WO2023197956A1 - 一种物质参数的检测方法和电路 - Google Patents

一种物质参数的检测方法和电路 Download PDF

Info

Publication number
WO2023197956A1
WO2023197956A1 PCT/CN2023/086990 CN2023086990W WO2023197956A1 WO 2023197956 A1 WO2023197956 A1 WO 2023197956A1 CN 2023086990 W CN2023086990 W CN 2023086990W WO 2023197956 A1 WO2023197956 A1 WO 2023197956A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
network
inductor
parameters
gate
Prior art date
Application number
PCT/CN2023/086990
Other languages
English (en)
French (fr)
Inventor
胡杨民
唐小兰
魏合语
Original Assignee
深圳市帝拓电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市帝拓电子有限公司 filed Critical 深圳市帝拓电子有限公司
Publication of WO2023197956A1 publication Critical patent/WO2023197956A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • This application belongs to the technical field of transportation facilities, specifically a detection method and circuit for material parameters.
  • ultrasonic atomization it is difficult to detect and determine multiple parameters of the same substance, and it is also difficult to detect and distinguish different substances.
  • the ultrasonic transducer cannot have both atomization and liquid level detection functions, resulting in the structure of the ultrasonic transducer. It is more complex and costly and needs improvement urgently.
  • the technical problem to be solved by the embodiments of the present application is to provide a detection method and circuit for material parameters.
  • a detection method of material parameters is a detection method based on an LC network including an ultrasonic transducer, and the ultrasonic transducer is in direct or indirect contact with the measured substance.
  • the detection method includes the following steps:
  • Empowerment Deliver at least one excitation cycle of driving electric energy to the LC network to bring it into a stable oscillation state.
  • the energy of each period of the driving electric energy is consistent or known or obtained through measurement;
  • the after-vibration parameters include but are not limited to amplitude, period, and/or the number of after-vibration cycles whose amplitude is greater than the set threshold, and/or the duration of the after-vibration whose amplitude is greater than the set threshold, etc.;
  • the stop conditions include receiving a manual stop command and completing the collection of data required for the current detection.
  • At least one period of driving electric energy is delivered to the LC network, and the driving electric energy has a constant amplitude, period and duty cycle;
  • the detected after-vibration parameter is the number of after-vibration cycles whose amplitude is greater than the set threshold, or the duration of the after-vibration whose amplitude is greater than the set threshold.
  • the The current substances and their parameters to be measured include but are not limited to:
  • an LC network is formed.
  • the electric energy can repeatedly convert between magnetic energy and electric potential energy in the form of aftershock between the inductor and capacitor of the LC circuit, forming free oscillation. , until the electrical energy is gradually consumed in the loop impedance in the conversion path and emits electromagnetic energy to the space.
  • the ultrasonic transducer forms free oscillation after being excited, converts the electrical energy excited into the LC loop into ultrasonic energy, and emits it to the materials in contact with it until the energy in the LC loop is released complete.
  • the rate at which the ultrasonic transducer releases ultrasonic energy to it is different.
  • the rate at which the ultrasonic transducer releases ultrasonic energy to it is different.
  • the aftershock parameters in the LC loop are different.
  • the method for detecting material parameters advocated by the embodiments of this application uses an ultrasonic transducer as one of the components of the LC loop, and after inputting an excitation of known energy into the LC loop, the aftershock parameters of the LC loop are detected to obtain
  • the following parameters of materials in contact with the ultrasonic transducer For example, the following parameters of materials in contact with the ultrasonic transducer:
  • the amount of material in contact with the ultrasonic transducer such as material level, liquid level, etc.
  • the properties of the material currently in contact with the ultrasonic transducer such as conductivity, viscosity, pressure, morphology, etc.
  • a material parameter detection circuit applying the above method is composed of an enabling circuit, an LC network, and residual vibration boosting circuits. It is composed of circuit, integer/post-processing circuit, central processing unit, etc.
  • the enabling circuit is an excitation circuit of the LC network. It is controlled by the central processor and intermittently provides periodic power to the LC network to make the LC network enter an oscillation state.
  • the enabling circuit includes a power device and its Drive circuits, etc., the power devices include but are not limited to transistors, MOSFETs, IGBTs, etc.;
  • the LC network is an inductor-capacitor combination network including an ultrasonic transducer
  • the aftershock extraction circuit is a high-impedance coupling circuit connected between the LC network and the shaping/post-processing circuit, and couples the oscillation state of the LC network to the shaping/post-processing circuit,
  • the residual vibration extraction circuit includes but is not limited to: an inductor winding coupled to the inductor in the LC network, or a capacitor, a resistor, etc. connected to the LC network;
  • the shaping/post-processing circuit is a circuit that is on the same ground as the central processor and provides sampled signals to the central processor, and is composed of rectifier components, clamp components, filter components, etc.;
  • One of the digital output terminals of the central processing unit is connected to the enabling circuit for controlling the intermittent operation of the enabling circuit, and its input port is connected to the output terminal of the shaping/post-processing circuit for detecting aftershock parameters. .
  • the ultrasonic transducer is a piezoelectric ceramic transducer; the LC network is formed by connecting an inductor and the ultrasonic transducer.
  • the LC network is composed of an inductor and a piezoelectric ceramic transducer connected in parallel; one end of the inductor is connected to the positive electrode of the power supply, and the other end is connected to the power device, or the An inductor, the middle tap of which is connected to the positive pole of the power supply, and one of the other two ends is connected to the power device;
  • the enabling circuit is a circuit with N-type MOSFET as the core, and forms an oscillation circuit with the LC network.
  • the oscillation circuit includes the LC network, N-type MOSFET, and the gate circuit of the MOSFET, etc., for other excitations.
  • the N-type MOSFET has its drain connected to the LC network, its source connected to the negative electrode of the power supply, and its gate connected to the central processing unit through a separately excited gate circuit.
  • the central processing unit sends intermittent high-frequency switching signals to the N-type MOSFET through the digital output port through the separately excited gate circuit, so that the oscillation circuit intermittently enters the state under the stimulation of the central processing unit.
  • the separately excited gate circuit includes a resistor connected between the gate and source of the N-type MOSFET, and a resistor connected between the gate of the N-type MOSFET and the central processor. resistor between digital outputs;
  • the self-excited oscillation circuit is an inductor three-point LC oscillation circuit or a capacitor three-point LC oscillation circuit, or a variant circuit of these two oscillation circuits; the self-excited oscillation circuit has a gate or a base of a power device.
  • a control circuit connected to the central controller, including a control transistor or MOSFET, and a driving element of the control transistor or MOSFET.
  • the base or gate of the control transistor or MOSFET passes through a bias resistor.
  • the digital output port is connected to the central controller, and its collector or drain is connected to the gate of the power device.
  • the central controller controls the power by driving the control transistor or MOSFET on/off.
  • the gate bias voltage of the device controls the stop/start of the self-excited oscillation circuit to achieve the purpose of controlling the self-excited oscillation circuit to operate intermittently.
  • the residual vibration extraction circuit is an inductor winding with a magnetic coupling loop with the inductor in the LC device, one end of which is connected to the negative pole of the power supply, and the other end is connected to the shaping/post-processing circuit ;
  • the shaping/post-processing circuit includes rectifier diodes, clamping components, resistors, capacitors, etc.
  • the anode of the rectifier diode is connected to the inductor winding used as the residual vibration extraction circuit, and the cathode is connected to a network composed of a clamping element, a resistor, and a capacitor connected in parallel.
  • the clamping element, the resistor, and the capacitor are connected in parallel.
  • the other end of the network is connected to the negative pole of the power supply.
  • the clamping components include but are not limited to unidirectional TVS diodes, unidirectional ESDs, Zener diodes, voltage reference chips, etc.
  • the connecting end of the clamping component and the diode also serves as the output end of the shaping/post-processing circuit and is connected to the central processing unit.
  • the parameters of the LC network are compensated by connecting capacitors in series and/or in parallel to the piezoelectric ceramic transducer;
  • the inductance of the inductor and the compensated equivalent capacitance of the piezoelectric ceramic transducer comply with the formula in:
  • f is the resonant frequency of the piezoelectric ceramic transducer
  • L is the equivalent inductance of the inductor in the LC network
  • C is the equivalent capacitance of the piezoelectric ceramic transducer after compensation.
  • the aftershock extraction circuit is indirectly connected to the LC loop by being connected to a current sensor in the main power supply loop, including but not limited to a current detection resistor.
  • filter elements are also provided in the power supply loop and the piezoelectric ceramic transducer loop to avoid radiation into space and excessive high-frequency conduction to the outside along the power supply loop and the piezoelectric ceramic transducer loop. Signal.
  • the aftershock extraction circuit is a capacitor connected between the LC network and the shaping/post-processing circuit.
  • the ultrasonic transducer can have both atomization and liquid level detection functions, which is beneficial to simplifying the structure and reducing costs.
  • Figure 1 is a flow chart of the material parameter detection method in the embodiment of the present application.
  • Figure 2 is a functional block diagram of a circuit using the material parameter detection method in the embodiment of the present application.
  • Figure 3 is a schematic diagram of Embodiment 1 of a circuit using the material parameter detection method in the embodiment of the present application;
  • Figure 4 is a schematic diagram of Embodiment 2 of a circuit using the material parameter detection method in the embodiment of the present application.
  • This embodiment provides a detection circuit for material parameters.
  • the working power is input from the P1 port, and C1, L1, and C2 form a filter network, which can not only provide stable power supply for subsequent circuits, but also suppress it.
  • the high-frequency harmonics generated by the rear circuit leak out from P1, causing electromagnetic pollution;
  • L2_1, Co, and T1 form an LC network, and L3 and L3 are connected in series in the LC network to suppress high-frequency harmonics in the LC loop;
  • N-channel field effect transistor (MOSFET) Q1 is connected between the LC network and the negative electrode of the power supply, forming an enabling circuit for the LC network.
  • R3 and R4 are the bias resistors of Q1, among which R3 is connected to the gate of Q1 and the central controller. When the digital output port O of U1 and the O port of U1 output high level, Q1 is turned on;
  • L2_2 is the inductor winding coupled with L2_1.
  • the state of the LC loop is reflected synchronously to both ends of L2_2;
  • D1, R1, R2, D2, and C3 form an integer/post-processing circuit, in which D1 rectifies the signal from L2_2; R1 and R2 divide the voltage of the sorted pulse signal while increasing the impedance of the integer/post-processing circuit. , to reduce the impact of the power consumption of the shaping/post-processing circuit on the LC loop; D2 is a voltage regulator tube or a unidirectional TVS diode or a unidirectional ESD, which plays a limiting role to prevent high-voltage pulses from causing damage to the subsequent circuit; C3 is Filter capacitor to filter out possible interference in the signal;
  • U1 is the central controller (CPU), which controls the work of the enabling circuit from its digital output port O, and receives the aftershock signal obtained by the integer/post-processing circuit from the input port I.
  • CPU central controller
  • the shaping/post-processing circuit When the capacity of C3 is small, the shaping/post-processing circuit outputs a pulse signal synchronized with the aftershock of the LC loop.
  • the characteristics of the digital circuit determine that U1 has a recognition threshold for the signal at its digital input terminal, that is, the amplitude is greater than its high level. The threshold is identified as high level, and the one lower than its low level threshold is identified as low level.
  • U1 can obtain the aftershock status of the LC network by detecting the number of high level pulses received by the I port;
  • the amplitude of the output signal of the integer/post-processing circuit reflects the amplitude of the aftershock of the LC loop.
  • U1 can also obtain the aftershock of the LC network by performing ADC conversion on the voltage at the I port.
  • U1 When working, U1 first outputs at least one enabling pulse to Q1 through port O, causing Q1 to be turned on for a period of time to charge the LC network with power. Then it sets port O to low level, Q1 is cut off, and the LC network enters the aftershock state. , the aftershock extraction circuit L2_2 obtains the aftershock information synchronously. It is rectified by D1, divided by R1 and R2, clamped by D2, filtered by C3 and then input to U1. U1 can obtain the aftershock situation by detecting the information on port I. After using By calculating the calibration parameters, the relevant parameters of the detected substance can be obtained.
  • the pressure applied to the ultrasonic transducer T1 by the material or liquid is different, and the efficiency of external work when it vibrates is different.
  • the amplitude and maintenance time of the residual vibration are also different. Through the detection of the residual vibration , you can obtain the liquid level/material level information.
  • the objects in contact with the ultrasonic transducer can be detected by measuring the after-vibration. qualitatively relevant parameters.
  • the ultrasonic transducer is responsible for the atomization of the liquid (U1 continues to output a high-frequency signal through the digital output port O, driving the separately excited oscillation circuit to work, so that the ultrasonic transducer continues to The liquid sends ultrasonic vibration energy to atomize the liquid).
  • U1 stops outputting high-frequency signals and makes the digital output port O low level, which can make the LC network enter the aftershock state, and U1 detects the aftershock situation. , you can know the liquid level and the presence of liquid.
  • U1 can stop outputting the atomization drive signal (the digital output port O of U1 stops outputting) to avoid damage to the ultrasonic transducer due to "dry burning", and can also send out an alarm signal (specifically The circuit is not shown) to remind the user to add the liquid to be atomized.
  • a material parameter detection circuit, the enabling circuit and the LC network form a self-oscillation circuit, in which the source of Q1 is connected to the negative electrode of the power supply through the parallel source resistor Re and the high-frequency bypass capacitor Ce.
  • R3 and R4 divide the fixed voltage V+ and connect to the gate of Q1 to stabilize the gate potential of Q1; the drain of Q1 is connected to the positive electrode of the power supply through the LC network; there is also a gap between the drain and source of Q1 There is an oscillating capacitor Cc; the collector and emitter of transistor Q2 are connected across the gate of Q1 and the negative electrode of the power supply, the current limiting resistor R5 and the pull-down resistor R6 are connected to the base of Q2, and the other end of R5 is connected to Digital output port O of central processing unit U1.
  • the digital output port O of the central processor U1 When working, the digital output port O of the central processor U1 outputs a high level, turning on Q2. Because the gate potential of Q1 is low level, the self-oscillation circuit stops oscillating.
  • the central processor U1 first causes the output port O to output a low level, Q2 is disconnected, the gate potential of Q1 is a high level, the self-oscillation circuit starts to oscillate, and inputs energy to the LC network; then, the central processing unit Device U1 again causes the digital output port O to output a high level, causing Q2 to conduct, the gate potential is low, and the self-oscillation circuit stops oscillating; after that, the LC network enters the after-oscillation state, the after-oscillation extraction circuit and the integer/post-processing circuit The aftershock information is sent to U1 for U1 to complete the detection task.
  • Embodiment 1 Compared with Embodiment 1, in this embodiment, since the vibration circuit is self-excited vibration, there is no need to control each vibration cycle by U1. Therefore, U1 does not need to take up a lot of time to generate high-frequency driving signals, and U1 can have more More time to deal with other tasks can also improve the control accuracy of U1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种物质参数的检测方法和电路,属于参数检测技术领域,检测方法基于包括超声波换能器的LC网络,且超声波换能器与被测物质直接或间接接触;检测方法包括以下步骤:S1.赋能;S2.检测;S3.计算判定;S4.延时;检测电路包括赋能电路、LC网络、余振提取电路、整型/后处理电路以及中央处理器。以及一种可行的检测物质参数的方法,可通过标定,同时检测同一物质的多个参数,或者分辨不同的物质;在超声雾化应用中,可使超声换能器兼具雾化和液位检测功能,有利于简化结构,降低成本。

Description

一种物质参数的检测方法和电路
相关申请的交叉参考
本申请要求于2022年4月15日提交中国专利局,申请号为202210398267.5,发明名称为“一种物质参数的检测方法和电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于交通设施技术领域,具体是一种物质参数的检测方法和电路。
背景技术
目前,在超声雾化应用中,同一物质的多个参数难以检测确定,并且不同的物质也难以检测分辨,超声换能器无法兼具雾化和液位检测功能,导致超声换能器的结构较为复杂,成本较为高昂,亟需改进。
发明内容
针对上述现有技术的不足,本申请实施例要解决的技术问题是提供一种物质参数的检测方法和电路。
为解决上述技术问题,本申请实施例提供了如下技术方案:
一种物质参数的检测方法,为基于包括超声波换能器的LC网络的检测方法,且超声波换能器与被测物质直接或间接接触,所述检测方法包括以下步骤:
S1.赋能:向所述LC网络输送至少一个激励周期的驱动电能,使之进入稳定的振荡状态,所述驱动电能,其每周期的能量一致或已知或经测量获知;
S2.检测:停止向所述LC网络输送驱动信号,并检测所述LC网络的余振参数。所述余振参数包括但不限于振幅、周期,和/或振幅大于设定阈值的余振周期个数,和/或振幅大于设定阈值的余振所持续的时间等;
S3.计算判定:使用标定系数对当前次和/或相邻多次检测获得的余振参数进行计算,得出当前物质的待测参数;
S4.延时:根据需要延时0~600秒;
S5.重复以上步骤,直到达到停止条件;
所述停止条件,包括接收到手动停止指令、当前检测所需数据采集完成。
在进一步的方案中,在所述赋能步骤中,向所述LC网络输送至少一个周期的驱动电能,所述驱动电能,其幅度、周期和占空比恒定;
在所述检测步骤中,所检测的余振参数为振幅大于设定阈值的余振周期个数,或振幅大于设定阈值的余振所持续的时间,对应的,在计算判定步骤中,所述当前物质及其待测参数包括但不限于:
已知密度的固态粉末或液态物质的料位或液位;
固态粉末或液态物质对所述超声波换能器施加的压力和/或压强;
固态或液态物质是否与所述超声波换能器接触;
与超声波换能器接触、高度恒定的流态物质的密度和/或粘度。
本申请实施例所述的物质参数的检测方法,其工作原理为:
电感器和电容器连接形成回路后,就组成了LC网络。当向LC网络输入激励电能,而激励电能撤除后,该电能即能在LC回路的电感器和电容器之间,以余振的形式,反复进行磁能和电势能之间的交替转换,形成自由振荡,直到该电能在转换通路中,逐渐消耗于回路阻抗,和向空间散发电磁能。
超声波换能器作为LC网络构成方之一,在受到激励后,形成自由振荡,将激励到LC回路中的电能,转化为超声波能量,向与之接触的物质施放,直到LC回路中的能量释放完毕。
与超声波换能器接触的物质,其性能(例如电导率、粘度、压力、形态等)不同时,超声波换能器向其释放超声波能量的速率(单位时间内消耗的能量)不同,在接受同等的激励能量之后,LC回路中的余振参数不同。
本申请实施例所主张的物质参数的检测方法,即以超声波换能器作为LC回路的构成方之一,通过向LC回路输入已知能量的激励后,检测LC回路的余振参数,以得到与超声波换能器接触的物质的例如以下参数:
1.是否有物质与超声波换能器接触,例如是否有粉末固态物料或液体与超声波换能器接触;
2.与超声波换能器接触的物质的量,例如料位、液位等;
3.当前与超声波换能器接触的物质的性能,例如电导率、粘度、压力、形态等。
应用上述方法的一种物质参数检测电路,由赋能电路、LC网络、余振提 取电路、整型/后处理电路、中央处理器等构成。
所述赋能电路,为所述LC网络的激励电路,受所述中央处理器控制,间歇性向LC网络提供周期性的电能,使LC网络进入振荡状态,所述赋能电路包括功率器件及其驱动电路等,所述功率器件,包括但不限于晶体三极管、MOSFET、IGBT等;
所述LC网络,为包括超声波换能器在内的电感-电容组合网络;
所述余振提取电路,为高阻抗耦合电路,连接于所述LC网络与所述整型/后处理电路之间,将所述LC网络的振荡状态耦合到所述整型/后处理电路,所述余振提取电路,包括但不限于:与所述LC网络中电感相耦合的电感绕组,或与所述LC网络连接的电容器、电阻器等;
所述整型/后处理电路,为与所述中央处理器共地、向所述中央处理器提供被采样信号的电路,由整流元件、钳位元件、滤波元件等构成;
所述中央处理器,其数字输出端之一连接所述赋能电路,用于控制赋能电路间歇工作,其输入端口连接所述整型/后处理电路的输出端,用以检测余振参数。
作为优选的方案,所述超声波换能器为压电陶瓷换能器;所述LC网络,由电感器和所述超声波换能器连接而成。
作为更进一步的方案,所述LC网络,由电感器和压电陶瓷换能器并联而成;所述电感器,其一端连接供电电源的正极,另一端连接所述功率器件,或,所述电感器,其中间抽头连接供电电源的正极,另两端之一连接所述功率器件;
所述赋能电路,为以N型MOSFET为核心的电路,与所述LC网络构成振荡电路,所述振荡电路包括所述LC网络、N型MOSFET,以及MOSFET的栅极电路等,为他激式振荡电路或自激振荡电路之一:
所述他激式振荡电路,其中的所述N型MOSFET,其漏极连接所述LC网络,其源极连接供电电源的负极,其栅极经过他激式栅极电路连接到所述中央处理器的数字输出口之一。所述中央处理器通过数字输出口经所述他激式栅极电路向所述N型MOSFET发送间歇的高频开关信号,使所述振荡电路在所述中央处理器的激励下,间歇地进入振荡状态;所述他激式栅极电路,包括连接在所述N型MOSFET的栅极与源极之间的电阻器、和连接在所述N型MOSFET的栅极与所述中央处理器的数字输出端之间的电阻器;
所述自激式振荡电路,为电感三点式LC振荡电路或电容三点式LC振荡电路,或此两种振动电路的变种电路;所述自激式振荡电路,其功率器件的栅极或基极还设有与所述中央控制器连接的控制电路,包括控制用晶体三极管或MOSFET,以及控制用晶体三极管或MOSFET的驱动元件,所述控制用晶体三极管或MOSFET,其基极或栅极通过偏置电阻连接所述中央控制器的数字输出口,其集电极或漏极连接所述功率器件的栅极,所述中央控制器通过驱动控制用晶体三极管或MOSFET的导通/关断,控制所述功率器件的栅极偏置电压,从而控制所述自激振荡电路停振/起振,达到使所述自激式振荡电路受控间歇工作的目的。
作为更进一步的方案,所述余振提取电路,为与所述LC网站中电感器存有磁耦合回路的电感绕组,其一端连接供电电源的负极,另一端连接所述整型/后处理电路;
所述整型/后处理电路,包括整流二极管、钳位元件、电阻、电容等。所述整流二极管,其阳极连接作为所述余振提取电路的电感绕组,阴极连接由钳位元件、电阻、电容三者并联构成的网络,所述由钳位元件,电阻、电容三者并联构成的网络,其另一端连接供电电源的负极,所述钳位元件,包括但不限于单向TVS二极管、单向ESD、稳压二极管、电压基准芯片等,所述钳位元件与二极管的连接端,还作为所述整型/后处理电路的输出端,连接到所述中央处理器。
作为更进一步的方案,所述LC网络中,还通过对所述压电陶瓷换能器串联和/或并联电容,对LC网络的参数予以补偿;
所述电感器的电感量、压电陶瓷换能器经补偿后的等效电容量符合算式其中:
f为所述压电陶瓷换能器的谐振频率;
L为所述LC网络中电感器的等效电感量;
C为所述压电陶瓷换能器补偿后的等效电容量。
作为更进一步的方案,所述余振提取电路间接与所述LC回路连接,为,连接于供电主回路中的电流传感器,包括但不限于电流检测电阻等。
作为更进一步的方案,在供电电源回路和压电陶瓷换能器回路,还设有滤波元件,以避免向空间辐射,和沿供电回路和压电陶瓷换能器回路对外传导超幅度的高频信号。
作为更进一步的方案,所述余振提取电路为电容器,连接于所述LC网络和所述整型/后处理电路之间。
实施本申请实施例的有益之处在于:
1)提供一种可行的检测物质参数的方法;
2)可通过标定,同时检测同一物质的多个参数,或者分辨不同的物质;
3)在超声雾化应用中,可使超声换能器兼具雾化和液位检测功能,有利于简化结构,降低成本。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例中物质参数检测方法的流程框图;
图2是使用本申请实施例中物质参数检测方法的电路的功能框图;
图3是使用本申请实施例中物质参数检测方法的电路之实施例一的原理图;
图4是使用本申请实施例中物质参数检测方法的电路之实施例二的原理图。
具体实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。
实施例1
请参阅图3,本实施例提供了一种物质参数的检测电路,工作电源从P1端口输入,C1、L1、C2构成滤波网络,既可为其后的电路提供稳定的电源,又可抑制其后电路产生的高频谐波从P1外泄,造成电磁污染;
L2_1、Co、T1构成LC网络,L3、L3串联于LC网络中,用于抑制LC回路中的高频谐波;
N沟道场效应管(MOSFET)Q1连接于LC网络与供电电源负极之间,构成对LC网络的赋能电路,R3、R4为Q1的偏置电阻,其中R3连接Q1的栅极和中央控制器U1的数字输出口O,U1的O端口输出高电平时,Q1导通;
L2_2为与L2_1相耦合的电感绕组,作为余振提取电路,LC回路的状态同步反映到L2_2两端;
D1、R1、R2、D2、C3构成整型/后处理电路,其中D1对来自L2_2的信号进行整流;R1、R2对整理后的脉冲信号进行分压,同时提高整型/后处理电路的阻抗,减小整型/后处理电路消耗电能对LC回路的影响;D2为稳压管或单向TVS二极管或单向ESD,起到限幅作用,防止高压脉冲对后级电路造成损坏;C3为滤波电容,用以滤除信号中可能存有的干扰;
U1为中央控制器(CPU),从其数字输出口O控制赋能电路的工作,并从输入口I接收整型/后处理电路获得的余振信号。
当C3容量较小时,整型/后处理电路输出的是与LC回路余振同步的脉冲信号,数字电路的特性决定了,U1对其数字输入端的信号具有识别阈值,即幅度大于其高电平阈值的,被识别为高电平,低于其低电平阈值的,被识别为低电平,U1通过检测I端口接收的高电平脉冲个数,可获得LC网络的余振情况;
当C3容量足够大时,整型/后处理电路的输出信号,其幅值反映了LC回路余振幅度情况,U1通过对I端口的电压进行ADC转换,亦可获得LC网络的余振情况。
工作时,U1首先通过端口O向Q1输出至少一个赋能脉冲,使Q1导通一端时间,为LC网络充入电能,然后将端口O置为低电平,Q1截止,LC网络进入余振状态,余振提取电路L2_2同步获得余振信息,经D1整流,R1、R2分压,D2钳位,C3滤波后输入U1,U1通过对端口I信息的检测,即可获得余振情况,经使用标定参数进行计算,即可获知被检测物质的相关参数。
例如在液位/料位检测应用中,物料或液体施加到超声换能器T1上的压力不同,其振动时对外做功的效率不同,其余振幅度和维持时间亦不同,通过对余振的检测,即可获得液位/料位信息。
而由于物料/液体的密度、粘度等参数对LC网络的余振情况造成影响,故此设计思想下,可通过对余振情况的测量,检测到与超声换能器接触的物 质的相关参数。
特别的,在超声雾化装置中,由超声换能器承担对液体的雾化作用(U1持续通过数字输出口O输出高频信号,驱动他激式振荡电路工作,使超声换能器持续向液体发送超声振动能量以雾化液体),同时,每间隔一端时间,U1停止输出高频信号,并使数字输出口O为低电平,可使LC网络进入余振状态,U1检测余振情况,即可获知液位高低和液体的存无。当待雾化的液体消耗完毕,U1即可停止输出雾化驱动信号(U1的数字输出口O停止输出),以避免对超声换能器“干烧”造成损坏,也可发出报警信号(具体电路未画出)提醒用户添加待雾化的液体。
实施例2
请参阅图4,一种物质参数的检测电路,赋能电路与LC网络构成自激振荡电路,其中,Q1的源极通过并联的源极电阻Re和高频旁路电容Ce连接到供电电源负极;R3和R4对固定电压V+分压后连接到Q1的栅极,使Q1的栅极电位稳定;Q1的漏极通过LC网络连接到供电电源的正极;Q1的漏极和源极之间还设有振荡电容Cc;晶体三极管Q2的集电极和射极跨接在Q1的栅极和供电电源负极之间,限流电阻R5和下拉电阻R6连接到Q2的基极,R5的另一端连接到中央处理器U1的数字输出口O。
工作时,中央处理器U1的数字输出口O输出高电平,使Q2导通,因Q1栅极电位为低电平,自激振荡电路停振。在一个检测周期中,中央处理器U1首先使输出口O输出低电平,Q2断开,Q1栅极电位为高电平,自激振荡电路起振,向LC网络输入能量;然后,中央处理器U1再次使数字输出口O输出高电平,使Q2导通,栅极电位为低,自激振荡电路停振;此后LC网络进入余振状态,余振提取电路和整型/后处理电路将余振信息输送到U1,供U1完成检测任务。
相较于实施例1,本实施例中,由于振动电路为自激振动,无需每个振动周期都由U1来控制,故,无需占用U1大量的时间以产生高频驱动信号,U1可以有更多的时间去处理其它任务,也可提高U1的控制精度。
上面对本专利的较佳实施方式作了详细说明,但是本专利并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本专利宗旨的前提下做出各种变化。

Claims (10)

  1. 一种物质参数的检测方法,其特征在于,
    所述检测方法基于包括超声波换能器的LC网络,且超声波换能器与被测物质直接或间接接触;
    检测方法包括以下步骤:
    S1.赋能:向所述LC网络输送至少一个激励周期的驱动电能,使之进入稳定的振荡状态,所述驱动电能,其每周期的能量一致或已知或经测量获知;
    S2.检测:停止向所述LC网络输送驱动信号,并检测所述LC网络的余振参数,所述余振参数包括振幅、周期和/或振幅大于设定阈值的余振周期个数和/或振幅大于设定阈值的余振所持续的时间;
    S3.计算判定:使用标定系数对当前次和/或相邻多次检测获得的余振参数进行计算,得出当前物质的待测参数;
    S4.延时:根据需要延时0~600秒;
    S5.重复以上步骤,直到达到停止条件;
    所述停止条件,包括接收到手动停止指令、当前检测所需数据采集完成。
  2. 根据权利要求1所述的一种物质参数的检测方法,其特征在于,
    在所述赋能步骤中,向所述LC网络输送至少一个周期的驱动电能,所述驱动电能,其幅度、周期和占空比恒定;
    在所述检测步骤中,所检测的余振参数为振幅大于设定阈值的余振周期个数,或振幅大于设定阈值的余振所持续的时间,对应的,在计算判定步骤中,所述当前物质及其待测参数包括:
    已知密度的固态粉末或液态物质的料位或液位;
    固态粉末或液态物质对所述超声波换能器施加的压力和/或压强;
    固态或液态物质是否与所述超声波换能器接触;
    与超声波换能器接触、高度恒定的流态物质的密度和/或粘度。
  3. 一种物质参数检测电路,其特征在于,包括赋能电路、LC网络、余振提取电路、整型/后处理电路以及中央处理器,
    所述赋能电路,为所述LC网络的激励电路,受所述中央处理器控制,间歇性向LC网络提供周期性的电能,使LC网络进入振荡状态,
    所述赋能电路包括功率器件及其驱动电路,
    所述功率器件,包括晶体三极管或MOSFET或IGBT;
    所述LC网络,为包括超声波换能器在内的电感-电容组合网络;
    所述余振提取电路,为高阻抗耦合电路,连接于所述LC网络与所述整型/后处理电路之间,将所述LC网络的振荡状态耦合到所述整型/后处理电路,
    所述余振提取电路,包括与所述LC网络中电感相耦合的电感绕组,或与所述LC网络连接的电容器、电阻器;
    所述整型/后处理电路,为与所述中央处理器共地、向所述中央处理器提供被采样信号的电路,由整流元件、钳位元件以及滤波元件构成;
    所述中央处理器,其数字输出端之一连接所述赋能电路,用于控制赋能电路间歇工作,其输入端口连接所述整型/后处理电路的输出端,用以检测余振参数。
  4. 根据权利要求3所述的一种物质参数检测电路,其特征在于,
    所述超声波换能器为压电陶瓷换能器;
    所述LC网络,由电感器和所述超声波换能器连接而成。
  5. 根据权利要求4所述的一种物质参数检测电路,其特征在于,
    所述LC网络,由电感器和压电陶瓷换能器并联而成;
    所述电感器,其一端连接供电电源的正极,另一端连接所述功率器件,或,所述电感器,其中间抽头连接供电电源的正极,另两端之一连接所述功率器件;
    所述赋能电路,为以N型MOSFET为核心的电路,与所述LC网络构成振荡电路,
    所述振荡电路包括所述LC网络、N型MOSFET,以及MOSFET的栅极电路,为他激式振荡电路或自激振荡电路之一:
    所述他激式振荡电路,其中的所述N型MOSFET,其漏极连接所述LC网络,其源极连接供电电源的负极,其栅极经过他激式栅极电路连接到所述中央处理器的数字输出口之一,
    所述中央处理器通过数字输出口经所述他激式栅极电路向所述N型MOSFET发送间歇的高频开关信号,使所述振荡电路在所述中央处理器的激励下,间歇地进入振荡状态;
    所述他激式栅极电路,包括连接在所述N型MOSFET的栅极与源极之间的电阻器、和连接在所述N型MOSFET的栅极与所述中央处理器的数字输出端之间的电阻器;
    所述自激式振荡电路,为电感三点式LC振荡电路或电容三点式LC振荡电路,或此两种振动电路的变种电路;
    所述自激式振荡电路,其功率器件的栅极或基极还设有与所述中央控制器连接的控制电路,包括控制用晶体三极管或MOSFET,以及控制用晶体三极管或MOSFET的驱动元件,所述控制用晶体三极管或MOSFET,其基极或栅极通过偏置电阻连接所述中央控制器的数字输出口,其集电极或漏极连接所述功率器件的栅极,所述中央控制器通过驱动控制用晶体三极管或MOSFET的导通/关断,控制所述功率器件的栅极偏置电压,从而控制所述自激振荡电路停振/起振,达到使所述自激式振荡电路受控间歇工作的目的。
  6. 根据权利要求5所述的一种物质参数检测电路,其特征在于,
    所述余振提取电路,为与所述LC网站中电感器存有磁耦合回路的电感绕组,其一端连接供电电源的负极,另一端连接所述整型/后处理电路;
    所述整型/后处理电路,包括整流二极管、钳位元件、电阻以及电容,
    所述整流二极管,其阳极连接作为所述余振提取电路的电感绕组,阴极连接由钳位元件、电阻、电容三者并联构成的网络,
    由钳位元件、电阻、电容三者并联构成的网络,其另一端连接供电电源的负极,
    所述钳位元件,包括单向TVS二极管、单向ESD、稳压二极管以及电压基准芯片,
    所述钳位元件与二极管的连接端,还作为所述整型/后处理电路的输出端,连接到所述中央处理器。
  7. 根据权利要求5所述的一种物质参数检测电路,其特征在于,
    所述LC网络中,还通过对所述压电陶瓷换能器串联和/或并联电容,对LC网络的参数予以补偿;
    所述电感器的电感量、压电陶瓷换能器经补偿后的等效电容量符合算式其中:
    f为所述压电陶瓷换能器的谐振频率;
    L为所述LC网络中电感器的等效电感量;
    C为所述压电陶瓷换能器补偿后的等效电容量。
  8. 根据权利要求3所述的一种物质参数检测电路,其特征在于,
    所述余振提取电路间接与所述LC回路连接,为,连接于供电主回路中的电流传感器,包括电流检测电阻。
  9. 根据权利要求3所述的一种物质参数检测电路,其特征在于,
    在供电电源回路和压电陶瓷换能器回路,还设有滤波元件,以避免向空间辐射,和沿供电回路和压电陶瓷换能器回路对外传导超幅度的高频信号。
  10. 根据权利要求3所述的一种物质参数检测电路,其特征在于,
    所述余振提取电路为电容器,连接于所述LC网络和所述整型/后处理电路之间。
PCT/CN2023/086990 2022-04-15 2023-04-07 一种物质参数的检测方法和电路 WO2023197956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210398267.5 2022-04-15
CN202210398267.5A CN114942042A (zh) 2022-04-15 2022-04-15 一种物质参数的检测方法和电路

Publications (1)

Publication Number Publication Date
WO2023197956A1 true WO2023197956A1 (zh) 2023-10-19

Family

ID=82906705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086990 WO2023197956A1 (zh) 2022-04-15 2023-04-07 一种物质参数的检测方法和电路

Country Status (2)

Country Link
CN (1) CN114942042A (zh)
WO (1) WO2023197956A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942042A (zh) * 2022-04-15 2022-08-26 深圳市帝拓电子有限公司 一种物质参数的检测方法和电路
CN116273808A (zh) * 2023-05-16 2023-06-23 深圳市力生美半导体股份有限公司 控制方法、电路结构、封装结构、存储介质及换能系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196122A (zh) * 1995-08-03 1998-10-14 妙声力有限公司 检测管道内的液体特性和对泵进行控制的方法
CN1348091A (zh) * 2001-11-19 2002-05-08 武汉大学 一种利用超声波检测容器定点液位的方法
CN2508235Y (zh) * 2001-12-05 2002-08-28 武汉大学 容器定点液位的超声波检测仪
CN103575340A (zh) * 2013-08-22 2014-02-12 浙江利尔达物联网技术有限公司 液体流量无磁检测装置及其检测方法
CN103901310A (zh) * 2012-12-25 2014-07-02 江西三川水表股份有限公司 一种换能器断线检测方法及系统
CN104634424A (zh) * 2015-03-04 2015-05-20 姜跃炜 用于超声波流量表的状态检测方法
US11255826B1 (en) * 2020-11-18 2022-02-22 Tung Thih Electronic Co., Ltd. Superficial foreign bodies detecting system for ultrasonic sensor
CN114942042A (zh) * 2022-04-15 2022-08-26 深圳市帝拓电子有限公司 一种物质参数的检测方法和电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196122A (zh) * 1995-08-03 1998-10-14 妙声力有限公司 检测管道内的液体特性和对泵进行控制的方法
CN1348091A (zh) * 2001-11-19 2002-05-08 武汉大学 一种利用超声波检测容器定点液位的方法
CN2508235Y (zh) * 2001-12-05 2002-08-28 武汉大学 容器定点液位的超声波检测仪
CN103901310A (zh) * 2012-12-25 2014-07-02 江西三川水表股份有限公司 一种换能器断线检测方法及系统
CN103575340A (zh) * 2013-08-22 2014-02-12 浙江利尔达物联网技术有限公司 液体流量无磁检测装置及其检测方法
CN104634424A (zh) * 2015-03-04 2015-05-20 姜跃炜 用于超声波流量表的状态检测方法
US11255826B1 (en) * 2020-11-18 2022-02-22 Tung Thih Electronic Co., Ltd. Superficial foreign bodies detecting system for ultrasonic sensor
CN114942042A (zh) * 2022-04-15 2022-08-26 深圳市帝拓电子有限公司 一种物质参数的检测方法和电路

Also Published As

Publication number Publication date
CN114942042A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2023197956A1 (zh) 一种物质参数的检测方法和电路
JP6895527B2 (ja) 超音波霧化シートの発振制御回路及び超音波電子タバコ
CN206482028U (zh) 一种超声雾化片振荡控制电路及超声波电子烟
CN103252314B (zh) 超声电源的动态匹配装置及其方法
CN106093213B (zh) 便携式电磁超声脉冲激发装置
WO2018223999A1 (zh) 一种超声波电子烟电路及该超声波电子烟
CN101642741B (zh) 一种超声波雾化电路及装置
WO2020063367A1 (zh) 蜂鸣器驱动电路及相应的蜂鸣器驱动方法
TW201027875A (en) Contactless power transmission circuit
US20230109722A1 (en) Switching Mode Power Supply With Zero Voltage Switching And The Method Thereof
WO2023029951A1 (zh) 控制装置、存储介质、计算机程序产品、气溶胶生成装置及其控制方法
CN201298823Y (zh) Cmos电流自动控制晶体振荡器
CN113824435B (zh) 一种雾化器追频电路
CN103208987A (zh) 音频设备外接终端的开机唤醒方法
CN110243433B (zh) 一种雾化器的缺水检测系统、方法及雾化器
CN103187889A (zh) 一种便携式高压直流稳压电源
CN110006505A (zh) 一种超声波液位计及其液位检测方法
WO2021213539A1 (zh) 一种计数电路及芯片
CN115589163A (zh) 变频式低频振动能量采集管理系统
CN210159866U (zh) 他激式雾化器振荡电路
CN114062758A (zh) 一种电信号检测方法、电路及开关电源
CN110057473B (zh) 一种单线圈振弦传感器的激振电路及其测量电路
CN217824767U (zh) 一种带电流反馈的雾化片控制电路
CN215964419U (zh) 一种基于超声波雾化器的控制电路
JPS5876157A (ja) 噴霧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787600

Country of ref document: EP

Kind code of ref document: A1