WO2023197783A1 - 一种寻呼方法及装置 - Google Patents

一种寻呼方法及装置 Download PDF

Info

Publication number
WO2023197783A1
WO2023197783A1 PCT/CN2023/080108 CN2023080108W WO2023197783A1 WO 2023197783 A1 WO2023197783 A1 WO 2023197783A1 CN 2023080108 W CN2023080108 W CN 2023080108W WO 2023197783 A1 WO2023197783 A1 WO 2023197783A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
paged
terminal device
terminal devices
information
Prior art date
Application number
PCT/CN2023/080108
Other languages
English (en)
French (fr)
Inventor
李晨琬
陈磊
吴毅凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023197783A1 publication Critical patent/WO2023197783A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • H04W8/245Transfer of terminal data from a network towards a terminal

Definitions

  • the present application relates to the field of communication technology, and in particular, to a paging method and device.
  • Radio frequency identification (RFID) technology can be used to identify users, and further, it can also be used to read and write user data.
  • a tag can receive a radio frequency signal from a reader (also called a reader). With the energy obtained by the induced current, the tag can send out the information stored in the tag's internal chip. Information, or the tag can also actively send a signal of a certain frequency to the reader.
  • the reader/writer can read the information from the tag, thereby completing the identification of the user holding the tag, or completing the reading or writing of data, etc.
  • a reader can communicate with multiple tags, and before the reader can transmit data to the tag, the tag needs to establish a connection with the reader first.
  • the reader/writer can page multiple tags. After these multiple tags are paged, they need to compete for resources in a time-division manner to access the reader/writer. For example, after a tag is paged, it can send a random number to the reader. If the reader receives the random number, it can send a confirmation message to the tag. When the tag receives the confirmation message, it is equivalent to establishing a connection with the reader. In this case, the tag can then send data to the reader. After the reader receives the data, it sends a message to the tag to indicate the need for communication. How the data is processed, such as reading or writing. After the reader has completed communicating with a tag, the next tag can then establish a connection with the reader.
  • Embodiments of the present application provide a paging method and device for reducing data transmission delay.
  • a first aspect provides a first paging method, which can be executed by a first device, or by other devices that include the functions of the first device, or by a chip system or other functional modules that can implement The function of the first device, the chip system or the functional module is, for example, provided in the first device.
  • the first device is, for example, an access network device, such as a base station; or, the first device is, for example, a device with reading and writing functions, such as a reader/writer.
  • the method includes: sending a first signaling, the first signaling is used to page a first terminal device, wherein the first signaling includes information of the first terminal device, and the first signaling Used to determine a first resource; and receive uplink data from the first terminal device on the first resource.
  • the first device can determine whether to page one terminal device or multiple terminal devices, so that the first signaling sent by the first device can be used to determine the first resource.
  • the paged terminal device uses the first resource to The first device only needs to send uplink data, and does not need to access in a competitive manner. Therefore, the paged terminal device does not need to perform a random access process.
  • the first terminal device receives the first message for paging the first terminal device.
  • the first resource can be used to send uplink data to the first device, and there is no need to perform the step of establishing a connection with the first device. This reduces the steps required to transmit data between the first terminal device and the first device, helps save signaling overhead, and reduces data transmission delay.
  • the method further includes: sending a first signal, where the first signal is used to provide the first terminal device with energy for sending the uplink data. If the capability of the first terminal device is low, such as a passive tag, the first terminal device may not be able to actively send data outward. Therefore, the first device may send a signal for the first terminal device to obtain energy, so as to transmit uplink data using the obtained energy.
  • the first terminal device operates in a reflective communication scenario.
  • the first terminal device is a passive tag that can obtain energy by reflecting signals from the outside to send uplink data.
  • the first terminal device can also work in other communication scenarios, for example, the first terminal device is an active tag, etc. Then the first terminal device can send uplink data without being stimulated by an external signal, which can simplify the data transmission process.
  • the embodiments of this application do not limit this.
  • the method further includes: receiving second signaling from the first core network device, the second signaling is used to page the first terminal device, and the third The second signaling also indicates that the number of terminal devices paged by the first signaling is 1, or indicates that the number of terminal devices paged by the first signaling is greater than 1.
  • the first core network device is, for example, an AMF.
  • the core network may initiate paging, and the first core network device may send the second signaling to the first device to page the first terminal device.
  • the first core network device may indicate whether the number of terminal devices to be paged by the first signaling is 1 or greater than 1, so that the first device can determine the number of terminal devices to be paged according to the instruction of the first core network device.
  • the second signaling includes a first field, wherein when the value of the first field is a first value, it indicates that the number of terminal devices to be paged by the first signaling is 1. , or, when the value of the first field is the second value, it indicates that the number of terminal devices paged by the first signaling is greater than 1; or, when the second signaling includes the first field, it indicates that the first signaling Let the number of paging terminal devices be 1, or, when the second signaling does not include the first field, it indicates that the number of paging terminal devices in the first signaling is greater than 1; or, the second signaling includes NAS Container, the NAS container is used to carry information of the first terminal device, wherein when the number of the NAS containers is 1, it indicates that the number of the first signaling paging terminal devices is 1, or the NAS When the number of containers is greater than 1, it indicates that the number of the first signaling paging terminal devices is greater than 1; or, the information of the first terminal device is the identification of the first terminal device
  • the second signaling should indicate whether the number of terminal devices paged by the first signaling is 1 or greater than 1, which can be indicated explicitly or implicitly.
  • the explicit method is to indicate through the first field, making the indication more clear;
  • the implicit method is to indicate through the identification of the NAS container or terminal device, which not only indicates whether the number of terminal devices to be paged by the first signaling is 1 or greater than 1, but also The overhead of second signaling is saved.
  • the second value is used to indicate the first The number of signaling paging terminal devices. If the value of the first field is the second value, it indicates that the number of first signaling paging terminal devices is greater than 1. If the second signaling only includes one NAS container, the second signaling cannot represent the number of terminal devices paged by the first signaling through the number of NAS containers. In order to enable the first device to determine the actual number of terminal devices paged by the first signaling, the second value at this time may indicate the number of terminal devices paged by the first signaling.
  • the first device can not only determine the number of terminal devices paged by the first signaling Number of paging terminal devices If the amount is greater than 1, it can also determine the actual number of terminal devices paged by the first signaling, which is helpful for the first device to configure resources for sending uplink data for the terminal devices paged by the first signaling, so that these terminal devices do not need to Access the first device through competition to reduce data transmission delay.
  • the first signaling includes a second field, wherein when the value of the second field is a third value, it indicates that the number of terminal devices to be paged by the first signaling is 1. , or, when the value of the second field is a fourth value, it indicates that the number of terminal devices paged by the first signaling is greater than 1; or, when the first signaling includes the second field, it indicates that the first signaling Let the number of paging terminal devices be 1, or, when the first signaling does not include the second field, it indicates that the number of paging terminal devices in the first signaling is greater than 1; or, the first resource includes one When resources are used to transmit uplink data, indicate that the number of the first signaling paging terminal devices is 1, or when the first resources include multiple resources for transmitting uplink data, indicate that the first signaling Let the number of paging terminal devices be greater than 1; or, the first signaling includes a NAS container, and the NAS container is used to carry information of the terminal device, wherein when the number of the number of the second field
  • the first signaling when the number of terminal devices paged by the first signaling is greater than 1, the first signaling includes information of multiple terminal devices, and the information of the multiple terminal devices is in The first signaling is arranged in a first order, and the first order is used to determine resources. For example, in the first signaling, the information of multiple terminal devices is arranged in the first order, then for a terminal device paged by the first signaling, the order of the information of the terminal device in the first order can be determined. (or sequence number or position), according to this sorting, a resource used by the terminal device among the first resources can be determined.
  • the paged terminal device can determine the resources used by the terminal device in the first resource in combination with the first signaling, so that the paged terminal device can send on the resources configured for the terminal device.
  • Upstream data Therefore, each paged terminal device can send uplink data on its own resources. There is no need to compete for resources between these terminal devices, and there is no need to perform the steps of competing for access, thus simplifying the data transmission process and reducing the data transmission cost. Transmission delay.
  • the information of the plurality of terminal devices is arranged in a first order in the first signaling, including: when one of the NAS containers included in the first signaling When used to carry information of a terminal device, the NAS containers are arranged in the first order in the first signaling; or when the number of NAS containers included in the first signaling is 1, the NAS containers are arranged in the first signaling.
  • the information of the multiple terminal devices is arranged in the first order in the NAS container; or, the identifiers of the multiple terminal devices are arranged in the first order in the first signaling.
  • the information of multiple terminal devices may be included in the NAS container. Then the information of the multiple terminal devices is arranged in the first signaling.
  • the NAS container may be arranged in the first signaling, or the information of the multiple terminal devices may be arranged in the NAS. Arrange in container. Alternatively, the information of multiple terminal devices may not be included in the NAS container, so the information of multiple terminal devices may be directly arranged in the first signaling.
  • the method further includes: when the first device communicates with multiple first signaling paging terminal devices, After one of the terminal devices completes the data transmission, it sends third signaling.
  • the third signaling is used to trigger the next terminal device among the plurality of terminal devices to send uplink data, or to trigger the first resource.
  • the next resource included, or used to trigger the next time unit included in the first resource for example, the time domain resource included in one resource is one time unit).
  • first signaling paging The terminal equipment is a passive tag. For this type of terminal equipment, the capability is low, and it may not be possible to determine when the resources allocated to the terminal equipment will arrive.
  • the first device can send a third signaling
  • the paged terminal device can determine the number assigned to the terminal according to the number of received third signalings and the sorting of the information of the terminal device in the first order.
  • the specific time domain location of the device's resources can be used to determine the number assigned to the terminal according to the number of received third signalings and the sorting of the information of the terminal device in the first order.
  • the uplink data from the first terminal device includes an identification of the first terminal device.
  • a terminal device sends uplink data to the first device, it may also carry the identifier of the terminal device, so that the first device can know which terminal device the uplink data comes from.
  • the identity of the first terminal device is EPC, S-TMSI or 5G-S-TMSI.
  • the embodiment of this application does not limit the identification of the terminal device.
  • a second paging method is provided.
  • the method can be executed by the first terminal device, or by other devices including the functions of the first terminal device, or by a chip system or other functional modules.
  • the chip system or functional module The function of the first terminal device can be realized, and the chip system or functional module is, for example, provided in the first terminal device.
  • the method includes: receiving first signaling from a first device, the first signaling being used to page the first terminal device, wherein the first signaling includes information of the first terminal device, And the first signaling is used to determine the first resource; according to the instruction of the first signaling, uplink data is sent to the first device in a first time slot, wherein the first time slot belongs to the First resource.
  • the method further includes: receiving a first signal from a first device; sending uplink data to the first device in a first time slot, including: using the first signal to The acquired energy is used to send uplink data to the first device in the first time slot.
  • the first terminal device operates in a reflective communication scenario.
  • the first signaling includes a second field, wherein when the value of the second field is a third value, it indicates that the number of terminal devices to be paged by the first signaling is 1. , or, when the value of the second field is a fourth value, it indicates that the number of terminal devices paged by the first signaling is greater than 1; or, when the first signaling includes the second field, it indicates that the first signaling Let the number of paging terminal devices be 1, or, when the first signaling does not include the second field, it indicates that the number of paging terminal devices in the first signaling is greater than 1; or, the first resource includes one When resources are used to transmit uplink data, indicate that the number of the first signaling paging terminal devices is 1, or when the first resources include multiple resources for transmitting uplink data, indicate that the first signaling Let the number of paging terminal devices be greater than 1; or, the first signaling includes a NAS container, and the NAS container is used to carry information of the terminal device, wherein when the number of the number of the second field
  • the method further includes: determining the first time slot according to the position of the information of the first terminal device in the first order in the first signaling, wherein when When the number of terminal devices paged by the first signaling is greater than 1, the first signaling includes information of multiple terminal devices, and the information of the multiple terminal devices is included in the first signaling according to the first One sequence.
  • the information of the plurality of terminal devices is arranged in a first order in the first signaling, including: when one of the NAS containers included in the first signaling When used to carry information of a terminal device, the NAS container is arranged in the first order in the first signaling; or, when the first signaling When the number of included NAS containers is 1, the information of the multiple terminal devices is arranged in the first order in the NAS container; or, the identifiers of the multiple terminal devices are in the first signaling are arranged in the first order.
  • the method further includes: receiving a third signaling, the third signaling being used to trigger the third signaling.
  • the time slot is the Nth time slot in the first resource, and N is a positive integer.
  • a third paging method is provided, which method can be executed by the first core network device, or by other devices including the functions of the first core network device, or by a chip system or other functional modules, and the chip system or The functional module can realize the function of the first core network device, and the chip system or the functional module is, for example, provided in the first core network device.
  • the first core network device is, for example, an AMF.
  • the method includes: receiving fourth signaling from a second core network device, the fourth signaling being used to page the first terminal device, and the fourth signaling being used to instruct the second signaling to page the terminal device.
  • the number is 1, or indicates that the number of terminal devices to be paged by the second signaling is greater than 1; sending the second signaling to the first device, where the second signaling is used to page the first terminal device, and The second signaling also indicates that the number of terminal devices paged by the first signaling is 1, or indicates that the number of terminal devices paged by the first signaling is greater than 1.
  • the second signaling from the second core network device may indicate whether the number of terminal devices to be paged is 1 or greater than 1, so that the first core network device can determine the number of terminal devices to be paged.
  • the first core network device may also indicate in the second signaling whether the number of terminal devices to be paged is 1 or greater than 1, or in other words, indicates whether to page one or multiple terminal devices.
  • the first core network device indicates to the first device whether the number of terminal devices to be paged is 1 or greater than 1, then the signaling (such as the first signaling) sent by the first device can be used to determine the first resource,
  • the terminal device only needs to use the first resource to send uplink data to the first device, and does not need to access in a competitive manner. Therefore, the terminal device does not need to perform a random access process. As a result, the steps required to transmit data between the terminal device and the first device are reduced, which is beneficial to saving signaling overhead and reducing data transmission delay.
  • the fourth signaling includes a third field, wherein when the value of the third field is a fifth value, it indicates that the number of terminal devices to be paged by the second signaling is 1. , or, when the value of the third field is the sixth value, it indicates that the number of terminal devices paged by the second signaling is greater than 1; or, when the fourth signaling includes the third field, it indicates that the second signaling Let the number of paging terminal devices be 1, or, when the second signaling does not include the third field, it indicates that the number of paging terminal devices in the second signaling is greater than 1; or, the fourth signaling includes all The identifier of the first terminal device, wherein when the number of terminal device identifiers included in the fourth signaling is 1, it indicates that the number of terminal devices paged by the second signaling is 1, and the fourth signaling includes When the number of identifiers of the terminal devices is greater than 1, it indicates that the number of the second signaling paging terminal devices is greater than 1.
  • the fourth signaling should indicate whether the number of terminal devices paged by the second signaling is 1 or greater than 1, which can be indicated explicitly or implicitly.
  • the explicit method is to indicate through the third field, making the indication clearer;
  • the implicit method is to indicate through the identification of the terminal equipment, which not only indicates whether the number of the second signaling paging terminal equipment is 1 or greater than 1, but also saves the need for the third signaling field.
  • the second signaling includes a first field, wherein the value of the first field is When the first value indicates that the number of the first signaling paging terminal equipment is 1, or when the value of the first field is the second value, it indicates that the number of the first signaling paging terminal equipment is greater than 1; Or, when the second signaling includes the first field, it indicates that the number of terminal devices paged by the first signaling is 1, or when the second signaling does not include the first field, it indicates that the first signaling The number of paging terminal devices is greater than 1; or, the second signaling includes a NAS container, and the NAS container is used to carry information of the first terminal device, wherein when the number of the NAS containers is 1, it indicates that the The number of terminal devices to be paged by the first signaling is 1, or, when the number of NAS containers included in the second signaling is greater than 1, it indicates that the number of terminal devices to be paged by the first signaling is greater than 1; or, The information of the first terminal device is the identifier
  • the second value is used to indicate the second The number of signaling paging terminal devices.
  • the fourth aspect provides a fourth paging method, which can be executed by the second core network device, or by other devices including the functions of the second core network device, or by a chip system or other functional modules, and the chip system or The functional module can realize the function of the second core network device, and the chip system or the functional module is, for example, provided in the second core network device.
  • the second core network device is, for example, AF or NEF.
  • the method includes: sending fourth signaling to the first core network device, the fourth signaling is used to page the first terminal device, and the fourth signaling is used to instruct the second signaling to page the terminal device.
  • the number is 1, or indicates that the number of second signaling paging terminal devices is greater than 1.
  • the fourth signaling includes a third field, wherein when the value of the third field is a fifth value, it indicates that the number of terminal devices to be paged by the second signaling is 1. , or, when the value of the third field is the sixth value, it indicates that the number of terminal devices paged by the second signaling is greater than 1; or, when the fourth signaling includes the third field, it indicates that the second signaling Let the number of paging terminal devices be 1, or, when the second signaling does not include the third field, it indicates that the number of paging terminal devices in the second signaling is greater than 1; or, the fourth signaling includes the third field.
  • An identifier of a terminal device wherein when the number of terminal device identifiers included in the fourth signaling is 1, it indicates that the number of terminal devices paged by the second signaling is 1, and the number of terminal devices included in the fourth signaling is 1. When the number of device identifiers is greater than 1, it indicates that the number of second signaling paging terminal devices is greater than 1.
  • a communication device may be the first device described in any one of the above first to fourth aspects.
  • the communication device has the function of the above-mentioned first device.
  • the communication device is, for example, a first device, or a larger device including the first device, or a functional module in the first device, such as a baseband device or a chip system.
  • the first device is, for example, an access network device, such as a base station; or, the first device is, for example, a device with reading and writing functions, such as a reader/writer.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit can realize the sending function and the receiving function.
  • a sending unit sometimes also called a sending module
  • a receiving unit sometimes also called a sending module
  • receiving module sometimes also called a sending module
  • the sending unit and receiving unit can be of the same functional model block, this functional module is called a transceiver unit, and this functional module can realize the sending function and the receiving function; alternatively, the sending unit and the receiving unit can be different functional modules, and the transceiving unit is the collective name for these functional modules.
  • the transceiver unit (or the sending unit) is used to send a first signaling, and the first signaling is used to page a first terminal device, wherein the first signaling includes the third Information about a terminal device, and the first signaling is used to determine a first resource; the transceiver unit (or the receiving unit) is used to receive messages from the first terminal device on the first resource. upstream data.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first device described in any one of the above first to fourth aspects.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first device described in any one of the above first to fourth aspects.
  • a sixth aspect provides a communication device.
  • the communication device may be the first terminal device described in any one of the above first to fourth aspects.
  • the communication device has the function of the first terminal device.
  • the communication device is, for example, a first terminal device, or a larger device including the first terminal device, or a functional module in the first terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module
  • the transceiver unit (or the receiving unit) is used to receive a first signaling from a first device, and the first signaling is used to page a first terminal device, wherein the first signaling
  • the command includes the information of the first terminal device, and the first signaling is used to determine the first resource
  • the processing unit is configured to, according to the instruction of the first signaling, use the transceiver unit (or, The sending unit) sends uplink data to the first device in a first time slot, where the first time slot belongs to the first resource.
  • the communication device further includes a storage unit (sometimes also called a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first terminal device described in any one of the above first to fourth aspects.
  • a storage unit sometimes also called a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first terminal device described in any one of the above first to fourth aspects.
  • a communication device may be the first core network device described in any one of the above first to fourth aspects.
  • the communication device has the function of the above-mentioned first core network device.
  • the communication device is, for example, a first core network device, or a larger device including the first core network device, or a functional module in the first core network device, such as a baseband device or a chip system.
  • the first core network device is, for example, an AMF.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module). Regarding the implementation of the transceiver unit, please refer to the introduction in the fifth aspect.
  • the transceiver unit (or the receiving unit) is used to receive fourth signaling from the second core network device, the fourth signaling is used to page the first terminal device, and the fourth The signaling is used to indicate that the number of the second signaling paging terminal equipment is 1, or to indicate that the number of the second signaling paging terminal equipment is greater than 1; the transceiver unit (or the sending unit) is used to send a message to the first A device sends second signaling, the second signaling is used to page the first terminal device, and the second signaling also indicates that the number of the first signaling to page the terminal device is 1, or indicates that the first signaling The number of signaling paging terminal devices is greater than 1.
  • the communication device further includes a storage unit (sometimes also called a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first core network device described in any one of the above first to fourth aspects.
  • a storage unit sometimes also called a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first core network device described in any one of the above first to fourth aspects.
  • a communication device may be any one of the above-mentioned first to fourth aspects.
  • the communication device has the function of the above-mentioned second core network device.
  • the communication device is, for example, a second core network device, or a larger device including the second core network device, or a functional module in the second core network device, such as a baseband device or a chip system.
  • the second core network device is, for example, AF or NEF.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module.
  • the transceiver unit (or the sending unit) is used to send fourth signaling to the first core network device, the fourth signaling is used to page the first terminal device, and the fourth signaling Let the number used to indicate the second signaling paging terminal equipment be 1, or indicate the number of the second signaling paging terminal equipment to be greater than 1.
  • the communication device further includes a storage unit (sometimes also called a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the second core network device described in any one of the above first to fourth aspects.
  • a storage unit sometimes also called a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the second core network device described in any one of the above first to fourth aspects.
  • a ninth aspect provides a communication system, including the communication device described in the fifth aspect and the communication device described in the sixth aspect.
  • the communication system also includes the communication device described in the seventh aspect.
  • the communication system further includes the communication device described in the eighth aspect.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store computer programs or instructions.
  • the first device, the first terminal device, and the first device in the above-mentioned aspects are enabled.
  • the method executed by the core network device or the second core network device is implemented.
  • a computer program product containing instructions which when run on a computer enables the methods described in the above aspects to be implemented.
  • a chip system including a processor and an interface.
  • the processor is configured to call and run instructions from the interface, so that the chip system implements the methods of the above aspects.
  • Figure 1 shows the method of communication between tags and readers
  • Figure 2 Figure 3A and Figure 3B are schematic diagrams of two application scenarios according to the embodiment of the present application.
  • Figure 4 is a flow chart of a paging method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a device provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of yet another device provided by an embodiment of the present application.
  • RFID tag also known as electronic tag or label
  • the design of the label is relatively simple and is designed to integrate application layer signaling and air interface signaling.
  • the tag is mainly based on binary on-off keying (OOK) for encoding and decoding transmission, that is, according to the amplitude modulation method of the data, the data is decoded through high and low levels.
  • OOK binary on-off keying
  • Communication on the label In the process, it does not support distinguishing between frequency domain and code domain, and the parallel performance is poor. If multiple tags need to communicate, for example, multiple tags need to communicate with a reader/writer, time division multiplexing will be used, and multiple tags will communicate with the reader/writer through a serial process.
  • a tag can be viewed as a terminal device.
  • radio frequency identification technology can be divided into three types: active, passive and semi-active.
  • tags under active radio frequency identification technology can have built-in batteries. Such tags can actively send signals to readers without obtaining energy for sending signals based on the received signals.
  • tags under passive radio frequency identification technology can also be called passive IoT (passive IOT), that is, passive IoT devices.
  • passive IOT passive IOT
  • Such tags may not have built-in modules such as batteries, or the battery module may have less power and can be The received signal gains energy and with that energy the signal is sent. It can be understood that passive tags work in a reflective communication scenario, that is, passive tags obtain energy by reflecting signals from readers and writers, thereby transmitting data.
  • Tags under semi-active radio frequency identification technology integrate the advantages of active tags and passive tags and can be used as a special marker. In normal times, this type of tag is in a dormant state, does not work, and does not send signals to the outside world; it only starts to work when it is activated when it enters the activation signal range of the low-frequency activator.
  • the tags involved in the embodiments of this application may be active tags, passive tags, semi-active tags, etc.
  • a reader/writer is a device that reads (or writes) tag information in a handheld or fixed manner.
  • the reader can also be understood as a device that communicates with the tag.
  • the implementation form of the reader/writer can be a terminal device, an access network device, such as a base station, or a device with reading and writing functions.
  • IAB node/helper/incentive source can be implemented through terminal equipment, or it can also be implemented through access network equipment (such as base stations).
  • Two-way communication is possible between the node and the reader, and the communication can be transmitted through the air interface or through wired transmission.
  • Terminal equipment is a device with wireless transceiver functions. It can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device (such as a communication module, modem) built into the above-mentioned devices. , or chip system, etc.).
  • the tag may be a fixed device or a mobile device in the terminal device, or a wireless device built into the above device.
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR) , augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart cities, drones, robots and other scenarios.
  • the terminal equipment may sometimes be called user equipment (UE), terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • UE user equipment
  • the terminal device is described by taking a UE as an example.
  • the network equipment in the embodiment of the present application may include, for example, access network equipment and/or core network equipment.
  • the access network device is a device with a wireless transceiver function and is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to base station (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transmission reception point (TRP), third generation Base stations for the subsequent evolution of the 3rd generation partnership project (3GPP), access points (APs), wireless relay nodes, wireless backhaul nodes, etc. in wireless fidelity (wireless fidelity, Wi-Fi) systems .
  • the base station can Yes: Macro base station, micro base station, pico base station, small station, relay station, etc.
  • a base station may contain one or more co-located or non-co-located transmission and reception points.
  • the access network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a server or the like.
  • the network equipment in vehicle to everything (V2X) technology can be a road side unit (RSU).
  • RSU road side unit
  • the following description takes the access network device as a base station as an example.
  • the base station can communicate with the terminal device or communicate with the terminal device through the relay station.
  • Terminal devices can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • functions such as mobility management, data processing, session management, policy and billing.
  • the names of devices that implement core network functions in systems with different access technologies may be different, and the embodiments of this application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), network exposure function (NEF), Application function (AF) or user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • NEF network exposure function
  • AF Application function
  • UPF user plane function
  • the communication device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • first signaling and the second signaling can be the same signaling, or they can be different signaling.
  • this name does not indicate the content, information size, and sending order of the two signalings. , sender/receiver, priority or importance, etc. are different.
  • the numbering of steps in the various embodiments introduced in this application is only to distinguish different steps and is not used to limit the order between steps. For example, S401 may occur before S402, or may occur after S402, or may occur simultaneously with S402.
  • the reader/writer sends a select command.
  • the select command can be used to select (or page) a tag or a group of tags.
  • all tags covered by the reader can receive the selection command.
  • Figure 1 takes one of the tags receiving the selection command as an example.
  • the selection command may include memory information for the tag to be paged.
  • the reader/writer configures random access resources for the tag.
  • the reader/writer can send information for configuring random access resources.
  • all tags covered by the reader can receive the information.
  • Figure 1 takes one of the tags receiving the information as an example. Because each tag is read and written from The time slot is selected for access from the random access resources configured by the reader. Therefore, the random access resource configured by the reader is, for example, the maximum access time slot range.
  • the tag selects the time slot, it needs to be within the maximum access time slot. Select within range. For example, the maximum time slot range is time slot t 1 to time slot t n , then the earliest time slot that the tag can select is time slot t 1 , and the latest time slot is time slot t n .
  • the reader can also configure parameter Q, and the tag can calculate the maximum access time slot range based on parameter Q.
  • the tag sends a random number (RN) to the reader.
  • the reader receives random numbers from the tag.
  • the random number is 16, for example.
  • the tag to be paged by the reader is a tag set on a product, and the memory information of the tag can indicate the category of the product to which the tag belongs and other characteristics.
  • the memory information included in the selection command is, for example, the category of the product, such as clothing.
  • the time slot here may not be a time unit of fixed length, but an access opportunity triggered by signaling, where each signaling triggers an access opportunity, and an access opportunity can be understood as a time slot.
  • the paged tags select their own time slots, different tags may choose the same time slot. If multiple tags send random numbers to the reader in the same time slot, the transmission may fail. , the corresponding tag can again select a time slot to send random numbers.
  • the random number sent by the tag to the reader can be carried and sent in a message, and the function of the message can be similar to the third message (Msg3) in the random access process.
  • the reader/writer sends a confirmation message to the tag.
  • the tag receives a confirmation message from the reader.
  • the reader can send a confirmation message to the sending end of the random number to indicate that the random number is successfully received.
  • the confirmation message may include the random number in S103, that is, the reader may resend the random number from the tag to the tag to indicate confirmation of receiving the random number.
  • This confirmation message may be similar to the fourth message (Msg4) in the random access process.
  • the tag sends data to the reader/writer. Accordingly, the reader/writer receives this data from the tag.
  • a tag establishes a connection with the reader/writer, or in other words, a tag is connected to the reader/writer. After successful access, the tag can send data to the reader.
  • the data sent includes the tag's electronic product code (EPC), etc.
  • the reader/writer When the communication process between the reader and writer ends with a tag, the reader/writer will continue to process the access process of the next tag. For example, the reader can send trigger signaling to trigger the next tag to access the reader.
  • the random access process of the next label may include S103 to S105.
  • the reader continues to process the access process of the subsequent tag, and so on.
  • the first device can determine whether to page one UE or multiple UEs, so that the first signaling sent by the first device can be used to determine the first resource.
  • the UE only needs to use the first resource to send uplink data to the first device, and does not need to access in a competitive manner. Therefore, the UE does not need to perform a process similar to random access.
  • the first resource can be used to send uplink data to the first device, and there is no need to perform the step of establishing a connection with the first device. This reduces the steps required to transmit data between the UE and the first device, helps save signaling overhead, and reduces data transmission delay.
  • the technical solution provided by the embodiments of this application can be applied to the fourth generation (the 4th generation, 4G) communication system, such as the long term evolution (long term evolution, LTE) system. Or it can be applied to the fifth generation (the 5th generation, 5G) communication system, such as the new radio (NR), or it can also be applied to future communication systems, such as the 6G system.
  • the fourth generation (the 4th generation, 4G) communication system such as the long term evolution (long term evolution, LTE) system.
  • the fifth generation (the 5th generation, 5G) communication system such as the new radio (NR)
  • NR new radio
  • Figure 2 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 2 includes a first device and a UE.
  • the first device is, for example, an access network device (such as a base station, or an access node, etc.).
  • the access network device may implement the function of a reader/writer, or may not implement a reader/writer. function; or, the first device is, for example, a terminal device, and the terminal device implements the function of a reader/writer, for example.
  • the UE and the first device can communicate through the Uu interface; or, if the first device is an access node, the UE and the first device can communicate through a sidelink. ,SL) communication.
  • the first device if the first device is a terminal device, the first device can also be connected to the access network device and communicate through the Uu interface. For example, the first device communicates with the core network through the access network device.
  • FIG. 3A is a schematic diagram of another application scenario according to the embodiment of the present application.
  • Figure 3A includes a first device, an IAB node and a UE.
  • the IAB node can be regarded as a relay node between the first device and the UE, and both the uplink and downlink data of the UE can be forwarded through the IAB node.
  • the IAB node can send information to the UE, but the UE cannot send information to the IAB node, then the IAB node can be regarded as the first device when transmitting downlink data.
  • downlink data from the first device can be forwarded by the IAB node and then reach the UE; when transmitting uplink data, the UE can directly send the uplink data to the first device without passing through the IAB node.
  • FIG. 3B is a schematic diagram of yet another application scenario according to the embodiment of the present application.
  • Figure 3B includes the first device, the access network device and the UE, taking the first device as not being the access network device as an example.
  • the first device may directly communicate with the UE, or the first device may communicate with the UE through the access network device.
  • the first device and/or the access network device can be connected to the core network.
  • the methods provided by the embodiments of the present application are introduced below with reference to the accompanying drawings.
  • the drawings corresponding to various embodiments of the present application all optional steps are represented by dotted lines.
  • the methods provided by various embodiments of the present application can be applied to the scenarios shown in Figure 2, Figure 3A, or Figure 3B.
  • the first device involved in various embodiments of the present application is, for example, the first device in Figure 2, Figure 3A or Figure 3B.
  • the UE involved in various embodiments of the present application for example It is the UE in Figure 2, Figure 3A or Figure 3B.
  • the embodiment of the present application also involves the first core network device and the second core network device, which are not shown in Figure 2, Figure 3A and Figure 3B.
  • the first core network device is AMF
  • the second core network device is AF or NEF, etc.
  • the second core network device is AF as an example.
  • the core network equipment can have a connection relationship with the access network equipment.
  • the access network equipment can be connected to the AMF, and the AMF can be connected to the AF, etc.
  • “comprising” can be understood as “appearing", “configuring” or present, etc., for example
  • a signaling includes information about the UE, it can be understood that the information about the UE appears in the information, or that the information about the UE is configured in the information, or that the information is stored in the information about the UE, etc.; for another example, A signaling includes a field, which can be understood to mean that the field appears in the information, or that the field is configured in the information, or that the information is stored in the field, etc.
  • “not included” can be understood as “not present", “not configured” or “absent”, etc.
  • a signaling does not include the UE's information
  • the UE's information does not appear in the information.
  • information or understood as information that the UE is not configured in the information, or understood as information that the UE is absent from the information, etc.
  • a signaling does not include a field
  • the field does not appear in the information, or It is understood that this field is not configured in this information, or it is understood that this field is absent from this information, etc.
  • This embodiment of the present application provides a paging method. Please refer to Figure 4, which is a flow chart of the method.
  • AF sends signaling to AMF.
  • the AMF receives the signaling from the AF.
  • the signaling may be used to page one or more UEs (the paging is similar to paging in a cellular network, for example), or to select one or more UEs, or to indicate (or, trigger) a Or multiple UEs send uplink data, or used to instruct (or trigger) one or more UEs to establish a connection with the network (such as access network equipment), or used to instruct (or trigger) one or more UEs to initiate random access. Access etc.
  • the signaling is used to page one or more UEs, then the one or more UEs can be regarded as the UEs to be paged.
  • the signaling may include the information of the UE to be paged.
  • the information of a UE may be the identity of the UE or the memory information of the UE.
  • the core network may allocate an identity to the UE to be paged, or the UE may send the identity of the UE to the core network for the core network to know.
  • the signaling may include the identity of the UE to be paged.
  • the UE to be paged has not yet registered with the core network, or the UE to be paged is a tag set on the product.
  • the memory information of the tag can indicate the type, material and other attributes of the product, and this paging is for To find a certain type of product, the signaling may include the memory information of the UE to be paged.
  • the memory information included in this signaling is "clothing category", indicating that this time the label of the category of clothing is to be paged.
  • the memory information included in the signaling is "XX clothing", where "XX” can represent an EPC, indicating that a tag with the EPC is to be paged; or where "XX" represents an EPC range, Indicates that the tags whose EPC is within the EPC range are to be paged.
  • the signaling is, for example, application layer paging (or inventory) signaling.
  • this signaling is also called fourth signaling, and in FIG. 4 , this signaling is represented as signaling 1 for paging one or more UEs.
  • the UE's identity is, for example, the UE's EPC, system architecture evolution (SAE)-temporary mobile station identifier (S-TMSI) or 5G-S-TMSI, etc.
  • SAE system architecture evolution
  • S-TMSI temporary mobile station identifier
  • 5G-S-TMSI 5G-S-TMSI
  • the AF can determine the number of UEs to be paged. Then, if the signaling 1 is used to page one UE, the signaling 1 may also indicate that the number of UEs to be paged is 1 (or, indicate paging a single UE; alternatively, indicate signaling 2 or signaling 3 The number of paging UEs is 1; or, indicating that the first core network device or the first device paging the number of UEs is 1); or, if the signaling 1 is used to page multiple UEs, then the signaling 1 may also indicate that the number of UEs to be paged is greater than 1 (or, it indicates that multiple UEs are to be paged; or, it indicates that the number of UEs to be paged by signaling 2 or signaling 3 is greater than 1; or, it indicates that the first core network device Or the number of UEs paged by the first device is greater than 1).
  • the AMF can clarify whether to page a single UE or multiple UEs.
  • the signaling 1 may carry corresponding indication information to indicate whether the number of UEs to be paged is 1 or greater than 1, or the signaling 1 may not need to carry the indication information, but may indicate the number of UEs to be paged through the signaling 1 itself.
  • the number of calling UEs is 1 or greater than 1.
  • the signaling 1 may indicate that the number of UEs to be paged is 1 through the identities of the included UEs. or indicates that the number of UEs to be paged is greater than 1.
  • the number of UE identifiers included in the signaling 1 is 1, that is, the signaling 1 includes the identifier of one UE, then the identifier of the UE is equivalent to indicating that the number of UEs to be paged is 1; or if the The number of UEs included in the signaling 1 is greater than 1, that is, the signaling 1 includes identities of multiple UEs, then the identities of the multiple UEs are equivalent to indicating that the number of UEs to be paged is greater than 1.
  • the signaling 1 may actually indicate the number of the UE to be paged, where the number of the identifiers of the UE included in the signaling 1 is the number of UE identifiers to be paged.
  • the number of paged UEs In this case, signaling 1 does not need to use additional indication information to indicate the number of UEs to be paged, but can be indicated through the original content of signaling 1, which can reduce the amount of information in signaling 1.
  • AMF can also obtain more content based on signaling 1.
  • signaling 1 may also indicate whether the number of UEs to be paged is 1 or greater than 1 through additional indication information. For example, if the information of the UEs to be paged included in the signaling 1 is the memory information of the UEs to be paged, the signaling 1 may also indicate whether the number of the UEs to be paged is 1 or 1 through the corresponding indication information. Greater than 1.
  • the signaling 1 may include a third field. If the value of the third field is a fifth value, it indicates that the number of UEs to be paged is 1, and if the value of the third field is a sixth value, it indicates that the number of UEs to be paged is 1. The number of paged UEs is greater than 1.
  • the sixth value may indicate the number of UEs to be paged.
  • the signaling 1 may also include a fourth field, and the value of the fourth field may indicate the number of UEs to be paged. That is, if the number of UEs to be paged is greater than 1, the signaling 1 may also indicate the specific number of UEs to be paged.
  • the signaling 1 includes the third field, it indicates that the number of UEs to be paged is 1, and if the signaling 1 does not include the third field, it indicates that the number of UEs to be paged is greater than 1. If signaling 1 does not include the third field, the AMF may not be able to determine how many UEs there are. Optionally, in this case, if the signaling 1 does not include the third field, the signaling 1 may also include a fourth field, and the fourth field may indicate the number of UEs to be paged. That is, if the number of UEs to be paged is greater than 1, the signaling 1 may also indicate the specific number of UEs to be paged.
  • the signaling 1 includes the third field, it indicates that the number of UEs to be paged is greater than 1, and if the signaling 1 does not include the third field, it indicates that the number of UEs to be paged is 1.
  • the signaling 1 includes a third field
  • the value of the third field may indicate the number of UEs to be paged, and at this time, the number of UEs to be paged is greater than 1.
  • the signaling 1 may also include a fourth field, and the fourth field may indicate the number of UEs to be paged. That is, if the number of UEs to be paged is greater than 1, the signaling 1 may also indicate the specific number of UEs to be paged.
  • the AMF sends signaling to the first device.
  • the first device receives the signaling from the AMF.
  • the AMF may execute S402.
  • the signaling in S402 may be used to page one or more UEs (the paging is, for example, similar to paging in a cellular network), or to select one or more UEs, or to indicate (or, trigger) one or more UEs.
  • Multiple UEs send uplink data, or to instruct (or trigger) one or more UEs to establish connections with the network (such as access network equipment), or to instruct (or trigger) one or more UEs to initiate random access. Enter and wait.
  • the signaling is used to page one or more UEs, then the one or more UEs can be regarded as the UEs to be paged.
  • the signaling is, for example, paging signaling sent by the AMF.
  • this signaling is also called second signaling, and in FIG. 4 , this signaling is represented as signaling 2 for paging one or more UEs.
  • the signaling 2 may include information of the UE to be paged.
  • the AMF obtains the information of the UE to be paged from signaling 1 and adds the information of the UE to be paged to signaling 2.
  • the AMF may store the memory of the UE to be paged.
  • the information is added to the non-access stratum (NAS) container included in signaling 2.
  • NAS non-access stratum
  • the information included in the container may also be called NAS data.
  • the memory information of the UE included in the NAS container may be called NAS data.
  • signaling 2 may include one or more NAS containers.
  • AMF can add a UE's memory information to a NAS container, then the number of NAS containers is equal to the number of UE's memory information, and there is a one-to-one correspondence between the two.
  • the number of UE's memory information is 1, the number of NAS containers included in signaling 2 is also 1; and if the number of UE's memory information is greater than 1, then the number of NAS containers included in signaling 2 is The quantity is also greater than 1.
  • the AMF can also add the memory information of all UEs to be paged to a NAS container. Then, regardless of whether the amount of UE memory information is 1 or greater than 1, signaling 2 can only include one NAS container. After receiving signaling 2, the first device is invisible to the content in the NAS container.
  • the AMF may not add the identity of the UE to be paged to the NAS container, but directly add the identity of the UE to be paged to signaling 2. Sent to the first device. After receiving the signaling 2, the first device can identify the identity of the UE to be paged. Or, even if the information of the UE to be paged is the identity of the UE, the AMF can add the identity of the UE to be paged to the NAS container in a more flexible manner.
  • signaling 2 may indicate that the number of UEs to be paged is 1 (or, indicating that the number of UEs to be paged by the first signaling is 1; or, indicating that the number of UEs to be paged by the first device is 1) , or indicating that the number of UEs to be paged is greater than 1 (or indicating that the number of UEs to be paged by the first signaling is greater than 1; or indicating that the number of UEs to be paged by the first device is greater than 1).
  • signaling 2 indicates that the number of UEs to be paged is 1 or greater than 1 as an example.
  • the first signaling is signaling sent by the first device for paging the UE, and the first signaling may also be called signaling 3. The meaning of the first signaling will be introduced in detail later.
  • one indication method is that the signaling 2 may include a first field. If the value of the first field is the first value, it indicates that the number of UEs to be paged is 1, and if the value of the first field is the second value, it indicates that the number of UEs to be paged is 1. value indicates that the number of UEs to be paged is greater than 1. For example, if the value of the first field is "0", it indicates that the number of UEs to be paged is 1, and if the value of the first field is "1", it indicates that the number of UEs to be paged is greater than 1.
  • the signaling 2 may also include a fifth field, and the fifth field may indicate the number of UEs to be paged (or, indicate signaling 3 number of paged UEs). That is, if the number of UEs to be paged is greater than 1, the signaling 2 may also indicate the specific number of UEs to be paged.
  • signaling 2 may not include the fifth field, but the second value may indicate the number of UEs to be paged, thereby reducing Fields included in signaling 2.
  • the first device determines that the value of the first field is the second value, in addition to determining that the number of UEs to be paged is greater than 1, it can also determine the specific number of UEs to be paged, or, The first device does not need to determine that the number of UEs to be paged is greater than 1, but directly determines the specific number of UEs to be paged.
  • the second value may occupy one or more bits. For example, if the value of the first field is "0", it indicates that the number of UEs to be paged is 1, and "0" is the first value; and if the value of the first field is other than "0” , then this value is used to indicate the specific number of UEs to be paged.
  • signaling 2 indicates that the number of UEs to be paged is greater than 1 (for example, the value of the first field is the second value), and signaling 2 only includes one NAS container, the number of UEs to be paged is The information is all included in the NAS container, and the first device cannot determine the number of UEs to be paged based on the number of NAS containers.
  • the second value may indicate the specific number of UEs to be paged
  • the fifth field included in the signaling 2 may indicate the number of UEs to be paged, so that the first device can learn the UEs to be paged. quantity.
  • another indication method is that if the signaling 2 includes the first field, it indicates the number of UEs to be paged. is 1, and if the signaling 2 does not include the first field, it indicates that the number of UEs to be paged is greater than 1.
  • the signaling 2 may also include a fifth field, and the fifth field may indicate the number of UEs to be paged. That is, if the number of UEs to be paged is greater than 1, the signaling 2 may also indicate the specific number of UEs to be paged.
  • another indication method is that if the signaling 2 includes the first field, it indicates that the number of UEs to be paged is greater than 1, and if the signaling 2 does not include the first field, it indicates that the number of UEs to be paged is The quantity is 1.
  • the signaling 2 may also include a fifth field, and the fifth field may indicate the number of UEs to be paged. That is, if the number of UEs to be paged is greater than 1, the signaling 2 may also indicate the specific number of UEs to be paged.
  • the signaling 2 may not include the fifth field, but the value of the first field may indicate the number of UEs to be paged. At this time, the number of UEs to be paged is Greater than 1.
  • another indication method is that if the number of NAS containers included in signaling 2 is 1, it indicates that the number of UEs to be paged is 1, and if the number of NAS containers included in signaling 2 is greater than 1, it indicates that the number of UEs to be paged is 1.
  • the number of calling UEs is greater than 1.
  • the number of UEs to be paged can be determined according to the number of NAS containers.
  • the number of NAS containers included in signaling 2 is equal to the number of information about the UE to be paged included in signaling 2.
  • the NAS container included in signaling 2 actually indicates the specific number of UEs to be paged.
  • NAS containers can be represented using NAS protocol data unit (PDU) or NAS data.
  • PDU NAS protocol data unit
  • another indication method is that if the number of UE information included in signaling 2 is 1, it indicates that the number of UEs to be paged is 1, and if the number of UE information included in signaling 2 is greater than 1, This indicates that the number of UEs to be paged is greater than 1.
  • the number of UEs to be paged may be determined according to the amount of information about the UEs.
  • the information of the UE to be paged included in signaling 2 is not included in the NAS container.
  • the UE information is the UE identity.
  • the information of the UEs to be paged actually indicates the specific number of UEs to be paged.
  • signaling 2 can also indicate whether the number of UEs to be paged is 1 or greater than 1 through other methods, and there is no specific limit.
  • the AMF may send signaling 2 to the access network device, and then the access network device Signaling 2 is sent to the first device.
  • the AMF may directly send signaling 2 to the first device.
  • the first device sends the first signaling.
  • one or more UEs receive the first signaling.
  • the first UE receives the first signaling as an example.
  • the first device may execute S403.
  • the first signaling in S403 may be used to page one or more UEs (the paging is, for example, similar to paging in a cellular network), or to select one or more UEs, or to indicate (or trigger)
  • One or more UEs send uplink data, or used to instruct (or trigger) one or more UEs to establish a connection with the network (such as access network equipment), or used to instruct (or trigger) one or more UEs to initiate Random access, etc.
  • the signaling is used to page one or more UEs, then the one or more UEs can be regarded as the UEs to be paged.
  • the signaling is, for example, paging signaling sent by the first device.
  • this signaling is also called first signaling, and in FIG. 4 , this signaling is represented as signaling 3 for paging one or more UEs.
  • the signaling 3 may include information of the UE to be paged.
  • the first device obtains the information of the UE to be paged from the signaling 2, and adds the information of the UE to be paged to the signaling 3. If the information packet of the UE to be paged in signaling 2 included in the NAS container, the first device adds the NAS container to signaling 3; or, if the information of the UE to be paged in signaling 2 is not included in the NAS container, the first device adds the UE to be paged to the NAS container. The information of the calling UE is directly added to signaling 3.
  • signaling 3 may indicate that the number of UEs to be paged is 1 (or, signaling 3 may indicate that the number of UEs to be paged is 1), or signaling 3 may indicate that the number of UEs to be paged is greater than 1 (or, indicating that the number of UEs paged by signaling 3 is greater than 1).
  • the following description takes the signaling 3 indicating that the number of UEs to be paged is 1 or greater than 1 as an example.
  • one indication method is that the signaling 3 may include a second field. If the value of the second field is the third value, it indicates that the number of UEs to be paged is 1, and if the value of the second field is the fourth value, it indicates that the number of UEs to be paged is 1. value indicates that the number of UEs to be paged is greater than 1.
  • the signaling 2 may also include a sixth field, and the sixth field may indicate the number of UEs to be paged (or, indicate signaling 3 number of paged UEs). That is, if the number of UEs to be paged is greater than 1, the signaling 2 may also indicate the specific number of UEs to be paged.
  • signaling 3 may not include the sixth field, but the fourth value may indicate the number of UEs to be paged, thereby reducing Fields included in signaling 3.
  • the UE determines that the value of the first field is the second value, in addition to determining that the number of UEs to be paged is greater than 1, it can also determine the specific number of UEs to be paged, or the UE does not need to It is determined that the number of UEs to be paged is greater than 1, but the specific number of UEs to be paged is directly determined.
  • the second value may occupy one or more bits.
  • another indication method is that if the signaling 3 includes the second field, it indicates that the number of UEs to be paged is 1, and if the signaling 3 does not include the second field, it indicates that the number of UEs to be paged is 1. The number is greater than 1.
  • the signaling 3 may also include a sixth field, and the sixth field may indicate the number of UEs to be paged. That is, if the number of UEs to be paged is greater than 1, the signaling 3 may also indicate the specific number of UEs to be paged.
  • another indication method is that if the signaling 3 includes the second field, it indicates that the number of UEs to be paged is greater than 1, and if the signaling 3 does not include the second field, it indicates that the number of UEs to be paged is The quantity is 1.
  • the signaling 3 includes a second field, the value of the second field may indicate the number of UEs to be paged, and at this time, the number of UEs to be paged is greater than 1.
  • the signaling 3 may also include a sixth field, and the sixth field may indicate the number of UEs to be paged. That is, if the number of UEs to be paged is greater than 1, the signaling 3 may also indicate the specific number of UEs to be paged.
  • another indication method is that if the number of NAS containers included in signaling 3 is 1, it indicates that the number of UEs to be paged is 1, and if the number of NAS containers included in signaling 3 is greater than 1, it indicates The number of UEs to be paged is greater than 1.
  • the number of UEs to be paged can be determined according to the number of NAS containers.
  • the number of NAS containers included in signaling 3 is equal to the number of information about the UE to be paged included in signaling 2.
  • the NAS container included in signaling 3 actually indicates the specific number of UEs to be paged.
  • NAS containers can be represented using NAS PDU or NAS data.
  • another indication method is that if the number of UE information included in signaling 3 is 1, it indicates that the number of UEs to be paged is 1, and if the number of UE information included in signaling 3 is greater than 1, This indicates that the number of UEs to be paged is greater than 1.
  • the information of the UE to be paged included in signaling 3 is not included in the NAS container.
  • the UE information is the UE identity.
  • the first resource is used for the UE to be paged to send Line data
  • signaling 3 can be used to determine the first resource.
  • the first resources may include time domain resources and/or frequency domain resources.
  • the frequency domain resources included in the first resource are the same as the frequency domain resources of Signaling 3, or the frequency domain resources included in the first resource and the frequency domain resources of Signaling 3 may also be different.
  • the first device may also send Synchronization signal, the frequency domain resource included in the first resource is, for example, the frequency domain resource of the synchronization signal.
  • the first device can determine the number of UEs to be paged according to signaling 2, then the first device can schedule resources for the UEs to be paged according to the number of UEs to be paged, and the resources scheduled by the first device can be The resource is called the first resource.
  • signaling 2 indicates that the number of UEs to be paged is 1, then the first device can schedule one resource for transmitting uplink data. Then the first resource includes one resource.
  • the optimized process can be used directly, that is, the steps for access (such as S103 ⁇ S104 shown in Figure 1) are omitted, and the uplink data is directly sent to the access network device; or signaling 2 indicates to be paging
  • the first device can schedule multiple resources for transmitting uplink data, and the first resource includes multiple resources. If the UE can determine which one of the first resources the UE is using. resources, the optimized access method can still be used, omitting the steps for access, or if the UE cannot determine which resource included in the first resource the UE uses, contention-based access can be used Method, send uplink data after successful access.
  • a resource or “multiple resources” in the first resource described in the embodiment of this application refers to the time domain resource included in the first resource.
  • signaling 3 may indicate the specific number of UEs to be paged.
  • the number of resources scheduled by the first device may be equal to the number of UEs to be paged, or may be greater than the number of UEs to be paged (
  • the time unit included in the resources scheduled by the first device is a maximum time unit range, which is equivalent to a maximum range of time units included in the first resource, and the UE to be paged can select resources within the maximum time unit range).
  • the time domain resource included in a resource included in the first resource is one or more time units.
  • the time unit is, for example, a radio frame, a subframe, a slot, a mini-slot, or orthogonal frequency division multiplexing. , OFDM), etc.
  • the time unit described in the embodiments of this application may not be a time interval of fixed time length, but a sending opportunity (or access opportunity) in the time domain, and the duration of different sending opportunities may be the same or different.
  • signaling 3 may include information about the first resource, which is equivalent to signaling 3, in addition to being used for paging one or more UEs, it may also configure resources for sending uplink data for the one or more UEs.
  • signaling 3 does not include the information of the first resource, and the first device may send the information of the first resource through other signaling.
  • the first device sends the information of the first resource through signaling 3 or through other signaling, in addition, regardless of whether the first device sends the information about the first resource through signaling 3 or through other signaling, if the information about the first resource Indicating one resource for transmitting uplink data, that is, if the first resource includes one resource for transmitting uplink data, it is equivalent to indicating that the number of UEs to be paged is 1; and if the first resource includes multiple resources for transmitting uplink data, For resources for transmitting uplink data, it is equivalent to indicating that the number of UEs to be paged is greater than 1.
  • the number of resources included in the first resource is equal to the number of UEs to be paged, then the number of resources included in the first resource is also equivalent to indicating the specific number of UEs to be paged.
  • the first device sends the information of the first resource through other signaling, it may be considered that the number of UEs to be paged is indicated through other signaling. That is, the signaling including the information of the first resource and the signaling used to page the UE may be the same signaling, such as signaling 3, or they may be two different signalings. If the two are two different signalings, the first device can send the two signalings continuously.
  • the information of the first resource included in signaling 3 or other signaling includes, for example, time domain information and frequency domain information of the first resource; or, the information of the first resource included in signaling 3 or other signaling, Can include the time domain of the first resource information, excluding the frequency domain information of the first resource.
  • the frequency domain information of the first resource can be determined according to the second rule.
  • the second rule is, for example, that the frequency domain information of the first resource is the frequency domain information of signaling 3, or that the frequency domain information of the first resource is the frequency domain of the synchronization signal. domain information, etc., so that the information of the first resource does not need to include the frequency domain information of the first resource. This can reduce the amount of information carried by signaling and save transmission overhead.
  • signaling 3 can also indicate whether the number of UEs to be paged is 1 or greater than 1 through other methods, and there are no specific restrictions.
  • the first device can directly send signaling 3 to the UE.
  • the architecture shown in Figure 2, Figure 3A or Figure 3B can implement this solution; alternatively, the first device can also send signaling 3 to the access UE.
  • the access network equipment then sends the signaling 3, for example, through broadcast, multicast or unicast, so that the UE can receive the signaling 3.
  • the architecture shown in Figure 3B can implement this solution.
  • the first UE sends uplink data in the first time unit.
  • the first device receives uplink data from the first UE in the first time unit.
  • the first resource is used for the UE to be paged to send uplink data; and for one of the UEs to be paged, if uplink data is sent, it is necessary to determine the use of Resources for sending uplink data to the UE (or, determining resources used by the UE in the first resource).
  • the UE to be paged (or the UE paged by signaling 1, or the UE paged by signaling 2, or the UE paged by signaling 3) includes the first UE, where if If the number of UEs to be paged is 1, then the first UE is the UE; or if the number of UEs to be paged is greater than 1, then the first UE is one of the multiple UEs.
  • the time domain resources included in the resources used by the first UE to send uplink data are the first time units. If the number of UEs to be paged is 1, then a UE determines a resource for the UE to send uplink data, which may include determining a first resource.
  • the first resource is a resource for the UE to send uplink data, or in other words, the first resource is used for the UE to send uplink data. All resources in one resource are the resources used by the UE in the first resource. Alternatively, if the number of UEs to be paged is greater than 1, then one UE will use part of the first resources to send uplink data.
  • the UE determines the resources for the UE to send uplink data, which may include determining the first resource. resources, and determine the resources used by the UE in the first resource, that is, the UE may perform a two-step determination process; or, the UE determines the resources used by the UE to send uplink data, which may include determining that the UE uses the first resource in the first resource. resources used in , that is, the UE can perform a one-step determination process.
  • the first resource can be determined according to the information of the first resource. Wherein, if the information of the first resource is included in signaling 3, the UE can determine the first resource according to signaling 3; and if the information of the first resource is included in other signaling, the UE can determine the first resource according to other signaling. Identify the first resource.
  • a UE When a UE determines the resources used by the UE in the first resource, it may consider signaling 3 or may not consider signaling 3. An example is given below. In addition, Figure 4 takes signaling 3 as an example.
  • the UE considers signaling 3 when determining the resources used by the UE in the first resource, or in other words, the UE determines the resources used by the UE in the first resource based on signaling 3.
  • This situation can also be understood as: for the first device, signaling 3 can be used by the UE to be paged to determine the first resource according to signaling 3; and for the UE to be paged, signaling 3 can be used to determine the first resource.
  • the resource used by the UE in the first resource. In this case, the information about the first resource may be included in signaling 3 or may be included in other signaling.
  • this resource is the resource used by the first UE to send uplink data.
  • the UE can use this resource Send uplink data using a resource.
  • the time domain resource included in this resource is the first time unit.
  • signaling 3 includes the information of the UE to be paged. After a UE receives signaling 3, if it is determined that the information of the UE is included in signaling 3, it is determined that the UE Being paged.
  • the UE may determine the resource used by the UE in the first resource according to signaling 3 and the first rule.
  • the first rule may be configured by the first device, or predefined through a protocol, or may also be preconfigured in the UE.
  • a first rule is that a UE can determine the resources used by the UE in the first resource according to the order of the UE information included in the signaling 3. For example, if the number of UEs to be paged is greater than 1, signaling 3 may include information of multiple UEs to be paged. In signaling 3, the information of multiple UEs is arranged in the first order.
  • the order (or sequence number or position) of the UE's information in the first order can be determined, and a resource used by the UE in the first resource can be determined based on the order.
  • the UE information is arranged in the first order.
  • One implementation method may be that the NAS containers are arranged in the first order; or if the signaling 3 does not include the NAS container, for example If the UE information included in signaling 3 is not included in the NAS container, the UE information can be arranged in the first order in signaling 3; or, if signaling 3 includes a NAS container, the NAS container includes multiple UE information, then the UE information is arranged in the first order.
  • One implementation method may be that the information of the multiple UEs is arranged in the first order in the NAS container; or, if signaling 3 includes the information of multiple UEs , and the information of multiple UEs is the identifier of multiple UEs, and the identifiers of multiple UEs are not included in the NAS container, then the information of the UEs is arranged in the first order.
  • One implementation method may be that the identifiers of the multiple UEs are in In signaling 3, they are arranged in the first order.
  • signaling 3 includes the information of 3 UEs.
  • the first order is the information of the second UE – the information of the third UE – the information of the first UE; the first resource also includes 3 resources.
  • the resources are Resource 1, Resource 2 and Resource 3 respectively.
  • the first UE can determine to use resource 3 to send uplink data.
  • the time domain resource included in resource 3 is the first time unit; the second UE can determine to use resource 1 to send uplink data; and the third UE can determine to use resource 2 to send uplink data. data.
  • resource 1, resource 2 and resource 3 can be continuous in the time domain, or any adjacent resources among them can also be discontinuous. For example, resource 1 and resource 2 are not continuous, and/or resource 2 and resource 3 are not continuous. .
  • the UE may trigger the next time unit (or trigger the next resource, or trigger the next UE) according to signaling 3, the first rule, and signaling to determine the resources used by the UE in the first resource.
  • signaling 3 is used to page multiple UEs. Each UE can determine that the UE should use Which resource in the first resource. However, the UE may not be able to determine when the resource in the first resource will arrive.
  • the first UE can determine to use the first time unit in the first resource, but the first UE cannot determine when the first time unit is. For this reason, optionally, if the number of UEs to be paged is greater than 1, the first device can also send third signaling after completing communication with one UE.
  • the third signaling can be used to trigger the number of UEs to be paged.
  • the next UE sends uplink data, either to trigger the next time unit or to trigger the next resource in the first resource.
  • the third signaling may be a signaling set, that is, the third signaling may include at least one signaling. One or more UEs may be able to receive the third signaling.
  • the third signaling is the Nth signaling received by the first UE and used to trigger the next UE to send uplink data
  • N is a positive integer. Then, if N is the ranking of the first UE's information in the first signaling, that is, the ranking of the first UE's information in the first signaling is the Nth, it means that the first time unit has arrived, and the first time unit has arrived.
  • the UE can send uplink data to the first device in the first time unit; and if N is not the order of the first UE's information in the first signaling, that is, the first UE's If the information is not ranked Nth in the first signaling, the first UE will not send the uplink data temporarily, but will continue to wait for the next third signaling.
  • N is not the order of the first UE's information in the first signaling, that is, the first UE's If the information is not ranked Nth in the first signaling, the first UE will not send the uplink data temporarily, but will continue to wait for the next third signaling.
  • the maximum time unit range indicated by the access network device is 5, and a UE determines that the UE is the third UE to be paged according to the first rule (for example, the first order). Then, after the UE receives three pieces of third signaling, the UE can send uplink data.
  • the first device does not need to send the third signaling, and each UE can know when to send the uplink data.
  • the UE may consider signaling 3 when determining the resources used by the UE in the first resource, or may not consider signaling 3. Wherein, if the information of the first resource is included in signaling 3, the UE considers signaling 3 when determining the resources used by the UE in the first resource; or, if the information of the first resource is included in other signaling, Then the UE does not consider signaling 3 when determining the resources used by the UE in the first resource.
  • This situation can also be understood as: for the first device, if the information of the first resource is included in the signaling 3, the signaling 3 can be used for the UE to be paged to determine the first resource according to the signaling 3.
  • the first resource may be determined based on signaling 3; or, for the first device, if the information of the first resource is not included in signaling 3, signaling 3 is not used for the UE to be paged.
  • the UE determines the first resource according to signaling 3.
  • the first resource is not determined according to signaling 3.
  • the UE may determine the resource used by the UE in the first resource according to the identity of the UE. For example, if the first resource includes L resources, then a UE can use the UE's identity and the L resources to determine the resources used by the UE. For example, one way of determining is that the UE uses the identity of the UE to perform modulo processing on L, and the result obtained is the sequence number of the resource used by the UE in the L resources.
  • the UE can directly use the optimized access method, that is, omitting the access step, but sending uplink data to the access network device. However, if the UE fails to access successfully, for example, the uplink data transmission fails, the UE can fall back to the contention-based access mode.
  • the UE may determine the resource used by the UE in the first resource based on the random number.
  • the first resource configured by the first device includes a maximum time unit range that the UE can use, and the number of time units included in the maximum time unit range may be greater than or equal to the number of UEs to be paged.
  • the information on the first resource included in signaling 3 or other signaling may, for example, indicate the maximum time unit range, or the information on the first resource may include a first parameter, and the UE may determine the maximum time unit range based on the first parameter.
  • the first parameter is parameter Q.
  • a UE can select a random number P between (0, 2 Q-1 ), and the random number P can be used as the sequence number of the time unit used by the UE in the first resource. For example, the UE can select the value closest to the Q value in (0,2 Q-1 ) as the random number P, or the UE can also randomly select a value in (0,2 Q-1 ) as the random number P, or The UE can also determine a value as the random number P in (0,2 Q-1 ) in a uniform selection manner.
  • the first device may send third signaling. For a UE, every time the third signaling is received, P can be decremented by 1 (or the initial value can be 0, and every time the third signaling is received, the operation is increased by 1). When P is reduced to 0 (Or, when the value reaches P), the UE determines that the time unit that the UE can use has arrived, and the UE can send uplink data in the time unit.
  • each time unit within the maximum time unit range can be understood as a resource.
  • Each signaling used to trigger the next UE to send uplink data can trigger a resource.
  • This resource can be used for one UE to send Upstream data.
  • the signaling including the first parameter (such as signaling 3 or other signaling) can also be understood as a signaling used to trigger the next UE to send uplink data.
  • the random number P generated by a UE is 0, then after receiving the signaling including the first parameter, the UE can determine that the time unit that the UE can use has arrived.
  • the time lengths of different time units here can be the same or different.
  • S405 and S406 in Figure 4 represent a process similar to random access.
  • S405 and S103 shown in Figure 1 can be the same step, and S406 and S104 shown in Figure 1 can be the same step. That is, S405 is , the paged UE sends a random number to the first device, and in S406, the first device replies with a confirmation message for the random number (it should be noted that the random numbers in S405 and S406 are different from the random numbers described in S403 can be different).
  • neither S405 nor S406 needs to be executed, and the paged UE can directly send uplink data to the first device. This saves steps required for data transmission between the UE and the first device, can save signaling overhead, and can reduce data transmission delay.
  • the paged UE is a tag.
  • the uplink data sent by a UE may include the identifier of the tag, such as the EPC of the tag. For example, this paging is to find "clothing" products, then if the memory information of a tag indicates that the tag is a "clothing" product, the tag can be determined to be paged.
  • the uplink data sent by the tag may include the EPC of the tag.
  • the first device or core network device, such as AF, etc.
  • equipment such as AF, etc.
  • the solution of the embodiment of the present application can be executed under the instruction of the first device.
  • the first device sends first instruction information, and the first instruction information may instruct to implement the technical solution of the embodiment of the present application, or instruct not to perform a random access process, or instruct to adopt an optimized access method (that is, not to perform random access). into the process).
  • the technical solutions of the embodiments of the present application can be implemented, and if the first indication information is not received, the traditional contention access method can be adopted.
  • the first device may determine whether to implement the technical solution of the embodiment of the present application according to the situation.
  • the first device may Send first indication information to reduce data transmission delay.
  • the first device can directly send the first indication information to the UE.
  • the architecture shown in Figure 2, Figure 3A or Figure 3B can implement this solution; or the first device can send the first indication information to the access network device.
  • the access network device sends the first indication information to the UE.
  • the architecture shown in Figure 3B can implement this solution.
  • the UE's uplink data can be sent to the first device.
  • the architecture shown in Figure 2, Figure 3A or Figure 3B can implement this solution; or the UE's uplink data can also be sent to the access network device, and the access network device The network device then sends the uplink data to the first device.
  • the architecture shown in Figure 3B can implement this solution.
  • the method also includes S407: the first device sends a first signal, and the first signal can be used to provide energy for data transmission to the UE to be paged.
  • Transmission described in the embodiments of this application may include sending and/or receiving.
  • one or more UEs may receive the first signal.
  • Figure 4 takes the first UE receiving the first signal as an example.
  • the waveform of the signal sent by the first device is, for example, a continuous waveform.
  • the first UE After receiving the first signal, the first UE can obtain an induced current, thereby obtaining power, so that the first UE can use the obtained power to send uplink data to the first device.
  • S407 occurs before S403, or occurs after S403, or occurs at the same time as S403. In Figure 4, it is taken as an example that S407 occurs after S403.
  • the UE to be paged is a semi-active UE or an active UE, the first UE does not need to obtain energy by means of an external signal, and does not need to perform S407; alternatively, the UE to be paged can use signaling 3
  • S407 is an optional step.
  • the first device After the first device receives uplink data from a UE, if there is no downlink data to be sent to the UE, the first device completes communication with the UE. Or, the first device is receiving uplink data from a UE Afterwards, if there is downlink data to be sent to the UE, the first device may continue to send downlink data to the UE; after sending the downlink data to the UE, the first device completes communication with the UE.
  • the first device may send response information, and the response information may indicate that the uplink data of the UE is successfully received.
  • the response information includes first information, and the first information is, for example, a random number or an identity of the UE.
  • the first device when a UE sends uplink data, it can also send the first information.
  • the first device when the first device sends the response information corresponding to the uplink data, it can carry the first information, so that the UE can send the first information according to the first information. It can be determined that the response information indicates that the uplink data of the UE is successfully sent.
  • the first device may send a response message, and the response information may include the identity of the first UE or a random number, etc.
  • the response information may be received by multiple UEs. After the first UE receives the response information, it can be determined that the uplink data of the first UE was successfully sent based on the identification or random number of the first UE.
  • the first device can determine whether to page one UE or multiple UEs, so that the first signaling sent by the first device can be used to determine the first resource.
  • the UE only needs to use the first resource to send uplink data to the first device, and does not need to access in a competitive manner. Therefore, the UE does not need to perform a process similar to random access.
  • the first resource can be used to send uplink data to the first device, and there is no need to perform the step of establishing a connection with the first device. This reduces the steps required to transmit data between the UE and the first device, helps save signaling overhead, and reduces data transmission delay.
  • FIG. 5 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 500 may be the first device described in the embodiment shown in FIG. 4 or the circuit system of the first device, and is used to implement the method corresponding to the first device in the above method embodiment.
  • the communication device 500 may be the first terminal device or the circuit system of the first terminal device described in the embodiment shown in FIG. 4, used to implement the method corresponding to the first terminal device in the above method embodiment.
  • the communication device 500 may be the first core network device or the circuit system of the first core network device described in the embodiment shown in FIG. 4, used to implement the first core network device corresponding to the above method embodiment. Methods.
  • the communication device 500 may be the second core network device or the circuit system of the second core network device described in the embodiment shown in FIG. 4, used to implement the second core network device corresponding to the above method embodiment.
  • Methods for specific functions, please refer to the description in the above method embodiment. Among them, for example, one circuit system is a chip system.
  • the communication device 500 includes at least one processor 501 .
  • the processor 501 can be used for internal processing of the device to implement certain control processing functions.
  • processor 501 includes instructions.
  • processor 501 can store data.
  • different processors may be independent devices, may be located in different physical locations, and may be located on different integrated circuits.
  • different processors may be integrated into one or more processors, for example, on one or more integrated circuits.
  • communication device 500 includes one or more memories 503 for storing instructions.
  • the memory 503 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 500 includes a communication line 502 and at least one communication interface 504.
  • the memory 503, the communication line 502, and the communication interface 504 are all optional, they are all represented by dotted lines in FIG. 5 .
  • the communication device 500 may also include a transceiver and/or an antenna.
  • the transceiver may be used to send information to or receive information from other devices.
  • the transceiver may be called a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 500 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter can be used to generate a radio frequency signal from a baseband signal
  • the receiver can be used to convert the radio frequency signal into a baseband signal.
  • the processor 501 may include a general central processing unit (CPU), a microprocessor, Application specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of the present application.
  • CPU central processing unit
  • ASIC Application specific integrated circuit
  • Communication line 502 may include a path that carries information between the above-mentioned components.
  • Communication interface 504 uses any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Cable access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Cable access network etc.
  • the memory 503 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory 503 may exist independently and be connected to the processor 501 through the communication line 502. Alternatively, the memory 503 can also be integrated with the processor 501 .
  • the memory 503 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 501 for execution.
  • the processor 501 is configured to execute computer execution instructions stored in the memory 503, thereby implementing the paging method provided by the above embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5 .
  • the communication device 500 may include multiple processors, such as the processor 501 and the processor 505 in FIG. 5 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the chip includes a processing 501 (which may also include a processor 505), a communication line 502, a memory 503 and a communication interface 504.
  • the communication interface 504 may be an input interface, a pin or a circuit, etc.
  • Memory 503 may be a register, cache, etc.
  • the processor 501 and the processor 505 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the paging method of the above embodiment.
  • Embodiments of the present application can divide the device into functional modules according to the above method examples.
  • each functional module can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 6 shows a schematic diagram of a device.
  • the device 600 may be the first device, the first terminal device, the first device involved in the above method embodiments.
  • the core network device or the second core network device is either a chip in the first device or a chip in the first terminal device or a chip in the first core network device or a chip in the second core network device.
  • the device 600 includes sending orders Unit 601, processing unit 602 and receiving unit 603.
  • apparatus 600 can be used to implement the steps performed by the first device, the first terminal device, the first core network device or the second core network device in the method of the embodiment of the present application.
  • first device the first terminal device, the first core network device or the second core network device in the method of the embodiment of the present application.
  • the apparatus 600 can be used to implement the steps performed by the first device, the first terminal device, the first core network device or the second core network device in the method of the embodiment of the present application.
  • relevant features please refer to the above. Examples will not be described again here.
  • the functions/implementation processes of the sending unit 601, the receiving unit 603 and the processing unit 602 in Figure 6 can be implemented by the processor 501 and/or the processor 505 in Figure 5 calling computer execution instructions stored in the memory 503. .
  • the function/implementation process of the processing unit 602 in Figure 6 can be implemented by the processor 501 and/or the processor 505 in Figure 5 calling the computer execution instructions stored in the memory 503.
  • the function/implementation process of unit 603 can be implemented through the communication interface 504 in Figure 5.
  • the functions/implementation processes of the sending unit 601 and the receiving unit 603 can also be implemented through pins or circuits.
  • This application also provides a computer-readable storage medium, which stores a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run, the first device and the first terminal device in the foregoing method embodiment are implemented. , a method executed by the first core network device or the second core network device.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application essentially or contributes to the technical solution or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions.
  • Storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the foregoing method embodiments by the first device and the first terminal. The method executed by the device, the first core network device or the second core network device.
  • Embodiments of the present application also provide a processing device, including a processor and an interface; the processor is configured to execute the first device, the first terminal device, the first core network device or the second device involved in any of the above method embodiments. Method performed by core network equipment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the functions described.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of this application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form in the field in the storage medium.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium and can store and write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be installed in the ASIC, and the ASIC can be installed in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种寻呼方法及装置。第一设备发送用于寻呼终端设备的第一信令,第一信令包括该终端设备的内存信息或标识,以指示待寻呼的终端设备。另外终端设备还可根据第一信令确定第一资源,以利用第一资源发送上行数据,第一设备也可以在第一资源上接收来自该终端设备的上行数据。终端设备根据第一信令可确定第一资源,相当于第一设备为终端设备分配了资源,既然终端设备用于发送上行数据的资源已得到分配,则终端设备无需采用竞争资源的方式接入第一设备,因此终端设备无需进行随机接入过程。由此减少了终端设备与第一设备之间传输数据所需要执行的步骤,有利于节省信令开销,且减小了数据传输的时延。

Description

一种寻呼方法及装置
相关申请的交叉引用
本申请要求在2022年04月11日提交中国国家知识产权局、申请号为202210377310.X、申请名称为“一种寻呼方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种寻呼方法及装置。
背景技术
无线电射频识别(radio frequency identification,RFID)技术的可以用于识别用户身份,进一步的,也可应用于读写用户数据。
在RFID技术的应用场景下,标签(tag)可从读写器(或称为阅读器(reader))接收射频信号,凭借感应电流所获得的能量,标签可发送出存储在标签内部芯片中的信息,或者,标签也可以主动向读写器发送某一频率的信号。读写器可读取来自标签的信息,由此完成对于持有该标签的用户身份的识别,或完成数据的读出或写入等。
一个读写器可以与多个标签通信,而在读写器与标签传输数据前,标签需要先与读写器建立连接。在该建立连接的过程中,读写器可以寻呼多个标签,这多个标签被寻呼后,需要以时分的方式竞争资源以接入读写器。例如,一个标签被寻呼后,可以向读写器发送一个随机数,读写器如果收到该随机数,则可以向该标签发送确认消息。标签收到该确认消息,就相当于与读写器建立了连接,这种情况下,标签可以再向该读写器发送数据,读写器收到该数据后再向标签发送消息以指示对该数据的处理方式,例如读或写等。在读写器与一个标签通信完毕后,下一个标签才能再与读写器建立连接。
可见,目前标签与读写器之间要传输数据,需执行较多步骤。如果将该过程应用于蜂窝网络,则会带来较大时延。特别是在标签的数量较多的情况下,时延问题会更为突出。
发明内容
本申请实施例提供一种寻呼方法及装置,用于减小数据传输时延。
第一方面,提供第一种寻呼方法,该方法可由第一设备执行,或由包括第一设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一设备的功能,该芯片系统或功能模块例如设置在第一设备中。可选的,第一设备例如为接入网设备,例如基站;或者,第一设备例如为具有读写功能的设备,例如读写器等。该方法包括:发送第一信令,所述第一信令用于寻呼第一终端设备,其中,所述第一信令包括所述第一终端设备的信息,且所述第一信令用于确定第一资源;在所述第一资源上接收来自所述第一终端设备的上行数据。
本申请实施例中,第一设备能够明确究竟是寻呼一个终端设备还是寻呼多个终端设备,由此第一设备所发送的第一信令可用于确定第一资源。被寻呼的终端设备利用第一资源向 第一设备发送上行数据即可,无需采用竞争方式接入,因此,被寻呼的终端设备无需进行随机接入过程,例如第一终端设备在接收用于寻呼第一终端设备的第一信令后,就可以利用第一资源向第一设备发送上行数据,无需再执行与第一设备建立连接的步骤。由此减少了第一终端设备与第一设备之间传输数据所需要执行的步骤,有利于节省信令开销,且减小了数据传输的时延。
在一种可选的实施方式中,所述方法还包括:发送第一信号,所述第一信号用于为所述第一终端设备提供用于发送所述上行数据的能量。如果第一终端设备的能力较低,例如无源标签,则第一终端设备可能无法主动向外发送数据。因此,第一设备可以发送信号以供第一终端设备获取能量,从而通过获取的能量来发送上行数据。
在一种可选的实施方式中,所述第一终端设备工作在反射通信场景下。例如,第一终端设备为无源标签,可通过反射来自外部的信号获取能量,以发送上行数据。或者,第一终端设备也可以工作在其他通信场景下,例如第一终端设备为有源标签等,则第一终端设备无需外部信号的激发就能发送上行数据,能够简化数据传输过程。本申请实施例对此不做限制。
在一种可选的实施方式中,所述方法还包括:接收来自第一核心网设备的第二信令,所述第二信令用于寻呼所述第一终端设备,且所述第二信令还指示所述第一信令寻呼终端设备的数量为1,或指示所述第一信令寻呼终端设备的数量大于1。第一核心网设备例如为AMF等。可能是核心网发起寻呼,则第一核心网设备可以向第一设备发送第二信令以寻呼第一终端设备。第一核心网设备可以指示第一信令寻呼的终端设备的数量为1还是大于1,从而第一设备就能根据第一核心网设备的指示确定待寻呼的终端设备的数量。
在一种可选的实施方式中,所述第二信令包括第一字段,其中,所述第一字段的值为第一值时指示所述第一信令寻呼终端设备的数量为1,或,所述第一字段的值为第二值时指示所述第一信令寻呼终端设备的数量大于1;或,所述第二信令包括第一字段时指示所述第一信令寻呼终端设备的数量为1,或,所述第二信令不包括第一字段时指示所述第一信令寻呼终端设备的数量大于1;或,所述第二信令包括NAS容器,所述NAS容器用于承载所述第一终端设备的信息,其中,所述NAS容器的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述NAS容器的数量大于1时指示所述第一信令寻呼终端设备的数量大于1;或,所述第一终端设备的信息为所述第一终端设备的标识,其中,所述第二信令包括的终端设备的标识的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述第二信令包括的终端设备的标识的数量大于1时指示所述第一信令寻呼终端设备的数量大于1。第二信令要指示第一信令寻呼终端设备的数量为1还是大于1,可以通过显式方式指示,也可以通过隐式方式指示。例如显式方式为通过第一字段指示,使得指示较为明确;隐式方式为通过NAS容器或终端设备的标识指示,既指示了第一信令寻呼终端设备的数量为1还是大于1,也节省了第二信令的开销。
在一种可选的实施方式中,当所述第一字段的值为所述第二值,且所述第二信令包括一个NAS容器时,所述第二值用于指示所述第一信令寻呼终端设备的数量。如果第一字段的值为第二值,表明第一信令寻呼终端设备的数量大于1。而如果第二信令只是包括一个NAS容器,那么第二信令无法通过NAS容器的数量来表征第一信令寻呼终端设备的数量。为了使得第一设备能够明确第一信令寻呼终端设备的实际数量,此时的第二值可以指示第一信令寻呼的终端设备的数量,则第一设备不仅能够确定第一信令寻呼终端设备的数 量大于1,还能确定第一信令寻呼的终端设备的实际数量,从而有利于第一设备为第一信令寻呼的终端设备配置用于发送上行数据的资源,使得这些终端设备无需通过竞争方式接入第一设备,以减小数据传输时延。
在一种可选的实施方式中,所述第一信令包括第二字段,其中,所述第二字段的值为第三值时指示所述第一信令寻呼终端设备的数量为1,或,所述第二字段的值为第四值时指示所述第一信令寻呼终端设备的数量大于1;或,所述第一信令包括第二字段时指示所述第一信令寻呼终端设备的数量为1,或,所述第一信令不包括第二字段时指示所述第一信令寻呼终端设备的数量大于1;或,所述第一资源包括一份用于传输上行数据的资源时,指示所述第一信令寻呼终端设备的数量为1,或,所述第一资源包括多份用于传输上行数据的资源时,指示所述第一信令寻呼终端设备的数量大于1;或,所述第一信令包括NAS容器,所述NAS容器用于承载所述终端设备的信息,其中,所述NAS容器的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述NAS容器的数量大于1时指示所述第一信令寻呼终端设备的数量大于1;或,所述终端设备的信息为所述终端设备的标识,其中,所述第一信令包括的终端设备的标识的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述第一信令包括的终端设备的标识的数量大于1时指示所述第一信令寻呼终端设备的数量大于1。
在一种可选的实施方式中,当所述第一信令寻呼终端设备的数量大于1时,所述第一信令包括多个终端设备的信息,所述多个终端设备的信息在所述第一信令中按照第一顺序排列,所述第一顺序用于确定资源。例如在第一信令中,多个终端设备的信息按照第一顺序排列,那么对于第一信令所寻呼的一个终端设备来说,可以确定该终端设备的信息在第一顺序中的排序(或者说序号或位置),根据该排序就可以确定第一资源中该终端设备所使用的一份资源。通过这种方式,被寻呼的终端设备可以结合第一信令来确定该终端设备在第一资源中所使用的资源,使得被寻呼的终端设备能够在配置给该终端设备的资源上发送上行数据。从而被寻呼的各个终端设备都能够在各自的资源上发送上行数据,这些终端设备之间无需竞争资源,也就无需执行竞争接入的步骤,从而简化了数据传输过程,也减小了数据传输时延。
在一种可选的实施方式中,所述多个终端设备的信息在所述第一信令中按照第一顺序排列,包括:当所述第一信令包括的NAS容器中的一个NAS容器用于承载一个终端设备的信息时,所述NAS容器在所述第一信令中按照所述第一顺序排列;或,当所述第一信令包括的NAS容器的数量为1时,所述多个终端设备的信息在所述NAS容器中按照所述第一顺序排列;或,所述多个终端设备的标识在所述第一信令中按照第一顺序排列。多个终端设备的信息可能包括在NAS容器中,那么多个终端设备的信息在第一信令中排列,可以是NAS容器在第一信令中排列,或者是多个终端设备的信息在NAS容器中排列。或者,多个终端设备的信息也可能不包括在NAS容器中,那么多个终端设备的信息可以直接在第一信令中排列。
在一种可选的实施方式中,如果所述第一信令寻呼终端设备的数量大于1,所述方法还包括:当所述第一设备与所述第一信令寻呼的多个终端设备中的一个终端设备完成数据传输后,发送第三信令,所述第三信令用于触发所述多个终端设备中的下一个终端设备发送上行数据,或用于触发第一资源所包括的下一份资源,或用于触发第一资源所包括的下一个时间单元(例如,一份资源所包括的时域资源为一个时间单元)。例如第一信令寻呼 的终端设备为无源标签,对于此类终端设备来说,能力较低,可能无法确定配置给该终端设备的资源究竟何时到来。为此,第一设备可以发送第三信令,被寻呼的终端设备根据所接收的第三信令的数量以及该终端设备的信息在第一顺序中的排序,就能确定分配给该终端设备的资源的具体时域位置。
在一种可选的实施方式中,来自所述第一终端设备的所述上行数据包括所述第一终端设备的标识。一个终端设备在向第一设备发送上行数据时,还可以携带该终端设备的标识,使得第一设备能够明确该上行数据来自于哪个终端设备。
在一种可选的实施方式中,所述第一终端设备的标识为EPC、S-TMSI或5G-S-TMSI。本申请实施例对于终端设备的标识不做限制。
第二方面,提供第二种寻呼方法,该方法可由第一终端设备执行,或由包括第一终端设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一终端设备的功能,该芯片系统或功能模块例如设置在第一终端设备中。该方法包括:接收来自第一设备的第一信令,所述第一信令用于寻呼所述第一终端设备,其中,所述第一信令包括所述第一终端设备的信息,且所述第一信令用于确定第一资源;根据所述第一信令的指示,在第一时隙向所述第一设备发送上行数据,其中,所述第一时隙属于所述第一资源。
在一种可选的实施方式中,所述方法还包括:接收来自第一设备的第一信号;在第一时隙向所述第一设备发送上行数据,包括:利用通过所述第一信号所获取的能量在所述第一时隙向所述第一设备发送上行数据。
在一种可选的实施方式中,所述第一终端设备工作在反射通信场景下。
在一种可选的实施方式中,所述第一信令包括第二字段,其中,所述第二字段的值为第三值时指示所述第一信令寻呼终端设备的数量为1,或,所述第二字段的值为第四值时指示所述第一信令寻呼终端设备的数量大于1;或,所述第一信令包括第二字段时指示所述第一信令寻呼终端设备的数量为1,或,所述第一信令不包括第二字段时指示所述第一信令寻呼终端设备的数量大于1;或,所述第一资源包括一份用于传输上行数据的资源时,指示所述第一信令寻呼终端设备的数量为1,或,所述第一资源包括多份用于传输上行数据的资源时,指示所述第一信令寻呼终端设备的数量大于1;或,所述第一信令包括NAS容器,所述NAS容器用于承载所述终端设备的信息,其中,所述NAS容器的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述第一信令包括的NAS容器的数量大于1时指示所述第一信令寻呼终端设备的数量大于1;或,所述终端设备的信息为所述终端设备的标识,其中,所述第一信令包括的终端设备的标识的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述第一信令包括的终端设备的标识的数量大于1时指示所述第一信令寻呼终端设备的数量大于1。
在一种可选的实施方式中,所述方法还包括:根据所述第一信令中所述第一终端设备的信息在第一顺序中的位置确定所述第一时隙,其中,当所述第一信令寻呼终端设备的数量大于1时,所述第一信令包括多个终端设备的信息,所述多个终端设备的信息在所述第一信令中按照所述第一顺序排列。
在一种可选的实施方式中,所述多个终端设备的信息在所述第一信令中按照第一顺序排列,包括:当所述第一信令包括的NAS容器中的一个NAS容器用于承载一个终端设备的信息时,所述NAS容器在所述第一信令中按照所述第一顺序排列;或,当所述第一信 令包括的NAS容器的数量为1时,所述多个终端设备的信息在所述NAS容器中按照所述第一顺序排列;或,所述多个终端设备的标识在所述第一信令中按照所述第一顺序排列。
在一种可选的实施方式中,如果所述第一信令寻呼终端设备的数量大于1,所述方法还包括:接收第三信令,所述第三信令用于触发所述第一信令寻呼多个终端设备中的下一个终端设备发送上行数据;利用通过所述第一信号所获取的能量在第一时隙向所述第一设备发送上行数据,包括:如果所述第三信令是所述第一终端设备接收的第N个用于触发所述第一信令寻呼多个终端设备中的下一个终端设备发送上行数据的信令,且N为所述第一终端设备的信息在所述第一顺序中的位置,则利用通过所述第一信号所获取的能量在所述第一时隙向所述第一设备发送所述上行数据,所述第一时隙是所述第一资源中的第N个时隙,N为正整数。
关于第二方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供第三种寻呼方法,该方法可由第一核心网设备执行,或由包括第一核心网设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一核心网设备的功能,该芯片系统或功能模块例如设置在第一核心网设备中。可选的,第一核心网设备例如为AMF等。该方法包括:接收来自第二核心网设备的第四信令,所述第四信令用于寻呼第一终端设备,且所述第四信令用于指示第二信令寻呼终端设备的数量为1,或指示第二信令寻呼终端设备的数量大于1;向第一设备发送所述第二信令,所述第二信令用于寻呼所述第一终端设备,且所述第二信令还指示第一信令寻呼终端设备的数量为1,或指示第一信令寻呼终端设备的数量大于1。本申请实施例中,来自第二核心网设备的第二信令可以指示待寻呼的终端设备的数量是1还是大于1,从而第一核心网设备能够明确待寻呼的终端设备的数量。那么第一核心网设备在执行寻呼时,也可以在第二信令中指示待寻呼的终端设备的数量是为1还是大于1,或者说,指示寻呼一个还是多个终端设备。例如第一核心网设备向第一设备指示了待寻呼的终端设备的数量是为1还是大于1,那么第一设备所发送的信令(例如第一信令)可用于确定第一资源,终端设备利用第一资源向第一设备发送上行数据即可,无需采用竞争方式接入,因此,终端设备无需进行随机接入过程。由此,减少了终端设备与第一设备之间传输数据所需要执行的步骤,有利于节省信令开销,且减小了数据传输的时延。
在一种可选的实施方式中,所述第四信令包括第三字段,其中,所述第三字段的值为第五值时指示所述第二信令寻呼终端设备的数量为1,或,所述第三字段的值为第六值时指示所述第二信令寻呼终端设备的数量大于1;或,所述第四信令包括第三字段时指示所述第二信令寻呼终端设备的数量为1,或,所述第二信令不包括第三字段时指示所述第二信令寻呼终端设备的数量大于1;或,所述第四信令包括所述第一终端设备的标识,其中,所述第四信令包括的终端设备的标识的数量为1时指示所述第二信令寻呼终端设备的数量为1,所述第四信令包括的终端设备的标识的数量大于1时指示所述第二信令寻呼终端设备的数量大于1。第四信令要指示第二信令寻呼终端设备的数量为1还是大于1,可以通过显式方式指示,也可以通过隐式方式指示。例如显式方式为通过第三字段指示,使得指示较为明确;隐式方式为通过终端设备的标识指示,既指示了第二信令寻呼终端设备的数量为1还是大于1,也节省了第四信令的开销。
在一种可选的实施方式中,所述第二信令包括第一字段,其中,所述第一字段的值为 第一值时指示所述第一信令寻呼终端设备的数量为1,或,所述第一字段的值为第二值时指示所述第一信令寻呼终端设备的数量大于1;或,所述第二信令包括第一字段时指示所述第一信令寻呼终端设备的数量为1,或,所述第二信令不包括第一字段时指示所述第一信令寻呼终端设备的数量大于1;或,所述第二信令包括NAS容器,所述NAS容器用于承载所述第一终端设备的信息,其中,所述NAS容器的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述第二信令包括的NAS容器的数量大于1时指示所述第一信令寻呼终端设备的数量大于1;或,所述第一终端设备的信息为所述第一终端设备的标识,其中,所述第二信令包括的终端设备的标识的数量为1时指示所述第一信令寻呼终端设备的数量为1,或,所述第二信令包括的终端设备的标识的数量大于1时指示所述第一信令寻呼终端设备的数量大于1。
在一种可选的实施方式中,当所述第一字段的值为所述第二值,且所述第二信令包括一个NAS容器时,所述第二值用于指示所述第二信令寻呼终端设备的数量。
关于第三方面或部分可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第四方面,提供第四种寻呼方法,该方法可由第二核心网设备执行,或由包括第二核心网设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第二核心网设备的功能,该芯片系统或功能模块例如设置在第二核心网设备中。可选的,第二核心网设备例如为AF或NEF等。该方法包括:向第一核心网设备发送第四信令,所述第四信令用于寻呼第一终端设备,且所述第四信令用于指示第二信令寻呼终端设备的数量为1,或指示第二信令寻呼终端设备的数量大于1。
在一种可选的实施方式中,所述第四信令包括第三字段,其中,所述第三字段的值为第五值时指示所述第二信令寻呼终端设备的数量为1,或,所述第三字段的值为第六值时指示所述第二信令寻呼终端设备的数量大于1;或,所述第四信令包括第三字段时指示所述第二信令寻呼终端设备的数量为1,或,所述第二信令不包括第三字段时指示所述第二信令寻呼终端设备的数量大于1;或,所述第四信令包括第一终端设备的标识,其中,所述第四信令包括的终端设备的标识的数量为1时指示所述第二信令寻呼终端设备的数量为1,所述第四信令包括的终端设备的标识的数量大于1时指示所述第二信令寻呼终端设备的数量大于1。
关于第四方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍,和/或参考对于第三方面或相应的实施方式的技术效果的介绍。
第五方面,提供一种通信装置。所述通信装置可以为上述第一方面至第四方面的任一方面所述的第一设备。所述通信装置具备上述第一设备的功能。所述通信装置例如为第一设备,或为包括第一设备的较大设备,或为第一设备中的功能模块,例如基带装置或芯片系统等。所述第一设备例如为接入网设备,例如基站;或者,所述第一设备例如为具有读写功能的设备,例如读写器等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模 块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
例如,所述收发单元(或,所述发送单元),用于发送第一信令,所述第一信令用于寻呼第一终端设备,其中,所述第一信令包括所述第一终端设备的信息,且所述第一信令用于确定第一资源;所述收发单元(或,所述接收单元),用于在所述第一资源上接收来自所述第一终端设备的上行数据。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第四方面中的任一方面所述的第一设备的功能。
第六方面,提供一种通信装置。所述通信装置可以为上述第一方面至第四方面中的任一方面所述的第一终端设备。所述通信装置具备上述第一终端设备的功能。所述通信装置例如为第一终端设备,或为包括第一终端设备的较大设备,或为第一终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第五方面的介绍。
例如,所述收发单元(或,所述接收单元),用于接收来自第一设备的第一信令,所述第一信令用于寻呼第一终端设备,其中,所述第一信令包括所述第一终端设备的信息,且所述第一信令用于确定第一资源;所述处理单元,用于根据所述第一信令的指示,通过所述收发单元(或,所述发送单元)在第一时隙向所述第一设备发送上行数据,其中,所述第一时隙属于所述第一资源。
在一种可选的实现方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第四方面中的任一方面所述的第一终端设备的功能。
第七方面,提供一种通信装置。所述通信装置可以为上述第一方面至第四方面中的任一方面所述的第一核心网设备。所述通信装置具备上述第一核心网设备的功能。所述通信装置例如为第一核心网设备,或为包括第一核心网设备的较大设备,或为第一核心网设备中的功能模块,例如基带装置或芯片系统等。可选的,第一核心网设备例如为AMF。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第五方面的介绍。
例如,所述收发单元(或,所述接收单元),用于接收来自第二核心网设备的第四信令,所述第四信令用于寻呼第一终端设备,且所述第四信令用于指示第二信令寻呼终端设备的数量为1,或指示第二信令寻呼终端设备的数量大于1;所述收发单元(或,所述发送单元),用于向第一设备发送第二信令,所述第二信令用于寻呼所述第一终端设备,且所述第二信令还指示第一信令寻呼终端设备的数量为1,或指示第一信令寻呼终端设备的数量大于1。
在一种可选的实现方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第四方面中的任一方面所述的第一核心网设备的功能。
第八方面,提供一种通信装置。所述通信装置可以为上述第一方面至第四方面中的任 一方面所述的第二核心网设备。所述通信装置具备上述第二核心网设备的功能。所述通信装置例如为第二核心网设备,或为包括第二核心网设备的较大设备,或为第二核心网设备中的功能模块,例如基带装置或芯片系统等。可选的,第二核心网设备例如为AF或NEF等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第五方面的介绍。
例如,所述收发单元(或,所述发送单元),用于向第一核心网设备发送第四信令,所述第四信令用于寻呼第一终端设备,且所述第四信令用于指示第二信令寻呼终端设备的数量为1,或指示第二信令寻呼终端设备的数量大于1。
在一种可选的实现方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第四方面中的任一方面所述的第二核心网设备的功能。
第九方面,提供一种通信系统,包括第五方面所述的通信装置以及第六方面所述的通信装置。
可选的,该通信系统还包括第七方面所述的通信装置。
可选的,该通信系统还包括第八方面所述的通信装置。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一设备、第一终端设备、第一核心网设备或第二核心网设备所执行的方法被实现。
第十一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十二方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为标签与读写器进行通信的方法;
图2、图3A和图3B为本申请实施例的两种应用场景示意图;
图4为本申请实施例提供的一种寻呼方法的流程图;
图5为本申请实施例提供的一种装置的示意图;
图6为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
RFID标签,或称为电子标签或标签,是RFID的俗称。标签的设计较为简单,是将应用层信令和空口信令融合到一起设计。标签主要基于二进制启闭键控(on-off keying,OOK)进行编解码传输,即,根据数据的幅度调制方式,通过高低电平解码数据。在标签的通信 过程中,不支持区分频域和码域,并行性能较差。如果多个标签需要通信,例如多个标签都要与读写器通信,则会采用时分复用方式,多个标签通过串行过程与读写器通信。标签可以看作是一种终端设备。
另外,射频识别技术又可分为有源、无源和半有源三种。其中,有源射频识别技术下的标签可内置电池,此类标签可以主动向读写器发送信号,无需根据所接收的信号获得用于发送信号的能量。无源射频识别技术下的标签也可以称为无源物联网(passive IOT),即无源的物联网设备,此类标签可能并未内置电池等模块,或者电池模块的电量较少,可通过接收的信号获得能量,并通过该能量发送信号。可以理解为,无源标签工作在反射通信场景下,即,无源标签通过反射来自读写器的信号以获取能量,从而传输数据。半有源射频识别技术下的标签,集成了有源标签和无源标签的优势,可作为一种特殊的标示物。在平时,此类标签处于休眠状态,可以不工作,不向外界发出信号;只有在进入低频激活器的激活信号范围时,该标签被激活,则该标签才开始工作。本申请实施例所涉及的标签,可以是有源标签、无源标签或半有源标签等。
读写器,是通过手持方式或固定式方式读取(或,写入)标签信息的设备。或者,也可以将读写器理解为是与标签通信的设备。读写器的实现形式可以是终端设备,也可以是接入网设备,例如基站,或者还可以是具有读写功能的设备。
集成接入回传(integrated access backhaul,IAB)节点(node)/助手(helper)/激励源,可以通过终端设备实现,或者也可以通过接入网设备(例如基站)实现。该节点与标签之间可以进行双向通信;或者,该节点与标签之间也可以只有下行数据,即,该节点能够向标签发送信息,但标签不能向该节点发送信息。该节点与读写器之间可以进行双向通信,该通信可以通过空口传输,也可以通过有线方式传输。
终端设备,是一种具有无线收发功能的设备,可以是固定设备、移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。例如标签可能是终端设备中的固定设备或移动设备,或是内置于上述设备中的无线装置。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如可以包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点(access point,AP),无线中继节点,无线回传节点等。所述基站可以 是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下以接入网设备是基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、网络开放功能(network exposure function,NEF)、应用功能(application function,AF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信令和第二信令,可以是同一个信令,也可以是不同的信令,且,这种名称也并不是表示这两个信令的内容、信息量大小、发送顺序、发送端/接收端、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S401可以发生在S402之前,或者可能发生在S402之后,或者也可能与S402同时发生。
首先介绍目前标签与读写器进行通信的方法,请参考图1,为该方法的流程图。
S101、读写器发送选择(select)命令。
该选择命令可用于选择(或,寻呼)一个标签或一组标签。在这种通信场景下,该读写器所覆盖的标签均能够接收该选择命令,图1以其中一个标签接收该选择命令为例。
该选择命令可包括待寻呼的标签的内存信息。
S102、读写器为标签配置随机接入资源。
例如读写器可发送用于配置随机接入资源的信息。在这种通信场景下,该读写器所覆盖的标签均能够接收该信息,图1以其中一个标签接收该信息为例。因各个标签是从读写 器所配置的随机接入资源中选择时隙接入,因此读写器所配置的随机接入资源例如为最大接入时隙范围,标签在选择时隙时,需要在该最大接入时隙范围内选择。例如该最大时隙范围为时隙t1~时隙tn,则标签能够选择的最早的时隙为时隙t1,最晚的时隙为时隙tn。或者读写器也可以配置参数Q,标签可根据参数Q计算最大接入时隙范围。
S103、标签向读写器发送随机数(random number,RN)。相应的,读写器从标签接收随机数。该随机数例如为16。
一个标签在接收S101中的选择命令后,如果确定该选择命令包含该标签的内存信息,则确定该标签被寻呼。例如,读写器待寻呼的标签是设置在产品上的标签,标签的内存信息可指示该标签所属的产品的类别等特征。该选择命令所包括的内存信息例如为产品的类别,例如衣物类。标签在接收该选择命令后,如果该标签的内存信息指示该标签所属的产品的类别为衣物类,该标签就可以确定被选择(或,被寻呼)。那么该标签可以从读写器配置的随机接入资源中选择一个时隙,在该时隙内,该标签可以向读写器发送一个随机数。
其中,这里的时隙可以不是固定长度的时间单元,而是由信令触发的接入机会,其中每个信令触发一个接入机会,一个接入机会可以理解为一个时隙。
其中,因为被寻呼的标签是各自选择时隙,因此可能有不同的标签会选择同一个时隙,如果多个标签在同一个时隙内向读写器发送随机数,则可能均会发送失败,相应的标签可再次选择时隙来发送随机数。
其中,标签向读写器发送的随机数可携带在一条消息中发送,该消息的功能可类似于随机接入过程中的第三消息(Msg3)。
S104、读写器向标签发送确认消息。相应的,标签从读写器接收确认消息。
如果读写器对一个随机数接收成功,则可以向该随机数的发送端发送确认消息,以指示该随机数接收成功。该确认消息可包括S103中的随机数,即,读写器可将来自该标签的随机数再发送给该标签,以指示确认接收该随机数。
该确认消息的功能可类似于随机接入过程中的第四消息(Msg4)。
S105、标签向读写器发送数据。相应的,读写器从标签接收该数据。
通过S101~S105,一个标签就与读写器建立了连接,或者说,一个标签就接入了读写器。在接入成功后,该标签可以向读写器发送数据,例如所发送的数据包括该标签的电子产品码(electronic product code,EPC)等。
S106、读写器盘点下一个标签。
当读写器与一个标签的通信过程结束后,读写器才会继续处理下一个标签的接入流程。例如读写器可发送触发信令,以触发下一个标签接入读写器。
S107、随机接入过程。
这是下一个标签的随机接入过程,例如下一个标签的随机接入过程可包括S103~S105。在读写器与下一个标签的通信过程结束后,读写器再继续处理后续标签的接入流程,以此类推。
可见,目前标签要与读写器传输数据,首先需要接入读写器,整个过程所经历的步骤较多。如果将该过程应用于蜂窝网络,则会带来较大时延。特别是在标签的数量较多的情况下,时延问题会更为突出。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,第一设备能够明确究竟是寻呼一个UE还是寻呼多个UE,由此第一设备所发送的第一信令可用于确定第一资源。 UE利用第一资源向第一设备发送上行数据即可,无需采用竞争方式接入,因此,UE无需进行类似于随机接入的过程,例如UE在接收用于寻呼UE的第一信令后,就可以利用第一资源向第一设备发送上行数据,无需再执行与第一设备建立连接的步骤。由此减少了UE与第一设备之间传输数据所需要执行的步骤,有利于节省信令开销,且减小了数据传输的时延。
本申请实施例提供的技术方案可以应用于第四代(the 4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)系统。或者可以应用于第五代(the 5th generation,5G)通信系统,例如新空口(new radio,NR),或者还可以应用于可以未来的通信系统,例如6G系统等。
请参考图2,为本申请实施例的一种应用场景示意图。图2包括第一设备和UE,第一设备例如为接入网设备(例如基站,或者接入节点等),该接入网设备可实现读写器的功能,或者也可以不实现读写器的功能;或者,第一设备例如为终端设备,该终端设备例如实现读写器的功能。
其中,如果第一设备是基站,则UE与第一设备之间可通过Uu接口通信;或者,如果第一设备是接入节点,则UE与第一设备之间可通过侧行链路(sidelink,SL)通信。另外,如果第一设备是终端设备,则第一设备还可以与接入网设备连接,通过Uu接口通信,例如第一设备通过该接入网设备与核心网通信。
请参考图3A,为本申请实施例的另一种应用场景示意图。图3A包括第一设备、IAB节点以及UE。IAB节点与UE之间可以双向通信,如图3A所示;或者,IAB节点与UE之间也可能只进行单向通信。其中,如果IAB节点与UE之间可以进行双向通信,则IAB节点可视为第一设备与UE之间的中继节点,UE的上下行数据都可经过该IAB节点转发。或者,如果IAB节点与UE之间只能进行单向通信,例如IAB节点可以向UE发送信息,但UE不能向IAB节点发送信息,那么在传输下行数据时可将IAB节点视为第一设备与UE之间的中继节点,来自第一设备的下行数据可经IAB节点转发后到达UE;而在传输上行数据时,UE可以不经过IAB节点,而是直接将上行数据发送给第一设备。
请再参考图3B,为本申请实施例的再一种应用场景示意图。图3B包括第一设备、接入网设备以及UE,是以第一设备不是接入网设备为例。例如,第一设备可直接与UE通信,或者,第一设备也可以通过接入网设备与UE通信。第一设备和/或接入网设备能够与核心网连接。
图3A或图3B中的第一设备的实现形式可参考对于图2所示的场景的介绍。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。在本申请的各个实施例对应的附图中,凡是可选的步骤均用虚线表示。本申请的各个实施例所提供的方法均可应用于图2、图3A或图3B所示的场景。例如,本申请的各个实施例所涉及的第一设备,例如为图2、图3A或图3B中的第一设备,具体可参考上文介绍;本申请的各个实施例所涉及的UE,例如为图2、图3A或图3B中的UE。另外本申请实施例还涉及第一核心网设备和第二核心网设备,在图2、图3A和图3B中未给出。例如第一核心网设备为AMF,第二核心网设备为AF或NEF等,在后文的介绍过程中以第二核心网设备是AF为例。核心网设备可与接入网设备具有连接关系,例如接入网设备可连接AMF,AMF可连接AF等。
本申请的各个实施例中,“包括”可理解为“出现”、“配置”或存在(present)等,例 如,一个信令包括UE的信息,可理解为,该信息内出现了UE的信息,或理解为该信息内配置了UE的信息,或理解为该信息内存在UE的信息等;又例如,一个信令包括一个字段,可理解为,该信息内出现了该字段,或理解为,该信息内配置了该字段,或理解为该信息内存在该字段等。同理,“不包括”可理解为“不出现”、“不配置”或“缺席(absent)”等,例如,一个信令不包括UE的信息,可理解为,该信息内不出现UE的信息,或理解为该信息内不配置UE的信息,或理解为该信息内缺席UE的信息等;又例如,一个信令不包括一个字段,可理解为,该信息内不出现该字段,或理解为,该信息内不配置该字段,或理解为,该信息内缺席该字段等。
本申请实施例提供一种寻呼方法,请参见图4,为该方法的流程图。
S401、AF向AMF发送信令。相应的,AMF接收来自AF的该信令。
该信令可用于寻呼一个或多个UE(该寻呼例如类似于蜂窝网络中的寻呼(paging)),或用于选择一个或多个UE,或用于指示(或,触发)一个或多个UE发送上行数据,或用于指示(或,触发)一个或多个UE与网络(例如接入网设备)建立连接,或用于指示(或,触发)一个或多个UE发起随机接入等。下文以该信令用于寻呼一个或多个UE为例,则这一个或多个UE可认为是待寻呼的UE。该信令可包括待寻呼的UE的信息,一个UE的信息例如为该UE的标识,或者为该UE的内存信息等。例如,待寻呼的UE与接入网设备完成了随机接入后,向AMF发起了注册流程。在注册流程中,核心网可以为待寻呼的UE分配标识,或者,UE也可将该UE的标识发送给核心网,以供核心网知晓。在这种情况下,该信令就可以包括待寻呼的UE的标识。又例如,待寻呼的UE尚未注册到核心网,或者待寻呼的UE是设置在产品上的标签,该标签的内存信息可指示产品的类型、材质等属性,而本次寻呼是为了寻找某类产品,则该信令可包括待寻呼的UE的内存信息。例如,该信令所包括的内存信息为“衣物类”,表明本次是要寻呼衣物类的标签。又例如,该信令所包括的内存信息为“第XX衣物”,其中的“XX”可表示一个EPC,表明是要寻呼具有该EPC的标签;或其中的“XX”表示一个EPC范围,表明是要寻呼EPC位于该EPC范围内的标签。
该信令例如为应用层寻呼(或,盘点)信令。例如也将该信令称为第四信令,在图4中,将该信令表示为用于寻呼一个或多个UE的信令1。可选的,UE的标识例如为UE的EPC、系统架构演进(system architecture evolution,SAE)-临时移动站标识(temporary mobile station identifier,S-TMSI)或5G-S-TMSI等。
本申请实施例中,AF能够明确待寻呼的UE的数量。那么,如果该信令1用于寻呼一个UE,则该信令1还可指示待寻呼的UE的数量为1(或者,指示寻呼单个UE;或者,指示信令2或信令3寻呼的UE的数量为1;或者,指示第一核心网设备或第一设备寻呼的UE的数量为1);或者,如果该信令1用于寻呼多个UE,则该信令1还可以指示待寻呼的UE的数量大于1(或者,指示寻呼多个UE;或者,指示信令2或信令3寻呼的UE的数量大于1;或者,指示第一核心网设备或第一设备寻呼的UE的数量大于1)。通过这种指示,使得AMF能够明确究竟寻呼单个UE还是多个UE。例如,信令1可以通过携带相应的指示信息来指示待寻呼的UE的数量为1还是大于1,或者,信令1也可以无需携带指示信息,而是通过信令1本身来指示待寻呼的UE的数量为1还是大于1。
例如,该信令1所包括的待寻呼的UE的信息为待寻呼的UE的标识,则该信令1可通过所包括的UE的标识来指示待寻呼的UE的数量为1,或指示待寻呼的UE的数量大于 1。如果该信令1包括的UE的标识的数量为1,即,该信令1包括一个UE的标识,则该UE的标识就相当于指示待寻呼的UE的数量为1;或者,如果该信令1包括的UE的数量大于1,即,该信令1包括多个UE的标识,那么这多个UE的标识就相当于指示待寻呼的UE的数量大于1。另外,如果该信令1包括的是待寻呼的UE的标识,那么实际上该信令1可以指示待寻呼的UE的数量,其中该信令1所包括的UE的标识的数量就是待寻呼的UE的数量。在这种情况下,信令1相当于无需通过额外的指示信息来指示待寻呼的UE的数量,而是通过信令1原本的内容就可以指示,能够减小信令1的信息量,且AMF根据信令1也能获得更多内容。
或者,信令1也可以通过额外的指示信息来指示待寻呼的UE的数量为1还是大于1。例如,该信令1所包括的待寻呼的UE的信息为待寻呼的UE的内存信息,那么该信令1还可以通过相应的指示信息来指示待寻呼的UE的数量为1还是大于1。例如,该信令1可包括第三字段,如果第三字段的值为第五值,则指示待寻呼的UE的数量为1,而如果第三字段的值为第六值,则指示待寻呼的UE的数量大于1。可选的,在这种情况下,如果第三字段的值为第六值,则第六值可以指示待寻呼的UE的数量。或者,如果第三字段的值为第六值,则该信令1还可以包括第四字段,第四字段的值可指示待寻呼的UE的数量。即,如果待寻呼的UE的数量大于1,则该信令1还可指示待寻呼的UE的具体数量。
又例如,该信令1如果包括第三字段,则指示待寻呼的UE的数量为1,而如果该信令1不包括第三字段,则指示待寻呼的UE的数量大于1。如果信令1不包括第三字段,AMF可能还无法确定有多少个UE。可选的,在这种情况下,如果该信令1不包括第三字段,则该信令1还可以包括第四字段,第四字段可指示待寻呼的UE的数量。即,如果待寻呼的UE的数量大于1,则该信令1还可指示待寻呼的UE的具体数量。
再例如,该信令1如果包括第三字段,则指示待寻呼的UE的数量大于1,而如果该信令1不包括第三字段,则指示待寻呼的UE的数量为1。可选的,在这种情况下,如果该信令1包括第三字段,则第三字段的值可以指示待寻呼的UE的数量,此时待寻呼的UE的数量大于1。或者,如果第三字段的值为第六值,则该信令1还可以包括第四字段,第四字段可指示待寻呼的UE的数量。即,如果待寻呼的UE的数量大于1,则该信令1还可指示待寻呼的UE的具体数量。
S402、AMF向第一设备发送信令。相应的,第一设备接收来自AMF的该信令。
AMF从AF接收信令1后,可执行S402。S402中的信令可用于寻呼一个或多个UE(该寻呼例如类似于蜂窝网络中的寻呼),或用于选择一个或多个UE,或用于指示(或,触发)一个或多个UE发送上行数据,或用于指示(或,触发)一个或多个UE与网络(例如接入网设备)建立连接,或用于指示(或,触发)一个或多个UE发起随机接入等。下文以该信令用于寻呼一个或多个UE为例,则这一个或多个UE可认为是待寻呼的UE。该信令例如为AMF所发送的寻呼(paging)信令。例如也将该信令称为第二信令,在图4中,将该信令表示为用于寻呼一个或多个UE的信令2。
该信令2可包括待寻呼的UE的信息。例如,AMF从信令1中获得待寻呼的UE的信息,并将待寻呼的UE的信息添加到信令2中。
可选的,如果待寻呼的UE的信息为UE的内存信息,则由于UE的内存信息为应用层的信息,第一设备可以不对其进行感知,因此AMF可将待寻呼的UE的内存信息添加到信令2所包括的非接入层(non-access stratum,NAS)容器(container)中。其中NAS  container包括的信息也可称为NAS数据(data),例如包括在NAS container中的UE的内存信息就可以称为NAS数据。其中,信令2可包括一个或多个NAS container。例如,AMF可将一个UE的内存信息添加到一个NAS container中,则NAS container的数量与UE的内存信息的数量相等,二者是一一对应的关系。在这种情况下,如果UE的内存信息的数量为1,则信令2包括的NAS container的数量也为1;而如果UE的内存信息的数量大于1,则信令2包括的NAS container的数量也大于1。或者,AMF也可将所有待寻呼的UE的内存信息均添加到一个NAS container中,则无论UE的内存信息的数量为1还是大于1,信令2都可以只是包括一个NAS container。第一设备在接收信令2后,对于NAS container中的内容是不可见的。
或者,如果待寻呼的UE的信息为UE的标识,AMF也可以不将待寻呼的UE的标识添加到NAS container中,而是直接将待寻呼的UE的标识添加到信令2中发送给第一设备。第一设备接收信令2后,能够识别待寻呼的UE的标识。或者,即使待寻呼的UE的信息为UE的标识,AMF也可以将待寻呼的UE的标识添加到NAS container中,方式较为灵活。
可选的,信令2可以指示待寻呼的UE的数量为1(或者,指示第一信令寻呼的UE的数量为1;或者,指示第一设备寻呼的UE的数量为1),或者指示待寻呼的UE的数量大于1(或者,指示第一信令寻呼的UE的数量大于1;或者,指示第一设备寻呼的UE的数量大于1)。后文以信令2指示待寻呼的UE的数量为1或大于1为例。其中,第一信令是第一设备所发送的用于寻呼UE的信令,第一信令也可以称为信令3。关于第一信令的含义将在后文详细介绍。
例如一种指示方式为,该信令2可包括第一字段,如果第一字段的值为第一值,则指示待寻呼的UE的数量为1,而如果第一字段的值为第二值,则指示待寻呼的UE的数量大于1。例如,如果第一字段的值为“0”,则指示待寻呼的UE的数量为1,而如果第一字段的值为“1”,则指示待寻呼的UE的数量大于1。作为一种可选的方式,如果第一字段的值为第二值,则该信令2还可以包括第五字段,第五字段可指示待寻呼的UE的数量(或者,指示信令3寻呼的UE的数量)。即,如果待寻呼的UE的数量大于1,则该信令2还可指示待寻呼的UE的具体数量。作为另一种可选的方式,如果第一字段的值为第二值,信令2也可以不包括第五字段,而是第二值可以指示待寻呼的UE的数量,由此可以减少信令2所包括的字段。在这种情况下,第一设备如果确定第一字段的值为第二值,则除了可以确定待寻呼的UE的数量大于1外,还可以确定待寻呼的UE的具体数量,或者,第一设备无需确定待寻呼的UE的数量大于1,而是直接确定待寻呼的UE的具体数量。此时,第二值可能占用一个或多个比特。例如,如果第一字段的值为“0”,则指示待寻呼的UE的数量为1,“0”为第一值;而如果第一字段的值为除了“0”之外的其他值,则该值就是用于指示待寻呼的UE的具体数量。
举例来说,如果信令2指示了待寻呼的UE的数量大于1(例如,第一字段的值为第二值),而信令2又只是包括一个NAS container,待寻呼的UE的信息均包括在该NAS container中,第一设备无法根据NAS container的数量来确定待寻呼的UE的数量。在这种情况下,第二值可以指示待寻呼的UE的具体数量,或者信令2包括的第五字段可指示待寻呼的UE的数量,使得第一设备能够获知待寻呼的UE的数量。
或者,又一种指示方式为,该信令2如果包括第一字段,则指示待寻呼的UE的数量 为1,而如果该信令2不包括第一字段,则指示待寻呼的UE的数量大于1。可选的,在这种情况下,如果该信令2不包括第一字段,则该信令2还可以包括第五字段,第五字段可指示待寻呼的UE的数量。即,如果待寻呼的UE的数量大于1,则该信令2还可指示待寻呼的UE的具体数量。
或者,又一种指示方式为,该信令2如果包括第一字段,则指示待寻呼的UE的数量大于1,而如果该信令2不包括第一字段,则指示待寻呼的UE的数量为1。可选的,在这种情况下,如果该信令2包括第一字段,则该信令2还可以包括第五字段,第五字段可指示待寻呼的UE的数量。即,如果待寻呼的UE的数量大于1,则该信令2还可指示待寻呼的UE的具体数量。或者,如果该信令2包括第一字段,则信令2也可以不包括第五字段,而是第一字段的值可以指示待寻呼的UE的数量,此时待寻呼的UE的数量大于1。
或者,又一种指示方式为,信令2包括的NAS container的数量为1,则指示待寻呼的UE的数量为1,而信令2包括的NAS container的数量大于1,则指示待寻呼的UE的数量大于1。对于第一设备来说,可以根据NAS container的数量来确定待寻呼的UE的数量。在这种指示方式下,例如信令2包括的NAS container的数量与信令2包括的待寻呼的UE的信息的数量相等。另外在这种情况下也可以认为,信令2包括的NAS container实际上指示了待寻呼的UE的具体数量。可选的,NAS container可以使用NAS协议数据单元(protocol data unit,PDU)或者NAS数据表示。
或者,又一种指示方式为,如果信令2包括的UE的信息的数量为1,则指示待寻呼的UE的数量为1,而如果信令2包括的UE的信息的数量大于1,则指示待寻呼的UE的数量大于1。对于第一设备来说,可以根据UE的信息的数量来确定待寻呼的UE的数量。在这种指示方式下,信令2所包括的待寻呼的UE的信息并未包括在NAS container中,例如UE的信息为UE的标识。另外在这种情况下也可以认为,待寻呼的UE的信息实际上指示了待寻呼的UE的具体数量。
除了如上几种方式外,信令2还可以通过其他方式指示待寻呼的UE的数量是1还是大于1,具体不做限制。
其中,如果第一设备不是接入网设备,例如第一设备是作为读写器的终端设备,那么在S402中,AMF可将信令2发送给接入网设备,再由接入网设备将信令2发送给第一设备。或者,如果第一设备是接入网设备,则在S402中,AMF可直接将信令2发送给第一设备。
S403、第一设备发送第一信令。相应的,一个或多个UE接收第一信令。本申请实施例以其中的第一UE接收第一信令为例。
第一设备从AMF接收信令2后,可执行S403。S403中的第一信令可用于寻呼一个或多个UE(该寻呼例如类似于蜂窝网络中的寻呼),或用于选择一个或多个UE,或用于指示(或,触发)一个或多个UE发送上行数据,或用于指示(或,触发)一个或多个UE与网络(例如接入网设备)建立连接,或用于指示(或,触发)一个或多个UE发起随机接入等。下文以该信令用于寻呼一个或多个UE为例,则这一个或多个UE可认为是待寻呼的UE。该信令例如为第一设备所发送的寻呼(paging)信令。例如也将该信令称为第一信令,在图4中,将该信令表示为用于寻呼一个或多个UE的信令3。
该信令3可包括待寻呼的UE的信息。例如,第一设备从信令2中获得待寻呼的UE的信息,并将待寻呼的UE的信息添加到信令3中。如果信令2中待寻呼的UE的信息包 括在NAS container中,则第一设备将该NAS container添加到信令3中;或者,如果信令2中待寻呼的UE的信息未包括在NAS container中,则第一设备将该待寻呼的UE的信息直接添加到信令3中。
可选的,信令3可以指示待寻呼的UE的数量为1(或者,指示信令3寻呼的UE的数量为1),或者,信令3可指示待寻呼的UE的数量大于1(或者,指示信令3寻呼的UE的数量大于1)。后文以信令3指示待寻呼的UE的数量为1或大于1为例进行阐述。
例如一种指示方式为,该信令3可包括第二字段,如果第二字段的值为第三值,则指示待寻呼的UE的数量为1,而如果第二字段的值为第四值,则指示待寻呼的UE的数量大于1。作为一种可选的方式,如果第二字段的值为第四值,则该信令2还可以包括第六字段,第六字段可指示待寻呼的UE的数量(或者,指示信令3寻呼的UE的数量)。即,如果待寻呼的UE的数量大于1,则该信令2还可指示待寻呼的UE的具体数量。作为另一种可选的方式,如果第二字段的值为第四值,信令3也可以不包括第六字段,而是第四值可以指示待寻呼的UE的数量,由此可以减少信令3所包括的字段。在这种情况下,UE如果确定第一字段的值为第二值,则除了可以确定待寻呼的UE的数量大于1外,还可以确定待寻呼的UE的具体数量,或者,UE无需确定待寻呼的UE的数量大于1,而是直接确定待寻呼的UE的具体数量。此时,第二值可能占用一个或多个比特。
或者,又一种指示方式为,该信令3如果包括第二字段,则指示待寻呼的UE的数量为1,而如果该信令3不包括第二字段,则指示待寻呼的UE的数量大于1。可选的,在这种情况下,如果该信令3不包括第二字段,则该信令3还可以包括第六字段,第六字段可指示待寻呼的UE的数量。即,如果待寻呼的UE的数量大于1,则该信令3还可指示待寻呼的UE的具体数量。
或者,又一种指示方式为,该信令3如果包括第二字段,则指示待寻呼的UE的数量大于1,而如果该信令3不包括第二字段,则指示待寻呼的UE的数量为1。可选的,在这种情况下,如果该信令3包括第二字段,则第二字段的值可以指示待寻呼的UE的数量,此时待寻呼的UE的数量大于1。或者,如果该信令3包括第二字段,则该信令3还可以包括第六字段,第六字段可指示待寻呼的UE的数量。即,如果待寻呼的UE的数量大于1,则该信令3还可指示待寻呼的UE的具体数量。
或者,又一种指示方式为,如果信令3包括的NAS container的数量为1,则指示待寻呼的UE的数量为1,而如果信令3包括的NAS container的数量大于1,则指示待寻呼的UE的数量大于1。对于第一设备来说,可以根据NAS container的数量来确定待寻呼的UE的数量。在这种指示方式下,例如信令3包括的NAS container的数量与信令2包括的待寻呼的UE的信息的数量相等。另外在这种情况下也可以认为,信令3包括的NAS container实际上指示了待寻呼的UE的具体数量。可选的,NAS container可以使用NAS PDU或者NAS数据表示。
或者,又一种指示方式为,如果信令3包括的UE的信息的数量为1,则指示待寻呼的UE的数量为1,而如果信令3包括的UE的信息的数量大于1,则指示待寻呼的UE的数量大于1。在这种指示方式下,信令3所包括的待寻呼的UE的信息并未包括在NAS container中,例如UE的信息为UE的标识。另外在这种情况下也可以认为,待寻呼的UE的信息实际上指示了待寻呼的UE的具体数量。
或者,再一种指示方式为,通过第一资源来指示。第一资源用于待寻呼的UE发送上 行数据,信令3可用于确定第一资源。第一资源可包括时域资源和/或频域资源。例如,第一资源所包括的频域资源与信令3的频域资源相同,或者第一资源所包括的频域资源与信令3的频域资源也可以不同,例如第一设备还可以发送同步信号,第一资源所包括的频域资源例如为该同步信号的频域资源。例如,第一设备根据信令2可以确定待寻呼的UE的数量,那么第一设备可以根据待寻呼的UE的数量来为待寻呼的UE调度资源,可将第一设备所调度的资源称为第一资源。例如信令2指示待寻呼的UE的数量为1,则第一设备可调度一份用于传输上行数据的资源,则第一资源就包括一份资源,当UE确定只有一份资源时,则可以直接使用优化的流程,即省去用于接入的步骤(例如图1所示的S103~S104),而是直接向接入网设备发送上行数据;或者,信令2指示待寻呼的UE的数量大于1,则第一设备可调度多份用于传输上行数据的资源,则第一资源就包括多份资源,若UE能够明确该UE使用的是第一资源所包括的哪一份资源,则依然可以使用优化的接入方法,省去用于接入的步骤,或者,如果UE无法明确该UE究竟使用第一资源所包括的哪份资源,则可使用基于竞争的接入方法,接入成功后再发送上行数据。可选的,本申请实施例所述的第一资源中的“一份资源”或“多份资源”,是指第一资源所包括的时域资源。
关于如上所述的信令3的部分或全部指示方式,也可参考S402中对于信令2的相应指示方式的介绍。
可选的,信令3可指示待寻呼的UE的具体数量,第一设备调度的资源的份数与待寻呼的UE的数量可以相等,或者也可以大于待寻呼的UE的数量(例如第一设备调度的资源包括的时间单元为最大时间单元范围,相当于第一资源包括时间单元的一个最大范围,待寻呼的UE可在该最大时间单元范围内选择资源)。例如,第一资源所包括的一份资源所包括的时域资源为一个或多个时间单元。本申请实施例中,时间单元例如为无线帧(radio frame)、子帧(subframe)、时隙(slot)、迷你时隙(mini-slot)、或正交频分复用(orthogonal frequency division multiplexing,OFDM)等。或者,本申请实施例所述的时间单元,也可以不是固定时间长度的时间间隔,而是时域上的发送机会(或者称为接入机会),不同的发送机会的时长可以相同或不同。
可选的,信令3可包括第一资源的信息,相当于信令3除了用于寻呼一个或多个UE外,还可以为这一个或多个UE配置用于发送上行数据的资源。或者,信令3不包括第一资源的信息,第一设备可通过其他信令来发送第一资源的信息。无论第一设备是通过信令3还是通过其他信令发送第一资源的信息,另外,无论第一设备是通过信令3还是通过其他信令发送第一资源的信息,如果第一资源的信息指示一份用于传输上行数据的资源,即,第一资源包括一份用于传输上行数据的资源,则相当于指示待寻呼的UE的数量为1;而如果第一资源包括多份用于传输上行数据的资源,则相当于指示待寻呼的UE的数量大于1。例如第一资源包括的资源的份数与待寻呼的UE的数量相等,则第一资源所包括的资源的份数也相当于指示了待寻呼的UE的具体数量。其中,如果第一设备是通过其他信令发送第一资源的信息,则可以认为是通过其他信令指示了待寻呼的UE的数量。即,包括第一资源的信息的信令与用于寻呼UE的信令可以是同一条信令,例如信令3,或者,二者也可以是两条不同的信令。如果二者是两条不同的信令,则第一设备可以连续发送这两条信令。
其中,信令3或其他信令所包括的第一资源的信息,例如包括第一资源的时域信息和频域信息;或者,信令3或其他信令所包括的第一资源的信息,可以包括第一资源的时域 信息,而不包括第一资源的频域信息。例如第一资源的频域信息可以根据第二规则确定,第二规则例如为,第一资源的频域信息为信令3的频域信息,或者第一资源的频域信息为同步信号的频域信息等,这样第一资源的信息就可以不包括第一资源的频域信息。这样能够减少信令所承载的信息量,节省传输开销。
除了如上几种方式外,信令3还可以通过其他方式指示待寻呼的UE的数量是1还是大于1,具体不做限制。
可选的,第一设备可直接将信令3发送给UE,例如图2、图3A或图3B所示的架构能够实现该方案;或者,第一设备也可将信令3发送给接入网设备,接入网设备再发送信令3,例如通过广播、组播或单播等方式,使得UE能够接收信令3,例如图3B所示的架构能够实现该方案。
S404、第一UE在第一时间单元发送上行数据。相应的,第一设备在第一时间单元接收来自第一UE的上行数据。
本申请实施例中,对于第一设备来说,第一资源用于待寻呼的UE发送上行数据;而对于待寻呼的UE中的一个UE来说,如果发送上行数据,则需要确定用于该UE发送上行数据的资源(或者,确定该UE在第一资源中所使用的资源)。例如,待寻呼的UE(或者说信令1所寻呼的UE,或者信令2所寻呼的UE,或者信令3所寻呼的UE)包括第一UE,其中,如果待寻呼的UE的数量为1,则第一UE为该UE;或者,如果待寻呼的UE的数量大于1,则第一UE是多个UE中的一个UE。
对于第一UE来说,用于第一UE发送上行数据的资源所包括的时域资源为第一时间单元。如果待寻呼的UE的数量为1,则一个UE确定用于该UE发送上行数据的资源,可包括确定第一资源,第一资源就是用于该UE发送上行数据的资源,或者说,第一资源中的全部资源就是该UE在第一资源中使用的资源。或者,如果待寻呼的UE的数量大于1,则一个UE会使用第一资源中的部分资源来发送上行数据,那么,该UE确定用于该UE发送上行数据的资源,可包括确定第一资源,以及,确定该UE在第一资源中使用的资源,即,UE可执行两步确定过程;或者,该UE确定用于该UE发送上行数据的资源,可包括确定该UE在第一资源中使用的资源,即,UE可执行一步确定过程。
对于一个UE来说,可根据第一资源的信息确定第一资源。其中,如果第一资源的信息包括在信令3中,则该UE可根据信令3确定第一资源;而如果第一资源的信息包括在其他信令中,则该UE可根据其他信令确定第一资源。
一个UE在确定该UE在第一资源中使用的资源时,可以考虑信令3,也可以不考虑信令3,下面举例介绍。另外,图4是以考虑信令3为例。
1、UE在确定该UE在第一资源中使用的资源时考虑信令3,或者说,UE根据信令3确定该UE在第一资源中使用的资源。这种情况也可以理解为,对于第一设备来说,信令3可用于待寻呼的UE根据信令3确定第一资源;而对于待寻呼的UE来说,可根据信令3确定该UE在第一资源中使用的资源。在这种情况下,第一资源的信息可能包括在信令3中,也可能包括在其他信令中。
例如,一个UE确定该UE被寻呼,且第一资源包括一份资源,则这份资源(或者说,第一资源)就是第一UE用于发送上行数据的资源,该UE可利用这一份资源发送上行数据,例如这一份资源所包括的时域资源为第一时间单元。其中,信令3包括待寻呼的UE的信息,一个UE在接收信令3后,如果确定该UE的信息包括在信令3中,则确定该UE 被寻呼。
又例如,如果第一资源包括多份资源,则UE可根据信令3以及第一规则,确定该UE在第一资源中使用的资源。第一规则可由第一设备配置,或者通过协议预定义,或者也可以预配置在UE中。例如一种第一规则为,一个UE可根据信令3所包括的UE的信息的排列顺序,确定该UE在第一资源中所使用的资源。例如待寻呼的UE的数量大于1,则信令3可包括待寻呼的多个UE的信息,在信令3中,多个UE的信息按照第一顺序排列。那么对于一个UE来说,可以确定该UE的信息在第一顺序中的排序(或者说序号或位置),根据该排序可以确定第一资源中该UE所使用的一份资源。其中,如果信令3包括了多个NAS container,则UE的信息按照第一顺序排列,一种实现方式可以是,NAS container按照第一顺序排列;或者,如果信令3未包括NAS container,例如信令3包括的UE的信息未包括在NAS container中,则UE的信息在信令3中可按照第一顺序排列;或者,如果信令3包括了一个NAS container,该NAS container包括了多个UE的信息,那么UE的信息按照第一顺序排列,一种实现方式可以是,这多个UE的信息在该NAS container中按照第一顺序排列;或者,如果信令3包括多个UE的信息,且多个UE的信息为多个UE的标识,多个UE的标识未包括在NAS container中,则UE的信息按照第一顺序排列,一种实现方式可以是,这多个UE的标识在信令3中按照第一顺序排列。
例如信令3包括3个UE的信息,第一顺序为第二UE的信息–第三UE的信息–第一UE的信息;第一资源也包括3份资源,按照时域顺序,这3份资源分别为资源1、资源2和资源3。那么第一UE可以确定使用资源3发送上行数据,例如,资源3包括的时域资源为第一时间单元;第二UE可以确定使用资源1发送上行数据;第三UE可以确定使用资源2发送上行数据。其中,资源1、资源2和资源3在时域上可以是连续的,或者其中任意的相邻资源也可以不连续,例如资源1和资源2不连续,和/或资源2和资源3不连续。
再例如,如果第一资源包括多份资源,则UE可根据信令3、第一规则、以及用于触发下一个时间单元(或用于触发下一份资源,或用于触发下一个UE)的信令,确定该UE在第一资源中所使用的资源。如果待寻呼的UE的能力较低,例如无源标签,则此类UE可能无法长时间维护该UE内的晶振的状态。例如信令3用于寻呼多个UE,各个UE根据UE的信息在信令3中的排序,以及根据第一资源所包括的多份资源在时域上的顺序,能够确定该UE应该使用第一资源中的哪份资源。但是对于第一资源中的这份资源究竟何时到来,该UE可能无法确定。例如对于第一UE来说,能够确定使用第一资源中的第一时间单元,但究竟什么时候是第一时间单元,第一UE无法确定。为此,可选的,如果待寻呼的UE的数量大于1,则第一设备在完成与一个UE的通信后,还可以发送第三信令,第三信令可用于触发待寻呼的下一个UE发送上行数据,或用于触发下一个时间单元,或用于触发第一资源中的下一份资源。可选的,第三信令可以为一个信令集合,即,第三信令可包括至少一个信令。可能一个或多个UE都能接收第三信令,例如对于第一UE来说,可以确定第三信令是第一UE接收的第几个用于触发下一个UE发送上行数据的信令,例如第三信令是第一UE接收的第N个用于触发下一个UE发送上行数据的信令,N为正整数。那么,如果N是第一UE的信息在第一信令中的排序,即,第一UE的信息在第一信令中排位是第N个,则表明第一时间单元已到来,第一UE就可以在第一时间单元向第一设备发送上行数据;而如果N不是第一UE的信息在第一信令中的排序,即,第一UE的 信息在第一信令中排位不是第N个,则第一UE暂时不发送上行数据,而是继续等待下一个第三信令。一个示例为,接入网设备指示的最大时间单元范围为5,一个UE根据第一规则(例如第一顺序)确定该UE是待寻呼的第3个UE。则当该UE收到3条第三信令后,该UE就可以发送上行数据。
其中,如果待寻呼的UE的能力较高,则第一设备可以不必发送第三信令,各个UE能够明确应该在何时发送上行数据。
2、UE在确定该UE在第一资源中使用的资源时可以考虑信令3,也可以不考虑信令3。其中,如果第一资源的信息包括在信令3中,则UE在确定该UE在第一资源中使用的资源时考虑信令3;或者,如果第一资源的信息包括在其他信令中,则UE在确定该UE在第一资源中使用的资源时不考虑信令3。这种情况也可以理解为,对于第一设备来说,如果第一资源的信息包括在信令3中,则信令3可用于待寻呼的UE根据信令3确定第一资源,对于待寻呼的UE来说,可以根据信令3确定第一资源;或者,对于第一设备来说,如果第一资源的信息未包括在信令3中,则信令3不用于待寻呼的UE根据信令3确定第一资源,对于待寻呼的UE来说,不根据信令3确定第一资源。
例如,如果第一资源包括多份资源,则UE可以根据该UE的标识,确定该UE在第一资源中所使用的资源。例如,第一资源包括L份资源,则一个UE可以利用该UE的标识以及L份资源来确定该UE使用的资源。例如一种确定方式为,UE使用该UE的标识对L进行取模处理,得出的结果就是该UE所使用的资源在L份资源中的序号。一个UE确定了L份资源中该UE所使用的资源,则该UE就可以直接使用优化的接入方式,即,省去接入步骤,而是向接入网设备发送上行数据。但如果该UE没有接入成功,例如上行数据发送失败等,则该UE可以回退到基于竞争的接入方式。
又例如,如果第一资源包括多份资源,UE可根据随机数确定该UE在第一资源中所使用的资源。例如,第一设备所配置的第一资源包括UE能够使用的最大时间单元范围,该最大时间单元范围所包括的时间单元的数量可以大于或等于待寻呼的UE的数量。信令3或其他信令所包括的第一资源的信息例如可指示该最大时间单元范围,或者,第一资源的信息可包括第一参数,UE根据第一参数可以确定该最大时间单元范围。例如第一参数为参数Q,一个UE可在(0,2Q-1)之间选择一个随机数P,该随机数P就可以作为该UE在第一资源中所使用的时间单元的序号。例如UE可以在(0,2Q-1)中选择与Q值最接近的数值作为随机数P,或者UE也可以在(0,2Q-1)中随机选择一个数值作为随机数P,或者UE也可以在(0,2Q-1)中按照均匀选择的方式确定一个数值作为随机数P。第一设备可以发送第三信令。对于一个UE来说,每接收一次第三信令,就可以将P减1(或者初始值也可以是0,每接收一次第三信令,就执行加1操作),当P减至0时(或者,当数值达到P时),该UE就确定该UE能够使用的时间单元已到达,该UE就可以在该时间单元发送上行数据。
其中,该最大时间单元范围内的每个时间单元,可理解为一份资源,每个用于触发下一个UE发送上行数据的信令可以触发一份资源,这一份资源可用于一个UE发送上行数据。可选的,包括了第一参数的信令(例如信令3或其他信令)也可以理解为一个用于触发下一个UE发送上行数据的信令,例如一个UE所产生的随机数P为0,那么该UE在接收包括了第一参数的信令后,就可以确定该UE能够使用的时间单元已到达。这里的不同时间单元的时间长度可以相同,也可以不相同。
可见,本申请实施例中,无论寻呼一个UE还是多个UE,UE和第一设备都无需执行类似于随机接入的过程。例如图4中的S405和S406就表示类似于随机接入的过程,其中,S405与图1所示的S103可以是同一步骤,S406与图1所示的S104可以是同一步骤,即,S405为,被寻呼的UE向第一设备发送随机数,S406为,第一设备回复针对该随机数的确认消息(需注意的是,S405和S406中的随机数,与S403中所述的随机数可以不同)。而本申请实施例中,S405和S406都无需执行,被寻呼的UE可以直接向第一设备发送上行数据。由此节省了UE与第一设备之间传输数据所需的步骤,能够节省信令开销,而且能够减小数据传输时延。
例如被寻呼的UE为标签,可选的,一个UE所发送的上行数据可包括该标签的标识,例如该标签的EPC。例如本次寻呼是为了寻找“衣物类”产品,那么如果一个标签的内存信息指示该标签为“衣物类”产品,该标签就可以确定被寻呼。该标签所发送的上行数据可以包括该标签的EPC,则第一设备(或者,核心网设备,例如AF等)就能够确定究竟哪些产品是衣物类产品,有利于第一设备(或者,核心网设备,例如AF等)对产品进行归类等处理。
可选的,本申请实施例的方案可以在第一设备的指示下执行。例如,第一设备发送第一指示信息,第一指示信息可指示执行本申请实施例的技术方案,或者指示不执行随机接入过程,或者指示采用优化的接入方式(即,不执行随机接入过程)。对于UE来说,如果接收了第一指示信息,就可以执行本申请实施例的技术方案,而如果未接收第一指示信息,则可以采用传统的竞争接入方式。第一设备可以根据情况确定是否执行本申请实施例的技术方案,例如在时延要求较高的场景下,或者第一设备急于获知待寻呼的UE的上行数据的场景下,第一设备可以发送第一指示信息,以减小数据传输时延。其中,第一设备可以直接向UE发送第一指示信息,例如图2、图3A或图3B所示的架构能够实现该方案;或者,第一设备可以将第一指示信息发送给接入网设备,由接入网设备向UE发送第一指示信息,例如图3B所示的架构能够实现该方案。
可选的,UE的上行数据可以发送给第一设备,例如图2、图3A或图3B所示的架构能够实现该方案;或者,UE的上行数据也可以发送给接入网设备,接入网设备再将该上行数据发送给第一设备,例如图3B所示的架构能够实现该方案。
需要注意的是,如果待寻呼的UE为无源UE,例如无源标签,则此类UE可能无法主动发送信号,而是需要借助所接收的信号获取能量,再通过所获取的能量发送信号。可选的,该方法还包括S407:第一设备发送第一信号,第一信号可用于为待寻呼的UE提供用于数据传输的能量。本申请实施例所述的“传输”,可包括发送和/或接收。相应的,一个或多个UE可接收第一信号,图4以第一UE接收第一信号为例。第一设备所发送的信号的波形例如为连续波形,第一UE接收第一信号后,可获得感应电流,从而获得电能,从而第一UE可利用所获得的电能向第一设备发送上行数据。S407例如发生在S403之前,或者发生在S403之后,或者与S403同时发生,图4中以S407发生在S403之后为例。或者,如果待寻呼的UE是半有源UE或有源UE,则第一UE可不必借助于外部信号来获得能量,则可不必执行S407;或者,待寻呼的UE可以通过信令3获取能量,第一设备无需额外方式信号,那么也可不必执行S407。因此,S407是可选的步骤。
其中,第一设备在接收来自一个UE的上行数据后,如果没有待发送给该UE的下行数据,则第一设备完成与该UE的通信。或者,第一设备在接收来自一个UE的上行数据 后,如果有待发送给该UE的下行数据,则第一设备可以继续向该UE发送下行数据;在向该UE发送下行数据完毕后,则第一设备完成与该UE的通信。
可选的,第一设备在接收来自一个UE的上行数据后,可以发送响应信息,该响应信息可指示该UE的上行数据接收成功。可选的,该响应信息包括第一信息,第一信息例如为随机数或该UE的标识等。可选的,一个UE在发送上行数据时,可以一并发送第一信息,那么第一设备在发送对应于该上行数据的响应信息时,可以携带第一信息,从而该UE根据第一信息就能确定该响应信息是指示该UE的上行数据发送成功。例如第一设备接收了来自第一UE的上行数据,第一设备可发送响应消息,该响应信息可包括第一UE的标识或随机数等。该响应信息可能多个UE都能接收,第一UE接收该响应信息后,根据第一UE的标识或随机数,就能确定是第一UE的上行数据发送成功。
本申请实施例中,第一设备能够明确究竟是寻呼一个UE还是寻呼多个UE,由此第一设备所发送的第一信令可用于确定第一资源。UE利用第一资源向第一设备发送上行数据即可,无需采用竞争方式接入,因此,UE无需进行类似于随机接入的过程,例如UE在接收用于寻呼UE的第一信令后,就可以利用第一资源向第一设备发送上行数据,无需再执行与第一设备建立连接的步骤。由此减少了UE与第一设备之间传输数据所需要执行的步骤,有利于节省信令开销,且减小了数据传输的时延。
图5给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置500可以是图4所示的实施例所述的第一设备或该第一设备的电路系统,用于实现上述方法实施例中对应于第一设备的方法。或者,所述通信装置500可以是图4所示的实施例所述的第一终端设备或该第一终端设备的电路系统,用于实现上述方法实施例中对应于第一终端设备的方法。或者,所述通信装置500可以是图4所示的实施例所述的第一核心网设备或该第一核心网设备的电路系统,用于实现上述方法实施例中对应于第一核心网设备的方法。或者,所述通信装置500可以是图4所示的实施例所述的第二核心网设备或该第二核心网设备的电路系统,用于实现上述方法实施例中对应于第二核心网设备的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置500包括至少一个处理器501。处理器501可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器501包括指令。可选地,处理器501可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置500包括一个或多个存储器503,用以存储指令。可选地,所述存储器503中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置500包括通信线路502,以及至少一个通信接口504。其中,因为存储器503、通信线路502以及通信接口504均为可选项,因此在图5中均以虚线表示。
可选地,通信装置500还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置500的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器501可以包括一个通用中央处理器(central processing unit,CPU),微处理器, 特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路502可包括一通路,在上述组件之间传送信息。
通信接口504,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器503可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器503可以是独立存在,通过通信线路502与处理器501相连接。或者,存储器503也可以和处理器501集成在一起。
其中,存储器503用于存储执行本申请方案的计算机执行指令,并由处理器501来控制执行。处理器501用于执行存储器503中存储的计算机执行指令,从而实现本申请上述实施例提供的寻呼方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置500可以包括多个处理器,例如图5中的处理器501和处理器505。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图5所示的装置为芯片时,例如是第一设备的芯片,或第一终端设备的芯片,或第一核心网设备的芯片,或第二核心网设备的芯片,则该芯片包括处理器501(还可以包括处理器505)、通信线路502、存储器503和通信接口504。具体地,通信接口504可以是输入接口、管脚或电路等。存储器503可以是寄存器、缓存等。处理器501和处理器505可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述实施例的寻呼方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图6示出了一种装置示意图,该装置600可以是上述各个方法实施例中所涉及的第一设备、第一终端设备、第一核心网设备或第二核心网设备,或者为第一设备中的芯片或第一终端设备中的芯片或第一核心网设备中的芯片或第二核心网设备中的芯片。该装置600包括发送单 元601、处理单元602和接收单元603。
应理解,该装置600可以用于实现本申请实施例的方法中由第一设备、第一终端设备、第一核心网设备或第二核心网设备执行的步骤,相关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图6中的发送单元601、接收单元603以及处理单元602的功能/实现过程可以通过图5中的处理器501和/或处理器505调用存储器503中存储的计算机执行指令来实现。或者,图6中的处理单元602的功能/实现过程可以通过图5中的处理器501和/或处理器505调用存储器503中存储的计算机执行指令来实现,图6中的发送单元601和接收单元603的功能/实现过程可以通过图5中的通信接口504来实现。
可选的,当该装置600是芯片或电路时,则发送单元601和接收单元603的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由第一设备、第一终端设备、第一核心网设备或第二核心网设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由第一设备、第一终端设备、第一核心网设备或第二核心网设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的第一设备、第一终端设备、第一核心网设备或第二核心网设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit, ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (21)

  1. 一种寻呼方法,其特征在于,应用于第一设备,所述方法包括:
    发送第一信号,所述第一信号用于为第一终端设备提供用于发送上行数据的能量;
    发送第一信令,所述第一信令用于寻呼所述第一终端设备,其中,所述第一信令包括所述第一终端设备的信息,且所述第一信令用于确定第一资源;
    在所述第一资源上接收来自所述第一终端设备的所述上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备工作在反射通信场景下。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自第一核心网设备的第二信令,所述第二信令用于寻呼所述第一终端设备,且所述第二信令还指示所述第一信令寻呼终端设备的数量为1,或指示所述第一信令寻呼的终端设备的数量大于1。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第二信令包括第一字段,其中,所述第一字段的值为第一值时指示所述第一信令寻呼的终端设备的数量为1,所述第一字段的值为第二值时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第二信令包括第一字段时指示所述第一信令寻呼的终端设备的数量为1,所述第二信令不包括第一字段时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第二信令包括非接入层NAS容器,所述NAS容器用于承载所述第一终端设备的信息,其中,所述NAS容器的数量为1时指示所述第一信令寻呼的终端设备的数量为1,所述NAS容器的数量大于1时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一终端设备的信息为所述第一终端设备的标识,其中,所述第二信令包括的终端设备的标识的数量为1时指示所述第一信令寻呼的终端设备的数量为1,所述第二信令包括的终端设备的标识的数量大于1时指示所述第一信令寻呼的终端设备的数量大于1。
  5. 根据权利要求4所述的方法,其特征在于,
    当所述第一字段的值为所述第二值,且所述第二信令包括一个NAS容器时,所述第二值用于指示所述第一信令寻呼的终端设备的数量。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,
    所述第一信令包括第二字段,其中,所述第二字段的值为第三值时所述第一信令寻呼的终端设备的数量为1,所述第二字段的值为第四值时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一信令包括第二字段时指示所述第一信令寻呼的终端设备的数量为1,所述第一信令不包括第二字段时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一资源包括一份用于传输上行数据的资源时,指示所述第一信令寻呼的终端设备的数量为1,所述第一资源包括多份用于传输上行数据的资源时,指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一信令包括NAS容器,所述NAS容器用于承载所述第一终端设备的信息,其中,所述NAS容器的数量为1时指示所述第一信令寻呼的终端设备的数量为1,所述NAS容器的数量大于1时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一终端设备的信息为所述第一终端设备的标识,其中,所述第一信令包括的终端设备的标识的数量为1时指示所述第一信令寻呼的终端设备的数量为1,所述第一信令包括的终端设备的标识的数量大于1时指示所述第一信令寻呼的终端设备的数量大于1。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,当所述第一信令寻呼的终端设备的数量大于1时,所述第一信令包括多个终端设备的信息,所述多个终端设备的信息在所述第一信令中按照第一顺序排列,所述第一顺序用于确定资源。
  8. 根据权利要求7所述的方法,其特征在于,所述多个终端设备的信息在所述第一信令中按照第一顺序排列,包括:
    当所述第一信令包括的NAS容器中的一个NAS容器用于承载一个终端设备的信息时,所述NAS容器在所述第一信令中按照所述第一顺序排列;或,
    当所述第一信令包括的NAS容器的数量为1时,所述多个终端设备的信息在所述NAS容器中按照所述第一顺序排列;或,
    所述多个终端设备的标识在所述第一信令中按照第一顺序排列。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,如果所述第一信令寻呼的终端设备的数量大于1,所述方法还包括:
    当所述第一设备与所述第一信令寻呼的多个终端设备中的一个终端设备完成数据传输后,发送第三信令,所述第三信令用于触发所述多个终端设备中的下一个终端设备发送上行数据。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述上行数据包括所述第一终端设备的标识。
  11. 根据权利要求4~6、8、或9中任一项所述的方法,其特征在于,所述第一终端设备的标识为电子产品码EPC、系统架构演进临时移动站标识S-TMSI或第五代系统架构演进临时移动站标识5G-S-TMSI。
  12. 一种寻呼方法,其特征在于,应用于第一终端设备,所述方法包括:
    接收来自第一设备的第一信号;
    接收来自第一设备的第一信令,所述第一信令用于寻呼所述第一终端设备,其中,所述第一信令包括所述第一终端设备的信息,且所述第一信令用于确定第一资源;
    根据所述第一信令的指示,利用通过所述第一信号所获取的能量在第一时隙向所述第一设备发送上行数据,其中,所述第一时隙属于所述第一资源。
  13. 根据权利要求12所述的方法,其特征在于,所述第一终端设备工作在反射通信场景下。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述第一信令包括第二字段,其中,所述第二字段的值为第三值时指示所述第一信令寻呼的终端设备的数量为1,所述第二字段的值为第四值时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一信令包括第二字段时指示所述第一信令寻呼的终端设备的数量为1,所述第一信令不包括第二字段时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一资源包括一份用于传输上行数据的资源时,指示第一信令寻呼的所述终端设备的数量为1,所述第一资源包括多份用于传输上行数据的资源时,指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一信令包括NAS容器,所述NAS容器用于承载所述第一终端设备的信息,其中,所述NAS容器的数量为1时指示所述第一信令寻呼的终端设备的数量为1,所述第一信令包括的NAS容器的数量大于1时指示所述第一信令寻呼的终端设备的数量大于1;或,
    所述第一终端设备的信息为所述第一终端设备的标识,其中,所述第一信令包括的终端设备的标识的数量为1时指示所述第一信令寻呼的终端设备的数量为1,所述第一信令包括的终端设备的标识的数量大于1时指示所述第一信令寻呼的终端设备的数量大于1。
  15. 根据权利要求12~14任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一信令中所述第一终端设备的信息在第一顺序中的位置确定所述第一时隙,其中,当所述第一信令寻呼的终端设备的数量大于1时,所述第一信令包括多个终端设备的信息,所述多个终端设备的信息在所述第一信令中按照所述第一顺序排列。
  16. 根据权利要求15所述的方法,其特征在于,所述多个终端设备的信息在所述第一信令中按照所述第一顺序排列,包括:
    当所述第一信令包括的NAS容器中的一个NAS容器用于承载一个终端设备的信息时,所述NAS容器在所述第一信令中按照所述第一顺序排列;或,
    当所述第一信令包括的NAS容器的数量为1时,所述多个终端设备的信息在所述NAS容器中按照所述第一顺序排列;或,
    所述多个终端设备的标识在所述第一信令中按照所述第一顺序排列。
  17. 根据权利要求15或16所述的方法,其特征在于,如果所述第一信令寻呼的终端设备的数量大于1,
    所述方法还包括:接收第三信令,所述第三信令用于触发所述第一信令寻呼的多个终端设备中的下一个终端设备发送上行数据;
    利用通过所述第一信号所获取的能量在第一时隙向所述第一设备发送上行数据,包括:如果所述第三信令是所述第一终端设备接收的第N个用于触发所述第一信令寻呼的多个终端设备中的下一个终端设备发送上行数据的信令,且N为所述第一终端设备的信息在所述第一顺序中的位置,则利用通过所述第一信号所获取的能量在所述第一时隙向所述第一设备发送所述上行数据,所述第一时隙是所述第一资源中的第N个时隙,N为正整数。
  18. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~11任一项所述的方法,或用于执行如权利要求12~17任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~11任一项所述的方法,或使得所述计算机执行如权利要求12~17任一项所述的方法。
  20. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~11任一项所述的方法,或实现如权利要求12~17任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~11任一项所述的方法,或使得所述计算机执行如权利要求12~17任一项所述的方法。
PCT/CN2023/080108 2022-04-11 2023-03-07 一种寻呼方法及装置 WO2023197783A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210377310.X 2022-04-11
CN202210377310.XA CN116963276A (zh) 2022-04-11 2022-04-11 一种寻呼方法及装置

Publications (1)

Publication Number Publication Date
WO2023197783A1 true WO2023197783A1 (zh) 2023-10-19

Family

ID=88328813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080108 WO2023197783A1 (zh) 2022-04-11 2023-03-07 一种寻呼方法及装置

Country Status (2)

Country Link
CN (1) CN116963276A (zh)
WO (1) WO2023197783A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015480A2 (en) * 2003-08-09 2005-02-17 Alien Technology Corporation Methods and apparatuses to identify devices
CN104951721A (zh) * 2015-06-25 2015-09-30 上海大学 一种用于密集布放的rfid标签的防碰撞读取方法
CN105191431A (zh) * 2013-03-14 2015-12-23 高通股份有限公司 辅助式能量高效对等(p2p)通信
CN110858799A (zh) * 2018-08-24 2020-03-03 索尼公司 无线通信系统中的标签设备、电子设备、通信方法及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015480A2 (en) * 2003-08-09 2005-02-17 Alien Technology Corporation Methods and apparatuses to identify devices
CN105191431A (zh) * 2013-03-14 2015-12-23 高通股份有限公司 辅助式能量高效对等(p2p)通信
CN104951721A (zh) * 2015-06-25 2015-09-30 上海大学 一种用于密集布放的rfid标签的防碰撞读取方法
CN110858799A (zh) * 2018-08-24 2020-03-03 索尼公司 无线通信系统中的标签设备、电子设备、通信方法及存储介质

Also Published As

Publication number Publication date
CN116963276A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN105532065B (zh) 用于OFDMA PS-Poll传输的系统和方法
US10708944B2 (en) Preconfigured grants with a distribution pattern
WO2022002165A1 (zh) 一种harq-ack传输方法和装置
US11129173B2 (en) Method and apparatus for transmitting sidelink feedback information
US20220159696A1 (en) Wireless communication method, terminal device, and network device
US20230309061A1 (en) Wireless communication method, terminal, and network device
US20230074305A1 (en) Resource determining method, apparatus, and system
WO2021134577A1 (zh) 一种数据传输方法及装置
CN114731645A (zh) 在带宽部分上进行通信的方法
WO2023197783A1 (zh) 一种寻呼方法及装置
WO2021180098A1 (zh) 无线通信方法和通信装置
CN111066355A (zh) 一种通信方法及设备
WO2021147060A1 (zh) 一种通信方法及装置
CN115604664A (zh) 一种多播业务修改通知方法及通信装置
WO2023231564A1 (zh) 一种寻呼方法及装置
CN113382379B (zh) 无线通信方法和通信装置
WO2023051324A1 (zh) 一种随机接入前导的发送方法、接收方法及通信装置
WO2024067189A1 (zh) 一种通信方法及装置
WO2024082969A1 (zh) 一种随机接入方法以及装置
WO2024088147A1 (zh) 通信方法及装置
WO2023087831A1 (zh) 一种通信方法及装置
WO2022041138A1 (zh) 一种通信的方法及装置
WO2024041309A1 (zh) 一种通信方法及装置
WO2023024953A1 (zh) 一种通信方法及设备
WO2020156339A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787431

Country of ref document: EP

Kind code of ref document: A1