WO2023197676A1 - 获取天线组合的方法、电子设备和计算机可读存储介质 - Google Patents

获取天线组合的方法、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2023197676A1
WO2023197676A1 PCT/CN2022/141753 CN2022141753W WO2023197676A1 WO 2023197676 A1 WO2023197676 A1 WO 2023197676A1 CN 2022141753 W CN2022141753 W CN 2022141753W WO 2023197676 A1 WO2023197676 A1 WO 2023197676A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal quality
communication
data
connection
antenna
Prior art date
Application number
PCT/CN2022/141753
Other languages
English (en)
French (fr)
Inventor
魏鲲鹏
张志军
官乔
吉坤
吴顶顶
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023197676A1 publication Critical patent/WO2023197676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and specifically to a method for obtaining an antenna combination, an electronic device and a computer-readable storage medium.
  • a wireless router can provide a wireless fidelity (WIFI) network for terminal devices within the coverage area, allowing the connected terminal devices to access the Internet.
  • WIFI wireless fidelity
  • WIFI networks usually use two frequency bands, 2.4G and 5G, for communication. Due to its large bandwidth and high speed, WIFI-5G has become the first choice in some high-speed scenarios, such as gaming scenarios or webcast scenarios with high-speed requirements. However, compared with WIFI-2.4G, WIFI-5G has higher frequency and poor diffraction ability. The signal loss is greater during propagation or wall penetration, resulting in a small coverage area. In order to increase the coverage of WIFI-5G signals, usually in wireless routers, in addition to omnidirectional antennas, multiple directional antennas are also added to increase the coverage of WIFI-5G signals.
  • the high gain of each directional antenna The beams have different directions, so the combination of multiple directional antennas can make the coverage of the high-gain beam more comprehensive, so that no matter which direction the connected terminal device is located in the wireless router, it can be covered by the high-gain beam of the fixed-line antenna. within the area to ensure the communication quality of WIFI-5G.
  • the network connection between the terminal device and the wireless router may change from WIFI -5G falls back to WIFI-2.4G.
  • the wireless router can choose a different directional antenna from the last one to re-establish WIFI-5G communication with the terminal device when the next scanning cycle comes.
  • the wireless router will continue to use other directional antennas to try to establish WIFI-5G communication until WIFI-5G communication is successfully established or all directional antennas are polled.
  • wireless routers constantly try to use different directional antennas to establish WIFI-5G communication, causing the network connection to constantly switch between WIFI-5G and WIFI-2.4G, making it impossible to select a suitable directional antenna in time to establish WIFI-5G.
  • 5G network connections carry out communication and affect the user experience.
  • This application provides a method, device, chip, electronic device, computer-readable storage medium and computer program product for obtaining an antenna combination, which can quickly align high-gain beams and achieve the purpose of quickly switching network connections.
  • a method for obtaining an antenna combination including: when the network connection is a second connection, obtaining first signal quality data through the second connection, and the first signal quality data is used to characterize communication using the first connection.
  • the communication quality of the first connection is a network connection that uses the first frequency band for communication
  • the second connection is a network connection that uses the second frequency band for communication.
  • the frequency of the first frequency band is higher than the frequency of the second frequency band; according to the first signal quality
  • the data determines the target antenna combination; where the target antenna combination is a combination of antennas that are called for transmitting and receiving signals in the first frequency band when the network connection is switched from the second connection to the first connection for communication.
  • the wireless router does not need to select an antenna combination without any basis to switch the network connection to the first connection, but obtains the first signal quality data representing the communication quality of the first connection with high frequency through the second connection with low frequency. , and then determine the target antenna combination according to the first signal quality data. The wireless router can then use the antennas in the determined target antenna combination to send and receive signals in the first frequency band and establish a first connection for communication.
  • This method can avoid the problem of network interruption caused by connection failure when the network connection is directly switched to the first connection due to improper selection of antenna combinations, and further avoids the network connection jumping back and forth between the first connection and the second connection. , the problem of being unable to align the high-gain beam in time and being unable to establish the first connection in time. Before switching the network connection to the first connection, determine the target antenna combination that meets the communication requirements, which can make the network connection switch successful at one time and achieve high The rapid alignment of the gain beam improves the efficiency of antenna switching, avoids network interruption, and improves user experience.
  • the first signal quality data is used to characterize the communication quality when using the first connection communication through the first antenna combination, and the target antenna combination is determined according to the first signal quality data, including: if the first signal quality data If the preset communication requirements are met, the first antenna combination is determined to be the target antenna combination.
  • it also includes: if the first signal quality data does not meet the preset communication requirements, obtaining second signal quality data through the second connection, and the second signal quality data is used to characterize the use of the second antenna combination.
  • the communication quality during the first connection communication, the second antenna combination and the first antenna combination are different antenna combinations; if the second signal quality data meets the preset communication requirements, the second antenna combination is determined to be the target antenna combination; if If the second signal quality data does not meet the preset communication requirements, the target antenna combination is determined based on other signal quality data.
  • the other signal quality data is used to characterize the communication quality when using the first connection communication through other antenna combinations.
  • Other antenna combinations include except the first A combination of antennas other than the first antenna combination and the second antenna combination.
  • the wireless router can determine the first antenna combination corresponding to the first signal quality data as the target antenna combination when the first signal quality data obtained by transmitting signals through the first antenna combination meets the preset communication requirements, and determines the target antenna combination based on the first signal quality data. It is determined that the first antenna combination corresponding to the first signal quality data is the target antenna combination only when it indicates that the communication quality of the first antenna combination when communicating in the first frequency band meets the communication requirements. If the first signal quality data cannot meet the preset communication requirements, continue to obtain the second signal quality data corresponding to the second antenna combination until the signal quality data that meets the preset communication requirements is obtained, and the signal that meets the preset communication requirements is obtained.
  • the antenna combination corresponding to the quality data is used as the target antenna combination, so there is no need to select an antenna combination without basis to establish a new network connection. This can avoid connection failure caused by improper selection of the antenna combination when the network connection is directly switched to the first connection.
  • the problem of network interruption also further avoids the problem of the network connection jumping back and forth between the first connection and the second connection, the inability to align the high-gain beam in time, and the inability to establish the first connection in time.
  • the first signal quality data includes multiple sets of signal quality sub-data, and the multiple sets of signal quality sub-data correspond to multiple antenna combinations.
  • Each set of signal quality sub-data is represented by the corresponding antenna combination using the third Communication quality during a connection communication, determining the target antenna combination according to the first signal quality data, including: selecting target signal quality sub-data that meets preset communication requirements from multiple sets of first signal quality sub-data, the target signal quality sub-data The corresponding antenna combination is the target antenna combination.
  • This method can obtain multiple sets of signal quality sub-data corresponding to multiple antenna combinations, then select a group that meets the requirements, and indicate the target antenna combination based on the selected target signal quality sub-data that meets the requirements without any basis. Selecting an antenna combination correctly to establish a new network connection can avoid the problem of network interruption caused by connection failure when the network connection is directly switched to the first connection due to improper selection of the antenna combination. It also further avoids the problem of network connection being switched directly to the first connection. Jumping back and forth between the second connection and the inability to align the high-gain beam in time and the inability to establish the first connection in time.
  • the network connection Before switching the network connection to the first connection, select a target antenna combination that meets the communication requirements, which can make The network connection is successfully switched in one go, achieving rapid alignment of high-gain beams, improving the efficiency of antenna switching, avoiding network interruptions, and improving user experience.
  • selecting target signal quality sub-data that meets preset communication requirements from multiple sets of first signal quality sub-data includes: selecting the one representing the highest communication rate from multiple sets of signal quality sub-data. group as target signal quality sub-data.
  • This method can select the optimal group from multiple groups of signal quality sub-data as the target signal quality sub-data, so that the determined target antenna combination is the optimal antenna combination to ensure the best communication quality.
  • the preset communication requirements include: the communication rate is greater than or equal to the preset rate threshold, and target signal quality sub-data that meets the preset communication requirements is selected from multiple sets of first signal quality sub-data, including: Select any group of multiple groups of signal quality sub-data that represents a communication rate greater than or equal to a preset rate threshold as the target signal quality sub-data.
  • This method can find the data that meets the preset communication requirements at the fastest speed when traversing the signal quality sub-data, which can save time compared with all searches and improve the efficiency of antenna switching.
  • obtaining the first signal quality data through the second connection includes: when the device connected through the second connection is a core device, obtaining the first signal quality data through the second connection, and the core device has Equipment with high gain beam requirements.
  • the wireless router first determines whether the device connected through the second connection is a core device. If it is a core device, it indicates that the device is a terminal device with high gain beam requirements. For example, the current usage scenario of the terminal device is to run a low-latency game application. program, or webcast application, the wireless router can determine that it is necessary to switch to the high-frequency first connection in the high-gain beam alignment state to establish a high-speed, low-latency communication channel, and then start to obtain the first signal quality data A step of.
  • the terminal device is not a core device and does not have high-gain beam requirements, using a low-frequency second frequency band, such as WIFI-2.4G, for communication between the wireless router and the terminal device can also meet the communication requirements, so there is no need to obtain the first signal quality data, there is no need to switch network connections, which can save system overhead.
  • a low-frequency second frequency band such as WIFI-2.4G
  • obtaining the first signal quality data through the second connection includes: receiving an antenna switching request from the connected device; and in response to the antenna switching request, obtaining the first signal quality data through the second connection.
  • This method can actively initiate a closed-loop feedback mode through the connected device when the high-gain beam is misaligned. There is no need to wait for the wireless router to trigger the process periodically before switching to the second connected network, reducing the waiting time. This makes network switching more efficient and improves user experience.
  • the first frequency band is the 5G frequency band of WIFI
  • the second frequency band is the 2.4G frequency band of WIFI.
  • This method can return signal quality data that characterizes the communication quality of WIFI-5G through the WIFI-2.4G network before the network connection is switched to WIFI-5G, and predetermine the target antenna combination that meets the communication requirements before proceeding.
  • the switching of network connections enables successful one-time switching of network connections, achieves rapid alignment of high-gain beams, improves the efficiency of antenna switching, avoids network interruptions, and improves user experience.
  • the first signal quality data includes: bit error rate (BER), packet loss rate (packet error ratio, PER), channel state information (channel state information, CSI), delay , one or more of received signal strength indicator (received signal strength indicator, RSSI) and communication rate.
  • BER bit error rate
  • PER packet loss rate
  • CSI channel state information
  • RSSI received signal strength indicator
  • a second aspect provides an apparatus for obtaining an antenna combination, which includes a unit composed of software and/or hardware, and the unit is configured to perform any one of the methods in the technical solution of the first aspect.
  • an electronic device in a third aspect, includes: a processor, a memory, and an interface; the processor, the memory, and the interface cooperate with each other to enable the electronic device to execute any method in the technical solution of the first aspect.
  • the electronic device is a wireless router.
  • embodiments of the present application provide a chip including a processor; the processor is configured to read and execute a computer program stored in a memory to execute any method in the technical solution of the first aspect.
  • the chip also includes a memory, and the memory is connected to the processor through circuits or wires.
  • the chip also includes a communication interface.
  • a computer-readable storage medium is provided.
  • a computer program is stored in the computer-readable storage medium.
  • the processor is caused to execute the technology described in the first aspect. any method in the scheme.
  • a computer program product includes: computer program code.
  • the computer program code When the computer program code is run on an electronic device, the electronic device causes the electronic device to execute the technical solution described in the first aspect. Either way.
  • Figure 1 is a schematic structural diagram of an antenna distribution in a wireless router 100 provided by an embodiment of the present application
  • Figure 2 is a directional diagram of the antenna in the wireless router 100 provided by the embodiment of the present application.
  • Figure 3 is a schematic flowchart of an example of obtaining an antenna combination provided by an embodiment of the present application.
  • Figure 4 is a schematic circuit structure diagram of an example of a WIFI radio frequency path provided by an embodiment of the present application.
  • Figure 5 is a schematic flowchart of another example of obtaining an antenna combination provided by an embodiment of the present application.
  • Figure 6 is a schematic flowchart of another example of obtaining an antenna combination provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the curves of the real part and the imaginary part of the CFR collected in an example provided by the embodiment of the present application;
  • Figure 8 is a schematic curve diagram of the absolute value of the real part of the CFR and a schematic curve diagram of the CIR obtained according to the CFR provided by the embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of an example of a device for obtaining an antenna combination provided by an embodiment of the present application.
  • first”, “second” and “third” are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of these features.
  • a wireless router can provide a WIFI network for terminal devices within the coverage area, allowing the connected terminal devices to access the Internet.
  • WIFI-2.4G has low frequency and strong diffraction ability. It has less signal loss during propagation or when passing through walls, and has a large coverage area. Due to its higher frequency and cleaner electromagnetic environment, WIFI-5G receives less interference in space. It also has the characteristics of multiple channels, large bandwidth, and high speed, making it the first choice in some high-speed scenarios, such as gaming scenarios. Or network live broadcast scenarios with high speed requirements, etc.
  • WIFI-5G has higher frequency and poor diffraction ability. The signal loss is greater during propagation or wall penetration, resulting in a small coverage area.
  • WIFI-5G in this application does not only refer to the frequency of 5GHz, but includes the corresponding frequencies of all channels of WIFI-5G;
  • WIFI-2.4G does not only refer to the frequency of 2.4GHz, but also includes WIFI -The corresponding frequencies of all channels of 2.4G.
  • the omnidirectional antenna is an antenna with a relatively uniform gain around the antenna
  • the directional antenna is an antenna with high gain in a fixed direction and low gain in other directions.
  • the direction of the high-gain beam of each directional antenna in the wireless router is different, so the combination of multiple directional antennas can make the directional coverage of the high-gain beam more comprehensive.
  • FIG. 1 is a schematic diagram of an example wireless router 100 including a directional antenna and an omnidirectional antenna.
  • the wireless router 100 in Figure 1 is shown as an example including four omnidirectional antennas and three directional antennas, specifically including: omnidirectional antenna 101, omnidirectional antenna 102, omnidirectional antenna 103 and omnidirectional antenna 104, directional antenna 105, Directional antenna 106 and directional antenna 107.
  • these four omnidirectional antennas can be used to send and receive WIFI-2.4G signals, and can also be used to send and receive WIFI-5G signals.
  • the wireless router 100 can freely choose which omnidirectional antennas and which directional antennas to use in combination to perform WIFI-5G communication.
  • the respective directional patterns of the directional antenna and the omnidirectional antenna are shown as dotted lines.
  • the high-gain beam of each directional antenna can cover a sector (sector-shaped area, in Figure 2 to divide the area around the wireless router Take sector 1, sector 2 and sector 3 as examples).
  • the wireless router 100 can select the omnidirectional antenna 103, the omnidirectional antenna 104, and the directional antenna 106 to send and receive WIFI-5G signals.
  • the network connection between the terminal device 200 and the wireless router 100 may fall back from WIFI-5G to WIFI-2.4G to ensure continuous connection. .
  • the wireless router 100 and the terminal device 200 still hope to continue to use WIFI-5G for communication. Therefore, when the next scanning cycle comes, the wireless router 100 can switch different directional antennas to re-establish WIFI-5G communication with the terminal device 200, for example, select a combination of the omnidirectional antenna 103, the omnidirectional antenna 104 and the directional antenna 105 to transmit and receive. WIFI-5G signal. But if the terminal device 200 does not move to sector 1 corresponding to the high-gain beam of the directional antenna 105 at this time, then the wireless router 100 selects the omnidirectional antenna 103, the omnidirectional antenna 104 and the directional antenna 105 to send and receive WIFI-5G signals.
  • WIFI-5G communication cannot be established due to weak signal, and the network will be interrupted. At this time, the network connection between the terminal device 200 and the wireless router 100 will be switched back to WIFI-2.4G.
  • the wireless router 100 continues to switch other directional antennas, for example, switching the directional antenna to the directional antenna 107 to try to establish WIFI-5G communication, because the terminal device 200 just moves to the high-gain beam of the directional antenna 107 In the corresponding sector 3, WIFI-5G communication can be established successfully.
  • the above-mentioned directional antenna may adopt a dual-polarized antenna including horizontal polarization and vertical polarization.
  • the wireless router 100 constantly tries to use different directional antennas to establish WIFI-5G communication, causing the network connection to continuously switch between WIFI-5G and WIFI-2.4G, making it impossible to select a suitable directional antenna in time to establish WIFI.
  • -5G network connection for communication affects the user experience.
  • the method for obtaining antenna combinations provided by the embodiments of this application can be applied to routers, mobile phones, tablets, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (VR) devices, notebook computers, Devices such as ultra-mobile personal computers (UMPC), netbooks, and personal digital assistants (personal digital assistants, PDA) can also be applied to network devices such as wireless routers mentioned above.
  • the embodiments of this application apply to devices There are no restrictions on the specific type.
  • the structure of the wireless router 100 illustrated in the embodiment of the present application does not constitute a specific limitation on the network equipment.
  • the wireless router 100 may include more or less components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 3 is a schematic flowchart of a method for a wireless router to obtain an antenna combination according to an embodiment of the present application. The method includes:
  • the network connection is the second connection
  • the first signal quality data is used to represent the communication quality when communicating using the first connection.
  • the first connection uses the first frequency band for communication.
  • the second connection is a network connection using a second frequency band for communication, and the frequency of the first frequency band is higher than the frequency of the second frequency band.
  • the frequency of the first frequency band is higher than the frequency of the second frequency band. It can be that all frequencies of the first frequency band are higher than all frequencies of the second frequency band; it can also be that the frequency of a part of the first frequency band is higher than that of all the frequencies of the second frequency band. Frequency, another part of the frequency of the first frequency band coincides with a part of the frequency of the second frequency band, and there is no limitation on this.
  • the first frequency band is the WIFI-5G frequency band and the second frequency band is the WIFI-2.4G frequency band as an example to describe a method for a wireless router to obtain an antenna combination.
  • the WIFI-5G signal will temporarily cover a larger area.
  • the wireless router and the smartphone will switch from the high-frequency WIFI-5G network connection to the low-frequency WIFI-2.4G network connection to maintain the communication connection.
  • smartphones require high-speed communication, and the wireless router needs to re-establish a WIFI-5G network connection with the smartphone.
  • the wireless router does not directly switch from WIFI-2.4G to WIFI-5G network connection, but continues to maintain the WIFI-2.4G network connection status, and at the same time selects a set of antenna combinations to test this Signal quality when using antennas for WIFI-5G communication.
  • the wireless router can use a set of antenna combinations to send training data packets in the WIFI-5G frequency band in the form of broadcasts.
  • the smartphone receives the training data packet, it can obtain the first signal quality corresponding to the training data packet. data, and then transmit the measured signal quality data back to the wireless router through the WIFI-2.4G network connection.
  • the smartphone can return a null value (null) through the WIFI-2.4G network connection.
  • the wireless router uses a set of antenna combinations to broadcast training data packets through the WIFI-5G frequency, and then transmits back signal quality data that characterizes the signal quality of WIFI-5G through the WIFI-2.4G network connection. , called the signal quality data corresponding to this set of antenna combinations.
  • step S301 may be triggered when the terminal device needs to establish a high-speed second connection with the wireless router, such as a WIFI-5G network connection, or may be triggered when the network connection switches from a high-speed first connection to a low-speed connection. It is triggered when the second connection speed is reached. For example, when WIFI-5G is disconnected and the network connection is switched to WIFI-2.4G, the reconnection process of WIFI-5G is triggered, that is, step S301 is executed.
  • the wireless router such as a WIFI-5G network connection
  • the above signal quality data can reflect the quality of communication.
  • the signal quality data may include but is not limited to: any one or a combination of CSI, RSSI, bit error rate (BER), packet loss rate (PER), communication rate and delay, etc. , as long as it can reflect the communication quality when using the selected antenna combination to send and receive WIFI-5G signals.
  • a list of multiple antenna combinations can be pre-stored in the memory of the wireless router, and each antenna combination can be used to simultaneously transmit and receive WIFI-5G signals.
  • each antenna combination includes one or more omnidirectional antennas and one or more directional antennas.
  • the number of antennas in each antenna combination may be determined according to the product specifications of the wireless router, which is not limited in the embodiments of the present application. For example, when the radio frequency channel of a wireless router supports the transmission and reception of up to four signals, the number of antennas in the antenna combination can be up to four.
  • the wireless router can select any antenna combination from the list of multiple antenna combinations mentioned above to broadcast the training data packet, and then receive the signal quality data of the training data packet fed back by the smartphone through the WIFI-2.4G network connection.
  • S302. Determine the target antenna combination according to the first signal quality data; wherein the target antenna combination is a combination of antennas called for transmitting and receiving signals in the first frequency band when the network connection is switched from the second connection to the first connection for communication.
  • the wireless router When the wireless router obtains the first signal quality data corresponding to a certain set of antenna combinations that meets the preset communication requirements, the wireless router can use this set of antenna combinations to perform WIFI-5G communications to meet communication rate, delay and other requirements. Then the set of antenna combinations corresponding to the first signal quality data can be used as the target antenna combination.
  • the wireless router can also update the target antenna combination to the antenna's configuration parameters. After that, the wireless router can call the configuration parameters corresponding to the target antenna combination, and then control the switch of the corresponding radio frequency channel to switch, such as sending control instructions to each radio frequency channel through the general purpose input/output (GPIO) interface. switch to switch the radio frequency channels, open the radio frequency channels corresponding to each antenna in the target antenna combination, and realize using each antenna in the target antenna combination to send and receive signals in the first frequency band.
  • the wireless router shown in Figure 2 determines that the target antenna combination includes omnidirectional antenna 101, omnidirectional antenna 103, and directional antenna 107. Then the switching logic of the radio frequency channel can be controlled through GPIO to turn on omnidirectional antenna 101 and omnidirectional antenna 103.
  • the path to the directional antenna 107 uses the omnidirectional antenna 101, the omnidirectional antenna 103 and the directional antenna 107 to transmit and receive signals in the first frequency band.
  • the wireless router controls switch switching through GPIO. Switch 1 is turned on for 1-1 and 3-3, and switch 2 is turned on for 1-3.
  • the WIFI chip is used to modulate and demodulate WIFI signals
  • the power amplifier (PA) is used to amplify the transmitted signal from the WIFI chip
  • the low noise amplifier (LNA) is used to amplify the signal from the antenna.
  • the received signal is amplified, it is input to the WIFI chip.
  • the transmitting path where the PA is located and the receiving path where the LNA is located are switched through a single pole double throw (SPDT) switch.
  • PA1, PA3, PA5, and PA7 are the PAs on the transmit paths of 2.4G channel 1, 2.4G channel 2, 2.4G channel 3, and 2.4G channel 4 respectively
  • LNA1, LNA3, LNA5, and LNA7 are 2.4G channel 1 respectively.
  • LNA on the receiving path of 2.4G channel 2, 2.4G channel 3, and 2.4G channel 4; PA2, PA4, PA6, PA8, and PA9 are 5G channel 1, 5G channel 2, 5G channel 3, 5G channel 4, and 5G respectively.
  • PA on the transmit path of path 5, LNA2, LNA4, LNA6, LNA8 and LNA9 are the LNAs on the receive path of 5G path 1, 5G path 2, 5G path 3, 5G path 4 and 5G path 5 respectively; SPDT1 is used for switching 2.4G channel 1 and 5G channel 1, SPDT2 is used to switch 2.4G channel 2 and 5G channel 2, SPDT3 is used to switch 2.4G channel 3 and 5G channel 3, SPDT4 is used to switch 2.4G channel 4 and 5G channel 4, SPDT5 is used For switching the transceiver path of 2.4G channel 1, SPDT6 is used to switch the transceiver channel of 5G channel 1, SPDT7 is used to switch the transceiver channel of 2.4G channel 2, SPDT8 is used to switch the transceiver channel of
  • the wireless router does not need to select an antenna combination without any basis to switch the network connection to the first connection, but obtains the communication quality characterizing the first connection with high frequency through the second connection with low frequency. first signal quality data, and then determine the target antenna combination based on the first signal quality data. The wireless router can then use the antennas in the determined target antenna combination to send and receive signals in the first frequency band and establish a first connection for communication.
  • This method can avoid the problem of network interruption caused by connection failure when the network connection is directly switched to the first connection due to improper selection of antenna combinations, and further avoids the network connection jumping back and forth between the first connection and the second connection. , the problem of being unable to align the high-gain beam in time and being unable to establish the first connection in time.
  • determine the target antenna combination that meets the communication requirements which can make the network connection switch successful at one time and achieve high
  • the rapid alignment of the gain beam improves the efficiency of antenna switching, avoids network interruption, and improves user experience.
  • the above-mentioned first signal quality data can represent the communication quality when the first connection is used for communication through the first antenna combination.
  • the method is specifically shown in Figure 5, including:
  • the first antenna combination is one of multiple antenna combinations that can be used by the first connection, and the first antenna combination At least one directional antenna may be included.
  • the wireless router can determine whether the first signal quality data meets the preset communication requirements. If it does, it means that when the first antenna combination is used for communication, the communication quality can meet the communication requirements, and it can be determined that the first antenna combination is used as the communication requirement.
  • the target antenna combination is used to transmit and receive signals in the first frequency band.
  • the wireless router determines that the signal amplitude of the CSI corresponding to each antenna in the first antenna combination is greater than or equal to the preset value. amplitude threshold, the wireless router can determine the first antenna combination as the target antenna combination.
  • the wireless router determines that the bit error rate or packet loss rate is less than ten percent, for example is 5%, it can be determined that the first antenna combination is the target antenna combination.
  • the first antenna combination is determined to be the target antenna combination.
  • the first signal quality data is the communication rate of transmitting the first frequency band using the first antenna combination, and the communication rate is greater than or equal to the preset rate threshold, the first antenna combination is determined to be the target antenna combination.
  • the wireless router determines the bit error rate, packet loss rate and CSI.
  • packet rate, CSI, RSSI, communication rate and delay can all meet the corresponding communication requirements.
  • the signal amplitude of the CSI corresponding to each antenna in the first antenna combination is greater than or equal to the preset
  • the amplitude threshold, bit error rate and packet loss rate are lower than 10%
  • the delay is lower than the preset delay threshold
  • the RSSI is greater than or equal to the preset received signal strength threshold
  • the communication rate is greater than or equal to the preset rate.
  • the first antenna combination can be determined to be the target antenna combination.
  • the embodiment of Figure 5 may also include:
  • the second signal quality data is used to represent the communication quality when the first connection is used for communication through the second antenna combination.
  • the second antenna combination and the first antenna combination are different antenna combination forms.
  • the difference between the first antenna combination and the second antenna combination may be that the antennas in the first antenna combination and the antennas in the second antenna combination are different, or the antennas in the first antenna combination and the antenna parts in the second antenna combination may be the same part. Different, there is no limit to this. As long as there is one different antenna in the two antenna combinations, it is a different antenna combination.
  • the wireless router can continue to send the signal of the first frequency band through the next set of antenna combinations, such as the second antenna combination, and obtain the opposite terminal through the second connection.
  • Second signal quality data fed back by the device The above-mentioned combination of the second antenna combination and the first antenna combination being different antennas means that the antennas included in the second antenna combination are not exactly the same as the antennas included in the first antenna combination, and may be partially the same and partially different. , or they can be completely different, and there is no limit to this.
  • the wireless router determines that the signal amplitude of the CSI corresponding to each antenna in the first antenna combination is less than the preset amplitude threshold. , then the wireless router may determine that the first antenna combination cannot meet the communication requirements, and therefore may continue to obtain the next set of antenna combinations and obtain the corresponding second signal quality data.
  • the wireless router determines that the bit error rate or packet loss rate is greater than or equal to ten percent, For example, if it is 15%, it can be determined that the first antenna combination cannot meet the communication requirements, so the next set of antenna combinations can be obtained and the corresponding second signal quality data can be obtained.
  • the first signal quality data is the delay of using the first antenna combination to transmit the signal of the first frequency band, and the delay is heavy or equal to the preset delay threshold, then you can continue to obtain the next set of antenna combinations and obtain the corresponding of second signal quality data.
  • the first antenna combination is determined to be the target antenna combination.
  • the wireless router determines the bit error rate, packet loss rate, Various combinations of CSI, RSSI, communication rate and delay can all meet the corresponding communication requirements.
  • the signal amplitude of the CSI corresponding to each antenna in the first antenna combination has data that is smaller than the preset amplitude threshold, If the bit error rate and packet loss rate are higher than 10%, the delay is greater than or equal to the preset delay threshold, the RSSI is less than the preset received signal strength threshold, and the communication rate is less than the preset rate threshold, then the first One antenna combination cannot meet the communication requirements, so the next set of antenna combinations can be obtained and the corresponding second signal quality data can be obtained.
  • the wireless router does not receive the first signal quality data fed back by the terminal device within a preset period, or the acquired data is null, or the acquired first signal quality data (such as CSI ) is incomplete, it may be that the test signal broadcast by the wireless router is incorrect or the signal is too weak. At this time, you can maintain the second connection and return to step S501 to restart the process to avoid interruption of the process and the inability to switch to high speed. The problem of high-speed communication in the network.
  • the target antenna combination based on other signal quality data.
  • the other signal quality data is used to characterize the communication quality when communicating through the first connection using other antenna combinations.
  • Other antenna combinations Combination forms of antennas other than the first antenna combination and the second antenna combination are included.
  • the wireless router continues to determine whether the second signal quality data meets the preset communication requirements, and if so, determines the second antenna combination as the target antenna combination. If it is not satisfied, continue to use the next set of antenna combinations to send test signals and obtain the corresponding signal quality data, and then repeat the above process of judging whether the signal quality data meets the preset communication requirements until the obtained signal quality data meets the preset communication requirements. up to the communication requirements, and the antenna combination corresponding to the signal data quality that meets the preset communication requirements can be used as the target antenna combination.
  • the wireless router can also first determine whether the connected terminal device is a core device. If it is a core device, it indicates that the terminal device is a terminal device with high gain beam requirements. For example, the current usage scenario of the terminal device is When running a low-latency game application or a live webcast application, the wireless router can determine that it needs to switch to the high-frequency first connection in a high-gain beam alignment state to establish a high-speed, low-latency communication channel, and then start Steps of obtaining first signal quality data.
  • the terminal device is not a core device and does not have high-gain beam requirements, using a low-frequency second frequency band, such as WIFI-2.4G, for communication between the wireless router and the terminal device can also meet the communication requirements, so there is no need to obtain the first signal quality data, there is no need to switch network connections, which can save system overhead.
  • a low-frequency second frequency band such as WIFI-2.4G
  • the above-mentioned core device may also be a terminal device with a special identification.
  • the user of the terminal device is an important customer.
  • the special identification indicates that the terminal device needs to be aligned with a high-gain beam to prioritize high-speed and low-speed communication. Delay, this application does not limit the specific form of the core equipment, as long as it is a terminal equipment with high gain beam requirements.
  • the wireless router determines the first antenna combination corresponding to the first signal quality data as the target.
  • the first antenna combination corresponding to the first signal quality data is determined to be the target antenna combination based on the fact that the communication quality of the first antenna combination when communicating in the first frequency band as represented by the first signal quality data meets the communication requirements. If the first signal quality data cannot meet the preset communication requirements, continue to obtain the second signal quality data corresponding to the second antenna combination until the signal quality data that meets the preset communication requirements is obtained, and the signal that meets the preset communication requirements is obtained.
  • the antenna combination corresponding to the quality data is used as the target antenna combination, so there is no need to select an antenna combination without basis to establish a new network connection. This can avoid connection failure caused by improper selection of the antenna combination when the network connection is directly switched to the first connection.
  • the problem of network interruption also further avoids the problem of the network connection jumping back and forth between the first connection and the second connection, the inability to align the high-gain beam in time, and the inability to establish the first connection in time.
  • the specific process of the embodiment shown in Figure 5 can also refer to the embodiment of Figure 6.
  • a wireless router is connected to a terminal device, and WIFI-2.4G or WIFI-2.4G is used between the two.
  • the method specifically includes:
  • the wireless router detects that the network connection with the terminal device is switched from WIFI-5G to WIFI-2.4G.
  • both the wireless router and the terminal device can detect that the network connection between the two switches from WIFI-5G to WIFI-5G. WIFI-2.4G.
  • the wireless router may periodically monitor the switching status of the network connection or periodically trigger the high-gain beam pointing traversal test program.
  • the acquisition of signal quality data by the wireless router may also be triggered in response to a request from the terminal device. .
  • the terminal device monitors that the network connection with the wireless router is switched from WIFI-5G to WIFI-2.4G, it can send a request to activate the high-gain beam pointing traversal test program or an antenna switching request to the wireless router through WIFI-2.4G. Based on such a request, the wireless router activates the high-gain beam pointing traversal test program to achieve high-gain beam alignment. In this way, when the high-gain beam is misaligned, the terminal device can actively initiate the closed-loop feedback mode of the process. There is no need to wait for the wireless router to trigger the process periodically before switching to the WIFI-5G network, reducing the waiting time and making network switching possible. More efficient and improved user experience.
  • the wireless router determines whether the device connected through the WIFI-2.4G network is a core device.
  • the terminal device connected to the wireless router is a core device with high speed requirements.
  • the core device is running a low-latency game application or a webcast application.
  • the wireless router activates the high-gain beam pointing traversal test program and obtains the CSI corresponding to the WIFI-5G frequency band through the WIFI-2.4G network.
  • the high-gain beam pointing traversal test procedure includes: sending training data packets of the WIFI-5G frequency band through each antenna combination in turn for collision testing, and obtaining the CSI corresponding to each antenna combination fed back by the terminal device.
  • the wireless router selects a group of antenna combinations and uses broadcasting to send training data packets in the WIFI-5G frequency band.
  • the terminal device can obtain the CSI corresponding to this training data packet and connect the CSI back through the WIFI-2.4G network. to the wireless router.
  • the wireless router obtains the CSI corresponding to the training data packet sent by this set of antenna combinations, and can use the feedback CSI to determine whether the signal quality can meet the communication needs of the core device when using this set of antenna combinations to send and receive signals.
  • WIFI-2.4G has been in the network state.
  • the wireless router determines whether the CSI is complete.
  • the network can be kept at the WIFI-2.4G frequency and Return to step S602 or S603 to restart the process to avoid the problem of being unable to switch to a high-speed network for high-speed communication due to process interruption.
  • the wireless router determines whether the CSI meets the conditions for switching the network connection from WIFI-2.4G to WIFI-5G.
  • the wireless router can determine that the conditions for switching the network connection from WIFI-2.4G to WIFI-5G are met.
  • the antenna combination corresponding to the CSI that meets the switching conditions is the target antenna combination, and the antennas are switched in time.
  • the wireless router can determine that the conditions for switching the network connection from WIFI-2.4G to WIFI-5G are not met, it is possible The current terminal device is too far away from the wireless router. If the location of the terminal device is still moving, you can continue to return to execution S603 to obtain the CSI corresponding to the terminal device in a new scenario (such as a new location) and continue the process until the network switch is successful.
  • the wireless router can also obtain multiple sets of signal quality sub-data corresponding to multiple sets of antenna combinations through the second connection, and then filter out target signals that meet the preset communication requirements from the multiple sets of signal quality sub-data.
  • quality sub-data, and the antenna combination corresponding to the target signal quality sub-data is used as the target antenna combination.
  • these multiple sets of signal quality sub-data can be used as the above-mentioned first signal quality data to determine the target antenna combination.
  • the memory of the wireless router stores antenna combination 1, antenna combination 2 and antenna combination 3.
  • the wireless router first sends the training data packet through the antenna in antenna combination 1 and receives the corresponding first CSI; and then uses the antenna in antenna combination 2 to The training data packet is sent through the antenna in antenna combination 3 and the corresponding second CSI is received; finally the training data packet is sent through the antenna in antenna combination 3 and the corresponding third CSI is received, and then the training data packet is sent from the first CSI, the second CSI and the third CSI.
  • the wireless router may select any one set of data that meets the preset communication requirements from multiple sets of signal quality sub-data, for example, select any set of data that meets the preset communication requirements from the first CSI, the second CSI, and the third CSI.
  • the data required for communication for example, the communication rate represented by the selected CSI is greater than or equal to the preset rate threshold, and the antenna combination corresponding to this data is used as the final target antenna combination.
  • the optimal The data that meets the preset communication requirements is found quickly, which saves time compared with all searches and improves the efficiency of antenna switching.
  • the wireless router may also compare multiple sets of signal quality sub-data, for example, compare the first CSI, the second CSI and the third CSI, and select a corresponding set of antenna combinations representing the highest communication rate as the Target antenna combination, and use the antenna combination corresponding to this CSI as the target antenna combination.
  • This method can select the antenna combination that optimizes communication quality and maximize communication quality.
  • the above-mentioned signal quality data may also include CSI.
  • CSI exemplary description is provided here:
  • CSI can describe the signal attenuation factor on each transmission path, that is, CSI can include the value of each element in the channel gain matrix, such as signal scattering (scattering), environmental fading (fading), including multipath fading and shadow fading ( Multipath fading or shadowing fading), distance attenuation (power decay of distance) and other information.
  • the information carried by CSI can adjust the communication system to adapt to the current channel conditions, providing guarantee for high-reliability and high-speed communication in multi-antenna systems.
  • CFR channel frequency response
  • CIR channel impulse response
  • each antenna has its own label.
  • the vertical axis is the amplitude
  • the horizontal axis is the frequency offset from the center frequency point of the signal.
  • the four curves in figure a in Figure 7 are the data of the real part of CRF corresponding to the four antennas respectively
  • the four curves in figure b in Figure 7 are the values of the imaginary part of CRF corresponding to the four antennas respectively. It should be noted that by sampling the four curves in Figure a in Figure 7 above, the real part data of the CSI corresponding to the four antennas can be obtained.
  • the circles on the four curves in Figure a in Figure 7 indicate shown; by sampling the four curves in Figure b in Figure 7 above, the data of the imaginary part of the CSI corresponding to the four antennas can be obtained, for example, as shown by the circles on the four curves in Figure b in Figure 7 .
  • the absolute value of the real part of the CSI shown in the circles on the four curves shown in graph a in Figure 8 can be obtained, and then The communication quality can be judged according to the value of the vertical axis of the curve in Figure 8 a. The larger the value corresponding to which antenna is, the better the signal is. The smaller the value corresponding to which antenna is the signal is worse.
  • the amplitude threshold of CSI can be set to 1000. If it is greater than or equal to the amplitude threshold, it means that the communication quality meets the communication requirements. If it is less than the amplitude threshold, it means that the communication quality does not meet the communication requirements.
  • the CFR data can also be subjected to inverse Fourier transform to obtain the data in the time domain of the four curves in the a picture in Figure 7, as shown in the b picture in Figure 8, b in Figure 8
  • the smaller the value on the vertical axis in the b diagram in Figure 8 the weaker the power of the signal and the worse the signal quality.
  • the power threshold of CIR can be set to 0.5 ⁇ 105. If the CIR is greater than or equal to the power threshold, it means that the communication quality meets the communication requirements. If the CIR is less than the power threshold, it means that the communication quality does not meet the communication requirements.
  • the amplitude and power values represented by the vertical axis are not the actual values of the amplitude and power, but normalized values representing the amplitude and power, which can be used for comparison. Just size.
  • the wireless router can determine whether the antenna combination meets the communication requirements by comprehensively judging the real absolute value of the CSI of multiple antennas in the antenna combination; or it can individually judge the CSI corresponding to the directional antenna in the antenna combination.
  • the absolute value of the real part of the antenna combination can be used to determine whether the antenna combination meets the communication requirements; it can also be determined first to determine the absolute value of the real part of the CSI corresponding to the directional antenna, and then to determine the CSI corresponding to other omnidirectional antennas in the antenna combination.
  • the size of the absolute value of the real part is not limited in this application.
  • the average value within a frequency range can be taken, the maximum value within a frequency range can be taken, or the CSI obtained multiple times continuously within a period of time can be taken.
  • the absolute value of the real part is accumulated and the average value is taken. There is no specific limit.
  • the corresponding device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • This application can divide the device for obtaining antenna combinations into functional modules according to the above method examples.
  • each function can be divided into functional modules, or two or more functions can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • Figure 9 shows a schematic structural diagram of a device for obtaining an antenna combination provided by this application.
  • Device 900 includes:
  • the acquisition module 901 is configured to acquire the first signal quality data through the second connection when the network connection is the second connection.
  • the first signal quality data is used to characterize the communication quality when the first connection is used for communication.
  • the first connection is the second connection.
  • the first frequency band is a network connection for communication
  • the second connection is a network connection using a second frequency band for communication, and the frequency of the first frequency band is higher than the frequency of the second frequency band;
  • Determination module 902 configured to determine a target antenna combination according to the first signal quality data; wherein the target antenna combination is a combination of antennas that are used to transmit and receive signals in the first frequency band when the network connection is switched from the second connection to the first connection for communication. form.
  • the first signal quality data is used to characterize the communication quality when the first connection is used for communication through the first antenna combination.
  • the determination module 902 is specifically used to determine when the first signal quality data meets the preset communication requirements.
  • the first antenna combination is determined to be the target antenna combination.
  • the determination module 902 is specifically configured to obtain second signal quality data through the second connection when the first signal quality data does not meet the preset communication requirements.
  • the second signal quality data is used to characterize the second signal quality data through the second connection.
  • the antenna combination adopts the communication quality during the first connection communication, and the second antenna combination and the first antenna combination are different antenna combinations; and is used to determine the second antenna when the second signal quality data meets the preset communication requirements.
  • the combination is a target antenna combination. When the second signal quality data does not meet the preset communication requirements, the target antenna combination is determined based on other signal quality data.
  • the other signal quality data is used to characterize the communication quality when using the first connection communication through other antenna combinations.
  • other antenna combinations include combinations of antennas other than the first antenna combination and the second antenna combination.
  • the first signal quality data includes multiple sets of signal quality sub-data, the multiple sets of signal quality sub-data are in one-to-one correspondence with multiple antenna combinations, and each set of signal quality sub-data represents the use of the first connection through the corresponding antenna combination.
  • the communication quality determination module 902 during communication is specifically used to select target signal quality sub-data that meets the preset communication requirements from multiple sets of first signal quality sub-data.
  • the antenna combination corresponding to the target signal quality sub-data is the target antenna combination. .
  • the determination module 902 is specifically configured to select a group representing the highest communication rate from multiple groups of signal quality sub-data as the target signal quality sub-data.
  • the preset communication requirements include: the communication rate is greater than or equal to the preset rate threshold.
  • the determination module 902 is specifically used to select any one from multiple sets of signal quality sub-data that indicates that the communication rate is greater than or equal to the preset rate threshold. A set of target signal quality sub-data.
  • the acquisition module 901 is specifically configured to acquire the first signal quality data through the second connection when the device connected through the second connection is a core device, and the core device is a device with high gain beam requirements.
  • the acquisition module 901 is specifically configured to receive an antenna switching request from a connected device, and in response to the antenna switching request, acquire the first signal quality data through the second connection.
  • the first frequency band is the 5G frequency band of wireless fidelity WIFI
  • the second frequency band is the 2.4G frequency band of WIFI.
  • the first signal quality data includes: one or more of bit error rate BER, packet loss rate PER, channel state information CSI, delay, received signal strength indicator RSSI and communication rate.
  • An embodiment of the present application also provides an electronic device, including the above processor.
  • the electronic device provided in this embodiment may be the wireless router 100 shown in Figure 1, and is used to perform the above method of obtaining an antenna combination.
  • the electronic device may include a processing module, a storage module, and a communication module.
  • the processing module may be used to control and manage the actions of the electronic device. For example, it may be used to support the electronic device in executing steps performed by the display unit, the detection unit and the processing unit.
  • the storage module can be used to support electronic devices to execute stored program codes and data, etc.
  • the communication module can be used to support communication between electronic devices and other devices.
  • the processing module may be a processor or a controller. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • a processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, etc.
  • the storage module may be a memory.
  • the communication module can specifically be a radio frequency circuit, a Bluetooth chip, a Wi-Fi chip and other devices that interact with other terminal devices.
  • the electronic device involved in this embodiment may be a device with the structure shown in Figure 1 .
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium. When the computer program is executed by a processor, it causes the processor to execute any of the above embodiments. method of obtaining antenna combinations.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to perform the above related steps to implement the method of obtaining the antenna combination in the above embodiment.
  • the electronic devices, computer-readable storage media, computer program products or chips provided in this embodiment are all used to execute the corresponding methods provided above. Therefore, the beneficial effects they can achieve can be referred to the above provided The beneficial effects of the corresponding methods will not be described again here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, and the replacement unit may or may not be physically separated, as
  • the component displayed by the unit can be one physical unit or multiple physical units, that is, it can be located in one place, or it can be distributed to multiple different places. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a readable storage medium if they are implemented in the form of software functional units and sold or used as independent products.
  • the technical solutions of the embodiments of the present application are essentially or contribute to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including several instructions to cause a device (which can be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,提供了一种获取天线组合的方法、电子设备和计算机可读存储介质,该方法包括当网络连接为第二连接时,通过第二连接获取第一信号质量数据,第一信号质量数据用于表征采用第一连接通信时的通信质量,第一连接为采用第一频段进行通信的网络连接,第二连接为采用第二频段进行通信的网络连接,第一频段的频率高于第二频段的频率;根据第一信号质量数据确定目标天线组合;其中,目标天线组合为网络连接由第二连接切换为第一连接进行通信时,收发第一频段的信号所调用的天线的组合形式。以上方法可以快速对准高增益波束,实现快速切换网络连接的目的。

Description

获取天线组合的方法、电子设备和计算机可读存储介质
本申请要求于2022年04月11日提交国家知识产权局、申请号为202210374775.X、申请名称为“获取天线组合的方法、电子设备和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种获取天线组合的方法、电子设备和计算机可读存储介质。
背景技术
随着网络通信技术的快速发展,无线路由器被人们广泛的应用在工作和生活的场景中。无线路由器能够为覆盖范围内的终端设备提供无线保真(wireless fidelity,WIFI)网络,使得下挂的终端设备能够接入互联网。
常用的WIFI网络通常采用2.4G和5G两个频段进行通信。而WIFI-5G由于具有带宽大、速率高的特性,成为一些高速率场景下的首选,例如游戏场景、或者具有高速率要求的网络直播的场景等。但是,WIFI-5G相比WIFI-2.4G来说,由于频率高,绕射能力差,传播或者穿墙过程中,信号损耗较大,导致覆盖范围小。为了增大WIFI-5G的信号覆盖范围,通常在无线路由器中,除了设置全向天线之外,还会增设多个定向天线来增大WIFI-5G信号的覆盖范围,每个定向天线的高增益波束的指向不同,因此多个定向天线相互结合就能够使得高增益波束的覆盖范围更全面,使得无论下挂的终端设备位于无线路由器的哪个方向,都能够处于定线天线的高增益波束所覆盖的区域内,以此来保证WIFI-5G的通信质量。
但是当终端设备的使用状态发生变化时,例如终端设备的位置发生移动等情况,WIFI-5G的信号覆盖较弱无法正常通信的情况下,终端设备和无线路由器之间的网络连接可能会从WIFI-5G回退至WIFI-2.4G。在终端设备的高速率场景的需求下,无线路由器则可以在下一个扫描周期来临时,选择不同于上次的定向天线来和终端设备重新建立WIFI-5G的通信。但如果此时终端设备并不在所选择的定向天线的高增益波束所覆盖的扇区内,则建立WIFI-5G的通信可能会失败,那么网络连接就会被重新切换回WIFI-2.4G。无线路由器则在下一个扫描周期来临时,继续采用另外的定向天线来尝试建立WIFI-5G的通信,直至WIFI-5G的通信建立成功或者轮巡完所有的定向天线为止。
然而,无线路由器不断尝试采用不同的定向天线来建立WIFI-5G的通信的方式,使得网络连接不断地在WIFI-5G和WIFI-2.4G之间切换,无法及时选择合适的定向天线来建立WIFI-5G的网络连接进行通信,影响用户的体验。
发明内容
本申请提供了一种获取天线组合的方法、装置、芯片、电子设备、计算机可读存储介质和计算机程序产品,能够快速对准高增益波束,实现快速切换网络连接的目的。
第一方面,提供了一种获取天线组合的方法,包括:当网络连接为第二连接时, 通过第二连接获取第一信号质量数据,第一信号质量数据用于表征采用第一连接通信时的通信质量,第一连接为采用第一频段进行通信的网络连接,第二连接为采用第二频段进行通信的网络连接,第一频段的频率高于第二频段的频率;根据第一信号质量数据确定目标天线组合;其中,目标天线组合为网络连接由第二连接切换为第一连接进行通信时,收发第一频段的信号所调用的天线的组合形式。
该方法中,无线路由器无需毫无依据地选择天线组合来将网络连接切换至第一连接,而是通过频率低的第二连接获取表征频率高的第一连接的通信质量的第一信号质量数据,然后根据第一信号质量数据来确定目标天线组合。之后无线路由器可以采用所确定的目标天线组合中的天线来收发第一频段的信号并建立第一连接进行通信。该方法能够避免由于天线组合选择不当导致的网络连接直接向第一连接进行切换时,连接失败导致的网络中断的问题,也进一步避免了网络连接在第一连接和第二连接之间来回跳转,无法及时对准高增益波束以及无法及时建立第一连接的问题,在网络连接切换至第一连接之前就先确定好符合通信要求的目标天线组合,能够使得网络连接一次性切换成功,实现高增益波束的快速对准,提高了天线切换的效率,也避免了网络中断,提升了用户体验。
在一些可能的实现方式中,第一信号质量数据用于表征通过第一天线组合采用第一连接通信时的通信质量,根据第一信号质量数据确定目标天线组合,包括:若第一信号质量数据满足预设通信要求,则确定第一天线组合为目标天线组合。
在一些可能的实现方式中,还包括:若第一信号质量数据不满足预设通信要求,则通过第二连接获取第二信号质量数据,第二信号质量数据用于表征通过第二天线组合采用第一连接通信时的通信质量,第二天线组合和第一天线组合为不同的天线的组合形式;若第二信号质量数据满足预设通信要求,则确定第二天线组合为目标天线组合;若第二信号质量数据不满足预设通信要求,则根据其他信号质量数据确定目标天线组合,其他信号质量数据用于表征通过其他天线组合采用第一连接通信时的通信质量,其他天线组合包括除第一天线组合和第二天线组合之外的天线的组合形式。
无线路由器可以通过第一天线组合发射信号所获取的第一信号质量数据满足预设通信要求时,确定第一信号质量数据对应的第一天线组合为目标天线组合,并依据第一信号质量数据所表征第一天线组合在第一频段通信时的通信质量满足通信需求,才确定第一信号质量数据对应的第一天线组合为目标天线组合。如果第一信号质量数据不能满足预设通信需求,则继续获取第二天线组合对应的第二信号质量数据,直至获取到满足预设通信需求的信号质量数据,并将满足预设通信需求的信号质量数据对应的天线组合作为目标天线组合,因此无需毫无依据地选择天线组合来建立新的网络连接,能够避免由于天线组合选择不当导致的网络连接直接向第一连接进行切换时,连接失败导致的网络中断的问题,也进一步避免了网络连接在第一连接和第二连接之间来回跳转,无法及时对准高增益波束以及无法及时建立第一连接的问题,在网络连接切换至第一连接之前就先选择好符合通信要求的目标天线组合,能够使得网络连接一次性切换成功,实现高增益波束的快速对准,提高了天线切换的效率,也避免了网络中断,提升了用户体验。
在一些可能的实现方式中,第一信号质量数据包括多组信号质量子数据,多组信 号质量子数据和多种天线组合一一对应,每组信号质量子数据表征通过对应的天线组合采用第一连接通信时的通信质量,根据第一信号质量数据确定目标天线组合,包括:从多组第一信号质量子数据中选出满足预设通信要求的目标信号质量子数据,目标信号质量子数据对应的天线组合为目标天线组合。
该方法可以获取多个天线组合对应的多组信号质量子数据,然后从中筛选符合要求的一组,并根据所选定的符合要求的目标信号质量子数据来指示目标天线组合,无需毫无依据地选择天线组合来建立新的网络连接,能够避免由于天线组合选择不当导致的网络连接直接向第一连接进行切换时,连接失败导致的网络中断的问题,也进一步避免了网络连接在第一连接和第二连接之间来回跳转,无法及时对准高增益波束以及无法及时建立第一连接的问题,在网络连接切换至第一连接之前就先选择好符合通信要求的目标天线组合,能够使得网络连接一次性切换成功,实现高增益波束的快速对准,提高了天线切换的效率,也避免了网络中断,提升了用户体验。
在一些可能的实现方式中,从多组第一信号质量子数据中选出满足预设通信要求的目标信号质量子数据,包括:从多组信号质量子数据中选出表征通信速率最高的一组作为目标信号质量子数据。
该方法可以多组信号质量子数据选择出最优的一组作为目标信号质量子数据,使得所确定的目标天线组合为最优的天线组合,确保通信质量最佳。
在一些可能的实现方式中,预设通信要求包括:通信速率大于或等于预设速率阈值,从多组第一信号质量子数据中选出满足预设通信要求的目标信号质量子数据,包括:从多组信号质量子数据中选出任一表征通信速率大于或等于预设速率阈值的一组作为目标信号质量子数据。
该方法可以在遍历判别信号质量子数据时,以最快的速度查找到满足预设通信要求的数据,相比全部查找能够节约时间,提高了天线切换的效率。
在一些可能的实现方式中,通过第二连接获取第一信号质量数据,包括:当通过第二连接所连接的设备为核心设备时,通过第二连接获取第一信号质量数据,核心设备为具有高增益波束需求的设备。
无线路由器先判断通过第二连接所连接的设备是否为核心设备,如果是核心设备,则表明该设备为具有高增益波束需求的终端设备,例如终端设备当前的使用场景为运行低延迟的游戏应用程序、或者网络直播应用程序,无线路由器可以确定此时需要在高增益波束对准的状态下切换至高频率的第一连接来建立高速率、低延迟的通信通道,就启动获取第一信号质量数据的步骤。如果终端设备并非核心设备,没有高增益波束需求,则无线路由器和终端设备之间使用低频率的第二频段,例如WIFI-2.4G的频率进行通信也能够满足通信需求,因此无需执行获取第一信号质量数据的步骤,也就无需切换网络连接,可以节约系统开销。
在一些可能的实现方式中,通过第二连接获取第一信号质量数据,包括:接收来自所连接的设备的天线切换请求;响应于天线切换请求,通过第二连接获取第一信号质量数据。
该方式可以在高增益波束没对准的时候通过所连接的设备主动发起流程这样的闭环反馈的模式,不用等待无线路由器周期性的触发流程才能切换至第二连接的网络, 减少了等待时间,使得网络切换更高效,提高了用户体验。
在一些可能的实现方式中,第一频段为WIFI的5G频段,第二频段为WIFI的2.4G频段。该方法能够在网络连接切换至WIFI-5G之前,通过WIFI-2.4G的网络先回传表征WIFI-5G的通信质量的信号质量数据,并预先确定好符合通信要求的目标天线组合,然后才进行网络连接的切换,使得网络连接一次性切换成功,实现高增益波束的快速对准,提高了天线切换的效率,也避免了网络中断,提升了用户体验。
在一些可能的实现方式中,第一信号质量数据包括:误码率(bit error ratio,BER)、丢包率(packet error ratio,PER)、信道状态信息(channel state information,CSI)、时延、接收的信号强度指示(received signal strength indicator,RSSI)和通信速率中的一种或多种。
第二方面,提供了一种获取天线组合的装置,包括由软件和/或硬件组成的单元,该单元用于执行第一方面的技术方案中任意一种方法。
第三方面,提供了一种电子设备,电子设备包括:处理器、存储器和接口;处理器、存储器和接口相互配合,使得电子设备执行第一方面的技术方案中任意一种方法。
在一些可能的实现方式中,电子设备为无线路由器。
第四方面,本申请实施例提供一种芯片,包括处理器;处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面的技术方案中任意一种方法。
可选地,芯片还包括存储器,存储器与处理器通过电路或电线连接。
进一步可选地,芯片还包括通信接口。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得该处理器执行第一方面所述的技术方案中任意一种方法。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在电子设备上运行时,使得该电子设备执行第一方面所述的技术方案中任意一种方法。
附图说明
图1是本申请实施例提供的一例无线路由器100中的天线分布的结构示意图;
图2是本申请实施例提供的无线路由器100中的天线的方向图;
图3是本申请实施例提供的一例获取天线组合的流程示意图;
图4是本申请实施例提供的一例WIFI的射频通路的电路结构示意图;
图5是本申请实施例提供的又一例获取天线组合的流程示意图;
图6是本申请实施例提供的又一例获取天线组合的流程示意图;
图7是本申请实施例提供的一例采集的CFR的实部和虚部的曲线示意图;
图8是本申请实施例提供的一例CFR的实部的绝对值的曲线示意图和根据CFR获取的CIR的曲线示意图;
图9是本申请实施例提供的一例获取天线组合的装置结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表 示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。
随着网络通信技术的快速发展,无线路由器被人们广泛的应用在工作和生活的场景中。无线路由器能够为覆盖范围内的终端设备提供WIFI网络,使得下挂的终端设备能够接入互联网。
常用的WIFI网络通常采用2.4G和5G两个频段进行通信。WIFI-2.4G的频率低,绕射能力强,在传播过程中或穿墙时,信号损失较少,覆盖范围交大。而WIFI-5G由于频率较高,电磁环境较为干净,因此在空间中受到的干扰较少,同时具有信道多、带宽大、速率高的特性,成为一些高速率场景下的首选,例如游戏场景,或者具有高速率要求的网络直播的场景等。但是,WIFI-5G相比WIFI-2.4G来说,由于频率高,绕射能力差,传播或者穿墙过程中,信号损耗较大,导致覆盖范围小。本申请中的WIFI-5G并不单指5GHz这个频点的频率,而是包括WIFI-5G的所有信道的对应的频率;WIFI-2.4G并不单指2.4GHz这个频点的频率,是包括了WIFI-2.4G的所有信道的对应的频率。
为了增大WIFI-5G的信号的覆盖范围,通常在无线路由器中除了设置全向天线之外,还会增设多个定向天线来增大WIFI-5G信号的覆盖范围。其中,全向天线为天线四周的增益较为均匀的天线,定向天线为固定的方向增益高、而其他方向增益低的天线。无线路由器中的每个定向天线的高增益波束的方向不同,因此多个定向天线相互结合就可以使得高增益波束的方向覆盖更全面。
图1为一例包括定向天线和全向天线的无线路由器100的示意图。图1中的无线路由器100以包括四个全向天线和三个定向天线为例示出,具体包括:全向天线101、全向天线102、全向天线103和全向天线104,定向天线105、定向天线106和定向天线107。通常,这四个全向天线可以用来收发WIFI-2.4G的信号,也可以用来收发WIFI-5G的信号。四个全向天线和三个定向天线都可以用来收发WIFI-5G的信号,并且三个定向天线在设置的时候,通常将不同的定向天线的高增益波束分别朝向不同的方向,能够使得高增益波束覆盖无线路由器100四周360度的范围。从而使得无论无线路由器100下挂的终端设备200位于无线路由器100的哪个方向,都能够处于一个定线天线的高增益波束所覆盖的区域内,以此来保证WIFI-5G的通信质量。无线路由器100可以自由选择使用哪几个全向天线和哪几个定向天线进行组合,来进行WIFI-5G的通信。
如图2所示,定向天线和全向天线各自的方向图如虚线所示,每个定向天线的高增益波束能够覆盖一个扇区(扇形的区域,图2中以将无线路由器周围的区域划分为扇区1、扇区2和扇区3为例)。当终端设备200的位置处于定向天线106的高增益波束所覆盖的扇区2时,无线路由器100可以选择全向天线103、全向天线104和定向天线106来收发WIFI-5G的信号。当终端设备200的位置发生变化,WIFI-5G的信号 变得很弱的时候,终端设备200和无线路由器100之间的网络连接可能会从WIFI-5G回退WIFI-2.4G,来保证不断连。但是基于高速率场景的需求,无线路由器100和终端设备200之间还是希望继续使用WIFI-5G进行通信。因此,无线路由器100可以在下一个扫描周期来临时,切换不同的定向天线来和终端设备200重新建立WIFI-5G的通信,例如选择全向天线103、全向天线104和定向天线105的组合来收发WIFI-5G的信号。但如果此时终端设备200并没有移动至定向天线105的高增益波束对应的扇区1内,那么无线路由器100选择全向天线103、全向天线104和定向天线105来收发WIFI-5G的信号时,则有可能由于信号弱无法建立WIFI-5G的通信,网络就会中断。此时,终端设备200和无线路由器100之间的网络连接会重新切换回WIFI-2.4G。无线路由器100则在下一个扫描周期来临时,继续切换其他的定向天线,例如将定向天线切换为定向天线107来尝试建立WIFI-5G的通信,由于终端设备200正好移动到定向天线107的高增益波束对应的扇区3内,WIFI-5G的通信可以建立成功。本申请中,我们将终端设备200位于一个定向天线的高增益波束对应的扇区内且选择这个定向天线来收发信号的过程,称为高增益波束对准的过程。可选地,上述定向天线可以采用包括水平极化和垂直极化方式的双极化天线。
然而,无线路由器100不断尝试采用不同的定向天线来建立WIFI-5G的通信的方式,使得网络连接不断地在WIFI-5G和WIFI-2.4G之间切换,无法及时选择合适的定向天线来建立WIFI-5G的网络连接进行通信,影响用户的体验。
本申请实施例提供的获取天线组合的方法可以应用于路由器、手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等设备,还可以应用在前文所述的无线路由器等网络设备上,本申请实施例对设备的具体类型不作任何限制。
可以理解的是,本申请实施例示意的无线路由器100的结构并不构成对网络设备的具体限定。在本申请另一些实施例中,无线路由器100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
为了便于理解,本申请以下实施例将以具有图1所示结构的无线路由器为例,结合附图和应用场景,对本申请实施例提供的获取天线组合的方法进行具体阐述。
图3为本申请实施例提供的一例无线路由器获取天线组合的方法的流程示意图。该方法包括:
S301、当网络连接为第二连接时,通过第二连接获取第一信号质量数据,第一信号质量数据用于表征采用第一连接通信时的通信质量,第一连接为采用第一频段进行通信的网络连接,第二连接为采用第二频段进行通信的网络连接,第一频段的频率高于第二频段的频率。
可选地,第一频段的频率高于第二频段的频率,可以是第一频段的所有频率高于第二频段的所有频率;也可以是第一频段的一部分频率高于第二频段的所有频率,第一频段的另一部分频率和第二频段的一部分频率重合,对此不做限定。
通常,当无线路由器接入互联网后,附近的终端设备,例如智能手机可以通过连 接无线路由器来访问互联网。无线路由器和智能手机之间可以采用WIFI-5G或者WIFI-2.4G的网络进行通信。本申请实施例中,以第一频段为WIFI-5G的频段,第二频段为WIFI-2.4G的频段为例,对无线路由器获取天线组合的方法进行描述。
在无线路由器和智能手机之间使用WIFI-5G的频段进行通信的过程中,如果智能手机的使用场景发生变化,例如位置发生快速移动导致多径环境发生变化,使得WIFI-5G的信号暂时覆盖较弱,无法正常使用WIFI-5G的网络进行通信时,无线路由器和智能手机之间会由频率高的WIFI-5G的网络连接切换为频率低的WIFI-2.4G的网络连接,保持通信连接。
在一些场景下,智能手机需要高速率通信,无线路由器需要重新和智能手机建立WIFI-5G的网络连接。本申请的实施例中,无线路由器并不直接从WIFI-2.4G向WIFI-5G的网络连接进行切换,而是继续保持WIFI-2.4G的网络连接的状态,同时挑选一组天线组合来测试这组天线进行WIFI-5G通信时的信号质量。
具体可以包括:无线路由器可以采用一组天线组合,以广播的形式发送WIFI-5G的频段的训练数据包,当智能手机接收到训练数据包后,可以获取这个训练数据包对应的第一信号质量数据,然后通过WIFI-2.4G的网络连接将本次测量的信号质量数据回传至无线路由器。当然,如果智能手机接收不到对应的训练数据包,则可以通过WIFI-2.4G的网络连接返回空值(null)。
本申请实施例中,无线路由器采用一组天线组合,通过WIFI-5G的频率广播训练数据包后,再通过WIFI-2.4G的网络连接回传表征WIFI-5G的信号质量优劣的信号质量数据,称作这组天线组合对应的信号质量数据。
可选地,该步骤S301可以是在终端设备需要和无线路由器建立高速率的第二连接、例如WIFI-5G的网络连接时触发,也可以是在网络连接由高速率的第一连接切换为低速率的第二连接时触发,例如WIFI-5G断开连接、网络连接切换至WIFI-2.4G时触发WIFI-5G的重连流程,即执行S301的步骤。
需要说明的是,上述信号质量数据能够反映通信质量的优劣。可选地,信号质量数据可以包括但不限于:CSI、RSSI、误码率(BER)、丢包率(PER)、通信速率和时延等等的数据中的任意一种或多种的结合,只要是能够反映采用所选的天线组合收发WIFI-5G信号时的通信质量即可。
在一些实施例中,无线路由器的存储器中可以预先存储多个天线组合的列表,每个天线组合均可以用来同时收发WIFI-5G的信号。例如每组天线组合中包括一个或多个全向天线和一个或多个定向天线。每组天线组合中的天线的个数可以根据无线路由器的产品规格来确定,本申请实施例对此并不做限定。例如,无线路由器的射频通路最多支持四路信号的收发时,则天线组合中的天线的个数最多可以为四个。
无线路由器可以从上述多个天线组合的列表中选择任一组天线组合来广播训练数据包,然后通过WIFI-2.4G的网络连接来接收智能手机反馈的训练数据包的信号质量数据。
S302、根据第一信号质量数据确定目标天线组合;其中,目标天线组合为网络连接由第二连接切换为第一连接进行通信时,收发第一频段的信号所调用的天线的组合形式。
当无线路由器获取到某一组天线组合对应的第一信号质量数据满足预设通信要求时,无线路由器则可以使用这一组天线组合进行WIFI-5G的通信能够满足通信速率、时延等要求,则可以将第一信号质量数据对应的这组天线组合作为目标天线组合。
无线路由器还可以将目标天线组合更新至天线的配置参数。之后,无线路由器可以调用这个目标天线组合对应的配置参数,然后控制相应的射频通路的开关进行切换,例如通过通用输入输出接口(general purpose input/output,GPIO)将控制指令发送至各射频通路上的开关,使得射频通路进行切换,打开这个目标天线组合中的各个天线所对应的射频通路,实现使用目标天线组合中的各个天线来收发第一频段的信号。例如图2所示的无线路由器确定出目标天线组合中包括全向天线101、全向天线103和定向天线107,则可以通过GPIO控制射频通路的开关逻辑,打开全向天线101、全向天线103和定向天线107的通路,采用全向天线101、全向天线103和定向天线107来收发第一频段的信号。例如图4所示,无线路由器通过GPIO控制开关切换,开关1为1-1和3-3导通、开关2为1-3导通。
图4中,WIFI芯片用于对WIFI信号进行调制解调,功率放大器(power amplifier,PA)为用于放大来自WIFI芯片的发射信号,低噪放(low noise amplifier,LNA)用于将来自天线的接收信号放大后,输入至WIFI芯片,PA所在的发射通路和LNA所在的接收通路通过单刀双掷开关(single pole double throw,SPDT)来切换。其中,PA1、PA3、PA5、PA7分别为2.4G通路1、2.4G通路2、2.4G通路3、2.4G通路4的发射通路上的PA,LNA1、LNA3、LNA5、LNA7分别为2.4G通路1、2.4G通路2、2.4G通路3、2.4G通路4的接收通路上的LNA;PA2、PA4、PA6、PA8、PA9分别为5G通路1、5G通路2、5G通路3、5G通路4和5G通路5的发射通路上的PA,LNA2、LNA4、LNA6、LNA8和LNA9分别为5G通路1、5G通路2、5G通路3、5G通路4和5G通路5的接收通路上的LNA;SPDT1用于切换2.4G通路1和5G通路1,SPDT2用于切换2.4G通路2和5G通路2,SPDT3用于切换2.4G通路3和5G通路3,SPDT4用于切换2.4G通路4和5G通路4,SPDT5用于切换2.4G通路1的收发通路,SPDT6用于切换5G通路1的收发通路,SPDT7用于切换2.4G通路2的收发通路,SPDT8用于切换5G通路2的收发通路,SPDT9用于切换2.4G通路3的收发通路,SPDT10用于切换5G通路3的收发通路,SPDT11用于切换2.4G通路4的收发通路,SPDT12用于切换5G通路4的收发通路,SPDT13用于切换5G通路5的收发通路。
可选地,S302的其他的实现方式还可以参见图5和图6所示的实施例,此处暂不赘述。
在图3所示的实施例中,无线路由器无需毫无依据地选择天线组合来将网络连接切换至第一连接,而是通过频率低的第二连接获取表征频率高的第一连接的通信质量的第一信号质量数据,然后根据第一信号质量数据来确定目标天线组合。之后无线路由器可以采用所确定的目标天线组合中的天线来收发第一频段的信号并建立第一连接进行通信。该方法能够避免由于天线组合选择不当导致的网络连接直接向第一连接进行切换时,连接失败导致的网络中断的问题,也进一步避免了网络连接在第一连接和第二连接之间来回跳转,无法及时对准高增益波束以及无法及时建立第一连接的问题,在网络连接切换至第一连接之前就先确定好符合通信要求的目标天线组合,能够使得 网络连接一次性切换成功,实现高增益波束的快速对准,提高了天线切换的效率,也避免了网络中断,提升了用户体验。
可选地,上述第一信号质量数据可以表征通过第一天线组合采用第一连接通信时的通信质量时,该方法具体如图5所示,包括:
S501、通过第二连接获取第一信号质量数据。其中,第一信号质量数据表征采用第一天线组合通过第一连接通信时的通信质量时,第一天线组合为第一连接能够使用的多个天线组合形式中的一种,该第一天线组合中可以包括至少一个定向天线。
S502A、若第一信号质量数据满足预设通信要求,则确定第一天线组合为所述目标天线组合。
无线路由器可以判断第一信号质量数据是否满足预设通信要求,如果满足,则表示第一天线组合采用第一天线组合进行通信时,通信质量能够满足通信需求,则可以确定将第一天线组合作为目标天线组合,来收发第一频段的信号。
例如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的CSI,则无线路由器如果判断第一天线组合中的每个天线对应的CSI的信号幅度均大于或等于预设的幅度阈值,则无线路由器可以确定第一天线组合为目标天线组合。
再如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的误码率或丢包率,则无线路由器如果判断误码率或丢包率低于百分之十,例如为5%,就可以确定第一天线组合为目标天线组合。
又如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的时延,且时延小于预设的时延阈值,则确定第一天线组合为目标天线组合。
又如,当第一信号质量数据为使用第一天线组合发送第一频段的通信速率,且通信速率大于或等于预设的速率阈值,则确定第一天线组合为目标天线组合。
又如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的误码率、丢包率和CSI中的两种或三种时,则无线路由器如果判断误码率、丢包率、CSI、RSSI、通信速率和时延中的多种的组合全部都能够满足对应的通信需求,例如第一天线组合中的每个天线对应的CSI的信号幅度均大于或等于预设的幅度阈值、误码率和丢包率低于百分之十、时延低于预设的时延阈值、且RSSI大于或等于预设的接收信号强度阈值、通信速率大于或等于预设的速率阈值,就可以确定第一天线组合为目标天线组合。
在一些实施例中,图5的实施例还可以包括:
S502B、若第一信号质量数据不满足预设通信要求,则通过第二连接获取第二信号质量数据,第二信号质量数据用于表征通过第二天线组合采用第一连接通信时的通信质量,第二天线组合和第一天线组合为不同的天线的组合形式。
第一天线组合和第二天线不同可以为第一天线组合中的天线和第二天线组合中的天线均不同,也可以是第一天线组合中的天线和第二天线组合中的天线部分相同部分不同,对此不做限定,两个天线组合中只要有一个不同的天线即为不同的天线组合。
具体的,如果第一信号质量数据不满足预设通信要求,则无线路由器可以继续通过下一组天线组合、例如第二天线组合,发送第一频段的信号,并通过第二连接获取对端的终端设备反馈的第二信号质量数据。上述第二天线组合和第一天线组合为不同的天线的组合形式,是指第二天线组合中所包括的天线和第一天线组合中所包括的天 线并不完全相同,可以是部分相同部分不同,也可以是完全不相同,对此并不做限定。
例如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的CSI,则无线路由器如果判断第一天线组合中的每个天线对应的CSI的信号幅度均小于预设的幅度阈值,则无线路由器可以确定采用第一天线组合并不能满足通信需求,因此可以继续获取下一组天线组合并获取对应的第二信号质量数据。
再如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的误码率或丢包率,则无线路由器如果判断误码率或丢包率大于或等于百分之十,例如为15%,就可以确定第一天线组合并不能满足通信需求,因此可以继续获取下一组天线组合并获取对应的第二信号质量数据。
又如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的时延,且时延大雨或等于预设的时延阈值,则可以继续获取下一组天线组合并获取对应的第二信号质量数据。
又如,当第一信号质量数据为使用第一天线组合发送第一频段的通信速率,且通信速率小于预设的速率阈值,则确定第一天线组合为目标天线组合。
又如,当第一信号质量数据为使用第一天线组合发送第一频段的信号的误码率、丢包率和CSI中的多种时,则无线路由器如果判断误码率、丢包率、CSI、RSSI、通信速率和时延中的多种的组合全部都能够满足对应的通信需求,例如第一天线组合中的每个天线对应的CSI的信号幅度存在小于预设的幅度阈值的数据、误码率和丢包率高于百分之十、时延大于或等于预设的时延阈值、且RSSI小于预设的接收信号强度阈值、通信速率小于预设的速率阈值,就可以确定第一天线组合并不能满足通信需求,因此可以继续获取下一组天线组合并获取对应的第二信号质量数据。
可选地,如果无线路由器在预设的时段内未接收到终端设备反馈的第一信号质量数据、或获取到的数据为空值(null)、或者获取到的第一信号质量数据(例如CSI)不完整时,则有可能是无线路由器广播的测试信号有误或信号太弱等原因,此时可以保持第二连接并重新返回执行步骤S501以便重新开始流程,避免流程中断导致无法切换至高速网络进行高速率通信的问题。
S503A、若第二信号质量数据满足预设通信要求,则确定第二天线组合为目标天线组合。
S503B、若第二信号质量数据不满足预设通信要求,则根据其他信号质量数据确定目标天线组合,其他信号质量数据用于表征采用其他天线组合通过第一连接通信时的通信质量,其他天线组合包括除第一天线组合和第二天线组合之外的天线的组合形式。
无线路由器继续判断第二信号质量数据是否满足预设通信要求,如果满足,则确定第二天线组合为目标天线组合。如果不满足则继续采用再下一组天线组合来发送测试信号并获取对应的信号质量数据,然后重复执行上述判断信号质量数据是否满足预设通信要求的过程,直至获取的信号质量数据满足预设通信要求为止,并可以将满足预设通信要求的信号数据质量对应的天线组合作为目标天线组合。
可选地,在此之前无线路由器还可以先判断连接的终端设备是否为核心设备,如果是核心设备,则表明该终端设备为具有高增益波束需求的终端设备,例如终端设备 当前的使用场景为运行低延迟的游戏应用程序、或者网络直播应用程序,无线路由器可以确定此时需要在高增益波束对准的状态下切换至高频率的第一连接来建立高速率、低延迟的通信通道,就启动获取第一信号质量数据的步骤。如果终端设备并非核心设备,没有高增益波束需求,则无线路由器和终端设备之间使用低频率的第二频段,例如WIFI-2.4G的频率进行通信也能够满足通信需求,因此无需执行获取第一信号质量数据的步骤,也就无需切换网络连接,可以节约系统开销。
可选地,上述核心设备也可以是具有特殊标识的终端设备,例如该终端设备的用户为重要客户,该特殊标识表征需要该终端设备通过高增益波束对准来优先保证通信的高速率和低延迟,本申请对核心设备的具体形式不做限定,只要是具有高增益波束需求的终端设备即可。
在上述图5所示的实施例中,无线路由器可以通过第一天线组合发射信号所获取的第一信号质量数据满足预设通信要求时,确定第一信号质量数据对应的第一天线组合为目标天线组合,并依据第一信号质量数据所表征第一天线组合在第一频段通信时的通信质量满足通信需求,才确定第一信号质量数据对应的第一天线组合为目标天线组合。如果第一信号质量数据不能满足预设通信需求,则继续获取第二天线组合对应的第二信号质量数据,直至获取到满足预设通信需求的信号质量数据,并将满足预设通信需求的信号质量数据对应的天线组合作为目标天线组合,因此无需毫无依据地选择天线组合来建立新的网络连接,能够避免由于天线组合选择不当导致的网络连接直接向第一连接进行切换时,连接失败导致的网络中断的问题,也进一步避免了网络连接在第一连接和第二连接之间来回跳转,无法及时对准高增益波束以及无法及时建立第一连接的问题,在网络连接切换至第一连接之前就先选择好符合通信要求的目标天线组合,能够使得网络连接一次性切换成功,实现高增益波束的快速对准,提高了天线切换的效率,也避免了网络中断,提升了用户体验。
在一个具体的实施例中,图5所示的实施例的具体的流程还可以参见图6的实施例,以无线路由器下挂一台终端设备,二者之间采用WIFI-2.4G或WIFI-5G进行通信,且信号质量数据为CSI为例,该方法具体包括:
S601、无线路由器监测到和终端设备之间的网络连接由WIFI-5G切换为WIFI-2.4G。
当终端设备的使用场景发生变化时,例如位置发生快速移动,离开当前所使用的定向天线覆盖的扇区,无线路由器和终端设备都能够检测到二者之间的网络连接由WIFI-5G切换为WIFI-2.4G。
在一些实施例中,无线路由器可能是周期性的监控网络连接的切换状态或者周期性的触发高增益波束指向遍历测试程序,则无线路由器获取信号质量数据也可以是相应于终端设备的请求所触发。例如终端设备监控到和无线路由器之间的网络连接由WIFI-5G切换为WIFI-2.4G,则可以通过WIFI-2.4G向无线路由器发送激活高增益波束指向遍历测试程序的请求或者天线切换请求,无线路由器基于这样的请求激活高增益波束指向遍历测试程序,从而实现高增益波束对准。这样可以在高增益波束没对准的时候通过终端设备主动发起流程这样的闭环反馈的模式,不用等待无线路由器周期性的触发流程才能切换至WIFI-5G的网络,减少了等待时间,使得网络切换更高效,提高了用户体验。
S602、无线路由器确定通过WIFI-2.4G的网络连接的设备是否为核心设备。
若是,则执行S603,若否,则结束流程。
即无线路由器下挂的终端设备为具有高速率需求的核心设备,例如核心设备此时正在运行低延迟的游戏应用程序,或者正在运行网络直播的应用程序。
S603、无线路由器激活高增益波束指向遍历测试程序,通过WIFI-2.4G的网络来获取WIFI-5G的频段对应的CSI。
高增益波束指向遍历测试程序包括:依次通过每一组天线组合发送WIFI-5G频段的训练数据包进行碰撞测试,并获取终端设备反馈的每一组天线组合对应的CSI。
例如,无线路由器选定一组天线组合并采用广播的方式发送WIFI-5G频段的训练数据包,终端设备则可以获取这个训练数据包对应的CSI,并将CSI通过WIFI-2.4G的网络连接回传至无线路由器。此时无线路由器获取到这组天线组合发送的训练数据包对应的CSI,则可以根据反馈的CSI来判决采用这组天线组合收发信号时,信号质量是否能够满足核心设备的通信需要。
在S603的执行过程中,WIFI-2.4G一直处于驻网状态。
S604、无线路由器判定CSI是否完整。
如果无线路由器获取到的CSI为空值或不完整,返回执行S603。如果CSI完整,则继续执行S605。
可选地,如果无线路由器获取到的CSI为空值(null)或不完整,则有可能是无线路由器广播的测试信号有误等原因,此时可以保持驻网在WIFI-2.4G的频率并重新返回执行步骤S602或S603以便重新开始流程,避免流程中断导致无法切换至高速网络进行高速率通信的问题。
S605、无线路由器判定CSI是否满足网络连接由WIFI-2.4G向WIFI-5G切换的条件。
若满足,则执行S606;若不满足,则返回执行S603。
S606、确定满足网络连接由WIFI-2.4G向WIFI-5G切换的条件的CSI对应的天线组合为目标天线组合。
例如,如果一个天线组合中的每个天线对应的CSI的信号幅度均大于或等于预设的幅度阈值,则无线路由器可以判定满足网络连接由WIFI-2.4G向WIFI-5G切换的条件,则可以将满足切换条件的CSI对应的天线组合为目标天线组合,并及时切换天线。
如果一个天线组合中的每个天线对应的CSI的信号幅度存在小于预设的幅度阈值的数据,则无线路由器可以判定不满足网络连接由WIFI-2.4G向WIFI-5G切换的条件,则有可能是当前终端设备距离无线路由器过远,如果终端设备的位置还在移动,可以继续返回执行S603,获取终端设备在新的场景下(例如新位置)对应的CSI并继续流程,直至网络切换成功。
图6所示的实施例的实现原理和有益效果可以参见前述实施例的描述,此处不再赘述。
在一些实施例中,无线路由器还可以是通过第二连接获取多组天线组合一一对应的多组信号质量子数据,然后在多组信号质量子数据中筛选出满足预设通信要求的目标信号质量子数据,并将目标信号质量子数据对应的天线组合作为目标天线组合。换 句话说,这多组信号质量子数据可以作为上述第一信号质量数据,以此来确定目标天线组合。
例如,无线路由器的存储器中存储有天线组合1、天线组合2和天线组合3,无线路由器先通过天线组合1中的天线发送训练数据包,并接收对应的第一CSI;然后通过天线组合2中的天线发送训练数据包,并接收对应的第二CSI;最后通过天线组合3中的天线发送训练数据包,并接收对应的第三CSI,然后从第一CSI、第二CSI和第三CSI中选出满足预设通信要求的一个,例如是第一CSI,将第一CSI对应的天线组合1作为最终的目标天线组合。
可选地,无线路由器可以是从多组信号质量子数据中任选一组满足预设通信要求的数据,例如从第一CSI、第二CSI和第三CSI中选出任意一组满足预设通信要求的数据,例如是选择出的CSI所表征通信速率大于或等于预设速率阈值,并将这个数据对应的天线组合作为最终的目标天线组合,可以在遍历判别信号质量子数据时,以最快的速度查找到满足预设通信要求的数据,相比全部查找能够节约时间,提高了天线切换的效率。
可选地,无线路由器也可以是将多组信号质量子数据进行比较,例如将第一CSI、第二CSI和第三CSI进行比较,从中选择出表征通信速率最高的一组对应的天线组合作为目标天线组合,并将这个CSI对应的天线组合作为目标天线组合。该方式可以选择出使得通信质量最优的天线组合,最大化的确保通信质量。
可选地,上述信号质量数据还可以包括CSI,关于如何根据CSI判断通信质量的过程,此处进行示例性的描述:
CSI能够描述信号在每条传输路径上的衰弱因子,即CSI可以包括信道增益矩阵中每个元素的值,如信号散射(scattering)、环境衰弱((fading),包括多径衰弱和阴影衰弱(multipath fading or shadowing fading))、距离衰减(power decay of distance)等信息。CSI所携带的信息可以使通信系统调整来适应当前的信道条件,在多天线系统中为高可靠性高速率的通信提供了保障。
通常直接采集到的信道信息为信道频率响应(CFR,channel frequency response),CFR的时域表现为信道脉冲响应(CIR,channel impulse response),二者可以通过傅里叶变换和反变换实现互换。CSI是CFR的采样版本。
得到CFR数据后,可以通过数字信号处理方法,识别出特征信息。以多入多出(multiple-input multiple-output,MIMO)4*4的无线路由器为例,每个天线都具有各自的标记。图7中的a图和b图中的纵轴为幅度,横轴为偏离信号的中心频点的频偏量。图7中的a图中的四条曲线为四个天线分别对应的CRF的实部的数据,图7中的b图中的四条曲线为四个天线分别对应的CRF的虚部的数值。需要说明的是,将上述图7中的a图中的四条曲线进行采样,可以得到四个天线分别对应的CSI的实部的数据,例如图7中的a图中的四条曲线上的圆圈所示;将上述图7中的b图中的四条曲线进行采样,可以得到四个天线分别对应的CSI的虚部的数据,例如图7中的b图中的四条曲线上的圆圈所示。可选地,可以将图7中的a图中的CSI的数据取绝对值后,得到图8中的a图所示的四条曲线上的圆圈所示的CSI的实部的绝对值,之后就可以根据图8中的a图中的曲线的纵轴数值的大小来判断通信质量,哪个天线对应的数值 越大,则表明信号越好,哪个天线对应的数值越小,则表明信号越差。以图8中的a图为例,可以将CSI的幅度阈值设置为1000,大于或等于该幅度阈值的表示通信质量满足通信要求,小于该幅度阈值的表示通信质量不满足通信要求。可选的,还可以将CFR数据进行傅里叶反变换,得到如上述图7中的a图中的四条曲线在时域的数据,如图8中的b图所示,图8中的b图中纵轴数值越大表示信号的功率越强,信号质量越好,图8中的b图中纵轴数值越小表示信号的功率越弱,信号质量越差。以图8中的b图为例,可以将CIR的功率阈值设置为0.5×105,CIR大于或等于该功率阈值,表示通信质量满足通信要求,小于该功率阈值的表示通信质量不满足通信要求。
需要说明的是,上述图7和图8中,纵轴所表征的幅度和功率的数值并非幅度和功率的实际值,而是表示幅度大小和功率大小的归一化的数值,可以用来比较大小即可。
对于本申请来说,无线路由器可以通过综合判断天线组合中的多个天线的CSI的实部绝对值的大小来确定这个天线组合是否满足通信需求;或者是单独判断天线组合中定向天线对应的CSI的实部的绝对值的大小来确定这个天线组合是否满足通信需求;还可以是首先判断定向天线对应的CSI的实部绝对值的大小,再判断天线组合中其他的全向天线对应的CSI的实部绝对值的大小,对此本申请不做限定。需要说明的是,CSI的实部绝对值的大小比较时,可以是取一段频率内的平均值,也可以是取一段频率内的最大值,也可以取一段时间内连续多次获取的CSI的实部绝对值的累加后取平均值,具体不做限定。
上文详细介绍了本申请提供的方法的示例。可以理解的是,相应的装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对获取天线组合的装置进行功能模块的划分,例如,可以将各个功能划分为各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图9示出了本申请提供的一种获取天线组合的装置的结构示意图。装置900包括:
获取模块901,用于当网络连接为第二连接时,通过第二连接获取第一信号质量数据,第一信号质量数据用于表征采用第一连接通信时的通信质量,第一连接为采用第一频段进行通信的网络连接,第二连接为采用第二频段进行通信的网络连接,第一频段的频率高于第二频段的频率;
确定模块902,用于根据第一信号质量数据确定目标天线组合;其中,目标天线组合为网络连接由第二连接切换为第一连接进行通信时,收发第一频段的信号所调用的天线的组合形式。
在一些实施例中,第一信号质量数据用于表征通过第一天线组合采用第一连接通信时的通信质量,确定模块902,具体用于当第一信号质量数据满足预设通信要求时,则确定第一天线组合为目标天线组合。
在一些实施例中,确定模块902,具体用于当第一信号质量数据不满足预设通信要求时,则通过第二连接获取第二信号质量数据,第二信号质量数据用于表征通过第二天线组合采用第一连接通信时的通信质量,第二天线组合和第一天线组合为不同的天线的组合形式;以及用于当第二信号质量数据满足预设通信要求时,则确定第二天线组合为目标天线组合,当第二信号质量数据不满足预设通信要求,则根据其他信号质量数据确定目标天线组合,其他信号质量数据用于表征通过其他天线组合采用第一连接通信时的通信质量,其他天线组合包括除第一天线组合和第二天线组合之外的天线的组合形式。
在一些实施例中,第一信号质量数据包括多组信号质量子数据,多组信号质量子数据和多种天线组合一一对应,每组信号质量子数据表征通过对应的天线组合采用第一连接通信时的通信质量,确定模块902,具体用于从多组第一信号质量子数据中选出满足预设通信要求的目标信号质量子数据,目标信号质量子数据对应的天线组合为目标天线组合。
在一些实施例中,确定模块902,具体用于从多组信号质量子数据中选出表征通信速率最高的一组作为目标信号质量子数据。
在一些实施例中,预设通信要求包括:通信速率大于或等于预设速率阈值,确定模块902,具体用于从多组信号质量子数据中选出任一表征通信速率大于或等于预设速率阈值的一组作为目标信号质量子数据。
在一些实施例中,获取模块901,具体用于当通过第二连接所连接的设备为核心设备时,通过第二连接获取第一信号质量数据,核心设备为具有高增益波束需求的设备。
在一些实施例中,获取模块901,具体用于接收来自所连接的设备的天线切换请求,响应于天线切换请求,通过第二连接获取第一信号质量数据。
在一些实施例中,第一频段为无线保真WIFI的5G频段,第二频段为WIFI的2.4G频段。
在一些实施例中,第一信号质量数据包括:误码率BER、丢包率PER、信道状态信息CSI、时延、接收的信号强度指示RSSI和通信速率中的一种或多种。
装置900执行获取天线组合的方法的具体方式以及产生的有益效果可以参见方法实施例中的相关描述,此处不再赘述。
本申请实施例还提供了一种电子设备,包括上述处理器。本实施例提供的电子设备可以是图1所示的无线路由器100,用于执行上述获取天线组合的方法。在采用集成的单元的情况下,电子设备可以包括处理模块、存储模块和通信模块。其中,处理模块可以用于对电子设备的动作进行控制管理,例如,可以用于支持电子设备执行显示单元、检测单元和处理单元执行的步骤。存储模块可以用于支持电子设备执行存储程序代码和数据等。通信模块,可以用于支持电子设备与其它设备的通信。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容 所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储模块可以是存储器。通信模块具体可以为射频电路、蓝牙芯片、Wi-Fi芯片等与其它终端设备交互的设备。
在一个实施例中,当处理模块为处理器,存储模块为存储器时,本实施例所涉及的电子设备可以为具有图1所示结构的设备。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得处理器执行上述任一实施例所述的获取天线组合的方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的获取天线组合的方法。
其中,本实施例提供的电子设备、计算机可读存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,更换的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种获取天线组合的方法,其特征在于,包括:
    当网络连接为第二连接时,通过所述第二连接获取第一信号质量数据,所述第一信号质量数据用于表征采用第一连接通信时的通信质量,所述第一连接为采用所述第一频段进行通信的网络连接,所述第二连接为采用第二频段进行通信的网络连接,所述第一频段的频率高于所述第二频段的频率;
    根据所述第一信号质量数据确定目标天线组合;
    其中,所述目标天线组合为网络连接由所述第二连接切换为所述第一连接进行通信时,收发所述第一频段的信号所调用的天线的组合形式。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号质量数据用于表征通过第一天线组合采用所述第一连接通信时的通信质量,所述根据所述第一信号质量数据确定目标天线组合,包括:
    若所述第一信号质量数据满足预设通信要求,则确定所述第一天线组合为所述目标天线组合。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若所述第一信号质量数据不满足所述预设通信要求,则通过所述第二连接获取第二信号质量数据,所述第二信号质量数据用于表征通过第二天线组合采用所述第一连接通信时的通信质量,所述第二天线组合和所述第一天线组合为不同的天线的组合形式;
    若所述第二信号质量数据满足所述预设通信要求,则确定所述第二天线组合为目标天线组合;
    若所述第二信号质量数据不满足所述预设通信要求,则根据其他信号质量数据确定所述目标天线组合,所述其他信号质量数据用于表征通过其他天线组合采用所述第一连接通信时的通信质量,所述其他天线组合包括除所述第一天线组合和所述第二天线组合之外的天线的组合形式。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信号质量数据包括多组信号质量子数据,所述多组信号质量子数据和多种天线组合一一对应,每组所述信号质量子数据表征通过对应的天线组合采用所述第一连接通信时的通信质量,所述根据所述第一信号质量数据确定目标天线组合,包括:
    从所述多组第一信号质量子数据中选出满足预设通信要求的目标信号质量子数据,所述目标信号质量子数据对应的天线组合为所述目标天线组合。
  5. 根据权利要求4所述的方法,其特征在于,所述从所述多组第一信号质量子数据中选出满足预设通信要求的目标信号质量子数据,包括:
    从所述多组信号质量子数据中选出表征通信速率最高的一组作为所述目标信号质量子数据。
  6. 根据权利要求4所述的方法,其特征在于,所述预设通信要求包括:通信速率大于或等于预设速率阈值,所述从所述多组第一信号质量子数据中选出满足预设通信要求的目标信号质量子数据,包括:
    从所述多组信号质量子数据中选出任一表征通信速率大于或等于所述预设速率阈 值的一组作为所述目标信号质量子数据。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述通过所述第二连接获取第一信号质量数据,包括:
    当通过所述第二连接所连接的设备为核心设备时,通过所述第二连接获取所述第一信号质量数据,所述核心设备为具有高增益波束需求的设备。
  8. 根据权利要求1至6任一项所述的方法,其特征在于,所述通过所述第二连接获取第一信号质量数据,包括:
    接收来自所连接的设备的天线切换请求;
    响应于所述天线切换请求,通过所述第二连接获取所述第一信号质量数据。
  9. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一频段为无线保真WIFI的5G频段,所述第二频段为WIFI的2.4G频段。
  10. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一信号质量数据包括:误码率BER、丢包率PER、信道状态信息CSI、时延、接收的信号强度指示RSSI和通信速率中的一种或多种。
  11. 一种电子设备,其特征在于,包括:处理器、存储器和接口;
    所述处理器、所述存储器和所述接口相互配合,使得所述电子设备执行如权利要求1至10中任一项所述的方法。
  12. 根据权利要求11所述的电子设备,其特征在于,所述电子设备为无线路由器。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得所述处理器执行权利要求1至10中任一项所述的方法。
PCT/CN2022/141753 2022-04-11 2022-12-26 获取天线组合的方法、电子设备和计算机可读存储介质 WO2023197676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210374775.X 2022-04-11
CN202210374775.XA CN114900218B (zh) 2022-04-11 2022-04-11 获取天线组合的方法、电子设备和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023197676A1 true WO2023197676A1 (zh) 2023-10-19

Family

ID=82714767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141753 WO2023197676A1 (zh) 2022-04-11 2022-12-26 获取天线组合的方法、电子设备和计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN117040574A (zh)
WO (1) WO2023197676A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117040574A (zh) * 2022-04-11 2023-11-10 荣耀终端有限公司 获取天线组合的方法、电子设备和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634789A (zh) * 2017-08-30 2018-01-26 广东欧珀移动通信有限公司 天线控制方法、装置、存储介质及电子设备
US20180184346A1 (en) * 2015-06-09 2018-06-28 Huawei Technologies Co., Ltd. Frequency band switching method and terminal
CN108494444A (zh) * 2018-03-13 2018-09-04 广东欧珀移动通信有限公司 天线控制方法、天线组件、电子设备及存储介质
WO2021258788A1 (zh) * 2020-06-22 2021-12-30 华为技术有限公司 终端设备、信号传输方法及基带芯片
CN114172545A (zh) * 2021-12-06 2022-03-11 广州通则康威智能科技有限公司 通信信号选择方法、装置、计算机设备及存储介质
CN114900218A (zh) * 2022-04-11 2022-08-12 荣耀终端有限公司 获取天线组合的方法、电子设备和计算机可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012169B (zh) * 2019-04-04 2021-06-29 Oppo广东移动通信有限公司 天线切换方法、装置、存储介质及电子设备
CN110311704B (zh) * 2019-06-25 2021-04-13 Oppo广东移动通信有限公司 天线切换方法及相关产品
CN112532282B (zh) * 2019-09-19 2022-01-14 华为技术有限公司 通信方法和终端设备
WO2022027386A1 (zh) * 2020-08-05 2022-02-10 华为技术有限公司 一种天线选择方法及装置
CN113163145B (zh) * 2021-03-22 2023-10-31 维沃移动通信有限公司 时钟频率切换方法、装置、电子设备以及可读存储介质
CN114285432B (zh) * 2021-12-31 2023-07-18 Oppo广东移动通信有限公司 通信控制方法、装置、射频系统、通信设备和存储介质
CN116366110A (zh) * 2023-01-03 2023-06-30 维沃移动通信有限公司 天线选择电路、方法、电子设备及可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180184346A1 (en) * 2015-06-09 2018-06-28 Huawei Technologies Co., Ltd. Frequency band switching method and terminal
CN107634789A (zh) * 2017-08-30 2018-01-26 广东欧珀移动通信有限公司 天线控制方法、装置、存储介质及电子设备
CN108494444A (zh) * 2018-03-13 2018-09-04 广东欧珀移动通信有限公司 天线控制方法、天线组件、电子设备及存储介质
WO2021258788A1 (zh) * 2020-06-22 2021-12-30 华为技术有限公司 终端设备、信号传输方法及基带芯片
CN114172545A (zh) * 2021-12-06 2022-03-11 广州通则康威智能科技有限公司 通信信号选择方法、装置、计算机设备及存储介质
CN114900218A (zh) * 2022-04-11 2022-08-12 荣耀终端有限公司 获取天线组合的方法、电子设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN117040574A (zh) 2023-11-10
CN114900218A (zh) 2022-08-12
CN114900218B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US7212499B2 (en) Method and apparatus for antenna steering for WLAN
US7359362B2 (en) Control of a multi-sectored antenna system to improve channel efficiency
KR101226367B1 (ko) 무선 네트워크에서의 연관 및 재연관을 위한 방법, 장치 및 저장 매체
JP4770939B2 (ja) 通信装置、通信制御方法、及び通信システム
US8649747B1 (en) Dynamically adjusting antenna polarization in a wireless communication system
TWI572088B (zh) 無線通訊裝置及其控制方法
WO2013178132A1 (zh) 天线波束对准方法及装置
CN108092702B (zh) 智能天线自适应调整方法、智能天线装置及智能电视
CN109586778B (zh) 允许接入点在无线通信信道上同时传输的方法及网络设备
CN111934736B (zh) 一种发送波束优化协议包的方法及设备
WO2013135115A1 (zh) Wlan通信装置及wlan的实现方法
EP1554900B8 (en) Method and apparatus for antenna steering for wlan
WO2023197676A1 (zh) 获取天线组合的方法、电子设备和计算机可读存储介质
JP5305425B2 (ja) 通信システムにおける信号の送受信方法及び装置
WO2017020172A1 (zh) 一种多用户场景下波束训练方法及装置
KR101131917B1 (ko) 무선 통신 네트워크에서의 통신 방법, 대응하는 스테이션 및 네트워크
KR101602009B1 (ko) 통신 장치, 통신 제어 방법 및 통신 시스템
WO2019195047A1 (en) Method and apparatus for millimeter-wave mimo mode selection
US7768971B2 (en) Central frequency modification without communication disruption
WO2022166644A1 (zh) 基于mimo波束赋形的感知方法及相关装置
CN115514399A (zh) 天线选择方法及装置
JP2018526855A (ja) ビームフォーミングされた通信における同時リンクのための干渉緩和のシステムおよび方法
CN114598371B (zh) 获取天线组合的方法、电子设备和计算机可读存储介质
CN111245483A (zh) 一种低成本简易智能天线装置
CN105453651B (zh) 接入点选择方法、终端及接入点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937303

Country of ref document: EP

Kind code of ref document: A1