WO2023197488A1 - 单粒子电化学模型计算装置及方法 - Google Patents

单粒子电化学模型计算装置及方法 Download PDF

Info

Publication number
WO2023197488A1
WO2023197488A1 PCT/CN2022/112835 CN2022112835W WO2023197488A1 WO 2023197488 A1 WO2023197488 A1 WO 2023197488A1 CN 2022112835 W CN2022112835 W CN 2022112835W WO 2023197488 A1 WO2023197488 A1 WO 2023197488A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
electrochemical
storage system
calculation
battery
Prior art date
Application number
PCT/CN2022/112835
Other languages
English (en)
French (fr)
Inventor
宋佩
顾单飞
郝平超
丁鹏
吴炜坤
周国鹏
王文福
严晓
赵恩海
陈晓华
Original Assignee
上海玫克生储能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海玫克生储能科技有限公司 filed Critical 上海玫克生储能科技有限公司
Publication of WO2023197488A1 publication Critical patent/WO2023197488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of energy storage, and in particular to the technical field of equipment for energy storage power stations.
  • the aging degree of the battery can be confirmed, and the charging current can be optimized to achieve effects such as extending battery life.
  • electrochemical state quantities currently run on large servers or independent PCs, and are developed and tested using specialized physical modeling software. When running or calculating a large amount of battery data, there will be a problem of long calculation cycles.
  • the purpose of the present invention is to provide a single particle electrochemical model calculation device and method to solve the technical problem that the prior art cannot effectively obtain the internal performance of the energy storage power station battery.
  • the present invention provides a single particle electrochemical model calculation device, including: a plurality of electrochemical calculation modules for calculating the internal performance of the battery in the energy storage system based on the battery data in the energy storage system, and Output calculation results; a communication module, connected to a plurality of electrochemical calculation modules, used to transmit battery data in the energy storage system to each of the electrochemical calculation modules and transmit the calculation results output by each of the electrochemical calculation modules. out; a data forwarding module, respectively connected to the communication module, the energy storage system and the cloud server, for obtaining battery data from the energy storage system, forwarding the battery data to the communication module, and transmitting the communication The calculation results from the module are forwarded to the cloud server.
  • each of the electrochemical calculation modules is configured with a single particle electrochemical model algorithm.
  • each of the electrochemical calculation modules is configured in an FPGA programmable device to calculate the internal performance of the battery in the energy storage system in parallel based on the battery data in the energy storage system.
  • the communication module is configured in the FPGA programmable device; or is configured in an ARM chip connected to the FPGA programmable device.
  • the communication module when the communication module is configured in an ARM chip connected to the FPGA programmable device, the communication module communicates with the FPGA programmable device through the AHB bus.
  • each electrochemical calculation module when each electrochemical calculation module receives a startup command from the energy storage system, it requests the energy storage system for the battery cluster or single cell corresponding to the internal performance of the battery that needs to be calculated. battery data.
  • the startup command is issued by the cloud server to the energy storage system, or the startup command is generated by the energy storage system.
  • the single particle electrochemical model calculation device is embedded in the energy storage system, and obtains battery data from the energy management system or battery management system of the energy storage system through the data forwarding module. .
  • Embodiments of the present invention also provide a single particle electrochemical model calculation method, which includes: configuring multiple electrochemical calculation modules to calculate the internal performance of the battery in the energy storage system based on the battery data in the energy storage system, and output the calculation results;
  • a communication module is configured, connected to a plurality of electrochemical calculation modules, for transmitting the battery data in the energy storage system to each of the electrochemical calculation modules and transmitting the calculation results output by each of the electrochemical calculation modules;
  • a data forwarding module is configured, respectively connected to the communication module, the energy storage system and the cloud server, for obtaining battery data from the energy storage system, forwarding the battery data to the communication module, and transmitting the communication The calculation results from the module are forwarded to the cloud server.
  • each of the electrochemical calculation modules is configured with a single particle electrochemical model algorithm; each of the electrochemical calculation modules is configured in an FPGA programmable device to calculate the data based on the battery data in the energy storage system. The internal performance of the battery in the energy storage system is calculated in parallel.
  • the single particle electrochemical model calculation device and method of the present invention have the following beneficial effects:
  • the present invention realizes the calculation of the internal electrochemical state of the battery in the local energy storage power station system, reduces the battery analysis and calculation time, and achieves accurate analysis of the internal aging of the battery.
  • the present invention encapsulates the single-particle electrochemical model algorithm into an independent IP core and runs it in the FPGA core. Taking advantage of the programmability and parallel computing advantages of the FPGA core, it can quickly process a large amount of battery data and greatly shorten the data processing time. Processing calculation time provides a strong data analysis basis for the safe operation and effective control of the entire energy storage power station.
  • the single particle electrochemical model calculation device is embedded in the local energy storage system and obtains battery data from the energy management system (EMS) or battery management system (BMS) through the data forwarding interface module, shortening the data acquisition time. , eliminating the traffic cost of data acquisition.
  • EMS energy management system
  • BMS battery management system
  • the independently designed data forwarding module of the present invention allows the external communication protocol of the single particle electrochemical model calculation device to be developed only once, and only needs to modify the data forwarding module communication protocol to calculate the high-performance single particle electrochemical model.
  • Devices are embedded in various energy storage systems.
  • FIG. 1 shows a schematic diagram of the principle structure of a single particle electrochemical model calculation device in an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of the basic scheduling method of Bluetooth Low Energy in the single particle electrochemical model calculation method according to an embodiment of the present invention.
  • Figure 2 shows a schematic flow chart of a single particle electrochemical model calculation method in an embodiment of the present invention.
  • Figure 3 shows a schematic diagram of the calculation flow of the electrochemical calculation module in the single particle electrochemical model calculation method in an embodiment of the present invention.
  • the purpose of the embodiments of the present invention is to provide a single particle electrochemical model calculation device and method to solve the technical problem that the existing technology cannot effectively obtain the internal performance of the energy storage power station battery.
  • this embodiment provides a single particle electrochemical model calculation device 100 .
  • the single particle electrochemical model calculation device 100 includes a plurality of electrochemical calculation modules 110 , a communication module 120 and a data forwarding module 130 .
  • the plurality of electrochemical calculation modules 110 are used to calculate the internal performance of the battery in the energy storage system 200 based on the battery data in the energy storage system 200, and output the calculation results.
  • each of the electrochemical calculation modules 110 when receiving a startup instruction from the energy storage system 200, requests the energy storage system 200 for the battery cluster or cell that needs to calculate the internal performance of the battery. Battery data corresponding to the battery.
  • the battery data includes specified key data or preset data such as real-time or historical charging and discharging voltage, current, and temperature of the battery.
  • the startup command is issued by the cloud server 300 to the energy storage system 200 , or the startup command is generated by the energy storage system 200 .
  • the startup command can be issued to the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200 through the cloud server.
  • the system (BMS) sends a start command to the electrochemical calculation module 110, or the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200 actively initiates a start command, specifying a certain location in the calculation energy storage system 200.
  • start instructions are sent to each of the electrochemical calculation modules 110 through the data forwarding module 130.
  • each of the electrochemical calculation modules 110 After receiving the startup command, each of the electrochemical calculation modules 110 actively requests the corresponding real-time or historical charging and discharging voltage, current, and temperature of the battery to be calculated from the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 . data. After the battery data collection reaches a preset amount, each electrochemical calculation module 110 starts calculation.
  • EMS energy management system
  • BMS battery management system
  • each of the electrochemical calculation modules 110 is configured with a single particle electrochemical model algorithm.
  • the single particle electrochemical model algorithm is a single particle lithium ion electrochemical model algorithm.
  • the single-particle electrochemical model algorithm is based on the single-cell lithium-ion battery model (abbreviation: SPM). It uses single-particle form to analyze the solid diffusion and intercalation reaction kinetics in electrode particles, and analyzes the solid-phase potential and liquid phase inside the battery. Electrochemical parameters such as potential, exchange current density, solid phase concentration, and liquid phase concentration are calculated as the current and temperature change. The calculation results are compared with the actual battery measurement values to analyze changes in battery performance.
  • Each of the electrochemical calculation modules 110 is configured in the IP core of the FPGA programmable device to calculate the internal performance of the battery in the energy storage system 200 in parallel based on the battery data in the energy storage system 200 .
  • the IP core refers to the circuit module with independent functions in the FPGA programmable device.
  • each of the electrochemical calculation modules 110 encapsulates the single-particle electrochemical model algorithm developed based on FPGA as an independent IP core and runs it in the FPGA core to implement multi-channel parallel acceleration operations and run the IP The number can be determined based on the configured FPGA core resources.
  • an IP core uses resources, accounting for all the resources of a certain FPGA core, of which BRAM (random memory block) occupies 13%, DSP (digital signal processing) occupies 18%, FF (flip-flop) occupies 8%, and LUT ( Lookup table) occupies 18%, which means that this FPGA core can support up to 5 IP cores running simultaneously.
  • BRAM random memory block
  • DSP digital signal processing
  • FF flip-flop
  • LUT Lookup table
  • the single-particle electrochemical model calculation device 100 in this embodiment encapsulates the single-particle lithium ion electrochemical model algorithm into an independent IP core and runs it in the FPGA core. It takes advantage of the programmability and parallel computing advantages of the FPGA core to achieve rapid Processing a large amount of battery data greatly shortens the data processing calculation time and provides a strong data analysis basis for the safe operation and effective control of the entire energy storage power station.
  • the communication module 120 is connected to a plurality of electrochemical calculation modules 110 for transmitting battery data in the energy storage system 200 to each electrochemical calculation module 110 and calculating each electrochemical calculation module 110 .
  • the calculation results output by the calculation module 110 are transmitted.
  • the communication module 120 is a communication module 120 based on Gigabit Ethernet.
  • the communication module 120 is a necessary peripheral function for the normal operation of each of the electrochemical calculation modules 110. To implement the parameter variables required for the calculation of the single-particle electrochemical model algorithm and output the calculation results.
  • the communication module 120 is configured in the FPGA programmable device; or is configured in an ARM chip connected to the FPGA programmable device.
  • the communication module 120 when the communication module 120 is configured in the ARM chip connected to the FPGA programmable device, the communication module 120 communicates with the FPGA programmable device through the AHB bus.
  • the communication module 120 can be implemented by an FPGA core or developed on a CPU based on the ARM architecture, and then perform data interaction with the FPGA through the AHB bus.
  • the data forwarding module 130 is connected to the communication module 120, the energy storage system 200 and the cloud server 300 respectively, and is used to obtain battery data from the energy storage system 200 and forward the battery data to
  • the communication module 120 forwards the calculation results transmitted by the communication module 120 to the energy management system (EMS) or battery management system (BMS) of the cloud server 300 or the energy storage system 200 .
  • EMS energy management system
  • BMS battery management system
  • the single particle electrochemical model calculation device 100 is embedded in the energy storage system 200, and obtains data from the energy management system or battery management system of the energy storage system 200 through the data forwarding module 130.
  • the system obtains battery data.
  • the data is transferred from the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 through the data forwarding module 130. ) obtains battery data, shortens the time of data acquisition, and eliminates the traffic cost of data acquisition.
  • EMS energy management system
  • BMS battery management system
  • the data forwarding module 130 in this embodiment is an independent data forwarding module 130 that is independent of the electrochemical calculation module 110 and the communication module 120 .
  • the data forwarding module 130 implements data interaction with the electrochemical calculation module 110, data interaction with the energy management system (EMS) or battery management system (BMS) of the energy storage system 200, and data interaction with the cloud server 300.
  • EMS energy management system
  • BMS battery management system
  • the communication module 120 sends the calculation result to the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 through the data forwarding module 130 ) and or cloud server 300, the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 or the cloud server 300 makes corresponding control adjustments to the energy storage system 200 based on the calculation results.
  • EMS energy management system
  • BMS battery management system
  • the separately designed data forwarding module 130 allows the external communication protocol of the single particle electrochemical model calculation device 100 to be developed only once. From the architecture, only the communication protocol of the data forwarding module 130 needs to be modified.
  • the high-performance single particle electrochemical model calculation device 100 is embedded in various energy storage systems 200 .
  • the working process of the single particle electrochemical model calculation device 100 is as follows:
  • the cloud server issues a startup command to the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200, and the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200 issues the startup command.
  • EMS energy management system
  • BMS battery management system
  • the start command is sent to each of the electrochemical calculation modules 110 through the data forwarding module 130.
  • each of the electrochemical calculation modules 110 After receiving the startup command, each of the electrochemical calculation modules 110 actively requests the corresponding real-time or historical charging and discharging voltage, current, and temperature of the battery to be calculated from the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 . data. After the battery data collection reaches a preset amount, each electrochemical calculation module 110 starts calculation.
  • EMS energy management system
  • BMS battery management system
  • the communication module 120 sends the calculation result to the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 and/or the cloud server 300 via the data forwarding module 130.
  • the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 or the cloud server 300 makes corresponding control adjustments to the energy storage system 200 based on the calculation results.
  • the single particle electrochemical model calculation device 100 in this embodiment can be easily embedded in various lithium-ion battery energy storage systems 200 and applied to various small and medium-sized lithium battery energy storage power stations to achieve localized real-time calculation of individual cells. Conduct precise analysis of battery data to achieve more accurate calculations and predictions of energy storage power station battery SOC, battery aging time, etc. from the electrochemical level.
  • this embodiment also provides a single particle electrochemical model calculation method, which includes the following steps:
  • Step S100 configure multiple electrochemical calculation modules to calculate the internal performance of the battery in the energy storage system based on the battery data in the energy storage system, and output the calculation results;
  • Step S200 configure a communication module connected to multiple electrochemical calculation modules for transmitting battery data in the energy storage system to each electrochemical calculation module and outputting calculation results from each electrochemical calculation module. outgoing; outgoing
  • Step S300 configure a data forwarding module, which is connected to the communication module, the energy storage system and the cloud server respectively, for obtaining battery data from the energy storage system, forwarding the battery data to the communication module, and The calculation results transmitted by the communication module are forwarded to the cloud server.
  • Step S100 configure multiple electrochemical calculation modules 110 to calculate the internal performance of the battery in the energy storage system 200 based on the battery data in the energy storage system 200, and output the calculation results.
  • each of the electrochemical calculation modules 110 when receiving a startup instruction from the energy storage system 200, requests the energy storage system 200 for the battery cluster or cell that needs to calculate the internal performance of the battery. Battery data corresponding to the battery.
  • the battery data includes specified key data or preset data such as real-time or historical charging and discharging voltage, current, and temperature of the battery.
  • the startup command is issued by the cloud server 300 to the energy storage system 200 , or the startup command is generated by the energy storage system 200 .
  • the cloud server 300 can send a startup command to the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200, and the energy management system (EMS) or battery of the local energy storage system 200.
  • the management system (BMS) sends a startup command to the electrochemical calculation module 110, or the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200 actively initiates a startup command, specifying the calculation within the energy storage system 200.
  • start instructions are sent to each of the electrochemical calculation modules 110 through the data forwarding module 130 .
  • each of the electrochemical calculation modules 110 After receiving the startup command, each of the electrochemical calculation modules 110 actively requests the corresponding real-time or historical charging and discharging voltage, current, and temperature of the battery to be calculated from the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 . data. After the battery data collection reaches a preset amount, each electrochemical calculation module 110 starts calculation.
  • EMS energy management system
  • BMS battery management system
  • each of the electrochemical calculation modules 110 is configured with a single particle electrochemical model algorithm.
  • the single particle electrochemical model algorithm is a single particle lithium ion electrochemical model algorithm.
  • Each of the electrochemical calculation modules 110 is configured in the IP core of the FPGA programmable device to calculate the internal performance of the battery in the energy storage system 200 in parallel based on the battery data in the energy storage system 200 .
  • the IP core refers to the circuit module with independent functions in the FPGA programmable device.
  • each of the electrochemical calculation modules 110 encapsulates the single-particle electrochemical model algorithm developed based on FPGA as an independent IP core and runs it in the FPGA core to implement multi-channel parallel acceleration operations and run the IP The number can be determined based on the configured FPGA core resources.
  • the single-particle electrochemical model calculation device 100 in this embodiment encapsulates the single-particle lithium ion electrochemical model algorithm into an independent IP core and runs it in the FPGA core. It takes advantage of the programmability and parallel computing advantages of the FPGA core to achieve rapid Processing a large amount of battery data greatly shortens the data processing calculation time and provides a strong data analysis basis for the safe operation and effective control of the entire energy storage power station.
  • each electrochemical calculation module 110 is as follows:
  • S1 The cloud server 300 or the local energy storage system 200 initiates a startup command.
  • the cloud server 300 can send a startup command to the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200, and the energy management system (EMS) or battery of the local energy storage system 200.
  • the management system (BMS) sends a startup command to the electrochemical calculation module 110, or the energy management system (EMS) or battery management system (BMS) of the local energy storage system 200 actively initiates a startup command, specifying the calculation within the energy storage system 200.
  • start instructions are sent to each of the electrochemical calculation modules 110 through the data forwarding module 130 .
  • Each of the electrochemical calculation modules 110 actively requests to obtain battery charge and discharge data.
  • each of the electrochemical calculation modules 110 actively requests the corresponding real-time or historical battery charge to be calculated from the energy management system (EMS) or battery management system (BMS) of the energy storage system 200. Discharge voltage, current, temperature and other key data.
  • EMS energy management system
  • BMS battery management system
  • each electrochemical calculation module 110 After the battery data collection reaches a preset amount, each electrochemical calculation module 110 starts calculation.
  • the communication module 120 sends the calculation result to the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 and/or the cloud server 300 via the data forwarding module 130.
  • the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 or the cloud server 300 makes corresponding control adjustments to the energy storage system 200 based on the calculation results.
  • Step S200 configure a communication module 120, connected to multiple electrochemical calculation modules 110, for transmitting the battery data in the energy storage system 200 to each electrochemical calculation module 110 and transmitting the data to each electrochemical calculation module.
  • the calculation results output by 110 are transmitted.
  • the communication module 120 is a communication module 120 based on Gigabit Ethernet.
  • the communication module 120 is a necessary peripheral function for the normal operation of each of the electrochemical calculation modules 110. To implement the parameter variables required for the calculation of the single-particle electrochemical model algorithm and output the calculation results.
  • the communication module 120 is configured in the FPGA programmable device; or is configured in an ARM chip connected to the FPGA programmable device.
  • the communication module 120 when the communication module 120 is configured in the ARM chip connected to the FPGA programmable device, the communication module 120 communicates with the FPGA programmable device through the AHB bus.
  • the communication module 120 can be implemented by an FPGA core or developed on a CPU based on the ARM architecture, and then perform data interaction with the FPGA through the AHB bus.
  • Step S300 configure a data forwarding module 130, which is connected to the communication module 120, the energy storage system 200 and the cloud server 300, to obtain battery data from the energy storage system 200 and forward the battery data to the communication module 120, and forwards the calculation results transmitted from the communication module 120 to the cloud server 300.
  • the data forwarding module 130 is connected to the communication module 120, the energy storage system 200 and the cloud server 300 respectively, and is used to obtain battery data from the energy storage system 200 and forward the battery data to
  • the communication module 120 forwards the calculation results transmitted by the communication module 120 to the energy management system (EMS) or battery management system (BMS) of the cloud server 300 or the energy storage system 200 .
  • EMS energy management system
  • BMS battery management system
  • the single particle electrochemical model calculation device 100 is embedded in the energy storage system 200, and obtains data from the energy management system or battery management system of the energy storage system 200 through the data forwarding module 130.
  • the system obtains battery data.
  • the data is transferred from the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 through the data forwarding module 130. ) obtains battery data, shortens the time of data acquisition, and eliminates the traffic cost of data acquisition.
  • EMS energy management system
  • BMS battery management system
  • the data forwarding module 130 in this embodiment is an independent data forwarding module 130 that is independent of the electrochemical calculation module 110 and the communication module 120 .
  • the data forwarding module 130 implements data interaction with the electrochemical calculation module 110, data interaction with the energy management system (EMS) or battery management system (BMS) of the energy storage system 200, and data interaction with the cloud server 300.
  • EMS energy management system
  • BMS battery management system
  • the communication module 120 sends the calculation result to the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 through the data forwarding module 130 ) and or cloud server 300, the energy management system (EMS) or battery management system (BMS) of the energy storage system 200 or the cloud server 300 makes corresponding control adjustments to the energy storage system 200 based on the calculation results.
  • EMS energy management system
  • BMS battery management system
  • the separately designed data forwarding module 130 allows the external communication protocol of the single particle electrochemical model calculation device 100 to be developed only once. From the architecture, only the communication protocol of the data forwarding module 130 needs to be modified.
  • the high-performance single particle electrochemical model calculation device 100 is embedded in various energy storage systems 200 .
  • the present invention realizes the calculation of the internal electrochemical state of the battery in the local energy storage power station system, reduces the battery analysis calculation time, and achieves accurate analysis of the internal aging of the battery; the present invention encapsulates the single particle electrochemical model algorithm It is an independent IP core and runs in the FPGA core. It takes advantage of the programmability and parallel computing advantages of the FPGA core to quickly process a large amount of battery data, greatly shortening the data processing calculation time, and ensuring the safe operation and safety of the entire energy storage power station.
  • the single particle electrochemical model calculation device is embedded in the local energy storage system, and the battery is obtained from the energy management system (EMS) or battery management system (BMS) through the data forwarding interface module.
  • EMS energy management system
  • BMS battery management system
  • data shortening the time of data acquisition and eliminating the traffic cost of data acquisition;
  • the independently designed data forwarding module of the present invention enables the external communication protocol of the single particle electrochemical model calculation device to be developed only once, and only needs to modify the data forwarding module Communication protocol enables embedding high-performance single-particle electrochemical model calculation devices into various energy storage systems. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种单粒子电化学模型计算装置(100)及方法,装置(100)包括:多个电化学计算模块(110),用于根据储能系统(200)内电池数据计算储能系统(200)内电池内部性能,并输出计算结果;通信模块(120),与多个电化学计算模块(110)相连,用于向各电化学计算模块(110)传入储能系统(200)内电池数据并将各电化学计算模块(110)输出的计算结果传出;数据转发模块(130),分别与通信模块(120)、储能系统(200)以及云端服务器(300)相连,用于从储能系统(200)获取电池数据,将电池数据转发给通信模块(120),并将通信模块(120)传出的计算结果转发至云端服务器(300)。在本地储能电站系统中实现对电池内部电化学状态量的计算,减少电池分析计算时间,实现对电池内部老化精准的分析。

Description

单粒子电化学模型计算装置及方法 技术领域
本发明涉及储能技术领域,特别是涉及储能电站的设备技术领域。
背景技术
随着储能电站的商用化普及,对电池组的剩余可用容量估算,电池老化程度及使用寿命预测提出了更准确的要求。目前已知的等效电路法及安时积分法计算电池组剩余可用容量存在一定的误差,且误差会随着时间累积,也无法对电池的老化程度进行准确的预测。
基于锂离子电池电化学状态量的估算,尤其对与电池老化相关的负极表面Li+浓度等电化学状态的精确估算,可确认电池的老化程度,进而优化充电电电流,达到延长电池寿命等效果。但目前大部分的电化学状态量运行于大型服务器或者独立PC端,使用专门的物理建模软件进行开发和测试,当运行或者计算大量的电池数据时,会存在计算周期较长的问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种单粒子电化学模型计算装置及方法,用于解决现有技术无法有效获取储能电站电池内部性能的技术问题。
为实现上述目的及其他相关目的,本发明提供一种单粒子电化学模型计算装置,包括:多个电化学计算模块,用于根据储能系统内电池数据计算储能系统内电池内部性能,并输出计算结果;通信模块,与多个电化学计算模块相连,用于向各所述电化学计算模块传入所述储能系统内电池数据并将各所述电化学计算模块输出的计算结果传出;数据转发模块,分别与所述通信模块、储能系统以及云端服务器相连,用于从所述储能系统获取电池数据,将所述电池数据转发给所述通信模块,并将所述通信模块传出的计算结果转发至所述云端服务器。
于本发明的一实施例中,各所述电化学计算模块分别配置有单粒子电化学模型算法。
于本发明的一实施例中,各所述电化学计算模块配置于FPGA可编程器件中,以根据储能系统内电池数据多路并行计算储能系统内电池内部性能。
于本发明的一实施例中,所述通信模块配置于所述FPGA可编程器件中;或者配置于与所述FPGA可编程器件相连的ARM芯片中。
于本发明的一实施例中,在所述通信模块配置于与所述FPGA可编程器件相连的ARM芯片中时,所述通信模块通过AHB总线与所述FPGA可编程器件进行通信。
于本发明的一实施例中,各所述电化学计算模块在接收到所述储能系统的启动指令时,向所述储能系统请求需要计算电池内部性能的电池簇或单体电池所对应的电池数据。
于本发明的一实施例中,所述启动指令由所述云端服务器下发给所述储能系统,或者所述启动指令由所述储能系统生成。
于本发明的一实施例中,所述单粒子电化学模型计算装置嵌入所述储能系统内,并通过所述数据转发模块从所述储能系统的能量管理系统或者电池管理系统获取电池数据。
本发明的实施例还提供一种单粒子电化学模型计算方法,包括:配置多个电化学计算模块,用于根据储能系统内电池数据计算储能系统内电池内部性能,并输出计算结果;配置一通信模块,与多个电化学计算模块相连,用于向各所述电化学计算模块传入所述储能系统内电池数据并将各所述电化学计算模块输出的计算结果传出;配置一数据转发模块,分别与所述通信模块、储能系统以及云端服务器相连,用于从所述储能系统获取电池数据,将所述电池数据转发给所述通信模块,并将所述通信模块传出的计算结果转发至所述云端服务器。
于本发明的一实施例中,各所述电化学计算模块分别配置有单粒子电化学模型算法;各所述电化学计算模块配置于FPGA可编程器件中,以根据储能系统内电池数据多路并行计算储能系统内电池内部性能。
如上所述,本发明的一种单粒子电化学模型计算装置及方法,具有以下有益效果:
1、本发明在本地储能电站系统中实现对电池内部电化学状态量的计算,减少电池分析计算时间,实现对电池内部老化精准的分析。
2、本发明将单粒子电化学模型算法封装为独立的IP核,运行于FPGA核心中,利用FPGA核心的可编程及并行计算优势,实现了快速对大量电池数据进行处理,极大缩短了数据处理计算时间,为整个储能电站安全运行及有效控制提供了有力的数据分析基础。
3、本发明中,单粒子电化学模型计算装置嵌入于本地储能系统中,通过数据转发接口模块从能量管理系统(EMS)或电池管理系统(BMS)获取电池数据,缩短了数据获取的时间,消去了数据获取的流量成本。
4、本发明单独设计的数据转发模块,使单粒子电化学模型计算装置对外通信协议只需做到一次开发,只需要修改数据转发模块通信协议,即可将高性能的单粒子电化学模型计算装置嵌入各种储能系统中。
附图说明
图1显示为本发明的一实施例中单粒子电化学模型计算装置的原理结构示意图。
图2显示为本发明的一实施例中单粒子电化学模型计算方法中低功耗蓝牙的基本调度方式示意图。
图2显示为本发明的一实施例中单粒子电化学模型计算方法的流程示意图。
图3显示为本发明的一实施例中单粒子电化学模型计算方法中电化学计算模块的计算流程示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
本发明实施例的目的在于提供一种单粒子电化学模型计算装置及方法,用于解决现有技术无法有效获取储能电站电池内部性能的技术问题。
以下将详细阐述本实施例的一种单粒子电化学模型计算装置及方法的原理及实施方式,使本领域技术人员不需要创造性劳动即可理解本实施例的一种单粒子电化学模型计算装置及方法。
实施例1
如图1所示,本实施例提供一种单粒子电化学模型计算装置100,该单粒子电化学模型计算装置100包括多个电化学计算模块110,通信模块120以及数据转发模块130。
于本实施例中,多个所述电化学计算模块110用于根据储能系统200内电池数据计算储能系统200内电池内部性能,并输出计算结果。
具体地,于本实施例中,各所述电化学计算模块110在接收到所述储能系统200的启动指令时,向所述储能系统200请求需要计算电池内部性能的电池簇或单体电池所对应的电池数据。
所述电池数据包括电池实时或历史充放电电压电流温度等指定的关键数据或预设数据。
其中,于本实施例中,所述启动指令由所述云端服务器300下发给所述储能系统200,或者所述启动指令由所述储能系统200生成。
即本实施例中,可以通过云端服务器下发启动指令给本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS),本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS)将启动指令发送至所述电化学计算模块110,或者本地储能系统200的能量管 理系统(EMS)或电池管理系统(BMS)主动发起启动指令,指定计算储能系统200内某些电池簇内某些单体电池,启动指令通过数据转发模块130下发给各所述电化学计算模块110。
各所述电化学计算模块110收到启动指令后,主动向储能系统200的能量管理系统(EMS)或电池管理系统(BMS)请求相应需计算的电池实时或历史充放电电压电流温度等关键数据。在电池数据收集达到预设数量之后,各所述电化学计算模块110启动计算。
于本实施例中,各所述电化学计算模块110分别配置有单粒子电化学模型算法。具体地,所述单粒子电化学模型算法为单粒子锂离子电化学模型算法。所述单粒子电化学模型算法基于单颗锂离子电池模型(缩称:SPM),使用单颗粒形式分析电极粒子中的固体扩散和插层反应动力学,对电池内部的固相电势,液相电势,交换电流密度,固相浓度,液相浓度等电化学参数随着电流及温度变化进行相关计算,根据计算结果与实际电池测量值进行对比,以此分析电池性能的变化。
其中,各所述电化学计算模块110配置于FPGA可编程器件的IP核中,以根据储能系统200内电池数据多路并行计算储能系统200内电池内部性能。其中,IP核是指FPGA可编程器件中具有独立功能的电路模块。
也就是说,本实施例中,各所述电化学计算模块110将基于FPGA开发的单粒子电化学模型算法封装为独立的IP核,运行于FPGA核心中,实现多路并行加速运算,运行IP个数可依据配置的FPGA核心资源量决定。
例如,一个IP核心使用资源,占比某个FPGA核心所有资源,其中BRAM(可随机存储块)占用13%,DSP(数字信号处理)占用18%,FF(触发器)占用8%,LUT(查找表)占用18%,那么意味着此FPGA核心最多可支持5个IP核心同时运行。
所以本实施例中的单粒子电化学模型计算装置100将单粒子锂离子电化学模型算法封装为独立的IP核,运行于FPGA核心中,利用FPGA核心的可编程及并行计算优势,实现了快速对大量电池数据进行处理,极大缩短了数据处理计算时间,为整个储能电站安全运行及有效控制提供了有力的数据分析基础。
于本实施例中,所述通信模块120与多个电化学计算模块110相连,用于向各所述电化学计算模块110传入所述储能系统200内电池数据并将各所述电化学计算模块110输出的计算结果传出。
其中,本实施例中,优选但不限于所述通信模块120为基于千兆以太网的通信模块120,所述通信模块120是各所述电化学计算模块110正常运作的必要外设功能,用来实现传入单粒子电化学模型算法计算需要的参数变量以及输出计算结果。
于本实施例中,所述通信模块120配置于所述FPGA可编程器件中;或者配置于与所述FPGA可编程器件相连的ARM芯片中。
其中,于本实施例中,在所述通信模块120配置于与所述FPGA可编程器件相连的ARM芯片中时,所述通信模块120通过AHB总线与所述FPGA可编程器件进行通信。
即所述通信模块120可由FPGA核心实现或在基于ARM架构的CPU上进行开发,再通过AHB总线与FPGA进行数据交互。
于本实施例中,所述数据转发模块130分别与所述通信模块120、储能系统200以及云端服务器300相连,用于从所述储能系统200获取电池数据,将所述电池数据转发给所述通信模块120,并将所述通信模块120传出的计算结果转发至所述云端服务器300或储能系统200的能量管理系统(EMS)或电池管理系统(BMS)。
具体地,于本实施例中,所述单粒子电化学模型计算装置100嵌入所述储能系统200内,并通过所述数据转发模块130从所述储能系统200的能量管理系统或者电池管理系统获取电池数据。
本实施例中,通过将整个所述单粒子电化学模型计算装置100嵌入于本地储能系统200中,通过数据转发模块130从储能系统200的能量管理系统(EMS)或电池管理系统(BMS)获取电池数据,缩短了数据获取的时间,消去了数据获取的流量成本。
本实施例中的数据转发模块130为独立于电化学计算模块110和通信模块120的独立的数据转发模块130。所述数据转发模块130实现与电化学计算模块110进行数据交互,与储能系统200的能量管理系统(EMS)或电池管理系统(BMS)进行数据交互,及与云端服务器300进行数据交互,最终实现单粒子电化学模型计算装置100与储能系统200及云端服务器300之间的数据交互。
也就是说,本实施例,各所述电化学计算模块110计算完毕后,通信模块120将计算结果经由数据转发模块130发送至储能系统200的能量管理系统(EMS)或电池管理系统(BMS)和或云端服务器300,由储能系统200的能量管理系统(EMS)或电池管理系统(BMS)或云端服务器300,根据计算结果,对储能系统200做相应的控制调节。
本实施例中,单独设计的数据转发模块130,使所述单粒子电化学模型计算装置100对外通信协议只需做到一次开发,从架构上只需要修改数据转发模块130通信协议,即可将高性能的所述单粒子电化学模型计算装置100嵌入各种储能系统200中。
本实施例中,单粒子电化学模型计算装置100的工作过程如下:
通过云端服务器下发启动指令给本地储能系统200的能量管理系统(EMS)或电池管理 系统(BMS),本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS)将启动指令发送至所述电化学计算模块110,或者本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS)主动发起启动指令,指定计算储能系统200内某些电池簇内某些单体电池,启动指令通过数据转发模块130下发给各所述电化学计算模块110。
各所述电化学计算模块110收到启动指令后,主动向储能系统200的能量管理系统(EMS)或电池管理系统(BMS)请求相应需计算的电池实时或历史充放电电压电流温度等关键数据。在电池数据收集达到预设数量之后,各所述电化学计算模块110启动计算。
各所述电化学计算模块110计算完毕后,通信模块120将计算结果经由数据转发模块130发送至储能系统200的能量管理系统(EMS)或电池管理系统(BMS)和或云端服务器300,由储能系统200的能量管理系统(EMS)或电池管理系统(BMS)或云端服务器300,根据计算结果,对储能系统200做相应的控制调节。
由上可见,本实施例中的单粒子电化学模型计算装置100可方便嵌入于各种锂离子电池储能系统200,应用于各种中小型锂电池储能电站,实现本地化实时对单体电池数据做精准化分析,从电化学层面实现对储能电站电池SOC,电池老化时间等更精确的计算及预测。
实施例2
如图2所示,本实施例还提供一种单粒子电化学模型计算方法,包括以下步骤:
步骤S100,配置多个电化学计算模块,用于根据储能系统内电池数据计算储能系统内电池内部性能,并输出计算结果;
步骤S200,配置一通信模块,与多个电化学计算模块相连,用于向各所述电化学计算模块传入所述储能系统内电池数据并将各所述电化学计算模块输出的计算结果传出;
步骤S300,配置一数据转发模块,分别与所述通信模块、储能系统以及云端服务器相连,用于从所述储能系统获取电池数据,将所述电池数据转发给所述通信模块,并将所述通信模块传出的计算结果转发至所述云端服务器。
以下对本实施例单粒子电化学模型计算方法的上述步骤进行详细说明。
步骤S100,配置多个电化学计算模块110,用于根据储能系统200内电池数据计算储能系统200内电池内部性能,并输出计算结果。
具体地,于本实施例中,各所述电化学计算模块110在接收到所述储能系统200的启动指令时,向所述储能系统200请求需要计算电池内部性能的电池簇或单体电池所对应的电池数据。
所述电池数据包括电池实时或历史充放电电压电流温度等指定的关键数据或预设数据。
其中,于本实施例中,所述启动指令由所述云端服务器300下发给所述储能系统200,或者所述启动指令由所述储能系统200生成。
即本实施例中,可以通过云端服务器300下发启动指令给本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS),本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS)将启动指令发送至所述电化学计算模块110,或者本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS)主动发起启动指令,指定计算储能系统200内某些电池簇内某些单体电池,启动指令通过数据转发模块130下发给各所述电化学计算模块110。
各所述电化学计算模块110收到启动指令后,主动向储能系统200的能量管理系统(EMS)或电池管理系统(BMS)请求相应需计算的电池实时或历史充放电电压电流温度等关键数据。在电池数据收集达到预设数量之后,各所述电化学计算模块110启动计算。
于本实施例中,各所述电化学计算模块110分别配置有单粒子电化学模型算法。具体地,所述单粒子电化学模型算法为单粒子锂离子电化学模型算法。
其中,各所述电化学计算模块110配置于FPGA可编程器件的IP核中,以根据储能系统200内电池数据多路并行计算储能系统200内电池内部性能。其中,IP核是指FPGA可编程器件中具有独立功能的电路模块。
也就是说,本实施例中,各所述电化学计算模块110将基于FPGA开发的单粒子电化学模型算法封装为独立的IP核,运行于FPGA核心中,实现多路并行加速运算,运行IP个数可依据配置的FPGA核心资源量决定。
所以本实施例中的单粒子电化学模型计算装置100将单粒子锂离子电化学模型算法封装为独立的IP核,运行于FPGA核心中,利用FPGA核心的可编程及并行计算优势,实现了快速对大量电池数据进行处理,极大缩短了数据处理计算时间,为整个储能电站安全运行及有效控制提供了有力的数据分析基础。
本实施例中,如图3所示,各所述电化学计算模块110的工作过程如下:
S1:云端服务器300或本地储能系统200发起启动指令。
即本实施例中,可以通过云端服务器300下发启动指令给本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS),本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS)将启动指令发送至所述电化学计算模块110,或者本地储能系统200的能量管理系统(EMS)或电池管理系统(BMS)主动发起启动指令,指定计算储能系统200内某些电池簇内某些单体电池,启动指令通过数据转发模块130下发给各所述电化学计算模块 110。
S2:各所述电化学计算模块110主动请求获取电池充放电数据。
即本实施例中,各所述电化学计算模块110收到启动指令后,主动向储能系统200的能量管理系统(EMS)或电池管理系统(BMS)请求相应需计算的电池实时或历史充放电电压电流温度等关键数据。
S3:启动电化学计算模块110。
在电池数据收集达到预设数量之后,各所述电化学计算模块110启动计算。
S4:输出计算结果至储能系统200和/或云端服务器300。
各所述电化学计算模块110计算完毕后,通信模块120将计算结果经由数据转发模块130发送至储能系统200的能量管理系统(EMS)或电池管理系统(BMS)和或云端服务器300,由储能系统200的能量管理系统(EMS)或电池管理系统(BMS)或云端服务器300,根据计算结果,对储能系统200做相应的控制调节。
步骤S200,配置一通信模块120,与多个电化学计算模块110相连,用于向各所述电化学计算模块110传入所述储能系统200内电池数据并将各所述电化学计算模块110输出的计算结果传出。
其中,本实施例中,优选但不限于所述通信模块120为基于千兆以太网的通信模块120,所述通信模块120是各所述电化学计算模块110正常运作的必要外设功能,用来实现传入单粒子电化学模型算法计算需要的参数变量以及输出计算结果。
于本实施例中,所述通信模块120配置于所述FPGA可编程器件中;或者配置于与所述FPGA可编程器件相连的ARM芯片中。
其中,于本实施例中,在所述通信模块120配置于与所述FPGA可编程器件相连的ARM芯片中时,所述通信模块120通过AHB总线与所述FPGA可编程器件进行通信。
即所述通信模块120可由FPGA核心实现或在基于ARM架构的CPU上进行开发,再通过AHB总线与FPGA进行数据交互。
步骤S300,配置一数据转发模块130,分别与所述通信模块120、储能系统200以及云端服务器300相连,用于从所述储能系统200获取电池数据,将所述电池数据转发给所述通信模块120,并将所述通信模块120传出的计算结果转发至所述云端服务器300。
于本实施例中,所述数据转发模块130分别与所述通信模块120、储能系统200以及云端服务器300相连,用于从所述储能系统200获取电池数据,将所述电池数据转发给所述通信模块120,并将所述通信模块120传出的计算结果转发至所述云端服务器300或储能系统 200的能量管理系统(EMS)或电池管理系统(BMS)。
具体地,于本实施例中,所述单粒子电化学模型计算装置100嵌入所述储能系统200内,并通过所述数据转发模块130从所述储能系统200的能量管理系统或者电池管理系统获取电池数据。
本实施例中,通过将整个所述单粒子电化学模型计算装置100嵌入于本地储能系统200中,通过数据转发模块130从储能系统200的能量管理系统(EMS)或电池管理系统(BMS)获取电池数据,缩短了数据获取的时间,消去了数据获取的流量成本。
本实施例中的数据转发模块130为独立于电化学计算模块110和通信模块120的独立的数据转发模块130。所述数据转发模块130实现与电化学计算模块110进行数据交互,与储能系统200的能量管理系统(EMS)或电池管理系统(BMS)进行数据交互,及与云端服务器300进行数据交互,最终实现单粒子电化学模型计算装置100与储能系统200及云端服务器300之间的数据交互。
也就是说,本实施例,各所述电化学计算模块110计算完毕后,通信模块120将计算结果经由数据转发模块130发送至储能系统200的能量管理系统(EMS)或电池管理系统(BMS)和或云端服务器300,由储能系统200的能量管理系统(EMS)或电池管理系统(BMS)或云端服务器300,根据计算结果,对储能系统200做相应的控制调节。
本实施例中,单独设计的数据转发模块130,使所述单粒子电化学模型计算装置100对外通信协议只需做到一次开发,从架构上只需要修改数据转发模块130通信协议,即可将高性能的所述单粒子电化学模型计算装置100嵌入各种储能系统200中。
综上所述,本发明在本地储能电站系统中实现对电池内部电化学状态量的计算,减少电池分析计算时间,实现对电池内部老化精准的分析;本发明将单粒子电化学模型算法封装为独立的IP核,运行于FPGA核心中,利用FPGA核心的可编程及并行计算优势,实现了快速对大量电池数据进行处理,极大缩短了数据处理计算时间,为整个储能电站安全运行及有效控制提供了有力的数据分析基础;本发明中,单粒子电化学模型计算装置嵌入于本地储能系统中,通过数据转发接口模块从能量管理系统(EMS)或电池管理系统(BMS)获取电池数据,缩短了数据获取的时间,消去了数据获取的流量成本;本发明单独设计的数据转发模块,使单粒子电化学模型计算装置对外通信协议只需做到一次开发,只需要修改数据转发模块通信协议,即可将高性能的单粒子电化学模型计算装置嵌入各种储能系统中。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技 术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种单粒子电化学模型计算装置,其特征在于:包括:
    多个电化学计算模块,用于根据储能系统内电池数据计算储能系统内电池内部性能,并输出计算结果;
    通信模块,与多个电化学计算模块相连,用于向各所述电化学计算模块传入所述储能系统内电池数据并将各所述电化学计算模块输出的计算结果传出;
    数据转发模块,分别与所述通信模块、储能系统以及云端服务器相连,用于从所述储能系统获取电池数据,将所述电池数据转发给所述通信模块,并将所述通信模块传出的计算结果转发至所述云端服务器。
  2. 根据权利要求1所述的单粒子电化学模型计算装置,其特征在于:各所述电化学计算模块分别配置有单粒子电化学模型算法。
  3. 根据权利要求1或2所述的单粒子电化学模型计算装置,其特征在于:各所述电化学计算模块配置于FPGA可编程器件中,以根据储能系统内电池数据多路并行计算储能系统内电池内部性能。
  4. 根据权利要求3所述的单粒子电化学模型计算装置,其特征在于:所述通信模块配置于所述FPGA可编程器件中;或者配置于与所述FPGA可编程器件相连的ARM芯片中。
  5. 根据权利要求4所述的单粒子电化学模型计算装置,其特征在于:在所述通信模块配置于与所述FPGA可编程器件相连的ARM芯片中时,所述通信模块通过AHB总线与所述FPGA可编程器件进行通信。
  6. 根据权利要求1所述的单粒子电化学模型计算装置,其特征在于:各所述电化学计算模块在接收到所述储能系统的启动指令时,向所述储能系统请求需要计算电池内部性能的电池簇或单体电池所对应的电池数据。
  7. 根据权利要求6所述的单粒子电化学模型计算装置,其特征在于:所述启动指令由所述云端服务器下发给所述储能系统,或者所述启动指令由所述储能系统生成。
  8. 根据权利要求1所述的单粒子电化学模型计算装置,其特征在于:所述单粒子电化学模型 计算装置嵌入所述储能系统内,并通过所述数据转发模块从所述储能系统的能量管理系统或者电池管理系统获取电池数据。
  9. 一种单粒子电化学模型计算方法,其特征在于:包括:
    配置多个电化学计算模块,用于根据储能系统内电池数据计算储能系统内电池内部性能,并输出计算结果;
    配置一通信模块,与多个电化学计算模块相连,用于向各所述电化学计算模块传入所述储能系统内电池数据并将各所述电化学计算模块输出的计算结果传出;
    配置一数据转发模块,分别与所述通信模块、储能系统以及云端服务器相连,用于从所述储能系统获取电池数据,将所述电池数据转发给所述通信模块,并将所述通信模块传出的计算结果转发至所述云端服务器。
  10. 根据权利要求9所述的单粒子电化学模型计算方法,其特征在于:各所述电化学计算模块分别配置有单粒子电化学模型算法;各所述电化学计算模块配置于FPGA可编程器件中,以根据储能系统内电池数据多路并行计算储能系统内电池内部性能。
PCT/CN2022/112835 2022-04-11 2022-08-16 单粒子电化学模型计算装置及方法 WO2023197488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210375273.9 2022-04-11
CN202210375273.9A CN114994538A (zh) 2022-04-11 2022-04-11 单粒子电化学模型计算装置及方法

Publications (1)

Publication Number Publication Date
WO2023197488A1 true WO2023197488A1 (zh) 2023-10-19

Family

ID=83023979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112835 WO2023197488A1 (zh) 2022-04-11 2022-08-16 单粒子电化学模型计算装置及方法

Country Status (2)

Country Link
CN (1) CN114994538A (zh)
WO (1) WO2023197488A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616418B (zh) * 2022-11-10 2023-06-16 上海玫克生储能科技有限公司 一种基于电化学模型的电池预警方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338695A (zh) * 2016-10-09 2017-01-18 深圳市沃特玛电池有限公司 一种基于粒子群算法的电池模型参数辨识方法
US20180143257A1 (en) * 2016-11-21 2018-05-24 Battelle Energy Alliance, Llc Systems and methods for estimation and prediction of battery health and performance
CN109716150A (zh) * 2016-09-22 2019-05-03 罗伯特·博世有限公司 具有远程参数估计的二次电池管理系统
CN110749827A (zh) * 2019-12-02 2020-02-04 山东大学 基于云平台的智能化电池soc管理系统及方法
CN112186275A (zh) * 2019-07-04 2021-01-05 北京德意新能科技有限公司 一种基于云端的bms体系
CN112510743A (zh) * 2020-12-15 2021-03-16 西安奇点能源技术有限公司 一种储能变流器
CN112732443A (zh) * 2021-01-12 2021-04-30 徐州普罗顿氢能储能产业研究院有限公司 一种基于边缘计算的储能电站状态评估与运行优化系统
CN114089191A (zh) * 2021-11-17 2022-02-25 浙大城市学院 一种复合锂离子电池健康状况估计方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716150A (zh) * 2016-09-22 2019-05-03 罗伯特·博世有限公司 具有远程参数估计的二次电池管理系统
CN106338695A (zh) * 2016-10-09 2017-01-18 深圳市沃特玛电池有限公司 一种基于粒子群算法的电池模型参数辨识方法
US20180143257A1 (en) * 2016-11-21 2018-05-24 Battelle Energy Alliance, Llc Systems and methods for estimation and prediction of battery health and performance
CN112186275A (zh) * 2019-07-04 2021-01-05 北京德意新能科技有限公司 一种基于云端的bms体系
CN110749827A (zh) * 2019-12-02 2020-02-04 山东大学 基于云平台的智能化电池soc管理系统及方法
CN112510743A (zh) * 2020-12-15 2021-03-16 西安奇点能源技术有限公司 一种储能变流器
CN112732443A (zh) * 2021-01-12 2021-04-30 徐州普罗顿氢能储能产业研究院有限公司 一种基于边缘计算的储能电站状态评估与运行优化系统
CN114089191A (zh) * 2021-11-17 2022-02-25 浙大城市学院 一种复合锂离子电池健康状况估计方法

Also Published As

Publication number Publication date
CN114994538A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
EP3224632B1 (en) Wireless network based battery management system
CN110532600B (zh) 一种动力电池热管理系统及方法
Duru et al. Critical insights into fast charging techniques for lithium-ion batteries in electric vehicles
Han et al. Near-fastest battery balancing by cell/module reconfiguration
KR20170056301A (ko) 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
KR20130081683A (ko) 모듈화된 bms 연결 구조를 포함하는 전력 저장 시스템 및 그 제어 방법
WO2023197488A1 (zh) 单粒子电化学模型计算装置及方法
CN107179508B (zh) 基于降阶电化学模型的电池荷电状态估计
CN108923082B (zh) 分布式电池管理系统及电池包
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
JP2015501629A (ja) バッテリセルの電荷を管理するための方法及びシステム
CN104993538A (zh) 一种用于可充电电池组的均衡应用的装置及其方法
CN110970969B (zh) 一种电动船用锂离子动力电池轮休平衡拓扑及控制方法
Lv et al. Influence of equalization on LiFePO4 battery inconsistency
WO2023155220A1 (zh) 一种基于云端数据的储能系统sop优化方法及装置
CN206977099U (zh) 一种电池组主动均衡系统
CN110911765B (zh) 一种电池均衡策略验证平台
CN108461836A (zh) 电动汽车电池管理装置与系统
CN208353021U (zh) 一种智能光伏低速电动车主动均衡电池管理系统
CN111123134A (zh) 一种基于多层级温度监测与内阻测算的船用锂电池健康管理系统
WO2023050377A1 (zh) 荷电状态的确定方法、装置和系统
CN109860738A (zh) 快充快放石墨烯基锂离子电池系统
CN114552736A (zh) 一种锂电工业车辆用均衡系统及工作方法
WO2022160182A1 (zh) 充电的方法和功率转换设备
CN116702671A (zh) 一种准二维电化学模型的计算装置及方法、储能管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937126

Country of ref document: EP

Kind code of ref document: A1