the inactive UE, the RAN paging period, and the maximum value of the default DRX period, so that the DRX period of the inactive UE can be determined. It is relatively large, thereby reducing the number of paging times of the idle UE. In this way, the embodiment of the present disclosure can save the power consumption of the UE in the inactive state.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, which is applied to a UE, may include: in response to a non-connected UE being an inactive UE, determining a first cycle of the inactive UE based on a specific cycle of the inactive UE Period, or, based on the RAN paging period, the first period of the UE in the inactive state is determined.
  • the specific period of the inactive UE is the period configured by the NAS.
  • the first period of the inactive UE is a specific period of the inactive UE. In another embodiment, the first period of the inactive UE is: a value different from the specific period of the inactive UE by a predetermined value.
  • the first cycle of the inactive UE is a RAN paging cycle.
  • the first period of the UE in the inactive state is a value different from the RAN paging period by a predetermined value.
  • the first period of the inactive UE can be directly determined according to the specific period of the inactive UE, so that it can be determined that the DRX period of the inactive UE is relatively large, thereby making the searching period of the inactive UE relatively large.
  • the number of calls is reduced; in this way, the power consumption of the UE in the inactive state can be saved.
  • the first period of the inactive UE can be determined directly according to the RAN paging period of the inactive UE. In this way, the period for the RAN to send the paging message can be satisfied under the premise that the DRX period of the inactive UE is relatively large. , which can reduce the number of paging of the inactive UE, that is, save the power consumption of the inactive UE, and at the same time monitor the paging message sent by the RAN as much as possible.
  • the first cycle determined by the idle UE may be the minimum value based on the specific cycle of the idle UE and the default DRX cycle, or may be the idle UE The value between the specific period and the default DRX period.
  • the first period determined by the inactive UE may be the minimum value of the specific period of the inactive UE, the RAN paging period and the default DRX period, or may be the specific period of the inactive state. , the value between the minimum and maximum values in the RAN paging cycle and the default DRX cycle.
  • the disconnected UE may also use a relatively compromised DRX cycle for monitoring and paging, so as to adapt to the dynamic determination of the DRX cycle of some disconnected UEs that transmit and receive data frequently.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: determining a first cycle of a non-connected UE according to a plurality of DRX cycles of a non-connected UE based on a network notification.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include one of the following:
  • the broadcast signaling Based on the received broadcast signaling, determine the first period of the UE in the non-connected state; wherein, the broadcast signaling carries the configuration parameters of the first period;
  • the first period of the UE in the non-connected state is determined; wherein, the dedicated signaling carries the configuration parameters of the first period.
  • the configuration parameter of the first cycle here may be: the first cycle.
  • the configuration parameters of the first cycle here may also be any parameters that can be used to indicate the first cycle, and the like.
  • the dedicated signaling includes: a radio resource control RRC release message, wherein the RRC release message carries the first period.
  • the first period of the non-connected UE may be carried based on the RRC release message, so that the non-connected UE may monitor based on the first period.
  • the first period of the disconnected UE may be directly determined through a network notification received by the disconnected UE.
  • the disconnected state may be directly determined through received broadcast signaling or dedicated signaling.
  • the first cycle before the UE initiates DRX cycle switching. In this way, more application scenarios in which the DRX cycle of the UE in the non-connected state is dynamically determined can be adapted; and the power consumption for monitoring by the UE in the non-connected state can be saved.
  • the above step S21 includes: determining the first cycle of the UE in the disconnected state according to multiple DRX cycles of the UE in the disconnected state.
  • the first cycle of the disconnected UE is determined according to multiple DRX cycles of the disconnected UE, including but not limited to one of the following:
  • the first cycle of the disconnected UE is determined according to multiple DRX cycles of the disconnected UE.
  • the first cycle of the disconnected UE is determined according to multiple DRX cycles of the disconnected UE, including but not limited to one of the following:
  • determining the first cycle of the idle state UE based on the specific cycle of the idle state UE and the maximum value of the default DRX cycle;
  • the non-connected UE being the inactive UE, determine the first cycle of the inactive UE based on the maximum value of the specific cycle of the inactive UE, the radio access network RAN paging cycle and the default DRX cycle;
  • the non-connected UE being the inactive UE, determine the first cycle of the inactive UE based on the specific cycle of the inactive UE, or determine the first cycle of the inactive UE based on the RAN paging cycle;
  • the specific period of the UE in the idle state or the specific period of the UE in the inactive state is the period configured by the NAS.
  • the first cycle of the disconnected UE is determined according to multiple DRX cycles of the disconnected UE, including but not limited to one of the following:
  • the broadcast signaling Based on the received broadcast signaling, determine the first period of the UE in the non-connected state; wherein, the broadcast signaling carries the configuration parameters of the first period;
  • the first period of the UE in the non-connected state is determined; wherein, the dedicated signaling carries the configuration parameters of the first period.
  • an embodiment of the present disclosure provides a method for processing a DRX cycle, which is applied to a UE, including:
  • Step S61 Determine the second cycle of the UE in the disconnected state according to multiple DRX cycles of the UE in the disconnected state.
  • the second period may be the second period in step S31, and details are not described herein again.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: determining a second cycle of the disconnected UE according to multiple DRX cycles of the disconnected UE based on a pre-protocol agreement.
  • the idle state UE refers to the RRC idle state UE
  • the inactive state UE refers to the RRC inactive state UE
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: in response to a non-connected UE being an idle UE, determining an idle state based on a specific cycle of the idle UE and a minimum value of a default DRX cycle The second cycle of the UE.
  • the specific period of the idle state UE is the period configured by the NAS.
  • the second cycle of the idle state UE may be: the minimum value of the specific cycle of the idle state UE and the default DRX cycle.
  • the second period of the idle state UE may be a value different from the minimum value of the specific period and the default period of the idle state UE by a predetermined value.
  • the second cycle of the idle state UE can be determined according to the specific cycle of the idle state UE and the minimum value of the default DRX cycle; in this way, the relative comparison of the second cycle after the idle state UE initiates the DRX cycle switching can be determined. is small, which makes the number of paging of the idle UE relatively intensive. In this way, the idle UE can monitor the paging message as much as possible; and the DRX cycle can be switched to a relatively small DRX cycle only when the DRX cycle needs to be switched, thereby saving the power consumption of the non-connected UE.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: in response to a non-connected UE being an inactive UE, based on a specific cycle of the inactive UE, a RAN paging cycle and a default DRX The minimum value of the period determines the second period of the inactive UE.
  • the specific period of the inactive UE is the period configured by the NAS.
  • the second period of the inactive UE may be the minimum value of the specific period of the inactive UE, the RAN paging period and the default DRX period. In another embodiment, the second period of the inactive UE may be a value different by a predetermined value from the minimum value of the specific period of the inactive UE, the RAN paging period and the default DRX period.
  • the second cycle of the inactive UE can be determined according to the minimum value of the specific cycle of the inactive UE, the RAN paging cycle and the default DRX cycle; in this way, it can be determined that the inactive UE initiates DRX
  • the second period after the period switching word is relatively small, so that the number of paging times of the UE in the idle state is relatively intensive.
  • the idle UE can monitor the paging message as much as possible; and the DRX cycle can be switched to a relatively small DRX cycle only when the DRX cycle needs to be switched, thereby saving the power consumption of the non-connected UE.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include one of the following:
  • the handover command is received again with the first period or with the third period. In one embodiment, the first period is different from the third period.
  • the non-connected UE receives the handover command again, it is determined that the second period of the non-connected UE is a defined period before the last handover command.
  • the UE in the non-connected state may determine the second period of the UE in the non-connected state based on the handover command received again. For example, according to the first cycle carried in the handover command or the new DRX cycle (for example, the third cycle), the second cycle after the non-connected UE initiates the DRX cycle handover is determined; for another example, according to the second cycle received It is directly determined that the second cycle after the non-connected UE initiates the DRX cycle handover is the first cycle before the last handover command.
  • the embodiment of the present disclosure can determine the second period after the connected UE initiates the DRX cycle switching according to different application scenarios of the non-connected UE, so as to realize the determination of the diversity of the second period of the non-connected UE.
  • the DRX cycle can be switched to a relatively small DRX cycle only when the DRX cycle needs to be switched, thereby saving the power consumption of the UE in the non-connected state.
  • a method for processing a DRX cycle according to an embodiment of the present disclosure, applied to a UE, may include: determining a second cycle of the non-connected UE according to multiple DRX cycles of the non-connected UE based on a network notification.
  • a method for processing a DRX cycle according to an embodiment of the present disclosure, applied to a UE, may include one of the following:
  • the second period of the UE in the non-connected state is determined; wherein, the broadcast signaling carries the configuration parameters of the second period;
  • the second period of the UE in the non-connected state is determined; wherein, the dedicated signaling carries the configuration parameters of the second period.
  • the configuration parameter of the second cycle here may be: the second cycle.
  • the configuration parameter of the second period here may also be any parameter that can be used to indicate the second period, and the like.
  • the second period of the disconnected UE may be directly determined through a network notification received by the disconnected UE.
  • the disconnected state may be directly determined through received broadcast signaling or dedicated signaling.
  • the second period of the disconnected UE may be updated based on a network notification, such as received broadcast signaling or dedicated signaling.
  • the above step S21 includes: determining the second period of the non-connected UE according to multiple DRX periods of the non-connected UE.
  • the second cycle of the disconnected UE is determined according to multiple DRX cycles of the disconnected UE, including but not limited to one of the following:
  • the second cycle of the disconnected UE is determined
  • the second cycle of the disconnected UE is determined according to a plurality of DRX cycles of the disconnected UE.
  • the second cycle of the disconnected UE is determined according to multiple DRX cycles of the disconnected UE, including but limited to one of the following:
  • the second period of the idle UE is determined based on the minimum value of the specific period of the idle UE and the default DRX period; wherein, the specific period of the idle UE is the non-access stratum NAS configuration period;
  • the second cycle of the inactive UE is determined based on the specific cycle of the inactive UE, the RAN paging cycle and the default minimum value of the DRX cycle; wherein the inactive UE's second cycle is determined.
  • the specific period is the period configured by the non-access stratum NAS;
  • the second cycle of the disconnected UE is determined according to multiple DRX cycles of the disconnected UE, including but not limited to one of the following:
  • the second period of the UE in the non-connected state is determined; wherein, the broadcast signaling carries the configuration parameters of the second period;
  • the second period of the UE in the non-connected state is determined; wherein, the dedicated signaling carries the configuration parameters of the second period.
  • an embodiment of the present disclosure provides a method for processing a DRX cycle, which is applied to a UE, including:
  • Step S71 Determine the effective manner of the second cycle.
  • the second period may be the second period in step S31, and details are not described herein again.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include but is not limited to one of the following:
  • the effective mode of the second period is determined according to the effective time and/or the effective time duration indicated in the handover command.
  • determining the effective manner of the second period may be: determining the effective time of the second period. In another embodiment, determining the effective manner of the second period may be: determining the effective duration of the second period.
  • the effective time of the second period may be: the start time of the effective of the second period.
  • the effective duration of the second cycle here may be: the start time and the end time when the second cycle is effective; and/or, the effective duration of the second cycle may be: the duration between the start time and the end time of the second cycle.
  • the manner of determining the effective of the second period may be: determining whether the second period is effective immediately, or determining the end time of the effective of the second period; and so on.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include but is not limited to one of the following:
  • the modification period is determined based on the default DRX period of the non-connected UE.
  • the modification period may be greater than or equal to the default DRX period, or may be an integer multiple of the default DRX period.
  • the modification period may be other values.
  • the modification period may be a period configured by the network side.
  • the modification period here may be larger than the period in which the system message is sent; for example, in one modification period, the system message may be sent one or more times.
  • the disconnected state may prescribe an effective manner of the second period according to a pre-agreed agreement. For example, it may be agreed that once the non-connected UE receives the handover command, it determines that the second period starts to take effect; in this way, the second period can be made effective immediately. For another example, it may be agreed that the second period will take effect at the start time of the next modification period, and so on. In this way, the embodiment of the present disclosure can accurately determine the effective start time of the second cycle.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include but not limited to at least one of the following:
  • the effective period of the second period is determined.
  • the handover command carries the effective time. In another embodiment, the handover command carries relevant parameters indicating the effective time.
  • the effective duration is carried in the handover command.
  • the handover command carries relevant parameters indicating the effective duration.
  • the disconnected state may determine the effective manner of the second cycle based on the received handover command. For example, if the handover command received by the UE in the disconnected state carries the effective time, it may be directly based on the handover command carried in the handover command.
  • the effective time of the second cycle determines the effective time of the second cycle; for another example, if the handover command received in the non-connected state carries the effective time, the effective time of the second cycle can be determined directly based on the effective time carried in the handover command. In this way, the embodiment of the present disclosure can accurately determine the effective time and/or the effective time duration of the second period, so that the non-connected UE can use appropriate DRX for monitoring.
  • a method for processing a DRX cycle provided in an embodiment of the present disclosure, applied to a UE, may include, but is not limited to, at least one of the following:
  • the effective duration of the second period is determined to be the end time of the next modification period.
  • the non-connected UE may determine the effective duration of the second cycle based on the effective duration indicated in the received handover command.
  • the non-connected UE receives the handover command, it is determined that the effective duration of the second cycle continues until the effective duration indicated in the next time it receives the handover command; in this way, before the next handover naming is received, The UE in the disconnected state is made to continuously use the second cycle as the DRX cycle for monitoring paging and the like.
  • the UE in the disconnected state receives the handover command, if it is determined that the effective duration indicated in the handover command is the current DRX cycle (for example, the current DRX cycle may be the second cycle determined after the disconnected state initiates the DRX handover), it is not connected.
  • the state UE takes effect only in the current DRX cycle.
  • the disconnected UE when the disconnected UE receives the handover command, if the effective duration indicated in the handover command is the current modification period, it is determined that the effective duration of the second period can last until the end of the current modification period; or, the disconnected UE After receiving the switching command, if the effective duration indicated in the switching command is the next modification period, it is determined that the effective duration of the second period can last until the end time of the next modification period.
  • the non-connected UE receives the handover command, if the effective duration indicated in the handover command is an indication to last until the Nth modification period; then it is determined that the effective duration of the second period can last until the Nth modification period. The end time of the modification period; where N is an integer greater than or equal to 1.
  • the switching command may also indicate that any other moment is the effective time and/or any time period is the effective duration, and the effective time and/or the effective duration are not specifically limited herein.
  • the embodiment of the present disclosure can determine the effective time and/or effective duration of the second period according to different effective times and/or effective periods indicated in the handover command, so that the dynamic determination of the second period of the non-connected UEs Can be adapted to more application scenarios.
  • an embodiment of the present disclosure provides a method for processing a DRX cycle, which is applied to a UE, including:
  • Step S81 Reporting auxiliary information of the UE, wherein the auxiliary information is used to indicate whether the UE supports dynamic determination of the DRX cycle.
  • the assistance information is used to indicate whether the UE supports dynamic determination of the DRX cycle when in the disconnected state. In another embodiment, the assistance information is used to indicate whether the UE supports dynamic determination of the DRX cycle while in idle state. In yet another embodiment, the assistance information is used to indicate whether the UE supports dynamic determination of the DRX cycle when in the inactive state.
  • the dynamic determination of the DRX cycle includes, but is not limited to, at least one of the following: determining a first cycle, determining a second cycle, and switching from the first cycle to the second cycle.
  • the first period here may be the period before the UE initiates the DRX cycle switching
  • the second period here may be the period after the UE initiates the DRX period switching.
  • the UE may report its own auxiliary information, so that the network side knows whether the UE can support dynamic determination of the DRX cycle of the UE.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: reporting auxiliary information to a base station.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: reporting a UE radio paging message (UE-RadioRagingInfo) carrying auxiliary information to a base station, and the UE-RadioRagingInfo field is carried in the UE capability reporting message .
  • UE-RadioRagingInfo UE radio paging message
  • the auxiliary message can be carried in the existing radio paging message, so that the base station can know whether the UE supports the capability of dynamically determining the DRX cycle.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: reporting auxiliary information to a core network.
  • a method for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE may include: reporting a UE capability information message (UE capacity info notification) carrying auxiliary information to the core network.
  • the assistance message may be carried in the capability information of the UE, so that the core network knows whether the UE supports the capability of dynamically determining the DRX cycle.
  • the assistance information of the UE may be sent to the core network through the base station.
  • the assistance information of the UE is carried in the capability information of the UE, and the base station sends the capability information message of the UE to the core network.
  • the assistance information of the UE may also be carried in the UE release message, and the base station sends the UE release message to the core network.
  • the assistance message is used to be carried in the paging message sent by the core network to the RAN, so that the non-connected UE can determine whether to support the dynamic determination of the DRX cycle.
  • the core network carries the auxiliary information of the UE in the paging message sent to the RAN, so that the auxiliary information can be used for the dynamic determination of the subsequent DRX cycle of the UE.
  • a device for processing a DRX cycle which, when applied to a UE, includes:
  • the processing module 41 is configured to receive DRX cycles from multiple discontinuous UEs in the disconnected state, and determine the DRX cycles of the disconnected UEs.
  • a method for processing a DRX cycle may include: a processing module 41 configured to receive DRX cycles from multiple discontinuous UEs in a disconnected state, and dynamically determine the DRX cycle of the disconnected UEs.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a switching unit 411, configured to cycle, switch the first cycle of the UE in the non-connected state to the second cycle.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a switching unit 411, configured to, in response to receiving a switching command, switch the non- The first cycle of the UE in the connected state is switched to the second cycle.
  • the handover command is carried in physical layer signaling or RRC layer signaling.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a switching unit 411, configured to respond to receiving a physical device carrying a switching command layer signaling to switch the first cycle of the UE in the non-connected state to the second cycle; or, the switching unit 411 is configured to, in response to receiving the radio resource control RRC layer signaling carrying the handover command, switch the UE in the non-connected state The first cycle is switched to the second cycle.
  • the physical layer signaling includes: paging downlink control signaling DCI, wherein the paging DCI further carries indication information, where the indication information is used to indicate paging advance or configure a power saving signal.
  • the RRC layer signaling includes: paging messages.
  • the handover command also carries at least one of the following:
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to Period, to determine the first period of the UE in the non-connected state.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determination unit 412, configured to be based on a pre-protocol agreement, according to a disconnected state The multiple DRX cycles of the UE determine the first cycle of the non-connected UE.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to respond to the non-connected state UE being in an idle state The UE determines the first period of the idle UE based on the specific period of the idle UE and the maximum value of the default DRX period; wherein the specific period of the idle UE is the period configured by the non-access stratum NAS.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to respond to the non-connected state UE being in an idle state The UE determines the first period of the idle state UE based on the specific period of the idle state UE; wherein, the specific period of the idle state UE is the period configured by the non-access stratum NAS.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to respond that the UE in a disconnected state is inactive The first period of the inactive UE is determined based on the maximum value of the specific period of the inactive UE, the RAN paging period of the radio access network and the default DRX period; wherein, the specific period of the inactive UE is the non-active UE. Period of incoming NAS configuration.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to respond that the UE in a disconnected state is inactive state UE, determine the first cycle of the inactive state UE based on the specific cycle of the inactive state UE, or determine the first cycle of the inactive state UE based on the RAN paging cycle; wherein, the specific cycle of the inactive state UE is: Period of non-access stratum NAS configuration.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to determine, based on received broadcast signaling The first period of the UE in the connected state; wherein, the broadcast signaling carries the configuration parameters of the first period; or, the determining unit 412 is configured to determine the first period of the UE in the non-connected state based on the received dedicated signaling; wherein, The dedicated signaling carries the configuration parameters of the first period.
  • the dedicated signaling includes: a radio resource control RRC release message, wherein the RRC release message carries the first period.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to Period, to determine the second period of the UE in the non-connected state.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determination unit 412, configured to be based on a pre-protocol agreement, according to a disconnected state The multiple DRX cycles of the UE determine the second cycle of the non-connected UE.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to respond to the non-connected state UE being in an idle state The UE determines the second period of the idle UE based on the minimum value of the specific period of the idle UE and the default DRX period; wherein the specific period of the idle UE is the period configured by the non-access stratum NAS.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to respond that the UE in a disconnected state is inactive The UE in the inactive state determines the second cycle of the inactive UE based on the specific cycle of the inactive UE, the RAN paging cycle and the default minimum value of the DRX cycle; wherein, the specific cycle of the inactive UE is configured by the non-access stratum NAS cycle.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to, in response to receiving a handover command again, determine The second cycle of the UE in the non-connected state is the first cycle before the last handover command; or, the determining unit 412 is configured to, in response to receiving the handover command again, based on the third DRX cycle carried in the handover command received again , determine that the second period of the UE in the non-connected state is the third DRX period.
  • An apparatus for processing a DRX cycle may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to determine, based on received broadcast signaling The second period of the UE in the connected state; wherein, the broadcast signaling carries the configuration parameter of the second period; or, the determining unit 412 is configured to determine the second period of the UE in the non-connected state based on the received dedicated signaling; wherein, The dedicated signaling carries the configuration parameters of the second period.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to determine an effective manner of the second cycle.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determining unit configured to determine the second cycle based on a pre-protocol agreement effective method.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to, in response to receiving a handover command, determine the first The second period starts to take effect; or, the determining unit 412 is configured to determine that the second period starts to take effect at the start time of the next modification period.
  • the modification period is determined based on the default DRX period of the non-connected UE.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured to be based on the effective time indicated in the handover command, Determine the effective time of the second cycle; or, the determining unit 412 is configured to determine the effective time of the second cycle based on the effective time indicated in the handover command.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a processing module 41; wherein, the processing module 41 may include: a determining unit 412, configured as at least one of the following:
  • the effective duration of the second period is determined to be the end time of the next modification period.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a sending module 42 configured to report auxiliary information of the UE, wherein the auxiliary information is used to indicate whether the UE supports dynamic determination of the DRX cycle.
  • the auxiliary information is used to indicate one of the following:
  • the apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a sending module 42 configured to report auxiliary information to a base station.
  • An apparatus for processing a DRX cycle may include: a sending module 42, configured to send a UE radio paging message (UE-RadioRagingInfo) carrying auxiliary information to a base station, UE-RadioRagingInfo The field is carried in the UE capability report message.
  • UE-RadioRagingInfo UE radio paging message
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: a sending module 42 configured to report auxiliary information to the core network.
  • An apparatus for processing a DRX cycle provided by an embodiment of the present disclosure, applied to a UE, may include: reporting a UE capability information message (UE capacity info notification) carrying auxiliary information to the core network.
  • UE capability information message UE capacity info notification
  • the assistance message is used to be carried in the paging message sent by the core network to the RAN, so that the non-connected UE can determine whether to support the dynamic determination of the DRX cycle.
  • Embodiments of the present disclosure provide a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to implement the processing method of the DRX cycle of any embodiment of the present disclosure when executing the executable instruction.
  • the communication device may be a UE.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information on the user equipment after the user equipment is powered off.
  • the processor may be connected to the memory through a bus or the like, for reading the executable program stored on the memory, for example, at least one of the methods shown in FIG. 2 to FIG. 8 .
  • Embodiments of the present disclosure further provide a computer storage medium, where the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the DRX cycle processing method of any embodiment of the present disclosure. For example, at least one of the methods shown in FIG. 2 to FIG. 8 .
  • FIG. 10 is a block diagram of a user equipment 800 according to an exemplary embodiment.
  • user device 800 may be a mobile phone, computer, digital broadcast user device, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • user equipment 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814 , and the communication component 816 .
  • the processing component 802 generally controls the overall operation of the user equipment 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at user equipment 800 . Examples of such data include instructions for any application or method operating on user device 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 806 provides power to various components of user equipment 800 .
  • Power components 806 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to user equipment 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the user device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the user equipment 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when user device 800 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing status assessment of various aspects of user equipment 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the user device 800, the sensor component 814 can also detect the user device 800 or a component of the user device 800
  • the position of the user equipment 800 changes, the presence or absence of user contact with the user equipment 800, the orientation or acceleration/deceleration of the user equipment 800, and the temperature of the user equipment 800 changes.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between user device 800 and other devices.
  • User equipment 800 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • user equipment 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmed gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmed gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, executable by the processor 820 of the user equipment 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • base station 900 includes processing component 922, which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any of the aforementioned methods applied to the base station, eg, the methods shown in FIGS. 4-10 .
  • the base station 900 may also include a power supply assembly 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种DRX周期的处理方法、装置、通信设备及存储介质;DRX周期的处理方法,包括:从非连接态UE的多个DRX周期中,确定非连接态UE的DRX周期。该方法相对于始终选择最短的DRX周期作为非连接态UE的DRX周期来说,可以不需要始终基于比较密集次数来监听寻呼消息。

Description

DRX周期的处理方法、装置、通信设备及存储介质 技术领域
本公开涉及但不限于通信技术领域,尤其涉及一种非连续接收DRX的处理方法、装置、通信设备及存储介质。
背景技术
目前,对于处于非连接态的用户设备(User Equipment,UE)监听寻呼消息时,通常是采用最短的周期(cycle)进行监听。例如,对于处于无线资源控制(Radio Resource Control)空闲态(idle)的UE需要同时监听核心网(CN)寻呼和系统消息更新而言,通常配置的监听周期是特定的非连续接收(Discontinuous Reception,DRX)周期及默认(default)DRX周期的最小值。又如,对于处于RRC非激活态(inactive)的UE需要同时监听CN寻呼和无线接入网(RAN)寻呼而言,通常配置的监听周期为特定的DRX周期、默认DRX周及RAN寻呼周期的最小值。如此,相当于使UE处于一个比较密集次数进行监听,虽然可以使得UE尽量不错过可能的寻呼消息,但是非常不利于终端的省电考虑。
发明内容
本公开实施例公开了一种DRX周期的处理方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供了一种DRX周期的处理方法,应用于UE,包括:
从非连接态UE的多个DRX周期,确定非连接态UE的DRX周期。
根据本公开实施例的第二方面,提供一种DRX周期的处理装置,应用于UE,包括:
处理模块,被配置为从非连接态UE的多个DRX周期,确定非连接态UE的DRX周期。
根据本公开实施例的第三方面,提供一种通信设备,包括:
处理器;
用于与存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的DRX周期的处理方法。
根据本公开实施例的第四方面,提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的DRX的处理方法。
本公开实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,可以从非连接态UE的多个DRX周期,动态确定非连接态UE的DRX周 期;如此,相对于始终选择最短的DRX周期作为非连接态UE的DRX周期来说,可以不需要始终基于比较密集次数来监听寻呼消息,从而能够大大降低终端的省电考虑。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种DRX周期的处理方法的示意图。
图3是根据一示例性实施例示出的一种DRX周期的处理方法的示意图。
图4是根据一示例性实施例示出的一种DRX周期的处理方法的示意图。
图5是根据一示例性实施例示出的一种DRX周期的处理方法的示意图。
图6是根据一示例性实施例示出的一种DRX周期的处理方法的示意图。
图7是根据一示例性实施例示出的一种DRX周期的处理方法的示意图。
图8是根据一示例性实施例示出的一种DRX周期的处理方法的示意图。
图9是根据一示例性实施例示出的一种DRX周期的处理装置的框图。
图10是根据一示例性实施例示出的一种UE的框图。
图11是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无 线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为新一代无线接入网(New Generation-Radio Access Network,NG-RAN)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体接入控制(Medium Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的车对车(vehicle to vehicle,V2V)通信、车对路边设备(vehicle to Infrastructure,V2I)通信和车对人(vehicle to pedestrian,V2P)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统 中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了更好地理解本公开任意实施例所描述的技术方案,首先,对于UE配置的DRX周期进行部分说明:
在一个实施例中,响应于UE处于RRC空闲态,该RRC空闲态下UE需要同时监听CN寻呼和系统消息;通常给UE配置的寻呼周期为UE的特定周期及默认DRX周期的最小值。在一个应用场景中,若UE的特定周期是满足时延需求的,UE配置的寻呼周期仍是UE的特定周期及默认DRX周期的最小值;其中,默认周期的最小值相对于UE的特定周期是更小的。此处的UE的特定周期是非接入层(NAS)配置的。如此,在本实施例中,UE是处于一个比较密集次数进行监听的,非常不利于UE的省电考虑。
在另一个实施例中,响应于UE处于RRC非激活态,该RRC非激活态UE需要同时监听CN寻呼和RAN寻呼。在一个应用场景中,若CN寻呼仅仅用于网络侧和UE处于不匹配的情况;例如,上下文在网络侧丢失,网络侧以为UE处于RRC空闲态,于是发起CN寻呼。在另一个应用场景中,若UE处于无线接入技术间(inter-RAT)小区重选,UE提前回到RRC空闲态。在该些应用场景下,RRC非激活态UE需要同时监听CN寻呼和RAN寻呼;此时通常给UE配置的寻呼周期是UE的特定周期、RAN寻呼周期以及默认DRX周期的最小值。如此,在本实施例中,UE也是处于一个比较密集次数进行监听的,非常不利于UE的省电考虑。
而一些应用场景中,对于基站等发起的寻呼消息,比如系统消息的更新和RAN寻呼,则是基站可以预估何时到来的;因此UE不一定需要按照最小的DRX周期进行监听,也可以满足UE的寻呼需求。
如图2所示,本公开实施例提供一种DRX周期的处理方法,应用于UE,包括:
步骤S21:从非连接态UE的多个DRX周期,确定非连接态UE的DRX周期。
本公开实施例中DRX处理方法可应用于UE,UE可以为各种移动终端或固定终端。例如,UE可以是但不限于是手机、计算机、服务器、可穿戴设备、游戏控制平台或多媒体设备等。
此处的UE包括非连接态UE。在一个实施例中,非连接态UE包括RRC空闲态UE和/或RRC非激活态UE。
在一些实施例中,非连接态UE的多个DRX周期,包括但不限于以下至少之一:UE的特定周期、默认DRX周期、RAN寻呼周期。在一个实施例中,特定周期是NAS层配置的周期。在一个实施例中,默认DRX周期是默认存储在UE中的DRX周期或者基站配置的DRX周期。
当然,在其它的实施例中,非连接态UE的DRX周期还可以是其它的任意可实现方式确定的周 期。例如,可以是UE预先配置的DRX周期,或者,还可以是UE历史使用过的DRX周期等。
在一个实施例中,DRX周期用于供非连接态UE进行寻呼监听。
在本公开实施例中,非连接态UE从非连接态UE的多个DRX周期,确定非连接态UE的DRX周期;如此,相对于始终选择最短的DRX周期作为非连接态UE的DRX周期来说,可以不需要始终基于比较密集次数来监听寻呼消息,从而能够大大降低终端的省电考虑。
本公开实施例的一种DRX周期的处理方法,应用于UE,可包括:从非连接态UE的多个DRX周期,动态确定非连接态UE的DRX周期。
在一个实施例中,上述步骤S21,包括:从非连接态UE的多个DRX周期,动态确定非连接态UE的DRX周期。
如此,在本公开实施例中,还能够动态确定非连接态UE的DRX周期,能够根据非连接态处于不同的应用场景来实现不同的DRX周期的配置,能够满足非连接态UE的业务需求配置的前提下,实现DRX周期的灵活配置。
在一些实施例中,动态确定非连接态UE的DRX周期,可以是但不限于是:根据非连接态UE的业务状况、根据非连接态UE的当前电量以及根据非连接态UE当前待发送的数据量的至少其中之一,动态确定非连接态UE的DRX周期。
示例性的,若非连接态UE的业务量相对比较多和/或业务相对于比较重要,确定非连接态UE的DRX周期相对比较小,若非连接态UE的业务量相对比较少和/或业务相对不重要,确定非连接态UE的DRX周期比较大。在该实施例中,非连接态UE的业务数量和/或业务重要程度,与动态确定的非连接态UE的DRX周期的大小呈反相关。
示例性的,若非连接态UE的电量大于第一电量值,动态确定的非连接态UE的DRX周期小于第一数值;若非连接态UE的电量小于第二电量值,动态确定的非连接态UE的DRX周期大于第二数值;其中,第一电量值大于第二电量值;第一数值小于第二数值。
示例性的,若非连接态UE的当前待发送的数据量大于第一数据量,动态确定的非连接态UE的DRX周期小于第三数值;若非连接态UE当前待发送的数据量小于第二数据量,动态确定的非连接态UE的DRX周期大于第四数值;其中,第一数据量大于第二数据量;第三数值小于第四数值。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图3所示,本公开实施例提供一种DRX周期的处理方法,应用于UE,包括:
步骤S31:根据非连接态UE的多个DRX周期,将非连接态UE的第一周期切换为第二周期。
在一个实施例中,第一周期可以为非连接态UE发起DRX周期切换之前的初始DRX周期,第二周期可以为非连接态UE发起DRX周期切换之后的目标DRX周期。
当然,在其它实施例中,第一周期与第二周期可以为任意两个时刻非连接态UE的周期,只需满足第一周期与第二周期不同即可。
在一个实施例中,动态确定非连接态UE的DRX周期,包括但不限于以下至少之一:确定非连接态UE的第一周期、确定非连接态UE的第二周期、及将非连接态UE的第一周期切换为第二周期。
在一个实施例中,上述步骤S21,可包括:根据非连接态UE的多个DRX周期,将非连接态UE的第一周期切换为第二周期。
在本公开实施例中,连接态UE可以根据非连接态UE的多个DRX周期,将第一周期切换为第二周期,实现非连接态UE的动态确定。如此,本公开实施例可以满足非连接态UE更多的应用场景下的监听寻呼的DRX周期的动态确定。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图4所示,本公开实施例提供一种DRX周期的处理方法,应用于UE,包括:
步骤S41:响应于接收到切换命令,将非连接态UE的第一周期切换为第二周期。
在一个实施例中,切换命令,用于指示非连接态UE进行DRX周期切换。如此,本公开实施例基于切换命令直接进行DRX周期切换。
在另一个实施例中,切换命令,携带寻呼消息或者寻呼提前的指示消息。如此,本公开实施例可以在寻呼消息到来时提前进行DRX周期切换,以满足非连接态UE监听寻呼的要求。
在又一个实施例中,切换命令,携带省电信号配置的相关消息。如此,本公开实施例可以基于该省电信号,进行DRX周期切换,以进一步节省非连接态UE的耗电量。
在一些实施例中,切换命令,还携带但不限于以下至少之一:
第二周期;
第二周期的生效时间;
第二周期的生效时长。
此处的切换命令可以为网络侧下发的;例如,可以为任意网络侧设备下发的。例如,在一个应用场景中,切换命令为基站下发;又如,在另一个应用场景中,切换命令为无线接入网中设备下发;再如,在又一个应用场景中,切换命令为核心网中设备下发;等等。
如此,在本公开实施例中,非连接态UE可以直接基于该切换命令,确定出发生DRX周期切换之后的第二周期、发生DRX周期切换之后的第二周期的生效时间和/或第二周期的生效时长。如此,可以实现更精准的DRX周期的切换。
在一个实施例中,切换命令可以为网络侧确定基站或RAN发送寻呼消息前的预定时间范围内发送的。如此,在本公开实施例中,可以使得非连接态UE及时切换DRX周期,以尽可能监听到寻呼。
在一个实施例中,上述步骤S31中,将非连接态UE的第一周期切换为第二周期,可包括:响应于接收到切换命令,将非连接态UE的第一周期切换为第二周期。
在本公开实施例中,可以通过非连接态UE接收到切换命令,将第一周期切换为第二周期,实现非连接态UE的DRX周期的动态确定。如此,在本公开实施例中,可以基于非连接态UE处于不 同的应用场景,确定不同的DRX周期来监听寻呼,从而能够在满足监听需求的同时节省UE的耗电量。
在一个实施例中,切换命令可以携带在物理层信令或者RRC层信令中。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于接收到携带切换命令的物理层信令,将非连接态UE的第一周期切换为第二周期。
在一个实施例中,物理层信令,包括:寻呼下行控制信令DCI,其中,寻呼DCI还携带指示信息,其中,指示信息,用于指示寻呼提前或者配置省电信号。
在一个实施例中,寻呼DCI中携带的指示信息可以为寻呼提前指示((Paging early indication,PEI)。
如此,在本公开实施例中,可以通过非连接态UE接收到携带切换命令的物理层信令,就将非连接态UE的第一周期切换为第二周期。例如,接收到寻呼DCI就将非连接态UE的DRX周期进行动态切换;如此,可以在寻呼消息来之前提前更新DRX周期,以使得非连接态UE可以监听到可能的寻呼且进一步节省非连接态UE的耗电量。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于接收到携带切换命令的无线资源控制RRC层信令,将非连接态UE的第一周期切换为第二周期。
在一个实施例中,RRC层信令,包括:寻呼消息。
如此,在本公开实施例中,可以通过非连接态UE接收到携带切换命令的RRC层信令,就将非连接态UE的第一周期切换为第二周期。例如,接收到寻呼消息就将非连接态UE的DRX周期进行动态切换;如此,可以在寻呼消息来之前更新DRX周期,以使得非连接态UE可以监听到可能的寻呼且进一步节省非连接态UE的耗电量。
在本公开的一些实施例中,第一周期可以为步骤S31中的所述的第一周期,第二周期可以为步骤S31中第二周期,在此不再赘述。
在一些实施例中,上述步骤S41,包括以下之一:
响应于接收到携带切换命令的物理层信令,将非连接态UE的第一周期切换为第二周期;
响应于接收到携带切换命令的无线资源控制RRC层信令,将非连接态UE的第一周期切换为第二周期。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图5所示,本公开实施例提供一种DRX周期的处理方法,应用于UE,包括:
步骤S51:根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期。
在本公开的一些实施例中,第一周期可以为步骤S31中的所述的第一周期,在此不再赘述。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期。
在一个实施例中,空闲态UE是指RRC空闲态UE,非激活态UE是指RRC非激活态UE。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期及默认DRX周期的最大值,确定空闲态UE的第一周期。
其中,空闲态UE的特定周期为非接入层(NAS)配置的周期。
在一个实施例中,空闲态UE的第一周期可以为:空闲态UE的特定周期及默认DRX周期的最大值。在另一个实施例中,空闲态UE的第一周期可以为:与空闲态UE特定周期及默认DRX周期的最大值相差预定数值的值。
在本公开实施例中,可以根据空闲态UE的特定周期及默认DRX周期的最大值,确定空闲态的UE的第一周期,如此可以确定出空闲态UE的DRX周期相对比较大,进而使得空闲态UE的寻呼次数减少。如此,本公开实施例可以节省空闲态UE的耗电量。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期,确定空闲态UE的第一周期。
其中,空闲态UE的特定周期为NAS配置的周期。
在一个实施例中,空闲态UE的第一周期为空闲态UE的特定周期。
在另一个实施例中,空闲态UE的第一周期为:与空闲态UE的特定周期相差预定数值的值。
在本公开实施例中,可以直接根据空闲态UE的特定周期确定出空闲态UE的第一周期,如此可以确定出空闲态UE的DRX周期相对比较大,进而使得空闲态UE的寻呼次数减少。如此,本公开实施例可以节省空闲态UE的耗电量。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期、无线接入网RAN寻呼周期以及默认DRX周期的最大值,确定非激活态UE的第一周期。
其中,非激活态UE的特定周期为NAS配置的周期。
在一个实施例中,非激活态UE的第一周期为:非激活态UE的特定周期、RAN寻呼周期及默认DRX周期的最大值。在另一个实施例中,非激活态UE的第一周期为:与非激活态UE的特定周期、RAN寻呼周期及默认DRX周期的最大值相差预定数值的值。
在本公开实施例中,可以根据非激活态UE的特定周期、RAN寻呼周期以及默认DRX周期的最大值,确定非激活态UE的第一周期,如此可以确定出非激活态UE的DRX周期相对比较大,进而使得空闲态UE的寻呼次数减少。如此,本公开实施例可以节省非激活态UE的耗电量。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期,确定非激活态UE的第一周期,或者,基于RAN寻呼周期,确定非激活态UE的第一周期。
其中,非激活态UE的特定周期为NAS配置的周期。
在一个实施例中,非激活态UE的第一周期为非激活态UE的特定周期。在另一个实施例中,非激活态UE的第一周期为:与非激活态UE的特定周期相差预定数值的值。
在一个实施例中,非激活态UE的第一周期为RAN寻呼周期。在另一个实施例中,非激活态UE的第一周期为:与RAN寻呼周期相差预定数值的值。
在本公开实施例中,可以直接根据非激活态UE的特定周期确定非激活态UE的第一周期,如此可以确定出非激活态UE的DRX周期相对比较大,进而使得非激活态UE的寻呼次数减少;如此能够节省非激活态UE的耗电量。或者可以直接根据非激活态UE的RAN寻呼周期确定非激活态UE的第一周期,如此,可以在非激活态UE的DRX周期相对比较大的前提下还能够满足RAN发送寻呼消息的周期,能够使得非激活态UE的寻呼次数减少、即节省非激活态UE的耗电量的同时,尽可能监听到RAN发送的寻呼消息。
当然,在本公开实施例中,例如,若UE为空闲态UE,则空闲态UE确定的第一周期可以是基于空闲态UE的特定周期及默认DRX周期的最小值,或者可以是空闲态UE的特定周期及默认DRX周期之间的值。又如,若UE为非激活态UE,则非激活态UE确定的第一周期可以是非激活态UE的特定周期、RAN寻呼周期以及默认DRX周期的最小值,或者,可以是非激活态特定周期、RAN寻呼周期及默认DRX周期中最小值与最大值之间的值。如此,在本公开实施例中,非连接态UE也可以采用相对折中的DRX周期进行监听寻呼,从而适应一些数据收发比较频繁的非连接态态UE的DRX周期的动态确定。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:基于网络通知,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括以下之一:
基于接收的广播信令,确定非连接态UE的第一周期;其中,广播信令中携带第一周期的配置参数;
基于接收的专用信令,确定非连接态UE的第一周期;其中,专用信令中携带第一周期的配置参数。
此处的第一周期的配置参数,可以为:第一周期。此处的第一周期的配置参数,也可以为任意可以用于指示第一周期的参数等。
在一个实施例中,专用信令,包括:无线资源控制RRC释放消息,其中,RRC释放消息中携带第一周期。如此,在本公开实施例中,可以在UE断开连接时,可以基于RRC释放消息携带非连接态UE的第一周期,使得非连接态UE可以基于该第一周期进行监听。
在本公开实施例中,可以通过非连接态UE接收的网络通知等直接确定非连接态UE的第一周期,例如,可以通过接收到的广播信令或者专用信令等,直接确定非连接态UE在发起DRX周期切换之前的第一周期。如此,可以适应更多的非连接态UE的DRX周期动态确定的应用场景;并且,能够节省非连接态UE进行监听的耗电量。
在一些实施例中,上述步骤S21,包括:根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期。
在一些实例例中,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期,包括但 不限于以下之一:
基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期;
基于网络通知,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期。
在一些实施例中,基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期,包括但不限于以下之一:
响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期及默认DRX周期的最大值,确定空闲态UE的第一周期;
响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期,确定空闲态UE的第一周期;
响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期、无线接入网RAN寻呼周期以及默认DRX周期的最大值,确定非激活态UE的第一周期;
响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期,确定非激活态UE的第一周期,或者,基于RAN寻呼周期,确定非激活态UE的第一周期;
其中,空闲态UE的特定周期或者非激活态UE的特定周期为NAS配置的周期。
在一些实施例中,基于网络通知,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期,包括但不限于以下之一:
基于接收的广播信令,确定非连接态UE的第一周期;其中,广播信令中携带第一周期的配置参数;
基于接收的专用信令,确定非连接态UE的第一周期;其中,专用信令中携带第一周期的配置参数。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图6所示,本公开实施例提供一种DRX周期的处理方法,应用于UE,包括:
步骤S61,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期。
在本公开的一些实施例中,第二周期可以为步骤S31中的所述的第二周期,在此不再赘述。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期。
在一个实施例中,空闲态UE是指RRC空闲态UE,非激活态UE是指RRC非激活态UE。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期及默认DRX周期的最小值,确定空闲态UE的第二周期。
其中,空闲态UE的特定周期为NAS配置的周期。
在一个实施例中,空闲态UE的第二周期可以为:空闲态UE的特定周期及默认DRX周期的最小值。在另一个实施例中,空闲态UE的第二周期可以为:与空闲态UE的特定周期及默认周期的最小值相差预定数值的值。
在本公开实施例中,可以根据空闲态UE的特定周期及默认DRX周期的最小值,确定空闲态UE的第二周期;如此可以确定出空闲态UE发起DRX周期切换之后的第二周期相对比较小,进而使得空闲态UE的寻呼次数比较密集。如此,可以使得空闲态UE尽可能监听到寻呼消息;且能够在需要DRX周期切换时才切换为相对比较小的DRX周期,进而节省非连接态UE的耗电量。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期的最小值,确定非激活态UE的第二周期。
其中,非激活态UE的特定周期为NAS配置的周期。
在一个实施例中,非激活态UE的第二周期可以为:非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期的最小值。另一个实施例中,非激活态UE的第二周期可以为:与非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期的最小值相差预定数值的值。
在本公开实施例中,可以根据非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期的最小值,确定非激活态UE的第二周期;如此可以确定出非激活态UE发起DRX周期切换字后的第二周期相对比较小,进而使得空闲态UE的寻呼次数比较密集。如此,可以使得空闲态UE尽可能监听到寻呼消息;且能够在需要DRX周期切换时才切换为相对比较小的DRX周期,进而节省非连接态UE的耗电量。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括以下之一:
响应于再次接收到切换命令,确定非连接态UE的第二周期为上次切换命令之前的第一周期;
或者,
响应于再次接收到切换命令,基于再次接收到的切换命令中携带的第三DRX周期,确定非连接态UE的第二周期为第三DRX周期。
在一个实施例中,再次接收到切换命令可以携带第一周期,或者携带第三周期。在一个实施例中,第一周期与第三周期不同。
在一个实施例中,可以根据预先协议约定,若非连接态UE再次接收到切换命令,则确定非连接态UE的第二周期为上次切换命令之前的定义周期。
在本公开实施例中,非连接态UE可以基于再次接收的切换命令,确定出非连接态UE的第二周期。例如,根据再次接收到切换命令中所携带的第一周期或者新的DRX周期(例如第三周期),确定出非连接态UE发起DRX周期切换之后的第二周期;又如,根据再次接收到的切换命令,直接确定出非连接态UE发起DRX周期切换之后的第二周期为上次切换命令之前的第一周期。如此,本公开实施例可以根据非连接态UE处于不同的应用场景,确定出连接态UE发起DRX周期切换之后的第二周期,实现非连接态UE的第二周期的多样性的确定。且能够在需要DRX周期切换时才切换为相对比较小的DRX周期,进而节省非连接态UE的耗电量。
本公开实施例的一种DRX周期的处理方法,应用于UE,可包括:基于网络通知,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期。
本公开实施例的一种DRX周期的处理方法,应用于UE,可包括以下之一:
基于接收的广播信令,确定非连接态UE的第二周期;其中,广播信令中携带第二周期的配置参数;
基于接收的专用信令,确定非连接态UE的第二周期;其中,专用信令中携带第二周期的配置参数。
此处的第二周期的配置参数,可以为:第二周期。此处的第二周期的配置参数,也可以为任意可以用于指示第二周期的参数等。
在本公开实施例中,可以通过非连接态UE接收的网络通知等直接确定非连接态UE的第二周期,例如,可以通过接收到的广播信令或者专用信令等,直接确定非连接态UE在发起DRX周期切换之后的第二周期。如此,可以适应更多的非连接态UE的DRX周期动态确定的应用场景;并且,能够节省非连接态UE进行监听的耗电量。
在其它的实施例中,在非连接态UE接收到切换命令之后的任意时刻,还可以基于网络通知,例如接收的广播信令或者专用信令等,更新非连接态UE的第二周期。
在一些实施例中,上述步骤S21,包括:根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期。
在一些实施例中,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期,包括但不限于以下之一:
基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期;
基于网络通知,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期。
在一些实施例中,基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期,包括但限于以下之一:
响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期及默认DRX周期的最小值,确定空闲态UE的第二周期;其中,空闲态UE的特定周期为非接入层NAS配置的周期;
响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期最小值,确定非激活态UE的第二周期;其中,非激活态UE的特定周期为非接入层NAS配置的周期;
响应于再次接收到切换命令,确定非连接态UE的第二周期为上次切换命令之前的第一周期;
响应于再次接收到切换命令,基于再次接收到的切换命令中携带的第三DRX周期,确定非连接态UE的第二周期为第三DRX周期。
在一些实施例中,基于网络通知,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期,包括但不限于以下之一:
基于接收的广播信令,确定非连接态UE的第二周期;其中,广播信令中携带第二周期的配置参数;
基于接收的专用信令,确定非连接态UE的第二周期;其中,专用信令中携带第二周期的配置 参数。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图7所示,本公开实施例提供一种DRX周期的处理方法,应用于UE,包括:
步骤S71:确定第二周期的生效方式。
在本公开的一些实施例中,第二周期可以为步骤S31中的所述的第二周期,在此不再赘述。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括但不限于以下之一:
基于预先协议约定,确定第二周期的生效方式;
根据切换命令中指示的生效时间和/或生效时长,确定第二周期的生效方式。
在一个实施例中,确定第二周期的生效方式,可以是:确定第二周期的生效时间。在另一个实施例中,确定第二周期的生效方式,可以是:确定第二周期的生效时长。此处的第二周期的生效时间可以为:第二周期的生效的开始时刻。此处的第二周期的生效时长可以为:第二周期生效的开始时刻及结束时刻;和/或,第二周期的生效时长可以为:第二周期的开始时刻与结束时刻之间的时长。
当然,在其它的实施例中,确定第二周期的生效方式可以是:确定第二周期是否即时生效,或者,确定第二周期的生效的结束时刻;等等。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括但不限于以下之一:
响应于接收到切换命令,确定第二周期开始生效;
确定第二周期在下一个修改周期(Modification cycle)的开始时刻开始生效。
在一个实施例中,修改周期基于非连接态UE的默认DRX周期确定。例如,修改周期可以大于或等于默认DRX周期,也可以为默认DRX周期的整数倍。当然,在其它的实施例中,修改周期可以是其它的值。
在一个实施例中,修改周期可以为网络侧配置的周期。此处的修改周期可以比发送系统消息的周期大;例如,在一个修改周期内,系统消息可以发送一次或多次。
在本公开实施例中,非连接态可以根据预先协议约定第二周期的生效方式。例如,可以约定非连接态UE一旦接收到切换命令,就确定第二周期开始生效;如此,可以使得第二周期即时生效。又如,可以约定第二周期在下一个修改周期开始时刻开始生效等。如此,本公开实施例,可以准确确定出第二周期的生效开始时刻。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括以下但不限于以下至少之一:
基于切换命令中指示的生效时间,确定第二周期的生效时间;
基于切换命令中指示的生效时长,确定第二周期的生效时长。
在一个实施例中,切换命令中携带生效时间。在另一个实施例中,切换命令中携带指示生效时间的相关参数。
在一个实施例中,切换命令中携带生效时长。在另一个实施例中,切换命令中携带指示生效时长的相关参数。
在本公开实施例中,非连接态可以基于接收到的切换命令来确定第二周期的生效方式,例如,若非连接态UE接收到的切换命令中携带生效时间,则可以直接基于切换命令中携带的生效时间确定第二周期的生效时间;又如,若非连接态接收到的切换命令中携带生效时长,则可以直接基于切换命令中携带的生效时长确定第二周期的生效时长。如此,本公开实施例可以准确确定出第二周期的生效时间和/或生效时长等,以使得非连接态UE可以使用合适的DRX进行监听。
本公开实施例中提供的一种DRX周期的处理方法,应用于UE,可包括但不限于以下至少之一:
确定第二周期的生效时长为到下一次切换命令所指示的生效时间;
响应于切换命令指示生效时长为当前DRX周期,则确定第二周期的生效时长为到当前DRX周期的结束时刻;
响应于切换命令指示生效时长为当前修改周期,则确定第二周期的生效时长为到当前修改周期的结束时刻;
响应于切换命令指示生效时长为下一个修改周期,则确定第二周期的生效时长为到下一个修改周期的结束时刻。
在本公开实施例中,非连接态UE可以基于接收到的切换命令中指示的生效时长,确定出第二周期的生效时长。
例如,非连接态UE一但接收到切换命令,则确定第二周期的生效时长一直持续到下次接收到切换命令中所指示的生效时长;如此,可以在未接收到下次切换命名之前,使得非连接态UE持续使用该第二周期作为监听寻呼等的DRX周期。
又如,非连接态UE接收到切换命令,若确定切换命令中指示的生效时长为当前DRX周期(例如,该当前DRX周期可以为非连接态发起DRX切换之后确定的第二周期)则非连接态UE仅在当前DRX周期生效。
再如,非连接态UE接收到切换命令,若该切换命令中指示的生效时长为当前修改周期,则确定第二周期的生效时长可以持续到当前修改周期的结束时刻;或者,非连接态UE接收到切换命令,若该切换命令中指示的生效时长为下一个修改周期,则确定第二周期的生效时长可以持续到下一个修改周期的结束时刻。当然,在其它的示例中,非连接态UE接收到切换命令,若该切换命令中指示的生效时长为指示持续到第N个修改周期;则确定第二周期的生效时长可以持续到第N个修改周期的结束时刻;此处的N为大于或等于1的整数。
当然,在其它的实施例中,切换命令也可以指示其它任意时刻为生效时间和/或任意时间段为生效时长,在此不对生效时间和/或生效时长作具体限定。
如此,本公开实施例可以根据切换命令中指示的不同的生效时间和/或生效时长等,确定出第二周期的生效时间和/或生效时长,使得非连接态UE的第二周期的动态确定可以适应于更多的应用场景。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图8所示,本公开实施例提供一种DRX周期的处理方法,应用于UE,包括:
步骤S81:上报UE的辅助信息,其中,辅助信息用于指示UE是否支持DRX周期的动态确定。
在一个实施例中,辅助信息用于指示UE是否支持处于非连接态时DRX周期的动态确定。在另一个实施例中,辅助信息用于指示UE是否支持处于空闲态时DRX周期的动态确定。在又一个实施例中,辅助信息用于指示UE是否支持处于非激活态时DRX周期的动态确定。
在一个实施例中,DRX周期的动态确定,包括但不限于以下至少之一:确定第一周期、确定第二周期、及由第一周期切换为第二周期。此处的第一周期可以为UE发起DRX周期切换之前的周期,此处的第二周期可以为UE发起DRX周期切换之后的周期。
在本公开实施例中,可以通过UE上报自身的辅助信息,以使得网络侧知晓该UE是否能够支持动态确定UE的DRX周期。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:向基站上报辅助信息。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:向基站上报携带辅助信息的UE无线寻呼消息(UE-RadioRagingInfo),UE-RadioRagingInfo字段携带在UE能力上报消息中。如此,本公开实施例中可以通过将辅助消息携带在现有的无线寻呼消息中,以使得基站知晓UE是否支持DRX周期的动态确定的能力。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:向核心网上报辅助信息。
本公开实施例提供的一种DRX周期的处理方法,应用于UE,可包括:向核心网上报携带辅助信息的UE能力信息消息(UE capacity info notification)。如此,本公开实施例中可以通过将辅助消息携带在UE的能力信息中,以使得核心网知晓UE是否支持DRX周期的动态确定的能力。
示例性的,UE的辅助信息可以通过基站发送给核心网。例如,UE的辅助信息携带在UE的能力信息中,基站将UE的能力信息消息发送给核心网。又如,UE的辅助信息还可以携带在UE释放消息中,基站将UE的释放消息发送给核心网。
在一些实施例中,辅助消息,用于携带在核心网发送给RAN的寻呼消息中,以供非连接态UE确定是否支持DRX周期的动态确定。例如,核心网在发送RAN的寻呼消息中携带UE的辅助信息,如此,该辅助信息可以用于该UE后续的DRX周期的动态确定。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图9所示,提供一种DRX周期的处理装置,其中,应用于UE,包括:
处理模块41,被配置为从非连接态UE的多个非连续接收DRX周期,确定非连接态UE的DRX周期。
本公开实施例提供的一种DRX周期的处理方法,可包括:处理模块41,被配置为从非连接态UE的多个非连续接收DRX周期,动态确定非连接态UE的DRX周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:切换单元411,被配置为根据非连接态UE的多个DRX周期,将非连接态UE的第一周期切换为第二周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:切换单元411,被配置为响应于接收到切换命令,将非连接态UE的第一周期切换为第二周期。
在一个实施例中,切换命令携带在物理层信令或者RRC层信令中。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:切换单元411,被配置为响应于接收到携带切换命令的物理层信令,将非连接态UE的第一周期切换为第二周期;或者,切换单元411,被配置为响应于接收到携带切换命令的无线资源控制RRC层信令,将非连接态UE的第一周期切换为第二周期。
在一些实施例中,物理层信令,包括:寻呼下行控制信令DCI,其中,寻呼DCI还携带指示信息,其中,指示信息,用于指示寻呼提前或者配置省电信号。
在一些实施例中,RRC层信令,包括:寻呼消息。
在一些实施例中,切换命令,还携带以下至少之一:
第二周期;
第二周期的生效时间;
第二周期的生效时长。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第一周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期及默认DRX周期的最大值,确定空闲态UE的第一周期;其中,空闲态UE的特定周期为非接入层NAS配置的周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期,确定空闲态UE的第一周期;其中,空闲态UE的特定周期为非接入层NAS配置的周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处 理模块41,可包括:确定单元412,被配置为响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期、无线接入网RAN寻呼周期以及默认DRX周期的最大值,确定非激活态UE的第一周期;其中,非激活态UE的特定周期为非接入层NAS配置的周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期,确定非激活态UE的第一周期,或者,基于RAN寻呼周期,确定非激活态UE的第一周期;其中,非激活态UE的特定周期为非接入层NAS配置的周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为基于接收的广播信令,确定非连接态UE的第一周期;其中,广播信令中携带第一周期的配置参数;或者,确定单元412,被配置为基于接收的专用信令,确定非连接态UE的第一周期;其中,专用信令中携带第一周期的配置参数。
在一些实施例中,专用信令,包括:无线资源控制RRC释放消息,其中,RRC释放消息中携带第一周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为基于预先协议约定,根据非连接态UE的多个DRX周期,确定非连接态UE的第二周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为响应于非连接态UE为空闲态UE,基于空闲态UE的特定周期及默认DRX周期的最小值,确定空闲态UE的第二周期;其中,空闲态UE的特定周期为非接入层NAS配置的周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为响应于非连接态UE为非激活态UE,基于非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期最小值,确定非激活态UE的第二周期;其中,非激活态UE的特定周期为非接入层NAS配置的周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为响应于再次接收到切换命令,确定非连接态UE的第二周期为上次切换命令之前的第一周期;或者,确定单元412,被配置为响应于再次接收到切换命令,基于再次接收到的切换命令中携带的第三DRX周期,确定非连接态UE的第二周期为第三DRX周期。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为基于接收的广播信令,确定非连接态UE的第二周期; 其中,广播信令中携带第二周期的配置参数;或者,确定单元412,被配置为基于接收的专用信令,确定非连接态UE的第二周期;其中,专用信令中携带第二周期的配置参数。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为确定第二周期的生效方式。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元,被配置为基于预先协议约定,确定第二周期的生效方式。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为响应于接收到切换命令,确定第二周期开始生效;或者,确定单元412,被配置为确定第二周期在下一个修改周期的开始时刻开始生效。
在一个实施例中,修改周期基于非连接态UE的默认DRX周期确定。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:确定单元412,被配置为基于切换命令中指示的生效时间,确定第二周期的生效时间;或者,确定单元412,被配置为基于切换命令中指示的生效时长,确定第二周期的生效时长。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:处理模块41;其中,处理模块41,可包括:,确定单元412,被配置为以下至少之一:
确定第二周期的生效时长为到下一次切换命令所指示的生效时间;
响应于切换命令指示生效时长为当前DRX周期,则确定第二周期的生效时长为到当前DRX周期的结束时刻;
响应于切换命令指示生效时长为当前修改周期,则确定第二周期的生效时长为到当前修改周期的结束时刻;
响应于切换命令指示生效时长为下一个修改周期,则确定第二周期的生效时长为到下一个修改周期的结束时刻。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:发送模块42,被配置为上报UE的辅助信息,其中,辅助信息用于指示UE是否支持DRX周期的动态确定。
在一些实施例中,辅助信息用于指示以下之一:
UE是否支持处于非连接态时DRX周期的动态确定;
UE是否支持处于空闲态时DRX周期的动态确定;
UE是否支持处于非激活态时DRX周期的动态确定。
本公开实施例提供的一种DRX周期的处理装置,应用于UE可包括:发送模块42,被配置为向基站上报辅助信息。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:发送模块42,被配置为发送向基站上报携带辅助信息的UE无线寻呼消息(UE-RadioRagingInfo),UE-RadioRagingInfo字段携带在UE能力上报消息中。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:发送模块42,被配置为向核心网上报辅助信息。
本公开实施例提供的一种DRX周期的处理装置,应用于UE,可包括:向核心网上报携带辅助信息的UE能力信息消息(UE capacity info notification)。
在一些实施例中,辅助消息,用于携带在核心网发送给RAN的寻呼消息中,以供非连接态UE确定是否支持DRX周期的动态确定。
需要说明的是,本领域内技术人员可以理解,本公开实施例提供的装置,可以被单独执行,也可以与本公开实施例中一些装置或相关技术中的一些装置一起被执行。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现本公开任意实施例的DRX周期的处理方法。
在一个实施例中,通信设备可以为UE。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在用户设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至图8所示的方法的至少其中之一。
本公开实施例还提供一种计算机存储介质,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的DRX周期的处理方法。例如,如图2至图8所示的方法的至少其中之一。
关于上述实施例中的装置或者存储介质,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图10是根据一示例性实施例示出的一种用户设备800的框图。例如,用户设备800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,用户设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制用户设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操 作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在用户设备800的操作。这些数据的示例包括用于在用户设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为用户设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为用户设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述用户设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当用户设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当用户设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为用户设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为用户设备800的显示器和小键盘,传感器组件814还可以检测用户设备800或用户设备800一个组件的位置改变,用户与用户设备800接触的存在或不存在,用户设备800方位或加速/减速和用户设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于用户设备800和其他设备之间有线或无线方式的通信。用户设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由用户设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图11所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图11,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图4至图10所示方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (58)

  1. 一种非连续接收DRX周期的处理方法,其中,应用于用户设备UE,包括:
    从非连接态UE的多个非连续接收DRX周期,确定所述非连接态UE的DRX周期。
  2. 根据权利要求1所述的方法,其中,所述从非连接态UE的多个非连续接收DRX周期,确定所述非连接态UE的DRX周期,包括:
    根据所述非连接态UE的多个DRX周期,将所述非连接态UE的第一周期切换为第二周期。
  3. 根据权利要求2所述的方法,其中,所述将所述非连接态UE的第一周期切换为第二周期,包括:
    响应于接收到切换命令,将所述非连接态UE的所述第一周期切换为所述第二周期。
  4. 根据权利要求3所述的方法,其中,所述切换命令携带在物理层信令或者无线资源控制RRC层信令中。
  5. 根据权利要求4所述的方法,其中,所述物理层信令,包括:
    寻呼下行控制信令DCI,其中,所述寻呼DCI还携带指示信息,其中,所述指示信息,用于指示寻呼提前或者配置省电信号。
  6. 根据权利要求4所述的方法,其中,所述RRC层信令,包括:
    寻呼消息。
  7. 根据权利要求3至6任一项所述的方法,其中,所述切换命令,还携带以下至少之一:
    所述第二周期;
    所述第二周期的生效时间;
    所述第二周期的生效时长。
  8. 根据权利要求2所述的方法,其中,所述从非连接态UE的多个非连续接收DRX周期,确定所述非连接态UE的DRX周期,包括:
    根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第一周期。
  9. 根据权利要求8所述的方法,其中,所述根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第一周期,包括:
    基于预先协议约定,根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第一周期。
  10. 根据权利要求9所述的方法,其中,所述基于预先协议约定,根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第一周期,包括以下之一:
    响应于所述非连接态UE为空闲态UE,基于所述空闲态UE的特定周期及默认DRX周期的最大值,确定所述空闲态UE的所述第一周期;
    响应于所述非连接态UE为空闲态UE,基于所述空闲态UE的特定周期,确定所述空闲态UE的所述第一周期;
    响应于所述非连接态UE为非激活态UE,基于所述非激活态UE的特定周期、无线接入网RAN 寻呼周期以及默认DRX周期的最大值,确定所述非激活态UE的所述第一周期;
    响应于所述非连接态UE为非激活态UE,基于所述非激活态UE的特定周期,确定所述非激活态UE的所述第一周期,或者,基于RAN寻呼周期,确定所述非激活态UE的所述第一周期。
  11. 根据权利要求10所述的方法,其中,所述空闲态UE的特定周期或者所述非激活态UE的特定周期为非接入层NAS配置的周期。
  12. 根据权利要求8所述的方法,其中,所述根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第一周期,包括:
    基于接收的广播信令,确定所述非连接态UE的所述第一周期;其中,所述广播信令中携带所述第一周期的配置参数;
    或者,
    基于接收的专用信令,确定所述非连接态UE的所述第一周期;其中,所述专用信令中携带所述第一周期的配置参数。
  13. 根据权利要求12所述的方法,其中,所述专用信令,包括:
    无线资源控制RRC释放消息,其中,所述RRC释放消息中携带所述第一周期。
  14. 根据权利要求2所述的方法,其中,所述从非连接态UE的多个非连续接收DRX周期,确定所述非连接态UE的DRX周期,包括:
    根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期。
  15. 根据权利要求14所述的方法,其中,所述根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期,包括:
    基于预先协议约定,根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期。
  16. 根据权利要求15所述的方法,其中,所述基于预先协议约定,根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期,包括以下之一:
    响应于所述非连接态UE为空闲态UE,基于所述空闲态UE的特定周期及默认DRX周期的最小值,确定所述空闲态UE的所述第二周期;
    响应于所述非连接态UE为非激活态UE,基于所述非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期的最小值,确定所述非激活态UE的所述第二周期。
  17. 根据权利要求16所述的方法,其中,所述空闲态UE的特定周期或者所述非激活态UE的特定周期为非接入层NAS配置的周期。
  18. 根据权利要求15所述的方法,其中,所述基于预先协议约定,根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期,包括:
    响应于再次接收到切换命令,确定所述非连接态UE的所述第二周期为上次切换命令之前的所述第一周期;
    或者,
    响应于再次接收到切换命令,基于再次接收到的切换命令中携带的第三DRX周期,确定所述非连接态UE的所述第二周期为所述第三DRX周期。
  19. 根据权利要求14所述的方法,其中,所述根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期,包括:
    基于接收的广播信令,确定所述非连接态UE的所述第二周期;其中,所述广播信令中携带所述第二周期的配置参数;
    基于接收的专用信令,确定所述非连接态UE的所述第二周期;其中,所述专用信令中携带所述第二周期的配置参数。
  20. 根据权利要求2所述的方法,其中,还包括:
    确定所述第二周期的生效方式。
  21. 根据权利要求20所述的方法,其中,所述确定所述第二周期的生效方式,包括:
    基于预先协议约定,确定所述第二周期的生效方式。
  22. 根据权利要求21所述的方法,其中,所述基于预先协议约定,确定所述第二周期生效方式,包括以下之一:
    响应于接收到切换命令,确定所述第二周期开始生效;
    确定所述第二周期在下一个修改周期的开始时刻开始生效。
  23. 根据权利要求20-22任一项所述的方法,其中,所述确定所述第二周期的生效方式,包括以下至少之一:
    基于切换命令中指示的生效时间,确定所述第二周期的生效时间;
    基于切换命令中指示的生效时长,确定所述第二周期的生效时长。
  24. 根据权利要求23所述的方法,其中,所述基于切换命令中指示的生效时长,确定所述第二周期的生效时长,包括以下之一:
    确定所述第二周期的生效时长为到下一次切换命令所指示的生效时间;
    响应于切换命令指示生效时长为当前DRX周期,则确定所述第二周期的生效时长为到当前DRX周期的结束时刻;
    响应于切换命令指示生效时长为当前修改周期,则确定所述第二周期的生效时长为到当前修改周期的结束时刻;
    响应于切换命令指示生效时长为下一个修改周期,则确定所述第二周期的生效时长为到下一个修改周期的结束时刻。
  25. 根据权利要求1至24任一项所述的方法,其中,还包括:
    上报所述UE的辅助信息,其中,所述辅助信息用于指示所述UE是否支持DRX周期的动态确定。
  26. 根据权利要求25所述的方法,其中,所述辅助信息用于指示以下之一:
    所述UE是否支持处于非连接态时DRX周期的动态确定,
    所述UE是否支持处于空闲态时DRX周期的动态确定,
    所述UE是否支持处于非激活态时DRX周期的动态确定。
  27. 根据权利要求26所述的方法,其中,所述上报所述UE的辅助信息,包括:
    向基站或核心网上报所述辅助信息。
  28. 根据权利要求25所述的方法,其中,所述辅助消息,用于携带在核心网发送给RAN的寻呼消息中,以供所述非连接态UE确定是否支持DRX周期的动态确定。
  29. 一种非连续接收DRX周期的处理装置,其中,应用于用户设备UE,包括:
    处理模块,被配置为从非连接态UE的多个非连续接收DRX周期,确定所述非连接态UE的DRX周期。
  30. 根据权利要求29所述的装置,其中,所述处理模块,包括:
    切换单元,被配置为根据所述非连接态UE的多个DRX周期,将所述非连接态UE的第一周期切换为第二周期。
  31. 根据权利要求30所述的装置,其中,
    所述切换单元,被配置为响应于接收到切换命令,将所述非连接态UE的所述第一周期切换为所述第二周期。
  32. 根据权利要求31所述的装置,其中,所述切换命令携带在物理层信令或者无线资源控制RRC层信令中。
  33. 根据权利要求32所述的装置,其中,所述物理层信令,包括:
    寻呼下行控制信令DCI,其中,所述寻呼DCI还携带指示信息,其中,所述指示信息,用于指示寻呼提前或者配置省电信号。
  34. 根据权利要求32所述的装置,其中,所述RRC层信令,包括:
    寻呼消息。
  35. 根据权利要求31至34任一项所述的装置,其中,所述切换命令,还携带以下至少之一:
    所述第二周期;
    所述第二周期的生效时间;
    所述第二周期的生效时长。
  36. 根据权利要求30所述的装置,其中,所述处理模块,包括:
    确定单元,被配置为根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第一周期。
  37. 根据权利要求36所述的装置,其中,
    所述确定单元,被配置为基于预先协议约定,根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第一周期。
  38. 根据权利要求37所述的装置,其中,所述确定单元,被配置为以下之一:
    响应于所述非连接态UE为空闲态UE,基于所述空闲态UE的特定周期及默认DRX周期的最 大值,确定所述空闲态UE的所述第一周期;
    响应于所述非连接态UE为空闲态UE,基于所述空闲态UE的特定周期,确定所述空闲态UE的所述第一周期;
    响应于所述非连接态UE为非激活态UE,基于所述非激活态UE的特定周期、无线接入网RAN寻呼周期以及默认DRX周期的最大值,确定所述非激活态UE的所述第一周期;
    响应于所述非连接态UE为非激活态UE,基于所述非激活态UE的特定周期,确定所述非激活态UE的所述第一周期,或者,基于RAN寻呼周期,确定所述非激活态UE的所述第一周期。
  39. 根据权利要求38所述的装置,其中,所述空闲态UE的特定周期或者所述非激活态UE的特定周期为非接入层NAS配置的周期。
  40. 根据权利要求36所述的装置,其中,
    所述确定单元,被配置为基于接收的广播信令,确定所述非连接态UE的所述第一周期;其中,所述广播信令中携带所述第一周期的配置参数;
    或者,
    所述确定单元,被配置为基于接收的专用信令,确定所述非连接态UE的所述第一周期;其中,所述专用信令中携带所述第一周期的配置参数。
  41. 根据权利要求40所述的装置,其中,所述专用信令,包括:
    无线资源控制RRC释放消息,其中,所述RRC释放消息中携带所述第一周期。
  42. 根据权利要求30所述的装置,其中,所述处理模块,包括:
    确定单元,被配置为根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期。
  43. 根据权利要求42所述的装置,其中,
    所述确定单元,被配置为基于预先协议约定,根据所述非连接态UE的多个DRX周期,确定所述非连接态UE的所述第二周期。
  44. 根据权利要求43所述的装置,其中,
    所述确定单元,被配置为响应于所述非连接态UE为空闲态UE,基于所述空闲态UE的特定周期及默认DRX周期的最小值,确定所述空闲态UE的所述第二周期;
    所述确定单元,被配置为响应于所述非连接态UE为非激活态UE,基于所述非激活态UE的特定周期、RAN寻呼周期及默认的DRX周期的最小值,确定所述非激活态UE的所述第二周期。
  45. 根据权利要求44所述的装置,其中,所述空闲态UE的特定周期或者所述非激活态UE的特定周期为非接入层NAS配置的周期。
  46. 根据权利要求43所述的装置,其中,
    所述确定单元,被配置为响应于再次接收到切换命令,确定所述非连接态UE的所述第二周期为上次切换命令之前的所述第一周期;
    或者,
    所述确定单元,被配置为响应于再次接收到切换命令,基于再次接收到的切换命令中携带的第三DRX周期,确定所述非连接态UE的所述第二周期为所述第三DRX周期。
  47. 根据权利要求42所述的装置,其中,
    所述确定单元,被配置为基于接收的广播信令,确定所述非连接态UE的所述第二周期;其中,所述广播信令中携带所述第二周期的配置参数;
    或者,
    所述确定单元,被配置为基于接收的专用信令,确定所述非连接态UE的所述第二周期;其中,所述专用信令中携带所述第二周期的配置参数。
  48. 根据权利要求30所述的装置,其中,所述处理模块,包括:
    确定单元,被配置为确定所述第二周期的生效方式。
  49. 根据权利要求48所述的装置,其中,
    所述确定单元,被配置为基于预先协议约定,确定所述第二周期的生效方式。
  50. 根据权利要求49所述的装置,其中,
    所述确定单元,被配置为响应于接收到切换命令,确定所述第二周期开始生效;
    所述确定单元,被配置为确定所述第二周期在下一个修改周期的开始时刻开始生效。
  51. 根据权利要求48至50任一项所述的装置,其中,
    所述确定单元,被配置为基于切换命令中指示的生效时间,确定所述第二周期的生效时间;
    或者,
    所述确定单元,被配置为基于切换命令中指示的生效时长,确定所述第二周期的生效时长。
  52. 根据权利要求51所述的装置,其中,所述确定单元,被配置为以下至少之一:
    确定所述第二周期的生效时长为到下一次切换命令所指示的生效时间;
    响应于切换命令指示生效时长为当前DRX周期,则确定所述第二周期的生效时长为到当前DRX周期的结束时刻;
    响应于切换命令指示生效时长为当前修改周期,则确定所述第二周期的生效时长为到当前修改周期的结束时刻;
    响应于切换命令指示生效时长为下一个修改周期,则确定所述第二周期的生效时长为到下一个修改周期的结束时刻。
  53. 根据权利要求29至52任一项所述的装置,其中,还包括:
    发送模块,被配置为上报所述UE的辅助信息,其中,所述辅助信息用于指示所述UE是否支持DRX周期的动态确定。
  54. 根据权利要求58所述的装置,其中,所述辅助信息用于指示以下之一:
    所述UE是否支持处于非连接态时DRX周期的动态确定;
    所述UE是否支持处于空闲态时DRX周期的动态确定;
    用于指示所述UE是否支持处于非激活态时DRX周期的动态确定。
  55. 根据权利要求58所述的装置,其中,
    所述发送模块,被配置为向基站或者核心网上报所述辅助信息。
  56. 根据权利要求53所述的装置,其中,
    所述辅助消息,用于携带在核心网发送给RAN的寻呼消息中,以供所述非连接态UE确定是否支持DRX周期的动态确定。
  57. 一种通信设备,其中,所述通信设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:用于运行所述可执行指令时,实现权利要求1至28任一项所述的非连续接收DRX的处理方法。
  58. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现权利要求1至28任一项所述的非连续接收DRX的处理方法。
PCT/CN2021/077732 2021-02-24 2021-02-24 Drx周期的处理方法、装置、通信设备及存储介质 WO2022178728A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/077732 WO2022178728A1 (zh) 2021-02-24 2021-02-24 Drx周期的处理方法、装置、通信设备及存储介质
CN202180000556.9A CN115553001A (zh) 2021-02-24 2021-02-24 Drx周期的处理方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077732 WO2022178728A1 (zh) 2021-02-24 2021-02-24 Drx周期的处理方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022178728A1 true WO2022178728A1 (zh) 2022-09-01

Family

ID=83048651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077732 WO2022178728A1 (zh) 2021-02-24 2021-02-24 Drx周期的处理方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN115553001A (zh)
WO (1) WO2022178728A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923915A (zh) * 2016-11-13 2019-06-21 Lg电子株式会社 用于接收下行链路信号的方法和用户设备
CN111726851A (zh) * 2019-03-18 2020-09-29 华为技术有限公司 一种非连续接收的配置方法和装置
CN111787611A (zh) * 2020-06-23 2020-10-16 广东小天才科技有限公司 一种更新寻呼周期的方法、终端设备及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923915A (zh) * 2016-11-13 2019-06-21 Lg电子株式会社 用于接收下行链路信号的方法和用户设备
CN111726851A (zh) * 2019-03-18 2020-09-29 华为技术有限公司 一种非连续接收的配置方法和装置
CN111787611A (zh) * 2020-06-23 2020-10-16 广东小天才科技有限公司 一种更新寻呼周期的方法、终端设备及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Further Considerations on NR DRX", 3GPP DRAFT; R2-1706371, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Qingdao, China; 20170627 - 20170629, 17 June 2017 (2017-06-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051306975 *
SAMSUNG: "On the extended DRX approach for UEPCOP", 3GPP DRAFT; R2-131792, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Fukuoka, Japan; 20130520 - 20130524, 10 May 2013 (2013-05-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050699864 *

Also Published As

Publication number Publication date
CN115553001A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US20230068554A1 (en) Communication processing method and apparatus, and storage medium
WO2022000188A1 (zh) 用户设备辅助信息的上报方法及装置、用户设备、存储介质
WO2022056788A1 (zh) 通信方法及装置、网络设备、ue及存储介质
WO2022016431A1 (zh) 切换小区的方法、装置、通信设备及存储介质
WO2022036649A1 (zh) 扩展非连续接收参数确定方法、通信设备和存储介质
WO2021030974A1 (zh) 寻呼配置方法、装置、通信设备及存储介质
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022126345A1 (zh) Drx配置方法及装置、通信设备和存储介质
US11991631B2 (en) Monitoring method, signaling issuing method, and communication device
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2021012130A1 (zh) 监听处理、策略下发方法及装置、通信设备及存储
WO2021258372A1 (zh) 状态控制方法、装置、通信设备及存储介质
WO2022000200A1 (zh) 定位参考信号配置方法及装置、用户设备、存储介质
WO2021102990A1 (zh) 短周期配置方法、装置、通信设备及存储介质
WO2022205385A1 (zh) 测量间隔处理方法、装置、通信设备及存储介质
WO2022061756A1 (zh) 定时器的控制方法及装置、通信设备和存储介质
WO2022021033A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023184121A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022205341A1 (zh) 测量间隔预配置处理方法、装置、通信设备及存储介质
WO2023092422A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2022032482A1 (zh) 资源处理方法及装置、通信设备及存储介质
WO2021163934A1 (zh) 通信处理方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927172

Country of ref document: EP

Kind code of ref document: A1