WO2023231564A1 - 一种寻呼方法及装置 - Google Patents

一种寻呼方法及装置 Download PDF

Info

Publication number
WO2023231564A1
WO2023231564A1 PCT/CN2023/086230 CN2023086230W WO2023231564A1 WO 2023231564 A1 WO2023231564 A1 WO 2023231564A1 CN 2023086230 W CN2023086230 W CN 2023086230W WO 2023231564 A1 WO2023231564 A1 WO 2023231564A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
information
flag bit
state
indicate
Prior art date
Application number
PCT/CN2023/086230
Other languages
English (en)
French (fr)
Inventor
李晨琬
陈磊
吴毅凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023231564A1 publication Critical patent/WO2023231564A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a paging method and device.
  • Radio frequency identification (radio-frequency identification, RFID) system includes RFID tags (referred to as tags) and readers.
  • the reader can establish communication with tags within its communication coverage range.
  • the reader/writer can also perform read and write operations on tags, etc.
  • This application provides a paging method and device, which are used to provide a mechanism for paging tags.
  • embodiments of the present application provide a paging method, which can be executed by a first device or by a chip system, and the chip system can realize the functions of the first device.
  • the following description takes the execution of the first device as an example.
  • the method includes: receiving a first signaling from a first core network device, the first signaling being used to page a terminal device; and sending a second signaling, the second signaling being used to indicate a user to be paged.
  • Information about the first flag bit of the terminal device The information about the first flag bit is used to indicate that the type of the first flag bit is the first type and/or the state is the first state.
  • the information about the first flag bit is Used to determine the terminal device to be paged.
  • the first device may send second signaling, and the second signaling indicates the first type and/or the first status of the terminal device to be paged, so that after the terminal device receives the second signaling, It can be determined whether the terminal device is the terminal device for this paging.
  • a terminal device is a tag, which is equivalent to the embodiment of the present application providing a mechanism for paging tags.
  • the first device can page the terminal device based on the type and/or status of the flag bit, without the need for the core network device or the first device to determine which terminal devices need to be paged, which is conducive to simplifying paging. process.
  • the tag is configured with information such as the type and status of the corresponding flag bit.
  • the tag can be paged without modifying the tag, which is beneficial to reducing the cost of paging the tag, and is beneficial to Compatible with existing technology.
  • the embodiment of the present application can page multiple terminal devices that comply with the second signaling indication, providing a way to support batch paging.
  • the first signaling is also used to indicate the first type and/or the first state.
  • the first core network device can indicate the first type and/or the first status to the first device, so that the first device does not need to determine the first type and/or the first status by itself, reducing the number of times the first device needs to processing volume.
  • the first signaling includes at least one of the following information: frequency information, the frequency information is used to indicate the frequency of the first device paging the terminal device; or, frequency information, The times information is used for Indicate the number of times the first device paging the terminal device; or, accuracy information, the accuracy information is used to indicate the number of terminal devices that successfully page the first device and the number of terminal devices that perform paging the first device.
  • the ratio between the number of terminal devices; or, quantity information, the quantity information is used to indicate the order of magnitude of the terminal devices expected to page the first device; or, paging time information, the paging time information is used to Instruct the first device to perform the start time and/or end time of paging.
  • the first signaling may implicitly indicate the first type and/or the first status.
  • the first signaling may indicate one of frequency information, frequency information, accuracy information, quantity information, and paging time information.
  • the first device can determine the first type and/or the first state based on the information in the first signaling, on the other hand, since these information reflect business requirements to a certain extent, this The first type and/or the first state determined by the first device based on the information can better meet the business requirements.
  • the method further includes: randomly determining one type as the first type from multiple types of flag bits; and/or, the first state is the first The initial state of the flag bit.
  • the first device can randomly determine the first type from the types of multiple flag bits, so that the first device can flexibly determine the first type.
  • the first device can also determine the initial state of the first flag bit as the first state, and the first device determines the first state in a relatively simple manner.
  • the method further includes: sending third signaling according to the first number of terminal devices paged by the first device through the second signaling, the third signaling Information used to indicate the second flag bit of the terminal device to be paged next time, the second flag bit information includes that the type of the second flag bit is the second type and/or the state is the second state, and The third signaling is used to determine the terminal device to be paged next time.
  • the first device when the first device determines the first type and/or the first label by itself, the first device can determine the terminal to be paged next based on the number of terminal devices that are paging the first device this time. Information about the flag bit of the device. For example, if the number of terminal devices paging the first device this time is greater than the first threshold, it means that multiple terminal devices send uplink data to the first device at the same time unit (that is, multiple terminal devices The possibility of equipment collision is greater, so the first device can adjust the information of the flag bit of the terminal device for next paging to be different from the information of the flag bit of the terminal device for current paging, thus helping to reduce the number of multiple terminals. Collisions between devices.
  • the method further includes: the second signaling is also used to indicate action information, and the action information is used to indicate changing the state of the first flag bit of the terminal device.
  • the second signaling may also indicate changing the status of the flag bit of the terminal device, so as to facilitate the first device to access the terminal device with a flag status that better meets the requirements.
  • the method further includes: sending fourth signaling, the fourth signaling is used to indicate action information, the action information is used to indicate changing the first flag bit of the terminal device state, and/or used to indicate that the state of the first flag bit is the first state.
  • the first device may indicate the action information through the fourth signaling, and/or indicate the access of the terminal device whose state of the first flag bit is the first state, without indicating through the second signaling. In this way This allows the first device to perform instructions more flexibly.
  • the second signaling is also used to indicate the maximum time unit range for the terminal device to be paged to send data to the first device; or, the method further includes: sending Fifth signaling, the fifth signaling is used to indicate the maximum time unit range in which the terminal device to be paged sends data to the first device.
  • the first device may indicate the maximum time unit range through the second signaling, which is beneficial to reducing the interaction between the terminal device and the first device.
  • the number of interactions; or for example, the first device can indicate the maximum time unit range through the fifth signaling, which is beneficial to the first device to more flexibly indicate the maximum time unit range of a terminal device.
  • the first signaling is non-access layer signaling.
  • the first core network device can directly send the first signaling to the terminal device through the first device without the first device needing to perceive the content of the first signaling, which is beneficial to reducing the processing load of the first device.
  • embodiments of the present application provide a paging method, which can be executed by a first terminal device or by a chip system.
  • the chip system can realize the functions of the first terminal device.
  • the following description takes the execution of the first terminal device as an example.
  • the method includes: receiving second signaling from the first device, the second signaling is used to indicate information on a first flag bit of the terminal device to be paged, and the information on the first flag bit is used to indicate The type of the first flag bit is the first type and/or the state is the first state, and the information of the first flag bit is used to determine the terminal device to be paged.
  • the second signaling is used to indicate changing the state of the first flag bit of the terminal device.
  • the method further includes: receiving fourth signaling from the first device, the fourth signaling is used to indicate action information, and the action information is used to indicate changing the terminal device.
  • the state of the first flag bit, and/or used to indicate that the state of the first flag bit is the first state.
  • the method further includes: receiving a third signaling from the first device, the third signaling being used to indicate a second flag bit of the terminal device to be paged next time.
  • the information of the second flag bit includes that the type of the second flag bit is the second type and/or the state is the second state, and the third signaling is used to determine the next paging to be done.
  • the terminal equipment, the information of the second flag bit is determined according to the first number of terminal equipment paged by the first equipment through the second signaling.
  • embodiments of the present application provide a paging method, which can be executed by the first core network device or by a chip system.
  • the chip system can realize the functions of the first core network device.
  • the following description takes the execution of the first core network device as an example.
  • the method includes: sending a first signaling to a first device, the first signaling is used to indicate information of a first flag bit, and the information of the first flag bit is used to indicate a type of the first flag bit. It is the first type and/or the state is the first state, and the information of the first flag bit is used to determine the terminal device to be paged.
  • seventh signaling from the second core network device is received, and the seventh signaling is used to page the terminal device.
  • the first core network device may page the terminal device under the trigger of the second core network device.
  • the first signaling includes at least one of the following: the first signaling includes at least one of the following information: frequency information, the frequency information is used to indicate the first The frequency of the device paging the terminal device; or, the number of times information, the number of times information is used to indicate the number of times the first device pages the terminal device; or, the accuracy rate information, the accuracy rate information is used to indicate the first device
  • the ratio between the number of terminal devices that the device successfully pages and the number of terminal devices that the first device performs paging or, quantity information, the quantity information is used to indicate the terminals that the first device expects to page.
  • the order of magnitude of the device; or, paging time information, the paging time information is used to indicate the start time and/or end time of the first device to perform paging.
  • the first signaling is non-access layer signaling.
  • the method further includes: sending a sixth signaling to the second device, the sixth signaling being used to indicate the information of the second flag bit of the terminal device to be paged, the The information of the second flag bit is used to indicate that the type of the second flag bit is the second type and/or the state is the second state, and the information of the second flag bit is used to determine the terminal device to be paged, so The information of the second flag bit is determined based on the information of the first flag bit.
  • the information of the second flag bit can also be understood as indicating that the terminal device that satisfies the information of the second flag bit accesses the second device.
  • the communication coverage ranges of the second device and the first device may partially overlap.
  • the first core network device may determine the paging of the second device based on the information of the first flag bit used by the first device for paging. Information about the second flag bit used for calling, thus reducing the possibility that the first device and the second device repeatedly page certain terminal devices.
  • the absolute value of the time difference between the third moment and the second moment is less than the maintenance duration of the state of the first flag bit of the first type corresponding to the flipped state, and/ Or, the absolute value of the time difference between the third time and the second time is less than the maintenance duration of the state after the first state flips, and the second time is when the first core network device transmits the signal to the second device.
  • the moment when the sixth signaling is sent, the third moment is the moment when the first device completes the paging terminal device process indicated by the first signaling, determined by the first core network device.
  • the information of the first flag bit can be the same as the information of the second flag bit, and the first core network device does not need to indicate action information to the second device.
  • a method for the first core network device to adjust multiple devices is provided. The method of paging the UE also simplifies the processing load of the first core network equipment.
  • the second device is adjacent to the first device, or the access network device serving the first device and the access network device serving the second device Adjacent or identical.
  • the first device and the second device are of the same type of device.
  • the first device and the second device may be two devices. Adjacent access network devices; for another example, when the first device and the second device are both terminal devices or access nodes, the access network device serving the first device and the access network serving the second device
  • the devices may be the same or adjacent; for another example, the first device and the second device may be two cells under one access network device, and the two cells may be adjacent cells.
  • the first device may be replaced by a first cell
  • the second device may be replaced by a second cell
  • inventions of the present application provide a communication device.
  • the communication device may be the first device in the first aspect, or an electronic device (for example, a chip system) configured in the first device, or a device including The larger device of this first device.
  • the first device includes corresponding means or modules for performing the above-mentioned first aspect or any possible implementation.
  • the communication device includes a receiving module (sometimes also called a receiving unit) and a transmitting module (sometimes also called a transmitting unit).
  • the receiving module is used to receive the first signaling from the first core network device, the first signaling is used to page the terminal device;
  • the sending module is used to send the second signaling, the second signaling Information used to indicate the first flag bit of the terminal device to be paged, and the information of the first flag bit is used to indicate that the type of the first flag bit is the first type and/or the state is the first state, so The information of the first flag bit is used to determine the terminal device to be paged.
  • the receiving module and the transmitting module may be coupled.
  • the communication device includes a storage unit, and the processing unit can be coupled with the storage unit and execute programs or instructions in the storage unit to enable the communication device to perform the functions of the first device.
  • embodiments of the present application provide a communication device, which may be the first terminal device in the second aspect, or an electronic device (for example, a chip system) configured in the first terminal device, or It is a larger device including the first terminal device.
  • the first terminal device includes corresponding means or modules for performing the above second aspect or any possible implementation manner.
  • the communication device includes a processing module (sometimes also called a processing unit), and a transceiver module (sometimes also called a transceiver unit).
  • the transceiver module is configured to receive the second signaling from the first device under the control of the processing module,
  • the second signaling is used to indicate the information of the first flag bit of the terminal device to be paged
  • the information of the first flag bit is used to indicate that the type of the first flag bit is the first type and/or status.
  • the information of the first flag bit is used to determine the terminal device to be paged.
  • the communication device includes a storage unit, and the processing unit can be coupled with the storage unit and execute the program or instructions in the storage unit to enable the communication device to perform the functions of the first terminal device.
  • inventions of the present application provide a communication device.
  • the communication device may be the first core network device in the third aspect, or an electronic device (for example, a chip system) configured in the first core network device. , or a larger device including the first core network device.
  • the first core network device includes corresponding means or modules for performing the above third aspect or any possible implementation manner.
  • the communication device includes a transceiver module (sometimes also called a transceiver unit), and a processing module (sometimes also called a processing unit).
  • the transceiver module is configured to send a first signaling to the first device under the control of the processing module, the first signaling is used to indicate the information of the first flag bit, and the information of the first flag bit is used to indicate The type of the first flag bit is the first type and/or the state is the first state, and the information of the first flag bit is used to determine the terminal device to be paged.
  • the receiving module and the transmitting module may be coupled.
  • the communication device includes a storage unit.
  • the processing unit can be coupled with the storage unit and execute the program or instructions in the storage unit to enable the communication device to perform the functions of the first core network device. .
  • embodiments of the present application provide a communication device, including a processor and a communication interface.
  • the communication interface is configured to receive signals from other communication devices other than the communication device and transmit them to the processor or Send signals from the processor to other communication devices other than the communication device, and the processor is used to implement the method described in any one of the first to third aspects through logic circuits or executing code instructions. method.
  • embodiments of the present application provide a computer-readable storage medium.
  • Computer programs or instructions are stored in the computer-readable storage medium.
  • the computer programs or instructions are executed by a communication device, the first aspect is implemented. to the method described in any one of the third aspects.
  • a ninth aspect provides a computer program product containing instructions that, when run on a computer, implements the method described in any one of the above first to third aspects.
  • Figures 1 to 3 provide schematic diagrams of three application scenarios according to the embodiment of the present application
  • Figure 4 is a schematic flow chart of a paging method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the change process of a flag bit state provided by an embodiment of the present application.
  • FIGS. 6 to 7 are schematic flow charts of two paging methods provided by embodiments of the present application.
  • 8 to 13 are schematic structural diagrams of several communication devices provided by embodiments of the present application.
  • the RFID tag in the embodiment of this application can also be called an electronic tag or label.
  • the design of the label is relatively simple and is designed to integrate application layer signaling and air interface signaling.
  • the tag is mainly based on binary on-off keying (OOK) for encoding and decoding transmission, that is, according to the amplitude modulation method of the data, the data is decoded through high and low levels.
  • OOK binary on-off keying
  • a tag can be viewed as a terminal device.
  • radio frequency identification technology can be divided into three types: active, passive and semi-active.
  • tags under active radio frequency identification technology can be called active tags, which can have built-in batteries. Such tags can actively send signals to readers without obtaining energy for sending signals based on the received signals.
  • tags under passive RFID technology can also be called passive IoT (passive IOT), that is, passive IoT devices, or passive tags. Such tags may not have built-in modules such as batteries, or battery modules. With less power, it can obtain energy from the received signal and send the signal through this energy. It can be understood that passive tags work in a reflective communication scenario, that is, passive tags obtain energy by reflecting signals from readers and writers, thereby transmitting data.
  • Tags under semi-active radio frequency identification technology can also be called semi-active tags. They integrate the advantages of active tags and passive tags and can be used as a special marker. In normal times, such tags are in a dormant state, do not work, and do not send signals to the outside world; they only start to work when they are activated when entering the activation signal range of the low-frequency activator.
  • the tags involved in the embodiments of this application may be active tags, passive tags, semi-active tags, etc.
  • the reader/writer in the embodiment of this application is a device that reads (or writes) tag information in a handheld or fixed manner.
  • the reader can also be understood as a device that communicates with the tag.
  • Reader such as reader, interrogator, scanner, reader and writer, reading device or portable readout device wait.
  • the implementation form of the reader/writer can be a terminal device, an access network device, such as a base station, or a device with reading and writing functions.
  • the integrated access backhaul (IAB) node/helper/incentive source in the embodiment of this application can be implemented through terminal equipment, or it can also be implemented through access network equipment (such as base stations). )accomplish.
  • Bidirectional communication can be carried out between the IAB node and the label; or, there can be only downlink data between the IAB node and the label, that is, the IAB node can send information to the label, but the label cannot send information to the IAB node.
  • Two-way communication is possible between the IAB node and the reader, and the communication can be transmitted through the air interface or through wired transmission.
  • the terminal device in the embodiment of this application is a device with wireless transceiver function. It can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device. Device (for example, communication module, modem, or chip system, etc.).
  • the tag may be a fixed device or a mobile device in the terminal device, or a wireless device built into the above device.
  • the terminal device is used to connect people, objects or machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR) , augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart cities, drones, robots and other scenarios.
  • the terminal equipment may sometimes be called user equipment (UE), Terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • the network equipment in the embodiment of the present application may include, for example, access network equipment and/or core network equipment.
  • the access network device is a device with a wireless transceiver function and is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to base station (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transceiver point (transmission reception point, TRP), third generation Base stations for the subsequent evolution of the 3rd generation partnership project (3GPP), access points (APs) in wireless fidelity (Wi-Fi) systems, wireless relay nodes or wireless backhaul nodes, etc. .
  • base station base transceiver station
  • Node B Node B
  • eNodeB/eNB eNodeB/eNB
  • gNodeB/gNB transceiver point
  • TRP transmission reception point
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station or a relay station, etc. Multiple base stations can support networks with the same access technology or networks with different access technologies.
  • a base station may contain one or more co-located or non-co-located transmission and reception points.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (distributed unit) in a cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • the access network device may also be a server or the like.
  • the network equipment in vehicle to everything (V2X) technology can be a road side unit (RSU).
  • RSU road side unit
  • the access network device as a base station as an example, the following describes the communication between the access network device and the terminal device.
  • the base station can communicate with the terminal device or communicate with the terminal device through the relay station.
  • Terminal devices can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • the names of devices that implement core network functions in systems with different access technologies may be different, and the embodiments of this application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), network exposure function (NEF), Application function (AF) or user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • NEF network exposure function
  • AF Application function
  • UPF user plane function
  • AF can also be regarded as a third-party application server, referred to as application server for short.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • “Including at least one of A, B and C” can mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • first signaling and the second signaling do not indicate the difference in content, information size, sending order, sender/receiver, priority or importance of the two signalings.
  • the technical solution provided by the embodiments of the present application can be applied to the 3rd generation (3G) communication system, such as the universal mobile telecommunications system (UMTS) system. Or it can also be applied to the fourth generation (the 4th generation, 4G) communication system, such as the long term evolution (long term evolution, LTE) system. Or it can be applied to the fifth generation ( 5th generation, 5G) communication system, such as new radio (NR), or it can also be applied to future communication systems, such as the sixth generation (the 6th generation, 6G). ) system, etc. Or it can also be applied to wireless local area network (WLAN) communication systems, etc.
  • 3G 3rd generation
  • UMTS universal mobile telecommunications system
  • 4G fourth generation
  • LTE long term evolution
  • 5th generation, 5G new radio
  • future communication systems such as the sixth generation (the 6th generation, 6G).
  • WLAN wireless local area network
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figure 1 includes an intermediate device 110 and a terminal device 120.
  • the intermediate device 110 is, for example, an access network device (such as a base station, or an access node, etc.).
  • the access network device may implement the function of a reader/writer, or may not implement a read/write function.
  • the function of a writer; alternatively, the intermediate device 110 is, for example,
  • the terminal device for example, implements the function of a reader/writer; or the intermediate device 110 is, for example, a cell under the access network device; or the intermediate device 110 in the embodiment of the present application can be replaced by a cell.
  • the intermediate device 110 is a base station
  • the terminal device 120 and the intermediate device 110 can communicate through the Uu interface; or, if the intermediate device 110 is an access node, the terminal device 120 and the intermediate device 110 can communicate through the sideline Link (sidelink, SL) communication.
  • the intermediate device 110 is a terminal device
  • the intermediate device 110 can also be connected to the access network device and communicate through the Uu interface. For example, the intermediate device 110 communicates with the core network through the access network device.
  • FIG. 2 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 2 includes an intermediate device 110, an IAB node 200, and a terminal device 120. There may be two-way communication between the IAB node 200 and the terminal device 120, as shown in Figure 2; or, there may be only one-way communication between the IAB node 200 and the terminal device 120.
  • the IAB node 200 can be regarded as a relay node between the intermediate device 110 and the terminal device 120, and both the uplink and downlink data of the terminal device 120 can pass through the IAB. Node 200 forwards.
  • the IAB node 200 can send information to the terminal device 120, but the terminal device 120 cannot send information to the IAB node 200, then the downlink data can be transmitted.
  • the IAB node 200 is regarded as a relay node between the intermediate device 110 and the terminal device 120. Downlink data from the intermediate device 110 can be forwarded by the IAB node 200 and then reach the terminal device 120; while when transmitting uplink data, the terminal device 120 can Instead of passing through the IAB node 200, the uplink data is directly sent to the intermediate device 110.
  • the implementation form of the intermediate device 110 in FIG. 2 may refer to the content discussed in FIG. 1 .
  • Figure 3 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • Figure 3 includes an intermediate device 110, an access network device 300 and a terminal device 120.
  • the intermediate device 110 is not an access network device.
  • the intermediate device 110 in FIG. 3 is a terminal device or an access node.
  • the intermediate device 110 can directly communicate with the terminal device 120, or the intermediate device 110 can also communicate with the terminal device 120 through the access network device 300.
  • the intermediate device 110 and/or the access network device 300 can be connected to the core network.
  • the embodiments shown in FIGS. 1 to 3 take the number of intermediate devices 110 as one. In fact, the number of intermediate devices 110 may be multiple. In the case where the number of intermediate devices 110 is multiple, , where the communication coverage ranges of the two intermediate devices 110 may partially overlap, or completely overlap, or may not overlap at all. When there are multiple intermediate devices 110, the multiple intermediate devices 110 may be called a first device, a second device, etc. in sequence.
  • the methods provided by the embodiments of the present application are introduced below with reference to the accompanying drawings.
  • the drawings corresponding to various embodiments of the present application all optional steps are represented by dotted lines.
  • the methods provided by various embodiments of the present application can be applied to the scenarios shown in any of the figures in Figures 1 to 3.
  • the implementation of the first device and the second device involved in various embodiments of the present application may refer to the intermediate device 110 shown in any of the drawings in Figures 1 to 3.
  • the terminal equipment involved in various embodiments is, for example, the terminal equipment 120 shown in any one of Figures 1 to 3, and in the various embodiments of this application, the terminal equipment is introduced as a UE.
  • the embodiment of the present application also involves a first core network device and a second core network device, which are not illustrated in Figures 1 to 3 .
  • the first core network equipment is access and mobility management function (AMF) or session management function (SMF), etc.
  • the second core network equipment is application server, application function (application function), etc. , AF), network exposure function (NEF) or SMF, etc.
  • the first core network device is the AMF
  • the second core network device is the AF as an example.
  • one core network device and another core network device can communicate with each other, A core network device and an access network device can communicate with each other.
  • the access network device and the AMF can communicate with each other, and the AMF and AF can communicate with each other.
  • An embodiment of the present application provides a paging method. Please refer to Figure 4, which is a flow chart of the method.
  • AF sends signaling 1 to AMF.
  • AMF receives signaling 1 from AF.
  • This signaling 1 is used to page the UE.
  • Signaling 1 in the embodiment of this application can also be called seventh signaling.
  • the AF can directly send the signaling 1 to the AMF.
  • the AF can send the signaling 1 to the AMF through the service interface of the AMF.
  • the service interface of the AMF is, for example, the Namf interface; or, the AF can also send the signaling 1 to the AMF through other core networks.
  • the device sends signaling 1 to the AMF, and other core network devices are, for example, SMF.
  • the signaling 1 is, for example, application layer paging (or inventory, or inventory) signaling, or the signaling 1 is, for example, similar to a paging message in a cellular network.
  • Signaling 1 can be used to page the UE; alternatively, signaling 1 can be used to select the UE; alternatively, signaling 1 can be used to indicate (or trigger) the UE to access; alternatively, signaling 1 can be used to indicate (or trigger) the UE Send uplink data; alternatively, signaling 1 can be used to instruct (or trigger) the UE to establish a connection with the network (such as access network equipment); alternatively, signaling 1 can be used to indicate access to the UE; alternatively, signaling 1 can be used to indicate (Or, trigger) UE to initiate random access, etc.
  • signaling 1 is used to page a UE as an example.
  • the UE paged through signaling 1 can be called a UE to be paged, or a UE to be accessed (or inventoried, or inventoried
  • the AF may initiate multiple rounds of signaling to the AMF for paging the UE (for example, the AF may send signaling to the AMF for paging the UE multiple times, one of which is regarded as one round), for convenience
  • the paging initiated through signaling 1 is regarded as the current round of paging, which can also be called the Nth round of paging.
  • the signaling 1 may indicate the information of the first flag of the UE to be paged. By indicating the information of the first flag, the purpose of paging the UE may be achieved. Alternatively, signaling 1 may be used to page the UE, and may also indicate information about the first flag bit of the UE to be paged. The information of the first flag bit is used to determine (or select (select), or page) the UE. For example, if the flag bit information of a UE meets the first flag bit information indicated by signaling 1, the UE can be paged.
  • the flag can also be called an inventory flag, an inventory flag, an inventory flag, a selection flag, etc.
  • the flag bit can be understood as a value pre-stored in the UE, for example, pre-stored in the memory of the UE.
  • the flag bit can be understood as the value of a piece of information.
  • the flag bit is the value of information a.
  • Information a occupies, for example, 1 bit.
  • the flag bit can include "0" and "1". Take value.
  • the flag bit can also be understood as a capacitor in the UE.
  • one UE may maintain at least one flag bit, and the flag bits maintained by different UEs may be exactly the same, partially the same, or completely different.
  • the first flag bit may be the same type of flag bit maintained by multiple UEs. Therefore, signaling 1 can page some or all of the multiple UEs by indicating the information of the first flag bit.
  • multiple UEs include UE1 and UE2.
  • UE1 maintains flag bit S0 and flag bit S1.
  • UE2 maintains flag bit S0, flag bit S1, flag bit S2 and flag bit S3. It can be seen that flag bit S0 and flag bit S1 are UE1 Both UE2 and UE2 have maintenance flags.
  • the first flag bit indicated by signaling 1 can be any of these flag bits.
  • the first flag bit is flag bit S1.
  • signaling 1 can be searched through the information of the first flag bit (that is, flag bit S1). Call UE1 and/or UE2.
  • the information of the first flag bit may indicate the type of the first flag bit of the UE to be paged (for example, indicating that the type of the first flag bit of the UE to be paged is the first type), and/or indicates the type of the first flag bit of the UE to be paged.
  • the state of the first flag bit of the UE (for example, indicating that the state of the first flag bit of the UE to be paged is the first state).
  • the first type may be any one of multiple types of flag bits, and the first state may be any one of multiple states of the first flag bit. The embodiment of the present application There is no restriction on this.
  • the types of flag bits and flag bit states of the UE are introduced below.
  • the UE maintains at least one flag bit, where one flag bit corresponds to one type, and the types of different flag bits may be different. Alternatively, one flag bit may also correspond to multiple types. In the embodiment of this application, one flag bit corresponds to one type as an example.
  • a UE includes four sessions (session S0, session S1, session S2, and session S3). Each session can be regarded as a flag bit, and each session can also be regarded as a type.
  • the type of a flag maintained by the UE may be determined according to the value of the flag and/or the hardware structure of the UE.
  • the type of the flag can be expressed as a session, a section, or a flag identifier, etc.
  • the signaling 1 may not indicate the type of the first flag bit, for example, the first type may not be indicated.
  • the status of the flag bit can also be called inventory status, inventory status or inventory status, etc.
  • the status of a flag bit can be determined based on the value of the flag bit.
  • a flag can have multiple optional states, such as 2 states. For example, if the value of a flag bit is 0, the status of the flag bit is A; or if the value of the flag bit is 1, the status of the flag bit is B.
  • the first state of the first flag bit can be understood as one of multiple states corresponding to the first flag bit.
  • the type of a flag bit maintained by the UE may also be related to the state of the flag bit.
  • a type 1 flag can correspond to multiple optional states; a type 2 flag can also correspond to multiple optional states.
  • a type 1 flag and a type 2 flag can correspond to multiple states that are the same. For example, if the type of a flag bit is session S0, the status of the flag bit can be A or B; for another example, if the type of a flag bit is session S1, the status of the flag bit can also be A or B.
  • a flag maintained by the UE may have an initial state under a certain type (the initial state may also be called a default state, default value, reset state, initial value, or reset value, etc.) .
  • the initial state is, for example, the state of a flag maintained by the UE when the UE is reset (for example, the UE is powered on).
  • the initial state may also refer to the state maintained by a flag bit maintained by the UE after the UE is powered off. After the UE is powered off, the status of the flag bit can remain unchanged for a period of time, and the unit of this period of time can be hundreds of milliseconds, seconds, or minutes, which is not limited in the embodiments of this application.
  • the state of a flag maintained by the UE under a certain type can be changed from an initial state to a non-initial state. After the change, under certain conditions, the status of the flag can be restored to the initial status.
  • the non-initial state refers to the multiple states of a flag bit other than the initial state.
  • State change conditions refer to the conditions required for a flag to change from one state to another state under a certain type.
  • a state change condition is the length of time that the UE maintains the status of the flag bit under a certain type. This length of time can also be called the maintenance duration. Regarding the maintenance duration, it can be understood that after the UE reaches the maintenance duration, the state of the flag bit under this type will switch to another state.
  • the state change condition for a flag maintained by the UE to change from one state to another state under a certain type is the same as the state change condition for the flag to change into another state under a certain type.
  • the status change conditions are different.
  • the length of time the UE maintains session S1 in state A under the first condition is the same as the time the UE maintains session S1 under the first condition.
  • the length of time that session S1 remains in state B is different.
  • the first condition refers to the current power-on state of the UE, for example, the UE is in a power-on state, or the UE is in a power-off state.
  • the state change conditions corresponding to the state may be the same or different.
  • the meaning and content of state change conditions can be referred to the previous article.
  • the duration for which the UE maintains the state under the first condition is different.
  • the duration of state B corresponding to session S0 maintained by the UE is 0, and the duration of state B corresponding to session S1 maintained by the UE ranges from [500 milliseconds (ms), 5 seconds (s) ], where, when the UE is powered off, the UE can keep the session S1 pair in state B at least within 500ms, and can keep the flag bit in state B within 5s at most.
  • FIG. 5 is a schematic diagram of the change process of the first type of state provided by the embodiment of the present application.
  • Figure 5 is an example where the first type is session S0, session S1, session S2 or session S3, and the state of each session (ie, the state of the flag bit) is A or B.
  • the UE When the first type is session S0, after the UE is powered on, for example, the status of session S0 is A. After the UE is recognized (or read, or written) by the first device once or after the UE completes accessing the first device, the UE changes the state of the session S0 from A to B. If the UE always has power, the UE can maintain the state of the session S0. For example, the UE can always maintain the state of the session S0 as B. If the UE is powered off (or called power outage), the UE does not save the status of the session S0. In this case, the status of the session S0 is empty. Once the UE is powered on again, the UE may determine that the status of session S0 is A.
  • the state of session S1 is, for example, A or B.
  • the UE determines that the state of session S1 is flipped (for example, after the UE is powered on, the state of session S1 is A, then the state of session S1 changes from A at this time is B; for another example, after the UE is powered on, the state of session S1 is B, then the state of session S1 changes from B to A).
  • the UE can maintain the state of session S1 as B, where the range of the duration that can be maintained is [500ms, 5s].
  • the UE may determine that the status of session S1 is B. Subsequently, the status of session S1 can change from B to A within a certain period of time, where the value of the certain period of time is not fixed.
  • the status changes of session S2 are the same as those of session S3.
  • the state of session S2 is A or B.
  • the session S2 of the UE is identified (or read, or written) once, the state of the session S2 is flipped. If the UE always has power, the UE can always maintain the state of session S2.
  • the UE can maintain the state of the session S2 for longer than or equal to 2s. For example, the state of the session S2 can be maintained for 10s.
  • the first flag bit is the flag bit, and the information of the first flag bit can be used to indicate the state of the flag bit (eg, the first state).
  • the first flag bit may be a flag bit jointly maintained by multiple UEs, and the information of the first flag bit may be used to indicate the type of the first flag bit ( For example, the first type), or the information of the first flag bit may be used to indicate the type of the first flag bit (for example, the first type) and the state of the first flag bit (for example, the first state).
  • the AF may determine the first flag bit information of the UE to be paged based on service requirements.
  • AF can Receive information about the first flag bit of the UE to be paged from other core network equipment (such as SMF).
  • signaling 1 is also used to indicate the number of times.
  • the number of times information is used to indicate the number of times the first device pages the UE, which can be further understood as the number of times the first device sends an access instruction to the UE indicating access to the first device.
  • the number of times can be one or more times.
  • the AF can determine the number of times information based on business requirements, etc.; or, the AF can receive the number of times information from other core network devices (such as SMF).
  • signaling 1 is also used to indicate identification information.
  • the identification information is used to indicate that the identification of the UE to be paged needs to satisfy the identification information.
  • the identification information is used to indicate the identity of the UE to be paged, or to indicate the group identity corresponding to the UE to be paged.
  • the group identifier is used to indicate multiple UEs, and some or all of the multiple UEs are UEs to be paged.
  • signaling 1 is also used to indicate mask information.
  • the mask information is used to indicate the first mask.
  • the mask information is also used to indicate the storage location of the mask in the UE to be paged in the UE.
  • the storage location may indicate at least one of information such as the starting location, the ending location, or the storage length of the mask of the UE to be paged in the storage area within the UE.
  • the UE can determine the mask in the storage location corresponding to the UE based on the mask information (for ease of distinction, the mask in the storage location in the UE is referred to as the second mask below) .
  • the first mask may be used to match the second mask in a storage location in the UE. For example, if the second mask in the UE matches the first mask, the UE determines to change the state of the first flag bit of the UE to the first state.
  • the UE determines to change the state of the first flag bit of the UE to the second state.
  • the mask information is preconfigured (for example, configured by a protocol) in the AF, and the AF can obtain it from other core network devices, or the AF can determine it according to business requirements. This is not specifically limited in the embodiment of this application.
  • the second mask in the embodiment of the present application may be an application layer identifier, or may be a non-application layer identifier, such as information stored for the UE.
  • the mask information may be the above-mentioned identification information, that is, the first mask is the identifier indicated by the above-mentioned identification information.
  • the mask information may be used to indicate that the identity of the UE to be paged needs to match the identity indicated by the identity information.
  • signaling 1 is also used to indicate action information.
  • the action information is used to indicate changing the state of the first flag bit of the UE to be paged.
  • the action information may indicate that the state of the first flag bit of the UE is changed (or adjusted, or flipped, or changed) to the first state.
  • the action information may be understood as indicating changing the status of the first flag bit of the UE that meets the second condition and/or the UE that does not meet the second condition.
  • the second condition is, for example, that the first mask indicated by the mask information is the same as the second mask stored in the UE.
  • the second condition may be preconfigured in the UE.
  • the UEs that meet the second condition and/or the UEs that do not meet the second condition may be part or all of the UEs to be paged.
  • the action information may indicate changing the state of the first flag bit of the UE that meets the second condition to the first state, and/or changing the state of the first flag bit of the UE that does not meet the second condition.
  • Two states The first state and the second state may be different.
  • the first state is A and the second state is B. If the second mask in a UE matches the first mask indicated by the mask information, the UE changes the state of the flag bit to A; if a UE If the second mask of the mask does not match the first mask indicated by the mask information, then the UE changes the status of the flag bit to B.
  • the action information may indicate changing the state of the first flag bit of the UE that does not meet the second condition to the first state, and/or changing the state of the first flag bit of the UE that does not meet the second condition. state.
  • the UE does not need to perform the action of changing the state of the first flag bit after receiving the action information.
  • the second condition is that the identity of the UE matches the identity indicated by the above identity information.
  • the mask information is equivalent to the identification information mentioned above. In this case, it is equivalent to the first device selecting a UE that meets the second condition for access.
  • the action information may also indicate changing the status of other flag bits.
  • the other flag bits refer to flag bits other than the first flag bit in at least one flag bit maintained by the UE. This is not done in this embodiment of the present application. limited.
  • the AMF sends signaling 2 to the first device.
  • the first device receives the signaling 2 from the AMF.
  • Signaling 2 is used to page the UE.
  • signaling 2 can also be called first signaling.
  • the signaling 2 can be directly received from the first core network device (such as AMF).
  • the first device may receive signaling 2 from the first core network device through the access network device.
  • signaling 2 can be referred to the content of signaling 1 above, and will not be listed here.
  • signaling 2 may achieve the purpose of paging the UE through information indicating the first flag bit of the UE to be paged.
  • the signaling 2 is used to page the UE, and also indicates the information of the first flag bit of the UE to be paged.
  • the signaling 2 may explicitly indicate the first flag information of the UE to be paged.
  • the signaling 2 includes the first flag information.
  • the signaling 2 may implicitly indicate the information of the first flag bit of the UE to be paged.
  • the content of the information on the first flag bit of the UE to be paged may refer to the content discussed in S401 above.
  • the information of the first flag bit of the UE to be paged may be determined by the AMF itself.
  • the manner in which the AMF determines the information of the flag bit may refer to the content of the information of the AF determining the flag bit mentioned above.
  • the information on the first flag bit of the UE to be paged may be determined by the AMF according to signaling 1.
  • signaling 2 may be non-access stratum (NAS) signaling, and NAS signaling may also be called a NAS message.
  • NAS signaling may also be called a NAS message.
  • signaling 2 can also be used to indicate frequency information.
  • the meaning of this number of times information can refer to the content discussed above.
  • the number of times indicated by the number of times information may be determined by the AMF, or determined by the AMF according to signaling 1.
  • the first device can, according to signaling 2, Initiate multiple paging triggers.
  • the first device can trigger multiple accesses.
  • the UE if a UE fails to successfully access the first device during the first paging process, it can continue to try to access the next paging process, and successfully accesses the first device during the first paging process. The terminal device does not need to access the first device again during the next pending paging.
  • the UE to be paged can successfully access the first device once. However, in one round of paging, the UE may successfully access the first device after multiple rounds of access triggered by the first device. equipment.
  • a round of paging can be understood as at least one paging performed by the first device on the UE under the instruction of signaling 1; or it can be understood as a paging performed by the first device within one paging cycle.
  • the paging cycle may be indicated by the AF through signaling 1.
  • the value of the duration of the paging cycle may be the time interval between two signalings sent by the AF to page the UE.
  • the first device can initiate a paging (or receive a paging call) based on signaling 2. entry, or inventory, or inventory).
  • signaling 2 is also used to indicate the identification information of the UE to be paged.
  • the meaning of the identification information can be referred to the previous article.
  • signaling 2 is also used to indicate mask information.
  • the meaning of the mask information may refer to the content discussed in S401 above.
  • the mask information may be determined by the AMF, or the AMF may be determined based on signaling 1.
  • the mask information may be the above-mentioned identification information.
  • the meaning of the identification information can be referred to the previous article.
  • signaling 2 is also used to indicate action information.
  • the meaning of action information can be referred to the previous article.
  • the way AMF obtains action information can refer to the content of AMF obtaining mask information, which will not be listed here.
  • the first core network device may be an SMF.
  • the AMF in S401 and S402 may be replaced by an SMF.
  • the first device can directly page the UE without triggering by the core network device (such as AMF or AF, etc.). In this case, there is no need to perform steps S401 to S402, that is, steps S401 to S402 are optional. step.
  • the first device sends signaling 3.
  • one or more UEs receive signaling 3 from the first device.
  • This signaling 3 is used to indicate the first flag bit information of the UE to be paged.
  • the meaning of the information of the first flag bit may refer to the content discussed in S401 above.
  • Signaling 3 in the embodiment of this application can also be called second signaling.
  • the first UE receives the signaling 3 as an example.
  • Paging can be understood as triggering the terminal device to access the first device, or triggering the terminal device to establish a connection with the first device, or triggering the terminal device to perform data interaction with the first device.
  • the signaling 3 is, for example, paging signaling sent by the first device.
  • the signaling 3 is, for example, similar to paging in a cellular network. This signaling 3 is used to page one or more UEs; or, the signaling 3 is used to select one or more UEs; or, the signaling 3 is used to instruct (or trigger) one or more UEs to send uplink data; Alternatively, signaling 3 is used to instruct (or trigger) one or more UEs to establish a connection with the network (such as access network equipment); or, signaling 3 is used to instruct one or more UEs to access; or, signaling 3 is used to instruct (or trigger) one or more UEs to initiate random access, etc. In the embodiment of this application, the signaling 3 is used for paging one or more UEs as an example. The one or more UEs can be regarded as the UEs to be paged.
  • the UE to be paged involved in the embodiment of the present application can be understood as the UE being in a non-connected state, that is, there is no communication connection between the UE and the first device, or it can be understood as the flag of the UE to be paged.
  • the state is reset state or initial state.
  • the paged UE involved in the embodiment of this application can be understood as entering a state of communication with the first device.
  • the first device may initiate one or more pagings.
  • the paging initiated by signaling 3 is regarded as this paging (which can also be called the Mth paging).
  • Paging in other words, the paging mentioned below can be understood as paging initiated through signaling 3.
  • the information of the first flag bit indicated by signaling 3 can be used as the information that the flag bit of the UE needs to be satisfied in one paging (or selection, or determination) of this round of paging, or it can be used as the information that needs to be met in this round of paging.
  • signaling 2 is NAS signaling
  • the first device does not need to sense the flag bit information of the UE to be paged and directly sends the NAS signaling.
  • signaling 2 and signaling 3 are both NAS signaling.
  • the first device determines the information of the first flag bit of the UE to be paged, and generates signaling 3.
  • Method 1 The first device determines the first type and/or the first state according to signaling 2.
  • the first device may use the type of the first flag bit of the UE to be paged indicated by signaling 2 as the first type, and /Or, the first device may use the state of the first flag bit of the UE to be paged indicated in the signaling 2 as the first state.
  • the first device since the first device does not need to determine the information of the first flag bit, it is beneficial to reduce the processing load of the first device.
  • the first device can determine the first type and/or the first state by itself.
  • the following is an example introduction to the manner in which the first device determines the first type and/or the first state.
  • the first device can randomly determine one type as the first type from multiple types of flag bits.
  • multiple types of flag bits may be pre-configured in the first device, for example, configured in the first device by a protocol.
  • the first type may be a default value specified by the protocol.
  • the first device can determine the first type based on the collision situation of the first round of paging (or the N-1th round of paging). Collision can be understood as two or more UEs sending uplink data to the first device in the same time unit.
  • the first device may have initiated a round of paging (also called the (N-1)th round, or the previous round of paging) before executing this round of paging.
  • the first device may determine the number of UEs that have not yet accessed the first device based on the number of collisions detected by the first device during the last round of paging and the number of idle access opportunities, or based on The number of UEs that have successfully accessed the first device during the last round of paging (called the second number) determines the type of flag bit of the UE to be paged. The following is an example of determining the type of flag bit of the UE to be paged based on the second quantity.
  • the first device determines the type of the flag bit of the UE to be paged to be the same as the previous one. Different types of round paging. For example, if the type of the second flag bit of the UE paging in the previous round is the second type, the first device determines that the type of the first flag bit of the UE to be paged is the first type.
  • the maintenance time of the state of the first flag bit of the first type is longer than the maintenance time of the state of the second flag bit of the second type. If the second number is less than the second threshold, indicating that the number of previously paged UEs is relatively appropriate, the first device determines that the type of the first flag bit of the UE to be paged is the same as the type of the previous round of paging, or is understandable. The first device does not change the type of the flag bit of the UE to be paged in the previous round in this paging process of the current round.
  • the first device can randomly determine a state as the first state from the states of multiple flag bits.
  • the states of various flag bits may be pre-configured in the first device, for example, configured in the first device by a protocol.
  • the first device determines the initial state of the first flag bit as the first state.
  • the meaning of the initial state can be referred to the previous article.
  • the first device may determine the status of the first flag bit of the UE to be paged based on the second quantity.
  • the meaning of the second quantity may refer to the above.
  • the first device determines that the state of the first flag bit of the UE to be paged is adjusted to a state different from that in the previous round of paging process. If the second number is less than the second threshold, the first device determines that the state of the first flag bit of the UE to be paged is the same as the state of the previous round of paging.
  • the first state may be preconfigured in the first device, for example, preconfigured in the first device by a protocol.
  • the first device may determine the first type using any one of the above sub-modes A1 and A3, and may determine the first state using any one of the sub-modes B1 to B4.
  • Method 2 may be applicable to the situation where signaling 2 does not contain information indicating the first flag bit of the UE to be paged.
  • the first device can flexibly determine the information of the first flag bit by itself.
  • the first device can also search based on the previous round of The information of the flag bit used for paging is flexibly adjusted to the information of the first flag bit of the UE to be paged.
  • the first device may combine the above methods 1 and 2 to determine the information of the first flag bit of the UE to be paged.
  • signaling 2 indicates the first type, the first device determines the first type according to signaling 2, and the first device determines the first state by itself.
  • signaling 2 indicates the first state, the first device determines the first state according to signaling 2, and the first device determines the first type by itself.
  • the first state indicated by signaling 3 can be understood as a state used to indicate setting the first flag bit of the UE, and can also be used to indicate the selection of a UE whose set state satisfies the first state to access the first device.
  • Setting the status of the flag bit of the UE is, for example, setting the status of the flag bit of the UE that meets the second condition to the first state, and setting the status of the first flag bit of the UE that does not meet the second condition to the second state.
  • signaling 3 is also used to indicate mask information.
  • the meaning of the mask information may refer to the content discussed above.
  • the mask information may be determined by the first device or determined according to signaling 2.
  • signaling 3 is also used to indicate action information.
  • the meaning of the action information may refer to the content discussed in S401.
  • the first device may obtain the action information by referring to the first device to determine the content of the mask information.
  • signaling 3 is select signaling.
  • the first field in signaling 3 is used to indicate the first type and/or the first status.
  • the first field is, for example, the target field in the selection signaling. For example, if the value of the target field is 000, the first type is session S0.
  • signaling 3 is selection signaling and query signaling.
  • the first field is, for example, the session field and the target field in the query signaling.
  • the session field is used to indicate the first type, target.
  • Field is used to indicate the first status. For example, the value of the session field is 00, indicating that the first type is session S0, and the target field is 0, indicating that the status of session S0 is A.
  • the first device can page the UE through one signaling.
  • the first device can page the UE through signaling 3.
  • the first device may page the UE through two signalings.
  • the two signalings can be divided into first-level paging signaling and second-level paging signaling in sequence.
  • the information indicated by the second-level paging signaling may be the same as or different from the information indicated by the first-level paging signaling.
  • the second level paging signaling may be related to the first level paging signaling.
  • the second level paging signaling supplements the content indicated by the first level paging signaling.
  • the first level paging The signaling indicates the type of the first flag bit, and the second-level paging signaling indicates the status of the first flag bit.
  • the first-level paging instruction indicates the action information
  • the second-level paging instruction indicates the first state of the first flag, which is equivalent to the first-level paging instruction being performed for the state selected by the second-level paging instruction.
  • Select instructions For example, the second-level paging signaling adjusts the content indicated by the first-level paging signaling.
  • the first-level paging signaling indicates the second state of the first flag bit
  • the second-level paging signaling indicates the second state of the first flag bit.
  • the command indicates the first state of the first flag bit.
  • the first device when signaling 2 indicates multiple paging in one round of paging, the first device flexibly completes one paging based on one or two signalings. For example, the first device may page the UE through two signalings in the first paging, and the first device may page the UE through one signaling in the second paging. Since the first device does not need to page the UE through two signalings in each paging, it is beneficial to reduce the signaling overhead of the first device.
  • the first UE may directly determine whether to access the first device.
  • the first device is equivalent to paging the UE only through signaling 3, which is equivalent to signaling 3 alone triggering one paging in this round of paging.
  • the paging triggered by the signaling 3 can be regarded as this paging, or as the M-th paging.
  • one signaling 3 is equivalent to realizing the two signaling functions of selection signaling and query signaling, which is beneficial to saving the signaling overhead of the first device.
  • the content indicated by signaling 3 is different.
  • the first UE determines whether access is required based on the content indicated by signaling 3.
  • Example 1 signaling 3 indicates the first type.
  • the type of the first UE is the first type, it is determined to access the first device this time. If the type of the first UE is not the first type, it is determined not to access the first device this time.
  • Example 1 is applicable to the situation where the flag bit of a UE has one and only one type, and there are two UEs of different types.
  • the first device may determine the UE to be paged based only on the first type.
  • the type of the first UE is in the first state, it is determined to access the first device this time. If the type of the first UE is not in the first state, it is determined not to access the first device this time.
  • Example 2 is applicable to the situation where the flag bits of each UE are not differentiated by type, or the flag bits of any two UEs are of the same type.
  • Example 3 signaling 3 indicates action information and the first status.
  • the first UE changes the status of the first UE accordingly according to whether the second UE meets the second condition. For example, if the first UE meets the second condition, the status of the first UE is adjusted to A. If the first UE does not meet the second condition, adjust the status label of the first UE to B.
  • the adjusted state of the first UE is the first state, it is determined to access the first device this time. If the adjusted state of the first UE is not the first state, it is determined not to access the first device this time.
  • Example 3 is applicable to the situation where the flag bits of each UE are not differentiated by type, or the flag bits of any two UEs are of the same type.
  • Example 4 signaling 3 indicates the first type and the first state.
  • the first UE determines that the type of the flag bit of the first UE includes the first type, and the state of the flag bit corresponding to the first type is the first state, and then determines to access the first device this time. If the type of the first UE does not include the first type, and/or the state of the first type flag bit of the first UE is not the first state, it is determined not to access the first device this time.
  • Example 5 signaling 3 indicates the first type and action information.
  • the first UE changes the state corresponding to the first type according to whether it meets the second condition.
  • the first UE meets the second condition, it is determined to access the first device this time. If the type of the first UE does not include the first type, and/or the first UE does not meet the second condition, it is determined not to access the first device this time.
  • Example 6 signaling 3 indicates the first type, first status and action information.
  • the first UE adjusts the status corresponding to the first type according to whether it meets the second condition. If the adjusted state corresponding to the first type of the first UE is the first state, it is determined to access the first device this time. If the first UE determines that the adjusted state corresponding to the first type of the first UE is not the first state, it determines not to access the first device this time. In this case, the first state indicates that the UE meets the second condition, and the state of the flag bit of the UE is the state of the flag bit after the corresponding action information is executed.
  • signaling 3 is equivalent to information that directly indicates the flag bits that the UE to be paged needs to satisfy. In the case where the number of times indicated by the number of times information is once, signaling 3 is equivalent to indicating one paging and one access. If the number of times indicated by the number of times information is multiple times, then signaling 3 is equivalent to indicating one paging in one round of paging.
  • S404 may also be performed, that is, the first device sends signaling 4 to the first UE.
  • the first UE receives the signaling 4 from the first device.
  • Signaling 4 in the embodiment of this application can also be called fourth signaling.
  • the execution order of S404 and S403 can be arbitrary, for example, S403 is executed first, and then S404 is executed; or, Execute S404 first, and then execute S403.
  • signaling 3 only indicates one or two of the first type, first status and action information in the above example, and signaling 4 indicates the first type, first status and action information except signaling 3. Information other than what is indicated.
  • Signaling 4 is used to indicate the first state, which is equivalent to indicating that the UE whose current state of the first flag bit is the first state accesses the first device this time.
  • the first UE may determine whether to access the first device this time according to signaling 3 and signaling 4.
  • the first device is equivalent to paging the UE through two signalings, signaling 3 and signaling 4, which is equivalent to signaling 3 and signaling 4 triggering one paging in this round of paging.
  • signaling 3 can be regarded as the first-level paging signaling
  • signaling 4 can be regarded as the second-level paging signaling.
  • signaling 3 may be selection signaling and signaling 4 may be query signaling.
  • the paging indicated by signaling 3 and signaling 4 together is regarded as the current paging (also called the M-th paging).
  • the content indicated by signaling 3 and signaling 4 is different, so the content of the first UE determining whether to access the first device this time is also different, which will be introduced separately below.
  • Example 7 Signaling 3 indicates action information, and signaling 4 indicates the first state.
  • the first state indicated by signaling 4 can be understood as the state of the flag bit that determines the UE to access the first device.
  • the method for the first UE to determine whether to access the first device this time may refer to the content discussed in Example 3 above.
  • signaling 4 indicates the first state, and signaling 4 indicates action information.
  • the method for the first UE to determine whether to access the first device this time may refer to the content discussed in Example 3 above.
  • Example 9 signaling 3 indicates the first type, and signaling 4 indicates action information.
  • the content of the first UE determining whether to access the first device this time may refer to the content discussed in Example 5 above.
  • Example 10 signaling 3 indicates the first type, and signaling 4 indicates the first state.
  • the method for the first UE to determine whether to access the first device this time may refer to the content of Example 4 above.
  • signaling 3 indicates the first type and action information
  • signaling 4 indicates the first state.
  • the method for the first UE to determine whether to access the first device this time may refer to the content of Example 6 above.
  • signaling 3 and signaling 4 together indicate the UE accessing this time, completing a paging.
  • the first UE may determine whether to access the first device based on the information of the first flag bit after determining that the second condition of the first UE is met.
  • the first device when the first device does not need to change the state of the flag bit of the UE, the first device does not need to indicate action information. That is, in this case, neither signaling 3 nor signaling 4 needs to indicate action information.
  • the first device sends signaling 5 to the first UE.
  • the first UE receives the signaling 5 from the first device.
  • Signaling 5 in the embodiment of this application can also be called fifth signaling.
  • Signaling 5 may be used to indicate confirmation that the first UE accesses the first device.
  • signaling 5 confirms that the first UE accesses the first device by indicating the maximum time unit range of the first UE.
  • the maximum time unit range can be understood as a maximum range of time units, and the first UE can select a time unit within the maximum time unit range.
  • Time unit can be understood as a time domain resource.
  • the time unit is, for example, a radio frame, a subframe, a slot, a mini-slot, or orthogonal frequency division multiplexing (OFDM). )wait.
  • the time unit in the embodiment of this application may not be a time interval of fixed length, but a sending opportunity (or access opportunity) in the time domain. The duration of different sending opportunities may be the same or different.
  • the signaling 5 may be the aforementioned signaling 3 or signaling 4.
  • signaling 5 is equivalent to the previous signaling 3, it means that signaling 3 also indicates the maximum time unit range.
  • signaling 5 is equivalent to the previous signaling 4 Below, the equivalent of signaling 4 also indicates the maximum time unit range.
  • signaling 3 or signaling 4 may indicate the maximum time unit range of the first UE.
  • S405 does not need to be performed, that is, S405 is an optional step.
  • signaling 3 is also used to indicate the identification information of the UE to be paged.
  • the meaning of this identification information can be referred to the previous article.
  • the mask information is equivalent to the identification information indicated by signaling 3.
  • the first device selects a UE that matches the identification information to access.
  • the first UE sends the first request to the first device.
  • the first device receives the first request from the first UE.
  • the first UE may send a first request to the first device.
  • the first request is used to request access to the first device.
  • the first request in the embodiment of the present application is, for example, the third message (Msg3) in the random access process.
  • the first request may also be a random number or a random access request message.
  • S405-S406 is a situation that the UE may perform. For example, if the first UE determines not to access the first device, the first UE does not perform steps S405-S406, that is, S405-S406 are optional steps.
  • the first UE may send uplink data to the first device.
  • the first UE may change the first state of the first flag bit. In this way, the first UE can be prevented from being identified (or read, or written) by the first device multiple times in a round of paging (or inventory, or inventory, or access).
  • the first device pages a UE through information about a flag bit of the UE.
  • the first device successfully receives the uplink data from the UE, it is deemed that the first device has identified the UE.
  • the first device is a reader/writer and the UE is a tag. If the reader/writer successfully receives the electronic product code (EPC) of the tag from the tag, it is deemed that the reader/writer has processed the tag.
  • EPC electronic product code
  • the first device may also send signaling to initiate paging of the UE again for the next paging.
  • paging (or called the M+1th paging).
  • the next paging process can refer to this paging process and will not be listed here.
  • the signaling initiated by the first device to page the UE again may be a second-level paging signaling, so that the first device does not need to send the first-level paging signaling (i.e., the second level signaling) again. ), which is beneficial to reducing the signaling overhead of the first device.
  • the AMF may send signaling 6 to the second device at the second time (also called time T2).
  • Signaling 6 in the embodiment of this application can also be called sixth signaling.
  • the contents of signaling 2 and signaling 6 may be the same.
  • the manner in which the AMF can send the signaling 6 to the second device may refer to the content of the AMF sending the signaling 2 to the first device. This example may be applicable to the situation where signaling 2 indicates the information of the first flag bit and/or the action information. Wherein, the first device and the second device are of the same type of device.
  • the first device and the second device may be two adjacent access network devices.
  • the access network device serving the first device and the access network device serving the second device may be the same or similar. Neighbors; for another example, the first device and the second device are two adjacent cells under the same access network device; for another example, the first device can be replaced by the first cell, and the second device can be replaced by the second cell. substitute.
  • signaling 6 may indicate information about the second flag bit of the UE to be paged.
  • the information of the second flag bit may be determined based on the information of the first flag bit indicated by signaling 2.
  • the information of the second flag bit is used to indicate that the type of the second flag bit is the second type and/or the state is the second state.
  • the information in the second flag bit is used to indicate that the UE of the second type accesses the second device; for another example, the information in the second flag bit is used to indicate that the UE in the second state accesses the second device; and
  • the information of the second flag bit is used to indicate that the UE of the second type and the second state accesses the second device.
  • the second flag bit may be the same as or different from the previous first flag bit.
  • the second type may also be the same as or different from the first type of the first flag bit.
  • the second state may be the same as or different from the first state of the first flag.
  • the second state may be the initial state of the second flag.
  • the state of the second flag bit indicated by signaling 6 may be the first state. Since the state of the first flag bit of the UE that has successfully accessed the first device can be flipped to the second state, in this case, the second device can select to access the UE whose first flag bit is the first state. This reduces the situation where the first device and the second device repeatedly identify and communicate with UEs within the overlapping range.
  • the communication overlap range refers to the overlapping area of the communication coverage ranges of the first device and the second device.
  • the AMF indicates signaling 6 to the second device, this can prevent the state of the first flag bit of the UE that has successfully accessed the first device from returning to the first state, causing the UE to be duplicated by the second device. identification situation.
  • the absolute value of the time difference between the third time (i.e., T3 time) and the second time (i.e., T2 time) is less than the maintenance duration of the state after the state flip of the flag bit corresponding to the first type, and/ Or, the absolute value of the time difference between the third time (ie, time T3) and the second time (ie, time T2) is less than the maintenance duration of the state after the first state is reversed.
  • the AMF instructs the second device to page the UE, it may not need to indicate action information, and may directly indicate the type and/or status of the flag bit of the UE to be paged.
  • the second flag bit The type may be the first type and/or the state may be the first state, that is, the information of the second flag bit is the same as the information of the first flag bit, which allows UEs that meet the types and/or states of these flag bits to access the second flag bit. equipment.
  • the state after the first state is flipped may be the second state.
  • the third time (ie, time T3) is the time when the AMF determines that the first device completes this round of paging.
  • the AMF determines the time when the first indication information is received from the first device or the access network device as the third time.
  • the first indication information is used to instruct the first device to complete this round of paging.
  • the first device may send first indication information to the AMF, and the AMF determines the time when the first indication information is received as the third time.
  • the AMF when instructing the first device to perform this round of paging, the AMF indicates the end time of completing this round of paging through signaling 2. In this case, the AMF can directly use the end time of this round of paging as the third time.
  • the absolute value of the time difference between the first time (i.e., T1 time) and the second time (i.e., T2 time) is less than the maintenance duration of the state after the state flip of the flag bit corresponding to the first type, and/or , the absolute value of the time difference between the first time (i.e., time T1) and the second time (i.e., time T2) is less than the maintenance duration of the state after the first state flips.
  • the first device may indicate the information of the first flag bit of the UE to be paged without having to specifically determine which UEs to be paged.
  • the first device may indicate the first flag bit information of the UE according to the flag bit of the UE.
  • the information paging UE provides a mechanism for paging UE. Since the UE to be paged does not need to be specifically determined, the process of paging the UE can also be implemented, which is beneficial to simplifying the way in which the first device paging the UE.
  • the first device since the first device indicates the information of the first flag bit of the UE to be paged, one or more UEs can be paged without specifically indicating which UEs to page, which can reduce the paging signaling sent by the first device. (i.e., signaling 3), which is beneficial to reducing paging overhead.
  • the signaling 2 may also indicate frequency information, so that the first device can initiate multiple paging according to one signaling 2, which is beneficial to reducing the number of interactions between the first device and the first core network device.
  • the first device does not need to page the UE through two signalings in one paging, which is beneficial to improving the paging flexibility of the first device and reducing the signaling overhead of the first device.
  • the first core network device can also determine the information indicating the second flag bit of the second device based on the indicated first flag bit information of the first device. This can reduce the risk of the first device and the second device having the same UE. The case of duplicate identification.
  • FIG. 6 is a schematic flowchart of a paging method provided by an embodiment of the present application.
  • Figure 6 takes the signaling 2 involved in the embodiment shown in Figure 4 as an example indicating the first type and the first state.
  • the first device involved in the embodiment shown in Figure 4 determines the first type and the first state according to the signaling 2.
  • a state that is, the first type and the first state are determined using the above-mentioned method 1
  • the signaling 3 involved in the embodiment shown in FIG. 4 includes the first type, the first state and the action information is introduced as an example.
  • AF sends signaling 1 to AMF.
  • AMF receives signaling 1 from AF.
  • Signaling 1 is used to page the UE. The meaning of signaling 1 can refer to the content discussed above.
  • the SMF may also send signaling 1 to the AMF.
  • the AMF can directly page the UE without triggering by other core network devices (such as AF).
  • S601 does not need to be performed, that is, S601 is an optional step.
  • the AMF sends signaling 2 to the first device.
  • the first device receives the signaling 2 from the AMF.
  • the meaning of signaling 2 can refer to the content discussed above.
  • the method for the AMF to send signaling 2 to the first device can be referred to the previous section and will not be listed here.
  • the first device determines the first type and/or the first state according to signaling 2.
  • signaling 2 implicitly indicating the first type and the first state as an example.
  • signaling 2 includes at least one of the following information (1) to (5).
  • Frequency information which is used to indicate the frequency of paging by the first device. It can be further understood that the frequency information indicates the frequency of paging performed by the first device in this round of paging. It can be understood that the frequency information of the first device in signaling 2 indicates the frequency of initiated paging. For example, the frequency information indicates that the first device initiates 2 pagings every minute (min).
  • Times information The meaning of the times information can be referred to the previous article. For example, the number of times information indicates that the first device initiates 5 pagings to the UE.
  • Accuracy rate information which is used to indicate the accuracy rate of accessing the first device.
  • the accuracy rate can also be called the success rate.
  • the accuracy rate may be expressed as a ratio between the number of UEs that successfully page the first device and the number of UEs that the first device performs paging on.
  • the number of UEs for which the first device performs paging may be understood as the number of UEs for which the first device initiates paging.
  • Quantity information which is used to indicate the order of magnitude of UEs expected to page the first device.
  • the order of magnitude may be understood as a scale or size level of the number of UEs expected to page the first device, for example, a thousand level or a hundred level, etc.
  • Paging time information which is used to indicate the start time and/or end time of the first device to perform paging.
  • the start time of performing paging can be understood as the start time of the first device performing the first paging under the instruction of signaling 2, for example, with the first The device receives signaling 2 as the start time to perform paging.
  • the end time of performing paging can be understood as the time when the first device performs paging for the last time under the instruction of signaling 2. For example, take the time when the first device last sent paging signaling (such as signaling 3 or signaling 4) to the UE under the instruction of signaling 2.
  • the meanings of signaling 3 and signaling 4 can be referred to the above.
  • the start time of performing paging can be understood as the time when the first device starts this paging under the instruction of signaling 2.
  • signaling 2 may achieve paging the UE by indicating at least one of the above information (1) to (5). Or signaling 2 may be used alone to page the UE and also indicate at least one of the above information (1) to (5), which is not limited in the embodiment of the present application.
  • the above information (1) to (5) may be determined by the AMF according to business requirements, or obtained by the AMF from other core network devices (such as AF), which is not limited in the embodiments of this application.
  • signaling 2 may also include mask information.
  • the meaning of the mask information may refer to the content discussed above.
  • AMF can determine the mask information based on service requirements, or obtain the mask information based on signaling 2.
  • the first core network device may be an SMF.
  • the AMF in S601 and S602 may be replaced by an SMF.
  • the first device sends signaling 3.
  • one or more UEs receive signaling 3 from the first device.
  • the first UE receives the signaling 3, and that the signaling 3 includes the first type and the first state.
  • the first device determines that the type of the flag bit of the UE to be paged is the first type and/or the status is the third type according to the information indicated by signaling 3 (that is, the first device adopts the above method one).
  • One state is taken as an example to introduce.
  • the first device determines the requirements for the state change conditions of the flag bit state of the UE to be paged (for example, the length of time the state needs to be maintained) according to the signaling 3. Since the same state corresponds to different types of flag bits, the duration of maintenance under the first condition is different, and/or there are at least two states among multiple states that have different durations of maintenance under the first condition, so the first condition A device may determine that the type of the flag bit corresponding to the state that matches the duration requirement is determined as the first type, and/or the first device determines the flag bit state that matches the duration requirement as the first state.
  • the information indicated by signaling 2 is different, and the way in which the first device determines the first type and/or the first state is introduced below.
  • Signaling 2 is used to indicate the above information (1), that is, frequency information.
  • the first device may determine that the state maintained for a shorter duration is the first state, and/or It is determined that the type corresponding to the state maintained for a shorter duration is the first type.
  • the smaller the frequency indicated by the frequency information the longer the time interval between the first device performing two pagings.
  • the first device determines that the state maintained for a longer period of time is the first state, and/or determines The type corresponding to the state maintained for a longer duration is the first type.
  • Signaling 2 is used to indicate the above information (2), that is, the frequency information.
  • the first device determines that the state maintained for a relatively short duration is the first state, and/ Or determine that the type corresponding to the state maintained for a relatively short duration is the first type.
  • the first device determines that the state maintained for a relatively long time is the first state, and/or determines to maintain the paging state.
  • the type corresponding to the state with a relatively long duration is the first type.
  • Signaling 2 is used to indicate the above information (3), that is, accuracy information.
  • Signaling 2 is used to indicate the above information (4), that is, quantity information.
  • the first device may determine that the state maintained for a longer duration is the first state, and/or determine that the type corresponding to the state maintained for a longer duration is the first type.
  • the smaller the magnitude indicated by the quantity information the smaller the number of UEs that the first device needs to access, and the processing load of the first device to perform one paging is relatively smaller. Therefore, in this case, the first device may determine that the state maintained for a longer period of time is the first state, and/or determine The type corresponding to the state maintained for a longer duration is the first type.
  • Signaling 2 is used to indicate the above information (5), that is, access time information.
  • the first device may determine the duration of each paging based on the number of paging performed after the start time and the current time. Alternatively, if the paging time information indicates the end time, the first device may determine the duration of each paging based on the number of pagings performed after the start time and the current time. Alternatively, if the paging time information indicates a start time and an end time, the first device may determine the duration of each paging.
  • the first device may determine that the state maintained for a shorter duration is the first state, and/or determine that the type corresponding to the state maintained for a shorter duration is the first type. If the duration of each paging is relatively long, the first device may determine that the state maintained for a longer duration is the first state, and/or determine that the type corresponding to the state maintained for a longer duration is the first type.
  • the first device can combine the two or more pieces of information to determine The state corresponding to the type of the flag bit of the UE to be paged or the state change condition requirement of the state of the flag bit, and then determine the type corresponding to the requirement of the state change condition as the first type of the flag bit and/or related to the state
  • the status of the requirement matching of the changing conditions is the status of the flag bit.
  • the first state may be an initial state.
  • the meaning of the initial state can be referred to the previous article.
  • signaling 3 may also indicate mask information.
  • the meaning of the mask information and the method for the first device to obtain the mask information can be referred to the above.
  • signaling 3 may also indicate action information.
  • the meaning of the action information and the method for the first device to obtain the action information can be referred to the above.
  • signaling 3 also indicates action information as an example.
  • the action information may be determined by the first device according to signaling 2, or determined by the first device itself, which is not limited in this embodiment of the present application.
  • signaling 3 is also used to indicate mask information.
  • the first UE determines that the second condition of the first UE is met, it then determines whether to access the first device based on the information of the first flag bit.
  • the first UE changes the state of the first flag bit of the first UE.
  • the second field of signaling 3 is used to indicate action information as an example.
  • the corresponding status change content under different values of the second field can be shown in Table 1. It should be noted that Table 1 is an example introduction to the second field, status changes, status, etc.
  • the first UE when the value of the second field in signaling 3 is 000, if the first UE meets the second condition, the first UE changes the state of the first flag bit (in Table 1 (indicated by arrow “ ⁇ ”) is A. If the first UE does not meet the second condition, the state of the first flag bit of the first UE is changed to B.
  • the first UE changes the state of the first flag bit to A. If the first UE does not meet the second condition, the state of the first flag bit of the first UE is not changed.
  • the first UE does not change the state of the first flag bit. If the first UE does not meet the second condition, the state of the first flag bit of the first UE is changed to B.
  • the first UE sets the state of the first flag bit of the first UE to the opposite state, for example, Declaration changes to non-declaration, non-declaration changes to declaration, or changes from A to B, or from B to A. If the first UE does not meet the second condition, the first UE does not change the state of the first flag bit. It should be noted that declaration and non-declaration have nothing to do with the type of the first flag bit, that is, the state of any flag bit of a UE is either declared or non-declared.
  • the first UE When the value of the second field in signaling 3 is 100, if the first UE meets the second condition, the first UE changes the state of the first flag bit of the first UE to B. If the first UE does not meet the second condition, the first UE changes the state of the first flag bit to A.
  • the first UE changes the state of the first flag bit to B. If the first UE does not meet the second condition, the first UE does not change the state of the first flag bit.
  • the first UE does not change the state of the first flag bit. If the first UE does not meet the second condition, the first UE changes the state of the first flag bit to A.
  • the first UE does not change the state of the first flag bit. If the first UE does not meet the second condition, the first UE sets the state of the first flag bit to the opposite state, for example, changes from asserted to unasserted, unasserted to asserted, or changes from A to B, or from B changes to A.
  • step S604 is optional.
  • the first device sends signaling 5.
  • one or more UEs receive signaling 5 from the first device.
  • the meaning of signaling 5 can be referred to the previous article.
  • the signaling 5 may be the aforementioned signaling 3 or signaling 4.
  • signaling 5 is equivalent to the previous signaling 3, it means that signaling 3 also indicates the maximum time unit range.
  • signaling 5 is equivalent to the previous signaling 4, the equivalent signaling 4 also indicates the maximum time unit range.
  • the maximum time unit range indicated by signaling 5 may be indicated by signaling 3 or signaling 4.
  • S605 does not need to be performed, that is, S605 is an optional step.
  • the first UE sends the first request to the first device.
  • the first device receives the first request from the first UE.
  • the meaning of the first request may refer to the content discussed above.
  • the first UE can determine whether to access the first device this time according to signaling 3 as an example.
  • Line introduction The method of determining whether to access the first device may refer to the content discussed in Example 6 above, and will not be listed here.
  • S607 The first UE sends uplink data to the first device.
  • the uplink data is, for example, the EPC of the first UE, etc.
  • S606-S607 is equivalent to completing this access.
  • S606-S607 are an example of a way for the first UE to access the first device this time. In fact, there are many ways for the first UE to access the first device this time. When the first UE uses other ways to access the first device, When using a single device, S606-S607 may not need to be executed, that is, S606-S607 are optional steps.
  • the first device sends signaling 7 to the first UE.
  • the first UE receives the signaling 7 from the first device.
  • Signaling 7 is used to indicate the maximum time unit range of the first UE.
  • Signaling 7 in the embodiment of this application can also be called eighth signaling.
  • the maximum time unit range indicated by signaling 7 is different from the maximum time unit range indicated by signaling 5.
  • the difference between the two maximum time unit ranges means that the two maximum time unit ranges do not completely overlap, or do not overlap at all.
  • the first device determines the number of UEs that have been paged this time (also called the first number).
  • the first number can be understood as the number of UEs that the first device actually pages (inventory, inventory or access) through signaling 3. , or it can be understood as the number of UEs actually paged through signaling 3 and signaling 4, or it can be further understood as this paging (that is, paging through signaling 3, or paging through signaling 3 and signaling 4 )
  • the meaning of collision can be referred to the previous article.
  • the first device may determine the number of successfully parsed uplink data as the first number. If the first number is greater than or equal to the first threshold, then the first UE is more likely to collide with other UEs, so the first device can send signaling 7, thereby reducing collisions between UEs and improving communication reliability. sex.
  • the first device After receiving the uplink data of the first UE, the first device determines that it cannot correctly parse the uplink data. Then the first device determines that the first UE may have collided with other UEs. In this case, the first device may Send signaling 7 to the first UE.
  • the first device may not adjust the maximum time unit range of the first UE.
  • the first device may not perform step S608, that is, S608 is an optional step.
  • S609 The first UE changes the state of the first flag bit of the first UE.
  • the first UE After completing this communication (access) between the first UE and the first device, the first UE can change the state of its first flag bit, thereby reducing the risk of the first device triggering the first UE again in this paging. Possibility of access. For example, the first UE changes the state of the first flag from the first state to the second state. The meaning of this paging can be referred to the previous article.
  • the first device sends signaling 8.
  • one or more UEs receive signaling 8 from the first device.
  • the second UE receives signaling 8 as an example.
  • Signaling 8 is used to indicate information about the second flag of the UE to be accessed next time.
  • the information of the second flag bit is used to indicate that the type of the second flag bit is the second type and/or the state of the second flag bit is the second state.
  • the second type and the first type may be different, and the second state and the first state may also be different.
  • Signaling 8 in the embodiment of this application can also be called third signaling.
  • the first device may continue to initiate the next paging after completing one paging.
  • the first device may determine the type of flag bit and/or the status of the flag bit of the UE to be paged next according to the first quantity.
  • the meaning of the first quantity may refer to the above.
  • the first device determines The type of the second flag bit of the UE being paged next time is adjusted to the second type, and/or the state of the second flag bit is adjusted to the second state. If the first number is less than the first threshold, indicating that the number of previously paged UEs is relatively appropriate, the first device determines the number of UEs for the next paging.
  • the type of the flag bit of the UE is the first type, and/or the state of the flag bit is the first state.
  • an introduction is given as an example in which the type of the second flag bit of the UE to be paged next time is the second type and/or the state of the flag bit is the second state.
  • the second UE After the second UE receives the signaling 8, it may determine whether to access the first device according to the signaling 8.
  • the method of determining whether to access the first device based on signaling 8 may refer to the previous method of determining whether to access the first device based on signaling 3, which will not be listed here.
  • signaling 8 can be regarded as a second level paging signaling.
  • the UEs to be paged determined by the two paging initiated by the first device may be exactly the same, partially the same or completely different. For example, if the first device initiates paging to the first UE and fails to receive uplink data from the first UE, the first device may initiate paging to the first UE again. For another example, the first device initiates paging to the first UE and receives uplink data from the first UE. The first device may initiate paging to the second UE. For another example, the first device initiates paging to the first UE and the second UE, receives uplink data from the first UE, and does not receive uplink data from the second UE. The first device may initiate paging to the second UE again.
  • the AMF may determine the information of the second flag of the UE to be paged by the second device based on the information of the first flag to be paged, and send signaling 6 to the second device.
  • the meaning of signaling 6, the content of the information in which AMF determines the second flag bit, the meaning of the information in the second flag bit, the relationship between the first device and the second device, and the time when AMF sends signaling 6 can be referred to.
  • the content discussed above in the embodiment shown in Figure 4 will not be listed here.
  • steps S604-S610 are all optional steps.
  • the first core network device may indirectly indicate the first type and/or the first state through signaling 2, and the first device may determine the first type and/or the first status according to signaling 2. /or the first state, thereby determining the UE to be paged, and providing a mechanism for paging the UE. Moreover, since it is not necessary to specifically determine which UEs are to be paged, the paging process can be simplified. Moreover, the first device can determine the first type and/or the first state according to the indirect instruction of the first core network device, so that the current paging of the first device can meet the service requirements without the need for the first core network device to determine the first status.
  • a type and/or a first state is beneficial to reducing the processing load of the first core network device.
  • the first core network device may instruct the first device to initiate multiple paging to the UE through one signaling, which is beneficial to reducing the number of interactions between the first device and the first core network device.
  • FIG. 7 is a schematic flow chart of a paging method provided by an embodiment of the present application.
  • the signaling 2 involved in the embodiment shown in Figure 4 does not indicate the first type and/or the first state, and that the signaling 3 indicates the first type is taken as an example.
  • the involved first device determines the flag bit information of the UE to be paged by itself (that is, uses the above method 2 to determine the first type) as an example for introduction.
  • AF sends signaling 1 to AMF.
  • AMF receives signaling 1 from AF.
  • Signaling 1 is used to page the UE.
  • signaling 1 can be used to indicate the number of times information.
  • the meaning of the frequency information can refer to the content discussed above.
  • the AMF can directly page the UE without triggering from other core network devices (such as AF).
  • S701 does not need to be performed, that is, S701 is an optional step.
  • the AMF sends signaling 2 to the first device.
  • the first device receives signaling 2 from the AMF.
  • Signaling 2 is used to page the UE.
  • signaling 2 can be used to indicate the number of times information.
  • the meaning of the frequency information can refer to the content discussed above.
  • the method for the AMF to send the signaling 2 to the first device can be referred to the above, and will not be listed here.
  • the first core network device may be an SMF.
  • the AMF in S701 and S702 may be replaced by an SMF.
  • the first device sends signaling 3.
  • one or more UEs receive signaling 3 from the first device.
  • Signaling 3 is used to indicate that the type of the flag bit of the UE to be paged is the first type.
  • the introduction is made by taking signaling 2 that does not indicate the first type as an example.
  • the first device can determine the first type by itself.
  • the first device may determine the first type by using any one of the foregoing sub-methods A1 to A3, which is not limited in this embodiment of the present application.
  • the first device determines the state of the type of the first flag bit as the initial state.
  • the first device determines the state of the type of the first flag bit as the initial state, and determines the first state as the initial state of the first flag bit. In other words, it is equivalent to the first device selecting the UE in the first state to access.
  • signaling 3 is also used to indicate action information.
  • the meaning of the action information and the way in which the first device determines the action information can be referred to the above.
  • signaling 3 is also used to indicate mask information.
  • signaling 3 indicates mask information
  • the first UE determines that the second condition of the first UE is met, it then determines whether to access the first device based on the information of the first flag bit.
  • the first UE changes the state of the first flag bit of the first UE.
  • the first UE changes the state of the flag bit of the first UE according to the instruction of signaling 3.
  • the method of changing the state of the flag bit of the first UE may refer to the above.
  • the first device sends signaling 4.
  • one or more UEs receive signaling 4 from the first device.
  • signaling 4 is used to indicate that the state of the flag bit of the UE to be paged is the first state.
  • S705 and S703 can be arbitrary. For example, S703 is executed first, and then S704 is executed; or S704 is executed first, and then S703 is executed.
  • Signaling 4 is optional signaling. When signaling 3 only contains part of the first flag information, such as only action information and flag information, the fourth signaling can be sent.
  • the first device sends signaling 5 to the first UE.
  • the first UE receives the signaling 5 from the first device.
  • the meaning of signaling 5 can be referred to the previous article.
  • the first UE sends the first request to the first device.
  • the first device receives the first request from the first UE.
  • the first request is used to request access to the first device.
  • the content of the first request may refer to the content discussed above and will not be listed here.
  • the first UE sends uplink data to the first device.
  • the first device receives uplink and downlink data from the first UE.
  • the meaning of the uplink data can be referred to the previous article.
  • the first device sends signaling 7 to the first UE.
  • the first UE receives the signaling 7 from the first device.
  • the content of signaling 7 may refer to the content discussed above.
  • the first UE changes the state of the first flag bit of the first UE.
  • the manner in which the first UE changes the state of its first flag bit may refer to the foregoing.
  • the first device sends signaling 8.
  • One or more UEs receive signaling 8.
  • the second UE may be the same as or different from the first UE.
  • Signaling 8 is used to indicate information about the second flag bit of the UE to be paged next time.
  • the information of the second flag bit is used to indicate that the type of the second flag bit is the second type and/or the state of the flag bit is the second state.
  • the meaning of signaling 8 can be referred to the previous article.
  • the manner in which the first device determines the second type and/or the second state may refer to the content discussed above. And the method for the second UE to determine whether to access the first device according to the signaling 8 may refer to the content discussed above.
  • the first core network device may determine the UE to be paged by the second device based on the information of the first flag bit. information of the second flag bit, and sends signaling 6 to the second device.
  • the meaning of signaling 6, the content of the information in which AMF determines the second flag bit, the meaning of the information in the second flag bit, the relationship between the first device and the second device, and the time when AMF sends signaling 6 can be referred to.
  • the content discussed above in the embodiment shown in Figure 4 will not be listed here.
  • the first device does not need to perform steps S704-S710, that is, S704-S710 are optional steps.
  • the first core network device (such as AMF) does not need to indicate the first type and/or the first state.
  • the first device can determine the first type and/or the first state by itself, thereby paging UE provides a mechanism for paging UE.
  • the process of paging the UE can be simplified.
  • the first device can determine the first type and/or the first state by itself, thereby reducing the processing load of the first core network device.
  • the first device can determine the UE to be paged according to signaling 3, and determine the UE accessed this time through signaling 4, so that the first device can flexibly determine the status of the flag bit of the UE to be paged.
  • the first device can also adjust the type and/or status of the flag bit for paging the UE next time based on the situation of paging the UE this time, which is helpful for the first device to determine a UE that better meets the business requirements, and also improves the efficiency of paging the UE. This provides the flexibility for the first device to trigger UE access.
  • FIG. 8 is a schematic structural diagram of a possible communication device provided by an embodiment of the present application.
  • the communication device 800 includes a receiving module 801 , a sending module 802 and a processing module 803 .
  • the processing module 803 is an optional module.
  • the communication device 800 can be used to implement the functions of the first device in the above-mentioned Figure 4, Figure 6 or Figure 7, and therefore can also achieve the beneficial effects of the above-mentioned method embodiments.
  • the receiving module 801 is configured to receive the first signaling from the first core network device, and the sending module 802 is configured to send the second signaling to the first device.
  • the processing module 803 may be used to determine the first type and/or the first state.
  • the receiving module 801 can implement the steps of S402, and the sending module 802 can implement the steps of S403.
  • the receiving module 801 can implement the step S602, and the sending module 802 can implement the step S603.
  • the receiving module 801 can implement the steps of S702, and the sending module 802 can implement the steps of S703.
  • Figure 9 is a schematic structural diagram of a possible communication device provided by an embodiment of the present application.
  • the communication device 900 includes a transceiver module 901 and a processing module 902.
  • the communication device 900 can be used to implement the functions of the first terminal device (for example, the first UE) in the above-mentioned Figure 4, Figure 6 or Figure 7, and therefore can also achieve the beneficial effects of the above-mentioned method embodiments.
  • the transceiver module 901 may be configured to receive the second signaling from the first device under the control of the processing module 902.
  • the processing module 902 may be used to change the status of the flag bit of the first UE.
  • the transceiver module 901 can implement the steps of S403.
  • the transceiver module 901 can implement the step S603.
  • the transceiver module 901 can implement the steps of S703.
  • FIG 10 is a schematic structural diagram of a possible communication device provided by an embodiment of the present application.
  • the communication device 1000 includes a transceiver module 1001 and a processing module 1002.
  • the communication device 1000 can be used to implement the above-mentioned FIG. 4 and FIG. 6 Or the function of the first core network device (for example, AF) in Figure 7, so the beneficial effects of the above method embodiments can also be achieved.
  • the first core network device for example, AF
  • the transceiver module 1001 is used to send the first signaling to the first device.
  • the transceiver module 1001 is configured to receive the seventh signaling from the second core network device.
  • the processing module 1002 is used to determine the first type and/or the first state.
  • the transceiver module 1001 can implement steps S401 and S402.
  • the transceiver module 1001 can implement steps S601 and S602.
  • the transceiver module 1001 can implement steps S701 and S702.
  • Figure 11 is a schematic structural diagram of a possible communication device provided by an embodiment of the present application.
  • the communication device 1100 includes a processor 1101 and a communication interface 1102 .
  • the processor 1101 and the communication interface 1102 are coupled to each other.
  • the communication interface 1102 may be a transceiver or an input-output interface.
  • the communication device 1100 may also include a memory 1103 for storing instructions executed by the processor 1101 or input data required for the processor 1101 to run the instructions or data generated after the processor 1101 executes the instructions.
  • the communication device 1100 can be used to implement the functions of the first device in any of the above embodiments, or can be used to implement the functions of the communication device 800 shown in FIG. 8 .
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • processor 1101 and memory 1103 may be coupled.
  • Figure 12 is a schematic structural diagram of a possible communication device provided by an embodiment of the present application.
  • the communication device 1200 includes a processor 1201 and a communication interface 1202 .
  • the processor 1201 and the communication interface 1202 are coupled to each other.
  • the communication interface 1202 may be a transceiver or an input-output interface.
  • the communication device 1200 may also include a memory 1203 for storing instructions executed by the processor 1201 or input data required for the processor 1201 to run the instructions or data generated after the processor 1201 executes the instructions.
  • the communication device 1200 can be used to implement the functions of the first terminal device (such as the first UE) in any of the above embodiments, or can be used to implement the functions of the communication device 900 shown in Figure 9 .
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • processor 1201 and memory 1203 may be coupled.
  • Figure 13 is a schematic structural diagram of a possible communication device provided by an embodiment of the present application.
  • the communication device 1300 includes a processor 1301 and a communication interface 1302.
  • the processor 1301 and the communication interface 1302 are coupled to each other.
  • the communication interface 1302 may be a transceiver or an input-output interface.
  • the communication device 1300 can also A memory 1303 is included for storing instructions executed by the processor 1301 or input data required for the processor 1301 to run the instructions or data generated after the processor 1301 executes the instructions.
  • the communication device 1300 can be used to implement the functions of the first core network device (such as the AMF) in any of the above embodiments, or can be used to implement the functions of the communication device 1000 shown in Figure 10 .
  • the first core network device such as the AMF
  • the processor in the embodiment of the present application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • processor 1301 and memory 1303 may be coupled.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the base station or terminal. Of course, the processor and the storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种寻呼方法及装置,涉及通信技术领域。在该寻呼方法中,第一核心网设备可向第一设备发送第一信令,以指示第一设备寻呼终端设备,第一设备可发送第二信令,该第二信令可用于指示第一标志位的信息,所述第一标志位的信息用于指示待寻呼的终端设备的标志位的类型为第一类型和/或状态为第一状态,如此以确定待寻呼的终端设备,从而提供了一种寻呼终端设备的机制,无需具体确定寻呼哪个终端设备,有利于简化寻呼终端设备的过程。

Description

一种寻呼方法及装置
相关申请的交叉引用
本申请要求在2022年05月30日提交中国专利局、申请号为202210605628.9、申请名称为“一种寻呼方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种寻呼方法及装置。
背景技术
射频识别(radio-frequency identification,RFID)系统包括RFID标签(简称为标签)和读写器。读写器可与其通信覆盖范围内的标签建立通信。读写器还可对标签执行读取和写入操作等。
目前考虑将标签接入蜂窝网络,但在蜂窝网络中如何寻呼标签,这是亟需解决的问题。
发明内容
本申请提供了一种寻呼方法及装置,用于提供一种寻呼标签的机制。
第一方面,本申请实施例提供一种寻呼方法,该方法可由第一设备执行,或者由芯片系统执行,芯片系统可实现第一设备的功能。下文以第一设备执行为例进行说明。所述方法包括:接收来自第一核心网设备的第一信令,所述第一信令用于寻呼终端设备;发送第二信令,所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
在本申请实施例中,第一设备可发送第二信令,第二信令指示了待寻呼的终端设备的第一类型和/或第一状态,使得终端设备接收第二信令之后,可确定该终端设备是否为本次寻呼的终端设备,例如一种终端设备为标签,相当于本申请实施例提供了一种寻呼标签的机制。在本申请实施例中,第一设备可基于标志位的类型和/或状态寻呼终端设备,而无需核心网设备或第一设备确定需要寻呼的终端设备具体是哪些,有利于简化寻呼过程。并且,标签被配置有相应的标志位的类型和状态等信息,因此在本申请实施例中无需对标签进行改动就能实现对标签的寻呼,有利于降低寻呼标签的成本,且有利于与已有技术兼容。并且本申请实施例可寻呼符合该第二信令指示的多个终端设备,提供了一种支持批量寻呼的方式。
在一种可能的实施方式中,所述第一信令还用于指示所述第一类型和/或所述第一状态。
在该实施方式中,可由第一核心网设备向第一设备指示第一类型和/或第一状态,从而不必第一设备自行确定第一类型和/或第一状态,减少了第一设备的处理量。
在一种可能的实施方式中,所述第一信令包括如下信息的至少一种:频率信息,所述频率信息用于指示所述第一设备寻呼终端设备的频率;或,次数信息,所述次数信息用于 指示所述第一设备寻呼终端设备的次数;或,准确率信息,所述准确率信息用于指示成功寻呼所述第一设备的终端设备的数量与执行寻呼所述第一设备的终端设备的数量之间的比值;或,数量信息,所述数量信息用于指示预期寻呼所述第一设备的终端设备的数量级;或,寻呼时间信息,所述寻呼时间信息用于指示所述第一设备执行寻呼的开始时间和/或结束时间。
在该实施方式中,第一信令可隐式指示第一类型和/或第一状态,例如第一信令指示频率信息、次数信息、准确率信息、数量信息以及寻呼时间信息中的一种或多种信息,一方面,第一设备可根据第一信令中的这些信息,确定第一类型和/或第一状态,另一方面,由于这些信息一定程度上反映了业务需求,这使得第一设备基于这些信息确定出的第一类型和/或第一状态更满足业务需求。
在一种可能的实施方式中,所述方法还包括:从标志位的多种类型中,随机确定一种类型为所述第一类型;和/或,所述第一状态为所述第一标志位的初始状态。
在该实施方式中,第一设备可从多种标志位的类型中随机确定出第一类型,使得第一设备可灵活地确定第一类型。另外,第一设备还可将第一标志位的初始状态确定为第一状态,第一设备确定第一状态的方式较为简单。
在一种可能的实施方式中,所述方法还包括:根据所述第一设备通过所述第二信令寻呼的终端设备的第一数量,发送第三信令,所述第三信令用于指示下一次待寻呼的终端设备的第二标志位的信息,所述第二标志位的信息包括所述第二标志位的类型为第二类型和/或状态为第二状态,且所述第三信令用于确定所述下一次待寻呼的终端设备。
在该实施方式中,第一设备在自行确定第一类型和/或第一标签的情况下,第一设备可根据本次寻呼第一设备的终端设备的数量,确定下一次寻呼的终端设备的标志位的信息,例如,本次寻呼第一设备的终端设备的数量大于第一阈值,那么表示多个终端设备在同个时间单元上向第一设备发送上行数据(即多个终端设备发生碰撞)的可能性更大,因此第一设备可调整下一次寻呼的终端设备的标志位的信息与本次寻呼的终端设备的标志位的信息不同,从而有利于减少多个终端设备之间的碰撞。
在一种可能的实施方式中,所述方法还包括:所述第二信令还用于指示动作信息,所述动作信息用于指示改变终端设备的所述第一标志位的状态。
在该实施方式中,第二信令还可指示改变终端设备的标志位的状态,以便于第一设备接入更符合需求的标志位的状态的终端设备。
在一种可能的实施方式中,所述方法还包括:发送第四信令,所述第四信令用于指示动作信息,所述动作信息用于指示改变终端设备的所述第一标志位的状态,和/或用于指示所述第一标志位的状态为所述第一状态。
在该实施方式中,第一设备可通过第四信令指示动作信息,和/或指示第一标志位的状态为第一状态的终端设备接入,而无需通过第二信令进行指示,这样使得第一设备可以更灵活地进行指示。
在一种可能的实施方式中,所述第二信令还用于指示所述待寻呼的终端设备向所述第一设备发送数据的最大时间单元范围;或者,所述方法还包括:发送第五信令,所述第五信令用于指示所述待寻呼的终端设备向所述第一设备发送数据的最大时间单元范围。
在该实施方式中,提供了第一设备向终端设备指示时域资源的可能的方式。例如,第一设备可通过第二信令指示最大时间单元范围,有利于减少终端设备与第一设备之间的交 互次数;或者例如,第一设备可通过第五信令指示最大时间单元范围,有利于第一设备更为灵活地指示一个终端设备的最大时间单元范围。
在一种可能的实施方式中,所述第一信令为非接入层信令。
在该实施方式中,第一核心网设备可直接通过第一设备向终端设备发送第一信令,而无需第一设备感知第一信令的内容,有利于减少第一设备的处理量。
第二方面,本申请实施例提供一种寻呼方法,该方法可由第一终端设备执行,或者由芯片系统执行,芯片系统可实现第一终端设备的功能。下文以第一终端设备执行为例进行说明。所述方法包括:接收来自第一设备的第二信令,所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
在一种可能的实施方式中,所述第二信令用于指示改变终端设备的所述第一标志位的状态。
在一种可能的实施方式中,所述方法还包括:接收来自所述第一设备的第四信令,所述第四信令用于指示动作信息,所述动作信息用于指示改变终端设备的所述第一标志位的状态,和/或用于指示所述第一标志位的状态为所述第一状态。
在一种可能的实施方式中,所述方法还包括:接收来自所述第一设备的第三信令,所述第三信令用于指示下一次待寻呼的终端设备的第二标志位的信息,所述第二标志位的信息包括所述第二标志位的类型为第二类型和/或状态为第二状态,且所述第三信令用于确定所述下一次待寻呼的终端设备,所述第二标志位的信息是根据所述第一设备通过所述第二信令寻呼的终端设备的第一数量确定的。
第三方面,本申请实施例提供一种寻呼方法,该方法可由第一核心网设备执行,或者由芯片系统执行,芯片系统可实现第一核心网设备的功能。下文以第一核心网设备执行为例进行说明。所述方法包括:向第一设备发送第一信令,所述第一信令用于指示第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
在一种可能的实施方式中,接收第二核心网设备的第七信令,所述第七信令用于寻呼终端设备。在该实施方式中,第一核心网设备可在第二核心网设备的触发下,寻呼终端设备。
在一种可能的实施方式中,所述第一信令包括如下的至少一种:所述第一信令包括如下信息的至少一种:频率信息,所述频率信息用于指示所述第一设备寻呼终端设备的频率;或,次数信息,所述次数信息用于指示所述第一设备寻呼终端设备的次数;或,准确率信息,所述准确率信息用于指示所述第一设备成功寻呼的终端设备的数量与所述第一设备执行寻呼的终端设备的数量之间的比值;或,数量信息,所述数量信息用于指示所述第一设备预期寻呼的终端设备的数量级;或,寻呼时间信息,所述寻呼时间信息用于指示所述第一设备执行寻呼的开始时间和/或结束时间。
在一种可能的实施方式中,所述第一信令为非接入层信令。
在一种可能的实施方式中,所述方法还包括:向第二设备发送第六信令,所述第六信令用于指示待寻呼的终端设备的第二标志位的信息,所述第二标志位的信息用于指示所述第二标志位的类型为第二类型和/或状态为第二状态,且所述第二标志位的信息用于确定待寻呼的终端设备,所述第二标志位的信息是根据所述第一标志位的信息确定的。
在该实施方式中,第二标志位的信息也可以理解为指示满足该第二标志位的信息的终端设备接入第二设备。其中,第二设备和第一设备的通信覆盖范围可能部分重叠,在该实施方式中,第一核心网设备可根据第一设备寻呼所采用的第一标志位的信息,确定第二设备寻呼所采用的第二标志位的信息,这样降低第一设备和第二设备重复寻呼某些终端设备的可能性。
在一种可能的实施方式中,第三时刻与第二时刻之间的时间差的绝对值小于所述第一类型的所述第一标志位的状态对应翻转后的状态的维持的时长,和/或,第三时刻与第二时刻之间的时间差的绝对值小于所述第一状态翻转后的状态的维持的时长,所述第二时刻为所述第一核心网设备向所述第二设备发送所述第六信令的时刻,所述第三时刻为所述第一核心网设备确定的所述第一设备完成所述第一信令指示的寻呼终端设备过程的时刻。
在该实施方式中,第一标志位的信息可与第二标志位的信息相同,且第一核心网设备无需向第二设备指示动作信息,提供了一种第一核心网设备调整多个设备寻呼UE的方式,且简化了第一核心网设备的处理量。
在一种可能的实施方式中,所述第二设备和所述第一设备相邻,或者,服务于所述第一设备的接入网设备与服务于所述第二设备的接入网设备相邻或相同。
在该实施方式中,第一设备和第二设备为同一种类型的设备,例如,第一设备和第二设备为接入网设备的情况下,则第一设备和第二设备可为两个相邻的接入网设备;又例如,第一设备和第二设备均为终端设备或接入节点的情况下,服务于第一设备的接入网设备与服务于第二设备的接入网设备可以相同或者相邻;又例如,第一设备和第二设备可为一个接入网设备下的两个小区,这两个小区可以是相邻的小区。
在一种可能的实施方式中,所述第一设备可被替代为第一小区,以及所述第二设备可被替代为第二小区。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为上述第一方面中的第一设备,或者为配置在第一设备中的电子设备(例如,芯片系统),或者为包括该第一设备的较大设备。该第一设备包括用于执行上述第一方面或任一可能的实施方式的相应的手段(means)或模块。例如,该通信装置包括接收模块(有时也称为接收单元)和发送模块(有时候也称为发送单元)。
例如,接收模块,用于接收来自第一核心网设备的第一信令,所述第一信令用于寻呼终端设备;发送模块,用于发送第二信令,所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
在一种可能的实施方式中,接收模块和发送模块可耦合设置。
在一种可能的实施方式中,该通信装置包括存储单元,该处理单元能够与存储单元耦合,并执行存储单元中的程序或指令,使能该通信装置执行上述第一设备的功能。
第五方面,本申请实施例提供一种通信装置,该通信装置可以为上述第二方面中的第一终端设备,或者为配置在第一终端设备中的电子设备(例如,芯片系统),或者为包括该第一终端设备的较大设备。该第一终端设备包括用于执行上述第二方面或任一可能的实施方式的相应的手段(means)或模块。例如,该通信装置包括处理模块(有时也称为处理单元),以及收发模块(有时也称为收发单元)。
例如,所述收发模块,用于在所述处理模块的控制下,接收来自第一设备的第二信令, 所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
在一种可选的实施方式中,该通信装置包括存储单元,该处理单元能够与存储单元耦合,并执行存储单元中的程序或指令,使能该通信装置执行上述第一终端设备的功能。
第六方面,本申请实施例提供一种通信装置,该通信装置可以为上述第三方面中的第一核心网设备,或者为配置在第一核心网设备中的电子设备(例如,芯片系统),或者为包括该第一核心网设备的较大设备。该第一核心网设备包括用于执行上述第三方面或任一可能的实施方式的相应的手段(means)或模块。例如,该通信装置包括收发模块(有时也称为收发单元),以及处理模块(有时也称为处理单元)。
例如,收发模块,用于在处理模块的控制下向第一设备发送第一信令,所述第一信令用于指示第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
在一种可能的实施方式中,接收模块和发送模块可耦合设置。
在一种可选的实施方式中,该通信装置包括存储单元,该处理单元能够与存储单元耦合,并执行存储单元中的程序或指令,使能该通信装置执行上述第一核心网设备的功能。
第七方面,本申请实施例提供了一种通信装置,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第一方面至第三方面中任一项所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如第一方面至第三方面中任一项所述的方法。
第九方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,实现上述第一方面至第三方面中任一项所述的方法。
关于第二方面至第九方面的有益效果,可参照第一方面论述的有益效果,此处不再列举。
附图说明
图1至图3为本申请实施例提供三种应用场景示意图;
图4为本申请实施例提供的一种寻呼方法的流程示意图;
图5为本申请实施例提供的一种标志位的状态的变化过程示意图;
图6至图7为本申请实施例提供的两种寻呼方法的流程示意图;
图8至图13为本申请实施例提供的几种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理 解。
1、本申请实施例中的RFID标签,又可称为电子标签或标签。标签的设计较为简单,是将应用层信令和空口信令融合到一起设计。标签主要基于二进制启闭键控(on-off keying,OOK)进行编解码传输,即,根据数据的幅度调制方式,通过高低电平解码数据。在标签的通信过程中,不支持区分频域和码域,并行性能较差。例如,多个标签要与读写器通信,则可采用时分复用方式,多个标签通过串行过程与读写器通信。标签可以看作是一种终端设备。
另外,射频识别技术又可分为有源、无源和半有源三种。其中,有源射频识别技术下的标签可称为有源标签,其可内置电池,此类标签可以主动向读写器发送信号,无需根据所接收的信号获得用于发送信号的能量。无源射频识别技术下的标签也可称为无源物联网(passive IOT),即无源的物联网设备,或称为无源标签,此类标签可能并未内置电池等模块,或者电池模块的电量较少,可通过接收的信号获得能量,并通过该能量发送信号。可以理解为,无源标签工作在反射通信场景下,即,无源标签通过反射来自读写器的信号以获取能量,从而传输数据。半有源射频识别技术下的标签,又可称为半有源标签,其集成了有源标签和无源标签的优势,可作为一种特殊的标示物。在平时,此类标签处于休眠状态,可以不工作,不向外界发出信号;只有在进入低频激活器的激活信号范围时,此类标签被激活,则此类标签才开始工作。本申请实施例所涉及的标签,可以是有源标签、无源标签或半有源标签等。
2、本申请实施例中的读写器,是通过手持方式或固定式方式读取(或,写入)标签信息的设备。或者,也可以将读写器理解为是与标签通信的设备。读写器,例如为阅读器(reader)、查询器(interrogator)、扫描器(scanner)、读写器(reader and writer)、读出装置(reading device)或便携式读出器(portable readout device)等。读写器的实现形式可以是终端设备,也可以是接入网设备,例如基站,或者还可以是具有读写功能的设备。
3、本申请实施例中的集成接入回传(integrated access backhaul,IAB)节点(node)/助手(helper)/激励源,可以通过终端设备实现,或者也可以通过接入网设备(例如基站)实现。该IAB节点与标签之间可以进行双向通信;或者,该IAB节点与标签之间也可以只有下行数据,即,该IAB节点能够向标签发送信息,但标签不能向该IAB节点发送信息。该IAB节点与读写器之间可以进行双向通信,该通信可以通过空口传输,也可以通过有线方式传输。
4、本申请实施例中的终端设备,是一种具有无线收发功能的设备,可以是固定设备、移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。例如标签可能是终端设备中的固定设备或移动设备,或是内置于上述设备中的无线装置。所述终端设备用于连接人、物或机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、 终端、接入站、UE站、远方站、无线通信设备、或用户装置等。
5、本申请实施例中的网络设备,例如可以包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点(access point,AP),无线中继节点或无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站或中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,
DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。下面以接入网设备是基站为例,对接入网设备与所述终端设备之间的通信进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、网络开放功能(network exposure function,NEF)、应用功能(application function,AF)或用户面功能(user plane function,UPF)等。其中,AF还可以视为第三方应用服务器,简称为应用服务器。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。“包括A,B和C中的至少一项(个)”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一信令和第二信令,并不是表示这两个信令的内容、信息量大小、发送顺序、发送端/接收端、优先级或者重要程度等的不同。
本申请实施例提供的技术方案可以应用于第三代通信系统the 3th generation,3G),例如通用移动通信系统(universal mobile telecommunications system,UMTS)系统。或者还可应用于第四代(the 4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)系统。或者可以应用于第五代(the 5th generation,5G)通信系统,例如新空口(new radio,NR),或者还可以应用于可以未来的通信系统,例如第六代(the 6th generation,6G)系统等。或者还可应用于无线局域网(wireless local area network,WLAN)通信系统等。
请参照图1,为本申请实施例提供的一种应用场景示意图。图1包括中间设备110和终端设备120,中间设备110例如为接入网设备(例如基站,或者接入节点等),该接入网设备可实现读写器的功能,或者也可以不实现读写器的功能;或者,中间设备110例如为 终端设备,该终端设备例如实现读写器的功能;或者,中间设备110例如为接入网设备下的小区;或者,本申请实施例中的中间设备110可被替代为小区。
其中,如果中间设备110是基站,则终端设备120与中间设备110之间可通过Uu接口通信;或者,如果中间设备110是接入节点,则终端设备120与中间设备110之间可通过侧行链路(sidelink,SL)通信。另外,如果中间设备110是终端设备,则中间设备110还可以与接入网设备连接,通过Uu接口通信,例如中间设备110通过该接入网设备与核心网通信。
请参照图2,为本申请实施例提供的另一种应用场景示意图。图2包括中间设备110、IAB节点200以及终端设备120。IAB节点200与终端设备120之间可以双向通信,如图2所示;或者,IAB节点200与终端设备120之间也可能只进行单向通信。
其中,如果IAB节点200与终端设备120之间可以进行双向通信,则IAB节点200可视为中间设备110与终端设备120之间的中继节点,终端设备120的上下行数据都可经过该IAB节点200转发。
或者,如果IAB节点200与终端设备120之间只能进行单向通信,例如IAB节点200可以向终端设备120发送信息,但终端设备120不能向IAB节点200发送信息,那么在传输下行数据时可将IAB节点200视为中间设备110与终端设备120之间的中继节点,来自中间设备110的下行数据可经IAB节点200转发后到达终端设备120;而在传输上行数据时,终端设备120可以不经过IAB节点200,而是直接将上行数据发送给中间设备110。其中,图2中的中间设备110的实现形式可参照图1论述的内容。
请参照图3,为本申请实施例提供的又一种应用场景示意图。图3包括中间设备110、接入网设备300以及终端设备120。需要说明的是,图3中是以中间设备110不是接入网设备为例,例如,图3中的中间设备110为终端设备或接入节点。例如,中间设备110可直接与终端设备120通信,或者,中间设备110也可以通过接入网设备300与终端设备120通信。中间设备110和/或接入网设备300能够与核心网连接。
需要说明的是,图1至图3所示的实施例是以中间设备110的数量为一个进行示例,实际上中间设备110的数量可以是多个,在中间设备110的数量为多个的情况,其中两个中间设备110的通信覆盖范围可能存在部分重叠,或者完全重叠,或者完全不重叠。在中间设备110有多个的情况下,可将多个中间设备110依次称为第一设备、第二设备等。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。在本申请的各个实施例对应的附图中,凡是可选的步骤均用虚线表示。本申请的各个实施例所提供的方法均可应用于图1至图3中的任一附图所示的场景。例如,本申请的各个实施例所涉及的第一设备和第二设备的实现方式可参照图1至图3中的任一附图所示的中间设备110,具体可参考上文介绍;本申请的各个实施例所涉及的终端设备,例如为图1至图3中的任一附图所示的终端设备120,并且在本申请的各个实施例中是以终端设备为UE进行介绍。另外本申请实施例还涉及第一核心网设备和第二核心网设备,在图1至图3中并未示意。例如第一核心网设备为接入及移动性管理功能(access and mobility management function,AMF)或会话管理功能(session management function,SMF)等,第二核心网设备为应用服务器、应用功能(application function,AF)、网络开放功能(network exposure fuction,NEF)或SMF等,在本申请的各个实施例中是以第一核心网设备是AMF,以及第二核心网设备是AF为例。其中,一个核心网设备与另一个核心网设备之间可相互通信, 一个核心网设备与接入网设备可相互通信,例如接入网设备与AMF可相互通信,AMF与AF可相互通信等。
本申请实施例提供一种寻呼方法,请参照图4,为该方法的流程图。
S401,AF向AMF发送信令1。相应的,AMF接收来自AF的信令1。该信令1用于寻呼UE。本申请实施例中的信令1又可称为第七信令。
示例性的,AF可直接向AMF发送信令1,例如,AF可通过AMF的服务化接口向AMF发送信令1,AMF的服务化接口例如为Namf接口;或者,AF也可通过其他核心网设备向AMF发送信令1,其他核心网设备例如为SMF。
该信令1例如为应用层寻呼(或盘存(inventory),或盘点)信令,或者,信令1例如类似于蜂窝网络中的寻呼(paging)消息。信令1可用于寻呼UE;或者,信令1可用于选择UE;或者,信令1可用于指示(或,触发)UE接入;或者,信令1可用于指示(或,触发)UE发送上行数据;或者,信令1可用于指示(或,触发)UE与网络(例如接入网设备)建立连接;或者,信令1可用于指示接入UE;或者,信令1可用于指示(或,触发)UE发起随机接入等。本申请实施例以信令1用于寻呼UE为例,通过信令1所寻呼的UE可称为待寻呼的UE,也可称为待接入(或盘存,或盘点)的UE等。
其中,由于AF可能向AMF发起多轮用于寻呼UE的信令(例如,AF可能会多次向AMF发送用于寻呼UE的信令,其中的一次就视为一轮),为了便于区分,本申请实施例中将通过信令1所发起的寻呼视为本轮寻呼,又可以称为第N轮寻呼。
作为一个示例,信令1可指示待寻呼的UE的第一标志位(flag)的信息,通过指示第一标志位的信息,可以达到寻呼UE的目的。或者,信令1可用于寻呼UE,以及,还可指示待寻呼的UE的第一标志位的信息。第一标志位的信息用于确定(或选择(select)),或寻呼)UE。例如,一个UE的标志位的信息满足信令1指示的第一标志位的信息,则该UE可被寻呼。
其中,标志位也可称为盘存标志位(inventoried flag)、盘点标志位、库存标志位或选择标志位等。标志位可理解为预存在UE内的值,例如,预存在UE的内存中。或者,标志位可理解为是一个信息的取值,例如,标志位为信息a的取值,信息a例如占用1比特(bit),则标志位可包括“0”和“1”这两种取值。或者,标志位也可以理解是UE中的一个电容。
作为一个示例,一个UE可维护至少一个标志位,不同的UE维护的标志位可能完全相同,或部分相同,或完全不同。其中,第一标志位可以是多个UE都维护有的同一种的类型的标志位,因此信令1通过指示第一标志位的信息,便可寻呼这多个UE中的部分或全部UE。例如,多个UE包括UE1和UE2,UE1维护了标志位S0和标志位S1,UE2维护了标志位S0、标志位S1、标志位S2和标志位S3,可见标志位S0和标志位S1是UE1和UE2均有维护的标志位。信令1所指示的第一标志位可以是这些标志位中的任一个,例如第一标志位例如为标志位S1,则信令1可通过第一标志位(即标志位S1)的信息寻呼UE1和/或UE2。
第一标志位的信息可指示待寻呼的UE的第一标志位的类型(例如指示待寻呼的UE的第一标志位的类型为第一类型),和/或,指示待寻呼的UE的第一标志位的状态(例如指示待寻呼的UE的第一标志位的状态为第一状态)。其中,第一类型可以是标志位的多种类型中的任意一个,第一状态可以是第一标志位的多种状态中的任意一种,本申请实施例 对此不做限定。下面对UE的标志位的类型和标志位的状态分别进行介绍。
1、标志位的类型。
该UE维护了至少一个标志位,其中一个标志位对应一种类型,不同的标志位的类型可以不同。或者,一个标志位也可以对应多种类型,在本申请实施例中主要以一个标志位对应一种类型进行示例。例如,一个UE包括4个会话(会话S0、会话S1、会话S2和会话S3),每个会话可视为一个标志位,而每个会话也可视为一种类型。
其中,UE维护的一个标志位的类型,可根据该标志位的值和/或该UE的硬件结构确定。该标志位的类型可以表示为会话(session)、节、或标志位标识等。
作为一个示例,在UE的标志位仅包括一种类型,或者UE的标志位没有类型之分的情况下,信令1可不指示第一标志位的类型,例如不指示第一类型。
2、标志位的状态。
标志位的状态又可称为盘存状态、盘点状态或库存状态等。一个标志位的状态可根据该标志位的值确定。一个标志位可以有多种可选的状态,例如2种状态。例如,如果一个标志位的值为0,则该标志位的状态为A;或者,如果该标志位的值为1,则该标志位的状态为B。其中,第一标志位的第一状态可理解为是第一标志位对应的多种状态中的一种。
其中,UE维护的一个标志位的类型与该标志位的状态也可以相关。例如,一个类型1的标志位,可以对应多种可选的状态;一个类型2的标志位,也可以对应多种可选的状态。而一个类型1的标志位和一个类型2的标志位,所对应的多种状态可以是相同的。例如,一个标志位的类型为会话S0,该标志位的状态可以是A或B;又例如,一个标志位的类型为会话S1,该标志位的状态也可以是A或B。
作为一种实施方式,UE所维护的一个标志位在某种类型下可以有一个初始状态(初始状态也可称为默认状态、默认取值、复位状态、初始取值、或复位取值等)。初始状态例如为在该UE复位(例如该UE上电)时该UE维护的一个标志位所处的状态。或者,初始状态也可以是指当该UE掉电后该UE维护的一个标志位所保持的状态。其中,在UE掉电后,该标志位的状态可以在一段时长内维持不变,这段时长的单位可以是百毫秒级、秒级或分钟级,本申请实施例对此不做限定。其中,UE维护的一个标志位在某种类型下的状态可以从初始状态改变为非初始状态。在改变后,在一定条件下,该标志位的状态又可恢复至初始状态。非初始状态是指一个标志位的多种状态中除了初始状态之外的状态。
UE维护的一个标志位在某种类型下的状态可以从初始状态改变为非初始状态,或者从非初始状态变化为初始状态,均认为该UE的该标志位的状态发生了变化。作为一个示例,一个标志位在某种类型下对应的一个状态需在一定的状态变化条件才会切换至另一个状态。状态变化条件是指,一个标志位在某种类型下,从一种状态变化为另一种状态所需的条件。
例如,一种状态变化条件为UE维持某种类型下的该标志位的状态的时长,该时长又可称为维护时长。对于维护时长可理解为,UE在达到该维护时长之后,该类型下的该标志位的状态会切换为另一种状态。
作为一个示例,UE维护的一个标志位在某种类型下的一种状态变化为另一种状态的状态变化条件,与该标志位在该某种类型下的另一种状态变化为一种状态的状态变化条件不同。
例如,UE在第一条件下维护会话S1保持为状态A的时长,与该UE在第一条件下维 持该会话S1保持为状态B的时长不同。其中,第一条件是指UE当前的通电状态,例如,UE处于上电状态,或者UE处于掉电状态。
作为一个示例,对于UE维护的一个标志位的一种状态来说,在该标志位的类型不同时,则该种状态对应的状态变化条件可能相同,也可能不同。状态变化条件的含义和内容可参照前文。
示例性的,对于该标志位的一种状态,在该标志位的类型不同时,UE在第一条件下维持该种状态的时长不同。
例如,UE在掉电情况下,使得UE维护的会话S0对应的状态B的时长为0,该UE维护会话S1对应的状态B的时长的范围为[500毫秒(ms),5秒(s)],其中,UE在掉电情况下,该UE至少能够在500ms内使得该会话S1对保持状态为B,最多能够在5s内使得该标志位保持状态为B。
下面以标志位的类型为第一类型为例,对第一类型对应的状态变化进行示例介绍。请参照图5,为本申请实施例提供的第一类型的状态的变化过程的示意图。图5是以第一类型为会话S0、会话S1、会话S2或会话S3,以及以每个会话的状态(即标志位的状态)为A或B为例。
(1)在第一类型为会话S0的情况下,UE上电之后,例如会话S0的状态为A。在该UE被第一设备识别(或读取,或写入)一次或者UE接入第一设备完成之后,该UE将该会话S0的状态从A变成B。如果该UE一直有电,则该UE可以维持该会话S0的状态,例如,一直维持该会话S0的状态为B。如果该UE掉电(或称为断电),则该UE不保存该会话S0的状态,这种情况下,会话S0的状态为空。一旦该UE再次上电,该UE可确定该会话S0的状态为A。
(2)在第一类型为会话S1的情况下,UE上电之后,会话S1的状态例如A或B。当UE被第一设备识别(或读取,或写入)一次之后,该UE确定会话S1的状态翻转(例如UE上电之后会话S1的状态为A,则此时会话S1的状态从A变更为B;又例如,UE上电之后会话S1的状态为B,则此时会话S1的状态从B变更为A)。在该UE掉电之后,该UE可维持会话S1的状态为B,其中,能够维持的时长的范围为[500ms,5s]。在该UE再次上电之后,该UE可确定会话S1的状态为B。后续,会话S1的状态可在一定时长内从B变为A,其中,该一定时长的取值是不固定的。
(3)会话S2的状态变化情况和会话S3的状态变化情况相同,下面以会话S2为例介绍。在第一类型为会话S2的情况下,UE上电之后,会话S2的状态为A或B。当该UE的会话S2被识别(或读取,或写入)过一次之后,该会话S2的状态翻转。如果该UE一直有电,则UE可一直维持该会话S2的状态。在该UE掉电之后,该UE可维持该会话S2的状态的时长大于或等于2s,例如,该会话S2的状态可维持10s。
作为一个示例,如果多个UE只维护同一种标志位的情况下,第一标志位即为该标志位,则第一标志位的信息可用于指示该标志位的状态(例如第一状态)。如果多个UE均分别维护多个标志位的情况下,该第一标志位可为多个UE共同维护的一个标志位,则第一标志位的信息可用于指示该第一标志位的类型(例如第一类型),或者该第一标志位的信息可用于指示该第一标志位的类型(例如第一类型)以及该第一标志位的状态(例如,第一状态)。
可选的,AF可根据业务需求,确定待寻呼的UE的第一标志位的信息。或者,AF可 从其他核心网设备(如SMF)接收待寻呼的UE的第一标志位的信息。
可选的,信令1还用于指示次数信息。该次数信息用于指示第一设备寻呼UE的次数,可进一步理解为第一设备向UE发送用于指示接入第一设备的接入指令的次数。该次数可为一次或多次。其中,AF可根据业务需求等确定该次数信息;或者,AF可从其他核心网设备(如SMF)接收该次数信息。
可选的,信令1还用于指示标识信息。该标识信息用于指示待寻呼的UE的标识需满足该标识信息。该标识信息用于指示待寻呼的UE的标识,或者,用于指示待寻呼UE所对应的组标识。组标识用于指示多个UE,这多个UE中的部分或全部UE为待寻呼的UE。
可选的,信令1还用于指示掩码(mask)信息。掩码信息用于指示第一掩码。
可选的,该掩码信息还用于指示待寻呼的UE中的掩码在UE中的存储位置。该存储位置可指示待寻呼的UE的掩码在UE内的存储区域中的起始位置、终止位置或存储长度等信息中的至少一项。UE接收该掩码信息之后,可根据该掩码信息确定该UE对应的存储位置中的掩码(为便于区分,下文将该UE中的该存储位置中的掩码称为第二掩码)。第一掩码可用于与UE中的存储位置中的第二掩码进行匹配。例如,如果UE中的第二掩码与第一掩码匹配,则该UE确定将该UE的第一标志位的状态改变为第一状态,如果该UE中的第二掩码与第一掩码不匹配,则该UE确定将该UE的第一标志位的状态改变为第二状态。例如,该掩码信息被预配置(例如由协议配置)在AF中,AF可以从其他核心网设备获取的,或者AF可根据业务需求确定的,本申请实施例对此不做具体限定。
需要说明的是,本申请实施例中的第二掩码可以是应用层标识,或者也可以是非应用层标识,例如为UE存储的信息。
作为一个示例,该掩码信息可为上述的标识信息,即第一掩码为上述标识信息所指示的标识。这种情况下,该掩码信息可用于指示待寻呼的UE的标识需与该标识信息指示的该标识匹配。
可选的,信令1还用于指示动作信息。该动作信息用于指示改变待寻呼的UE的第一标志位的状态。
例如,动作信息可指示UE的第一标志位的状态改变(或调整,或翻转,或变更)为第一状态。
又例如,该动作信息可理解为用于指示改变符合第二条件的UE和/或不符合第二条件的UE的第一标志位的状态。其中,第二条件例如为掩码信息指示的第一掩码与UE中存储的第二掩码相同。第二条件可被预配置在UE中。其中,符合第二条件的UE和/或不符合第二条件的UE可以是待寻呼的UE中的部分或全部。
示例性的,动作信息可指示将符合第二条件的UE的第一标志位的状态改变为第一状态,和/或,将不符合第二条件的UE的第一标志位的状态改变为第二状态。其中,第一状态和第二状态可以不同。例如,第一状态为A,第二状态为B,如果一个UE中的第二掩码与掩码信息指示的第一掩码匹配,则该UE将标志位的状态改变为A;如果一个UE的掩码第二掩码与掩码信息指示的第一掩码不匹配,则该UE将标志位的状态改变为B。
或者,动作信息可指示将不符合第二条件的UE的第一标志位的状态改变为第一状态,和/或,将不符合第二条件的UE的第一标志位的状态改变为第二状态。
需要说明的是,如果UE的第一标志位的状态已为动作信息所指示的改变后的状态,则该UE接收动作信息之后可不必执行改变第一标志位的状态的动作。
又例如,第二条件例如为UE的标识符合上述标识信息指示的标识。该示例适用于掩码信息相当于前文中的标识信息的情况。在这种情况下,相当于第一设备选择了符合第二条件的UE接入。
作为一个示例,该动作信息还可指示改变其他标志位的状态,其他标志位是指除了UE维护的至少一个标志位中的第一标志位之外的标志位,本申请实施例对此不做限定。
S402,AMF向第一设备发送信令2。相应的,第一设备接收来自AMF的信令2。信令2用于寻呼UE。本申请实施例中信令2又可以称为第一信令。
当第一设备为接入网设备时,可直接从第一核心网设备(如AMF)接收信令2。当第一设备为不是接入网设备(如终端设备)时,第一设备可通过接入网设备接收来自第一核心网设备的信令2。
信令2的含义可参照前文信令1的内容,此处不再列举。
作为一个示例,信令2可通过指示待寻呼的UE的第一标志位的信息,达到寻呼UE的目的。或者,该信令2分别用于寻呼UE,以及还指示待寻呼的UE的第一标志位的信息。
其中,信令2可显式地指示待寻呼的UE的第一标志位的信息,例如信令2包括第一标志位的信息。或者,信令2可隐式地指示待寻呼的UE的第一标志位的信息。
待寻呼的UE的第一标志位的信息的内容可参照前文S401论述的内容。该待寻呼的UE的第一标志位的信息可以是AMF自行确定的,AMF确定该标志位的信息的方式可参照前文AF确定标志位的信息的内容。或者,该待寻呼的UE的第一标志位的信息可以是AMF根据信令1确定的。
作为一个示例,信令2可为非接入层(non-access stratum,NAS)信令,NAS信令又可以称为NAS消息。如此,第一设备接收信令2之后,无需感知信令2中的内容,有利于提升信令2包含的信息的安全性,且有利于减少第一设备的处理量。
可选的,信令2还可用于指示次数信息。该次数信息的含义可参照前文论述的内容。该次数信息所指示的次数可以是AMF确定的,或者AMF根据信令1确定的。
在次数信息指示的次数为多次的情况下,相当于信令2指示了第一设备向UE发起多次寻呼,在第一设备接收信令2之后,第一设备可根据信令2,发起触发多次寻呼。换言之,一轮寻呼(如本轮寻呼)下,第一设备可触发多次接入。对于UE而言,如果一个UE在第一次寻呼过程中没有成功接入第一设备,则可以再下一次寻呼中继续尝试接入,而第一次寻呼中成功接入第一设备的终端设备,在下一次待寻呼中可以不用再次接入第一设备。在一轮寻呼下,对于待寻呼的UE接入第一设备可成功一次,但在一轮寻呼下,UE有可能通过第一设备触发的多轮接入后才成功接入第一设备。
其中,一轮寻呼可理解为,在信令1的指示下,第一设备对UE进行的至少一次寻呼;或者可理解为,第一设备在一个寻呼周期内进行的寻呼,该寻呼周期可以是AF通过信令1指示的。其中,该寻呼周期的时长取值可以为AF发送两次寻呼UE的信令之间的时间间隔。
在次数信息指示的次数为一次的情况下,或者在信令2未指示次数信息的情况下,第一设备接收信令2之后,第一设备可根据信令2,发起一次寻呼(或接入,或盘点,或盘存)。
可选的,信令2还用于指示待寻呼的UE的标识信息。其中,标识信息的含义可参照前文。
可选的,信令2还用于指示掩码信息。掩码信息的含义可参照前文S401论述的内容。掩码信息可以是AMF确定的,或者AMF根据信令1确定的。
作为一个示例,该掩码信息可为上述的标识信息。其中,标识信息的含义可参照前文。
可选的,信令2还用于指示动作信息。动作信息的含义可参照前文。AMF获得动作信息的方式可参照AMF获得掩码信息的内容,此处不再列举。
在另一种可能的实施方式中,第一核心网设备可以是SMF,这种情况下,上述S401和S402中的AMF可替换为SMF。
作为一个示例,第一设备可直接寻呼UE,而无需核心网设备(如AMF或AF等)触发,这种情况下,无需执行S401至S402的步骤,即S401至S402的步骤是可选的步骤。
S403,第一设备发送信令3。相应的,一个或多个UE接收来自第一设备的信令3。该信令3用于指示待寻呼的UE的第一标志位的信息。第一标志位的信息的含义可参照前文S401论述的内容。本申请实施例中的信令3又可以称为第二信令。在图4所示的实施例中以第一UE接收该信令3为例。
其中,寻呼可以理解为触发终端设备接入第一设备,或者触发终端设备与第一设备建立连接,或者触发终端设备与第一设备进行数据交互。
该信令3例如为第一设备所发送的寻呼(paging)信令,该信令3例如类似于蜂窝网络中的寻呼。该信令3用于寻呼一个或多个UE;或者,信令3用于选择一个或多个UE;或者,信令3用于指示(或,触发)一个或多个UE发送上行数据;或者,信令3用于指示(或,触发)一个或多个UE与网络(例如接入网设备)建立连接;或者,信令3用于指示一个或多个UE接入;或者,信令3用于指示(或,触发)一个或多个UE发起随机接入等。本申请实施例以该信令3用于寻呼一个或多个UE为例,这一个或多个UE可认为是待寻呼的UE。
需要说明的是,本申请实施例涉及的待寻呼的UE可理解为处于UE处于非连接态,即UE与第一设备之间没有通信连接,或者可理解为待寻呼的UE的标志位的状态为复位状态或初始状态。本申请实施例涉及的被寻呼的UE可以理解为进入与第一设备通信的状态。
需要说明的是,在信令2指示的一轮寻呼中,第一设备可能发起一次或多次寻呼。在信令2指示第一设备发起多次寻呼的情况下,为了便于区分,本申请实施例中将信令3发起的这次寻呼视为本次寻呼(又可以称为第M次寻呼),换言之,下文中提到的本次寻呼均可理解为通过信令3发起的寻呼。这种情况下,信令3所指示的第一标志位的信息,可作为本轮寻呼中的一次寻呼(或选择,或确定)的UE的标志位需要满足的信息,或者可作为本轮寻呼中的每一次寻呼的UE的标志位需要满足的信息。
作为一个示例,如果信令2为NAS信令,那么第一设备无需感知待寻呼的UE的标志位的信息,直接发送该NAS信令。这种情况下,信令2和信令3均为该NAS信令。
作为另一个示例,第一设备确定待寻呼的UE的第一标志位的信息,并生成信令3。
方式一,第一设备根据信令2,确定第一类型和/或第一状态。
在信令2指示了待寻呼的UE的第一标志位的信息的情况下,第一设备可将信令2指示的待寻呼的UE的第一标志位的类型作为第一类型,和/或,第一设备可将信令2中指示的待寻呼的UE的第一标志位的状态作为第一状态。
方式一中由于无需第一设备确定第一标志位的信息,有利于减少第一设备的处理量。
方式二,第一设备可自行确定第一类型和/或第一状态。
下面对第一设备确定第一类型和/或第一状态的方式进行示例介绍。
确定第一类型的一种方式(称为子方式A1),第一设备可从标志位的多种类型中,随机确定一种类型作为第一类型。其中,标志位的多种类型可被预配置在第一设备中,例如,由协议配置在第一设备中。
确定第一类型的一种方式(称为子方式A2),第一类型可为协议规定的默认值。
确定第一类型的一种方式(称为子方式A3),第一设备可根据第一设备上一轮寻呼(或第N-1轮寻呼)过程的碰撞情况,确定第一类型。碰撞可理解为两个或两个以上的UE在同一个时间单元向第一设备发送上行数据。
第一种情况,如果第一设备在执行本轮寻呼之前,还可能发起了一轮寻呼(又可称为第(N-1)轮,或又可以称为上一轮寻呼)。在本申请实施例中,第一设备可根据上一轮寻呼过程中第一设备检测到碰撞的次数和空闲的接入机会数目,确定还未接入第一设备的UE的数目,或者根据在上一轮寻呼过程中已成功接入第一设备的UE的数量(称为第二数量),确定待寻呼的UE的标志位的类型。下面以根据第二数量,确定待寻呼的UE的标志位的类型为例进行介绍。
示例性的,如果第二数量大于或等于第二阈值,表示上一轮寻呼过程中成功接入第一设备的UE的数量较多。假如选择的标志位对应的状态维持时长较短,则更容易引起UE之间的碰撞,因此在本申请实施例中,第一设备将待寻呼的UE的标志位的类型确定为与上一轮寻呼不同的类型。例如,上一轮寻呼的UE的第二标志位的类型为第二类型,则第一设备确定待寻呼的UE的第一标志位的类型为第一类型。其中,第一类型的第一标志位的状态的维持的时长比第二类型的第二标志位的状态的维持的时长更长。如果第二数量小于第二阈值,表示之前寻呼的UE的数量相对合适,则第一设备确定待寻呼的UE的第一标志位的类型与上一轮寻呼的类型相同,或者可理解为第一设备在本轮寻呼过程中的这次寻呼中不改变上一轮待寻呼的UE的标志位的类型。
确定第一状态的一种方式(称为子方式B1),第一设备可从多种标志位的状态中,随机确定一种状态作为第一状态。多种标志位的状态可预被配置在第一设备中,例如由协议配置在第一设备中。
确定第一状态的一种方式(称为子方式B2),第一设备将第一标志位的初始状态确定为第一状态。初始状态的含义可参照前文。
确定第一状态的一种方式(称为子方式B3),第一设备可根据第二数量,确定待寻呼的UE的第一标志位的状态。第二数量的含义可参照前文。
示例性的,如果第二数量大于或等于第二阈值,第一设备确定待寻呼的UE的第一标志位的状态调整为与上一轮寻呼过程中不同的状态。如果第二数量小于第二阈值,则第一设备确定待寻呼的UE的第一标志位的状态与上一轮寻呼的状态相同。
确定第一状态的一种方式(称为子方式B4),第一状态可被预配置在第一设备中,例如,由协议预配置在第一设备中。
需要说明的是,第一设备可采用上述子方式A1和子方式A3中的任意一种子方式确定第一类型,可采用子方式B1至子方式B4中的任意一种子方式确定第一状态。
方式二可适用于信令2没有指示待寻呼的UE的第一标志位的信息的情况。在方式二中,可由第一设备自行灵活地确定第一标志位的信息。另外,第一设备还可基于上一轮寻 呼所采用的标志位的信息,灵活调整待寻呼UE的第一标志位的信息。
方式三,第一设备可结合上述方式一和方式二,确定待寻呼的UE的第一标志位的信息。
示例性的,信令2指示了第一类型,第一设备根据信令2确定了第一类型,第一设备自行确定第一状态。又或者,信令2指示了第一状态,第一设备根据信令2确定了第一状态,第一设备自行确定第一类型。
可选的,信令3指示的第一状态可理解为用于指示设置UE的第一标志位的状态,以及还可用于指示选择设置后的状态满足第一状态的UE接入第一设备。设置UE的标志位的状态例如为将符合第二条件的UE的标志位的状态置为第一状态,不符合第二条件的UE的第一标志位的状态置为第二状态。
可选的,信令3还用于指示掩码信息。掩码信息的含义可参照前文论述的内容。掩码信息可以是第一设备确定的,或者根据信令2确定的。
可选的,信令3还用于指示动作信息。动作信息的含义可参照S401论述的内容。第一设备获得动作信息的方式可参照第一设备确定掩码信息的内容。
例如,信令3为选择(selcet)信令。信令3中的第一字段用于指示第一类型和/或第一状态。第一字段例如为选择信令中的目标(target)字段。例如,target字段的取值为000,则第一类型为会话S0。又例如,信令3为选择信令和查询(query)信令,第一字段例如为查询信令中的会话(session)字段和目标(target)字段,会话字段用于指示第一类型,目标字段用于指示第一状态。例如,会话字段的取值为00,表示第一类型为会话S0,目标字段为0,表示会话S0的状态为A。
在一种可能的实施方式中,在一次寻呼下,第一设备可通过一个信令寻呼UE,例如,第一设备可以通过信令3寻呼UE。或者,一次寻呼下,第一设备可通过两个信令寻呼UE。当通过两个信令寻呼UE时,这两个信令可依次分为第一级寻呼信令和第二级寻呼信令。第二级寻呼信令指示的信息与第一级寻呼信令指示的信息可以相同或者不同。第二级寻呼信令可与第一级寻呼信令相关,例如,第二级寻呼信令对第一级寻呼信令指示的内容进行了补充指示,例如,第一级寻呼信令指示了第一标志位的类型,第二级寻呼信令指示了第一标志位的状态。又例如,第一级寻呼指令指示了动作信息,第二级寻呼指令指示了第一标志位的第一状态,相当于第一级寻呼指令为第二级寻呼指令选择的状态进行选择指示。例如,第二级寻呼信令对第一级寻呼信令指示的内容进行了调整,例如,第一级寻呼信令指示了第一标志位的第二状态,第二级寻呼信令指示了第一标志位的第一状态。
在一种可能的实施方式中,在信令2指示一轮寻呼下的多次寻呼中,第一设备灵活地根据一个或两个信令完成一次寻呼。例如,第一设备可在第一次寻呼中通过两个信令寻呼UE,第一设备在第二次寻呼中通过一个信令寻呼UE。由于第一设备不必在每次寻呼中均通过两个信令寻呼UE,有利于减少第一设备的信令开销。
作为一个示例,第一UE在接收信令3之后,可直接确定是否接入第一设备。这种情况下,第一设备相当于仅通过信令3寻呼UE,也就相当于信令3单独触发了本轮寻呼中的一次寻呼。这种情况下,该信令3触发的这一次寻呼可视为本次寻呼,或视为第M次寻呼。在UE为标签,第一设备为读写器的情况下,一个信令3相当于实现了选择信令和查询信令这两个信令的功能,有利于节省第一设备的信令开销。
其中,信令3指示的内容不同,第一UE根据信令3指示的内容,确定是否需要接入 第一设备的具体内容也存在区别,下面分别介绍。
示例1,信令3指示第一类型。
如果第一UE的类型为第一类型,则确定本次接入第一设备。如果第一UE的类型不为第一类型,则确定本次不接入第一设备。
示例1适用于一个UE的标志位有且仅有一种类型,且存在两个UE的类型不同的情况。这种情况下,第一设备可仅根据第一类型,确定待寻呼的UE。
示例2,信令3指示第一状态。
如果第一UE的类型为第一状态,则确定本次接入第一设备。如果第一UE的类型不为第一状态,则确定本次不接入第一设备。
示例2可适用于每个UE的标志位没有类型之分,或者任意两个UE的标志位的类型均为同一个的情况。
示例3,信令3指示动作信息和第一状态。
第一UE根据第二UE是否符合第二条件,对第一UE的状态进行相应的改变。例如,如果第一UE符合第二条件,则将第一UE的状态调整为A。如果第一UE不符合第二条件,则将第一UE的状态标签调整为B。
如果第一UE调整后的状态为第一状态,则确定本次接入第一设备。如果第一UE调整后的状态不为第一状态,则确定本次不接入第一设备。
示例3可适用于每个UE的标志位没有类型之分,或者任意两个UE的标志位的类型均为同一个的情况。
示例4,信令3指示第一类型和第一状态。
第一UE确定该第一UE的标志位的类型包括第一类型,且该第一类型对应的标志位的状态为第一状态,则确定本次接入第一设备。如果第一UE的类型不包括第一类型,和/或该第一UE的第一类型的标志位的状态不为第一状态,则确定本次不接入第一设备。
示例5,信令3指示第一类型和动作信息。
第一UE根据是否符合第二条件,改变第一类型对应的状态。
如果第一UE符合第二条件,则确定本次接入第一设备。如果第一UE的类型不包括第一类型,和/或第一UE不符合第二条件,则确定本次不接入第一设备。
示例6,信令3指示第一类型、第一状态和动作信息。
第一UE根据是否符合第二条件,调整第一类型对应的状态。如果第一UE的调整后的第一类型对应的状态为第一状态,则确定本次接入第一设备。如果第一UE确定该第一UE的调整后的第一类型对应的状态不为第一状态,则确定本次不接入第一设备。这种情况下,第一状态表示的是UE符合第二条件,且该UE的标志位的状态在执行对应动作信息后的标志位的状态。
在示例1至示例6中,信令3相当于直接指示了待寻呼的UE所需满足的标志位的信息。在次数信息指示的次数为一次的情况下,那么信令3相当于指示了一次寻呼,也相当于指示了一次接入。在次数信息指示的次数为多次的情况下,那么信令3相当于指示了一轮寻呼下的一次寻呼。
作为另一个示例,还可执行S404,即第一设备向第一UE发送信令4。相应的,第一UE接收来自第一设备的信令4。本申请实施例中的信令4又可以称为第四信令。需要说明的是,S404和S403的执行顺序可以是任意的,例如,先执行S403,后执行S404;或者, 先执行S404,再执行S403。
示例性的,信令3只指示上述示例中的第一类型、第一状态和动作信息中的一种或两种,信令4指示第一类型、第一状态和动作信息中除了信令3指示了之外的信息。
信令4用于指示第一状态,即相当于指示目前第一标志位的状态为第一状态的UE本次接入第一设备。这种情况下,第一UE可根据信令3和信令4确定本次是否接入第一设备。这种情况下,第一设备相当于通过信令3和信令4两个信令寻呼UE,也就相当于信令3和信令4一起触发了本轮寻呼中的一次寻呼。在这种情况下,信令3可视为第一级寻呼信令,信令4可视为第二级寻呼信令。例如,UE为标签,第一设备为读写器,则信令3可为选择信令,信令4可为查询信令。在这种情况下,信令3和信令4一起指示的这一次寻呼视为本次寻呼(又称为第M次寻呼)。
其中,信令3和信令4指示的内容不同,则第一UE确定本次是否接入第一设备的内容也存在区别,下面分别介绍。
示例7,信令3指示动作信息,信令4指示第一状态。
其中,信令4指示的第一状态可理解为确定待接入第一设备的UE的标志位的状态。第一UE确定本次是否接入第一设备的方式可参照前文示例3论述的内容。
示例8,信令4指示第一状态,信令4指示动作信息。
第一UE确定本次是否接入第一设备的方式可参照前文示例3论述的内容。
示例9,信令3指示第一类型,信令4指示动作信息。
第一UE确定本次是否接入第一设备的内容可参照前文示例5论述的内容。
示例10,信令3指示第一类型,信令4指示第一状态。
第一UE确定本次是否接入第一设备的方式可参照前文示例4的内容。
示例11,信令3指示第一类型和动作信息,信令4指示第一状态。
第一UE确定本次是否接入第一设备的方式可参照前文示例6的内容。
在示例7至示例11中,信令3和信令4一起指示了本次接入的UE,完成了一次寻呼。
作为一个示例,在信令3指示了掩码信息的情况下,第一UE可确定满足第一UE第二条件之后,再根据第一标志位的信息,确定是否接入第一设备。
作为一个示例,在第一设备无需改变UE的标志位的状态的情况下,第一设备无需指示动作信息,即这种情况下,信令3和信令4均无需指示动作信息。
S405,第一设备向第一UE发送信令5。相应的,第一UE接收来自第一设备的信令5。本申请实施例中的信令5又可以称为第五信令。
信令5可用于指示确认第一UE接入第一设备。例如,信令5通过指示第一UE的最大时间单元范围,以确认第一UE接入第一设备。最大时间单元范围可理解为时间单元的一个最大范围,第一UE可在该最大时间单元范围内选择时间单元。时间单元可理解为一种时域资源。
示例性的,时间单元例如为无线帧(radio frame)、子帧(subframe)、时隙(slot)、迷你时隙(mini-slot)、或正交频分复用(orthogonal frequency division multiplexing,OFDM)等。或者,本申请实施例中的时间单元,也可以不是固定时间长度的时间间隔,而是时域上的发送机会(或者称为接入机会),不同的发送机会的时长可以相同或不同。
作为一个示例,信令5可以为前文的信令3或信令4。当信令5相当于前文信令3的情况下,即相当于信令3还指示了最大时间单元范围。当信令5相当于前文信令4的情况 下,相当于信令4还指示了最大时间单元范围。
作为一个示例,信令3或信令4可指示第一UE的最大时间单元范围,这种情况下,无需执行S405,即S405为可选的步骤。
可选的,信令3还用于指示待寻呼的UE的标识信息。该标识信息的含义可参照前文。
或者,掩码信息相当于信令3指示的标识信息。这种情况下,第一设备选择符合该标识信息的UE接入。
S406,第一UE向第一设备发送第一请求。相应的,第一设备接收来自第一UE的第一请求。
在第一UE确定接入第一设备的情况下,第一UE可向第一设备发送第一请求。第一请求用于请求接入第一设备。本申请实施例中的第一请求例如为随机接入过程中的第三消息(Msg3)。例如,第一请求也可以为一个随机数,或者为随机接入请求消息。
需要说明的是,S405-S406是UE可能执行的一种情况。例如,如果第一UE确定不接入第一设备,那么第一UE不执行S405-S406的步骤,即S405-S406是可选的步骤。
作为一个示例,第一UE可向第一设备发送上行数据。
作为一个示例,在第一UE成功接入第一设备之后,第一UE可改变第一标志位的第一状态。如此,可避免第一UE在一轮寻呼(或盘存,或盘点,或接入)中被第一设备识别(或读取,或写入)多次。
其中,第一设备通过一个UE的一个标志位的信息寻呼该UE,在第一设备成功接收了来自该UE的上行数据,就视为第一设备对该UE进行了一次识别。例如,第一设备为读写器,该UE为标签,读写器如果从该标签成功接收了该标签的电子产品码(electronic product code,EPC),则视为读写器对该标签进行了一次识别。
作为一个示例,在信令2指示对UE进行多次寻呼的情况下,第一设备确定第一UE接入之后,还可发送再次发起用于寻呼UE的信令,以进行下一次寻呼(或称为第M+1次寻呼)。下一次寻呼过程可参照本次寻呼过程,此处不再列举。在这种情况下,第一设备再次发起用于寻呼UE的信令可以是一个第二级寻呼信令,这样第一设备无需再次发送第一级寻呼信令(即第二信令),有利于减少第一设备的信令开销。
作为另一个示例,AMF在第一时刻(又可称为T1时刻)向第一设备发送信令2之后,可在第二时刻(又可以称为T2时刻)向第二设备发送信令6。本申请实施例中的信令6又可以称为第六信令。所述信令2和信令6内容可以相同。其中,AMF可向第二设备发送信令6的方式可参照AMF向第一设备发送信令2的内容。这种示例可适用于信令2指示了第一标志位的信息和/或动作信息的情况。其中,第一设备和第二设备为同一种类型的设备,例如,第一设备和第二设备为接入网设备的情况下,第一设备和第二设备可为两个相邻的接入网设备;又例如,第一设备和第二设备均为终端设备或接入节点的情况下,服务于第一设备的接入网设备与服务于第二设备的接入网设备可以相同或者相邻;又例如,第一设备和第二设备均为同一个接入网设备下的两个相邻的小区;又例如,第一设备可以被第一小区替代,第二设备可被第二小区替代。
例如,信令6可以指示待寻呼的UE的第二标志位的信息。第二标志位的信息可以是根据信令2指示的第一标志位的信息确定的。例如,第二标志位的信息用于指示第二标志位的类型为第二类型和/或状态为第二状态。例如,第二标志位的信息用于指示第二类型的UE接入第二设备;又例如,第二标志位的信息用于指示第二状态的UE接入第二设备;又 例如,第二标志位的信息用于指示第二类型和第二状态的UE接入第二设备。
示例性的,第二标志位与前文的第一标志位可以相同,或不同。第二类型也可与第一标志位的第一类型相同或不同。第二状态与第一标志位的第一状态也可相同或不同,例如,第二状态可以为第二标志位的初始状态。
示例性的,信令6指示的第二标志位的状态可以为第一状态。由于已成功接入第一设备的UE的第一标志位的状态可翻转为第二状态,因此在这种情况下,第二设备下选择接入第一标志位为第一状态的UE,可以减少第一设备和第二设备重复识别,通信重叠范围内的UE的情况。其中,通信重叠范围是指第一设备和第二设备的通信覆盖范围的重叠区域。并且,由于在T2时刻,AMF向第二设备指示信令6,这样可以避免已成功接入第一设备的UE的第一标志位的状态恢复至第一状态,造成该UE被第二设备重复识别的情况。
作为一种示例,第三时刻(即T3时刻)与第二时刻(即T2时刻)之间的时间差的绝对值小于第一类型对应的标志位的状态翻转后的状态的维持的时长,和/或,第三时刻(即T3时刻)与第二时刻(即T2时刻)之间的时间差的绝对值小于第一状态翻转后的状态的维持的时长。这种情况下,当AMF指示第二设备寻呼UE时,可以不需要指示动作信息,可以直接指示待寻呼的UE的标志位的类型和/或状态,这种情况下,第二标志位的类型可以为第一类型和/或状态为第一状态,即第二标志位的信息与第一标志位的信息相同,这使得满足这些标志位的类型和/或状态的UE接入第二设备。其中,第一状态翻转后的状态可能为第二状态。
其中,第三时刻(即T3时刻)为AMF确定第一设备完成本轮寻呼的时刻。
例如,AMF将接收来自的第一设备或接入网设备的第一指示信息的时刻确定为第三时刻。第一指示信息用于指示第一设备完成本轮寻呼。
示例性的,第一设备完成本轮寻呼之后,第一设备可以向AMF发送第一指示信息,AMF将接收到该第一指示信息的时刻确定为第三时刻。
又例如,AMF在指示第一设备进行本轮寻呼时,通过信令2指示了完成本轮寻呼的结束时刻,这种情况下,AMF可直接将本轮寻呼的结束时刻作为第三时刻。
可选的,第一时刻(即T1时刻)与第二时刻(即T2时刻)之间的时间差的绝对值小于第一类型对应的标志位的状态翻转后的状态的维持的时长,和/或,第一时刻(即T1时刻)与第二时刻(即T2时刻)之间的时间差的绝对值小于第一状态翻转后的状态的维持的时长。
在图4所示的实施例中,第一设备可指示待寻呼的UE的第一标志位的信息,而不必具体确定待寻呼的UE具体是哪些,第一设备可根据UE的标志位的信息寻呼UE,提供了一种寻呼UE的机制。由于无需具体确定待寻呼的UE,也可实现寻呼UE的过程,有利于简化第一设备寻呼UE的方式。并且,由于第一设备指示待寻呼UE的第一标志位的信息,便可寻呼一个或多个UE,而无需具体分别指示寻呼哪些UE,可减少第一设备发送的寻呼信令(即信令3)中的数据量,有利于减少寻呼开销。另外,信令2还可指示次数信息,使得第一设备可根据一个信令2,发起多次寻呼,有利于减少第一设备与第一核心网设备之间的交互次数。另外,第一设备在一次寻呼中,不必均通过两个信令寻呼UE,有利于提高第一设备寻呼的灵活性,以及减少第一设备的信令开销。另外,第一核心网设备还可根据指示的第一设备的第一标志位的信息,确定指示第二设备的第二标志位的信息,这样可降低第一设备和第二设备对相同的UE进行重复识别的情况。
请参照图6,为本申请实施例提供的一种寻呼方法的流程示意图。图6是以图4所示的实施例涉及的信令2指示第一类型和第一状态为例,以图4所示的实施例涉及的第一设备根据信令2确定第一类型和第一状态(即采用上述方式一确定第一类型和第一状态)为例,以及以图4所示的实施例涉及的信令3包括第一类型、第一状态和动作信息为例进行介绍。
S601,AF向AMF发送信令1。相应的,AMF接收来自AF的信令1。信令1用于寻呼UE。信令1的含义可参照前文论述的内容。
在另一种可能的实施方式中,也可以是SMF向AMF发送信令1。
作为一个示例,AMF可直接寻呼UE,而无需其他核心网设备(如AF)触发,这种情况下,无需执行S601,即S601是可选的步骤。
S602,AMF向第一设备发送信令2。相应的,第一设备接收来自AMF的信令2。信令2的含义可参照前文论述的内容。
AMF向第一设备发送信令2的方式可参照前文,此处不再列举。
在图6所示的实施例中,以第一设备根据信令2,确定第一类型和/或第一状态为例。换言之,以信令2隐式地指示了第一类型和第一状态为例。
示例性的,信令2包括如下信息(1)至(5)中的至少一种。
(1)频率信息,其用于指示第一设备寻呼的频率,可进一步理解为,频率信息指示第一设备在本轮寻呼中执行寻呼的频率,可理解为第一设备在信令2的指示发起的寻呼的频率。例如,频率信息指示第一设备每分钟(min)发起2次寻呼。
(2)次数信息,次数信息的含义可参照前文。例如,次数信息指示第一设备向UE发起5次寻呼。
(3)准确率信息,其用于指示接入第一设备的准确率,准确率又可以称为成功率。准确率可采用成功寻呼第一设备的UE的数量与第一设备执行寻呼的UE的数量之间的比值进行表示。第一设备执行寻呼的UE的数量可理解为第一设备发起寻呼的UE的数量。
(4)数量信息,其用于指示预期寻呼第一设备的UE的数量级。数量级可理解为预期寻呼第一设备的UE的数量的尺度或大小级别,例如,千级别或百级别等。
(5)寻呼时间信息,其用于指示第一设备执行寻呼的开始时间和/或结束时间。
信令2指示第一设备进行多次寻呼的情况下,执行寻呼的开始时间可理解为第一设备在信令2的指示下,执行第一次寻呼的开始时间,例如以第一设备接收到信令2作为执行寻呼的开始时间。执行寻呼的结束时间可理解为第一设备在信令2的指示下,最后一次执行寻呼的时刻。例如,以第一设备在信令2的指示下,最后一次向UE发送寻呼信令(如信令3或信令4)的时刻。信令3和信令4的含义可参照前文。
或者,信令2仅指示第一设备执行一次寻呼的情况下,执行寻呼的开始时间可理解为第一设备在信令2的指示下,开始本次寻呼的时间。
作为一个示例,信令2可通过指示上述信息(1)至(5)中的至少一种,以实现寻呼UE。或者信令2可单独用于寻呼UE,还指示上述信息(1)至(5)中的至少一种,本申请实施例对此不做限定。
需要说明的是,上述信息(1)至(5)可以是AMF根据业务需求确定的,或者AMF从其他核心网设备(如AF)获取的,本申请实施例对此不做限定。
作为一个示例,信令2也可包括掩码信息。掩码信息的含义可参照前文论述的内容。 AMF可根据业务需求确定掩码信息,或者根据信令2获得该掩码信息。
在另一种可能的实施方式中,第一核心网设备可以是SMF,这种情况下,上述S601和S602中的AMF可替换为SMF。
S603,第一设备发送信令3。相应的,一个或多个UE接收来自第一设备的信令3。
在本申请实施例中,是以第一UE接收该信令3为例、以及以信令3包括第一类型、第一状态为例。
在本申请实施例中,以第一设备根据信令3指示的信息(即第一设备采用上述方式一),确定待寻呼的UE的标志位的类型为第一类型和/或状态为第一状态为例进行介绍。
示例性的,第一设备根据信令3,确定待寻呼的UE的标志位的状态的状态变化条件的需求(例如,状态需维持的时长需求)。由于同一种状态,对应不同类型的标志位时,在第一条件下的维持的时长不同,和/或,多个状态中存在至少两个状态在第一条件下的维持的时长不同,因此第一设备可确定与时长的需求匹配的状态所对应的标志位的类型确定为第一类型,和/或,第一设备将与时长的需求匹配的标志位的状态确定为第一状态。
下面对信令2指示的信息不同,第一设备确定第一类型和/或第一状态的方式进行介绍。
1、信令2用于指示上述信息(1),即频率信息。
频率信息指示的频率越大,表示第一设备执行两次寻呼之间的时间间隔越短,这种情况下,第一设备可确定维持的时长较短的状态为第一状态,和/或确定维持的时长较短的状态对应的类型为第一类型。频率信息指示的频率越小,表示第一设备执行两次寻呼之间的时间间隔越长,这种情况下,第一设备确定维持的时长较长的状态为第一状态,和/或确定维持的时长较长的状态对应的类型为第一类型。
2、信令2用于指示上述信息(2),即次数信息。
该次数信息所指示的次数越大,表示第一设备在一段时间内会相对频繁地进行寻呼,这种情况下,第一设备确定维持的时长相对较短的状态为第一状态,和/或确定维持的时长相对较短的状态所对应的类型为第一类型。该次数信息所指示的次数越小,表示第一设备会不会频繁地进行寻呼,这种情况下,第一设备确定维持的时长相对较长的状态为第一状态,和/或确定维持的时长相对较长的状态所对应的类型为第一类型。
3、信令2用于指示上述信息(3),即准确率信息。
该准确率信息所指示的准确率越大,表示需要提高UE成功接入第一设备的可能性,而第一设备执行寻呼的次数越多,越能提高UE成功接入第一设备的可能性。在这种情况下,第一设备确定维持的时长较短的状态为第一状态,和/或确定维持的时长较短的状态对应的类型为第一类型。该准确率信息所指示的准确率越小,表示UE成功接入第一设备的可能性无需太大,因此第一设备执行寻呼的次数可相对较少。在这种情况下,第一设备确定维持的时长的状态为第一状态,和/或确定维持的时长较长的状态对应的类型为第一类型。
4、信令2用于指示上述信息(4),即数量信息。
该数量信息指示的数量级越大,表示第一设备需寻呼的UE的数量越多,也就表示第一设备执行一次寻呼的处理量较大,而假如UE频繁地切换标志位的状态,无疑会导致第一设备的处理量过大。因此,在这种情况下,第一设备可确定维持的时长较长的状态为第一状态,和/或确定维持的时长较长的状态对应的类型为第一类型。该数量信息指示的数量级越小,表示第一设备需接入的UE的数量越小,第一设备执行一次寻呼的处理量相对更小。因此,在这种情况下,第一设备可确定维持的时长较长的状态为第一状态,和/或确定 维持的时长较长的状态对应的类型为第一类型。
5、信令2用于指示上述信息(5),即接入时间信息。
如果寻呼时间信息指示了开始时间,第一设备可根据在开始时间之后已执行的寻呼次数,以及当前时间,确定每一次寻呼的时长。或者,如果寻呼时间信息指示了结束时间,第一设备可根据在开始时间之后已执行的寻呼次数,以及当前时间,确定每一次寻呼的时长。或者,如果寻呼时间信息指示了开始时间和结束时间,第一设备可确定每一次寻呼的时长。
如果每一次寻呼的时长相对短,那么第一设备可确定维持的时长较短的状态为第一状态,和/或确定维持的时长较短的状态对应的类型为第一类型。如果每一次寻呼的时长相对长,那么第一设备可确定维持的时长较长的状态为第一状态,和/或确定维持的时长较长的状态对应的类型为第一类型。
在一种可能的实施方式中,信令2如果指示了上述信息(1)至(5)中的两项或两项以上的信息,第一设备可结合两项或两项以上的信息,确定待寻呼的UE的标志位的类型对应的状态或标志位的状态的状态变化条件的需求,进而确定与状态变化条件的需求所对应的类型为标志位的第一类型和/或与该状态变化条件的需求匹配的状态为标志位的状态。
示例性的,第一状态可以为初始状态。初始状态的含义可参照前文。
可选的,信令3还可指示掩码信息。掩码信息的含义和第一设备获得掩码信息的方式可参照前文。
作为一个示例,信令3还可指示动作信息。动作信息的含义和第一设备获得动作信息的方式可参照前文。在图6所示的实施例中是以信令3还指示动作信息为例。该动作信息可以是第一设备根据信令2确定的,或者第一设备自行确定的,本申请实施例对此不做限定。
可选的,信令3还用于指示掩码信息。
作为一个示例,在信令3指示了掩码信息的情况下,第一UE确定满足第一UE第二条件之后,再根据第一标志位的信息,确定是否接入第一设备。
S604,第一UE改变第一UE的第一标志位的状态。
本申请实施例中以信令3的第二字段用于指示动作信息为例。其中,第二字段的不同取值下对应的状态变化内容可如表1所示。需要说明的是,表1是对第二字段、状态变化以及状态等进行示例介绍。
表1

如上述表1所示,在信令3中的第二字段的取值为000的情况下,如果第一UE符合第二条件,则第一UE将第一标志位的状态改变(在表1中以箭头“→”表示)为A。如果第一UE不符合第二条件,则将第一UE的第一标志位的状态改变为B。
在信令3中的第二字段的取值为001的情况下,如果第一UE符合第二条件,则第一UE将第一标志位的状态改变为A。如果第一UE不符合第二条件,则不改变第一UE的第一标志位的状态。
在信令3中的第二字段的取值为010的情况下,如果第一UE符合第二条件,则第一UE不改变第一标志位的状态。如果第一UE不符合第二条件,则将第一UE的第一标志位的状态改变为B。
在信令3中的第二字段的取值为011的情况下,如果第一UE符合第二条件,则第一UE将第一UE的第一标志位的状态置为相反的状态,例如,申明改变为非申明,非申明改变为申明,或者,从A改变为B,或者从B改变为A。如果第一UE不符合第二条件,则第一UE不改变第一标志位的状态。需要说明的是,申明和非申明与第一标志位的类型无关,即一个UE的任意一个标志位的状态要么为申明,要么为非申明状态。
在信令3中的第二字段的取值为100的情况下,如果第一UE符合第二条件,则第一UE将第一UE的第一标志位的状态改变为B。如果第一UE不符合第二条件,则第一UE将第一标志位的状态改变为A。
在信令3中的第二字段的取值为101的情况下,如果第一UE符合第二条件,则第一UE将第一标志位的状态改变为B。如果第一UE不符合第二条件,则第一UE不改变第一标志位的状态。
在信令3中的第二字段的取值为110的情况下,如果第一UE符合第二条件,则第一UE不改变第一标志位的状态。如果第一UE不符合第二条件,则第一UE将第一标志位的状态改变为A。
在信令3中的第二字段的取值为111的情况下,如果第一UE符合第二条件,则第一UE不改变第一标志位的状态。如果第一UE不符合第二条件,则第一UE将第一标志位的状态置为相反状态,例如,申明改变为非申明,非申明改变为申明,或者,从A改变为B,或者从B改变为A。
在第一设备并未指示动作信息的情况下,第一UE无需执行S604的步骤,即S604的步骤是可选的。
S605,第一设备发送信令5。相应的,一个或多个UE从第一设备接收信令5。在本申请实施例中,以第一UE接收到信令5为例。信令5的含义可参照前文。
作为一个示例,信令5可以为前文的信令3或信令4。当信令5相当于前文信令3的情况下,即相当于信令3还指示了最大时间单元范围。当信令5相当于前文信令4的情况下,相当于信令4还指示了最大时间单元范围。
作为一个示例,信令5指示的最大时间单元范围可通过信令3或者信令4指示,这种情况下,无需执行S605,即S605为可选的步骤。
S606,第一UE向第一设备发送第一请求。相应的,第一设备接收来自第一UE的第一请求。第一请求的含义可参照前文论述的内容。
在本申请实施例中,是以第一UE可根据信令3,确定本次是否接入第一设备为例进 行介绍。确定是否接入第一设备的方式可参照前文示例6论述的内容,此处不再列举。
S607,第一UE向第一设备发送上行数据。
上行数据例如该第一UE的EPC等。
需要说明的是,S606-S607相当于完成了本次接入。S606-S607为第一UE本次接入第一设备的方式的一种示例,实际上第一UE本次接入第一设备的方式还有多种,当第一UE采用其他方式接入第一设备时,S606-S607可能无需执行,即S606-S607为可选的步骤。
S608,第一设备向第一UE发送信令7。相应的,第一UE接收来自第一设备的信令7。
信令7用于指示第一UE的最大时间单元范围。本申请实施例中的信令7又可以称为第八信令。
需要说明的是,信令7指示的最大时间单元范围与信令5指示的最大时间单元范围不同。其中,两个最大时间单元范围不同是指两个最大时间单元范围不完全重合,或者完全不重合。
第一设备确定本次已寻呼的UE的数量(又称为第一数量),第一数量可理解为第一设备通过信令3实际寻呼(盘存、盘点或接入)的UE的数量,或者可理解为通过信令3和信令4实际寻呼的UE的数量,或者可以进一步理解为本次寻呼(即通过信令3寻呼,或者通过信令3和信令4寻呼)下已接入第一设备的UE的数量。碰撞的含义可参照前文。例如,第一设备可将成功解析的上行数据的数量确定为第一数量。如果第一数量大于或等于第一阈值,那么第一UE与其他UE发生碰撞的可能性更大,因此第一设备可发送信令7,从而减少UE之间的碰撞,有利于提高通信的可靠性。
或者,第一设备在接收第一UE的上行数据之后,确定无法正确解析该上行数据,那么第一设备确定该第一UE可能与其他UE发生了碰撞,在这种情况下,第一设备可向第一UE发送信令7。
作为一个示例,第一设备也可不调整第一UE的最大时间单元范围,这种情况下,第一设备可不执行S608的步骤,即S608为可选的步骤。
S609,第一UE改变第一UE的第一标志位的状态。
在第一UE与第一设备之间完成本次通信(接入)之后,第一UE可改变其第一标志位的状态,从而降低第一设备在本次寻呼中触发该第一UE再次接入的可能性。例如,第一UE将第一标志位的状态从第一状态改变为第二状态。本次寻呼的含义可参照前文。
S610,第一设备发送信令8。相应的,一个或多个UE接收来自第一设备的信令8。在本申请实施例中是以第二UE接收信令8为例。信令8用于指示下一次待接入的UE的第二标志位的信息。第二标志位的信息用于指示第二标志位的类型为第二类型和/或第二标志位的状态为第二状态。第二类型和第一类型可不同,第二状态和第一状态也可不同。本申请实施例中的信令8又可以称为第三信令。
在信令2指示第一设备进行多次寻呼的情况下,第一设备在完成一次寻呼之后,可继续发起下一次寻呼。在本申请实施例中,第一设备可根据第一数量,确定下一次寻呼的UE的标志位的类型,和/或标志位的状态。第一数量的含义可参照前文。
示例性的,如果第一数量大于或等于第一阈值,表示之前已寻呼的UE的数量过多,而寻呼的UE的数量过多,容易引起UE之间的碰撞,因此第一设备确定下一次寻呼的UE的第二标志位的类型调整为第二类型,和/或第二标志位的状态调整为第二状态。如果第一数量小于第一阈值,表示之前寻呼的UE的数量相对合适,则第一设备确定下一次寻呼的 UE的标志位的类型为第一类型,和/或标志位的状态为第一状态。在图6所示的实施例中,以下一次寻呼的UE的第二标志位的类型为第二类型和/或标志位的状态为第二状态为例进行介绍。
在第二UE接收信令8之后,可根据信令8确定是否接入第一设备。根据信令8确定是否接入第一设备的方式可参照前文根据信令3确定是否接入第一设备的方式,此处不再列举。
作为一个示例,信令8可视为一个第二级寻呼信令。
需要说明的是,第一设备发起的两次寻呼所确定的待寻呼的UE可以是完全相同,部分相同或完全不同。例如,第一设备向第一UE发起寻呼,未成功接收来自第一UE的上行数据,第一设备可再次向第一UE发起寻呼。又例如,第一设备向第一UE发起寻呼,接收来自第一UE的上行数据,第一设备可向第二UE发起寻呼。又例如,第一设备向第一UE和第二UE发起寻呼,接收来自第一UE的上行数据,未接收来自第二UE的上行数据,第一设备可再次向第二UE发起寻呼。
作为一个示例,AMF可根据待寻呼的第一标志位的信息,确定第二设备待寻呼的UE的第二标志位的信息,并向第二设备发送信令6。信令6的含义、AMF确定第二标志位的信息的内容、第二标志位的信息的含义、第一设备和第二设备的关系、以及AMF发送信令6的时刻等相关内容均可参照前文图4所示的实施例论述的内容,此处不再列举。
作为一个示例,S604-S610的步骤均为可选的步骤。
在图6所示的实施例中,第一核心网设备(如AMF)可通过信令2间接指示第一类型和/或第一状态,第一设备可根据信令2,确定第一类型和/或第一状态,进而确定待寻呼的UE,提供了一种寻呼UE的机制。并且,由于无需具体确定待寻呼的UE具体是哪些,因此可简化寻呼过程。并且,第一设备可根据第一核心网设备的间接指示,确定第一类型和/或第一状态,使得第一设备本次寻呼既能满足业务需求,又无需第一核心网设备确定第一类型和/或第一状态,有利于减少第一核心网设备的处理量。另外,第一核心网设备可通过一个信令指示第一设备进行向UE发起多次寻呼,有利于减少第一设备与第一核心网设备之间的交互次数。
请参照图7,为本申请实施例提供的一种寻呼方法的流程示意图。图7中是以图4所示的实施例涉及的信令2不指示第一类型和/或第一状态为例,以信令3指示第一类型为例,以图4所示的实施例涉及的第一设备自行确定待寻呼的UE的标志位的信息(即采用上述方式二确定第一类型)为例进行介绍。
S701,AF向AMF发送信令1。相应的,AMF接收来自AF的信令1。信令1用于寻呼UE。
可选的,信令1可用于指示次数信息。次数信息的含义可参照前文论述的内容。
作为一个示例,AMF可直接寻呼UE,而无需其他核心网设备(如AF)触发,这种情况下,无需执行S701,即S701是可选的步骤。
S702,AMF向第一设备发送信令2。第一设备接收来自AMF的信令2。信令2用于寻呼UE。可选的,信令2可用于指示次数信息。次数信息的含义可参照前文论述的内容。
其中,AMF向第一设备发送信令2的方式可参照前文,此处不再列举。
在另一种可能的实施方式中,第一核心网设备可以是SMF,这种情况下,上述S701和S702中的AMF可替换为SMF。
S703,第一设备发送信令3。相应的,一个或多个UE接收来自第一设备的信令3。信令3用于指示待寻呼的UE的标志位的类型为第一类型。
在本申请实施例中,以信令2没有指示第一类型为例进行介绍。这种情况下,第一设备可自行确定第一类型。其中,第一设备确定第一类型可采用前文子方式A1至子方式A3中的任意一种子方式,本申请实施例对此不做限定。
例如,第一设备将第一标志位的类型的状态确定为初始状态。
又例如,第一设备将第一标志位的类型的状态确定为初始状态,并将第一状态确定为第一标志位的初始状态。换言之,相当于第一设备选择该第一状态的UE接入。
在本申请实施例中,信令3还用于指示动作信息。动作信息的含义、以及第一设备确定动作信息的方式可参照前文。
可选的,信令3还用于指示掩码信息。
可选的,在信令3指示了掩码信息的情况下,第一UE确定满足第一UE第二条件之后,再根据第一标志位的信息,确定是否接入第一设备。
S704,第一UE改变第一UE的第一标志位的状态。
第一UE根据信令3的指示,改变第一UE的标志位的状态,改变第一UE的标志位的状态的方式可参照前文。
S705,第一设备发送信令4。相应的,一个或多个UE(如第一UE)接收来自第一设备的信令4。在本申请实施例中,信令4用于指示待寻呼的UE的标志位的状态为第一状态。
需要说明的是,S705和S703的执行顺序可以是任意的,例如,先执行S703,再执行S704;或者,先执行S704,再执行S703。信令4为可选信令。当信令3只包含第一标志位的部分信息时,如只包含动作信息和标志位信息,则可以发送第四信令。
S706,第一设备向第一UE发送信令5。相应的,第一UE接收来自第一设备的信令5。信令5的含义可参照前文。
S707,第一UE向第一设备发送第一请求。相应的,第一设备接收来自第一UE的第一请求。第一请求用于请求接入第一设备。
第一请求的内容可参照前文论述的内容,此处不再列举。
S708,第一UE向第一设备发送上行数据。相应的,第一设备接收来自第一UE的上下数据。上行数据的含义可参照前文。
在一种可能的实施方式中,第一设备向第一UE发送信令7。相应的,第一UE接收来自第一设备的信令7。信令7的内容可参照前文论述的内容。
S709,第一UE改变第一UE的第一标志位的状态。
第一UE改变其第一标志位的状态的方式可参照前文。
S710,第一设备发送信令8。一个或多个UE接收信令8。在本申请实施例中,以第二UE接收信令8为例。需要说明的是,第二UE可以与第一UE相同,或者不同。信令8用于指示下一次寻呼的UE的第二标志位的信息。第二标志位的信息用于指示第二标志位的类型为第二类型和/或标志位的状态为第二状态。信令8的含义可参照前文。
第一设备确定第二类型和/或第二状态的方式可参照前文论述的内容。以及第二UE根据信令8,确定是否接入第一设备的方式可参照前文论述的内容。
作为一个示例,第一核心网设备可根据第一标志位的信息,确定第二设备待寻呼的UE 的第二标志位的信息,并向第二设备发送信令6。信令6的含义、AMF确定第二标志位的信息的内容、第二标志位的信息的含义、第一设备和第二设备的关系、以及AMF发送信令6的时刻等相关内容均可参照前文图4所示的实施例论述的内容,此处不再列举。
作为一个示例,第一设备可无需执行S704-S710的步骤,即S704-S710为可选的步骤。
在图7所示的实施例中,第一核心网设备(如AMF)无需指示第一类型和/或第一状态,第一设备可自行确定第一类型和/或第一状态,从而寻呼UE,提供了一种寻呼UE的机制。并且,由于无需具体确定待寻呼的UE,可简化寻呼UE的过程。并且,第一设备可自行确定第一类型和/或第一状态,减少了第一核心网设备的处理量。并且,第一设备可根据信令3确定待寻呼的UE,并通过信令4确定本次接入的UE,使得第一设备可灵活地确定待寻呼的UE的标志位的状态。另外,第一设备还可根据本次寻呼UE的情况,调整下一次寻呼UE的标志位的类型和/或标志位的状态,有利于第一设备确定更符合业务需求的UE,也提高了第一设备触发UE接入的灵活性。
图8为本申请实施例提供的可能的通信装置的结构示意图。如图8所示,该通信装置800包括接收模块801、发送模块802和处理模块803。其中,处理模块803为可选的模块。通信装置800可以用于实现上述图4、图6或图7中的第一设备的功能,因此也能实现上述方法实施例所具备的有益效果。
示例性,接收模块801用于接收来自第一核心网设备的第一信令,发送模块802用于向第一设备发送第二信令。其中,第一信令和第二信令的内容可参照前文。可选的,处理模块803可用于确定第一类型和/第一状态。
例如,通信装置800执行前文图4所示的实施例时,接收模块801可以实现S402的步骤,发送模块802可实现S403的步骤。
又例如,通信装置800执行前文图6所示的实施例时,接收模块801可以实现S602的步骤,发送模块802可实现S603的步骤。
又例如,通信装置800执行前文图7所示的实施例时,接收模块801可以实现S702的步骤,发送模块802可实现S703的步骤。
图9为本申请实施例提供的可能的通信装置的结构示意图。如图9所示,该通信装置900包括收发模块901和处理模块902。通信装置900可以用于实现上述图4、图6或图7中的第一终端设备(例如,第一UE)的功能,因此也能实现上述方法实施例所具备的有益效果。
示例性,收发模块901可用于在处理模块902的控制下,接收来自第一设备的第二信令。其中,第二信令的内容可参照前文。可选的,处理模块902可用于改变第一UE的标志位的状态。
例如,通信装置900执行前文图4所示的实施例时,收发模块901可以实现S403的步骤。
又例如,通信装置900执行前文图6所示的实施例时,收发模块901可以实现S603的步骤。
又例如,通信装置900执行前文图7所示的实施例时,收发模块901可以实现S703的步骤。
图10为本申请实施例提供的可能的通信装置的结构示意图。如图10所示,该通信装置1000包括收发模块1001和处理模块1002。通信装置1000可以用于实现上述图4、图6 或图7中的第一核心网设备(例如,AF)的功能,因此也能实现上述方法实施例所具备的有益效果。
示例性,收发模块1001用于向第一设备发送第一信令。又例如,收发模块1001用于接收来自第二核心网设备的第七信令。其中,第七信令的内容可参照前文。可选的,处理模块1002用于确定第一类型和/或第一状态。
例如,通信装置1000执行前文图4所示的实施例时,收发模块1001可以实现S401的步骤和S402的步骤。
又例如,通信装置1000执行前文图6所示的实施例时,收发模块1001可以实现S601的步骤和S602的步骤。
又例如,通信装置1000执行前文图7所示的实施例时,收发模块1001可以实现S701的步骤和S702的步骤。
图11为本申请实施例提供的可能的通信装置的结构示意图。如图11所示,通信装置1100包括处理器1101和通信接口1102。处理器1101和通信接口1102之间相互耦合。可以理解的是,通信接口1102可以为收发器或输入输出接口。可选的,通信装置1100还可以包括存储器1103,用于存储处理器1101执行的指令或存储处理器1101运行指令所需要的输入数据或存储处理器1101运行指令后产生的数据。
可选的,当通信装置1100可用于实现上述任一实施例中的第一设备的功能,或者可用于实现图8所示的通信装置800的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
作为一个示例,处理器1101和存储器1103可耦合设置。
图12为本申请实施例提供的可能的通信装置的结构示意图。如图12所示,通信装置1200包括处理器1201和通信接口1202。处理器1201和通信接口1202之间相互耦合。可以理解的是,通信接口1202可以为收发器或输入输出接口。可选的,通信装置1200还可以包括存储器1203,用于存储处理器1201执行的指令或存储处理器1201运行指令所需要的输入数据或存储处理器1201运行指令后产生的数据。
可选的,当通信装置1200可用于实现上述任一实施例中的第一终端设备(如第一UE)的功能,或者可用于实现图9所示的通信装置900的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
作为一个示例,处理器1201和存储器1203可耦合设置。
图13为本申请实施例提供的可能的通信装置的结构示意图。如图13所示,通信装置1300包括处理器1301和通信接口1302。处理器1301和通信接口1302之间相互耦合。可以理解的是,通信接口1302可以为收发器或输入输出接口。可选的,通信装置1300还可 以包括存储器1303,用于存储处理器1301执行的指令或存储处理器1301运行指令所需要的输入数据或存储处理器1301运行指令后产生的数据。
可选的,当通信装置1300可用于实现上述任一实施例中的第一核心网设备(如AMF)的功能,或者可用于实现图10所示的通信装置1000的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
作为一个示例,处理器1301和存储器1303可耦合设置。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (22)

  1. 一种寻呼方法,其特征在于,应用于第一设备中,所述方法包括:
    接收来自第一核心网设备的第一信令,所述第一信令用于寻呼终端设备;
    发送第二信令,所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信令还用于指示所述第一类型和/或所述第一状态。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信令包括如下信息的至少一种:
    频率信息,所述频率信息用于指示所述第一设备寻呼终端设备的频率;或,
    次数信息,所述次数信息用于指示所述第一设备寻呼终端设备的次数;或,
    准确率信息,所述准确率信息用于指示所述第一设备成功寻呼的终端设备的数量与所述第一设备执行寻呼的终端设备的数量之间的比值;或,
    数量信息,所述数量信息用于指示所述第一设备预期寻呼的终端设备的数量级;或,
    寻呼时间信息,所述寻呼时间信息用于指示所述第一设备执行寻呼的开始时间和/或结束时间。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    从标志位的多种类型中,随机确定一种类型为所述第一类型;和/或,
    所述第一状态为所述第一标志位的初始状态。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一设备通过所述第二信令寻呼的终端设备的第一数量,发送第三信令,所述第三信令用于指示下一次待寻呼的终端设备的第二标志位的信息,所述第二标志位的信息包括所述第二标志位的类型为第二类型和/或状态为第二状态,且所述第三信令用于确定所述下一次待寻呼的终端设备。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第二信令还用于指示动作信息,所述动作信息用于指示改变终端设备的所述第一标志位的状态。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:发送第四信令,所述第四信令用于指示动作信息,所述动作信息用于指示改变终端设备的所述第一标志位的状态,和/或用于指示所述第一标志位的状态为所述第一状态。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第二信令还用于指示所述待寻呼的终端设备向所述第一设备发送数据的最大时间单元范围;或者,所述方法还包括:发送第五信令,所述第五信令用于指示所述待寻呼的终端设备向所述第一设备发送数据的最大时间单元范围。
  9. 根据权利要求2或3所述的方法,其特征在于,所述第一信令为非接入层信令。
  10. 一种寻呼方法,其特征在于,应用于第一终端设备,所述方法包括:
    接收来自第一设备的第二信令,所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
  11. 根据权利要求10所述的方法,其特征在于,所述第二信令用于指示改变终端设备 的所述第一标志位的状态。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一设备的第四信令,所述第四信令用于指示动作信息,所述动作信息用于指示改变终端设备的所述第一标志位的状态,和/或用于指示所述第一标志位的状态为所述第一状态。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一设备的第三信令,所述第三信令用于指示下一次待寻呼的终端设备的第二标志位的信息,所述第二标志位的信息包括所述第二标志位的类型为第二类型和/或状态为第二状态,且所述第三信令用于确定所述下一次待寻呼的终端设备,所述第二标志位的信息是根据所述第一设备通过所述第二信令寻呼的终端设备的第一数量确定的。
  14. 一种寻呼方法,其特征在于,应用于第一核心网设备,所述方法包括:
    向第一设备发送第一信令,所述第一信令用于指示第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信令包括如下信息的至少一种:
    频率信息,所述频率信息用于指示所述第一设备寻呼终端设备的频率;或,
    次数信息,所述次数信息用于指示所述第一设备寻呼终端设备的次数;或,
    准确率信息,所述准确率信息用于指示所述第一设备成功寻呼的终端设备的数量与所述第一设备执行寻呼的终端设备的数量之间的比值;或,
    数量信息,所述数量信息用于指示所述第一设备预期寻呼的终端设备的数量级;或,
    寻呼时间信息,所述寻呼时间信息用于指示所述第一设备执行寻呼的开始时间和/或结束时间。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一信令为非接入层信令。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述方法还包括:
    向第二设备发送第六信令,所述第六信令用于指示待寻呼的终端设备的第二标志位的信息,所述第二标志位的信息用于指示所述第二标志位的类型为第二类型和/或状态为第二状态,且所述第二标志位的信息用于确定待寻呼的终端设备,所述第二标志位的信息是根据所述第一标志位的信息确定的。
  18. 一种通信装置,其特征在于,包括:
    接收模块,用于接收来自第一核心网设备的第一信令,所述第一信令用于寻呼终端设备;
    发送模块,用于发送第二信令,所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
  19. 一种通信装置,其特征在于,包括处理模块和收发模块,其中:
    所述收发模块,用于在所述处理模块的控制下,接收来自第一设备的第二信令,所述第二信令用于指示待寻呼的终端设备的第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
  20. 一种通信装置,其特征在于,包括处理模块和收发模块,其中:
    收发模块,用于在所述处理模块的控制下,向第一设备发送第一信令,所述第一信令用于指示第一标志位的信息,所述第一标志位的信息用于指示所述第一标志位的类型为第一类型和/或状态为第一状态,所述第一标志位的信息用于确定待寻呼的终端设备。
  21. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-17中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-17中任一项所述的方法。
PCT/CN2023/086230 2022-05-30 2023-04-04 一种寻呼方法及装置 WO2023231564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210605628.9A CN117202141A (zh) 2022-05-30 2022-05-30 一种寻呼方法及装置
CN202210605628.9 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023231564A1 true WO2023231564A1 (zh) 2023-12-07

Family

ID=88982370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086230 WO2023231564A1 (zh) 2022-05-30 2023-04-04 一种寻呼方法及装置

Country Status (2)

Country Link
CN (1) CN117202141A (zh)
WO (1) WO2023231564A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448026A (zh) * 2010-09-30 2012-05-09 上海贝尔股份有限公司 通信系统中由网络发起一对多通信过程的方法和装置
CN111356230A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种通信方法及装置
US20200296670A1 (en) * 2018-01-31 2020-09-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Paging method, terminal device and network device
WO2021159244A1 (zh) * 2020-02-10 2021-08-19 华为技术有限公司 一种寻呼方法及装置
WO2021174430A1 (zh) * 2020-03-03 2021-09-10 Oppo广东移动通信有限公司 寻呼处理方法及装置、用户设备、网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448026A (zh) * 2010-09-30 2012-05-09 上海贝尔股份有限公司 通信系统中由网络发起一对多通信过程的方法和装置
US20200296670A1 (en) * 2018-01-31 2020-09-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Paging method, terminal device and network device
CN111356230A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种通信方法及装置
WO2021159244A1 (zh) * 2020-02-10 2021-08-19 华为技术有限公司 一种寻呼方法及装置
WO2021174430A1 (zh) * 2020-03-03 2021-09-10 Oppo广东移动通信有限公司 寻呼处理方法及装置、用户设备、网络侧设备

Also Published As

Publication number Publication date
CN117202141A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US20200092845A1 (en) Paging Message Sending and Receiving Methods, Terminal, and System
US10271302B2 (en) Method and apparatus for paging terminals in a wireless communication system
US20220394459A1 (en) Communications method and apparatus
US11129173B2 (en) Method and apparatus for transmitting sidelink feedback information
CN111770572A (zh) 确定反馈信息的方法和通信装置
CN110393027A (zh) 一种消息发送方法、消息接收方法及对应设备
US20220104242A1 (en) Transmission method and device for uplink control information
CN111263458B (zh) 无线通信方法和设备
US20240057035A1 (en) Communication method and apparatus
US20210218495A1 (en) Signal transmission method and communications apparatus
US20240129095A1 (en) Method for requesting system information block, and communication device
CN113950146B (zh) 一种寻呼方法和通信装置
US20230337320A1 (en) Wireless communication method and terminal device
CN111277371B (zh) 数据传输方法及设备
CN113382454A (zh) 一种通信方法与装置
WO2023231564A1 (zh) 一种寻呼方法及装置
EP4325953A1 (en) Cooperative communication method and apparatus for multi-card terminal device
WO2021092925A1 (zh) 一种通信方法和通信装置
WO2023197783A1 (zh) 一种寻呼方法及装置
WO2024088147A1 (zh) 通信方法及装置
WO2024093740A1 (zh) 一种通信方法及装置
US20240031988A1 (en) Paging indication method and apparatus
CN115088308B (zh) 反馈信息接收方法及装置
WO2024037204A1 (zh) 通信方法、装置及系统
WO2023045704A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814760

Country of ref document: EP

Kind code of ref document: A1