WO2023197889A1 - 发光元件 - Google Patents

发光元件 Download PDF

Info

Publication number
WO2023197889A1
WO2023197889A1 PCT/CN2023/085457 CN2023085457W WO2023197889A1 WO 2023197889 A1 WO2023197889 A1 WO 2023197889A1 CN 2023085457 W CN2023085457 W CN 2023085457W WO 2023197889 A1 WO2023197889 A1 WO 2023197889A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting unit
emitting
organic
Prior art date
Application number
PCT/CN2023/085457
Other languages
English (en)
French (fr)
Inventor
陈慧修
魏丽真
徐国城
朱克泰
Original Assignee
台州观宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台州观宇科技有限公司 filed Critical 台州观宇科技有限公司
Publication of WO2023197889A1 publication Critical patent/WO2023197889A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • a light-emitting component including a substrate, and a plurality of organic light-emitting units above the substrate, wherein the light-emitting units include a first light-emitting unit and a second light-emitting unit, and the first light-emitting unit and The second light-emitting units each have an organic light-emitting stack including an organic material and respectively emit light with different colors, wherein the total thickness of the organic light-emitting stack of the first light-emitting unit is greater than that of the second light-emitting unit. the total thickness.
  • Figure 5 is a cross-sectional view of an embodiment.
  • Figure 7B is a cross-sectional view of an embodiment.
  • 16A to 16G illustrate a method of manufacturing a light-emitting element according to an embodiment.
  • FIG. 19 is a top view illustrating an organic light-emitting unit according to an embodiment.
  • the absorption rate of the organic emission layer 264 for a specific wavelength is greater than or equal to 50%. In some embodiments, the absorption rate of the organic emission layer 264 for a specific wavelength is greater than or equal to 60%. In some embodiments, the absorption rate of the organic emission layer 264 for a specific wavelength is greater than or equal to 70%. In some embodiments, the absorption rate of the organic emission layer 264 for a specific wavelength is greater than or equal to 70%. In some embodiments, the organic emission layer 264 has an absorption rate of greater than or equal to 70% for a specific wavelength. The absorption rate of layer 264 for a specific wavelength is greater than or equal to 80%.
  • the second carrier transport layer 263 is disposed over a portion of the first carrier transport layer 262 .
  • the second carrier transport layer 263 may be vertically aligned with the first electrode 215 .
  • the second carrier transport layer 263 includes a central area 2631 and a peripheral area 2632 surrounding the central area 2631.
  • the central region 2631 and the interface 2611 between the carrier injection layer 261 and the first electrode 215 are vertically aligned.
  • the peripheral region 2632 is vertically aligned with the portion of the light emitting element between the convergence point T 1 and the end point E in FIG. 3 .
  • FIG. 9 is a top view of the light emitting unit 260 shown in FIG. 8 (FIG. 8 is a cross-sectional view along line B-B in FIG. 9).
  • the central area 2631 and the peripheral area 2632 are shown as rectangles in Figure 9, but other shapes may be used according to the designer's preference.
  • the surface area of each region depends on the interface 2611 between the carrier injection layer 261 and the first electrode 215 .
  • the surface areas of each of the two peripheral areas 2632 disposed on the sides of the central area 2631 may be the same or different.
  • the first end of organic emissive layer 264 intersects first carrier transport layer 262 and second carrier transport layer 263 at point P1.
  • the organic emissive layer 264 also has a second end opposite the first end.
  • the second end of organic emissive layer 264 intersects first carrier transport layer 262 and second carrier transport layer 263 at point P2.
  • the organic layer 269 of the first light-emitting unit 260 includes a first material
  • the second electrodes 216 of the first light-emitting unit 260 and the second light-emitting unit 270 include an electrode material
  • the intermediate layer 312 of the first light-emitting unit 260 Including the first material and the electrode material.
  • the concentration of the electrode material in the intermediate layer 312 decreases from the second electrode 216 toward the organic layer 269 of the first light emitting unit 260 .
  • the formation of the intermediate layer 312 includes diffusing the electrode material of the second electrode 216 into the organic layer 269 of the first light emitting unit 260 .
  • the thickness of the organic layer 279 in the light unit 270 may be between the thickness of the organic layer 269 in the first light-emitting unit 260 and the thickness of the organic layer 289 in the third light-emitting unit 280 .
  • the third light emitting unit 280 emits blue light compared to other light emitting units configured to emit different colors, and the organic layer 289 of the third light emitting unit 280 may have a maximum thickness.
  • the absorption rate of the buffer layer 301 for a specific wavelength is greater than or equal to 30%, In some embodiments, the absorption rate for a specific wavelength is greater than or equal to 40%. In some embodiments, the absorption rate for a specific wavelength is greater than or equal to 50%. In some embodiments, in some embodiments, The absorption rate for a specific wavelength is greater than or equal to 60%. In some embodiments, the absorption rate for a specific wavelength is greater than or equal to 70%. In some embodiments, the absorption rate for a specific wavelength is greater than or equal to 70%.
  • the photosensitive layer 302 is provided on the buffer layer 301.
  • the photosensitive layer 302 can be further patterned through a photolithography process, so that a portion of the buffer layer 301 is exposed through the grooves 312 .
  • a portion of buffer layer 301 is removed to have grooves 313, exposing carrier transport layer 262. In some embodiments, the removal operation of Figure 16C is performed via wet etching.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光组件,发光组件包括一基板和一保护层,基板上方有多个凸块配置于所述基板与保护层之间,其中所述多个凸块中有两相邻凸块,而所述两相邻凸块间具有一包含一有机材料的有机发光单元。在所述多个凸块中有至少一个凸块包含一远离基板方向的一表面,而所述表面包含一皱褶部,所述皱褶部包含一朝向基板的一顶点。发光组件也包括一光学吸收单元,所述光学吸收单元配置于该基板与保护层之间。

Description

发光元件 技术领域
本揭露是关于一种发光元件,特别是关于一种有机发光元件。
背景技术
有机发光显示器已经广泛使用于最高端的电子装置中。然而,由于现有技术的限制,发光材料的发光效率与质量并无法有效地被控制,导致器件的光学效果不如预期。
发明内容
在本发明中,具有一种发光组件,发光组件包括一基板和一保护层,基板上方有多个凸块配置于所述基板与保护层之间,其中所述多个凸块中有两相邻凸块,而所述两相邻凸块间具有一包含一有机材料的有机发光单元。在所述多个凸块中有至少一个凸块包含一远离基板方向的一表面,而所述表面包含一皱褶部,所述皱褶部包含一朝向基板的一顶点。发光组件也包括一光学吸收单元,所述光学吸收单元配置于该基板与保护层之间。
在本发明中,具有一种发光组件,包括一基板,且所述基板上方具有多个有机发光单元,其中这些发光单元包括一第一发光单元和一第二发光单元,而第一发光单元与第二发光单元分别具有一包含一有机材料的有机发光迭层且分别发射具不同色的光,其中所述第一发光单元的有机发光迭层的总厚度大于第二发光单元的有机发光迭层的总厚度。
本发明中,也具有一种发光组件的制作方法,包括提供一基板并形成复数凸块于该基板上,制作方法也包括形成一光敏层于该多个凸块上以及图案化该光敏层,以形成通过该光敏层的一凹槽,进而暴露一表面,制作方法也包括设置一有机材料于该表面上以及移除该经图案化光敏层,并且连续覆型地设置一介电层于多个凸块的上方,其中所述多个凸块中有至少一个凸块包含一远离基板方向的一表面,所述表面包含一皱褶部,所述皱褶部包含一朝向基板的一顶点。
在一些实施例中,凸块对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
在一些实施例中,保护层对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
在一些实施例中,有机材料对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
在一些实施例中,所述光敏层对于一特定波长之吸收率大于或等于30%且所述特定波长不大于400nm。
在一些实施例中,所述有机材料可配置于一有机层,所述有机层可为一电子传输层(ETL),一电子注入层(EIL),一发射层(EM),一空穴阻挡层(HBL),一空穴注入层(HIL),一空穴传输层(HTL)中的一者。
在一些实施例中,其中所述光学吸收单元对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
在一些实施例中,所述的各发光单元具有一有效发光区其大小等于位于各发光单元下方的一阳极总面积,各发光单元于发光时具有一黑区与一亮区,其中所述的黑区的总面积小于所述有效发光区的50%。
附图说明
图1为俯视图,例示发光元件的中间产物。
图2A为例示沿着图1中的线AA的剖面图。
图2B为示意图,例示落在两个相邻第一电极上的凸块。
图2C为示意图,例示凸块的另一实施例。
图3为一实施例的剖面图。
图4A为俯视图,例示具有数个发光像素的发光层的一部分。
图4B为俯视图,例示具有数个发光像素的发光层的一部分。
图5为一实施例的剖面图。
图6A例示一电极的剖面图。
图6B例示一电极的剖面图。
图6C例示一电极的剖面图。
图7A为一实施例的剖面图。
图7B为一实施例的剖面图。
图8为根据一实施例的一发光元件的剖面图。
图9为根据一实施例的一发光元件的俯视图。
图10为根据一实施例的一发光元件的剖面图。
图11为根据一实施例的一发光元件的剖面图。
图12为根据一实施例的一发光元件的剖面图。
图13为根据一实施例的一发光元件的剖面图。
图14为根据一实施例的一发光元件的剖面图。
图15为根据一实施例的一发光元件的剖面图。
图15A至图15F绘示根据一实施例的制造发光元件的一方法。
图16A至图16G绘示根据一实施例的制造发光元件的一方法。
图17A为剖面图,例示根据一实施例的发光元件的一部分。
图17B为剖面图,例示根据一实施例的发光元件的一部分。
图18为剖面图,例示根据一实施例的凸块的一实施例。
图19为上视图,例示根据一实施例的有机发光单元。
图20为上视图,例示根据一实施例的有机发光单元。
具体实施方式
图1为俯视图,例示发光元件10的中间产物。发光元件10具有发光层以及位于该发光层20上方的覆盖层40。对于发光层20,可设计间隔物21以提供用于容纳发光像素阵列的凹部阵列。在一些实施例中,间隔物21可包含光敏感材料。
图2A为例示沿着图1中的线AA的剖面图并且仅说明发光区域。为求简洁,此处省略覆盖层40。间隔物21具有数个凸块210,以定义发光像素图案。凹部位在两个相邻凸块210之间并且提供容纳发光像素的空间。该技艺之人士应理解从剖面图观察,凸块210以断开的方式绘示,但从图1的俯视示意图观察,它们可经由间隔物21的其他部分而彼此连接。
在一些实施例中,凸块210对于一特定波长之吸收率大于或等于50%,在一些实施例中,凸块210对于一特定波长之吸收率大于或等于60%,在一些实施例中,凸块210对于一特定波长之吸收率大于或等于70%,在一些实施例中,凸块210对于一特定波长之吸收率大于或等于70%,在一些实施例中,凸块210对于一特定波长之吸收率大于或等于80%,在一些实施例中,凸块210对于一特定波长之吸收率大于或等于90%,在一些实施例中,凸块210对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中, 特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
实施例中,发光单元260包括一第一电极215、在凸块210和第一电极215上方的一第一载体运输层262、在第一载体运输层262的一部分上方的第二载体运输层263,以及在第二载体运输层263上方的一有机发射层264。在一些实施例中,一载体注入层261配置于第一电极215与第一载体运输层262之间。发光单元260包含一有机材料,此有机材料可依不同的实施方式置于发光单元260中的载体运输层、载体注入层或机发射层中的任一层中。且所述的有机材料在一些实施例中,对于一特定波长之吸收率大于或等于50%,在一些实施例中,对于一特定波长之吸收率大于或等于60%,在一些实施例中,对于一特定波长之吸收率大于或等于70%,在一些实施例中,于一特定波长之吸收率大于或等于70%,在一些实施例中,对于一特定波长之吸收率大于或等于80%,在一些实施例中,对于一特定波长之吸收率大于或等于90%,在一些实施例中,对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
基板100位在发光层20下方。在一些实施例中,基板可包含晶体管阵列,其配置对应于发光层20中的发光像素。基板100可包含数个电容器。在一些实施例中,超过一个晶体管经配置以与一电容器与一发光像素形成电路。
在一些实施例中,基板100与覆盖层40之间包含一光学吸收单元,所述的光学吸收单元,对于一特定波长之吸收率大于或等于50%,在一些实施例中,对于一特定波长之吸收率大于或等于60%,在一些实施例中,对于一特定波长之吸收率大于或等于70%,在一些实施例中,于一特定波长之吸收率大于或等于70%,在一些实施例中,对于一特定波长之吸收率大于或等于80%,在一些实施例中,对于一特定波长之吸收率大于或等于90%,在一些实施例中,对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
在一些实施例中,基板100为包含至少三个不同层的堆叠。基板100可具有在底部的无机介电层以及位在该无机介电层上的金属层。另一无机介电层位于该金属层上方。该金属层夹置在两个无机介电层之间。在一些实施例中,无机介电层可经替换为具有弯曲半径小于约100微米的有机介电层。在一些实施例中,无机介电层具有约400微米至1200微米之间的厚度。金属层具有约100微米至400微米的厚度。在一些实施例中,基板100包含两个聚合物层以及位于该两个聚合物层之间的无机层。
在一些实施例中,基板100具有两个聚合物层以及在该两个聚合物层之间的 金属层。在一些实施例中,基板100具有两个聚合物层以及位于该两个聚合物层之间的无机层。无机层可为氧化物、氮化物。在一些实施例中,无机层包含氧化硅、或氮化硅、或氧化铝。在一些实施例中,无机层比聚合物层具有更高的防水性。在一些实施例中,聚合物层的至少一侧(沿着膜堆叠方向)涂覆无机层。在一些实施例中,聚合物层具有约1微米至约5微米之间的厚度。在一些实施例中,基板100局部由黑色材料形成。黑色材料可吸收可见光以降低反射。
发光像素具有位于基板100上方的第一电极215。在一些实例中,第一电极是发光像素的阳极。第一电极215局部受到间隔物21覆盖。如图2A所示,第一电极215的周围区域由凸块210覆盖。在一些实施例中,电极215的边缘角落完全被凸块210包围。在一些实施例中,第一电极215的侧壁完全与凸块210接触。
第一电极215可具有约至约的总厚度。在一些实施例中,第一电极215具有约至约的总厚度。在一些实施例中,第一电极215具有约的总厚度。第一电极215可包含ITO、IZO、AlCu合金、AgMo合金,约ITO(或IZO)与金属膜(Ag、Al、Mg、Au)以及约ITO(或IZO)。
第二电极216位在发光材料205上方。在一些情况下,第二电极216经图案化以仅覆盖各个发光像素的有效发光区域。在一些情况下,第二电极216与发光材料205接触。第二电极216可为如图2A所示的连续膜并且位在发光材料205与凸块210上方。换言之,第二电极216为数个发光像素的共同电极。在一些情况下,第二电极216为发光层20中的所有发光像素的共同电极。
第二电极216可具有约至约的厚度。在一些实施例中,第二电极216可具有约至约的厚度。在一些实施例中,第二电极216可具有约 至约的厚度。在一些实施例中,第二电极216可具有约至约的厚度。在一些实施例中,第二电极216可具有约至约的厚度。在一些实施例中,第二电极216可具有约至约的厚度。在一些实施例中,第 二电极216为复合结构。例如,第二电极216具有导电膜以及在其上的透明导电膜。导电膜位在透明导电膜与发光材料205之间。在一些实施例中,导电膜包含铝、金、银、铜、镁、钼等。在一些实施例中,透明导电膜包含铟、锡、石墨烯、锌、氧等。在一些实施例中,透明导电膜为ITO(铟锡氧化物)。在一些实施例中,透明导电膜为IZO(铟锌氧化物)。在一些实施例中,透明导电膜位在导电膜与发光材料205之间。
发光材料205位在第一电极215与第二电极216之间。在一些实施例中,发光材料205为复合膜结构,其具有沿着垂直方向(Y轴)堆叠的数个薄膜。发光材料205可具有数个载体运输或注入膜。发光材料205可具有发射层(emitting layer,EL)。载体可为空穴或电子。
在一些实施例中,凸块210具有从基板100突出的弯曲表面212,并且发光材料205的一部分(请参阅虚线圆形)位在弯曲表面212上方。图2B说明落在两个相邻第一电极215上的凸块210。凸块210具有高峰P,并且凸块的厚度H为在高峰P的最大厚度。在本揭露中,沿着Y轴测量厚度。关于凸块210,从基板100与凸块210之间的界面(或点Q)测量厚度。在一些实施例中,在高峰P的凸块210的厚度H是约至约在一些实施例中,厚度H是约至约在一些实施例中,凸块210的厚度H是约至约在一些实施例中,凸块210的厚度H是约至约H为高峰P与点Q之间的最短距离。在一些实施例中,厚度H比第一电极215的总厚度大了约1.5至2倍。
线PQ为凸块210的中线。弯曲表面212与第一电极215交会于点Tx。T1是右侧交会点,以及T2是左侧交会点。W1为交会点T1与线PQ之间的距离,以及W2为交会点T2与线PQ之间的距离。在一些实施例中,W1为约0.8微米至约1.6微米。在一些实施例中,W1为约0.8微米至约1.0微米。在一些实施例中,W1为约1.0微米至约1.2微米。在一些实施例中,W1为约1.2微米至约1.4微米。在一些实施例中,W1为约1.4微米至约1.6微米。在一些实施例中,W1实质上等于W2。在一些实施 例中,W1与W2的差是大于8%,亦即凸块210不对称地落在相邻第一电极上。
凸块210的另一特征为弯曲表面212与第一电极215之间的角度θ。为了量测角度θ,首先,在与交会点T1相距1/3W1的点处,绘制到曲线212的切线。该切线延伸以与第一电极215的表面215a相交。θ为切线与表面215a之间的角度。在一些实施例中,角度为约35与55之间。在一些实施例中,角度为约35与45之间。在一些实施例中,角度为约40与45之间。在一些实施例中,角度为约45与50之间。在一些实施例中,角度为约50与55之间。在一些实施例中,角度为约40与55之间。
在一些实施例中,间隔物的凸块210可具有氟(F)。在凸块210中,接近弯曲表面212的区域比其他区域具有较大的F浓度。在一些实施例中,可将一些金属氧化物颗粒添加至凸块210中。这些颗粒可用于散射从发光材料205发出的光。
图2C为凸块210的另一实施例。弯曲表面212具有接近交会点T1的反曲点I。弯曲表面212从点P与点I之间的基板100突出。在反曲点I之后,弯曲表面212凹向基板100。在一些实施例中,反曲点I位在与交会点T1距离约1/6W1处。在一些实施例中,反曲点I位在与交会点T1距离约1/7W1处。在一些实施例中,反曲点I位在与交会点T1距离约1/8W1处。
参阅图3,发光材料205沿着第一电极215连续衬垫并且进一步延伸以局部覆盖弯曲表面212而后结束于点E。换言之,点E是凸块210、第二电极216与发光材料205的交会点。
发光材料205具有一部分与第一电极重叠。在一些实施例中,该部分亦称为有效照明区。在一些实施例中,有效照明区具有至少小于10微米的宽度。在一些实施例中,有效照明区具有约3微米至6微米的宽度。在一些实施例中,有效照明区具有约4微米至6微米的宽度。有效照明区决定图1中的发光元件10的像素大小。由于可将有效照明区的大小控制在10微米以下,因而发光元件10的像素密度可超过1000或2000ppi。
水平距离δ为交会点T1沿着X轴至端点E的距离。水平距离δ表示发光材料205如何与凸块210重叠。水平距离δ亦称为重叠宽度。在一些实施例中,重叠宽度δ约为W1的80-85%。在一些实施例中,重叠宽度δ约为W1的75-80%。在一些实施例中,重叠宽度δ约为W1的75-90%。在一些实施例中,重叠宽度δ为约0.85微米至1.0微米。在一些实施例中,重叠宽度δ为约0.8微米至0.9微米。在一些实施例中,重叠宽度δ为约0.9微米至1.0微米。
在一些实施例中,发光元件10中有两种不同型式的发光像素。第一型像素发出具有第一波长光谱的光,以及第二型像素发出具有第二波长光谱的光,该第二波长光谱不同于该第一波长光谱。在一些实施例中,相较于第二型像素,第一型像素具有较大的重叠宽度。在一些实施例中,第一型像素的重叠宽度比第二型像素的重叠宽度大了约0.1%。在一些实施例中,第一型像素的重叠宽度比第二型像素的重叠宽度大了约60%。在一些实施例中,第一型像素的重叠宽度比第二型像素的重叠宽度大了约0.1%至约60%。
图4A为俯视图,例示具有数个发光像素的发光层20的一部分。第一型像素是401,以及第二型像素是402。虚线代表每一个像素的发光材料与凸块210交会之处。图4A中的虚线是图3中的点T1或T2。间隔d是图3中的凸块210的宽度,亦即d=W1+W2。所有的凸块具有实质上的宽度,然而,重叠宽度不同。第一型像素的重叠宽度为δ1,第二型像素的重叠宽度为δ2;δ1小于δ2。因此,虽然发光层20中的凸块可具有均匀的宽度,若相邻像素为不同型(发出不同的波长光谱),则它们具有不同的重叠宽度。
图4B为俯视图,例示具有数个发光像素的发光层20的一部分。第一型像素为401,第二型像素为402,以及第三型像素为403。虚线代表每一个像素的发光材料与凸块210交会之处。图4B中的虚线为图3中的点T1或T2。间隔d是图3中的凸块210的宽度,亦即d=W1+W2。所有的凸块具有实质上的宽度,然而,重叠宽度不同。第一型像素的重叠宽度为δ1,第二型像素的重叠宽度为δ2,第三型像素 的重叠宽度为δ3。δ1小于δ2,并且δ2小于δ3。类似于图4A,发光层20中的凸块具有均匀的宽度,若相邻像素为不同型(发出不同的波长光谱),则它们具有不同的重叠宽度。在一些实施例中,δ1比δ2小约0.1%至约60%,并且δ2比δ3小约0.1%至约60%。
垂直距离λ为沿着Y轴所测量的交会点T1至端点E的距离。垂直距离λ亦可用于表示发光材料205如何与凸块210重叠或如何覆盖凸块210。垂直距离λ亦称为重叠高度。在一些实施例中,重叠高度λ约为H的60-80%。在一些实施例中,重叠高度λ约为H的60-75%。在一些实施例中,重叠高度λ约为H的65-75%。在一些实施例中,重叠高度λ约为H的70-80%。在一些实施例中,重叠高度λ约为H的70-75%。在一些实施例中,重叠高度λ约为H的60-75%。在一些实施例中,重叠高度λ约为H的75-80%。
在一些实施例中,重叠高度λ约为0.6微米至0.8微米。在一些实施例中,重叠高度λ约为0.65微米至0.7微米。在一些实施例中,重叠高度λ约为0.7微米至0.75微米。在一些实施例中,重叠高度λ约为0.75微米至0.8微米。
在一些实施例中,相较于第二型像素,第一型像素具有较大的重叠高度。在一些实施例中,第一型像素的重叠高度比第二型像素的重叠高度大了约20%至约50%。在一些实施例中,第一型像素的重叠高度大于第二型像素的重叠高度,并且第二型像素的重叠高度大于第三型像素的重叠高度。在一些实施例中,第一型像素的重叠高度比第二型像素的重叠高度大了约20%至约50%。在一些实施例中,第二型像素的重叠高度比第三型像素的重叠高度大了约20%至约50%。
在一些情况下,发光材料205与弯曲表面212接触。发光材料205与弯曲表面212接触的该部分是与弯曲表面212共形(conformal)。
在一些实施例中,电极215为复合结构。例如,电极215具有导电膜与位在其上的透明导电膜。图6A为电极215的实例。导电膜2151位于透明导电膜2152与基板100之间。在一些实施例中,导电膜2151包含铝、金、银、铜等。在一些 实施例中,透明导电膜2152包含铟、锡、石墨烯、锌、氧等。在一些实施例中,透明导电膜2152为ITO(铟锡氧化物)。在一些实施例中,透明导电膜2152为IZO(铟锌氧化物)。金属膜2151的厚度可为约至约之间。透明导电膜2152的厚度可为约至约之间。
在一些实施例中,透明导电膜2152进一步延伸以覆盖导电层2151的侧壁215b,如图6B所示。在一些实施例中,沿着侧壁215b,透明导电膜2152的最大厚度在侧壁215b的最顶部215c并且最低在侧壁的最底部215d(透明导电膜2152与基板100交会处),如图6C所示。在一些实施例中,透明导电膜2152的厚度相对于透明导电膜2152与基板100之间的垂直距离而梯度增加。
在一些实施例中,透明导电膜2152进一步延伸至两个相邻但分开的导电层之间的谷部(valley)350,如图7A所示。凸块210填充该谷部。在谷部350中,透明导电膜2152的一侧接触基板100且对侧接触凸块210。导电膜完全从谷部350移除。透明导电膜2152可为连续的或断成数个区段衬垫在凸块210和基板100之间。图7B说明在一些实施例中,透明导电膜2152断成数个区段随机分布在基板上方。在一些实施例中,谷部350中的透明导电膜2152的平均厚度为导电层2151上的透明导电膜层2152的厚度的约1/4至约1/2。
在一些实施例中,第一电极215具有至少三个不同的膜。导电膜(例如Al、Cu、Ag、Au等)夹置在两个透明导电膜之间。在一些情况下,两个透明导电膜其中之一为ITO,其一侧与基板100接触且另一侧与导电膜接触。在一些情况下,两个透明导电膜其中之一为ITO,其一侧与导电膜接触且另一侧与凸块210或发光材料205接触。
图8例示一发光元件的一实施例。图8为在一些实施例中根据本发明态样的该发光元件的剖面图。该发光元件包括一基板100,在基板100上方的凸块210,以及在凸块210之间和在基板100上方的一发光单元260。
发光单元260包括在基板100上的一第一电极215、在第一电极215上的有机 层269以及在有机层269上的一第二电极216。有机层269可通过诸如气相沉积、液体喷射或喷墨印刷的各种处理来形成。在一些实施例中,有机层269对于一特定波长之吸收率大于或等于50%,在一些实施例中,有机层269对于一特定波长之吸收率大于或等于60%,在一些实施例中,有机层269对于一特定波长之吸收率大于或等于70%,在一些实施例中,有机层269对于一特定波长之吸收率大于或等于70%,在一些实施例中,有机层269对于一特定波长之吸收率大于或等于80%,在一些实施例中,有机层269对于一特定波长之吸收率大于或等于90%,在一些实施例中,有机层269对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。实施例中,发光单元260包括一第一电极215、在凸块210和第一电极215上方的一第一载体运输层262、在第一载体运输层262的一部分上方的第二载体运输层263,以及在第二载体运输层263上方的一有机发射层264。在一些实施例中,一载体注入层261配置于第一电极215与第一载体运输层262之间。
在一些实施例中,有机发射层264对于一特定波长之吸收率大于或等于50%,在一些实施例中,有机发射层264对于一特定波长之吸收率大于或等于60%,在一些实施例中,有机发射层264对于一特定波长之吸收率大于或等于70%,在一些实施例中,有机发射层264对于一特定波长之吸收率大于或等于70%,在一些实施例中,有机发射层264对于一特定波长之吸收率大于或等于80%,在一些实 施例中,有机发射层264对于一特定波长之吸收率大于或等于90%,在一些实施例中,有机发射层264对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
根据像素布置来设计第一电极阵列的图案。凸块210的图案根据像素布置来设计,并且图案化的凸块210可称为像素限定层(PDL)。每个凸块210填入两相邻第一电极215之间的间隙。每个第一电极215由凸块210部分覆盖。
在一些实施例中,载体注入层261设置在凸块210和第一电极215的暴露表面上。载体注入层261连续覆盖凸块210和第一电极215的暴露表面。在一些实施例中,每个第一电极215的暴露表面是经配置为用于一个发光单元260的有效发光区域。选择性,载体注入层261与PDL凸块210接触。在一些实施例中,载体注入层261与第一电极215接触。在一些实施例中,载体注入层261为有机体。在一些实施例中,载体注入层261是经配置为执行空穴注入。在一些实施例中,载体注入层261为一空穴注入层。
第一载体运输层262设置在凸块210和第一电极215的暴露表面上。载体注入层261设置在第一载体运输层262底下。第一载体运输层262连续覆盖载体注入层261。第一载体运输层262覆盖多个PDL凸块210和多个第一电极215。选择性,第一载体运输层262与载体注入层261接触。在一些实施例中,第一载体运输层262为有机体。在一些实施例中,第一载体运输层262是经配置为执行空穴运输。在一些实施例中,第一载体运输层262为一第一空穴运输层。
在一些实施例中,载体注入层261是经配置成分为多个区段,并且第一载体 运输层262连续覆盖凸块210和已分段载体注入层261的暴露部分。载体注入层261的每一区段都可与第一电极215垂直对齐。换句话说,载体注入层261并未连续覆盖凸块210和第一电极215的暴露部分。每一发光单元260都具有设置其上的一分离载体注入层261。
第二载体运输层263设置在第一载体运输层262的一部分上方。第二载体运输层263可与第一电极215垂直对齐。第二载体运输层263包括中心区域2631和围绕中心区域2631的外围区域2632。在一些实施例中,中心区域2631和载体注入层261与第一电极215之间的介面2611垂直对齐。在一些实施例中,外围区域2632与图3中汇合点T1与端点E之间的该发光元件部分垂直对齐。
第一载体运输层262与第二载体运输层263的外围区域2632重叠部分具有厚度G2,大于第一载体运输层262与第二载体运输层263的中心区域2631重叠部分的厚度G1。在一些实施例中,第二载体运输层263的厚度与第一载体运输层262的厚度之比在0.1与0.7之间。第二载体运输层263具有1nm至100nm之间的厚度。在一些实施例中,第二载体运输层263具有5nm至80nm之间的厚度。
在一些实施例中,与第二载体运输层263的厚度相反,第一载体运输层262的厚度并不均匀。与第二载体运输层263的上表面相反,第一载体运输层262的上表面可以是粗糙的。在一些实施例中,与载体注入层261和第一载体运输层262之间的介面相反,在点P1和点P2之间的第一载体运输层262与第二载体运输层263间的介面起伏不平。第二载体运输层263可具有比第一载体运输层262更佳的均匀度。在一些实施例中,第一载体运输层262可具有比第二载体运输层263更佳的厚度均匀度。在一些实施例中,第二载体运输层263与下层共形,该下层包括第一载体运输层262和设置在凸块210和该第一电极上的载体注入层261。
从剖面角度来看,第二载体运输层263从第一载体运输层262的点P1延伸到点P2。有机发射层264的第一端在点P1处。类似地,有机发射层264与第一端相反的第二端在点P2处。第一载体运输层262在点P1和点P2每一者的两侧上具有不 同厚度,例如在靠近点P2的点P1侧处的第一载体运输层262厚度大于在远离点P2的点P1侧处的第一载体运输层262厚度。类似地,在靠近点P1的点P2侧处的第一载体运输层262厚度大于在远离点P1的点P2侧处的第一载体运输层262厚度。在一些实施例中,在点P1和点P2之间第一载体运输层262的厚度小于在点P1和点P2之外第一载体运输层262的厚度。点P1与基板100之间的垂直距离可不等于或等于点P2与基板100之间的垂直距离。
图9是图8内所示发光单元260的俯视图(图8是沿图9中B-B线的剖面图)。图9中将中心区域2631和外围区域2632显示为矩形,但是可根据设计者的喜好采用其他形状。每个区域的表面积取决于载体注入层261与第一电极215之间的介面2611。设置在中心区域2631侧面上的两外围区域2632每一者的表面积可相同或不同。
第二载体运输层263的另一个区域2633显示于图9。区域2632和区域2633可合并成连续的环,该环形图案是中心区域2631的外围。该环形图案的宽度可能不均匀,并且可能因段而异,例如区域2632的宽度可与同一环中区域2633的宽度不同。从俯视图来看,区域2632和区域2633的外边界可为有机发射层264的边界。
请回头参照图8,在一些实施例中,第一载体运输层262和第二载体运输层263中至少一者包括有机材料。该有机材料可包括具有共振结构的分子结构。该有机材料可选自于由螺-三芳基胺、双-三芳基胺及其组合组成的群组。在一些实施例中,第一载体运输层262和第二载体运输层263中至少一者包括螺-三芳基胺。在一些实施例中,第一载体运输层262和第二载体运输层263中至少一者包括双-三芳基胺。在一些实施例中,第一载体运输层262和第二载体运输层263包括该相同材料。在一些实施例中,第一载体运输层262包括并且第二载 体运输层263包括在一些实施例中,第一载体运输层262包括并且第二载体运输层263包括
有机发射层264设置在第二载体运输层263上方并完全覆盖该层。有机发射层264的外围与第二载体运输层263的外围重叠。有机发射层264在点P1和点P2之间延伸。有机发射层264是经配置为发出第一颜色。有机发射层264包括一有机发光材料。
在一些实施例中,有机发射层264的第一端在点P1处与第一载体运输层262和第二载体运输层263相交。有机发射层264还具有与第一端相反的第二端。类似地,有机发射层264的第二端在点P2处与第一载体运输层262和第二载体运输层263相交。
在一些实施例中,有机载体运输层265设置在有机发射层264上方。有机载体运输层265可为电子运输层。在一些实施例中,有机载体运输层265和第一载体运输层262分别经配置用于相对电荷。
在一些实施例中,有机载体运输层265设置在有机发射层264上方并完全覆盖该层。有机载体运输层265的外围可与有机发射层264的外围和第二载体运输层263的外围重叠。有机载体运输层265在点P1和点P2之间延伸。在一些实施例中,有机载体运输层265设置在有机发射层264以及第一载体运输层262通过有机发射层264暴露的部分上方并连续覆盖。在一些实施例中,有机载体运输层265与有机发射层264以及第一载体运输层262通过有机发射层264暴露的部分接触。 在一些实施例中,第二电极216设置在有机载体运输层265上方。
在一些实施例中,该有机载体注入层设置在有机载体运输层265与第二电极216之间。在一些实施例中,发光单元260具有独立的有机载体注入层。在一些实施例中,该有机载体注入层设置在有机载体运输层265上方并连续覆盖,并且第二电极216设置在该有机载体注入层上方并连续覆盖。在一些实施例中,有机载体运输层265是经配置为执行电子运输以及电子注入。在一些实施例中,该有机载体注入层是经配置为执行电子运输以及电子注入。在一些实施例中,该有机载体注入层为一电子注入层。
图10为例示发光元件的另一实施例的剖面图。请参照图10,在一些实施例中,第一载体运输层262与第二载体运输层263之间的介面2621在点P1与点P2之间延伸。介面2621可弯曲并起伏不平。在一些实施例中,介面2621包括凹部,诸如V形凹部。第一载体运输层262包括位于介面2621上且在点P1附近的转折点I1。与点P2相比,转折点I1更接近点P1。在一些实施例中,点P1比点I1更靠近凸块210的顶点。介面2621在点P1和转折点I1之间朝向基板100凹陷;换句话说,第一载体运输层262在点P1与转折点I1之间包括一凹部2623。从转折点I1到发光元件260的中心的附近,介面2621形成从基板100突出的凸形。在一些实施例中,凹部2623为V形凹部。
类似地,另一个转折点I2位于介面2621处并且靠近点P2。与点P1相比,转折点I2更接近点P2。在一些实施例中,点P2比点I2更靠近凸块210的顶点。介面2621在点P2和转折点I2之间朝向基板100凹陷;换句话说,第一载体运输层262在点P2与转折点I2之间包括一凹部2622。从转折点I2到发光元件260的中心的附近,介面2621形成从基板100突出的凸形。在一些实施例中,凹部2622为V形凹部。
图11为例示本发明另一实施例的发光元件剖面图。发光元件包括一基板100、在基板100上的多个凸块210以及由凸块210隔开的多个发光单元。
这些发光单元包括第一发光单元260和第二发光单元270。发光单元260、270包括在基板100上的一第一电极215、在该第一电极上的有机层269、279、以及在有机层269、279上的一第二电极216。第一发光单元260如上所述或如图8至图10所示,第二发光单元270具有与第一发光单元260类似的构造。此外,尽管第一和第二发光单元260、270例示为具有相似的特征,但这仅为例示性,无意于限制这些实施例。第一发光单元260和第二发光单元270可具有相似的结构或不同的结构,以满足期望的功能要求。
在一些实施例中,第一发光单元260和第二发光单元270彼此相邻。在一些实施例中,该发光元件包括多个发光单元,并且第一和第二发光单元260、270可为这些多个发光单元中的任两者。精通技术人士将容易理解,可运用任何合适数量的发光单元,并且所有这样的组合完全旨在涵盖于这些实施例的范围内。
在一些实施例中,第一发光单元260是经配置为显示第一颜色,第二发光单元270是经配置为显示与该第一颜色不同的第二颜色。有机层269、279的厚度可与由相应发光单元260、270显示的颜色有关。有机层269、279的厚度可不同。在一些实施例中,第一发光单元260的先前形成有机层269的厚度小于第二发光单元270的稍后形成有机层279的厚度,并且从第一发光单元260所发射光的波长大于从第二发光单元270所发射光的波长。在一些实施例中,第一发光单元260发射绿光或红光。在一些实施例中,第一发光单元260发射绿光,并且第二发光单元270发射红光或蓝光。有机层269、279可通过诸如气相沉积、液体喷射或喷墨印刷的各种处理来形成。
在一些实施例中,第一发光单元260的有机层269的厚度等于第二发光单元270的有机层279的厚度的大约20%至约80%。在一些实施例中,第一发光单元260的有机层269的厚度等于第二发光单元270的有机层279的厚度的大约30%至约50%。
在一些实施例中,第一发光单元260的有机层269的厚度均匀性大于第二发 光单元270的有机层279的厚度均匀性。在一些实施例中,第一发光单元260的亮度小于第二发光单元270的亮度。
在一些实施例中,有机层269、279的每一者都包括在第一电极215上的有机发射层264、274,以及设置在有机发射层264、274上方的电极运输层266、275。在一些实施例中,第一发光单元260的电极运输层266的厚度小于第二发光单元270的电极运输层275的厚度。第一发光单元260的电极运输层266的厚度等于第二发光单元270的电极运输层275的厚度的大约20%至约80%。在一些实施例中,第一发光单元260的电极运输层266的厚度均匀性大于第二发光单元270的电极运输层275的厚度均匀性。在一些实施例中,每个电极运输层266、275都包括子层。
第一发光单元260的有机发射层264的厚度和第二发光单元270的有机发射层274的厚度可基本上相等。
从剖面角度来看,第一发光单元260还包括在有机层269与第二电极216之间的中间层312。在一些实施例中,中间层312的厚度并不均匀,并且第二电极216与中间层312共形。
在一些实施例中,有机层269的厚度并不均匀。有机层269的厚度不均匀可能是由发光元件的制程所引起。在一些实施例中,有机层269的厚度关联于中间层312的厚度。在一些实施例中,有机层269的厚度越小,中间层312的厚度越大。
在一些实施例中,有机层269的上表面313是有机层269与中间层312之间的介面。由于发光元件的制程,上表面313可能粗糙并且起伏不平。在一些实施例中,上表面313的粗糙度并不均匀,上表面313包括许多粗糙度变化的区域,并且每个区域的粗糙度与该区域接触的中间层312的厚度有关。在一些实施例中,有基层269的上表面313越粗糙,中间层312的厚度越厚。
第一发光单元260的有机层269包括一第一材料,第一发光单元260和第二发光单元270的第二电极216包括一电极材料,并且第一发光单元260的中间层312 包括该第一材料和该电极材料。在一些实施例中,中间层312中电极材料的浓度从第二电极216朝向第一发光单元260的有机层269降低。在一些实施例中,中间层312的形成包括将第二电极216的电极材料扩散到第一发光单元260的有机层269中。
在一些实施例中,第一发光单元260的中间层312还包括第三材料。第三材料为来自第一材料与电极材料的反应物,或通过第一材料与电极材料的螯合形成。在一些实施例中,第一发光单元260的中间层312包括中心区域和围绕中心区域的外围区域。中间层312内中央区域的第三材料数量大于第一发光单元260内中间层312的外围区域的第三材料数量。
从剖面图来看,第一发光单元260内中间层312的两相对端分别在第一汇合点T11和第二汇合点T12处与有机层269和第二电极216汇合。在一些实施例中,第一汇合点T11与基板100之间的距离不同于第二汇合点T12与基板100之间的距离。
在一些实施例中,每个凸块210都具有弯曲表面,其远离基板100突出并且覆盖第一电极215的外围区域。第一发光单元260在第一发光单元260的两相对侧上与凸块210重叠,其中第一发光单元260的两相对侧在凸块210上沿着轴线测量的第一重叠宽度和第二重叠宽度大致相等,并且第一汇合点T11与基板100之间的距离可类似于第二汇合点T12与基板100之间的距离。第二发光单元270在第二发光单元270的侧面上与凸块210重叠,并且第二发光单元270在凸块210上沿着X轴线测量的第三重叠宽度与第一发光单元260的第一重叠宽度和第二重叠宽度不同。在一些实施例中,第一发光单元260和第二发光单元270的布置如上所述或如图4A所示。在一些实施例中,第一重叠宽度和第三重叠宽度之间的差等于第一发光单元260之宽度的大约0.1%至大约60%。
在一些实施例中,第二发光单元270还包括在有机层279与第二电极216之间的中间层322。第二发光单元270的有机层279包括第二材料,第二发光单元270 的中间层322包括第二材料和电极材料。在一些实施例中,第二发光单元270内中间层322的电极材料数量少于第一发光单元260内中间层312的电极材料数量。
在一些实施例中,第二发光单元270的中间层322还包括第四材料。第四材料为来自第二材料与电极材料的反应物,或通过第二材料与电极材料的螯合形成。第二发光单元270的中间层322可包括中心区域和围绕中心区域的外围区域。中间层322内中央区域的第四材料数量大于中间层312的外围区域的第四材料数量。
在一些实施例中,第二发光单元270内中间层322的厚度与第一发光单元260内中间层312的厚度的比例在0.001与0.2之间。有机层269、279的厚度可关联于中间层312、322的厚度。在一些实施例中,第一发光单元260内有机层269的厚度小于第二发光单元270内有机层279的厚度,并且第一发光单元260内中间层312的厚度大于第二发光单元270内中间层322的厚度。
在一些实施例中,第一发光单元260的中间层312的厚度均匀性大于第二发光单元270的中间层322的厚度均匀性。中间层312、322的厚度均匀性可关联于第二电极216的电极材料的扩散。在一些实施例中,有机层269、279的厚度均匀性越大,电极材料的扩散程度越大,即中间层312、322的厚度越厚。在一些实施例中,第一发光单元260内中间层312的厚度均匀性大于第二发光单元270内中间层322的厚度均匀性,并且第一发光单元260内中间层312的厚度大于第二发光单元270内中间层322的厚度。
在一些实施例中,第二电极216区分成数块,并且每一块都布置在一个发光单元中。在一些实施例中,第一和第二发光单元260、270共享公共的第二电极216。
图12为例示本发明另一实施例的发光元件剖面图。在一些实施例中,有机层269、279的每一者进一步包括在有机发射层264、274与第一电极215之间的第一载体运输层262、272。在一些实施例中,第一发光单元260的第一载体运输层 262的厚度大于第二发光单元270的第一载体运输层272的厚度。在一些实施例中,第一发光单元260的第一载体运输层262的厚度均匀性小于第二发光单元270的第一载体运输层272的厚度均匀性。在一些实施例中,第一载体运输层272为一第二空穴运输层。
在一些实施例中,第一发光单元260的第二载体运输层263的厚度不同于第二发光单元270的第二载体运输层273的厚度。在一些实施例中,第一发光单元260的第一载体运输层262和第二载体运输层263的总厚度与第二发光单元270的第一载体运输层272和第二载体运输层273的总厚度基本相等。在一些实施例中,第一发光单元260的第一载体运输层262的厚度大于第二发光单元270的第一载体运输层272的厚度,以及第一发光单元260的第二载体运输层263的厚度小于第二发光单元270的第二载体运输层273的厚度。
第一发光单元260和第二发光单元270可在第一发光单元260和第二发光单元270的有机发射层264上方以及第一发光单元260的中间层312上方具有一有机载体运输层265。在一些实施例中,第一和第二发光单元260、270共享公共的有机载体运输层265。有机载体运输层265在第一和第二发光单元260、270的凸块210和有机发射层264上方。在一些实施例中,第二电极216设置在中间层312和有机载体运输层265的暴露部分上方。
在一些实施例中,发光元件进一步包括载体注入层261(其与第一载体运输层262同类型),其设置在凸块210和第一电极215上方并连续覆盖。第一发光单元260的有机发射层264可设置在第二载体运输层263和对应的有机载体运输层265之间。第一发光单元260和第二发光单元270的有机载体运传输层265可以是电子运输层。类似地,第二发光单元270的有机发射层274可设置在第二载体运输层273和对应的有机载体运输层265之间。
第一发光单元260和第二发光单元270的每一者都包括点P1和点P2。点P1和点P2中的每一个表示第二载体运输层263、273的一端与对应有机发射层264、274 和第一载体运输层262、272相遇的位置。在一些实施例中,从剖面图来看,第一发光单元260和第二发光单元270的每一者都包括位于第二载体运输层263、273的两个相对端的点P1和点P2。点P1和点P2位于有机发射层264、274的两相对端。
点P1与第一发光单元260的基板100间的垂直距离可以与点P1与第二发光单元270的基板100间的垂直距离相似或不同。类似地,点P2与第一发光单元260的基板100间的垂直距离可以与点P2与第二发光单元270的基板100间的垂直距离相似或不同。第一发光单元260的点P1和点P2间的距离可以与第二发光单元270的点P1和点P2间的距离相似或不同。
在一些实施例中,当第一颜色是绿色并且第二颜色是红色或蓝色时,或者当第一颜色是红色并且第二颜色是蓝色时,第一发光单元260的第一载体运输层262比第二发光单元270的第一载体运输层272还要薄。
图13为例示本发明另一实施例的发光元件剖面图。在一些实施例中,第一发光单元260的中间层312包括多个不连续区段312a,其中,每一区段312a都设置在第一发光单元260中。区段312a的形状和尺寸可根据实际需求而相同或不同。
区段312a设置在上表面313上。在一些实施例中,上表面313包括变化粗糙度的许多区域,并且区段312a形成于上表面313的相对粗糙区域上。在一些实施例中,第一发光单元260先前形成的有机层269的上表面313可包括凹部,诸如V形凹部,并且区段312a设置在该凹部中。
在一些实施例中,第二发光单元270的中间层322包括多个不连续区段(未显示)。中间层322的区段的形状和尺寸可根据实际需求而相同或不同。在一些实施例中,第二发光单元270内中间层322的区段数量少于第一发光单元260内中间层312的区段312a的数量。在一些实施例中,第二发光单元270内中间层322的区段尺寸小于第一发光单元260内中间层312的区段312a的尺寸。
图14为例示本发明另一实施例的发光元件剖面图。在一些实施例中,第一 发光单元260的有机层269包括有机层269的上表面313和形成于上表面313中的凹部314。第一发光单元260的中间层312设置在凹部314中。在一些实施例中,第一发光单元260的中间层312进一步覆盖第一发光单元260的有机层269的一部分上表面313。在一些实施例中,许多凹部314都形成于上表面313内。每个凹部314的形状和尺寸可根据实际需求而相同或不同。
在一些实施例中,第一发光单元260内中间层312的上表面包括一突起315。突起315可穿入第二电极216中。在一些实施例中,第一发光单元260内中间层312的上表面包括多个突起315。
在一些实施例中,第二发光单元270的中间层322包括一上表面323。与第二发光单元270内中间层322的上表面323相反,第一发光单元260内中间层312的上表面313可以是粗糙的。在一些实施例中,与第二发光单元270内中间层322的上表面323相反,第一发光单元260内中间层312的上表面313起伏不平。
图15为例示本发明另一实施例的发光元件剖面图。在一些实施例中,该发光元件进一步包括一第三发光单元280。尽管第二和第三发光单元270、280在图15内例示为具有相似的特征,但这仅为例示性,无意于限制这些实施例。第二发光单元270和第三发光单元280可具有相似的结构或不同的结构,以满足期望的功能要求。第一、第二和第三发光单元260、270、280可至少在有机层269、279、289的厚度上彼此不同。在一些实施例中,第一发光单元260发射绿光、第二发光单元270发射红光并且第三发光单元280发射蓝光。
在一些实施例中,发光单元260、270、280是经配置为分成至少三个不同群组,其中每一群组发出与其他群组所发出颜色不同的颜色。每一有机层269、279、289的厚度可与由相应发光单元260、270、280显示的颜色有关。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第一发光单元260发出绿光,并且第一发光单元260的有机层269可具有最小厚度。在一些实施例中,与配置为发射不同颜色的其他发光单元相比,第二发光单元270发射红光,并且第二发 光单元270内有机层279的厚度可介于第一发光单元260内有机层269的厚度与第三发光单元280内有机层289的厚度之间。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第三发光单元280发出蓝光,并且第三发光单元280的有机层289可具有最大厚度。
在一些实施例中,第三发光单元280还包括在有机层289与第二电极216之间的中间层(未显示)。第三发光单元280内有机层289的厚度小于第一发光单元260内中间层312的厚度。在一些实施例中,第三发光单元280内有机层289的厚度小于第二发光单元270内中间层322的厚度。
在一些实施例中,第一、第二和第三发光单元260、270、280可至少在第一、第二和第三发光单元260、270、280的第一载体运输层262的厚度差异上彼此不同。
在一些实施例中,发光单元260、270、280是经配置为分成至少三个不同群组,其中每一群组发出与其他群组所发出颜色不同的颜色。第一载体运输层262的厚度可关联于相应发光单元260所显示的颜色。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第一发光单元260发出绿光,并且第一发光单元260的第一载体运输层262可具有最小厚度。在一些实施例中,与配置为发射不同颜色的其他发光单元相比,第二发光单元270发射红光,并且第二发光单元270内第一载体运输层272的厚度可介于第一发光单元260内第一载体运输层262的厚度与第三发光单元280内第一载体运输层282的厚度之间。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第三发光单元280发出蓝光,并且第三发光单元280的第一载体运输层可具有最大厚度。
如上,各发光单元在其第一电极215上皆有复数层有机发光层沿垂直第一电极215的方向上堆迭形成一有机发光迭层,值得注意的是,所述有机发光迭层在电子显微镜下可能并无法清晰可辨各有机发光层。有机发光迭层具有一总厚度, 总厚度的定义是从有机发光迭层与第一电极215的界面开始,并沿垂直第一电极215的方向计算至有机发光迭层与第二电极216的接口间的距离。
在一实施例中,有一第一发光单元和一第二发光单元,其中所述第一发光单元与第二发光单元分别具有一包含一有机材料的有机发光迭层且分别发射具不同颜色的光,其中第一发光单元的有机发光迭层的总厚度大于第二发光单元的有机发光迭层的总厚度。在一实施例中,上述的第一发光单元和一第二发光单元彼此相邻。
在一实施例中,有一第一发光单元的总厚度为第二发光单元总厚度的1.5-2倍。在一实施例中,有一第一发光单元的总厚度为第二发光单元总厚度的1.3-1.5倍。在一实施例中,有一第一发光单元的总厚度为第二发光单元总厚度的1.2-1.3倍。
在一实施例中,有一第一发光单元、一第二发光单元和一第三发光单元,其中所述第一发、第二和第三发光单元分别具有一包含一有机材料的有机发光迭层且分别发射具不同颜色的光,其中第一发光单元的有机发光迭层的总厚度大于第二发光单元的有机发光迭层的总厚度,第二发光单元的有机发光迭层的总厚度大于第三发光单元的有机发光迭层的总厚度在一实施例中。上述的各发光单元可俩俩彼此相邻。
在图15A中,提供基板250,基板250可包括薄膜晶体管(TFT)阵列。在基板250上设置复数第一电极215。各个第一电极215经配置成,一侧连接至嵌入基板250中的电路、且另一侧接触发光材料。考量像素的安排而设计第一电极的阵列图案。在第一电极215与基板250上设置光敏层254。在一些实施例中,涂布光敏层254于第一电极215与基板250上。
光敏层254填入相邻的第一电极215之间的间隙中。将光敏层254加热至 一预定的温度,然后将之暴露在指定的波长之下。光敏层254可吸收90%以上的可见光,且在本揭露中亦被称为黑体材料。在暴露之后,在一溶液中润湿光敏层254以进行显影。如图15B所示,光敏层254的一部分被移除,而留下的部分实质上覆盖相邻的第一电极215之间的间隙。在此剖面图中,留下的光敏层254形成复数凸块251,各个凸块251填入相邻的第一电极215之间的间隙中。凸块251局部地覆盖各个第一电极215。经图案化的凸块251又称为像素定义层(pixel defined layer,PDL)。
凸块251可经形成为不同的形状。在图15B中,凸块251具有弯曲的表面。在一些实施例中,凸块251的形状为梯型。在形成凸块251后,执行清洁操作以清洁凸块251及第一电极215的暴露表面。在一实施例中,在清洁操作期间,将去离子水加热至介于30℃及80℃之间的一温度。在去离子水的温度升高至一预定温度后,将去离子水引导至凸块251及第一电极215的暴露表面。
在一些实施例中,在清洁操作期间使用超声波。将超声波导入清洁剂(例如水或异丙醇(IPA)等)中。在一些实施例中,将二氧化碳导入清洁剂中。在清洁操作之后,经由加热操作将清洁剂从暴露表面移除。在加热操作期间,可将基板250及凸块251加热至介于80℃及110℃之间的一温度。在一些例子中,将压缩空气引导至暴露表面,以在加热的同时帮助移除清洁剂的残余物。
在加热操作之后,可使用O2、N2、或Ar电浆来处理暴露表面。电浆是用以使暴露表面粗糙化。在一些实施例中,使用臭氧以调节暴露表面的表面状态。
如图15C所示,在凸块251及第一电极215的暴露表面上设置载体注入层261。载体注入层261沿着暴露表面连续地加衬(lining)。更具体而言,各个第一电极215的暴露表面经配置作为一发光单元的有效发光面积。在此实施例中,所有发光单元使用共同的载体注入层261。在一些实施例中,载体注入层261是用于电洞注入。在一些实施例中,载体注入层261是用于电子注入。载体注入层261连续地覆盖在复数PDL凸块251及第一电极215之上。可选地, 载体注入层261与PDL凸块251接触。在一实施例中,载体注入层261与第一电极215接触。在一些实施例中,载体注入层261为有机的。
如图15D所示,在凸块251及第一电极215的暴露表面上设置载体传输层262(或称第一型载体传输层)。载体注入层261设置在载体传输层262之下。载体传输层262沿着载体注入层261连续地加衬。在此实施例中,所有的发光单元使用共同的载体传输层262。在一些实施例中,载体传输层262是用于电洞注入。在一些实施例中,载体传输层262是用于电子注入。载体传输层262连续地覆盖在复数PDL凸块251及第一电极215之上。可选地,载体传输层262与载体注入层261接触。在一些实施例中,载体传输层262为有机的。
在一些实施例中,如图15E所示,载体传输层262经配置成片段,而载体注入层261沿着暴露的PDL凸块251及第一电极215连续地加衬。各个片段垂直地相对于一个第一电极215而排列。换句话说,载体传输层262未沿着载体注入层261连续地加衬。各个发光单元具有个别的载体传输层262设置于其上。
在一些实施例中,如图15F所示,载体注入层261经配置成片段,而载体传输层262沿着暴露的PDL凸块251及第一电极215连续地加衬。各个片段垂直地相对于一个第一电极215而排列。换句话说,载体注入层261未沿着暴露的凸块251及第一电极215连续地加衬。各个发光单元具有个别的载体注入层261设置于其上。
如图16A所示,缓冲层301设置在PDL凸块251上并且亦覆盖载体注入层261及载体传输层262。缓冲层301用以阻挡水气穿透进入PDL凸块251、载体注入层261、及载体传输层262。在一实施例中,经由旋转涂覆的方式来设置缓冲层301。可进一步将缓冲层301加热至温度T1。在一些实施例中,T1约为5℃至10℃,低于载体注入层261及载体传输层262的玻璃转化温度。此加热操作约为1到10分钟。在一些实施例中,缓冲层301包括氟。
在一些实施例中,缓冲层301对于一特定波长之吸收率大于或等于30%, 在一些实施例中,对于一特定波长之吸收率大于或等于40%,在一些实施例中,对于一特定波长之吸收率大于或等于50%,在一些实施例中,在一些实施例中,对于一特定波长之吸收率大于或等于60%,在一些实施例中,对于一特定波长之吸收率大于或等于70%,在一些实施例中,于一特定波长之吸收率大于或等于70%,在一些实施例中,对于一特定波长之吸收率大于或等于80%,在一些实施例中,对于一特定波长之吸收率大于或等于90%,在一些实施例中,对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
在16B中,在加热操作后,在缓冲层301上设置光敏层302。可进一步透过微影制程将光敏层302图案化,以使缓冲层301的一部分透过凹槽312而暴露。在图16C中,移除缓冲层301的一部分,以具有凹槽313,而暴露载体传输层262。在一些实施例中,介由湿蚀刻执行图16C的移除操作。
在一些实施例中,光敏层302对于一特定波长之吸收率大于或等于30%,在一些实施例中,对于一特定波长之吸收率大于或等于40%,在一些实施例中,对于一特定波长之吸收率大于或等于50%,在一些实施例中,在一些实施例中,对于一特定波长之吸收率大于或等于60%,在一些实施例中,对于一特定波长之吸收率大于或等于70%,在一些实施例中,于一特定波长之吸收率大于或等于70%,在一些实施例中,对于一特定波长之吸收率大于或等于80%,在一些实施例中,对于一特定波长之吸收率大于或等于90%,在一些实施例中,对 于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
针对一些实施例,移除操作包括至少两个步骤。第一步骤为垂直向移除,大致上依照凹槽312的开口宽度的尺寸而切出缓冲层301,如图16C所示。在形成凹槽313后,进行第二步骤以执行侧向移除,如图16D所示。形成切槽314,使凹槽313进一步沿伸进入缓冲层301,以朝向PDL凸块251的最高点暴露更多表面。
有机发射(emissive,EM)层263设置在凹槽313中并覆盖载体传输层262及光敏层302。在图16E中,EM层263完全地覆盖暴露的载体传输层262。EM层263经配置以发射第一颜色。
如图16F所示,在EM层263上设置有机载体传输层264(或称第二型载体传输层)。有机载体传输层264可为电洞或电子传输层264。在一些实施例中,有机载体传输层264及载体传输层262各自配置成相反的价态。
在图16G中,在有机载体传输层264上设置第二电极265。光敏层302的顶部表面亦被第二电极265所覆盖。在形成第二电极265后,可将光敏层302移除。第二电极265可为金属材料,例如Ag、Mg等。在一些实施例中,第二电极265包括ITO(氧化铟锡)或IZO(氧化铟锌)。在一些实施例中,从剖视图观看,各个发光单元具有独立的第二电极265,而复数发光单元共用一共同的载体传输层264。
可重复执行如图16A-16G中所示的操作以形成不同颜色的发光单元。图17A绘示另一个发光单元,其发射不同于第一颜色的第二颜色。第一发光单元 21与第二发光单元22的第二电极265是连续的。各个发光单元具有独立的载体传输层264。独立的载体传输层264分段成复数片段,而各个片段设置于一个发光单元上。在一些实施例中,复数发光单元共用一共同的载体传输层264。
如图17B所示,在一些实施例中,各个发光单元具有独立的载体传输层262(相较于载体传输层264更靠近第一电极215)。载体传输层262分段成复数片段,而各个片段设置于一个发光单元上。在一些实施例中,复数发光单元共用一共同的载体传输层262。各个发光单元具有独立的载体注入层261。独立的载体注入层261分段成复数片段,而各个片段设置于一个发光单元上。在一些实施例中,复数发光单元共用一共同的载体注入层261。
在一些实施例中,第二载体传输层264具有至少两个次级层。第一次级层介于第二次级层与EM层264之间。在一些实施例中,第二次级层介于第一次级层与第二电极265之间。在一些实施例中,两个次级层均为连续的,而发光单元21及22使用共同的第一次级层及第二次级层。在一些实施例中,一个次级层为分段的而另一个次级层为连续的。在一些实施例中,第一次级层为连续的,第二次级层为分段的。各个发光单元具有独立的第二次级层。在一些实施例中,第二次级层为连续的,第一次级层为分段的。各个发光单元具有独立的第一次级层。
图18描述凸块210的一种实施态样。凸块210包含一远离基板方向的一表面,而所述表面包含一皱褶部211,皱褶部211包含一朝向基板100或第一电极213的顶点213。顶点213的设置可经由透过如个叠层间的热膨胀系数调整、显影的工艺、凸块210成形的调控、第二电极216的生成参数等加以形成皱褶部211,并进一步形成一朝向基板100或第一电极213的顶点213。皱褶部211与顶点213的存在,可以增加第二电极216与凸块210表面间的附着力,进而避免第二电极216因后续制程产生的应力而与凸块210剥离。
图19乃一有机发光单元21的实施例的上视图,发光单元21具有一有效发光区2101其大小等于位于各发光单元下方的一第一电极213的总面积,各发光单元 于发光时具有一黑区2103位于有效发光区2101的内部,与一环形亮区2102环绕黑区2103,其中所述的黑区2103的总面积小于所述有效发光区的50%。图20为另一实施方式,环形的黑区2103位于有效发光区2101的外部环绕亮区2102。
黑区与亮区的判断可借助显微镜,亮度的比较可依熟知此技艺的人士的方式进行量测比较。在一实施方式黑区2103的总面积小于所述有效发光区的45%。在一实施方式黑区2103的总面积小于所述有效发光区的40%。在一实施方式黑区2103的总面积小于所述有效发光区的35%。在一实施方式黑区2103的总面积小于所述有效发光区的30%。在一实施方式黑区2103的总面积小于所述有效发光区的25%。在一实施方式黑区2103的总面积小于所述有效发光区的20%。在一实施方式黑区2103的总面积小于所述有效发光区的15%。在一实施方式黑区2103的总面积小于所述有效发光区的10%。在一实施方式黑区2103的总面积小于所述有效发光区的5%。
前述内容概述一些实施方式的特征,因而熟知此技艺的人士可更加理解本揭露的各方面。熟知此技艺的人士应理解可轻易使用本揭露作为基础,用于设计或修饰其他制程与结构而实现与本申请案所述的实施例具有相同目的与/或达到相同优点。熟知此技艺的人士亦应理解此均等架构并不脱离本揭露揭示内容的精神与范围,并且熟知此技艺的人士可进行各种变化、取代与替换,而不脱离本揭露的精神与范围。
符号说明
10         发光元件
20         发光层
21         间隔物
40         覆盖层
100        基板
205        发光材料
210        凸块
212        弯曲表面
215        第一电极
215a       表面
215c       最顶部
215b       侧壁
215d       最底部
216        第二电极
260        第一发光单元
261        载体注入层
262        第一载体运输层
263        第二载体运输层
264        有机发射层
265        有机载体运输层
266        电极运输层
269        有机层
270        第二发光单元
272        第一载体运输层
273        第二载体运输层
274        有机发射层
275        电极运输层
279        有机层
280        第三发光单元
289        有机层
312        中间层
312a       区段
313        上表面
314        凹部
315        突起
322        中间层
323        上表面
350        谷部
401        第一型像素
402        第二型像素
403        第三型像素
2151       导电膜
2152       透明导电膜
2611       介面
2621       介面
2622       凹部
2623       凹部
2631       中心区域
2632       外围区域
2633       区域
AA         线
d          间隔
E          点
G1         厚度
G2         厚度
H          厚度
I           反曲点
PQ          线
P1          点
P2          点
T1          交会点
T2          交会点
W1          距离
W2          距离
λ          垂直距离
δ          水平距离
δ1         重叠宽度
δ2         重叠宽度
δ3         重叠宽度
θ          角度

Claims (10)

  1. 一种发光元件,包括:
    一基板;
    一覆盖层;
    该基板上方的多个凸块配置于所述基板与覆盖层之间,其中所述多个凸块中有两相邻凸块,所述两相邻凸块间具有一包含一有机材料的有机发光单元;
    其中所述多个凸块中有至少一个凸块包含一远离基板方向的一表面,所述表面包含一皱褶部,所述皱褶部包含一朝向基板的一顶点;
    一光学吸收单元,所述光学吸收单元配置于该基板与覆盖层之间。
  2. 一种发光元件,包括:
    一基板;
    所述基板上方具有多个有机发光单元,所述这些有机发光单元包括一第一发光单元和一第二发光单元,其中所述第一发光单元与第二发光单元分别具有一包含一有机材料的有机发光迭层且分别发射具不同颜色的光,其中所述第一发光单元的有机发光迭层的总厚度大于第二发光单元的有机发光迭层的总厚度。
  3. 一种发光元件的制作方法,包括:
    提供一基板;
    形成复数凸块于该基板上;
    形成一光敏层于该多个凸块上;
    图案化该光敏层,以形成通过该光敏层的一凹槽,进而暴露一表面;
    设置一有机材料于该表面上;
    移除该经图案化光敏层;并
    连续覆型地设置一介电层于多个凸块的上方,其中所述多个凸块中有至少
    一个凸块包含一远离基板方向的一表面,所述表面包含一皱褶部,所述皱褶部包含一朝向基板的一顶点。
  4. 如权利要求1至3项中任一项中所述的发光元件,其中所述凸块对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
  5. 如权利要求1所述的发光元件,其中所述覆盖层包括一材料,所述材料对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
  6. 如权利要求1至2项中任一项中所述的发光元件,其中所述有机材料对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
  7. 如权利要求3所述的发光元件,其中所述光敏层对于一特定波长之吸收率大于或等于30%且所述特定波长不大于400nm。
  8. 如权利要求1至3项中任一项中所述的发光元件,其中所述有机材料可配置于一有机层,所述有机层可为一电子传输层(ETL),一电子注入层(EIL),一发射层(EM),一空穴阻挡层(HBL),一空穴注入层(HIL),一空穴传输层(HTL)中的一者。
  9. 如权利要求1所述的发光元件,其中所述光学吸收单元对于一特定波长之吸收率大于或等于60%且所述特定波长不大于400nm。
  10. 如权利要求1至2项中任一项中所述的有机发光元件,其中所述的各有机发光单元具有一有效发光区其大小等于位于各发光单元下方的一阳极总面积, 各发光单元于发光时具有一黑区与一亮区,其中所述的黑区的总面积小于所述有效发光区的50%。
PCT/CN2023/085457 2022-04-13 2023-03-31 发光元件 WO2023197889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210387862.9 2022-04-13
CN202210387862.9A CN116981304A (zh) 2022-04-13 2022-04-13 发光元件

Publications (1)

Publication Number Publication Date
WO2023197889A1 true WO2023197889A1 (zh) 2023-10-19

Family

ID=88328890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085457 WO2023197889A1 (zh) 2022-04-13 2023-03-31 发光元件

Country Status (2)

Country Link
CN (1) CN116981304A (zh)
WO (1) WO2023197889A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190006445A1 (en) * 2015-12-23 2019-01-03 Lg Display Co., Ltd. Organic light emitting display apparatus
CN109427600A (zh) * 2017-09-05 2019-03-05 创王光电股份有限公司 发光元件的制造方法及其装置
CN208622772U (zh) * 2018-08-03 2019-03-19 云谷(固安)科技有限公司 显示面板及具有其的显示装置
CN111863929A (zh) * 2020-08-28 2020-10-30 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN112542489A (zh) * 2019-09-20 2021-03-23 创王光电股份有限公司 发光元件
CN112885872A (zh) * 2020-01-21 2021-06-01 创王光电股份有限公司 发光元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190006445A1 (en) * 2015-12-23 2019-01-03 Lg Display Co., Ltd. Organic light emitting display apparatus
CN109427600A (zh) * 2017-09-05 2019-03-05 创王光电股份有限公司 发光元件的制造方法及其装置
CN208622772U (zh) * 2018-08-03 2019-03-19 云谷(固安)科技有限公司 显示面板及具有其的显示装置
CN112542489A (zh) * 2019-09-20 2021-03-23 创王光电股份有限公司 发光元件
CN112885872A (zh) * 2020-01-21 2021-06-01 创王光电股份有限公司 发光元件
CN111863929A (zh) * 2020-08-28 2020-10-30 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN116981304A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US11296160B2 (en) Display substrate, display apparatus, and method of fabricating the display substrate
TWI557896B (zh) 有機發光二極體顯示器及其製造方法
JP4288918B2 (ja) 有機elパネルおよびその製造方法、それを用いた電気光学パネル並びに電子機器
US20070145890A1 (en) Organic light-emitting diode and method of fabricating the same
TW201310635A (zh) 具有反射結構的有機發光顯示裝置及製造具有反射結構的有機發光顯示裝置之方法
CN110556401B (zh) 发光元件
US10461139B2 (en) Light emitting device manufacturing method and apparatus thereof
US11482688B2 (en) Display substrate, display apparatus, and method of fabricating display substrate
WO2019186810A1 (ja) 有機el表示装置及びその製造方法
CN112885872B (zh) 发光元件
WO2023197889A1 (zh) 发光元件
JP3748250B2 (ja) 有機el発光ディスプレイ
KR100445032B1 (ko) 유기 전계 발광 표시 장치와 그 제조 방법
US10720594B2 (en) Light emitting device
US11251244B2 (en) Light-emitting device
CN220402265U (zh) 显示面板以及显示装置
WO2023039792A1 (zh) 显示面板和显示装置
CN111192899B (zh) 发光装置及其制造方法
WO2023036138A1 (zh) 发光装置及其制备方法
CN111192900B (zh) 发光装置及其制造方法
JP4818576B2 (ja) 薄膜トランジスタおよび薄膜トランジスタを備えた表示装置
CN116322116A (zh) 显示面板以及显示装置
CN117501354A (zh) 显示面板及其制作方法、以及显示装置
CN117460310A (zh) 显示面板和显示装置
CN117479637A (zh) 一种显示面板及显示终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023787534

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023787534

Country of ref document: EP

Effective date: 20240513