WO2023201634A1 - 动电枢分段永磁同步直线电机及驱动控制方法 - Google Patents
动电枢分段永磁同步直线电机及驱动控制方法 Download PDFInfo
- Publication number
- WO2023201634A1 WO2023201634A1 PCT/CN2022/088209 CN2022088209W WO2023201634A1 WO 2023201634 A1 WO2023201634 A1 WO 2023201634A1 CN 2022088209 W CN2022088209 W CN 2022088209W WO 2023201634 A1 WO2023201634 A1 WO 2023201634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moving armature
- motor
- armature
- thrust
- permanent magnet
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000004804 winding Methods 0.000 claims description 10
- 230000002146 bilateral effect Effects 0.000 claims 1
- 230000014509 gene expression Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000000819 phase cycle Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
- H02K41/031—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
- H02P25/064—Linear motors of the synchronous type
Definitions
- the invention relates to a moving armature segmented permanent magnet synchronous linear motor and a drive control method, belonging to the field of permanent magnet synchronous linear motors.
- the linear motor is a device that replaces the traditional rotating shaft screw for linear feed.
- Linear motors have special advantages in material transfer systems.
- Permanent magnet synchronous linear motors have the advantages of simple structure, reliable operation and high efficiency. Therefore, they are increasingly used in material transfer systems such as material sorting and automated production lines. .
- Moving armature permanent magnet synchronous linear motors are widely used in various occasions because of their simple structure and low winding cost compared to moving magnet steel type permanent magnet synchronous linear motors, especially in the field of precision machining. Precision machining situations require that the thrust fluctuation of the linear motor should be as small as possible.
- the present invention provides a moving armature segmented permanent magnet synchronous linear motor and a drive control method.
- a moving armature segmented permanent magnet synchronous linear motor of the present invention includes a stator and a mover.
- the mover includes m moving armature units, each moving armature unit is an armature mover, and each The armature mover operates under independent control.
- the power drive module is used to pass alternating current to each phase of each moving armature unit.
- the alternating current is determined based on the ripple phase difference between different moving armature units to eliminate the thrust ripple caused by harmonics.
- the thrust ripple is sinusoidally varying.
- the drive control method of the moving armature segmented permanent magnet synchronous linear motor in this application includes:
- the beneficial effects of the present invention are that the motor of the present invention can eliminate thrust ripples caused by multiple magnetic fields and improve the effective thrust of the motor.
- Figure 1 shows the existing moving armature type permanent magnet synchronous linear motor using Halbach magnetic pole arrangement
- Figure 4 is a comparison chart of finite element simulation results obtained using maxwell2D
- the moving armature segmented permanent magnet synchronous linear motor of this embodiment includes a stator and a mover.
- the mover includes m moving armature units.
- Each moving armature unit is an armature mover.
- Each moving armature unit is an armature mover.
- the pivot unit can be controlled and operated independently.
- the power drive module is used to pass alternating current to each phase of each moving armature unit.
- the alternating current is determined based on the ripple phase difference between different moving armature units to eliminate the thrust ripple caused by harmonics.
- the thrust ripple is sinusoidally varying.
- the Halbach magnetic pole array excites a sinusoidal magnetic field in the air gap magnetic field, with a fundamental magnetic field period of 2 ⁇ and a fifth harmonic magnetic field with a period of 2 ⁇ /5. Therefore, the expression of the air gap magnetic field can be expressed by equation (1)
- B 1 represents the magnetic density amplitude of the first harmonic in the air gap magnetic field
- B 3 represents the magnetic density amplitude of the third harmonic in the gap magnetic field
- ⁇ 1 represents the angular velocity of the first harmonic change in the air gap magnetic field
- ⁇ 3 represents the air gap The angular velocity of the third harmonic change in the magnetic field
- t represents time
- Equation (2) the thrust expression of the traditional three-unit linear motor is as shown in Equation (2):
- B 5 represents the magnetic density amplitude of the fifth harmonic in the air gap magnetic field, and ⁇ 5 represents the angular velocity of the fifth harmonic change in the air gap magnetic field;
- the thrust ripple of the motor changes sinusoidally and can be eliminated by using the ripple phase difference between different units.
- the ripple of the motor of the first unit is:
- the ripple of the second unit motor is:
- the ripple of the third unit motor is:
- the power drive module can use the ripple phase difference between different moving armature units to eliminate the thrust ripple caused by harmonics based on the overall ripple of the motor.
- the traditional three-unit linear motor has thrust ripples generated by the fifth harmonic magnetic field during operation.
- the motor designed in this application can eliminate the thrust ripple caused by the fifth magnetic field.
- the alternating current flowing into phase A of the n-th moving armature unit is I A sin( ⁇ t+(n-1) ⁇ T/m ⁇ );
- the AC current flowing into the B phase of the nth moving armature unit is: I B sin( ⁇ t+(n-1) ⁇ T/m ⁇ -4 ⁇ /3);
- the AC current flowing into the C phase of the nth moving armature unit is: I c sin( ⁇ t+(n-1) ⁇ T/m ⁇ -2 ⁇ /3); where ⁇ represents the pole pitch and I A represents the amplitude of the current flowing into the armature winding. , ⁇ represents the angular velocity of the current flowing into the armature winding;
- n 1,2...,m.
- This embodiment can suppress any harmonic thrust fluctuations, such as end force (for linear motors with iron-core moving armatures).
- the end effect stress is caused by the breakage of the primary core.
- the interruption of the iron core causes a large distortion in the air gap magnetic density, and a large static magnetic resistance is formed between the primary end iron core and the secondary magnetic pole.
- the two ends The magnetostatic resistance of the region changes periodically, eventually forming an end effect force that fluctuates greatly with the change of the primary position.
- the thrust fluctuation period T is ⁇ . Therefore, the expressions of magnetic resistance and its harmonics can be expressed as:
- the thrust fluctuation period T of the end force is ⁇ .
- D ⁇ /m.
- the energization logic is that the alternating current supplied to phase A of the n-th unit should be I A sin( ⁇ t+(n-1) ⁇ /m).
- Figure 2 shows the three-unit segmented linear motor of this embodiment. It is a moving armature segmented permanent magnet synchronous linear motor using Halbach magnetic pole arrangement. The size of the motor is designed according to the structure of 4 poles and 3 slots, that is, a set of AXBYCZ The winding is a unit motor, and the three sets of AXBYCZ windings are in the form of three-unit segments. These three groups of unit motor control circuits are independent of each other.
- the power-on logic of each unit of the traditional three-unit segmented linear motor is the same, and the phase sequence is also the same. However, the power-on logic of each power supply of the three-unit segmented linear motor proposed in this embodiment is different from each other.
- the A phase of the first unit is supplied with alternating current I A sin( ⁇ t)
- the B phase is supplied with alternating current: I B sin( ⁇ t-4 ⁇ /3)
- the C phase is supplied with alternating current: I c sin( ⁇ t-2 ⁇ /3
- the alternating current supplied to phase A of the second unit should be I A sin( ⁇ t+ ⁇ /9)
- the alternating current supplied to phase B of the second unit should be: I B sin( ⁇ t+ ⁇ /9-4 ⁇ /3)
- the alternating current supplied to phase C of the second unit is: I c sin ( ⁇ t+2 ⁇ /9-2 ⁇ /3)
- the alternating current supplied to phase A of the third unit should be I A sin ( ⁇ t+2 ⁇ /9)
- the structural form of the two-unit moving armature is shown in Figure 3, and the optimization logic is similar to the three-unit structure. The difference is that the installation distance D between the second unit motor and the first unit motor becomes ⁇ /6.
- the drive control of the motor is also different. Taking phase A as an example, the A phase of the first unit is supplied with alternating current I A sin( ⁇ t), and the A phase of the second unit is supplied with alternating current I A sin( ⁇ t+ ⁇ /6).
- the energization logic of BC phase is similar.
- the comparison chart of finite element simulation results obtained using maxwell2D is shown in Figure 4.
- the thrust fluctuation rate of the motor was reduced from the unused 3.990 ⁇ to 0.928 ⁇ .
- the effective thrust of the motor is increased from 6.315KN to 6.462KN, and the thrust density of the motor is increased by 2.328%.
- Figures 5 and 6 show a single-sided flat plate type moving armature segmented permanent magnet synchronous linear motor.
- Figure 5 shows a three-unit type
- Figure 6 shows a two-unit type.
- the distance D between the moving armature units and the power-on logic of each unit are the same as the above.
- the implementation is the same.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Control Of Linear Motors (AREA)
- Linear Motors (AREA)
Abstract
动电枢分段永磁同步直线电机及驱动控制方法,解决了如何有效的降低电机推力波动,并能增加电机的推力密度的问题,属于永磁同步直线电机领域。本发明包括定子和动子,所述动子包括m个动电枢单元,每个动电枢单元为一个电枢动子,且每个电枢动子独立控制运行,m个动电枢单元延电机轴向排列,相邻动电枢单元间距为D,D=T/m,T表示推力波动周期,m取大于等于2的整数;电源驱动模块,用于对各个动电枢单元的各相通入交流电,该交流电根据不同动电枢单元间的纹波相位差消除谐波带来的推力纹波进行确定,所述推力纹波是正弦变化的。本发明的电机可以消除多次磁场所带来的推力纹波,并提升了电机的有效推力。
Description
本发明涉及一种动电枢分段永磁同步直线电机及驱动控制方法,属于永磁同步直线电机领域。
直线电机是作为代替传统转轴丝杠进行直线进给的装置。直线电机在物料传输系统中具有特殊的优势,永磁式同步直线电机具有结构简单、运行可靠和效率高等优势,因此在物料分拣、自动化生产线等相关的物料传输系统中应用的越来越广泛。动电枢永磁同步直线电机因其结构简单,相较于动磁钢型永磁同步直线电机绕组成本低而广泛应用在各个场合中,尤其在精密加工领域。精密加工场合要求直线电机的推力波动要尽可能的小。
发明内容
针对如何有效的降低电机推力波动,并能增加电机的推力密度的问题,本发明提供一种动电枢分段永磁同步直线电机及驱动控制方法。
本发明的一种动电枢分段永磁同步直线电机,包括定子和动子,所述动子包括m个动电枢单元,每个动电枢单元为一个电枢动子,且每个电枢动子独立控制运行,m个动电枢单元延电机轴向排列,相邻动电枢单元间距为D,D=T/m,T表示推力波动周期,m取大于等于2的整数;
电源驱动模块,用于对各个动电枢单元的各相通入交流电,该交流电根据不同动电枢单元间的纹波相位差消除谐波带来的推力纹波进行确定,所述推力纹波是正弦变化的。
本申请动电枢分段永磁同步直线电机的驱动控制方法,包括:
利用电源驱动模块对第n个动电枢单元A相通入交流电为:
I
A sin(ωt+(n-1)πT/mτ);
利用电源驱动模块对第n个动电枢单元B相通入交流电为:
I
B sin(ωt+(n-1)πT/mτ-4π/3);
利用电源驱动模块对第n个动电枢单元C相通入交流电为:
I
c sin(ωt+(n-1)πT/mτ-2π/3);其中,τ表示极距,I
A表示电枢绕组通入电流幅值, ω表示电枢绕组通入电流角速度;n=1,2…,m。
本发明的有益效果,本发明的电机可以消除多次磁场所带来的推力纹波,并提升了电机的有效推力。
图1为现有采用Halbach磁极排列的动电枢型永磁同步直线电机;
图2为本发明中采用Halbach磁极排列的动电枢分段永磁同步直线电机,n=3;
图3为本发明中采用Halbach磁极排列的动电枢分段永磁同步直线电机,n=2;
图4为利用maxwell2D得到有限元仿真结果对比图;
图5为本发明中单边平板型的动电枢分段永磁同步直线电机,n=3;
图6为本发明中单边平板型的动电枢分段永磁同步直线电机,n=2。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
本实施方式的动电枢分段永磁同步直线电机,包括定子和动子,所述动子包括m个动电枢单元,每个动电枢单元为一个电枢动子,每一个动电枢单元可以独立的控制运行,m个动电枢单元延电机轴向排列,相邻动电枢单元间距为D,D=T/m,T表示推力波动周期,m取大于等于2的整数。
电源驱动模块,用于对各个动电枢单元的各相通入交流电,该交流电根据不同动电枢单元间的纹波相位差消除谐波带来的推力纹波进行确定,所述推力纹波是正弦变化的。
消除多次磁场所带来的推力纹波的原理:
以抵消气隙磁场中五次谐波所带来的推力波动为例。Halbach磁极阵列在气隙磁场中激发出正弦磁场,基波磁场周期为2τ,还有周期2τ/5的为五次谐波磁场。所以气隙磁场 的表达式可以用式(1)表示
B=B
1sin(ω
1t)+B
3sin(ω
3t) (1)
B
1表示气隙磁场中一次谐波的磁密幅值,B
3表示隙磁场中三次谐波的磁密幅值,ω
1表示气隙磁场中一次谐波变化的角速度,ω
3表示气隙磁场中三次谐波变化的角速度;t表示时间;
所以传统的三单元直线电机的推力表达式如式(2)所示:
F=ΣB
AnI
A+B
BnI
B+B
CnI
C (2)
其中五次磁场谐波产生的推力可以推导得到如式(3)所示:
B
5表示气隙磁场中五次谐波的磁密幅值,ω
5表示气隙磁场中五次谐波变化的角速度;
根据所推导的单元电机推力纹波公式可以看出,电机的推力纹波是正弦变化的,可以利用不同单元间的纹波相位差进行消除。以3单元为例,第一个单元电机的纹波为:
第二个单元电机的纹波为:
第三个单元电机的纹波为:
所以电机整体的纹波可以表示为:
电源驱动模块可根据电机整体的纹波,利用不同动电枢单元间的纹波相位差消除谐波带来的推力纹波。
传统的三单元直线电机在运行时有五次谐波磁场产生的推力纹波。而本申请所设计的电机可以消除五次磁场所带来的推力纹波。
本实施方式的驱动控制方法,包括:
第n个动电枢单元A相通入交流电为I
A sin(ωt+(n-1)πT/mτ);
第n个动电枢单元B相通入交流电为:I
B sin(ωt+(n-1)πT/mτ-4π/3);
第n个动电枢单元C相通入交流电为:I
c sin(ωt+(n-1)πT/mτ-2π/3);其中,τ表示极距,I
A表示电枢绕组通入电流幅值,ω表示电枢绕组通入电流角速度;
n=1,2…,m。
本实施方式可以抑制任意谐波的推力波动,例如端部力(针对有铁芯动电枢的直线电机)。端部效应力是由于初级铁芯开断形成的。铁芯开断导致气隙磁密产生较大畸变,初级端部铁芯与次级磁极之间形成较大的静磁阻力,随着初、次级间的相对位置变化,两个端部区域的静磁阻力周期变化,最终形成随初级位置变化大幅波动的端部效应力。若对于动电枢型直线电机这个推力波动周期T为τ。所以磁阻力及其谐波的表达式可以表示为:
例如,对于端部力的抑制。端部力的推力波动周期T为τ,对于m个动电枢单元,D=τ/m。通电逻辑为第n个单元A相通入交流电应为I
Asin(ωt+(n-1)π/m)。
实施例:传统的三单元分段直线电机,如图1所示,一个单元绕组长度为L,相邻单元紧密排列。图2为本实施例的三单元分段直线电机,是采用Halbach磁极排列的动电枢分段永磁同步直线电机,电机的尺寸设计是按照4极3槽的结构设计的,即一组AXBYCZ绕组就是一个单元电机,三组AXBYCZ绕组就是三单元分段形式。这三组单元电机控制电路彼此独立。第二段单元电机与第一段单元电机安装间距D,其中D=τ/9。相同的,第三段单元电机与第二段单元电机的安装间距也为D=τ/9。
传统的三单元分段直线电机各个单元的通电逻辑是相同的,相序也是相同的,而本实施例提出的三单元分段直线电机各电源之间的通电逻辑互不相同。以A相为例说明,第一个单元的A相通入交流电I
Asin(ωt),B相通入交流电为:I
Bsin(ωt-4π/3),C相通入交流电为:I
csin(ωt-2π/3);第二个单元的A相通入交流电应为I
Asin(ωt+π/9),第二个单元B相通入交流电为:I
Bsin(ωt+π/9-4π/3);第二个单元C相通入交流电为:I
csin(ωt+2π/9-2π/3);第三个单元的A相通入交流电应为I
Asin(ωt+2π/9),第三个单元B相通入交流电为:I
Bsin(ωt+π/9-4π/3),第二个单元C相通入交流电为:I
csin(ωt+2π/9-2π/3);
此外还有两单元动电枢的结构形式如图3所示,优化逻辑与三单元结构类似。区别在于第二段单元电机与第一段单元电机安装间距D变成了τ/6。此外,电机的驱动控制也有所不同,以A相为例说明,第一个单元的A相通入交流电I
A sin(ωt),第二个单元的A相通入交流电应为I
A sin(ωt+π/6)。BC相的通电逻辑类似。
利用maxwell2D得到有限元仿真结果对比图如图4所示,采用了本实施例三单元分段动电枢的优化设计方法,电机的推力波动率从未采用的3.990‰降到了0.928‰。极大的改善了电机的动态性能。此外,采用了本实施例提出的三单元分段直线电机设计方法,电机的有效推力从6.315KN提升到了6.462KN,电机推力密度提升了2.328%。
图5和图6为单边平板型的动电枢分段永磁同步直线电机,图5为三单元的,图6为二单元的,动电枢单元间距D和各个单元的通电逻辑与上述实施相同。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。
Claims (7)
- 一种动电枢分段永磁同步直线电机,其特征在于,所述电机包括定子和动子,所述动子包括m个动电枢单元,每个动电枢单元为一个电枢动子,且每个电枢动子独立控制运行,m个动电枢单元延电机轴向排列,相邻动电枢单元间距为D,D=T/m,T表示推力波动周期,m取大于等于2的整数;电源驱动模块,用于对各个动电枢单元的各相通入交流电,该交流电根据不同动电枢单元间的纹波相位差消除谐波带来的推力纹波进行确定,所述推力纹波是正弦变化的。
- 根据权利要求1所述的一种动电枢分段永磁同步直线电机,其特征在于,所述电机为双边型的电机。
- 根据权利要求2所述的一种动电枢分段直线电机,其特征在于,所述定子采用Halbach磁极排列。
- 根据权利要求3所述的一种动电枢分段直线电机,其特征在于,所述电机采用4极3槽。
- 根据权利要求1所述的一种动电枢分段永磁同步直线电机,其特征在于,所述电机为单边平板型的电机。
- 根据权利要求1所述的一种动电枢分段直线电机,其特征在于,所述电机为圆筒型电机。
- 基于权利要求1所述的动电枢分段永磁同步直线电机的驱动控制方法,其特征在于,包括:利用电源驱动模块对第n个动电枢单元A相通入交流电为:I Asin(ωt+(n-1)πT/mτ);利用电源驱动模块对第n个动电枢单元B相通入交流电为:I Bsin(ωt+(n-1)πT/mτ-4π/3);利用电源驱动模块对第n个动电枢单元C相通入交流电为:I csin(ωt+(n-1)πT/mτ-2π/3);其中,τ表示极距,I A表示电枢绕组通入电流幅值,ω表示电枢绕组通入电流角速度;n=1,2…,m。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210409979.2A CN114759759B (zh) | 2022-04-19 | 2022-04-19 | 动电枢分段永磁同步直线电机及驱动控制方法 |
CN202210409979.2 | 2022-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023201634A1 true WO2023201634A1 (zh) | 2023-10-26 |
Family
ID=82330806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/088209 WO2023201634A1 (zh) | 2022-04-19 | 2022-04-21 | 动电枢分段永磁同步直线电机及驱动控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114759759B (zh) |
WO (1) | WO2023201634A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115995934B (zh) * | 2023-02-27 | 2023-07-21 | 哈尔滨工业大学 | 一种独立绕组多动子直线电机及其推力波动抑制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011067030A (ja) * | 2009-09-18 | 2011-03-31 | Yaskawa Electric Corp | リニアモータの界磁およびそれを備えたリニアモータ |
CN103872876A (zh) * | 2012-12-07 | 2014-06-18 | 上海微电子装备有限公司 | 直线电机及平台装置 |
CN106411096A (zh) * | 2016-10-31 | 2017-02-15 | 华中科技大学 | 一种基于Halbach永磁结构的模块化游标永磁直线电机 |
CN107493004A (zh) * | 2017-09-22 | 2017-12-19 | 南京航空航天大学 | 一种模块化圆筒型永磁同步直线电机 |
US20180237996A1 (en) * | 2017-02-22 | 2018-08-23 | Hyperloop Transportation Technologies, Inc. | Magnetic levitation train system |
CN110098703A (zh) * | 2019-04-24 | 2019-08-06 | 江苏大学 | 一种降低连续极永磁同步电机转矩纹波的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543375B2 (ja) * | 2003-07-22 | 2010-09-15 | 日立金属株式会社 | 可動コイル型リニアモータ及びその制御方法 |
CN100566096C (zh) * | 2007-11-19 | 2009-12-02 | 哈尔滨工业大学 | 长行程恒加速度直线电机及其控制方法 |
CN101394123A (zh) * | 2008-10-17 | 2009-03-25 | 哈尔滨工业大学 | 一种复合电流驱动高推力密度九相平面电机及其驱动器 |
CN104967275A (zh) * | 2015-07-06 | 2015-10-07 | 东南大学 | 一种双凸极式永磁直线电机及由其构成的电机模组 |
CN108880183B (zh) * | 2018-08-14 | 2020-03-24 | 南京航空航天大学 | 一种两段式无槽圆筒型永磁直线电机 |
-
2022
- 2022-04-19 CN CN202210409979.2A patent/CN114759759B/zh active Active
- 2022-04-21 WO PCT/CN2022/088209 patent/WO2023201634A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011067030A (ja) * | 2009-09-18 | 2011-03-31 | Yaskawa Electric Corp | リニアモータの界磁およびそれを備えたリニアモータ |
CN103872876A (zh) * | 2012-12-07 | 2014-06-18 | 上海微电子装备有限公司 | 直线电机及平台装置 |
CN106411096A (zh) * | 2016-10-31 | 2017-02-15 | 华中科技大学 | 一种基于Halbach永磁结构的模块化游标永磁直线电机 |
US20180237996A1 (en) * | 2017-02-22 | 2018-08-23 | Hyperloop Transportation Technologies, Inc. | Magnetic levitation train system |
CN107493004A (zh) * | 2017-09-22 | 2017-12-19 | 南京航空航天大学 | 一种模块化圆筒型永磁同步直线电机 |
CN110098703A (zh) * | 2019-04-24 | 2019-08-06 | 江苏大学 | 一种降低连续极永磁同步电机转矩纹波的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114759759A (zh) | 2022-07-15 |
CN114759759B (zh) | 2023-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1804365A2 (en) | Permanent magnet excited transverse flux motor with outer rotor | |
US20100013343A1 (en) | Constant frequency and locked phase generator adaptable to variable torque | |
WO2023201634A1 (zh) | 动电枢分段永磁同步直线电机及驱动控制方法 | |
CN110112879B (zh) | 一种双边永磁型同步电机 | |
US10742080B2 (en) | Annular magnetic flux channel rotor mechanism | |
CN110011513B (zh) | 一种模块化初级永磁式双边开关磁阻直线电机 | |
CN110855119B (zh) | 一种分数极两相游标永磁直线电机 | |
US20060071562A1 (en) | Hybrid type double three-phase electric rotating machine | |
CN108270338B (zh) | 齿槽型双边初级永磁体同步直线电机 | |
CN107493003B (zh) | 一种单元电机模块化双边错齿60°永磁同步直线电机 | |
CN112953158B (zh) | 双边永磁体交错型模块化连续极永磁同步直线电机 | |
CN101369747B (zh) | 一种凸极绕线转子异步电机 | |
Cao et al. | A hybrid excitation flux-switching permanent magnet linear motor for urban rail transit | |
CN108712053A (zh) | 模块化τ/2的永磁同步直线电机及其绕组设计方法 | |
TWI618332B (zh) | 磁通切換式永磁馬達 | |
CN108258820B (zh) | 一种非重叠绕组齿槽型双转子永磁同步电机 | |
CN109768640B (zh) | 一种同步电机 | |
CN108809021B (zh) | 一种双薄片式五自由度无轴承开关磁阻电机 | |
Cao et al. | A double fed three-phase flux-switching linear motor with complementary magnet circuit for urban rail transit | |
CN110798045B (zh) | 一种奇数极三相游标永磁直线电机 | |
Balikci et al. | Reduction in fluctuation of the accelerating force in linear induction launchers | |
Qi et al. | Characteristics Analysis of a Novel Hybrid Rotor Type 12/14 Bearingless Switched Reluctance Motor | |
CN108199551B (zh) | 一种非重叠绕组齿槽型双转子电励磁同步电机 | |
CN110572004A (zh) | 永磁磁阻直线电机 | |
CN101286683B (zh) | 双速永磁-电磁复合励磁同步电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22937871 Country of ref document: EP Kind code of ref document: A1 |