WO2023198222A1 - 一种具有膨胀储液装置的三联供热泵机组 - Google Patents

一种具有膨胀储液装置的三联供热泵机组 Download PDF

Info

Publication number
WO2023198222A1
WO2023198222A1 PCT/CN2023/093078 CN2023093078W WO2023198222A1 WO 2023198222 A1 WO2023198222 A1 WO 2023198222A1 CN 2023093078 W CN2023093078 W CN 2023093078W WO 2023198222 A1 WO2023198222 A1 WO 2023198222A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid storage
expansion
heat exchanger
storage device
interface
Prior art date
Application number
PCT/CN2023/093078
Other languages
English (en)
French (fr)
Inventor
肖皓斌
叶小平
Original Assignee
广州瑞姆节能设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州瑞姆节能设备有限公司 filed Critical 广州瑞姆节能设备有限公司
Publication of WO2023198222A1 publication Critical patent/WO2023198222A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the utility model relates to the technical field of heat pump units, in particular to a heat pump unit with a heat recovery function or a heat pump unit with a trigeneration function.
  • heat pump units with heat recovery function or air source heat pump systems with trigeneration function mainly have the following problems:
  • Common heat recovery heat pump systems require manual pre-setting of function priorities, which is very inconvenient to use.
  • Common heat recovery heat pump systems usually have three functional modes: cooling, heating, and heat recovery.
  • three heat exchangers: condenser, evaporator, and total heat recovery are usually installed in the system, and There are two four-way reversing valves.
  • the total heat recovery device and the condenser are installed in parallel and connected to the refrigerant pipeline. During operation, one of the four-way reversing valves is relied on to carry out the communication between the total heat recovery device and the condenser.
  • the total heat recovery device is connected in parallel with the condenser and then connected in series with the evaporator in the refrigerant pipeline.
  • another four-way reversing valve is used to switch functions between the evaporator and the condenser or between the evaporator and the heat recovery device.
  • the structure of this common full heat recovery air source heat pump system determines that it is very difficult to convert between modes. It requires manual pre-setting of a certain function as a priority level. The system can only meet the functional conditions set as a priority level, and Another functional condition cannot be met, which makes it very inconvenient for users and affects the customer's use effect;
  • This utility model is to solve the above problems by designing a triple heat pump unit with an expansion liquid storage device, which solves the existing technical problems such as poor refrigerant circulation volume adjustment ability, inconvenient use, and poor reliability. .
  • a triple heat pump unit with an expansion liquid storage device including a compressor, a heat recovery device, a four-way reversing valve, an air source heat exchanger, a first throttling member, Using side heat exchanger and gas-liquid separator, the inlet of the heat recovery device is connected to the exhaust port of the compressor.
  • the four-way reversing valve has four interfaces D, C, S, and E.
  • the outlet of the recycler is connected to the D interface of the four-way reversing valve, the inlet of the air source heat exchanger is connected to the C interface or E interface of the four-way reversing valve, and the outlet of the air source heat exchanger is in turn connected to the first
  • the throttle and the use-side heat exchanger are connected.
  • the outlet of the use-side heat exchanger is connected to the E interface or C interface of the four-way reversing valve.
  • the inlet of the gas-liquid separator is connected to the S interface of the four-way reversing valve.
  • the outlet of the gas-liquid separator is connected to the suction port of the compressor.
  • the liquid storage device with an expansion liquid storage function is a single-tube type liquid storage device with an expansion liquid storage function.
  • the single-tube type liquid storage device has an expansion liquid storage function.
  • the liquid container is composed of a shell, a refrigerant pipe a, a built-in expansion air bag and a pressure setting valve of the air bag.
  • the single pipe type liquid receiver with expansion liquid storage function is connected to the first throttling member and the use side through the refrigerant pipe a. heat exchange Connect the pipes between the devices.
  • the liquid storage device with the expansion liquid storage function is a double pipe type liquid storage device with the expansion liquid storage function.
  • the double pipe type liquid storage device with the expansion liquid storage function is a single pipe type liquid storage device with the expansion liquid storage function.
  • a refrigerant pipe b is added, the refrigerant pipe a is connected to the interface of the first throttling member, and the refrigerant pipe b is connected to the interface of the use-side heat exchanger.
  • the first throttling component is replaced with a throttling component.
  • the throttling component mainly includes a second throttling component, a third throttling component, a first one-way valve, a second one-way valve, a second
  • the throttling member and the first one-way valve are connected in series on one set of pipes, and the third throttling member and the second one-way valve are connected in series on another set of pipes.
  • the flow directions of the one-way valves on the two sets of pipes are opposite to each other. Then connect the two sets of tubes together in parallel, and then merge the two ends into one interface.
  • a triple heat pump unit with an expansion liquid storage device manufactured using the technical solution of the present utility model has five functional modes: cooling, heating, hot water heating, cooling and hot water, and heating and hot water. It realizes cooling and heating.
  • An all-in-one heating and hot water three-in-one machine it can well solve the technical problems of similar known technologies such as few functions, the need to pre-set a certain function priority level, very inconvenient use, and poor reliability, and improve the efficiency of air source heat pump systems.
  • This device has only one four-way reversing valve and contains three types of heat exchangers, including
  • the heat recovery device is installed between the compressor exhaust pipe and the four-way reversing valve.
  • the gaseous refrigerant discharged from the compressor needs to first flow through the heat recovery device and then enter the four-way valve. Therefore, whether the heat pump system can produce hot water only requires running or stopping the water pump on the heat recovery device waterway. There is no need to set a certain function priority level in advance.
  • the liquid reservoir has a built-in expansion air bag, and the gas pressure in the expansion air bag is preset to a pressure value between the condensation pressure and evaporation pressure of the heat pump unit.
  • the characteristics of the refrigerant flow direction in the mode are different.
  • the liquid reservoir is exactly after throttling or before throttling.
  • the gas pressure in the expansion bladder is different from the shell
  • the refrigerant storage volume in the reservoir is adjusted through the expansion or contraction of the expansion air bag, so that the heat pump system can obtain a more appropriate refrigerant circulation volume in different working modes. , improve unit performance, reduce the risk of compressor liquid return damage, and improve the reliability of the heat pump system.
  • Figure 1 An exploded view of a triple heat pump unit with an expansion liquid storage device according to the present utility model.
  • Figure 2 Schematic diagram of a triple heat pump unit with an expansion liquid storage device (including a single-tube type liquid storage device with an expansion liquid storage function) according to the utility model.
  • Figure 3 Schematic diagram of a triple heat pump unit with an expansion liquid storage device (including a liquid storage device with double pipes and an expansion liquid storage function) according to the utility model.
  • Figure 4 Schematic diagram of a triple heat pump unit with an expansion liquid storage device (including a single-tube type liquid storage device with an expansion liquid storage function and a throttling assembly) according to the utility model.
  • Figure 5 Schematic diagram of a triple heat pump unit with an expansion liquid storage device (including a double-pipe type liquid storage device with an expansion liquid storage function and a throttling assembly) according to the utility model.
  • Figure 6 Structural diagram of the single-pipe type liquid reservoir with expansion liquid storage function according to the present utility model.
  • Figure 7 Structural diagram of the double pipe type liquid reservoir with expansion liquid storage function according to the present utility model.
  • Figure 8 Structural diagram of the throttling assembly according to the present utility model.
  • a triple heat pump unit with an expansion liquid storage device includes a compressor 1, a heat recovery device 2, a four-way reversing valve 3, an air Source heat exchanger 4, first throttling member 5, use side heat exchanger 6, gas-liquid separator 7, the inlet of the heat recovery device 2 is connected to the exhaust port of the compressor 1, and the four-way reversal There are four interfaces D, C, S, and E on the valve 3.
  • the outlet of the heat recovery device 2 is connected to the D interface of the four-way reversing valve 3.
  • the inlet of the air source heat exchanger 4 is connected to the four-way reversing valve.
  • the C interface (or E interface) of the valve 3 is connected (it should be noted that the C interface and the E interface of the four-way reversing valve 3 can be used interchangeably according to the designer's habits).
  • the outlet of the air source heat exchanger 4 is connected to the outlet of the air source heat exchanger 4 in sequence.
  • the throttling member 5 is connected to the use-side heat exchanger 6.
  • the outlet of the use-side heat exchanger 6 is connected to the E interface (or C interface) of the four-way reversing valve 3.
  • the inlet of the gas-liquid diverter is connected to the four-way reversing valve 3. It is connected to the S interface of the reversing valve 3, and the outlet is connected to the suction port of the compressor 1.
  • the liquid reservoir 8 with an expansion liquid storage function is a single pipe.
  • a type of liquid reservoir with an expansion liquid storage function (Fig. 6) or a double pipe type liquid reservoir with an expansion liquid storage function (Fig. 7).
  • the single pipe type liquid reservoir with an expansion liquid storage function is composed of a housing 8 -1. It is composed of refrigerant pipe a 8-2, built-in expansion air bag 8-3 and air bag pressure setting valve 8-4.
  • the single pipe type liquid receiver with expansion liquid storage function is connected through the refrigerant pipe a 8-2.
  • the double-pipe type liquid receiver with expansion liquid storage function is based on the single-pipe type and adds a refrigerant pipe b 8- 5.
  • Refrigerant nozzle a 8-2 and refrigerant nozzle b 8-5 are respectively connected to the first throttling piece 5 interface and the use side heat exchanger 6 interface.
  • throttling piece assembly mainly including the second section
  • the flow piece 5-1, the third throttling piece 5-2, the one-way valve 5-3, the one-way valve 5-4, the second throttling piece 5-1 and the one-way valve 5-3 are connected in series on a set of pipes
  • the third throttling member 5-2 and the one-way valve 5-4 are connected in series on another set of pipes.
  • the flow directions of the one-way valve 5-3 and the one-way valve 5-4 on the second set of pipes are opposite to each other, and then Connect the two sets of tubes together in parallel, and then merge the two ends into one interface.
  • the liquid refrigerant absorbs the heat from the user end in the user-side heat exchanger. Then it becomes a gaseous refrigerant.
  • the gaseous refrigerant then enters the four-way reversing valve through the E interface of the four-way reversing valve, flows out from the S interface of the four-way reversing valve, enters the gas-liquid diverter 7, and then passes through the suction pipe of the compressor.
  • the heat pump system can also activate the heat recovery device 2 to absorb the gaseous refrigerant at the exhaust end of the compressor according to the user's preset control requirements. Part of the heat is used to generate sanitary hot water for users to use; during this working mode, the heat recovery device 2 plays the role of all or part of the condenser in the system, and the air source heat exchanger is stopped or only functions as part of the condenser.
  • the use side heat exchanger 6 acts as an evaporator.
  • the gaseous refrigerant is discharged through the exhaust pipe of the compressor 1, flows through the heat recovery device 2, and then enters the four-way from the D pipe of the four-way reversing valve 3. reversing valve; and then flows into the user-side heat exchanger 6 through the E interface of the four-way reversing valve.
  • the refrigerant provides condensation heat to the user's heating end in the user-side heat exchanger and becomes liquid refrigerant.
  • the liquid refrigerant flows from the user-side heat exchanger to the user's heating end.
  • the side heat exchanger After flowing out of the side heat exchanger, it is throttled by the first throttling member 5 and then enters the air source heat exchanger 4.
  • the liquid refrigerant absorbs heat from the outside air in the air source heat exchanger and then becomes a gaseous refrigerant.
  • the function of increasing the refrigerant storage volume in the receiver and reducing the refrigerant circulation volume improves the heating performance of the heat pump unit, while also reducing the hidden danger of compressor suction liquid return and improving the reliability of the heat pump unit;
  • the heat recovery device 2 is not activated, the use-side heat exchanger plays the role of a condenser in the system, and the air source heat exchanger 4 serves as an evaporator to absorb heat from the outside air.
  • the heat pump unit can not only obtain the heating effect in the same heating working mode as above, but also activate the heat recovery device 2 according to the user's preset control requirements to absorb the gaseous refrigeration at the exhaust end of the compressor.
  • the heat of the agent is used to generate sanitary hot water for users to use; in this process, the heat recovery device and the use-side heat exchanger work together as a condenser in the system, and the air source heat exchanger 7 serves as an evaporator to absorb the heat of the outside air.
  • the operation mode of the system is basically the same as the above-mentioned heating function operation mode, but the system activates the heat recovery device 2 according to the control requirements to absorb the condensation heat of the gaseous refrigerant at the exhaust end of the compressor to generate sanitary hot water for users to use.
  • the heat recovery device plays the role of a condenser in the system, the use-side heat exchanger is suspended, and the air source heat exchanger 4 serves as an evaporator to absorb heat from the outside air.
  • the liquid reservoir with the expansion liquid storage function is a double-pipe type liquid reservoir with the expansion liquid storage function.
  • the double-pipe type liquid reservoir with the expansion liquid storage function ( Figure 7) is in a single
  • a refrigerant pipe b 8-5 is added, and the two refrigerant pipes are connected to the throttle interface and the use-side heat exchanger interface respectively.
  • refrigerant pipe a (8-2) is connected to the interface of the first throttling member (5)
  • the refrigerant pipe b (8-5) is connected to the interface of the use-side heat exchanger (6).
  • the working mode is the same as the implementation method.
  • Case 1 is basically the same, but the difference is that when the unit operates the refrigeration function or the refrigeration and hot water function, the refrigerant that comes out after being throttled by the first throttling member 5 enters the liquid receiver 8 from one of the refrigerant pipes, and then The refrigerant then comes out from another pipe of the liquid accumulator and enters the use-side heat exchanger 6; other working methods are the same as those in the first embodiment; since the pipe end of the liquid accumulator 8 is behind the throttling of the first throttling member 5, The pressure in the expansion air bag 8-3 is greater than the pressure of the liquid refrigerant in the shell 8-1, so the expansion air bag will expand and squeeze part of the liquid refrigerant in the reservoir out of the shell to participate in the refrigeration cycle. To this end, the function of reducing the refrigerant storage amount in the liquid receiver and increasing the refrigerant circulation amount during the refrigeration process is realized, thereby improving the refrigeration capacity of the heat pump unit.
  • the liquid refrigerant coming out of the user side heat exchanger 6 enters the liquid reservoir 8 from one of the refrigerant pipes, and then the refrigerant flows from the storage tank
  • the other pipe of the liquid container comes out and enters the air source heat exchanger 4 after being throttled by the first throttling member 5; other working methods are the same as those in the first embodiment; because the pipe end of the liquid reservoir 8 is at the first throttling member 5 Before throttling, the pressure in the expansion air bag 8-3 is smaller than the pressure of the liquid refrigerant in the shell 8-1, so the expansion air bag will shrink, and more liquid refrigerant in the system will be squeezed into the shell and stored in the liquid storage.
  • a set of throttling components ( Figure 8) is used to replace the first throttling component 5.
  • the working method is basically the same as that in Embodiment 1. The different parts of the working method are detailed. Because, when the unit operates the refrigeration function or the refrigeration and hot water function, the refrigeration from the air source heat exchanger 4 is throttled by the first one-way valve 5-3 and the second throttling member 5-1 and then enters the use side exchanger. Heater, during operation, since the refrigerant connecting end of the liquid receiver 8 is behind the throttling component, the pressure in the expansion air bag is greater than the pressure of the liquid refrigerant in the shell 8-1, so the expansion air bag will expand. , and squeeze out part of the liquid refrigerant in the reservoir The casing then participates in the refrigeration cycle, and for this purpose, the purpose of reducing the refrigerant storage volume in the reservoir is achieved during this process.
  • the liquid refrigerant coming out of the use side heat exchanger 6 is throttled by the second one-way valve 5-4 and the third throttling member 5-2 respectively.
  • the pressure in the expansion air bag is smaller than the pressure of the liquid refrigerant in the shell 8-1, so the expansion air bag will By shrinking, more liquid refrigerant in the system is squeezed into the shell and stored in the liquid reservoir. To this end, the purpose of increasing the refrigerant storage capacity in the liquid reservoir is achieved in the process.
  • Embodiment 2 a set of throttling parts as shown in Figure 8 is used to replace the first throttling part 5.
  • the working mode is basically the same as that of Embodiment 2.
  • the different parts of the working mode are specifically as follows:
  • the refrigerant coming out of the air source heat exchanger 4 is throttled by the first one-way valve 5-3 and the second throttling member 5-1 and then enters the liquid reservoir.
  • the refrigerant from the liquid receiver then enters the use-side heat exchanger 6; during the working process, since the refrigerant connecting end of the liquid receiver 8 is behind the throttling of the throttling component, the pressure in the expansion air bag is higher than that in the shell 8-1.
  • the pressure of the liquid refrigerant is large, so the expansion air bag will expand and squeeze part of the liquid refrigerant in the liquid receiver out of the shell to participate in the refrigeration cycle. For this reason, the refrigerant storage in the liquid receiver is reduced during this process. quantity purpose.
  • the liquid refrigerant coming out of the use side heat exchanger 6 is throttled through the second one-way valve 5-4 and the third throttling member 5-2 respectively. Then it enters the liquid reservoir 8, and the refrigerant coming out of the liquid reservoir then enters the air source heat exchanger 4.
  • the refrigerant connecting end of the liquid reservoir 8 is before the throttling of the throttling component, the refrigerant in the expansion air bag
  • the pressure is smaller than the pressure of the liquid refrigerant in the shell 8-1, so the expansion air bag will shrink, and more liquid refrigerant in the system will be squeezed into the shell and stored in the liquid reservoir. For this reason, the increase in the process is achieved.
  • the purpose of the refrigerant storage volume in the reservoir is used to control the reservoir.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

公开了一种具有膨胀储液装置的三联供热泵机组,包括压缩机(1)、热回收器(2)、四通换向阀(3)、空气源换热器(4)、节流件、使用侧换热器(6)、气液分离器(7),所述热回收器(2)的进口连接于压缩机(1)的排气口,所述四通换向阀(3)上有D、C、S、E四个接口,所述热回收器(2)的出口与四通换向阀(3)的D接口相连,所述空气源换热器(4)的进口连接于四通换向阀(3)的C接口或E接口;所述热泵机组还包括具有膨胀储液功能的储液器(8),所述储液器(8)通过制冷剂接管连接在节流件与使用侧换热器(6)之间;所述具有膨胀储液功能的储液器(8)为单接管型或双接管型,在其壳体(8-1)内部内置膨胀气囊(8-3)。该热泵机组实现了冷、暖、热水三联供,膨胀气囊提高了热泵机组在不同的工作模式下的可靠性。

Description

一种具有膨胀储液装置的三联供热泵机组 技术领域
本实用新型涉及热泵机组技术领域,特别是一种具有热回收功能的热泵机组或具有三联供功能的热泵机组。
背景技术
现如今,具有热回收功能的热泵机组或具有三联供功能的空气源热泵系统主要存在如下的问题:
1、常见的空气源热泵机组制冷剂循环量调节能力差。常见的热泵系统功能少,通常只有制冷、采暖功能;
2、常见热回收热泵系统,需要人工预先设置功能优先级,使用非常不方便。常见的热回收热泵系统通常具有制冷、采暖、热回收三个功能模式,为了实现上述几种工作模式,通常在系统中安装有冷凝器、蒸发器、全热回收器三个换热器,并设置有二个四通换向阀,全热回收器与冷凝器二者并联安装后连接在制冷剂管路上,工作中依靠其中一个四通换向阀进行全热回收器与冷凝器之间的功能切换,全热回收器与冷凝器并联后再与蒸发器串联在制冷剂管路,工作中依靠另一个四通换向阀进行蒸发器与冷凝器之间或蒸发器与热回收器的功能切换,这种常见全热回收空气源热泵系统结构决定了其模式之间的转换会非常困难,需要人工预先设定某个功能为优先级别,系统仅能满足设定为优先级别的功能条件,而另一个功能条件则无法得到满足,从而导致用户使用起来非常不方便,影响客户的使用效果;
3、常见全热回收热泵系统可靠性差,常见的热回收热泵系统在运行制冷、采暖、制冷兼制取卫生热水或采暖兼制取卫生热水功能模式时,由于上述几种 工况的差异大,相应的系统内制冷剂循环流量差异也很大,如果系统设计中没有很好调节制冷剂储存量功能的储液器,则系统中易出现制冷剂过量情况,导致压缩机吸入液态制冷剂而被液击损毁的情况,因而常见全热回收热泵系统的可靠性较差;
由于常见的热泵系统功能少、需要设置功能优先级,使用非常不方便、可靠性低等上述几方面的问题,导致其在一些热泵领域上的推广应用上还存在许多技术障碍;鉴于此,针对上述问题深入研究,遂有本案产生。
实用新型内容
本实用新型的目的是为了解决上述问题,设计了一种具有膨胀储液装置的三联供热泵机组,解决了现有的制冷剂循环量调节能力差、使用不方便、可靠性较差等技术问题。
实现上述目的本实用新型的技术方案为:一种具有膨胀储液装置的三联供热泵机组,包括压缩机、热回收器、四通换向阀、空气源换热器、第一节流件、使用侧换热器、气液分离器,所述热回收器的进口连接于压缩机的排气口,所述四通换向阀上有D、C、S、E四个接口,所述热回收器的出口与四通换向阀的D接口相连,所述空气源换热器的进口与四通换向阀的C接口或E接口相连,所述空气源换热器出口依次与第一节流件、使用侧换热器相连,所述使用侧换热器出口与四通换向阀的E接口或C接口相连,所述气液分离器的进口与四通换向阀的S接口相连,所述气液分离器出口连接于压缩机的吸气口。
优选的,还包括具有膨胀储液功能的储液器,所述具有膨胀储液功能的储液器为单接管型具有膨胀储液功能的储液器,单接管型具有膨胀储液功能的储液器由壳体、制冷剂接管a、内置膨胀气囊以及气囊压力设定阀门组成,单接管型具有膨胀储液功能的储液器通过制冷剂接管a接插在第一节流件与使用侧换热 器之间连管上。
优选的,具有膨胀储液功能的储液器为双接管型具有膨胀储液功能的储液器,所述双接管型具有膨胀储液功能的储液器在单接管型具有膨胀储液功能的储液器的基础上增加了制冷剂接管b,制冷剂接管a与第一节流件接口相连、制冷剂接管b与使用侧换热器接口相连。
优选的,以节流件组件替换第一节流件,所述的节流件组件主要包括第二节流件、第三节流件,第一单向阀、第二单向阀,第二节流件与第一单向阀串联在一组管上,第三节流件与第二单向阀串联在另一组管上,二组管上的单向阀流动方向互为反向,然后将二组管并联在一起,二端再分别合并为一个接口。
利用本实用新型的技术方案制作的一种具有膨胀储液装置的三联供热泵机组,具有制冷、采暖、制热水、制冷兼顾热水、采暖兼热水等五种功能模式,实现了冷、暖、热水三联供一体机;很好地解决公知类似技术中功能少,需要预先设定某个功能优先级别,使用起来非常不方便,可靠性较差等技术问题,提高空气源热泵系统的功能多样性、使用方便性、机组可靠性等效果,且无需预先设定某个功能优先级别,使用起来非常方便,本装置只有一个四通换向阀,而且包含了三种换热器,其中热回收器安装在压缩机排气管与四通换向阀之间,系统工作时,任一工作模式下,压缩机排出的气态制冷剂均需要首先流过热回收器后再进入四通阀,因此,热泵系统制取热水与否只需要对热回收器水路上的水泵运行或停止就能实现,无需预先设定某个功能优先级别,使用起来非常方便,提高了机组的可靠性,具有膨胀储液功能的储液器;储液器内置有膨胀气囊、膨胀气囊内的气体压力预先设定为热泵机组的冷凝压力与蒸发压力之间某个压力值,借助热泵机组制冷、采暖等工作模式中制冷剂流向不同的特点,储液器正好分别处于节流后或节流前,由于膨胀气囊内气体压力与壳体 内液态制冷剂存在压力差,通过膨胀气囊的膨胀或缩小实现调节储液器内制冷剂储存量的调节,以便使热泵系统在不同的工作模式下,均能获得更为合适的制冷剂循环量,提高机组性能,并减少压缩机回液损毁的隐患,提高热泵系统的可靠性。
附图说明
图1:本实用新型所述一种具有膨胀储液装置的三联供热泵机组的分解示图。
图2:本实用新型所述一种具有膨胀储液装置三联供热泵机组(包括单接管型具有膨胀储液功能的储液器)的原理示图。
图3:本实用新型所述一种具有膨胀储液装置的三联供热泵机组(包括双接管具有膨胀储液功能的储液器)的原理示图。
图4:本实用新型所述一种具有膨胀储液装置(包括单接管型具有膨胀储液功能的储液器和节流组件)的三联供热泵机组的原理示图。
图5:本实用新型所述一种具有膨胀储液装置(包括双接管型具有膨胀储液功能的储液器和节流组件)的三联供热泵机组的原理示图。
图6:本实用新型所述单接管型具有膨胀储液功能的储液器的结构示图。
图7:本实用新型所述双接管型具有膨胀储液功能的储液器的结构示图。
图8:本实用新型所述的节流组件结构示图。
图中:1、压缩机,2、热回收器,3、四通换向阀,4、空气源换热器,5、第一节流件,5-1、第二节流件,5-2、第三节流件、5-3、第一单向阀,5-4、第二单向阀,6、使用侧换热器,7、气液分离器,8、具有膨胀储液功能的储液器,8-1、壳体,8-2、制冷剂接管a,8-3、内置膨胀气囊,8-4、气囊 压力设定阀门,8-5、制冷剂接管b。
具体实施方式
下面结合附图对本实用新型进行具体描述,如图1-8所示,一种具有膨胀储液装置的三联供热泵机组,包括压缩机1、热回收器2、四通换向阀3、空气源换热器4、第一节流件5、使用侧换热器6、气液分离器7,所述热回收器2的进口连接于压缩机1的排气口,所述四通换向阀3上有D、C、S、E四个接口,所述热回收器2的出口与四通换向阀3的D接口相连,所述空气源换热器4的进口与四通换向阀3的C接口(或E接口)相连(需要说明的是四通换向阀3的C接口与E接口根据设计者习惯可对换使用),所述空气源换热器4出口依次与第一节流件5、使用侧换热器6相连,所述使用侧换热器6出口与四通换向阀3的E接口(或C接口)相连,所述气液分流器的进口与四通换向阀3的S接口相连,且出口连接于压缩机1的吸气口,还包括:具有膨胀储液功能的储液器8,所述具有膨胀储液功能的储液器为单接管型具有膨胀储液功能的储液器(图6)或双接管型具有膨胀储液功能的储液器(图7),所述单接管型具有膨胀储液功能的储液器由壳体8-1、制冷剂接管a 8-2、内置膨胀气囊8-3以及气囊压力设定阀门8-4组成,单接管型具有膨胀储液功能的储液器通过制冷剂接管a 8-2接插在第一节流件5与使用侧换热器6之间连管上,所述双接管型具有膨胀储液功能的储液器是在单接管型的基础上增加了制冷剂接管b 8-5,制冷剂接管a 8-2、制冷剂接管b 8-5,分别与第一节流件5接口、使用侧换热器6接口相连,还包括:节流件组件,主要包括第二节流件5-1、第三节流件5-2,单向阀5-3、单向阀5-4,第二节流件5-1与单向阀5-3串联在一组管上,第三节流件5-2与单向阀5-4串联在另一组管上,二组管上的单向阀5-3以及单向阀5-4流动方向互为反向,然后将二组管并联在一起,二端再分别合并为一个接口。
实施例一
请参阅图2,在具体实施过程中,需要说明的是,当系统运行制冷功能时,气态制冷剂通过压缩机1排气管排出,并流经热回收器2后从四通换向阀3的D接管进入四通换向阀,再通过四通换向阀的C接口(需要说明的是四通换向阀3的C接口与E接口根据设计者习惯可对换使用)流进入空气源换热器4,制冷剂从空气源换热器流出后经过第一节流件5节流后再进入使用侧换热器6,液态制冷剂在使用侧换热器中吸收用户使用端的热量后再成为气态制冷剂,气态制冷剂再经过四通阀E接口进入四通换向阀,并从四通换向阀S接口流出后进入气液分流器7,而后再经压缩机的吸气管再返回压缩机,以此,实现了制冷剂的制冷工作循环;上述工作过程中,由于具有膨胀储液功能的储液器8的制冷剂接管a端处于第一节流件5节流之后,膨胀气囊内的压力比壳体8-1内液体制冷剂的压力大,故膨胀气囊会膨胀,并将储液器内的部分液体制冷剂挤出壳体后参与制冷循环,为此,实现了制冷过程中减少储液器内的制冷剂储存量,而加大制冷剂循环量的功能,提高热泵机组的制冷能力。
当系统运行制冷兼制热水功能时,机组除了同上述制冷工作模式能获得制冷效果外,热泵系统还可以根据用户预先设定的控制要求启用热回收器2吸收压缩机排气端气态制冷剂的部分热量而产生卫生热水供用户使用;在该工作模式过程中,热回收器2在系统中起到全部或部分冷凝器的作用,空气源换热器停止使用或只起到部分冷凝器的作用,使用侧换热器6起到蒸发器的作用。
当系统运行采暖功能时;四通换向阀3换向后,气态制冷剂通过压缩机1排气管排出,并流经热回收器2后从四通换向阀3的D接管进入四通换向阀;再通过四通换向阀的E接口流进使用侧换热器6,制冷剂在使用侧换热器中向用户采暖端提供冷凝热后成为液态制冷剂,液态制冷剂从使用侧换热器流出后再经过第一节流件5节流后进入空气源换热器4,液态制冷剂在空气源换热器中吸收外部空气中的热量后再成为气态制冷剂,并经气液分离器7后通过压缩机的吸气管 再返回压缩机,以此,实现了制冷剂的采暖工作循环;上述工作过程中,由于具有膨胀储液功能的储液器8的制冷剂接管a端处于第一节流件5节流之前,膨胀气囊内的压力比壳体8-1内液体制冷剂的压力小,故膨胀气囊会缩小,系统中更多的液体制冷剂挤入壳体后储存在储液器中,为此,实现了采暖过程中增加储液器内的制冷剂储存量,而减小制冷剂循环量的功能,提高热泵机组采暖性能的同时也减少了压缩机吸气回液的隐患,提高热泵机组的可靠性;在上述工作模式过程中,热回收器2不启用,使用侧换热器在系统中取得冷凝器的作用,而空气源换热器4作为蒸发器吸收外部空气的热量。
当系统运行采暖兼制热水功能时,热泵机组除了同上述采暖工作模式能获得采暖效果外,热泵机组还可以根据用户预先设定的控制要求启用热回收器2吸收压缩机排气端气态制冷剂的热量而产生卫生热水供用户使用;在此过程中,热回收器与使用侧换热器在系统中共同作冷凝器用,而空气源换热器7作为蒸发器吸收外部空气的热量。
当系统运行热水功能时,系统的运行方式基本同上述采暖功能运行方式,但系统根据控制要求启用热回收器2吸收压缩机排气端气态制冷剂的冷凝热量而产生卫生热水供用户使用,热回收器在系统中取得起到冷凝器的作用,使用侧换热器暂停使用,而空气源换热器4作为蒸发器吸收外部空气的热量。
实施例二
请参阅图3,所述具有膨胀储液功能的储液器为双接管型具有膨胀储液功能的储液器,所述双接管型具有膨胀储液功能的储液器(图7)在单接管型具有膨胀储液功能的储液器的基础上增加了制冷剂接管b 8-5,且二条制冷剂接管分别与节流件接口、使用侧换热器接口相连图3,制冷剂接管a(8-2)与第一节流件(5)接口相连,制冷剂接管b(8-5)与使用侧换热器(6)接口相连,工作方式与实施方 案一基本相同,所不同的是,当机组运行制冷功能或制冷兼热水功能时,第一节流件5节流后出来的制冷剂从其中一条制冷剂接管进入储液器8中,而后制冷剂再从储液器的另一条接管出来进入使用侧换热器6;其他的工作方式与实施例一对应相同;由于储液器8的接管端处于第一节流件5节流之后,膨胀气囊8-3内的压力比壳体8-1内液体制冷剂的压力大,故膨胀气囊会膨胀,并将储液器内的部分液态制冷剂挤出壳体后参与到制冷循环中,为此,实现了制冷过程中减少储液器内的制冷剂储存量,而加大制冷剂循环量的功能,提高热泵机组的制冷能力。
当机组运行采暖功能、采暖兼制热水功能或制热水功能模式时,使用侧换热器6出来的液态制冷剂从其中一条制冷剂接管进入储液器8中,而后制冷剂再从储液器的另一条接管出来经第一节流件5节流后进入空气源换热器4;其他的工作方式与实施例一对应相同;由于储液器8的接管端处于第一节流件5节流之前,膨胀气囊8-3内的压力比壳体8-1内液体制冷剂的压力小,故膨胀气囊会缩小,系统中更多的液体制冷剂挤入壳体后储存在储液器中,为此,实现了上述功能模式工作过程中增加储液器内的制冷剂储存量,而减制冷剂循环量的功能,提高热泵机组上述功能模式的性能,同时也减少了压缩机吸气回液的隐患,提高热泵机组的可靠性。
实施例三
见图4,在实施方例一的基础上,以一套节流件组件(图8)替代所述的第一节流件5,工作方式与实施例一基本相同,工作方式中不同部分具体为,当机组运行制冷功能或制冷兼热水功能时,空气源换热器4出来的制冷分别通过第一单向阀5-3、第二节流件5-1节流后进入使用侧换热器,工作过程中,由于储液器8的制冷剂接管端处于节流组件的节流之后,膨胀气囊内的压力比壳体8-1内液体制冷剂的压力大,故膨胀气囊会膨胀,并将储液器内的部分液体制冷剂挤出 壳体后参与制冷循环,为此,实现了该过程中减少储液器内的制冷剂储存量的目的。
当机组运行采暖功能、采暖兼热水功能或热水功能时,使用侧换热器6出来的液态制冷剂分别通过第二单向阀5-4、第三节流件5-2节流后进入空气源换热器4,由于储液器8的制冷剂接管端处于节流组件的节流之前,膨胀气囊内的压力比壳体8-1内液体制冷剂的压力小,故膨胀气囊会缩小,系统中更多的液体制冷剂挤入壳体后储存在储液器中,为此,实现了该过程中增加储液器内的制冷剂储存量的目的。
实施例四
见图5,在实施例二的基础上,以一套节流件组件图8代替所述的第一节流件5,工作方式与实施例二基本相同,工作方式中不同部分具体为:
当机组运行制冷功能或制冷加热水功能时,空气源换热器4出来的制冷剂分别通过第一单向阀5-3、第二节流件5-1节流后进入储液器,储液器出来的制冷剂再进入使用侧换热器6;工作过程中,由于储液器8的制冷剂接管端处于节流组件的节流之后,膨胀气囊内的压力比壳体8-1内液体制冷剂的压力大,故膨胀气囊会膨胀,并将储液器内的部分液体制冷剂挤出壳体后参与制冷循环,为此,实现了该过程中减少储液器内的制冷剂储存量的目的。
当机组运行采暖功能、采暖兼热水功能或制热水功能时,使用侧换热器6出来的液态制冷剂分别通过第二单向阀5-4、第三节流件5-2节流后进入储液器8,储液器出来的制冷剂再进入空气源换热器4,工作过程中,由于储液器8的制冷剂接管端处于节流组件的节流之前,膨胀气囊内的压力比壳体8-1内液体制冷剂的压力小,故膨胀气囊会缩小,系统中更多的液体制冷剂挤入壳体后储存在储液器中,为此,实现了该过程中增加储液器内的制冷剂储存量的目的。
上述技术方案仅体现了本实用新型技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本实用新型的原理,属于本实用新型的保护范围之内。

Claims (3)

  1. 一种具有膨胀储液装置的三联供热泵机组,包括压缩机(1)、热回收器(2)、四通换向阀(3)、空气源换热器(4)、第一节流件(5)、使用侧换热器(6)、气液分离器(7),其特征在于,所述热回收器(2)的进口连接于压缩机(1)的排气口,所述四通换向阀(3)上有D、C、S、E四个接口,所述热回收器(2)的出口与四通换向阀(3)的D接口相连,所述空气源换热器(4)的进口与四通换向阀(3)的C接口或E接口相连,所述空气源换热器(4)出口依次与第一节流件(5)、使用侧换热器(6)相连,所述使用侧换热器(6)出口与四通换向阀(3)的E接口或C接口相连,所述气液分离器的进口与四通换向阀(3)的S接口相连,所述气液分离器出口连接于压缩机(1)的吸气口;
    还包括:具有膨胀储液功能的储液器(8),所述具有膨胀储液功能的储液器为单接管型具有膨胀储液功能的储液器,单接管型具有膨胀储液功能的储液器由壳体(8-1)、制冷剂接管a(8-2)、内置膨胀气囊(8-3)以及气囊压力设定阀门(8-4)组成,单接管型具有膨胀储液功能的储液器通过制冷剂接管a(8-2)接插在第一节流件(5)与使用侧换热器(6)之间连管上。
  2. 根据权利要求1所述的一种具有膨胀储液装置的三联供热泵机组,其特征在于:具有膨胀储液功能的储液器(8)为双接管型具有膨胀储液功能的储液器,所述双接管型具有膨胀储液功能的储液器是在单接管型具有膨胀储液功能的储液器基础上增加了制冷剂接管b(8-5),制冷剂接管a(8-2)与第一节流件(5)接口相连,制冷剂接管b(8-5)与使用侧换热器(6)接口相连。
  3. 根据权利要求1或2所述的一种具有膨胀储液装置的三联供热泵机组,其特征在于,以节流件组件替换第一节流件(5),所述的节流件组件主要包括第二节流件(5-1)、第三节流件(5-2),第一单向阀(5-3)、第二单向阀(5-4),第二节流件(5-1)与第一单向阀(5-3)串联在一组管上,第三节流件(5-2)与第二单向 阀(5-4)串联在另一组管上,二组管上的单向阀流动方向互为反向,然后将二组管并联在一起,二端再分别合并为一个接口。
PCT/CN2023/093078 2022-04-12 2023-05-09 一种具有膨胀储液装置的三联供热泵机组 WO2023198222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220834454.9 2022-04-12
CN202220834454.9U CN217876525U (zh) 2022-04-12 2022-04-12 一种具有膨胀储液装置的三联供热泵机组

Publications (1)

Publication Number Publication Date
WO2023198222A1 true WO2023198222A1 (zh) 2023-10-19

Family

ID=84087916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093078 WO2023198222A1 (zh) 2022-04-12 2023-05-09 一种具有膨胀储液装置的三联供热泵机组

Country Status (2)

Country Link
CN (1) CN217876525U (zh)
WO (1) WO2023198222A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217876525U (zh) * 2022-04-12 2022-11-22 广州瑞姆节能设备有限公司 一种具有膨胀储液装置的三联供热泵机组

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825379A (zh) * 2010-03-30 2010-09-08 德华科电器科技(安徽)有限公司 一种热泵双回路循环系统
CN206159733U (zh) * 2016-11-04 2017-05-10 珠海格力节能环保制冷技术研究中心有限公司 流体缓冲装置、分液器、压缩机及换热设备
CN106642787A (zh) * 2016-09-10 2017-05-10 赵向辉 冷媒循环量可调的制冷或热泵系统
CN108534386A (zh) * 2018-05-18 2018-09-14 南京佳力图机房环境技术股份有限公司 一种四管制冷热多功能一体风冷热泵机组
CN210004626U (zh) * 2019-05-24 2020-01-31 河北益民五金制造股份有限公司 一种带有高效节流系统的地源热泵热回收机组
CN111486617A (zh) * 2020-05-25 2020-08-04 广州西苓空调科技有限公司 一种可灵活转换热回收的热泵系统
CN211233470U (zh) * 2019-07-04 2020-08-11 青岛海尔智能技术研发有限公司 压力缓冲组件及热泵系统
CN212339682U (zh) * 2020-05-25 2021-01-12 广州西苓空调科技有限公司 一种可灵活转换热回收的热泵系统
CN215863981U (zh) * 2021-08-19 2022-02-18 浙江英特科技股份有限公司 带有膨胀气囊的水箱及具有该水箱的水力中心、空调系统
CN114704974A (zh) * 2022-04-12 2022-07-05 广州瑞姆节能设备有限公司 一种具有膨胀储液装置的三联供热泵机组
CN217876525U (zh) * 2022-04-12 2022-11-22 广州瑞姆节能设备有限公司 一种具有膨胀储液装置的三联供热泵机组

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825379A (zh) * 2010-03-30 2010-09-08 德华科电器科技(安徽)有限公司 一种热泵双回路循环系统
CN106642787A (zh) * 2016-09-10 2017-05-10 赵向辉 冷媒循环量可调的制冷或热泵系统
CN206159733U (zh) * 2016-11-04 2017-05-10 珠海格力节能环保制冷技术研究中心有限公司 流体缓冲装置、分液器、压缩机及换热设备
CN108534386A (zh) * 2018-05-18 2018-09-14 南京佳力图机房环境技术股份有限公司 一种四管制冷热多功能一体风冷热泵机组
CN210004626U (zh) * 2019-05-24 2020-01-31 河北益民五金制造股份有限公司 一种带有高效节流系统的地源热泵热回收机组
CN211233470U (zh) * 2019-07-04 2020-08-11 青岛海尔智能技术研发有限公司 压力缓冲组件及热泵系统
CN111486617A (zh) * 2020-05-25 2020-08-04 广州西苓空调科技有限公司 一种可灵活转换热回收的热泵系统
CN212339682U (zh) * 2020-05-25 2021-01-12 广州西苓空调科技有限公司 一种可灵活转换热回收的热泵系统
CN215863981U (zh) * 2021-08-19 2022-02-18 浙江英特科技股份有限公司 带有膨胀气囊的水箱及具有该水箱的水力中心、空调系统
CN114704974A (zh) * 2022-04-12 2022-07-05 广州瑞姆节能设备有限公司 一种具有膨胀储液装置的三联供热泵机组
CN217876525U (zh) * 2022-04-12 2022-11-22 广州瑞姆节能设备有限公司 一种具有膨胀储液装置的三联供热泵机组

Also Published As

Publication number Publication date
CN217876525U (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2023198222A1 (zh) 一种具有膨胀储液装置的三联供热泵机组
CN109059335B (zh) 一种低温空气源热泵机组
WO2023198223A1 (zh) 一种具有三联供功能的空气源热泵系统
CN213514186U (zh) 空调器系统
WO2024103808A1 (zh) 制冷系统及其控制方法和控制装置
CN201876033U (zh) 带单向桥的回热制冷系统
KR101461519B1 (ko) 이원 냉동사이클 히트펌프시스템의 제어방법
CN206055995U (zh) 一种双温升的复叠式热泵
CN210663435U (zh) 一种空气源热泵系统
CN114704974A (zh) 一种具有膨胀储液装置的三联供热泵机组
CN110230901A (zh) 一种气液两相共用型的冷媒分配管及热泵系统
CN208139419U (zh) 一种空气源和水源结合的供暖装置
CN215951817U (zh) 一种带有补气增焓功能的热泵系统
CN216897591U (zh) 多联机空调
WO2022007739A1 (zh) 热泵系统
CN211551972U (zh) 一种空调系统
CN212319849U (zh) 空调器系统
JPH01277181A (ja) 冷房給湯装置,暖房給湯装置及び冷暖給湯装置
CN210832381U (zh) 空调系统
CN210399502U (zh) 热泵系统
CN209819774U (zh) 一种空调器及其集成循环管路系统
CN211695494U (zh) 一种喷气增焓热泵系统
CN209944563U (zh) 空调器
CN207407471U (zh) 一种带冷凝热回收装置的分散式功能模块空调系统
JPH0218449Y2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787864

Country of ref document: EP

Kind code of ref document: A1