WO2023199804A1 - 測距装置および測距方法 - Google Patents

測距装置および測距方法 Download PDF

Info

Publication number
WO2023199804A1
WO2023199804A1 PCT/JP2023/014003 JP2023014003W WO2023199804A1 WO 2023199804 A1 WO2023199804 A1 WO 2023199804A1 JP 2023014003 W JP2023014003 W JP 2023014003W WO 2023199804 A1 WO2023199804 A1 WO 2023199804A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
signal
control signal
exposure control
distance
Prior art date
Application number
PCT/JP2023/014003
Other languages
English (en)
French (fr)
Inventor
清治 中村
真由 小川
雅彦 西本
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2023199804A1 publication Critical patent/WO2023199804A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present disclosure relates to a distance measuring device and a distance measuring method that measure the distance to a subject.
  • the present invention relates to a distance measuring device that uses a solid-state image sensor to measure the round trip time of light to generate distance data of a subject.
  • the pulsed TOF method which is one form of the indirect TOF method, is characterized in that the narrower the pulse width of the optical pulse, the more the distance measurement variation ( ⁇ ) is reduced.
  • narrowing the optical pulse width also narrows the measurable distance range, so a common method is to maintain and expand the distance measuring range by increasing the number of phases of the exposure pulse relative to the optical pulse (for example, the patent Reference 1).
  • multipath exists as a factor that reduces the distance measurement accuracy of the indirect TOF method.
  • direct path light where the primary light from the light source directly hits the subject and returns as is
  • multipath light hits another subject and diffused secondary light hits the subject and returns, so the distance data is calculated to be farther than the actual distance. be done.
  • Patent Document 1 has a problem in that the exposure window (corresponding to an exposure pulse) is very wide for one light emission pulse, and it is susceptible to multipath effects.
  • the present disclosure aims to reduce the influence of distance measurement errors caused by multipath light and provide a distance measurement device and distance measurement method with high distance accuracy.
  • a distance measuring device is a distance measuring device that generates a distance image indicating a distance to a target object, and includes a light emitting unit that emits light intermittently according to a light emission control signal having a constant pulse width; A plurality of exposure controls in which the light emission control signal is output to a light emitting unit, each exposure width is the same as the pulse width of the light emission control signal, and the phases, which are exposure start timings based on the light emission control signal, are different from each other.
  • It has a solid-state image sensor in which pixels are two-dimensionally arranged, each consisting of an emission exposure control section that generates a signal and a photoelectric conversion element that converts incident light into a signal charge, and performs each exposure according to the plurality of exposure control signals.
  • a light receiving section that outputs the plurality of signal charges obtained in the above
  • a selection section that selects at least two signal charges from the plurality of signal charges for each pixel, and the at least two signal charges selected by the selection section.
  • a data processing unit having a calculation unit that calculates first distance data indicating the distance to the target object based on the plurality of exposure control signals, and the plurality of exposure control signals have a mutual phase difference that is the same as the constant pulse width.
  • the exposure control signal N is the Nth exposure control signal (N is a natural number) that includes two combinations of a plurality of exposure control signals such that The control signal N belongs to one of the two combinations, the exposure control signal (N+1) belongs to the other of the two combinations, and the phase difference between the exposure control signal N and the exposure control signal (N+1) is determined by the constant is less than the pulse width, and the selection unit selects the exposure control signal having the fastest phase with respect to the light emission control signal among the plurality of signal charges determined to include reflected light of the light emitted from the light emitting unit.
  • the phase difference at the start of exposure between the first signal charge obtained by the exposure and the exposure control signal having the fastest phase is the same as the constant pulse width.
  • the calculated second signal charge is selected for each pixel, and the calculation unit calculates the first distance data from at least the first signal charge and the second signal charge.
  • a distance measuring method is a distance measuring method using a distance measuring device that generates a distance image indicating a distance to a target object, the distance measuring device emitting light having a constant pulse width. It has a solid-state image sensor with a two-dimensional array of pixels consisting of a light emitting part that emits light intermittently according to a control signal and a photoelectric conversion element that converts incident light into signal charges, and it can be and a light-receiving section that outputs the light-emission control signal to the light-emitting section, the one-time exposure width is the same as the pulse width of the light-emission control signal, and By outputting a plurality of exposure control signals having different phases, which are exposure start timings based on the light emission control signal, to the light receiving section, the plurality of exposure control signals obtained by exposure according to the plurality of exposure control signals from the light receiving section are outputted.
  • the exposure control signal N includes two combinations of exposure control signals and is the Nth (N is a natural number) exposure control signal in order of earliest time based on the light emission control signal
  • the exposure control signal N is The exposure control signal (N+1) belongs to one of the two combinations
  • the exposure control signal (N+1) belongs to the other of the two combinations
  • the phase difference between the exposure control signal N and the exposure control signal (N+1) is less than the certain pulse width.
  • exposure is performed according to the exposure control signal having the fastest phase with respect to the light emission control signal among the plurality of signal charges determined to include reflected light of the light emitted from the light emitting section.
  • a second signal charge obtained by exposure according to the exposure control signal in which a phase difference at the start of exposure between the obtained first signal charge and the exposure control signal having the earliest phase is the same as the constant pulse width. is selected for each pixel, and in the calculation step, the first distance data is calculated from at least the first signal charge and the second signal charge.
  • FIG. 1 is a functional block diagram showing an example of the configuration of a distance measuring device according to Embodiment 1.
  • FIG. 3 is a waveform diagram showing an example of an exposure sequence of the light receiving section of the distance measuring device according to Embodiments 1 and 2.
  • FIG. 7 is a waveform chart showing another example of the exposure sequence of the light receiving section of the distance measuring device according to Embodiments 1 and 2.
  • FIG. 4 is a diagram showing rearranged exposure control signals in the exposure sequence shown in FIG. 3.
  • FIG. 7 is a diagram illustrating another configuration example of pixels of a solid-state image sensor of a distance measuring device according to Embodiments 1 and 2.
  • FIG. 6 is a diagram showing an exposure sequence when using the example pixel configuration shown in FIG. 5.
  • FIG. FIG. 3 is a waveform diagram showing an example of an exposure sequence of the light receiving section of the distance measuring device according to Embodiments 1 and 2.
  • FIG. 7 is a waveform chart showing another example of the exposure sequence of the light receiving section of
  • FIG. 2 is a diagram showing a mechanism that produces a distance error due to multipath in an indirect TOF distance measuring device.
  • FIG. 2 is a diagram illustrating a basic concept for reducing the amount of multipath light reception in the distance measuring devices according to Embodiments 1 and 2.
  • FIG. 3 is a waveform diagram showing a first example of exposure control using eight-phase exposure control signals in the distance measuring devices according to Embodiments 1 and 2.
  • FIG. 10 is a diagram showing an example of packet selection by the distance measuring device according to the first embodiment in the case of the exposure control shown in FIG. 9.
  • FIG. FIG. 7 is a waveform diagram showing a second example of exposure control using 8-phase exposure control signals in the distance measuring devices according to Embodiments 1 and 2 of the present technology.
  • FIG. 12 is a diagram showing an example of packet selection by the distance measuring device according to the first embodiment in the case of the exposure control shown in FIG. 11; 3 is a flowchart showing an overview of the operation of the distance measuring device according to the first embodiment.
  • FIG. 2 is a functional block diagram showing an example of the configuration of a distance measuring device according to a second embodiment.
  • 10 is a diagram showing an example of packet selection by the distance measuring device according to the second embodiment in the case of the exposure control shown in FIG. 9.
  • FIG. 7 is a diagram illustrating an example of a depth synthesis method by a calculation unit of a distance measuring device according to a second embodiment.
  • FIG. 7 is a flowchart showing an overview of the operation of the distance measuring device according to the second embodiment.
  • FIG. 1 is a functional block diagram showing an example of the configuration of distance measuring device 101 according to the first embodiment.
  • FIG. 1A is a functional block diagram showing an example of the configuration of distance measuring device 101 according to the first embodiment.
  • the distance measuring device 101 is a device that generates a distance image indicating the distance to the object OBJ, and includes a light emitting section 102, a light emission exposure control section 103, a light receiving section 104, and a data processing section 106.
  • the light receiving unit 104 includes a solid-state image sensor 105 in which pixels are arranged two-dimensionally.
  • the data processing section 106 includes a selection section 107 and a calculation section 108. Although they are shown as separate block diagrams, all or part of the light emitting exposure control section 103, the light receiving section 104, and the data processing section 106 may be configured by the same LSI.
  • the light emitting unit 102 performs intermittent light emission toward the subject OBJ according to the timing indicated by the input light emission control signal.
  • the light emitting unit 102 may be a VCSEL (vertical cavity surface emitting laser), an LED (light emitting diode), or an LD (Laser Diode).
  • the light emitting unit 102 has a diffusion plate (not shown) at its tip, and the diffusion plate allows light to be irradiated over a wide range at the same time.
  • the light emission exposure control unit 103 outputs a light emission control signal to the light emission unit 102, and outputs a light emission control signal to the light reception unit 104 so that the width of one exposure is the same as the pulse width of the light emission control signal and is based on the light emission control signal.
  • the light emission control signal is a binary digital signal of "H” and "L", and in this embodiment, "H” means light emission and "L” means light emission stop.
  • the light emission control signal is a signal for controlling the light emitting unit 102 to repeatedly emit light with a constant pulse width.
  • the light emission control signal is a pulse that causes the duty ratio of intermittent light emission to be less than 50% (for example, 25%). be.
  • the exposure control signal is a signal for controlling the exposure start timing and exposure width when exposing the light receiving unit 104 to light.
  • the exposure control signal may determine the exposure width with a single control signal or may be determined by a logical operation of multiple signals. This will be explained along with the configuration.
  • the exposure width of the exposure control signal is made the same as the "H" pulse width of the light emission control signal. However, in reality, it is common to make some fine adjustments in accordance with the Tr (rise time) and Tf (fall time) of each control signal.
  • the plurality of exposure control signals include two combinations of a plurality of exposure control signals whose phase difference is the same as a constant pulse width, and the Nth (N is When the exposure control signal (natural number) is the exposure control signal N, the exposure control signal N belongs to one of the two combinations, the exposure control signal (N+1) belongs to the other of the two combinations, and the exposure control signal N and the exposure control The phase difference with the signal (N+1) is less than a certain pulse width.
  • the terms “same”, “same”, or “equal” to the time spans mean that they are substantially equal, and more specifically, that they are equal within the tolerance range determined by the required specifications. Depending on the specification, this means that one time width is within 5%, 10%, or 20% of the other.
  • the light receiving unit 104 includes a solid-state image sensor 105 in which pixels are arranged two-dimensionally, and performs a plurality of exposure controls in order to receive the reflected light that is emitted from the light emitting unit 102 and reflected by the object OBJ.
  • a signal level A/D (Analog to Digital) converted value
  • a signal level indicating a signal charge is also simply referred to as a "signal charge.”
  • the solid-state image sensor 105 may be a CCD sensor or a CMOS sensor.
  • FIG. 1B shows a schematic diagram of the solid-state image sensor 105.
  • the solid-state image sensor 105 is composed of pixels 20 arranged two-dimensionally. Although FIG. 1B has a configuration of 4 pixels horizontally and 4 pixels vertically, totaling 16 pixels, for the sake of explanation, the solid-state image sensor 105 is not limited to this number of pixels.
  • FIG. 1(c) shows a configuration diagram of the pixel 20.
  • the pixel 20 is composed of a photoelectric conversion element 21 and a plurality of charge storage sections 22 .
  • the charge storage section 22 is composed of four (charge storage sections 22A to 22D), but the number is not limited to four.
  • the photoelectric conversion element 21 converts the exposed light into signal charges.
  • the charge storage section 22 stores signal charges converted by the photoelectric conversion element 21.
  • the data processing unit 106 includes a selection unit 107 that selects at least two signal charges from a plurality of signal charges for each pixel 20, and at least two signal charges selected by the selection unit 107. It has a calculation unit 108 that calculates distance data (first distance data) indicating the distance to the target object based on the signal charge. More specifically, the selection unit 107 performs exposure according to the exposure control signal having the fastest phase with respect to the light emission control signal among the plurality of signal charges determined to include the reflected light of the light emitted from the light emission unit 102.
  • a second signal charge obtained by exposure according to an exposure control signal in which the phase difference at the start of exposure between the obtained first signal charge and the exposure control signal having the fastest phase is the same as a constant pulse width.
  • the calculation unit 108 calculates first distance data from at least the first signal charge and the second signal charge.
  • the data processing unit 106 may be realized by a memory that stores a program, a processor that executes the program, or the like.
  • FIG. 2 is a waveform diagram showing an example of an exposure sequence (exposure sequences 1-1 and 1-2) of the light receiving section 104 of the distance measuring device 101 according to the first embodiment. A first example of pixel control during exposure will be described using FIG. 2.
  • the pixel reset signal, gate signal A, and gate signal B are binary signals of "H” and “L”, respectively.
  • signal charges accumulate within the photoelectric conversion element 21 when the pixel reset signal is "L”.
  • the pixel reset signal is "H"
  • the signal charges generated by the photoelectric conversion element 21 are discharged to a drain (exhaust port) not shown, so that no signal charges are accumulated (a reset state is established).
  • the gate signal A and the gate signal B are signals that control the movement of signal charges between the photoelectric conversion element 21 and the charge storage section 22.
  • Gate signal A and gate signal B each control the movement of signal charges to separate charge storage sections 22, and when they are at “H”, signal charges move from the photoelectric conversion element 21 to charge storage section 22, and when they are at "L” When , the signal charge does not move. At this time, gate signal A and gate signal B are controlled so that they do not become “H” at the same time.
  • Exposure sequence 1-1 ((a) in FIG. 2) and exposure sequence 1-2 ((b) in FIG. 2) shown in FIG. 2 will be explained.
  • the four charge storage sections 22 per pixel are respectively referred to as charge storage sections 22A, 22B, 22C, and 22D.
  • gate signal A controls the movement of signal charges to charge storage section 22A
  • gate signal B controls movement of signal charges to charge storage section 22B.
  • the pixel reset signal changes from "H” to "L”
  • signal charges generated within the photoelectric conversion element 21 begin to accumulate.
  • the gate signal A becomes “H”
  • the signal charge in the photoelectric conversion element 21 moves to the charge storage section 22A.
  • signal charges for a period until the gate signal A changes to "L” are accumulated in the charge accumulation section 22A.
  • the gate signal B changes to "H"
  • the signal charge moves to the charge storage section 22B.
  • the time from the fall of the pixel reset signal to the fall of the gate signal A is one exposure period to the charge storage section 22A
  • the time from the fall of the gate signal A to the fall of the gate signal B is the period of exposure to the charge storage section 22B.
  • the exposure time is one time.
  • each one exposure time is made equal to the "H" time of the light emission control signal. Note that since the amount of signal charges generated in one exposure time is small, this is repeated to increase the amount of signal charges.
  • gate signal A controls the movement of signal charges to charge storage section 22C
  • gate signal B controls movement of signal charges to charge storage section 22D.
  • the difference from exposure sequence 1 is that exposure is started from a point where the pixel reset signal, gate signal A, and gate signal B are delayed by 2T overall with respect to the light emission control signal.
  • the exposure timing is determined by the logical operation of the pixel reset signal, gate signal A, and gate signal B, that is, by the logical operation of multiple digital signals.
  • the exposure control signal shown is determined.
  • the exposure is controlled to start at the same time as the light emission control signal rises (exposure sequence 1-1); Instead, the exposure start phase may be shifted in consideration of distance measurement from 1 m ahead. In that case, all you have to do is shift the phase relationship between the pixel reset signal, the gate signal A, and the gate signal B, while maintaining the phase relationship with the light emission control signal. Omit).
  • FIG. 3 is a waveform diagram showing another example of the exposure sequence (exposure sequences 2-1 and 2-2) of the light receiving section 104 of the distance measuring device 101 according to the first embodiment. A second example of pixel control during exposure will be described using FIG. 3.
  • the exposure control signal is a binary signal of "H” and “L”, and in this embodiment, "H” means exposure stop and "L” means exposure state.
  • “H” means exposure stop
  • “L” means exposure state.
  • the exposure control signal is “H”
  • the signal charge generated by the photoelectric conversion element 21 is discharged to the drain, so that the signal charge does not move to the charge storage section 22.
  • the exposure state when the exposure control signal is “L"
  • signal charges generated by the photoelectric conversion element 21 move to the charge storage section 22 and are accumulated.
  • the exposure control signal is "L” twice for each light emission control signal, and the signal charges are transferred to different charge storage sections 22 in the first and second times.
  • the exposure sequence 2-1 ((a) in FIG. 3) and the exposure sequence 2-2 ((b) in FIG. 3) in FIG. 3 will be explained.
  • the four charge storage sections 22 per pixel are respectively referred to as charge storage sections 22A, 22B, 22C, and 22D.
  • exposure sequence 2-1 ((a) in FIG. 3)
  • the charge storage section 22A accumulates
  • the charge storage section 22C accumulates
  • the charges are accumulated in the charge storage section 22B during the first exposure, and are accumulated in the charge accumulation section 22D during the second exposure.
  • the width of one exposure is the same as the width (T) of the light emission control signal, and T is the same between the first and second exposures.
  • FIG. 4 is a diagram showing the light emission control signals and exposure control signals in the exposure sequences 2-1 and 2-2 shown in FIG. 3, rearranged based on one light emission control signal.
  • the exposure control signals are referred to as exposure control signal A1, exposure control signal A2, exposure control signal A3, and exposure control signal A4 in descending order of exposure phase based on the light emission control signal.
  • exposure control signal A1 exposure control signal A2
  • exposure control signal A3 exposure control signal A4 in descending order of exposure phase based on the light emission control signal.
  • the exposure phase will be explained based on the description in FIG. 4.
  • the charge storage section 22 of the adjacent pixels 20 is shared, and eight exposure timings with different phases are set based on the light emission control signal.
  • the exposed signals can be stored in separate charge storage sections 22.
  • the charge storage section 22 of four adjacent pixels 20 is shared, and 16 pixels having different phases based on the light emission control signal are used. Signals exposed at the exposure timing can be stored in separate charge storage sections 22.
  • FIG. 5 shows another configuration example of the pixels of the solid-state image sensor 105 of the distance measuring device 101 according to the first embodiment. 5 is different from FIG. 1 in that one pixel 20 in FIG. 1 corresponds to four types of pixels 20LU, 20LL, 20RU, and 20RL in FIG. Those pixels 20 with the same symbol indicate that exposure can be controlled separately. That is, for example, the exposure timing of the pixel 20LU can be made different from that of other pixels (pixel 20LL, pixel 20RL, pixel 20RU).
  • FIG. 6 is a diagram showing exposure sequences 3-1 to 3-4 when using the example configuration of the pixel 20 shown in FIG. 5.
  • the exposure timing of the pixel LU and the pixel RU (the exposure sequence 3-1 in FIG. 6(a) and the exposure sequence 3-2 in FIG. 6(b)), and the exposure timing of the pixel LL and the pixel RL
  • the exposure timings (exposure sequence 3-3 in FIG. 6(c) and exposure sequence 3-4 in FIG. 6(d)) are different.
  • the exposure timing of exposure sequence 3-1 ((a) in FIG. 6) is the same as that of exposure sequence 2-1 ((a) in FIG. 3), and the exposure timing of exposure sequence 3-2 ((b) in FIG. 6) is the same as that of exposure sequence 2-1 ((a) in FIG. 6).
  • the timing is the same as exposure sequence 2-2 ((b) in FIG. 3).
  • Exposure sequence 3-3 ((c) in FIG. 6) and the exposure sequence 3-4 ((d) in FIG. 6), only the pixel LU and the pixel RU are exposed.
  • Exposure sequence 3-3 ((c) in FIG. 6) starts the first exposure at a timing delayed by 4T with respect to the light emission control signal.
  • the exposure width is the same period T as the light emission control signal, and after the first exposure period ends, the exposure is stopped for the T period, and then the second exposure starts.
  • Exposure sequence 3-4 ((d) in FIG. 6) starts the first exposure at a timing delayed by 5T with respect to the light emission control signal.
  • the exposure width is the same period T as the light emission control signal, and after the first exposure period ends, the exposure is stopped for the T period, and then the second exposure starts.
  • the light receiving section 104 A/D converts the signal charges accumulated in the charge accumulation section 22 of the solid-state image sensor 105 and sends them to the data processing section 106 as a digital signal for each charge accumulation section 22. Output.
  • the signal charges in all charge storage sections 22 are set to zero by a global reset signal (not shown).
  • the data processing unit 106 receives the digital signal from the light receiving unit 104.
  • the selection unit 107 selects at least two charge accumulation units 22 that contain reflected light and one or more charge accumulation units 22 that do not contain reflected light from the charge accumulation units 22 assigned to each pixel of the distance image.
  • the calculation unit 108 calculates distance data (that is, first distance data) indicating the distance to the object using the digital signal of the charge storage unit 22 selected by the selection unit 107 for each pixel of the distance image.
  • the relationship between the light emission control signal and the exposure control signal is as shown in FIG. 4, and the signal charge obtained by exposure using the exposure control signal Ax (x is a natural number) is expressed as an Sx packet, and the signal level of the Sx packet is expressed as Sx.
  • the distance data calculation formula changes depending on which exposure phase (any of Ranges 1 to 3 below) the charge storage section 22 determined by the selection section 107 to include reflected light is in.
  • D distance measurement value (Depth)
  • T pulse width
  • BG1 and BG2 signal level of background light
  • PH start of light emission This is the time difference between the timing and the exposure start timing.
  • BG1 and BG2 may be signals of packets other than the two packets determined to include reflected light
  • BG1 BG2.
  • FIG. 7 is a diagram showing a mechanism that produces a distance error due to multipath in the indirect TOF distance measuring device 101.
  • FIG. 7A is a diagram of the distance measuring device 101, the objects OBJ, and OBJ2 viewed from directly above.
  • the light emitting unit 102 of the distance measuring device 101 emits light in a range including the subject OBJ and the subject OBJ2.
  • the light is reflected by the object OBJ, and the correct distance can be measured by exposing the reflected light.
  • This route is called a direct path (DP).
  • DP direct path
  • FIG. 7(b) shows an exposure timing diagram. Compared to direct path light, multipath light returns later due to its longer route. Therefore, the ratio of S1:S2 of direct path light only (see “DP only" in (b) of FIG. 7) and the ratio of S1:S2 of the sum of direct path light and multipath light ((b) of FIG. ) is different, and the proportion of S2 increases. As a result, the distance data is calculated to be farther than the actual distance.
  • FIG. 8 is a diagram showing the basic concept for reducing the amount of multipath light reception.
  • FIG. 8 graphically represents the amount of multipath light received depending on the difference in exposure start timing between the pair of exposure control signals A1 and A2. As shown in FIG. 8, the components of background light, reflected light, and multipath light that occupy the amount of received light are indicated by different hatching.
  • the amount of multipath light received is higher for the latter pair. It can be seen that there are few In other words, it is better to calculate distance data using a pair of exposure control signals A1' and A2' whose exposure phase is earlier (that is, faster) with respect to the light emission control signal as a reference, due to the effects of multipath light. This means that distance measurement data that is closer to the correct answer can be calculated.
  • FIG. 9 is a waveform diagram showing a first example of exposure control using 8-phase exposure control signals in distance measuring device 101 according to the first embodiment.
  • FIG. 9 there are eight phases of exposure control signals for one light emission control signal, but the phases of the respective exposure control signals are shifted by T/2. Since the pair of two packets used for the distance measurement calculation must have a phase difference of T between the exposure control signals, the combination (group) of exposure control signals that can be used for the distance measurement calculation is the exposure control signal A1.
  • a group of A3, A5, and A7 and a group of exposure control signals A2, A4, A6, and A8 is the exposure control signal A1.
  • Figure 9 shows the timing of reflected light (direct path) and reflected light (multipath) as an example, but the point is that there are four exposure control signals (two in each group) that expose reflected light (direct path). (one by one) exists.
  • reflected light (direct path) is exposed using the phases of the exposure control signal A1 and the exposure control signal A3, and the phase of the exposure control signal A2 and the exposure control signal A4. Comparing the amount of light received by multipath here, it can be seen that the amount of light received by multipath is smaller for the pair of exposure control signal A1 and exposure control signal A3 based on the timing with reflected light (multipath). Therefore, the selection unit 107 selects the S1 packet and the S3 packet.
  • FIG. 10 is a diagram showing an example of packet selection by the distance measuring device 101 according to the first embodiment in the case of the exposure control shown in FIG. 9. More specifically, (a) in FIG. 10 shows the sizes (signal levels) of packets S1 to S8. FIG. 10(b) shows a table explaining the group of exposure control signals to be selected.
  • the selection unit 107 selects packets for each group of exposure control signals whose exposure phases are shifted by T periods. First, (1) find the packet with the highest signal level. As can be seen from FIG. 10(a), the S3 signal is the largest in the group of exposure control signals A1, A3, A5, and A7, so the S3 packet is selected, and in the group of exposure control signals A2, A4, A6, and A8, the S3 signal is the largest. Since the S2 signal has the highest signal level, the S2 packet is selected ((b) in FIG. 10).
  • the S1 signal corresponds to it, so the S1 packet is selected, and in the group of exposure control signals A2, A4, A6, and A8, the S1 packet is selected. Since only S4 is applicable, the S4 packet is selected ((b) in FIG. 10).
  • the pair of S1 packet and S3 packet, the pair of S2 packet and S4 packet contains the exposure control signal with the earliest phase.
  • Select a pair of packets since the phase of the S1 packet is the earliest, the pair of S1 packet and S3 packet is selected ((b) in FIG. 10).
  • two groups of exposure control signals are used that are shifted in phase by a phase corresponding to 1/2 of the pulse width of the light emission control signal, but the present invention is not limited to such values.
  • a group of four exposure control signals having a phase shift corresponding to 1/4 of the pulse width of the light emission control signal may be used.
  • the determination of signal charges (packets) including reflected light by the selection unit 107 is generalized as follows. That is, when the time difference between the N-th phase exposure control signal and the (N+M)-th phase exposure control signal (M is a natural number of 2 or more) is the same as a constant pulse width, the selection unit 107 selects the following for each pixel 20: For each group of exposure control signals from the (L*M+1)th to the (L*M+M-1)th (L is an integer greater than or equal to 0), When the Pth exposure control signal is the largest signal charge among the signal charges and (2) the exposure control signal for the signal charge in (1) above, the exposure with the (PM)th exposure control signal The larger signal charge between the obtained signal charge and the signal charge obtained by exposure using the (P+M)th exposure control signal is determined to be a signal charge containing reflected light.
  • the minimum value among S5-S8 may be selected, the minimum value within the phase group of the same exposure control signal, or the minimum value of those two may be selected. good.
  • the phase of the multipath light is limited to a certain extent, and the packets determined to contain reflected light and the packets (S3, S4, and S5) exposed using the exposure control signal with the fastest phase determined not to contain reflected light are separated by multipath light. If it is known that S5 will be exposed, S5 may be used as the BG for S3. By doing so, it becomes possible to subtract the signal component of the multipath light that has entered S3 during the BG subtraction process, and it becomes possible to further reduce the influence of multipath.
  • the selection unit 107 further selects one or more third signal charges corresponding to the background light determined not to include reflected light from the plurality of signal charges for each pixel 20, and the calculation unit 108 further selects one or more third signal charges corresponding to the background light determined not to include reflected light.
  • the first distance data may be calculated after subtracting the third signal charge from the signal charge and the second signal charge, respectively.
  • the selection unit 107 selects (1) the smallest signal charge among the plurality of signal charges, and (2) the light emission control signal among the signal charges including reflected light as the third signal charge.
  • the exposure control signal with the rearmost phase is the exposure control signal Aq (q is a natural number)
  • two of the signal charges obtained by exposure using the exposure control signal (q+1) may be selected.
  • FIG. 11 is a waveform diagram showing a second example of exposure control using 8-phase exposure control signals in distance measuring device 101 according to the first embodiment.
  • the difference between FIG. 11 and FIG. 9 is that the phases of the reflected light (direct path) and reflected light (multipath) are slower by T/2 than in FIG. 9 (the distance to the object OBJ is longer).
  • reflected light (direct path) is exposed with the phase of the exposure control signal A2 and the exposure control signal A4, and the phase of the exposure control signal A3 and the exposure control signal A5.
  • the pair of packets containing the exposure control signal with the fastest phase is the S2 packet and the S4 packet. Therefore, the selection unit 107 calculates distance measurement data using the S2 packet and the S4 packet.
  • FIG. 12 is a diagram showing an example of packet selection by the distance measuring device 101 according to the first embodiment in the case of the exposure control shown in FIG. 11. More specifically, (a) in FIG. 12 shows the sizes (signal levels) of packets S1 to S8. FIG. 12(b) shows a table explaining the group of exposure control signals to be selected.
  • the selection unit 107 selects packets of the reflected light shown in FIG. 11 for each group of exposure control signals whose exposure phases are shifted by 1T.
  • the S3 signal is the largest in the group of exposure control signals A1, A3, A5, and A7, so the S3 packet is selected, and in the group of exposure control signals A2, A4, A6, and A8, the S3 signal is the largest. Since the S4 signal has the highest signal level, the S4 packet is selected ((b) in FIG. 12).
  • the S5 signal corresponds to it, so the S5 packet is selected, and in the group of exposure control signals A2, A4, A6, and A8, the S5 packet is selected.
  • the S2 packet is selected ((b) in FIG. 12).
  • the exposure control signal containing the earliest phase is included.
  • the S2 packet has the earliest phase, so the pair of S2 packet and S4 packet is selected ((b) in FIG. 12).
  • FIG. 13 is a flowchart showing an overview of the operation (distance measurement method) of the distance measurement device 101 according to the first embodiment.
  • the light emission exposure control unit 103 outputs a light emission control signal to the light emission unit 102, and the width of one exposure is the same as the pulse width of the light emission control signal, and the phases that are the exposure start timings based on the light emission control signal are mutually different.
  • a plurality of different exposure control signals to the light receiving section 104, a plurality of signal charges obtained by exposure according to the plurality of exposure control signals are outputted from the light receiving section 104 (emission exposure control step S10 ).
  • the plurality of exposure control signals include two combinations of a plurality of exposure control signals whose phase difference is the same as a constant pulse width, and the Nth exposure control signals are arranged in order of earliest time based on the light emission control signal.
  • N is a natural number
  • the exposure control signal N belongs to one of the two combinations
  • the exposure control signal (N+1) belongs to the other of the two combinations
  • the exposure control signal N The phase difference between the exposure control signal (N+1) and the exposure control signal (N+1) is less than a certain pulse width.
  • the selection unit 107 of the data processing unit 106 selects at least two signal charges used for calculating distance data from the plurality of signal charges for each pixel 20 (selection step S11).
  • the selection unit 107 selects the highest signal level and the next highest signal level for each group of exposure control signals, so that the reflected light of the light emitted from the light emitting unit 102 A pair of two signal charges including the following are selected (S11a). Then, the selection unit 107 selects, from the pair of two signal charges determined to include reflected light, a first signal charge obtained by exposure according to an exposure control signal having the fastest phase based on the light emission control signal, and A pair with a second signal charge obtained by exposure according to an exposure control signal whose phase difference at the start of exposure with the exposure control signal having the earliest phase is the same as a constant pulse width is selected (S11b).
  • the calculation unit 108 calculates first distance data indicating the distance to the target object (calculation step S12).
  • the distance measuring device 101 calculates distance data using a combination of signals with a small amount of multipath light reception. This has the effect of ensuring a distance range while suppressing the effects of multipath.
  • the distance measuring device 101 is a distance measuring device that generates a distance image indicating the distance to an object, and emits intermittent light according to a light emission control signal having a constant pulse width.
  • It has a solid-state image sensor 105 in which pixels 20 are two-dimensionally arranged, each consisting of an emission exposure control unit 103 that generates an exposure control signal, and a photoelectric conversion element 21 that converts incident light into signal charges.
  • a light receiving unit 104 outputs a plurality of signal charges obtained in each exposure according to a control signal, a selection unit 107 selects at least two signal charges from the plurality of signal charges for each pixel 20, and a selection unit 107 selects and a data processing unit 106 having a calculation unit 108 that calculates first distance data indicating the distance to the target object based on at least two signal charges generated by the exposure control signal.
  • the exposure control signal N includes two combinations of a plurality of exposure control signals that are the same as the pulse width of the control signal, and the Nth (N is a natural number) exposure control signal in the order of earliest time based on the light emission control signal.
  • the exposure control signal N belongs to one of the two combinations
  • the exposure control signal (N+1) belongs to the other of the two combinations
  • the phase difference between the exposure control signal N and the exposure control signal (N+1) is is less than the pulse width of the control signal
  • the selection unit 107 selects the exposure control signal with the fastest phase based on the light emission control signal among the plurality of signal charges determined to include the reflected light of the light emitted from the light emitting unit 102.
  • the phase difference at the start of exposure between the first signal charge obtained by the exposure and the exposure control signal with the fastest phase is the same as the pulse width of the light emission control signal.
  • the calculation unit 108 selects the second signal charge for each pixel 20, and calculates the first distance data from at least the first signal charge and the second signal charge.
  • the plurality of exposure control signals include two combinations of a plurality of exposure control signals whose phase difference is the same as the pulse width of the light emission control signal, and among the combinations, the pulse width of the light emission control signal
  • the phase difference at the start of exposure between the first signal charge obtained by exposure according to the exposure control signal having the fastest phase with respect to the light emission control signal and the exposure control signal having the fastest phase with respect to the light emission control signal is less than the width of the light emission control signal. Since the first distance data is calculated from the second signal charge obtained by exposure according to the exposure control signal that is the same as the pulse width, a pair of signal charges that is less affected by multipath light is used. As a result, the influence of distance measurement errors due to multipath light is reduced, and a distance measurement device with high distance accuracy is realized.
  • the light emission control signal may have a duty ratio of intermittent light emission of less than 50%.
  • the plurality of exposure control signals may be signals in which the exposure timing is determined by a logical operation of a plurality of digital signals. This makes it possible, for example, to perform distance measurement using a type of pixel whose exposure period is determined by the result of a logical operation between a pixel reset signal and a gate signal.
  • the selection unit 107 further selects one or more third signal charges determined not to include reflected light from the plurality of signal charges for each pixel 20, and the calculation unit 108
  • the first distance data may be calculated after subtracting the third signal charges from the respective signal charges. As a result, distance data is calculated using the signal charge from which background light has been removed, so distance measurement with high distance accuracy is achieved.
  • the selection unit 107 selects (1) the smallest signal charge among the plurality of signal charges, and (2) the light emission control signal among the signal charges including reflected light as the third signal charge.
  • the exposure control signal with the rearmost phase is the exposure control signal Aq (q is a natural number)
  • two of the signal charges obtained by exposure using the exposure control signal (q+1) may be selected. This increases the possibility that background light, which is less affected by multipath light, can be removed, and distance accuracy can be improved.
  • the selection unit 107 selects For each group of exposure control signals from the (L*M+1)th group to the (L*M+M-1)th (L is an integer greater than or equal to 0) exposure control signal, (1) exposure using the exposure control signal is performed.
  • the (PM)th exposure control signal When the largest signal charge among the obtained signal charges and (2) the exposure control signal for the signal charge in (1) above are set as the Pth exposure control signal, the (PM)th exposure control signal The larger of the signal charges obtained by exposure and the signal charges obtained by exposure using the (P+M)th exposure control signal may be determined to be signal charges containing reflected light.
  • the distance measuring method is a distance measuring method using a distance measuring device 101 that generates a distance image indicating the distance to an object, and the distance measuring device 101 emits light having a constant pulse width. It has a solid-state image sensor 105 in which pixels 20 are two-dimensionally arranged, each consisting of a light emitting unit 102 that emits light intermittently according to a control signal, and a photoelectric conversion element 21 that converts incident light into a signal charge.
  • the distance measuring method is to output a light emission control signal to the light emitting part 102, and the width of one exposure is the same as the pulse width of the light emission control signal.
  • a plurality of exposure control signals having mutually different phases which are exposure start timings based on the light emission control signal
  • a plurality of exposure control signals obtained by exposure according to the plurality of exposure control signals from the light receiving section 104 are outputted to the light receiving section 104.
  • a light emission exposure control step S10 for outputting signal charges from the light receiving section 104
  • a selection step S11 for selecting at least two signal charges from a plurality of signal charges for each pixel 20, and at least two signals selected in the selection step S11.
  • the plurality of exposure control signals includes a calculation step S12 of calculating first distance data indicating the distance to the object based on the charge, and the plurality of exposure control signals are composed of a plurality of exposure control signals whose phase difference is the same as the pulse width of the light emission control signal.
  • the exposure control signal N includes two combinations of exposure control signals and is the Nth exposure control signal (N is a natural number) in order of earliest time based on the light emission control signal
  • the exposure control signal N consists of two combinations.
  • the exposure control signal (N+1) belongs to one of the two combinations, and the phase difference between the exposure control signal N and the exposure control signal (N+1) is less than the pulse width of the light emission control signal, and the selection step S11
  • the first signal obtained by exposure according to the exposure control signal having the fastest phase with respect to the light emission control signal as a reference is added to each pixel 20.
  • first distance data is calculated from at least the first signal charge and the second signal charge.
  • the plurality of exposure control signals include two combinations of a plurality of exposure control signals whose phase difference is the same as the pulse width of the light emission control signal, and among the combinations, the pulse width of the light emission control signal
  • the phase difference at the start of exposure between the first signal charge obtained by exposure according to the exposure control signal having the fastest phase with respect to the light emission control signal and the exposure control signal having the fastest phase with respect to the light emission control signal is less than the width of the light emission control signal. Since the first distance data is calculated from the second signal charge obtained by exposure according to the exposure control signal that is the same as the pulse width, a pair of signal charges that is less affected by multipath light is used. As a result, the influence of distance measurement errors due to multipath light is reduced, and a distance measurement device with high distance accuracy is realized.
  • FIG. 14 is a functional block diagram showing an example of the configuration of distance measuring device 1301 according to the second embodiment. More specifically, FIG. 14(a) shows the overall configuration of the distance measuring device 1301 according to the second embodiment, and FIG. 14(b) shows the detailed structure of the data processing unit 1306 in FIG. 14(a). Show the configuration.
  • the distance measuring device 1301 is a device that generates a distance image indicating the distance to the object OBJ, and as shown in FIG. 1306.
  • the same parts as those in Embodiment 1 are given the same numbers and explanations are omitted.
  • the difference from FIG. 1 is the processing of the data processing unit 1306, which will be explained using FIG. 14(b). (b) and (c) of FIG. 1, FIGS. 2 to 9, and the explanation using them also apply to this embodiment.
  • the data processing unit 1306 includes a selection unit 1307 and a calculation unit 1308.
  • the selection unit 107 of the first embodiment selects two charge storage units 22 containing reflected light from the charge storage units 22 assigned to each pixel of the distance image for each group of exposure control signals, and uses the light emission control signal as a reference. Therefore, only the packets of the group of exposure control signals that include packets with earlier exposure phases are selected.
  • the selection unit 1307 of this embodiment selects not only the group of exposure control signals that includes the packet with the earliest exposure phase based on the emission control signal, but also the group that includes the packet with the second earliest exposure phase. The packets of the other group of exposure control signals are also selected.
  • the calculation unit 1308 includes a depth calculation unit A 1309, a depth calculation unit B 1310, and a depth synthesis unit 1311. Since the selection unit 1307 selects a data packet containing reflected light and a data packet of a BG signal for each group of exposure control signals, two depth calculation units separately perform depth calculations on them. Assuming that the output of Depth calculation section A is Depth data A and the output of Depth calculation section B is Depth data B, Depth synthesis section 1311 combines Depth data A and Depth data B into one Depth data for each pixel of the distance image. .
  • the Depth synthesis method may be a method of changing the synthesis ratio while checking the value of Depth data A or Depth data B, or a method of setting the synthesis ratio of the smaller of Depth data A and Depth data B to 100%, A method of combining depth data A and depth data B at 50% (that is, taking an average value) may be used.
  • FIG. 15 is a diagram showing an example of packet selection by the distance measuring device 1301 according to the second embodiment in the case of the exposure control shown in FIG. 9. More specifically, FIG. 15(a) shows the sizes (signal levels) of packets S1 to S8, and is the same diagram as FIG. 10(a). FIG. 15(b) shows a table explaining the group of exposure control signals selected in this embodiment.
  • the exposure control signal A1 - The point is that not only the packets of the group A3, A5, and A7 but also the packets of the group of exposure control signals A2, A4, A6, and A8 are selected.
  • the selection unit 1307 first selects the S1 packet and the S3 packet from the group of exposure control signals A1, A3, A5, and A7, and controls the exposure.
  • a second selection is made of the S2 packet and the S4 packet in the group of signals A2, A4, A6, and A8.
  • Information on the first selected packet (first selected packet) and second selected packet (second selected packet) is then output to the calculation unit 1308.
  • the depth calculation unit A1309 calculates depth data A from the first selected packet
  • the depth calculation unit B1310 calculates depth data B from the second selection packet.
  • the Depth obtained by calculation with the first selected packet has a composition ratio of 100% up to a certain distance DE1, but when the distance DE1 is exceeded, the Depth obtained by the calculation with the first selected packet is 100%.
  • the Depth obtained by the calculation of and the Depth obtained by the calculation of the second selected packet are combined at an arbitrary ratio.
  • Depth exceeds distance DE1 the Depth combination ratio of the first selected packet decreases, and at a distance DE2 before Depth (distance DE3) at which the first selection packet switches to the second selection packet, the Depth combination ratio becomes 0%.
  • FIG. 16(b) is a graph showing the change in depth when the first selected packet is switched from the pair of S1 packet and S3 packet to the pair of S2 packet and S4 packet.
  • the true value is the solid line
  • the one-dot chain line is the Depth obtained by calculating with the S1 packet and S3 packet of the first selection packet
  • the two-dot chain line is the Depth obtained by calculating with the S2 packet and S4 packet of the second selection packet.
  • Depth the broken line indicates the depth after synthesis.
  • the Depth obtained by calculating the S2 packet and the S4 packet of the second selection packet begins to mix.
  • the Depth obtained by calculating the S1 packet and the S3 packet becomes the distance DE2
  • the Depth obtained by calculating the S2 packet and the S4 packet of the second selected packet becomes 100%.
  • the S2 packet and the S4 packet become the first selected packets, but before that, the Depth obtained by calculating the S2 packet and the S4 packet Since the composition ratio of is 100%, the Depth will be switched smoothly without any steps even at the moment when the first selection packet is switched as the distance to the object OBJ increases.
  • Depth synthesis as shown in FIG. 16 is not performed, as the distance to the object OBJ increases, the S2 packet and S4 packet will be A depth difference occurs at the moment the depth is switched to the depth obtained by calculation. However, by performing depth synthesis as shown in FIG. 16, it is possible to reduce the effects of multipath and output depths without depth differences.
  • FIG. 17 is a flowchart outlining the operation (distance measurement method) of the distance measurement device 1301 according to the second embodiment.
  • the light emission exposure control unit 103 outputs a light emission control signal to the light emission unit 102, and the width of one exposure is the same as the pulse width of the light emission control signal, and the phases that are the exposure start timings based on the light emission control signal are mutually different.
  • a plurality of different exposure control signals to the light receiving section 104, a plurality of signal charges obtained by exposure according to the plurality of exposure control signals are outputted from the light receiving section 104 (emission exposure control step S20 ).
  • This light emission exposure control step S20 is the same as the light emission exposure control step S10 in the first embodiment.
  • the selection unit 1307 of the data processing unit 1306 selects at least two signal charges used for calculating distance data from the plurality of signal charges for each pixel 20 (selection step S21).
  • the selection unit 1307 selects the highest signal level and the next highest signal level for each group of exposure control signals, so that the reflected light emitted from the light emitting unit 102 A pair of two signal charges including the following are selected (S21a). Then, the selection unit 1307 selects, from the pair of two signal charges determined to include reflected light, a first signal charge obtained by exposure according to an exposure control signal having the fastest phase with respect to the light emission control signal as a reference; A pair with a second signal charge obtained by exposure according to an exposure control signal whose phase difference at the start of exposure with the exposure control signal having the fastest phase is the same as a constant pulse width is selected as the first selection packet. , the other is selected as the second selection packet (S21b).
  • the depth calculation unit A1309 calculates depth data A as first distance data from the first selected packet, while the depth calculation unit B1310 calculates depth data A from the second selection packet as second distance data.
  • Depth data B is calculated (S22).
  • the calculation unit 1308 calculates third distance data indicating the distance to the target object by combining Depth data A and Depth data B calculated in step S22 at a combination ratio (S23).
  • the selection unit 1307 performs exposure according to the exposure control signal having the second fastest phase among the signal charges determined to include reflected light.
  • the fifth signal charge obtained by exposure according to the exposure control signal in which the phase difference at the start of exposure between the obtained fourth signal charge and the exposure control signal having the second fastest phase is the same as the pulse width of the light emission control signal.
  • the calculation unit 1308 further calculates second distance data indicating the distance to the object from the fourth signal charge and the fifth signal charge, and selects the first distance data and the second signal charge.
  • the third distance data indicating the distance to the target object is calculated by combining the third distance data with the distance data.
  • the final distance data is calculated by combining two distance data calculated using two pairs of signal charges, so as in the first embodiment, the influence of multipath light is reduced. Not only this, but also the Depth level difference in which the value of the final distance data to be calculated changes greatly depending on the measured distance is suppressed.
  • the calculation unit 1308 calculates third distance data for each pixel 20 by changing the combination ratio when combining the first distance data and the second distance data, depending on the distance of the first distance data. do. This makes it possible to gradually change the composition ratio of the first distance data and the second distance data, and to switch from the first distance data to the second distance data according to the measured distance. becomes continuous.
  • the calculation unit 1308 may calculate the third distance data for each pixel 20 by setting the synthesis ratio of the smaller of the first distance data and the second distance data to 100%. As a result, depending on the distance to be measured, distance data is calculated using only pairs of signal charges that are less affected by multipath light, and distance measurement with high accuracy is ensured.
  • the calculation unit 1308 may calculate the third distance data for each pixel 20 using the average value of the first distance data and the second distance data. This simplifies the process of combining the first distance data and the second distance data, and reduces the influence of multipath light and reduces the circuit scale in a well-balanced manner.
  • the signal level of background light is subtracted from the signal charge of reflected light, but this subtraction process is not necessarily necessary. This is because in an environment with little background light, the influence of background light may be ignored.
  • the calculation unit 1308 has two depth calculation units, but when exposure is performed using a group of three or more exposure control signals, three or more depth calculation units are included. three or more depth data outputted from these may be combined. For example, when exposure is performed using four sets of exposure control signals that are shifted by a phase corresponding to 1/4 of the pulse width of the light emission control signal, four depth calculation units are provided, and outputs from these The four depth data may be combined. Thereby, the influence of multipath light can be further reduced, and the depth level difference can be further suppressed.
  • all or some of the steps included in the distance measuring method according to the present disclosure may be realized by a program including those steps, and the program may be recorded on a non-transitory computer-readable disc such as a DVD. It may be realized by a recording medium.
  • the distance measuring device can output distance data with reduced effects of multipath, so it can measure distance with high accuracy in situations where there are multiple objects, people, etc. within the FOV (field of view). It can be used as a distance measuring device.
  • Photoelectric conversion element 22A to 22D Charge storage unit 101, 1301 Distance measuring device 102 Light emitting unit 103 Light emission exposure control unit 104 Light receiving unit 105 Solid-state imaging Element 106, 1306 Data processing section 107, 1307 Selection section 108, 1308 Arithmetic section 1309 Depth computing section A 1310 Depth calculation section B 1311 Depth composition section OBJ, OBJ2 Subject

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

測距装置(101)は、複数の露光制御信号を生成する発光露光制御部(103)と、画素(20)ごとに複数の信号電荷から少なくとも2つの信号電荷を選択する選択部(107)、および、選択した2つの信号電荷を基に対象物との距離を示す第1の距離データを算出する演算部(108)を有するデータ処理部(106)とを備え、複数の露光制御信号は、互いの位相差が発光制御信号のパルス幅と同一となる複数の露光制御信号の群を含み、一方の群に属する露光制御信号Nと他方の群に属する露光制御信号(N+1)との位相差は、発光制御信号のパルス幅未満となり、選択部(107)は、反射光を含むと判定した複数の信号電荷のうち、最も位相が早い露光制御信号に対応する第1の信号電荷を含む信号電荷のペアを選択する。

Description

測距装置および測距方法
 本開示は、被写体の距離を測定する測距装置および測距方法に関する。特に固体撮像素子を用いて光の往復時間を測定して、被写体の距離データを生成する測距装置に関する。
 従来、間接TOF(Time of Flight)方式を採用した測距カメラが知られている。間接TOF方式の一形態であるパルスTOF方式では、光パルスのパルス幅を狭くすればするほど測距ばらつき(σ)が低減するという特徴がある。一方で光パルス幅を狭くすると測距可能な距離レンジも狭くなるため、光パルスに対する露光パルスの位相の数を増やして、測距レンジを維持および拡大する方法が一般的である(例えば、特許文献1)。
特許5585903号公報
 間接TOF方式の測距精度を低減させる要因として、マルチパスという課題が存在する。光源からの一次光が直接被写体に当たってそのまま返ってくるダイレクトパスに対して、マルチパス光は別の被写体に当たって拡散した二次光が被写体に当たって返ってくるため、距離データが実際の距離よりも遠く算出される。
 特許文献1では1回の発光パルスに対して、露光ウインドウ(露光パルスに相当)が非常に広く、マルチパスの影響を受けやすいという課題がある。
 上記課題に鑑み、本開示は、マルチパス光による測距エラーの影響を軽減し、距離精度の高い測距装置および測距方法を提供することを目的とする。
 本開示の一形態に係る測距装置は、対象物との距離を示す距離画像を生成する測距装置であって、一定のパルス幅を持つ発光制御信号に従って間欠発光を行う発光部と、前記発光部に前記発光制御信号を出力し、1回の露光幅が前記発光制御信号のパルス幅と同じで、かつ前記発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を生成する発光露光制御部と、入射光を信号電荷に変換する光電変換素子で構成される画素を二次元状に配列した固体撮像素子を有し、前記複数の露光制御信号に従ってそれぞれの露光で得られた複数の信号電荷を出力する受光部と、前記画素ごとに前記複数の信号電荷から少なくとも2つの信号電荷を選択する選択部、および、前記選択部が選択した前記少なくとも2つの信号電荷を基に前記対象物との距離を示す第1の距離データを算出する演算部を有するデータ処理部とを備え、前記複数の露光制御信号は、互いの位相差が前記一定のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、前記発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、前記露光制御信号Nは前記2つの組み合わせの一方に属し、露光制御信号(N+1)は前記2つの組み合わせの他方に属し、前記露光制御信号Nと露光制御信号(N+1)との位相差は、前記一定のパルス幅未満となり、前記選択部は、前記発光部から照射された光の反射光を含むと判定した複数の前記信号電荷のうち、前記発光制御信号を基準として最も位相が早い前記露光制御信号に従った露光で得られた第1の信号電荷と、前記最も位相が早い前記露光制御信号との露光開始の位相差が前記一定のパルス幅と同一となる前記露光制御信号に従った露光で得られた第2の信号電荷とを前記画素ごとに選択し、前記演算部は、少なくとも前記第1の信号電荷と前記第2の信号電荷とから前記第1の距離データを算出する。
 また、本開示の一形態に係る測距方法は、対象物との距離を示す距離画像を生成する測距装置による測距方法であって、前記測距装置は、一定のパルス幅を持つ発光制御信号に従って間欠発光を行う発光部と、入射光を信号電荷に変換する光電変換素子で構成される画素を二次元状に配列した固体撮像素子を有し、露光制御信号に従った露光で得られた信号電荷を出力する受光部とを備え、前記測距方法は、前記発光部に前記発光制御信号を出力し、1回の露光幅が前記発光制御信号のパルス幅と同じで、かつ前記発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を前記受光部に出力することで、前記受光部から前記複数の露光制御信号に従った露光で得られた複数の信号電荷を前記受光部から出力させる発光露光制御ステップと、前記画素ごとに前記複数の信号電荷から少なくとも2つの信号電荷を選択する選択ステップと、前記選択ステップで選択された前記少なくとも2つの信号電荷を基に前記対象物との距離を示す第1の距離データを算出する演算ステップとを含み、前記複数の露光制御信号は、互いの位相差が前記一定のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、前記発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、前記露光制御信号Nは前記2つの組み合わせの一方に属し、露光制御信号(N+1)は前記2つの組み合わせの他方に属し、前記露光制御信号Nと露光制御信号(N+1)との位相差は、前記一定のパルス幅未満となり、前記選択ステップでは、前記発光部から照射された光の反射光を含むと判定した複数の前記信号電荷のうち、前記発光制御信号を基準として最も位相が早い前記露光制御信号に従った露光で得られた第1の信号電荷と、前記最も位相が早い前記露光制御信号との露光開始の位相差が前記一定のパルス幅と同一となる前記露光制御信号に従った露光で得られた第2の信号電荷とを前記画素ごとに選択し、前記演算ステップでは、少なくとも前記第1の信号電荷と前記第2の信号電荷とから前記第1の距離データを算出する。
 本開示により、マルチパス光による測距エラーの影響を軽減し、測距精度の高い測距装置および測距方法を提供することができる。
実施の形態1に係る測距装置の構成の一例を示す機能ブロック図である。 実施の形態1および2に係る測距装置の受光部の露光シーケンスの一例を示す波形図である。 実施の形態1および2に係る測距装置の受光部の露光シーケンスの他の一例を示す波形図である。 図3に示した露光シーケンスにおける露光制御信号を並べ替えたものを示す図である。 実施の形態1および2に係る測距装置の固体撮像素子の画素の別の構成例を示す図である。 図5に示される画素の構成例を用いた時の露光シーケンスを示す図である。 間接TOF方式の測距装置において、マルチパスによる距離誤差を生むメカニズムを示した図である。 実施の形態1および2に係る測距装置において、マルチパスの受光量を減らすための基本的な考え方を示す図である。 実施の形態1および2に係る測距装置において8位相の露光制御信号を用いた露光制御の1つ目の例を示す波形図である。 図9に示される露光制御の場合における実施の形態1に係る測距装置によるパケット選択の一例を示す図である。 本技術の実施の形態1および2に係る測距装置において8位相の露光制御信号を用いた露光制御の2つ目の例を示す波形図である。 図11に示される露光制御の場合における実施の形態1に係る測距装置によるパケット選択の一例を示す図である。 実施の形態1に係る測距装置の動作の概要を示すフローチャートである。 実施の形態2に係る測距装置の構成の一例を示す機能ブロック図である。 図9に示される露光制御の場合における実施の形態2に係る測距装置によるパケット選択の一例を示す図である。 実施の形態2に係る測距装置の演算部によるDepth合成方法の一例を示す図である。 実施の形態2に係る測距装置の動作の概要を示すフローチャートである。
 以下、本開示の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する主旨ではない。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。
 (実施の形態1)
 図1は、実施の形態1に係る測距装置101の構成の一例を示す機能ブロック図である。図1の(a)は、実施の形態1に係る測距装置101の構成の一例を示す機能ブロック図である。測距装置101は、被写体OBJまでの距離を示す距離画像を生成する装置であり、発光部102、発光露光制御部103、受光部104、データ処理部106で構成される。
 受光部104は2次元状に画素の並んだ固体撮像素子105を含む。データ処理部106は選択部107と演算部108とで構成される。なおブロック図としては別々になっているが、発光露光制御部103および受光部104およびデータ処理部106の全て、または一部は、同じLSIで構成されていても構わない。
 発光部102は入力される発光制御信号の示すタイミングにしたがって、被写体OBJに対して間欠発光を行う。発光部102は、VCSEL(垂直共振型面発光レーザー)でも良いし、LED(発光ダイオード)やLD(Laser Diode)でも良い。発光部102は、その先端には図示していない拡散版を有しており、この拡散版により広い範囲に同時に光を照射させることができる。
 発光露光制御部103は、発光部102に対して発光制御信号を出力し、受光部104に対して、1回の露光幅が発光制御信号のパルス幅と同じで、かつ発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を出力する。発光制御信号は“H”および“L”の2値のデジタル信号であり、本実施の形態では“H”で発光を意味し、“L”で発光停止を意味することとする。発光制御信号は、一定のパルス幅で発光部102が繰り返し発光を行うように制御するための信号であり、例えば、間欠発光のデューティー比が50%未満(例として、25%)となるパルスである。
 露光制御信号は、受光部104で光を露光する際の露光開始タイミングと露光幅を制御するための信号である。露光制御信号は固体撮像素子105の構成により、1本の制御信号で露光幅が決定される場合と、複数信号の論理演算で露光幅が決定される場合があり、詳細は固体撮像素子105の構成と合わせて説明する。露光制御信号の露光幅は発光制御信号の“H”パルス幅と同一にする。ただし、各制御信号のTr(立ち上がり時間)およびTf(立ち下がり時間)に合わせて、実際は多少の微調整を行うのが一般的である。
 複数の露光制御信号は、互いの位相差が一定のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、露光制御信号Nは2つの組み合わせの一方に属し、露光制御信号(N+1)は2つの組み合わせの他方に属し、露光制御信号Nと露光制御信号(N+1)との位相差は、一定のパルス幅未満となる。
 なお、時間幅が「同一」、「同じ」あるいは「等しい」とは、実質的に等しいことを意味し、より詳しくは、求められる仕様から定まる許容範囲内で等しい意味であり、例えば、求められる仕様に応じて、一方の時間幅が他方の5%以内、10%以内、あるいは、20%以内であることを意味する。
 受光部104は、2次元状に画素の並んだ固体撮像素子105を含み、発光部102から照射された光が被写体OBJで反射して返ってきた反射光を受光するために、複数の露光制御信号に従ってそれぞれの露光で得られた複数の信号電荷を示す信号レベル(A/D(Analog to Digital)変換した値)を出力する。なお、本明細書では、信号電荷を示す信号レベルを、単に、「信号電荷」ともいう。
 固体撮像素子105はCCDセンサでもよいし、CMOSセンサでもよい。図1の(b)は、固体撮像素子105の概略図を示す。固体撮像素子105は2次元状に配置された画素20で構成される。なお、図1の(b)は説明のため横4pix、縦4pixの合計16pixの構成となっているが、固体撮像素子105は、その画素数に制限されるものではない。
 図1の(c)は画素20の構成図を示す。画素20は光電変換素子21と複数の電荷蓄積部22で構成される。なお、図1の(c)では電荷蓄積部22は4個(電荷蓄積部22A~22D)で構成されているが、4個に限定されるものではない。光電変換素子21は露光した光を信号電荷に変換する。電荷蓄積部22は光電変換素子21が変換した信号電荷を蓄積する。
 データ処理部106は、図1の(a)に示されるように、画素20ごとに複数の信号電荷から少なくとも2つの信号電荷を選択する選択部107、および、選択部107が選択した少なくとも2つの信号電荷を基に対象物との距離を示す距離データ(第1の距離データ)を算出する演算部108を有する。より詳しくは、選択部107は、発光部102から照射された光の反射光を含むと判定した複数の信号電荷のうち、発光制御信号を基準として最も位相が早い露光制御信号に従った露光で得られた第1の信号電荷と、最も位相が早い露光制御信号との露光開始の位相差が一定のパルス幅と同一となる露光制御信号に従った露光で得られた第2の信号電荷とを画素ごとに選択する。演算部108は、少なくとも第1の信号電荷と第2の信号電荷とから第1の距離データを算出する。データ処理部106は、プログラムを格納するメモリ、プログラムを実行するプロセッサ等で実現され得る。
 図2は、実施の形態1に係る測距装置101の受光部104の露光シーケンスの一例(露光シーケンス1-1および1-2)を示す波形図である。図2を使用して露光時の画素の制御の1つ目の例について説明する。
 図2に示される2つの露光シーケンスにおいて、画素リセット信号、ゲート信号Aおよびゲート信号Bはそれぞれ“H”と“L”の2値の信号である。本実施の形態では画素リセット信号が“L”の時に光電変換素子21内で信号電荷が溜まることとする。一方、画素リセット信号が“H”の時は光電変換素子21が生成した信号電荷は図示していないドレイン(排出口)に排出されるので信号電荷は溜まらない(リセット状態となる)。ゲート信号Aおよびゲート信号Bは光電変換素子21と電荷蓄積部22との間の信号電荷の移動を制御する信号である。ゲート信号Aおよびゲート信号Bはそれぞれ別の電荷蓄積部22への信号電荷の移動を制御し、それぞれ“H”の時に光電変換素子21から電荷蓄積部22に信号電荷が移動し、“L”の時は信号電荷が移動しない。このとき、ゲート信号Aとゲート信号Bは同時には“H”にならないように制御される。
 図2に示される露光シーケンス1―1(図2の(a))と露光シーケンス1-2(図2の(b))について説明する。説明にあたり、1画素あたり4つの電荷蓄積部22をそれぞれ電荷蓄積部22A、22B、22C、22Dとする。
 露光シーケンス1-1では(図2の(a))、ゲート信号Aは電荷蓄積部22Aへの信号電荷の移動を制御し、ゲート信号Bは電荷蓄積部22Bへの信号電荷の移動を制御する。画素リセット信号が“H”から“L”に変化することにより、光電変換素子21内で生成した信号電荷が溜まり始める。それと同時またはやや遅れてゲート信号Aが“H”になり、光電変換素子21内の信号電荷は電荷蓄積部22Aに移動する。そしてゲート信号Aが“L”に変化するまでの期間の信号電荷が電荷蓄積部22Aに蓄積される。次にゲート信号Bが“H”に変化することで、信号電荷は電荷蓄積部22Bに移動する。そして画素リセット信号が“H”またはゲート信号Bが“L”になるまでの期間の信号電荷が電荷蓄積部22Bに蓄積される。つまり画素リセット信号の立ち下がりからゲート信号Aの立ち下がりまでの時間が電荷蓄積部22Aへの1回の露光期間、ゲート信号Aの立ち下がりからゲート信号Bの立ち下がりまでが電荷蓄積部22Bへの1回の露光時間となる。
 このように1つの露光シーケンスあたり、発光制御信号を基準として2種類の露光位相で露光ができる。それぞれの1回の露光時間は発光制御信号の“H”の時間とも等しくなるようにする。なお1回の露光時間で生成される信号電荷量はわずかであるので、これを繰り返し行って信号電荷量を増やす。
 露光シーケンス1-2では(図2の(b))、ゲート信号Aは電荷蓄積部22Cへの信号電荷の移動を制御し、ゲート信号Bは電荷蓄積部22Dへの信号電荷の移動を制御する。露光シーケンス1との違いは、発光制御信号を基準として画素リセット信号およびゲート信号Aおよびゲート信号Bが全体的に2T遅れたところから露光が開始される点である。
 以上のような2つの露光シーケンス1-1および1-2を設けることで、発光制御信号を基準として、位相の異なる4つ露光タイミングで露光した信号を別々の電荷蓄積部22に蓄積することができる。つまり、露光シーケンス1―1および露光シーケンス1―2のいずれであっても、画素リセット信号、ゲート信号Aおよびゲート信号Bの論理演算により、つまり、複数のデジタル信号の論理演算により、露光タイミングを示す露光制御信号が定まる。
 なお図2では発光制御信号の立ち上がりと同時に露光が開始するように制御されているが(露光シーケンス1-1)、発光部102内で発光された光パルスの遅延や測距レンジ(例えば0mからではなく、1m先から測距するなど)を考慮して露光開始位相をずらしてもよい。その場合は、画素リセット信号とゲート信号Aとゲート信号Bの互いの位相関係は保ったまま、発光制御信号との位相関係のみずらせばよい(以降のシーケンスでも同様であるため、今後は説明を割愛する)。
 図3は、実施の形態1に係る測距装置101の受光部104の露光シーケンスの他の一例(露光シーケンス2-1および2-2)を示す波形図である。図3を使用して露光時の画素の制御の2例目について説明する。
 1つの露光シーケンスあたり、発光制御信号を基準として2種類の露光位相で露光ができる。図3では露光制御信号のみで露光タイミングと露光幅を制御する。露光制御信号は“H”と“L”の2値の信号であり、本実施の形態では“H”は露光停止、“L”で露光状態を意味する。露光制御信号が“H”の時は光電変換素子21で生成された信号電荷はドレインに排出されるので、電荷蓄積部22には信号電荷は移動しない。露光状態では(露光制御信号が“L”の時)、光電変換素子21で生成された信号電荷が電荷蓄積部22に移動し、蓄積される。1回の発光制御信号につき、露光制御信号が2度“L”になっているが、1回目と2回目では別の電荷蓄積部22に信号電荷が移動される。
 次に図3の露光シーケンス2―1(図3の(a))と露光シーケンス2-2(図3の(b))について説明する。説明にあたり、1画素あたり4つの電荷蓄積部22をそれぞれ電荷蓄積部22A、22B、22C、22Dとする。
 露光シーケンス2―1では(図3の(a))、1回目の露光の時に電荷蓄積部22Aに蓄積され、2回目の露光の時に電荷蓄積部22Cに蓄積される。露光シーケンス2-2では(図3の(b))、1回目の露光の時に電荷蓄積部22Bに蓄積され、2回目の露光の時に電荷蓄積部22Dに蓄積される。いずれの露光シーケンスにおいても、1回の露光幅は発光制御信号の幅(T)と同じであり、1回目と2回目の露光の間も同じTである。こうすることで露光シーケンス2―1と露光シーケンス2-2とを合わせて、発光制御信号を基準として位相の異なる4つ露光タイミングで露光することができる。
 図2の露光シーケンスと図3の露光シーケンスとを比較した時、それぞれの露光シーケンスでは、画素制御に合わせて別々の信号で露光を行なっているが、いずれの露光シーケンスでも、発光制御信号を基準として位相の異なる4つ露光タイミングで露光した信号を別々の電荷蓄積部22に蓄積するということは同じである。したがって説明簡略化のため、以降は図3に記載の露光シーケンスをベースに説明する。
 図4は、図3に示した露光シーケンス2-1および2-2における発光制御信号と露光制御信号について、1つの発光制御信号を基準として露光制御信号を並べ替えたものを示す図である。露光制御信号は、発光制御信号を基準として露光位相が早い順に露光制御信号A1、露光制御信号A2、露光制御信号A3、露光制御信号A4と呼ぶ。説明の容易性を考慮して、本実施の形態では図4の記載をベースに露光位相の説明を実施する。
 次に本実施の形態の画素構成をベースに、露光タイミングの位相の数を増やす方法を説明する。例えば、距離画像の画素数が固体撮像素子105の画素数の半分で良い場合は、隣り同士の画素20の電荷蓄積部22を共用し、発光制御信号を基準として位相の異なる8つの露光タイミングで露光した信号を別々の電荷蓄積部22に蓄積することができる。また例えば、距離画像の画素数が固体撮像素子105の画素数の1/4で良い場合は、隣接の4つの画素20の電荷蓄積部22を共用し、発光制御信号を基準として位相の異なる16の露光タイミングで露光した信号を別々の電荷蓄積部22に蓄積することができる。
 図5と図6とを使用して、露光タイミングの位相の数を増やす時の露光シーケンスを説明する。図5は実施の形態1に係る測距装置101の固体撮像素子105の画素の別の構成例を示す。図5が図1と違うのは、図1における一つの画素20が、図5における画素20LU、画素20LL、画素20RU、画素20RLの4種類に対応していることである。これらの画素20で記号が同じものは別々で露光制御が出来ること示す。つまり、例えば画素20LUのみ他の画素(画素20LL、画素20RL、画素20RU)と露光タイミングを別々にするといったことができる。
 図6は図5に示される画素20の構成例を用いた時の露光シーケンス3-1~3-4を示す図である。図6に示されるように、画素LUと画素RUの露光タイミング(図6の(a)の露光シーケンス3-1および図6の(b)の露光シーケンス3-2)と、画素LLと画素RLの露光タイミング(図6の(c)の露光シーケンス3-3および図6の(d)の露光シーケンス3-4)は別々となる。
 露光シーケンス3-1(図6の(a))と露光シーケンス3-2(図6の(b))は画素LUと画素RUのみ露光を行なう。露光シーケンス3-1(図6の(a))の露光タイミングは露光シーケンス2-1(図3の(a))と同じであり、露光シーケンス3-2(図6の(b))の露光タイミングは露光シーケンス2-2(図3の(b))と同じである。
 露光シーケンス3-3(図6の(c))と露光シーケンス3-4(図6の(d))は画素LUと画素RUのみ露光を行なう。露光シーケンス3-3(図6の(c))は発光制御信号に対して4T遅れたタイミングから1回目の露光を開始する。露光幅は発光制御信号と同じT期間で、1回目の露光期間が終了後、T期間露光停止してから、2回目の露光が開始する。露光シーケンス3-4(図6の(d))は発光制御信号に対して5T遅れたタイミングから1回目の露光を開始する。露光幅は発光制御信号と同じT期間で、1回目の露光期間が終了後、T期間露光停止してから、2回目の露光が開始する。
 画素LUと画素LLとを距離画像の1つの画素に割り当て、画素RUと画素RLとを距離画像の1つの画素に割り当てることで、1つの発光制御信号に対して8種類の露光位相で露光が可能になる。
 一定期間の露光が終了すると、受光部104は固体撮像素子105の電荷蓄積部22で蓄積された信号電荷をA/D変換して、電荷蓄積部22ごとのデジタル信号として、データ処理部106に出力する。それが終わると、次のフレームに備えて、図示していないグローバルリセット信号により全ての電荷蓄積部22の信号電荷はゼロになる。
 データ処理部106は受光部104からのデジタル信号を受信する。選択部107では距離画像の画素ごとに割り当てられた電荷蓄積部22から反射光を含む電荷蓄積部22を少なくとも2つと、反射光を含まない電荷蓄積部22を1つ以上選択する。演算部108は距離画像の画素ごとに選択部107が選択した電荷蓄積部22のデジタル信号を用いて、対象物との距離を示す距離データ(つまり、第1の距離データ)を算出する。
 ここで距離画像の距離データの算出方法を説明する。発光制御信号と露光制御信号との関係は図4のとおりとし、露光制御信号Ax(xは自然数)での露光で得られた信号電荷をSxパケット、Sxパケットの信号レベルをSxと記す。選択部107が反射光を含むと判定した電荷蓄積部22がどの露光位相(下記のRange1~3のいずれ)かに応じて、距離データの計算式が変わる。
 Range1(露光制御信号A1とA2の期間に反射光を含むと判定した場合):
 D=c*T*(1/2)*(S2-BG2)/(S1-BG1+S2-BG2+PH)
 Range2(露光制御信号A2とA3の期間に反射光を含むと判定した場合):
 D=c*T*(1/2)*((S3-BG2)/(S2-BG1+S3-BG2)+PH+1)
 Range3(露光制御信号A3とA4の期間に反射光を含むと判定した場合):
 D=c*T*(1/2)*((S4-BG2)/(S3-BG1+S4-BG2)+PH+2)
 ここで、D:測距値(Depth)、c:光速(=2.99792458*10^8[m/s])、T:パルス幅、BG1およびBG2:背景光の信号レベル、PH:発光開始タイミングと露光開始タイミングとの時間差である。BG1およびBG2は反射光を含むと判定した2つのパケット以外のパケットの信号とし、BG1=BG2としてもよい。
 次に図7を使用して間接TOFで課題となっているマルチパス課題について説明する。図7は、間接TOF方式の測距装置101において、マルチパスによる距離誤差を生むメカニズムを示した図である。図7の(a)は測距装置101と被写体OBJおよび被写体OBJ2を真上から見た図である。測距装置101の発光部102は被写体OBJおよび被写体OBJ2を含む範囲で光を発光する。光は被写体OBJで反射し、返ってきた反射光を露光することで正しい距離が測定できる。このルートはダイレクトパス(DP)と呼ばれる。一方、図7の(a)のケースでは被写体OBJ2で一次反射した光が被写体OBJで二次反射し、ダイレクトパスとは異なるルートを通って測距装置101に返ってくる光が存在する。これがマルチパス(MP)と呼ばれ、ダイレクトパスよりも光が通るルートが長い。
 図7の(b)に露光タイミング図を示す。ダイレクトパス光と比較すると、マルチパス光はルートが長い分、遅く返ってくることになる。そのため、ダイレクトパス光のみのS1:S2の比率と(図7の(b)における「DPのみ」参照)、ダイレクトパス光とマルチパス光の合算時のS1:S2の比率(図7の(b)における「DP+MP」参照)は異なり、S2の割合が増えることになる。これにより、距離データは実際の距離よりも遠くに算出されるようになる。
 間接TOFでは信号の比率で測距値を計算していることから、マルチパス光により遠くに算出されたケースと、単純に被写体が遠い距離にあったケースの見分けはつかない。またマルチパス源となる被写体はケースによって1つとは限らず、かつ被写体ごとに反射特性が異なることから、周囲画素の信号レベルを見て距離誤差を補正することも困難である。そこでいかにマルチパス光の影響を受けることなく受光するような露光制御が必要になってくる。
 図8ではマルチパスの受光量を減らすための基本的な考え方を示す図である。図8では、露光制御信号A1と露光制御信号A2のペアの露光開始タイミングの違いによるマルチパス光の受光量を図で表している。図8に示されるように、受光量に占める背景光、反射光、および、マルチパス光の成分が異なるハッチングで示されている。
 露光制御信号A1と露光制御信号A2のペアと、露光制御信号A1´と露光制御信号A2´のペアについて、マルチパス光の受光量を比較すると、後者のペアの方がマルチパス光の受光量が少ないことが分かる。つまり発光制御信号を基準として、露光位相が前になっている(つまり、時間が早い)露光制御信号A1´と露光制御信号A2´のペアで測距データを算出した方がマルチパス光の影響を抑制することができ、より正解に近い測距データを算出できるということになる。
 図9を用いて、本実施の形態の露光制御について説明する。図9は、実施の形態1に係る測距装置101において8位相の露光制御信号を用いた露光制御の1つ目の例を示す波形図である。図9では1回の発光制御信号に対して露光制御信号が8位相存在するが、それぞれの露光制御信号がT/2だけ位相がずれている。測距演算に使用する2つパケットのペアは、露光制御信号の位相差がTである必要があることから、測距演算に使用できる露光制御信号の組み合わせ(群)としては、露光制御信号A1・A3・A5・A7の群と露光制御信号A2・A4・A6・A8の群となる。
 図9は一例として反射光(ダイレクトパス)と反射光(マルチパス)のタイミングを記載しているが、ポイントは反射光(ダイレクトパス)を露光する露光制御信号が4つ(各群で2つずつ)存在するという点である。図9では露光制御信号A1と露光制御信号A3の位相、および露光制御信号A2と露光制御信号A4の位相で反射光(ダイレクトパス)を露光する。ここでマルチパスの受光量を比較すると、反射光(マルチパス)とのタイミングから、露光制御信号A1と露光制御信号A3のペアの方がマルチパスの受光量が少ないことがわかる。このため選択部107はS1パケットとS3パケットを選択する。
 図10を用いて選択部107のパケット選択について説明する。図10は、図9に示される露光制御の場合における実施の形態1に係る測距装置101によるパケット選択の一例を示す図である。より詳しくは、図10の(a)は、S1パケット~S8パケットの大きさ(信号レベル)を示す。図10の(b)は、選択される露光制御信号の群を説明する表を示す。
 選択部107では露光位相がT期間ずつずれている露光制御信号の群ごとにパケットを選択する。まず(1)信号レベルが最も大きいパケットを見つける。図10の(a)から分かるように、露光制御信号A1・A3・A5・A7の群ではS3信号が最も大きいので、S3パケットを選択し、露光制御信号A2、A4、A6、A8の群ではS2信号が最も信号レベルが大きいので、S2パケットを選択する(図10の(b))。
 次に、(2)上記(1)で選択したパケットに対して、位相が1Tだけずれている2つのパケットについて、信号レベルが大きい方を選択する。図10の(a)から分かるように、露光制御信号A1・A3・A5・A7の群ではS1信号がそれに相当するのでS1パケットを選択し、露光制御信号A2、A4、A6、A8の群ではS4のみ該当するのでS4パケットを選択する(図10の(b))。
 そして、上記(1)および(2)で選択した反射光を含むパケットのペア(S1パケットとS3パケットのペア、S2パケットとS4パケットのペア)の中で、位相が最も早い露光制御信号を含むパケットのペアを選択する。今回のケースでは、S1パケットの位相が最も早いので、S1パケットとS3パケットのペアが選択される(図10の(b))。
 なお、本実施の形態では、発光制御信号のパルス幅の1/2に相当する位相だけずれた2組の露光制御信号の群が用いられたが、このような値に限定されるものではなく、例えば、発光制御信号のパルス幅の1/4に相当する位相だけずれた4組の露光制御信号の群が用いられてもよい。
 よって、選択部107による反射光を含む信号電荷(パケット)の判定は、一般化すると、次の通りになる。つまり、選択部107は、第N位相の露光制御信号と第(N+M)位相の露光制御信号(Mは2以上の自然数)との時間差が一定のパルス幅と同一の時、画素20ごとに、(L*M+1)番目の露光制御信号の群から(L*M+M-1)番目(Lは0以上の整数)の露光制御信号の群それぞれで、(1)露光制御信号での露光で得られた信号電荷のうち最も大きい信号電荷と、(2)上記(1)の信号電荷に対する露光制御信号を第Pの露光制御信号とした時、第(P-M)の露光制御信号での露光で得られた信号電荷と第(P+M)の露光制御信号での露光で得られた信号電荷のうちの大きい方の信号電荷とを、反射光を含む信号電荷と判定する。
 また、背景光のBG信号としては、S5-S8の中の最小値を選択してもよく、同じ露光制御信号の位相の群の中での最小値もしくはそれら2つの最小値を選択してもよい。なおマルチパス光の位相がある程度限定され、反射光を含むと判定したパケットと反射光を含まないと判定した最も位相の早い露光制御信号で露光したパケット(S3、S4、S5)でマルチパス光が露光されると分かっている場合、S5をS3用のBGとして使用してもよい。そうすることで、BG減算処理の中で、S3に入ったマルチパス光の信号成分も減算することが可能になり、よりマルチパスの影響を軽減させることが可能になる。
 つまり、選択部107は、画素20ごとに複数の信号電荷から反射光を含まないと判定した背景光に相当する第3の信号電荷を1つ以上さらに選択し、演算部108は、第1の信号電荷および第2の信号電荷から第3の信号電荷をそれぞれ減算後に第1の距離データを算出してもよい。このとき、選択部107は、第3の信号電荷として、(1)複数の信号電荷の中で最も小さい信号電荷、および、(2)反射光を含む信号電荷の中で発光制御信号を基準として位相が最も後ろの露光制御信号を露光制御信号Aq(qは自然数)とするとき、露光制御信号(q+1)での露光で得られた信号電荷の2つを選択してもよい。
 図11を使用して、本実施の露光制御について、2つ目の例をもとに説明する。図11は、実施の形態1に係る測距装置101において8位相の露光制御信号を用いた露光制御の2つ目の例を示す波形図である。図11の図9に対する違いは、反射光(ダイレクトパス)および反射光(マルチパス)の位相が図9の時と比べてT/2だけ遅い(被写体OBJまでの距離が遠い)点である。図11では露光制御信号A2と露光制御信号A4の位相、および露光制御信号A3と露光制御信号A5の位相で反射光(ダイレクトパス)を露光する。反射光を含むパケットで位相が最も早い露光制御信号を含むパケットのペアはS2パケットとS4パケットである。このため選択部107はS2パケットとS4パケットを使用して測距データを算出する。
 図11での選択部107のパケット選択について、図12を用いて説明する。図12は、図11に示される露光制御の場合における実施の形態1に係る測距装置101によるパケット選択の一例を示す図である。より詳しくは、図12の(a)は、S1パケット~S8パケットの大きさ(信号レベル)を示す。図12の(b)は、選択される露光制御信号の群を説明する表を示す。
 図12のケースでは、図11の図の反射光を選択部107では露光位相が1Tずつずれている露光制御信号の群ごとにパケットを選択する。まず(1)信号レベルが最も大きいパケットを見つける。図12の(a)から分かるように、露光制御信号A1・A3・A5・A7の群ではS3信号が最も大きいので、S3パケットを選択し、露光制御信号A2、A4、A6、A8の群ではS4信号が最も信号レベルが大きいので、S4パケットを選択する(図12の(b))。
 次に、(2)上記(1)で選択したパケットに対して、位相が1Tだけずれている2つのパケットについて、信号レベルが大きい方を選択する。図12の(a)から分かるように、露光制御信号A1・A3・A5・A7の群ではS5信号がそれに相当するのでS5パケットを選択し、露光制御信号A2、A4、A6、A8の群ではS2パケットを選択する(図12の(b))。
 そして、上記(1)および(2)で選択した反射光を含むパケットのペア(S3パケットとS5パケットのペア、S2パケットとS4パケットのペア)の中で、位相が最も早い露光制御信号を含むパケットのペアを選択する。今回のケースでは、S2パケットの位相が最も早いので、S2パケットとS4パケットのペアが選択される(図12の(b))。
 図13は、実施の形態1に係る測距装置101の動作(測距方法)の概要を示すフローチャートである。
 発光露光制御部103は、発光部102に発光制御信号を出力し、1回の露光幅が発光制御信号のパルス幅と同じで、かつ発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を受光部104に出力することで、受光部104から複数の露光制御信号に従った露光で得られた複数の信号電荷を受光部104から出力させる(発光露光制御ステップS10)。
 ここで、複数の露光制御信号は、互いの位相差が一定のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、露光制御信号Nは2つの組み合わせの一方に属し、露光制御信号(N+1)は2つの組み合わせの他方に属し、露光制御信号Nと露光制御信号(N+1)との位相差は、一定のパルス幅未満である。
 次に、データ処理部106の選択部107は、画素20ごとに複数の信号電荷から、距離データの算出に用いられる、少なくとも2つの信号電荷を選択する(選択ステップS11)。
 この選択ステップS11では、より詳しくは、選択部107は、露光制御信号の群ごとに信号レベルが最も大きいものと次に大きいものを選択することで、発光部102から照射された光の反射光を含む2つの信号電荷のペアを選択する(S11a)。そして、選択部107は、反射光を含むと判定した2つの信号電荷のペアから、発光制御信号を基準として最も位相が早い露光制御信号に従った露光で得られた第1の信号電荷と、最も位相が早い露光制御信号との露光開始の位相差が一定のパルス幅と同一となる露光制御信号に従った露光で得られた第2の信号電荷とのペアを選択する(S11b)。
 最後に、選択ステップS11で選択された少なくとも2つの信号電荷を基に、演算部108は、対象物との距離を示す第1の距離データを算出する(演算ステップS12)。
 図9~図13を用いた説明からわかるように、被写体の距離が変わっても、本実施の形態に係る測距装置101は、マルチパスの受光量が少ない組合せの信号で距離データを算出していくので、マルチパスの影響を抑制しつつ、距離レンジを確保することができるという効果を有する。
 以上のように、本実施の形態に係る測距装置101は、対象物との距離を示す距離画像を生成する測距装置であって、一定のパルス幅を持つ発光制御信号に従って間欠発光を行う発光部102と、発光部102に発光制御信号を出力し、1回の露光幅が発光制御信号のパルス幅と同じで、かつ発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を生成する発光露光制御部103と、入射光を信号電荷に変換する光電変換素子21で構成される画素20を二次元状に配列した固体撮像素子105を有し、複数の露光制御信号に従ってそれぞれの露光で得られた複数の信号電荷を出力する受光部104と、画素20ごとに複数の信号電荷から少なくとも2つの信号電荷を選択する選択部107、および、選択部107が選択した少なくとも2つの信号電荷を基に対象物との距離を示す第1の距離データを算出する演算部108を有するデータ処理部106とを備え、複数の露光制御信号は、互いの位相差が発光制御信号のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、露光制御信号Nは2つの組み合わせの一方に属し、露光制御信号(N+1)は2つの組み合わせの他方に属し、露光制御信号Nと露光制御信号(N+1)との位相差は、発光制御信号のパルス幅未満となり、選択部107は、発光部102から照射された光の反射光を含むと判定した複数の信号電荷のうち、発光制御信号を基準として最も位相が早い露光制御信号に従った露光で得られた第1の信号電荷と、最も位相が早い露光制御信号との露光開始の位相差が発光制御信号のパルス幅と同一となる露光制御信号に従った露光で得られた第2の信号電荷とを画素20ごとに選択し、演算部108は、少なくとも第1の信号電荷と第2の信号電荷とから第1の距離データを算出する。
 これにより、複数の露光制御信号には、互いの位相差が発光制御信号のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせが含まれ、その組み合わせのうち、発光制御信号のパルス幅未満で発光制御信号を基準として最も位相が早い露光制御信号に従った露光で得られた第1の信号電荷と、最も位相が早い露光制御信号との露光開始の位相差が発光制御信号のパルス幅と同一となる露光制御信号に従った露光で得られた第2の信号電荷とから、第1の距離データが算出されるので、マルチパス光による影響が少ない信号電荷のペアが用いられて距離データが算出されることとなり、その結果、マルチパス光による測距エラーの影響を軽減し、距離精度の高い測距装置が実現される。
 ここで、発光制御信号は、間欠発光のデューティー比が50%未満であってもよい。また、複数の露光制御信号は、複数のデジタル信号の論理演算で露光タイミングが決まる信号であってもよい。これにより、例えば、画素リセット信号とゲート信号との論理演算の結果で露光期間が定まるタイプの画素を用いた測距が可能になる。
 また、選択部107は、画素20ごとに複数の信号電荷から反射光を含まないと判定した第3の信号電荷を1つ以上さらに選択し、演算部108は、第1の信号電荷および第2の信号電荷から第3の信号電荷をそれぞれ減算後に第1の距離データを算出してもよい。これにより、背景光が除去された信号電荷を用いて距離データが算出されるので、距離精度の高い測距が実現される。
 このとき、選択部107は、第3の信号電荷として、(1)複数の信号電荷の中で最も小さい信号電荷、および、(2)反射光を含む信号電荷の中で発光制御信号を基準として位相が最も後ろの露光制御信号を露光制御信号Aq(qは自然数)とするとき、露光制御信号(q+1)での露光で得られた信号電荷の2つを選択してもよい。これにより、よりマルチパス光の影響が少ない背景光を除去できる可能性が高くなり、距離精度が向上され得る。
 また、選択部107は、第N位相の露光制御信号と第(N+M)位相の露光制御信号(Mは2以上の自然数)との時間差が発光制御信号のパルス幅と同一の時、画素20ごとに、(L*M+1)番目の露光制御信号の群から(L*M+M-1)番目(Lは0以上の整数)の露光制御信号の群それぞれで、(1)露光制御信号での露光で得られた信号電荷のうち最も大きい信号電荷と、(2)上記(1)の信号電荷に対する露光制御信号を第Pの露光制御信号とした時、第(P-M)の露光制御信号での露光で得られた信号電荷と第(P+M)の露光制御信号での露光で得られた信号電荷のうちの大きい方の信号電荷とを、反射光を含む信号電荷と判定してもよい。
 これにより、発光制御信号のパルス幅の1/2に相当する位相だけずれた2組の露光制御信号の群が用いられる場合だけでなく、例えば、発光制御信号のパルス幅の1/4に相当する位相だけずれた4組の露光制御信号の群を用いて、マルチパス光の影響が最も少ない信号電荷のペアを特定し、距離データを算出することができる。
 また、本実施の形態に係る測距方法は、対象物との距離を示す距離画像を生成する測距装置101による測距方法であって、測距装置101は、一定のパルス幅を持つ発光制御信号に従って間欠発光を行う発光部102と、入射光を信号電荷に変換する光電変換素子21で構成される画素20を二次元状に配列した固体撮像素子105を有し、露光制御信号に従った露光で得られた信号電荷を出力する受光部104とを備え、測距方法は、発光部102に発光制御信号を出力し、1回の露光幅が発光制御信号のパルス幅と同じで、かつ発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を受光部104に出力することで、受光部104から複数の露光制御信号に従った露光で得られた複数の信号電荷を受光部104から出力させる発光露光制御ステップS10と、画素20ごとに複数の信号電荷から少なくとも2つの信号電荷を選択する選択ステップS11と、選択ステップS11で選択された少なくとも2つの信号電荷を基に対象物との距離を示す第1の距離データを算出する演算ステップS12とを含み、複数の露光制御信号は、互いの位相差が発光制御信号のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、露光制御信号Nは2つの組み合わせの一方に属し、露光制御信号(N+1)は2つの組み合わせの他方に属し、露光制御信号Nと露光制御信号(N+1)との位相差は、発光制御信号のパルス幅未満となり、選択ステップS11では、発光部102から照射された光の反射光を含むと判定した複数の信号電荷のうち、発光制御信号を基準として最も位相が早い露光制御信号に従った露光で得られた第1の信号電荷と、最も位相が早い露光制御信号との露光開始の位相差が発光制御信号のパルス幅と同一となる露光制御信号に従った露光で得られた第2の信号電荷とを画素20ごとに選択し、演算ステップS12では、少なくとも第1の信号電荷と第2の信号電荷とから第1の距離データを算出する。
 これにより、複数の露光制御信号には、互いの位相差が発光制御信号のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせが含まれ、その組み合わせのうち、発光制御信号のパルス幅未満で発光制御信号を基準として最も位相が早い露光制御信号に従った露光で得られた第1の信号電荷と、最も位相が早い露光制御信号との露光開始の位相差が発光制御信号のパルス幅と同一となる露光制御信号に従った露光で得られた第2の信号電荷とから、第1の距離データが算出されるので、マルチパス光による影響が少ない信号電荷のペアが用いられて距離データが算出されることとなり、その結果、マルチパス光による測距エラーの影響を軽減し、距離精度の高い測距装置が実現される。
 (実施の形態2)
 図14は本実施の形態2の測距装置1301の構成の一例を示す機能ブロック図である。より詳しくは、図14の(a)は、本実施の形態2の測距装置1301の全体構成を示し、図14の(b)は、図14の(a)におけるデータ処理部1306の詳細な構成を示す。
 測距装置1301は、被写体OBJまでの距離を示す距離画像を生成する装置であり、図14の(a)に示されるように、発光部102、発光露光制御部103、受光部104、データ処理部1306で構成される。実施の形態1と同じ部分については、同じ番号を付して、説明を割愛する。図1との違いはデータ処理部1306の処理であり、図14の(b)を使用して説明する。図1の(b)および(c)、図2~図9およびそれを用いた説明は、本実施の形態にも適用される。
 データ処理部1306は選択部1307と演算部1308を含む。実施の形態1の選択部107では露光制御信号の群それぞれで、距離画像の画素ごとに割り当てられた電荷蓄積部22から反射光を含む電荷蓄積部22を2つ選択し、発光制御信号を基準として露光位相が早いパケットを含む方の露光制御信号の群のパケットのみ選択していた。これに対して、本実施の形態の選択部1307は、発光制御信号を基準として露光位相が最も早いパケットを含む方の露光制御信号の群だけでなく、露光位相が2番目に早いパケットを含む方の露光制御信号の群のパケットも選択する。
 演算部1308は、Depth演算部A1309とDepth演算部B1310とDepth合成部1311を含む。選択部1307では露光制御信号の群ごとに反射光を含むデータパケットとBG信号のデータパケットとを選択するので、それを2つのDepth演算部で別々にDepth演算する。Depth演算部Aの出力をDepthデータA、Depth演算部Bの出力をDepthデータBとすると、Depth合成部1311では距離画像の画素ごとにDepthデータAとDepthデータBを1つのDepthデータに合成する。Depth合成方法はDepthデータAもしくはDepthデータBの値を見ながら合成比率を変える方法であっても良いし、DepthデータAとDepthデータBのうち小さい方の合成比率を100%にする方法や、DepthデータAとDepthデータBを50%同士で合成する(つまり、平均値をとる)方法であってもよい。
 図9に示される露光制御の例と図15を用いて、本実施の形態2のパケット選択方法について説明する。図15は、図9に示される露光制御の場合における実施の形態2に係る測距装置1301によるパケット選択の一例を示す図である。より詳しくは、図15の(a)は、S1パケット~S8パケットの大きさ(信号レベル)を示し、図10の(a)と同じ図である。図15の(b)は、本実施の形態で選択される露光制御信号の群を説明する表を示す。
 露光制御信号の位相や反射光の受光タイミングは図9に記載の状態とし、図15を用いて、本実施の形態におけるデータパケットの選択方法について説明する。実施の形態1における選択方法を示す図10の(b)と本実施の形態における選択方法を示す図15の(b)とを比較して分かるように、本実施の形態では、露光制御信号A1・A3・A5・A7の群だけでなく、露光制御信号のA2・A4・A6・A8の群のパケットも選択する点である。図15の(b)に示されるように、本実施の形態では、選択部1307は、露光制御信号A1・A3・A5・A7の群でS1パケットとS3パケットとを第一選択し、露光制御信号A2・A4・A6・A8の群でS2パケットとS4パケットとを第二選択する。そして第一選択されたパケット(第一選択パケット)および第二選択されたパケット(第二選択パケット)の情報を演算部1308に出力する。
 演算部1308では、Depth演算部A1309によって、第一選択パケットからDepthデータAが算出され、Depth演算部B1310によって、第二選択パケットからDepthデータBが算出される。
 図16を使用して、演算部1308のDepth合成方法の一例を示す。図16は、実施の形態2に係る測距装置1301の演算部1308によるDepth合成方法の一例を示す図である。より詳しくは、図16の(a)は第一選択パケットでの演算で得られたDepth(測距値)とその合成比率をグラフに表した図である。つまり、横軸は第一選択パケットでの演算で得られたDepthを表し、縦軸は第一選択パケットで選択したDepthの合成比率(100%の時、合成後Depth=第一選択パケットで演算したDepth)を表す。
 図16の(a)に示されるように、第一選択パケットでの演算で得られたDepthはある一定の距離DE1までは合成比率が100%だが、距離DE1を超えると、第一選択パケットでの演算で得られたDepthと第二選択パケットでの演算で得られたDepthとを任意の比率で合成させる。Depthが距離DE1を超えると第一選択パケットのDepth合成比率は下がり、第一選択パケットが第二選択パケットに切り替わるDepth(距離DE3)の手前の距離DE2で、Depth合成比率が0%になる。
 図16の(b)は第一選択パケットがS1パケットとS3パケットとのペアからS2パケットとS4パケットとのペアに切り替わる際のDepthの変動をグラフにしたものである。真値が実線、一点鎖線が第一選択パケットのS1パケットとS3パケットとで演算して得られたDepth、二点鎖線が第二選択パケットのS2パケットとS4パケットとで演算して得られたDepth、破線が合成後Depthを示す。
 図16の(b)に示されるように、マルチパス光の影響により、いずれのDepthも真値(実線)より遠くに出ており、第一選択パケットでの演算で得られたDepth(一点鎖線)よりも第二選択パケットでの演算で得られたDepth(二点鎖線)の方がDepth誤差は大きいことを表している。被写体OBJまでの距離が距離DIS1の時はS1パケットとS3パケットが第一選択パケットであり、この演算で得られたDepthが100%で合成されている。被写体OBJが徐々に遠くなり、S1パケットとS3パケットとの演算で得られたDepthが距離DE1を超えると、第二選択パケットのS2パケットとS4パケットとの演算で得られたDepthが混じりだす。そしてS1パケットとS3パケットとの演算で得られたDepthが距離DE2になると第二選択パケットのS2パケットとS4パケットとの演算で得られたDepthが100%になる。S1パケットとS3パケットとの演算で得られたDepthがDE3を超えると、S2パケットとS4パケットとが第一選択パケットになるが、その手前でS2パケットとS4パケットとの演算で得られたDepthの合成比率が100%になっていることから、被写体OBJまでの距離の増加に伴って第一選択パケットが切り替わった瞬間もDepthは段差なくスムーズに切り替わることになる。
 もし仮に図16に示すようなDepth合成を実施しなかった場合は、被写体OBJまでの距離の増加に伴って、S1パケットとS3パケットとの演算で得られたDepthからS2パケットとS4パケットとの演算で得られたDepthに切り替わった瞬間にDepth段差が発生することになる。しかし、図16のようなDepth合成をすることで、マルチパスの影響を軽減しつつ、Depth段差のないDepthを出力することができるという効果が生じる。
 なおDepth合成の方法として、図16でDepth段差が発生しないことに主眼を置いたDepth合成方法について説明したが、第一選択パケットでの演算で得られたDepthと第二選択パケットでの演算で得られたDepthのどちらか値の小さい方を選択し続けるという方法でも良い。これにより、最もマルチパスの影響を小さくすることができるという効果が生じる。
 また、第一選択パケットでの演算で得られたDepthと第二選択パケットでの演算で得られたDepthの合成比率50%で合成する(つまり、平均値をとる)という方法もある。これによってマルチパスによるDepth段差をなくしつつ、後段SoC(システム・オン・チップ)の処理量を減らせるといった効果が生じる。
 図17は、実施の形態2に係る測距装置1301の動作(測距方法)の概要を示すフローチャートである。
 発光露光制御部103は、発光部102に発光制御信号を出力し、1回の露光幅が発光制御信号のパルス幅と同じで、かつ発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を受光部104に出力することで、受光部104から複数の露光制御信号に従った露光で得られた複数の信号電荷を受光部104から出力させる(発光露光制御ステップS20)。この発光露光制御ステップS20は、実施の形態1における発光露光制御ステップS10と同じである。
 次に、データ処理部1306の選択部1307は、画素20ごとに複数の信号電荷から、距離データの算出に用いられる、少なくとも2つの信号電荷を選択する(選択ステップS21)。
 この選択ステップS21では、より詳しくは、選択部1307は、露光制御信号の群ごとに信号レベルが最も大きいものと次に大きいものを選択することで、発光部102から照射された光の反射光を含む2つの信号電荷のペアを選択する(S21a)。そして、選択部1307は、反射光を含むと判定した2つの信号電荷のペアから、発光制御信号を基準として最も位相が早い露光制御信号に従った露光で得られた第1の信号電荷と、最も位相が早い露光制御信号との露光開始の位相差が一定のパルス幅と同一となる露光制御信号に従った露光で得られた第2の信号電荷とのペアを第一選択パケットとして選択し、他方を第二選択パケットとして選択する(S21b)。
 次に、Depth演算部A1309は、第一選択パケットから、第1の距離データとして、DepthデータAを算出し、一方、Depth演算部B1310は、第二選択パケットから、第2の距離データとして、DepthデータBを算出する(S22)。
 最後に、演算部1308は、ステップS22で算出されたDepthデータAおよびDepthデータBを合成比率で合成することで、対象物との距離を示す第3の距離データを算出する(S23)。
 これにより、マルチパスの影響を軽減しつつ、被写体OBJまでの距離の増加に伴って、Depth段差のないDepthを出力することができる。
 以上のように、本実施の形態に係る測距装置1301によれば、選択部1307は、反射光を含むと判定した信号電荷のうち、2番目に位相が早い露光制御信号に従った露光で得られた第4の信号電荷と、2番目に位相が早い露光制御信号との露光開始の位相差が発光制御信号のパルス幅と同一となる露光制御信号に従った露光で得られた第5の信号電荷とを選択し、演算部1308はさらに第4の信号電荷と第5の信号電荷とから対象物との距離を示す第2の距離データを算出し、第1の距離データと第2の距離データとを合成することにより、対象物との距離を示す第3の距離データを算出する。
 これにより、2組の信号電荷のペアを用いて算出される2つの距離データを合成することで最終の距離データが算出されるので、実施の形態1と同様に、マルチパス光の影響が軽減されるだけでなく、算出される最終の距離データが、測距される距離に依存して大きく値が変化するようなDepth段差が抑制される。
 また、演算部1308は、画素20ごとに、第1の距離データの距離によって、第1の距離データと第2の距離データとを合成する際の合成比率を変えて第3の距離データを算出する。これにより、第1の距離データと第2の距離データとの合成比率を徐々に変化させることが可能となり、測距される距離に応じた第1の距離データから第2の距離データへの切り替わりが連続的となる。
 ここで、演算部1308は、画素20ごとに、第1の距離データと第2の距離データのどちらか小さい方の合成比率を100%として、第3の距離データを算出してもよい。これにより、測距される距離によっては、マルチパス光の影響が少ない信号電荷のペアだけを用いた距離データが算出され、高い精度による測距が確保される。
 また、演算部1308は、画素20ごとに、第1の距離データと第2の距離データとの平均値で、第3の距離データを算出してもよい。これにより、第1の距離データと第2の距離データとの合成処理が簡素化され、マルチパス光の影響への軽減と、回路規模の縮小化が、バランスよく行われる。
 以上、本開示に係る測距装置および測距方法について、実施の形態1および2に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を各実施の形態に施したものや、各実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲内に含まれる。
 例えば、上記実施の形態では、反射光の信号電荷から背景光の信号レベルを減算したが、必ずしもこの減算処理は必要ではない。背景光が少ない環境下では、背景光による影響を無視できる場合があるからである。
 また、上記実施の形態2では、演算部1308は、2つのDepth演算部を有したが、3以上の露光制御信号の群が用いられて露光される場合には、3以上のDepth演算部を有し、それらから出力される3以上のDepthデータを合成してもよい。例えば、発光制御信号のパルス幅の1/4に相当する位相だけずれた4組の露光制御信号の群が用いられて露光される場合には、4つのDepth演算部を有し、それらから出力される4つのDepthデータを合成してもよい。これにより、よりマルチパス光の影響を軽減し、よりDepth段差を抑制できる。
 また、本開示に係る測距方法に含まれる全部又は一部のステップは、それらのステップを含むプログラムで実現されてもよいし、そのプログラムが記録されたDVD等の非一時的でコンピュータ読み取り可能な記録媒体で実現されてもよい。
 本開示の係る測距装置はマルチパスの影響を軽減させた距離データを出力できるので、例えばモノや人物などの被写体がFOV(視野)内に複数存在するようなシチュエーションにおいて高精度で測距を行う測距装置として利用可能である。
 20、20LU、20RU、20LL、20RL、LU、RU、LL、RL 画素
 21 光電変換素子
 22、22A~22D 電荷蓄積部
 101、1301 測距装置
 102 発光部
 103 発光露光制御部
 104 受光部
 105 固体撮像素子
 106、1306 データ処理部
 107、1307 選択部
 108、1308 演算部
 1309 Depth演算部A
 1310 Depth演算部B
 1311 Depth合成部
 OBJ、OBJ2 被写体

Claims (11)

  1.  対象物との距離を示す距離画像を生成する測距装置であって、
     一定のパルス幅を持つ発光制御信号に従って間欠発光を行う発光部と、
     前記発光部に前記発光制御信号を出力し、1回の露光幅が前記発光制御信号のパルス幅と同じで、かつ前記発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を生成する発光露光制御部と、
     入射光を信号電荷に変換する光電変換素子で構成される画素を二次元状に配列した固体撮像素子を有し、前記複数の露光制御信号に従ってそれぞれの露光で得られた複数の信号電荷を出力する受光部と、
     前記画素ごとに前記複数の信号電荷から少なくとも2つの信号電荷を選択する選択部、および、前記選択部が選択した前記少なくとも2つの信号電荷を基に前記対象物との距離を示す第1の距離データを算出する演算部を有するデータ処理部とを備え、
     前記複数の露光制御信号は、互いの位相差が前記一定のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、前記発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、前記露光制御信号Nは前記2つの組み合わせの一方に属し、露光制御信号(N+1)は前記2つの組み合わせの他方に属し、前記露光制御信号Nと露光制御信号(N+1)との位相差は、前記一定のパルス幅未満となり、
     前記選択部は、前記発光部から照射された光の反射光を含むと判定した複数の前記信号電荷のうち、前記発光制御信号を基準として最も位相が早い前記露光制御信号に従った露光で得られた第1の信号電荷と、前記最も位相が早い前記露光制御信号との露光開始の位相差が前記一定のパルス幅と同一となる前記露光制御信号に従った露光で得られた第2の信号電荷とを前記画素ごとに選択し、
     前記演算部は、少なくとも前記第1の信号電荷と前記第2の信号電荷とから前記第1の距離データを算出する、
     測距装置。
  2.  前記発光制御信号は、間欠発光のデューティー比が50%未満である、
     請求項1に記載の測距装置。
  3.  前記複数の露光制御信号は、複数のデジタル信号の論理演算で露光タイミングが決まる信号である、
     請求項2に記載の測距装置。
  4.  前記選択部は、前記画素ごとに前記複数の信号電荷から前記反射光を含まないと判定した第3の信号電荷を1つ以上さらに選択し、
     前記演算部は、前記第1の信号電荷および前記第2の信号電荷から前記第3の信号電荷をそれぞれ減算後に前記第1の距離データを算出する、
     請求項2に記載の測距装置。
  5.  前記選択部は、前記第3の信号電荷として、(1)前記複数の信号電荷の中で最も小さい信号電荷、および、(2)前記反射光を含む前記信号電荷の中で前記発光制御信号を基準として位相が最も後ろの露光制御信号を露光制御信号Aq(qは自然数)とするとき、露光制御信号(q+1)での露光で得られた信号電荷の2つを選択する、
     請求項4に記載の測距装置。
  6.  前記選択部は、第N位相の露光制御信号と第(N+M)位相の露光制御信号(Mは2以上の自然数)との時間差が前記一定のパルス幅と同一の時、前記画素ごとに、(L*M+1)番目の露光制御信号の群から(L*M+M-1)番目(Lは0以上の整数)の露光制御信号の群それぞれで、(1)前記露光制御信号での露光で得られた信号電荷のうち最も大きい信号電荷と、(2)上記(1)の前記信号電荷に対する前記露光制御信号を第Pの露光制御信号とした時、第(P-M)の露光制御信号での露光で得られた信号電荷と第(P+M)の露光制御信号での露光で得られた信号電荷のうちの大きい方の信号電荷とを、反射光を含む信号電荷と判定する、
     請求項1~3のいずれか一項に記載の測距装置。
  7.  前記選択部は、前記反射光を含むと判定した信号電荷のうち、2番目に位相が早い露光制御信号に従った露光で得られた第4の信号電荷と、前記2番目に位相が早い露光制御信号との露光開始の位相差が前記一定のパルス幅と同一となる露光制御信号に従った露光で得られた第5の信号電荷とを選択し、
     前記演算部はさらに前記第4の信号電荷と前記第5の信号電荷とから前記対象物との距離を示す第2の距離データを算出し、前記第1の距離データと前記第2の距離データとを合成することにより、前記対象物との距離を示す第3の距離データを算出する、
     請求項6に記載の測距装置。
  8.  前記演算部は、前記画素ごとに、前記第1の距離データの距離によって、前記第1の距離データと前記第2の距離データとを合成する際の合成比率を変えて前記第3の距離データを算出する、
     請求項7に記載の測距装置。
  9.  前記演算部は、前記画素ごとに、前記第1の距離データと前記第2の距離データのどちらか小さい方の合成比率を100%として、前記第3の距離データを算出する、
     請求項7に記載の測距装置。
  10.  前記演算部は、前記画素ごとに、前記第1の距離データと前記第2の距離データとの平均値で、前記第3の距離データを算出する
     請求項7に記載の測距装置。
  11.  対象物との距離を示す距離画像を生成する測距装置による測距方法であって、
     前記測距装置は、
     一定のパルス幅を持つ発光制御信号に従って間欠発光を行う発光部と、
     入射光を信号電荷に変換する光電変換素子で構成される画素を二次元状に配列した固体撮像素子を有し、露光制御信号に従った露光で得られた信号電荷を出力する受光部とを備え、
     前記測距方法は、
     前記発光部に前記発光制御信号を出力し、1回の露光幅が前記発光制御信号のパルス幅と同じで、かつ前記発光制御信号を基準とする露光開始タイミングである位相が互いに異なる複数の露光制御信号を前記受光部に出力することで、前記受光部から前記複数の露光制御信号に従った露光で得られた複数の信号電荷を前記受光部から出力させる発光露光制御ステップと、
     前記画素ごとに前記複数の信号電荷から少なくとも2つの信号電荷を選択する選択ステップと、
     前記選択ステップで選択された前記少なくとも2つの信号電荷を基に前記対象物との距離を示す第1の距離データを算出する演算ステップとを含み、
     前記複数の露光制御信号は、互いの位相差が前記一定のパルス幅と同一となる複数の露光制御信号からなる2つの組み合わせを含み、かつ、前記発光制御信号を基準として時間が早い順にN番目(Nは自然数)の露光制御信号を露光制御信号Nとした時、前記露光制御信号Nは前記2つの組み合わせの一方に属し、露光制御信号(N+1)は前記2つの組み合わせの他方に属し、前記露光制御信号Nと露光制御信号(N+1)との位相差は、前記一定のパルス幅未満となり、
     前記選択ステップでは、前記発光部から照射された光の反射光を含むと判定した複数の前記信号電荷のうち、前記発光制御信号を基準として最も位相が早い前記露光制御信号に従った露光で得られた第1の信号電荷と、前記最も位相が早い前記露光制御信号との露光開始の位相差が前記一定のパルス幅と同一となる前記露光制御信号に従った露光で得られた第2の信号電荷とを前記画素ごとに選択し、
     前記演算ステップでは、少なくとも前記第1の信号電荷と前記第2の信号電荷とから前記第1の距離データを算出する、
     測距方法。
PCT/JP2023/014003 2022-04-13 2023-04-04 測距装置および測距方法 WO2023199804A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-066462 2022-04-13
JP2022066462 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023199804A1 true WO2023199804A1 (ja) 2023-10-19

Family

ID=88329609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014003 WO2023199804A1 (ja) 2022-04-13 2023-04-04 測距装置および測距方法

Country Status (1)

Country Link
WO (1) WO2023199804A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249673A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 測距装置、測距方法及び測距システム
JP2016017799A (ja) * 2014-07-07 2016-02-01 株式会社デンソー 光飛行型測距装置
WO2019188348A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 距離情報取得装置、マルチパス検出装置およびマルチパス検出方法
WO2020196087A1 (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 距離測定装置および画像生成方法
US20210080588A1 (en) * 2019-07-29 2021-03-18 Shenzhen GOODIX Technology Co., Ltd. 3d image sensor and related 3d image sensing module and hand-held device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249673A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 測距装置、測距方法及び測距システム
JP2016017799A (ja) * 2014-07-07 2016-02-01 株式会社デンソー 光飛行型測距装置
WO2019188348A1 (ja) * 2018-03-29 2019-10-03 パナソニックIpマネジメント株式会社 距離情報取得装置、マルチパス検出装置およびマルチパス検出方法
WO2020196087A1 (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 距離測定装置および画像生成方法
US20210080588A1 (en) * 2019-07-29 2021-03-18 Shenzhen GOODIX Technology Co., Ltd. 3d image sensor and related 3d image sensing module and hand-held device

Similar Documents

Publication Publication Date Title
JP6741680B2 (ja) 撮像装置、およびそれに用いられる固体撮像素子
JP6676866B2 (ja) 測距撮像装置及び固体撮像素子
US11448757B2 (en) Distance measuring device
WO2017085916A1 (ja) 撮像装置、及びそれに用いられる固体撮像素子
JP6286677B2 (ja) 測距システム、及び撮像センサ
KR101711061B1 (ko) 깊이 추정 장치를 이용한 깊이 정보 추정 방법
US10073164B2 (en) Distance-measuring/imaging apparatus, distance measuring method of the same, and solid imaging element
WO2017022152A1 (ja) 測距撮像装置、及び、固体撮像装置
JP6304567B2 (ja) 測距装置及び測距方法
US20220082698A1 (en) Depth camera and multi-frequency modulation and demodulation-based noise-reduction distance measurement method
TWI780462B (zh) 距離影像攝像裝置及距離影像攝像方法
US11828850B2 (en) 3D image sensor and related 3D image sensing module and hand-held device
WO2019054099A1 (ja) 固体撮像装置、及びそれを備える撮像装置
CN112114328B (zh) 飞时测距装置
JP2020148682A (ja) 距離測定装置及びスキュー補正方法
WO2023199804A1 (ja) 測距装置および測距方法
JP2020003250A (ja) 距離計測装置
WO2021107036A1 (ja) 測距撮像装置
WO2024024744A1 (ja) 距離計測装置及び距離計測方法
WO2023153375A1 (ja) 距離計測装置及び距離計測方法
JP2023147558A (ja) 距離画像撮像装置、及び距離画像撮像方法
JP2013174446A (ja) 3次元情報検出装置および3次元情報検出方法
TWI734079B (zh) 影像感測系統及其多功能影像感測器
WO2023234253A1 (ja) 距離画像撮像装置、及び距離画像撮像方法
US20240192335A1 (en) Distance image capturing device and distance image capturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788223

Country of ref document: EP

Kind code of ref document: A1