WO2022160182A1 - 充电的方法和功率转换设备 - Google Patents

充电的方法和功率转换设备 Download PDF

Info

Publication number
WO2022160182A1
WO2022160182A1 PCT/CN2021/074163 CN2021074163W WO2022160182A1 WO 2022160182 A1 WO2022160182 A1 WO 2022160182A1 CN 2021074163 W CN2021074163 W CN 2021074163W WO 2022160182 A1 WO2022160182 A1 WO 2022160182A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
pulse
battery
power
conversion device
Prior art date
Application number
PCT/CN2021/074163
Other languages
English (en)
French (fr)
Inventor
熊淑云
但志敏
颜昱
李占良
孙卫平
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/074163 priority Critical patent/WO2022160182A1/zh
Priority to CN202180041873.5A priority patent/CN115699505A/zh
Priority to KR1020217039408A priority patent/KR102681017B1/ko
Priority to JP2021575009A priority patent/JP7357700B2/ja
Priority to EP21827374.6A priority patent/EP4064509A4/en
Publication of WO2022160182A1 publication Critical patent/WO2022160182A1/zh
Priority to US17/981,551 priority patent/US20230070522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to the technical field of power batteries, and in particular, to a charging method and a power conversion device.
  • the embodiments of the present application provide a charging method and a power conversion device, which can effectively ensure the normal charging of an electric vehicle.
  • a charging method for charging a power battery, the method includes: a power conversion device obtains battery state parameters of the power battery; the power conversion device sends charging information to a charging pile, the The charging information includes DC charging parameters calculated from pulse charging parameters; the power conversion device receives the DC current output by the charging pile according to the DC charging parameters; the power conversion device converts the DC charging parameters according to the pulse charging parameters The DC current is converted into a pulse current, and the pulse current is used to charge the power battery; wherein, the battery state parameter is used to determine the pulse charging parameter.
  • the above technical solution connects the power conversion device between the charging pile and the power battery.
  • the power conversion device can convert the DC current output by the charging pile into a pulse current, and then transmit the converted pulse current to the power battery, so that some scenarios can be avoided.
  • the battery state parameter can be the parameter that best reflects the state of the power battery, and the pulse current converted according to the battery state parameter can effectively ensure the normal power supply of the power battery.
  • the method further includes: determining, by the power conversion device, the pulse charging parameter according to the battery state parameter, where the pulse charging parameter includes at least one of the following parameters: an effective value of a pulse current, a pulse current Current peak value, pulse voltage, pulse direction, pulse frequency, pulse interval and pulse duration.
  • the power conversion device can determine the corresponding pulse charging parameters according to the battery state parameters of the power battery obtained by the power conversion device, so that it can adapt to the different charging requirements of the power battery in different situations, and has high flexibility and adaptability.
  • the battery state parameters include at least one of the following parameters: battery temperature, battery voltage, battery capacity, and battery state of charge SOC.
  • the DC charging parameters include output voltage and/or output current of the charging pile.
  • the method further includes: the power conversion device determines to enter a pulse charging mode according to the battery state parameter, where the pulse charging mode is charging using a pulsed voltage or a pulsed current model.
  • the battery state parameter can be the parameter that best reflects the state of the power battery, the above technical solution determines that entering the pulse charging mode according to the battery state parameter can improve the accuracy of entering the pulse charging mode.
  • the battery state parameter includes a battery temperature
  • the power conversion device determines to enter the pulse charging mode according to the battery state parameter, including: if the battery temperature is less than or equal to a temperature threshold, the The power conversion device determines to enter the pulse charging mode.
  • the power conversion device enters the pulse charging mode to convert the DC current output by the charging pile into a pulse current, avoiding the problem that the lithium battery cannot be charged in a low temperature environment.
  • the above technical solution does not need to install an installation device in the battery pack to preheat the power battery, which can greatly shorten the charging time, make the battery temperature rise rapidly, and effectively improve the charging efficiency of the power battery. . Further, since there is no need to set a heating device in the battery pack, the above technical solution can also reduce the weight and cost of the power battery.
  • acquiring, by the power conversion device, the battery state parameter of the power battery includes: the power conversion device receiving the battery state parameter sent by a battery management system BMS of the power battery.
  • a second aspect provides a charging method for charging a power battery, the method is applied to a power conversion device, the power conversion device includes a control unit and a power unit, and the method includes: the control unit obtains battery state parameters of the power battery; the control unit obtains the pulse charging parameters according to the battery state parameters; the control unit transmits the pulse charging parameters to the power unit; the control unit obtains the pulse charging parameters from the power The DC charging parameters calculated by the unit according to the pulse charging parameters; the control unit sends the DC charging parameters to the charging pile, and the DC charging parameters are used for the charging pile to output DC current; the control unit sends the DC charging parameters to the charging pile.
  • the power unit sends a starting output instruction, and the starting output instruction is used to control the power unit to convert the direct current into a pulse current, and the pulse current is used to charge the power battery.
  • the pulse charging parameters include at least one of the following parameters: pulse current rms value, pulse current peak value, pulse voltage, pulse direction, pulse frequency, pulse interval and pulse duration.
  • the battery state parameters include at least one of the following parameters: battery temperature, battery voltage, battery capacity, and battery state of charge SOC.
  • the DC charging parameters include output voltage and/or output current of the charging pile.
  • the method further includes: the control unit determines to enter a pulse charging mode according to the battery state parameter, where the pulse charging mode is a charging mode using a pulsed voltage or a pulsed current .
  • the battery state parameter includes a battery temperature
  • the control unit determines to enter the pulse charging mode according to the battery state parameter, including: if the battery temperature is less than or equal to a temperature threshold, the controlling The unit determines to enter the pulse charging mode.
  • control unit acquiring the battery state parameter of the power battery includes: the control unit receiving the battery state parameter sent by the battery management system BMS of the power battery.
  • a third aspect provides a power conversion device for charging a power battery, the power conversion device comprising: a processing unit for acquiring battery state parameters of the power battery; a communication unit for charging the power battery The charging pile sends charging information, the charging information includes the DC charging parameters calculated from the pulse charging parameters; the communication unit is further configured to receive the DC current output by the charging pile according to the DC charging parameters; the processing unit is further is used for converting the direct current into a pulse current according to the pulse charging parameter, and the pulse current is used to charge the power battery; wherein, the battery state parameter is used to determine the pulse charging parameter.
  • the processing unit is further configured to: determine a pulse charging parameter according to the battery state parameter, where the pulse charging parameter includes at least one of the following parameters: a pulse current rms value, a pulse current peak value, a pulse voltage , pulse direction, pulse frequency, pulse interval and pulse duration.
  • the battery state parameters include at least one of the following parameters: battery temperature, battery voltage, battery capacity, and battery state of charge SOC.
  • the DC charging parameters include output voltage and/or output current of the charging pile.
  • the processing unit is further configured to: determine to enter a pulse charging mode according to the battery state parameter, where the pulse charging mode is a charging mode using a pulsed voltage or a pulsed current.
  • the battery state parameter includes a battery temperature
  • the processing unit is specifically configured to: if the battery temperature is less than or equal to a temperature threshold, determine to enter the pulse charging mode.
  • the communication unit is further configured to: receive the battery state parameter sent by the battery management system BMS of the power battery.
  • a power conversion device for charging a power battery
  • the power conversion device includes: a control unit for acquiring battery state parameters of the power battery; the control unit is further configured to, according to the The battery state parameter is to obtain the pulse charging parameter; the control unit is further configured to transmit the pulse charging parameter to the power unit of the power conversion device; the control unit is further configured to obtain the pulse charging parameter according to the power unit The DC charging parameters calculated by the pulse charging parameters; the control unit is further configured to send the DC charging parameters to the charging pile, and the DC charging parameters are used for the charging pile to output DC current; the control The unit is further configured to send a starting output instruction to the power unit, where the starting output instruction is used to control the power unit to convert the direct current into a pulse current, and the pulse current is used to charge the power battery.
  • the pulse charging parameters include at least one of the following parameters: pulse current rms value, pulse current peak value, pulse voltage, pulse direction, pulse frequency, pulse interval and pulse duration.
  • the battery state parameters include at least one of the following parameters: battery temperature, battery voltage, battery capacity, and battery state of charge SOC.
  • the DC charging parameters include output voltage and/or output current of the charging pile.
  • control unit is further configured to: determine to enter a pulse charging mode according to the battery state parameter, where the pulse charging mode is a charging mode using a pulsed voltage or a pulsed current.
  • the battery state parameter includes a battery temperature
  • the control unit is specifically configured to: if the battery temperature is less than or equal to a temperature threshold, determine to enter the pulse charging mode.
  • control unit is specifically configured to: receive the battery state parameter sent by the battery management system BMS of the power battery.
  • a power conversion device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a power conversion device including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or each of its implementations.
  • a computer-readable storage medium for storing a computer program, and the computer program is used to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a computer-readable storage medium for storing a computer program, and the computer program is used to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • FIG. 1 is a schematic diagram of an application architecture of a power conversion device according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a charging method according to an embodiment of the present application.
  • FIG. 3 is a specific schematic flowchart of the charging method shown in FIG. 2 .
  • FIG. 4 is a schematic diagram of the connection between the power conversion device according to the embodiment of the present application, the charging pile and the BMS.
  • FIG. 5 is a schematic flowchart of a charging method according to another embodiment of the present application.
  • FIG. 6 is a specific schematic flowchart of the charging method shown in FIG. 5 .
  • FIG. 7 is a schematic block diagram of a power conversion device according to an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a power conversion device according to an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of a power conversion device according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • multiple refers to two or more and includes two.
  • multiple groups refers to two or more groups and includes two groups, and “multiple” refers to two or more and includes two slices.
  • a power battery is a battery that provides a power source for an electrical device.
  • the power battery can be a power battery.
  • the power battery can be a lithium-ion battery, a lithium-metal battery, a lead-acid battery, a nickel-separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery, or a sodium-ion battery.
  • the power battery in the embodiment of the present application may be a battery cell/battery cell, or a battery module or a battery pack, which is not specifically limited in the embodiment of the present application.
  • the electrical device may be a vehicle, a ship, or a spacecraft, etc., which is not limited in this embodiment of the present application.
  • the battery management system (BMS) of the power battery is a control system to protect the safe use of the power battery, and implements functions such as charge and discharge management, high voltage control, battery protection, battery data collection, and battery status evaluation.
  • the BMS can be integrated with the power battery and provided in the same device/device, or the BMS can also be provided outside the power battery as an independent device/device.
  • the charging pile also known as the charger, is a device for charging the power battery.
  • the charging pile can output charging power according to the charging requirements of the BMS to charge the power battery.
  • the charging pile can output voltage and current according to the demanded voltage and demanded current sent by the BMS.
  • the range of voltage and current that the charging pile can output cannot match the power battery.
  • the minimum voltage or current that the charging pile can output may also cause lithium precipitation during the charging process, making it impossible to charge the power battery normally.
  • power conversion may also be required between the charging pile and the power battery, such as: voltage change, current change, power state change, current, voltage, power timing change, etc.
  • an embodiment of the present invention provides a power conversion device, which can perform power conversion between a charging pile and a power battery.
  • the power conversion device converts the power type output by the charging pile to the power type required by the power battery.
  • the power conversion device can convert the DC power output by the charging pile into pulse power, or change the voltage value, the current value, or the timing of changing the voltage and current, etc., so as to effectively ensure the normal charging of the power battery.
  • FIG. 1 shows a schematic diagram of an application architecture of a power conversion device according to an embodiment of the present application.
  • the application architecture includes a power conversion device 10 , a charging pile 20 , and an electrical device 30 .
  • the electrical device 30 may be the one shown in FIG. 1 . electric car. It can be seen that the power conversion device 10 is connected between the charging pile 20 and the electrical device 30 for power conversion, that is, the power conversion device 10 is connected to the charging pile 20 and the electrical device 30 respectively, and the charging pile 20 is not directly connected to the electrical device 30 .
  • Device 30 is connected.
  • the embodiments of the present application do not specifically limit the name of the power conversion device, that is, the power conversion device may also be referred to by other names, for example, the power conversion device may be referred to as a pulse charging heating device.
  • FIG. 2 shows a schematic flowchart of a charging method 100 according to an embodiment of the present application. It should be understood that the steps or operations in FIG. 2 are only examples, and other operations or variations of various operations in FIG. 2 may also be performed in this embodiment of the present application. Furthermore, the various steps in FIG. 2 may be performed in a different order than those presented in FIG. 2, respectively, and it is possible that not all operations in FIG. 2 are performed.
  • the method 100 shown in FIG. 2 may be applied to a power conversion device, such as the power conversion device 10 in FIG. 1 .
  • the method 100 will be described below by taking the electrical device as an electric vehicle as an example, but it should be understood that the implementation of the present application is not limited to this.
  • Method 100 may include some or all of the following steps.
  • step 110 the power conversion device acquires battery state parameters of the power battery.
  • the battery state parameters may include, but are not limited to, at least one of the following parameters of the power battery: battery temperature, battery voltage, battery capacity, and battery state of charge (SOC).
  • the BMS of the power battery can send the battery state parameter to the power conversion device, so that the power conversion device can obtain the battery state parameter.
  • the BMS may store the battery state parameters to the cloud, and the power conversion device may obtain the battery state parameters from the cloud.
  • the battery state parameter may be used to determine the pulse charging parameter.
  • the pulse charging parameters may include at least one of the following parameters: the effective value of the pulse current, the peak value of the pulse current, the pulse voltage, the pulse direction, the pulse frequency, the pulse interval, and the pulse duration.
  • the power conversion device may determine the battery state parameter on its own.
  • a power conversion device can measure battery state parameters by itself in a certain way.
  • the power conversion device may determine the pulsed charging parameter based on the battery state parameter.
  • the power conversion device may determine the pulse charging parameter according to the acquired battery state parameter and the corresponding relationship between the battery state parameter and the pulse charging parameter.
  • the corresponding relationship between the battery state parameter and the pulse charging parameter may be preconfigured on the power conversion device.
  • the corresponding relationship between the battery state parameter and the pulse charging parameter may be preconfigured on the power conversion device in the form of a table, so that the power conversion device may determine the pulse charging parameter by looking up the table internally.
  • the corresponding relationship between battery state parameters and pulse charging demand parameters may be as shown in Table 1.
  • the first row is SOC
  • the first column is battery temperature
  • A, B, and C are pulse current demand values.
  • the BMS can determine the pulse current demand value according to the SOC, the battery temperature and Table 1. If the battery temperature is -10°C and the SOC is 30%, the BMS can determine the pulse current demand value as B.
  • Table 1 is only an example, the SOC is not necessarily 0-100%, and the gradient values of battery temperature and SOC are not necessarily as shown in Table 1. It should also be understood that the corresponding relationship between the battery state parameter and the pulse charging demand parameter may be a linear relationship or a nonlinear relationship.
  • the corresponding relationship between the battery state parameter and the pulse charging parameter may also be obtained by the power conversion device from other devices.
  • the power conversion device can determine the corresponding pulse charging parameters according to the battery state parameters of the power battery obtained by the power conversion device, so that it can adapt to the different charging requirements of the power battery under different conditions, and has high flexibility and adaptability.
  • the power conversion device may first enter the pulse charging mode, and then judge whether the state of the power battery satisfies the pulse charging condition according to the obtained battery state parameters. If the battery state parameter satisfies the pulse charging condition, the pulse charging device executes step 120; if the battery state parameter does not satisfy the pulse charging condition, the pulse charging device switches from the pulse charging mode to the DC charging mode.
  • the pulse charging mode is a charging mode using a pulsed voltage or a pulsed current
  • the DC charging mode is a charging mode using a constant voltage or a constant current
  • the power conversion device may determine that the power battery state meets the pulse charging condition, and execute step 120.
  • the battery state parameter includes the SOC
  • the power conversion device may determine that the power battery state meets the pulse charging condition, and step 120 is executed.
  • the battery state parameter includes battery temperature and SOC
  • the power conversion device may determine that the power battery state meets the pulse charging condition, and step 120 is executed.
  • the power batteries of some electric vehicles on the market are equipped with thermal management systems.
  • the thermal management system can convert part of the electrical energy into thermal energy, thereby heating the entire battery pack.
  • This preheating method can keep the power battery at a relatively suitable temperature, and then charge the power battery on this basis.
  • this pre-heating method is to increase the temperature of the power battery before charging it, and the space for increasing the temperature of the power battery is limited, which makes it impossible to fundamentally solve the problem of the electric vehicle charging for too long in a low temperature environment. .
  • configuring the thermal management system in the power battery will not only increase the weight of the power battery but also increase the cost of the power battery.
  • the power conversion device in the pulse charging mode, that is, the DC current output by the charging pile can be converted into a pulse current, so that the normal charging of the power battery can be realized.
  • the embodiment of the present application does not need to set up an installation device in the battery pack to preheat the power battery, so that the charging time can be greatly shortened, the battery temperature can be rapidly increased, and the charging efficiency of the power battery can be improved. Effective promotion. Further, since there is no need to set a heating device in the battery pack, the above technical solution can also reduce the weight and cost of the power battery.
  • the power conversion device may determine that the power battery state does not meet the pulse charging condition, and the power conversion device may switch from the pulse charging mode to the DC charging mode. For example, the power conversion device can exit the working mode, and the charging pile directly outputs DC current to the power battery; or, the power conversion device can forward the DC current output by the charging pile to the power battery.
  • the power conversion device may first enter the DC charging mode, and then judge whether the state of the power battery satisfies the condition of pulse charging according to the obtained battery state parameter. If the battery state parameter meets the pulse charging condition, the pulse charging device switches from the DC charging mode to the pulse charging mode; if the battery state parameter does not meet the pulse charging condition, the pulse charging device continues to maintain the DC charging mode.
  • the power conversion device may determine whether to enter the pulse charging mode or the DC charging mode according to the battery state parameter.
  • step 120 the power conversion device sends charging information to the charging pile (or referred to as a charger), where the charging information includes the DC charging parameters calculated from the pulse charging parameters.
  • the power conversion device can determine the DC charging parameters corresponding to the pulse charging parameters according to the pulse charging parameters.
  • the DC charging parameters may include at least one of the following parameters: the output voltage output by the control charging pile, the output current output by the control charging pile, and the charging mode.
  • the charging mode may be a constant current mode or a constant voltage mode.
  • the power conversion device may perform calculations based on the pulse charging parameters to obtain the DC charging parameters.
  • the power conversion device may determine the DC charging parameters corresponding to the pulse charging parameters according to the corresponding relationship between the pulse charging parameters and the DC charging parameters and according to the pulse charging parameters.
  • the power conversion device can send charging information to the charging pile, where the charging information includes DC charging parameters, and the charging information can be used as the charging requirement of the BMS.
  • the power conversion device may send a first message to the charging pile, and the content included in the first message may be as shown in Table 2.
  • the method 100 may further include: the power conversion device sends an output permitting instruction to the charging pile, where the output permitting instruction is used to instruct the charging pile to output a direct current.
  • the power conversion device may send an output permitting instruction to the charging pile after step 120, or the power conversion device may send an output permitting instruction to the charging pile while performing step 120, that is, the power conversion device may simultaneously send charging information to the charging pile and allow output instructions.
  • step 130 the charging pile outputs the DC current to the power conversion equipment, and correspondingly, the power conversion equipment can receive the DC current output by the charging pile.
  • the charging pile After receiving the charging information, the charging pile can output DC current to the power conversion device based on the DC charging parameters.
  • step 140 the power conversion device converts the DC current into a pulse current according to the pulse charging parameter, and the pulse current is used to charge the power battery.
  • pulse current in the embodiments of the present application may also be referred to as a pulse current waveform or a pulse charging waveform.
  • the method 100 may further include: during the pulse charging process, the power conversion device determines in real time whether the state of the power battery satisfies the pulse charging condition. If the current state of the power battery satisfies the pulse charging conditions, the power conversion device continues to maintain the pulse charging mode; if the current state of the power battery does not meet the pulse charging conditions, the power conversion device exits the pulse charging mode.
  • the power conversion device may determine whether the state of the power battery satisfies the condition of pulse charging every preset time period. For example, the power conversion device can determine whether the state of the power battery satisfies the pulse charging condition every 1s.
  • the preset time period may be negotiated between the power conversion device and the BMS.
  • the preset time period may be determined by the power conversion device itself.
  • the power conversion device may determine whether the state of the power battery satisfies the pulse charging condition when the battery state parameter is obtained. That is to say, each time the power conversion device obtains the battery state parameters, it determines whether the state of the primary power battery satisfies the condition of pulse charging.
  • the method 100 may further include: the power conversion device adjusts the pulse charging parameters in real time.
  • the BMS can send the battery state parameter at the current moment to the power conversion device in real time. For example, if the battery state of the power battery changes, the BMS sends the battery state parameter at the current moment to the power conversion device. Alternatively, the BMS may periodically send the battery state parameter of the current moment to the power conversion device. After the power conversion device receives the battery state parameter at the current moment, the pulse charging parameter may be determined based on the battery state parameter at the current moment. In this way, the determined pulse charging parameter corresponds to the current state of the power battery, so that the optimal pulse current suitable for charging the power battery can be output.
  • FIG. 3 is a specific flowchart of the method 100 . It should be understood that FIG. 3 is only for helping those skilled in the art to better understand the embodiments of the present application, rather than limiting the scope of the embodiments of the present application.
  • the BMS sends battery status parameters to the power conversion device.
  • the power conversion device determines whether to enter a pulse charging mode.
  • the power conversion device compares the battery temperature to a temperature threshold, assuming a temperature threshold of 5°C. If the battery temperature is less than or equal to 5°C, the power conversion device determines to enter the pulse charging mode, and step 230 is executed; if the battery temperature is greater than 5°C, the power conversion device enters the DC charging mode.
  • the power conversion device determines pulse charging parameters based on the battery state parameters.
  • the power conversion device determines DC charging parameters based on the pulsed charging parameters.
  • the power conversion device sends charging information to the charging pile, the charging information including DC charging parameters.
  • the power conversion device sends an output permission instruction to the charging pile, where the output permission instruction is used to instruct the charging pile to output a direct current.
  • the charging pile outputs a DC current to the power conversion device according to the DC charging parameters.
  • the power conversion device converts the DC current into a pulse current according to the pulse charging parameters.
  • the power conversion device outputs a pulsed current to the power battery to charge the power battery.
  • the power conversion device determines whether the current state of the power battery satisfies the pulse charging condition according to the battery state parameter at the current time.
  • the power conversion device executes step 2110; if the current state of the power battery meets the pulse charging condition, the power conversion device executes step 230, according to the battery state parameter at the current time , adjust the pulse charging parameters.
  • the power conversion device exits the pulse charging mode.
  • a power conversion device is connected between the charging pile and the power battery.
  • the power conversion device can convert the DC current output by the charging pile into a pulse current, and then transmit the converted pulse current to the power battery, so as to avoid some problems.
  • the range of voltage and current output by the charging pile cannot be matched with the power battery, thus ensuring the normal charging of the power battery.
  • the battery state parameter can be the parameter that best reflects the state of the power battery, and the pulse current converted according to the battery state parameter can effectively ensure the normal power supply of the power battery.
  • the power conversion device may include a control unit and a power unit.
  • the solid line in FIG. 4 represents the power line, and the dashed line represents the communication line.
  • the control unit is responsible for detecting the state of the charging pile and the BMS during the charging process, and connecting the charging pile and the BMS through the communication line respectively to exchange information with the charging pile and the BMS, respectively.
  • the control unit is also connected with the power unit through a communication line to exchange information with the power unit and control the power unit to perform power conversion.
  • the communication line may be a Controller Area Network (CAN) communication line or a daisy chain (daisy chain) communication line.
  • CAN Controller Area Network
  • daisy chain daisy chain
  • the power unit is responsible for converting the power type output by the charging pile to the power type required by the power battery according to the instructions of the control unit.
  • the power unit and the control unit are connected through a communication line for information exchange.
  • a communication protocol can be configured between the control unit and the power unit, for example, to define the syntax, semantics, and timing of communication, so as to ensure normal interaction between the control unit and the power unit.
  • Control policies can be configured on the control unit.
  • the control unit determines the state of the current charging process by analyzing the charging messages of the charging pile and the BMS, so as to control the power unit to perform corresponding operations.
  • FIG. 5 shows a schematic flowchart of a charging method 300 according to another embodiment of the present application.
  • the method 300 shown in FIG. 5 may be applied to the power conversion device shown in FIG. 3 .
  • Method 300 may include some or all of the following steps.
  • step 310 the control unit acquires battery state parameters of the power battery.
  • step 320 the control unit acquires pulse charging parameters according to the battery state parameters.
  • step 330 the control unit transmits pulsed charging parameters to the power unit.
  • control unit can transmit pulsed charging parameters to the power unit via the CAN communication line.
  • control unit may send a second packet to the power unit, and the content included in the second packet may be as shown in Table 3.
  • step 340 the power unit calculates the DC charging parameters according to the pulse charging parameters.
  • step 350 the control unit acquires DC charging parameters.
  • the power unit may send the DC charging parameters to the control unit, so that the control unit may acquire the DC charging parameters.
  • the power unit can send the DC charging parameters to the control unit by means of the main CAN communication.
  • the DC charging parameters may be sent to the cloud, and the control unit may obtain the DC charging parameters from the cloud.
  • step 350 the control unit sends DC charging parameters to the charging pile, and the DC charging parameters are used to instruct the charging pile to output a DC current.
  • step 360 the control unit sends a start output command to the power unit, where the start output command is used to control the power unit to convert the direct current into a pulse current, and the pulse current is used to charge the power battery.
  • step 350 and step 360 may be performed simultaneously, or step 360 may be performed after step 350 .
  • the power unit can convert the DC current output by the charging pile into a pulse current according to the pulse charging parameters to charge the power battery.
  • the method 300 may further include: if the battery state parameter reaches the parameter threshold, eg, the battery temperature is 10°C, the control unit may send an exit instruction to the power unit, where the exit instruction is used to instruct the power unit to exit the pulse charging mode.
  • the parameter threshold eg, the battery temperature is 10°C
  • step 410 the BMS sends battery status parameters to the control unit.
  • step 420 the control unit determines whether to enter the pulse charging mode.
  • control unit compares the battery temperature to a temperature threshold, assuming a temperature threshold of 5°C. If the battery temperature is less than or equal to 5°C, the control unit determines to enter the pulse charging mode; if the battery temperature is greater than 5°C, the power control unit enters the DC charging mode.
  • step 430 the control unit determines pulse charging parameters according to the battery state parameters.
  • control unit can determine the pulse charging parameters by means of an internal look-up table.
  • step 440 the control unit sends pulsed charging parameters to the power unit.
  • step 450 the power unit calculates the DC charging parameters according to the pulse charging parameters.
  • step 460 the power unit sends the DC charging parameters to the control unit.
  • step 470 the control unit forwards the received DC charging parameters to the charging pile.
  • step 480 the control unit sends an output permission instruction to the charging pile, where the output permission instruction is used to instruct the charging pile to output a direct current.
  • step 480 may be performed after step 470 or may be performed simultaneously with step 470 .
  • step 490 the control unit sends a start output instruction to the power unit, where the start output instruction is used to control the power unit to convert the direct current into a pulse current.
  • step 490 may be performed after step 470 or may be performed simultaneously with step 470 .
  • step 4100 the charging pile outputs a DC current to the power unit according to the DC charging parameters.
  • the charging pile After the charging pile receives the allowable output command, the charging pile can output DC current to the power unit according to the DC charging parameters.
  • step 4120 after receiving the DC current, the power unit converts the DC current into a pulse current according to the pulse charging parameters.
  • step 4120 the power unit outputs a pulse current to the power battery to charge the power battery.
  • step 4130 during the pulse charging process, the control unit determines whether the current state of the power battery satisfies the pulse charging conditions according to the battery state parameters at the current time.
  • step 4140 If the current state of the power battery does not meet the conditions for pulse charging, the control unit executes step 4140; if the current state of the power battery meets the conditions for pulse charging, the control unit executes step 430, that is, according to the battery state parameters at the current time, Adjust pulse charging parameters.
  • control unit exits the pulse charging mode.
  • the size of the sequence numbers of the above-mentioned processes does not imply the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present application .
  • the charging method of the embodiment of the present application is described in detail above, and the power conversion device of the embodiment of the present application will be described below. It should be understood that the power conversion device in the embodiment of the present application can execute the charging method in the embodiment of the present application, and has the function of executing the corresponding method.
  • FIG. 7 shows a schematic block diagram of a power conversion device 500 according to an embodiment of the present application.
  • the power conversion device 500 is used for charging the power battery.
  • the power conversion device 500 may include:
  • the processing unit 510 is configured to acquire battery state parameters of the power battery.
  • the communication unit 520 is configured to send charging information to the charging pile, where the charging information includes DC charging parameters calculated from pulse charging parameters.
  • the communication unit 520 is further configured to receive the DC current output by the charging pile according to the DC charging parameter.
  • the processing unit 510 is further configured to convert the DC current into a pulse current according to the pulse charging parameter, and the pulse current is used to charge the power battery.
  • the battery state parameter is used to determine the pulse charging parameter.
  • the processing unit 510 is further configured to: determine a pulse charging parameter according to the battery state parameter, where the pulse charging parameter includes at least one of the following parameters: a pulse current effective value, a pulse current Peak value, pulse voltage, pulse direction, pulse frequency, pulse interval and pulse duration.
  • the battery state parameter includes at least one of the following parameters: battery temperature, battery voltage, battery capacity, and battery state of charge SOC.
  • the DC charging parameter includes an output voltage and/or an output current of the charging pile.
  • the processing unit 510 is further configured to: according to the battery state parameter, determine to enter a pulse charging mode, where the pulse charging mode adopts a pulsed voltage or a pulsed current. charging mode.
  • the battery state parameter includes a battery temperature
  • the processing unit 510 is specifically configured to: if the battery temperature is less than or equal to a temperature threshold, determine to enter the pulse charging mode.
  • the communication unit 520 is further configured to: receive the battery state parameter sent by the battery management system BMS of the power battery.
  • the power conversion device 500 can implement the corresponding operations in the method 100, and for brevity, details are not repeated here.
  • FIG. 8 shows a schematic block diagram of a power conversion device 600 according to an embodiment of the present application.
  • the power conversion device 600 is used to charge the power battery.
  • the power conversion device 600 may include:
  • the control unit 610 is configured to acquire battery state parameters of the power battery.
  • the control unit 610 is further configured to acquire pulse charging parameters according to the battery state parameters.
  • the control unit 610 is further configured to transmit the pulse charging parameter to the power unit 620 of the power conversion device 600 .
  • the control unit 610 is further configured to acquire the DC charging parameter calculated by the power unit 620 according to the pulse charging parameter.
  • the control unit 610 is further configured to send the DC charging parameter to the charging pile, where the DC charging parameter is used for the charging pile to output a DC current.
  • the control unit 610 is further configured to send a start output instruction to the power unit 620, where the start output instruction is used to control the power unit 620 to convert the direct current into a pulse current, and the pulse current is used for The power battery is charged.
  • the pulse charging parameters include at least one of the following parameters: pulse current RMS, pulse current peak value, pulse voltage, pulse direction, pulse frequency, pulse interval, and pulse duration.
  • the battery state parameter includes at least one of the following parameters: battery temperature, battery voltage, battery capacity, and battery state of charge SOC.
  • the DC charging parameter includes an output voltage and/or an output current of the charging pile.
  • control unit 610 is further configured to: determine, according to the battery state parameter, to enter a pulse charging mode, where the pulse charging mode adopts a pulsed voltage or a pulsed current. charging mode.
  • the battery state parameter includes a battery temperature
  • the control unit 610 is specifically configured to: if the battery temperature is less than or equal to a temperature threshold, determine to enter the pulse charging mode.
  • control unit 610 is specifically configured to: receive the battery state parameter sent by the battery management system BMS of the power battery.
  • the power conversion device 600 can implement the corresponding operations in the method 300, and for brevity, details are not repeated here.
  • FIG. 9 shows a schematic block diagram of a power conversion device 700 according to another embodiment of the present application.
  • the power conversion device 700 includes a memory 710 and a processor 720 .
  • the memory 710 is coupled to the processor 720, the memory 710 is used for storing program instructions, and the processor 720 is used for calling the program instructions stored in the memory 710 to execute the methods of the foregoing various embodiments of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program, where the computer program is used to execute the methods of the foregoing various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用于为动力电池充电的方法,包括:功率转换设备(10)获取动力电池的电池状态参数;功率转换设备(10)向充电桩(20)发送充电信息,充电信息包括由脉冲充电参数计算得到的直流充电参数;功率转换设备(10)接收充电桩(20)根据直流充电参数输出的直流电流;功率转换设备(10)根据脉冲充电参数将直流电流转换为脉冲电流,脉冲电流用于为动力电池充电;其中,电池状态参数用于确定脉冲充电参数;还公开了一种用于为动力电池充电的功率转换设备(10)。

Description

充电的方法和功率转换设备 技术领域
本申请涉及动力电池技术领域,特别是涉及一种充电的方法和功率转换设备。
背景技术
随着现代社会能源短缺和环境污染问题的加剧,电动汽车作为新能源汽车一经推出便受到了各界的广泛关注。但其充电问题一直是限制其发展的主要因素。
因此,如何保证电动汽车的正常充电,是一项亟待解决的问题。
发明内容
本申请实施例提供一种充电的方法和功率转换设备,能够有效保证电动汽车的正常充电。
第一方面,提供了一种充电的方法,用于为动力电池充电,所述方法包括:功率转换设备获取所述动力电池的电池状态参数;所述功率转换设备向充电桩发送充电信息,所述充电信息包括由脉冲充电参数计算得到的直流充电参数;所述功率转换设备接收所述充电桩根据所述直流充电参数输出的直流电流;所述功率转换设备根据所述脉冲充电参数将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电;其中,所述电池状态参数用于确定所述脉冲充电参数。
上述技术方案将功率转换设备连接于充电桩和动力电池之间,该功率转换设备可以将充电桩输出的直流电流转换为脉冲电流,再将转换的脉冲电流传输给动力电池,如此可以避免一些场景下充电桩输出的电压和电流的范围无法与动力电池匹配的问题,从而保证了动力电池的正常充电。此外,电池状态参数可以是最能体现动力电池状态的参数,根据电池状态参数转换的脉冲电流可以有效保证动力电池的正常供电。
在一些可能的实施例中,所述方法还包括:所述功率转换设备根据所述电池状态参数,确定所述脉冲充电参数,所述脉冲充电参数包括以下至少一个参数:脉 冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
上述技术方案,功率转换设备可根据其获取的动力电池的电池状态参数,确定对应的脉冲充电参数,从而可以适应动力电池在不同情况下不同的充电需求,具有较高的灵活性和适应性。
在一些可能的实施例中,所述电池状态参数包括以下至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
在一些可能的实施例中,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
在一些可能的实施例中,所述方法还包括:所述功率转换设备根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
由于电池状态参数可以是最能体现动力电池状态的参数,因此上述技术方案根据电池状态参数确定进入脉冲充电模式可以提高进入脉冲充电模式的准确率。
在一些可能的实施例中,所述电池状态参数包括电池温度,所述功率转换设备根据所述电池状态参数,确定进入脉冲充电模式,包括:若所述电池温度小于或等于温度阈值,所述功率转换设备确定进入所述脉冲充电模式。
在低温环境下,功率转换设备进入脉冲充电模式以将充电桩输出的直流电流转换为脉冲电流,避免了锂电池低温环境无法充电的问题。与传统方式相比,上述技术方案不用在电池包内设置加装装置来进行动力电池预先加热的,从而可以大大缩短充电时间,使得电池温度可以迅速升高,动力电池的充电效率得到了有效提升。进一步地,由于不用在电池包内设置加热装置,从而上述技术方案还可以减少动力电池的重量和成本。
在一些可能的实施例中,所述功率转换设备获取所述动力电池的电池状态参数,包括:所述功率转换设备接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
第二方面,提供了一种充电的方法,用于为动力电池充电,所述方法应用于功率转换设备,所述功率转换设备包括控制单元和功率单元,所述方法包括:所述控制单元获取所述动力电池的电池状态参数;所述控制单元根据所述电池状态参数, 获取脉冲充电参数;所述控制单元向所述功率单元传输所述脉冲充电参数;所述控制单元获取由所述功率单元根据所述脉冲充电参数计算得到的直流充电参数;所述控制单元向所述充电桩发送所述直流充电参数,所述直流充电参数用于所述充电桩输出直流电流;所述控制单元向所述功率单元发送启动输出指令,所述启动输出指令用于控制所述功率单元将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电。
在一些可能的实施例中,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时。
在一些可能的实施例中,所述电池状态参数包括以下至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
在一些可能的实施例中,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
在一些可能的实施例中,所述方法还包括:所述控制单元根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
在一些可能的实施例中,所述电池状态参数包括电池温度,所述控制单元根据所述电池状态参数,确定进入脉冲充电模式,包括:若所述电池温度小于或等于温度阈值,所述控制单元确定进入所述脉冲充电模式。
在一些可能的实施例中,所述控制单元获取所述动力电池的电池状态参数,包括:所述控制单元接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
第三方面,提供了一种功率转换设备,用于为动力电池充电,所述功率转换设备包括:处理单元,用于获取所述动力电池的电池状态参数;通信单元,用于向所述充电桩发送充电信息,所述充电信息包括由脉冲充电参数计算得到的直流充电参数;所述通信单元还用于,接收所述充电桩根据所述直流充电参数输出的直流电流;所述处理单元还用于,根据所述脉冲充电参数将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电;其中,所述电池状态参数用于确定所述脉冲充电参数。
在一些可能的实施例中,所述处理单元还用于:根据所述电池状态参数,确定脉冲充电参数,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
在一些可能的实施例中,所述电池状态参数包括以下参数中的至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
在一些可能的实施例中,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
在一些可能的实施例中,所述处理单元还用于:根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
在一些可能的实施例中,所述电池状态参数包括电池温度,所述处理单元具体用于:若所述电池温度小于或等于温度阈值,确定进入所述脉冲充电模式。
在一些可能的实施例中,所述通信单元还用于:接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
第四方面,提供了一种功率转换设备,用于为动力电池充电,所述功率转换设备包括:控制单元,用于获取所述动力电池的电池状态参数;所述控制单元还用于,根据所述电池状态参数,获取脉冲充电参数;所述控制单元还用于,向所述功率转换设备的功率单元传输所述脉冲充电参数;所述控制单元还用于,获取由所述功率单元根据所述脉冲充电参数计算得到的直流充电参数;所述控制单元还用于,向所述充电桩发送所述直流充电参数,所述直流充电参数用于所述充电桩输出直流电流;所述控制单元还用于,向所述功率单元发送启动输出指令,所述启动输出指令用于控制所述功率单元将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电。
在一些可能的实施例中,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
在一些可能的实施例中,所述电池状态参数包括以下参数中的至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
在一些可能的实施例中,所述直流充电参数包括所述充电桩的输出电压和/ 或输出电流。
在一些可能的实施例中,所述控制单元还用于:根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
在一些可能的实施例中,所述电池状态参数包括电池温度,所述控制单元具体用于:若所述电池温度小于或等于温度阈值,确定进入所述脉冲充电模式。
在一些可能的实施例中,所述控制单元具体用于:接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
第五方面,提供了一种功率转换设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种功率转换设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序用于执行上述第一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序用于执行上述第二方面或其各实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例的功率转换设备的应用架构的示意性图。
图2是本申请实施例的充电的方法的示意性流程图。
图3是图2所示的充电的方法的一个具体示意性流程图。
图4是本申请实施例的功率转换装置与充电桩和BMS连接的示意性图。
图5是本申请另一个实施例的充电的方法的示意性流程图。
图6是图5所示的充电的方法的一个具体示意性流程图。
图7是本申请实施例的功率转换设备的示意性框图。
图8是本申请实施例的功率转换设备的另一种示意性框图。
图9是本申请实施例的功率转换设备的再一种示意性框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在 B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上且包括两个,同理,“多组”指的是两组以上且包括两组,“多片”指的是两片以上且包括两片。
动力电池为给用电装置提供动力来源的电池。可选地,动力电池可以为动力蓄电池。从电池的种类而言,该动力电池可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中的动力电池可以是电芯/电池单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。可选地,用电装置可以为车辆、船舶或航天器等,本申请实施例对此并不限定。动力电池的电池管理系统(Battery Management System,BMS)为保护动力电池使用安全的控制系统,实施充放电管理、高压控制、保护电池、采集电池数据、评估电池状态等功能。其中,BMS可以与动力电池集成设置于同一设备/装置中,或者,BMS也可作为独立的设备/装置设置于动力电池之外。
充电桩,也称为充电机,为给动力电池充电的装置。充电桩可以按照BMS的充电需求输出充电功率,以给动力电池充电。例如,充电桩可以按照BMS发送的需求电压和需求电流输出电压和电流。
然而,在一些特殊场景下,充电桩可输出的电压和电流的范围无法与动力电池匹配。例如,在低温场景下,充电桩可输出的最小电压或电流也可能会导致充电过程中发生析锂,而无法给动力电池正常充电。另外,在某些情况下,充电桩与动力电池之间也可能需要进行功率的转换,例如:电压变化,电流变化,功率状态变化,电流、电压、功率时序变化等。
针对上述情况,本发明实施例提供了一种功率转换设备,功率转换设备可以在充电桩和动力电池之间进行功率转换。当存在充电桩与动力电池之间有需要进行功率转换时,功率转换设备将充电桩输出的功率类型转换为动力电池需要的功率类型。例如,该功率转换设备可以把充电桩输出的直流功率转换为脉冲功率,或者,变化电压值、变化电流值、或变化电压和电流的时序等,从而可以有效保证动力电池的正常充电。
图1示出了本申请实施例的功率转换设备的应用架构的示意图,该应用架构包括功率转换设备10、充电桩20以及用电装置30,例如,用电装置30可以为图1 所示的电动汽车。可以看出,功率转换设备10连接于充电桩20和用电装置30之间以进行功率转换,即功率转换设备10分别与充电桩20和用电装置30连接,充电桩20不直接与用电装置30连接。
应理解,本申请实施例对功率转换设备的名称不作具体限定,也就是说,功率转换设备也可以称为其他名称,例如,功率转换设备可以称为脉冲充电加热设备。
图2示出了本申请一个实施例的充电的方法100的示意性流程图。应理解,图2中的步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图2的各种操作的变形。此外,图2中的各个步骤可以分别按照与图2所呈现的不同顺序来执行,并且有可能并非要执行图2中的全部操作。
图2所示的方法100可以应用于功率转换设备,如图1中的功率转换设备10。以下将以用电装置为电动汽车为例,对方法100进行说明,但应理解,本申请实施并不限于此。方法100可以包括以下步骤中的部分或全部。
在步骤110中,功率转换设备获取动力电池的电池状态参数。
其中,电池状态参数可以包括但不限于动力电池的以下至少一个参数:电池温度、电池电压、电池容量以及电池的荷电状态(State of Charge,SOC)。
作为一种示例,动力电池的BMS可以向功率转换设备发送电池状态参数,从而功率转换设备可以获取到电池状态参数。
作为另一种示例,BMS可以将电池状态参数存储到云端,功率转换设备可以从云端获取到电池状态参数。
可选地,在本申请实施例中,电池状态参数可以用于确定脉冲充电参数。脉冲充电参数可以包括以下参数中的至少一种:脉冲电流的有效值、脉冲电流的峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇以及脉冲持续时长。
作为另一种示例,功率转换设备可以自行确定电池状态参数。例如,功率转换设备可以通过一定的方式自行测量出电池状态参数。
在一种实现方式中,功率转换设备可以根据电池状态参数确定脉冲充电参数。示例性地,功率转换设备可以根据获取到的电池状态参数以及根据电池状态参数和脉冲充电参数的对应关系,确定脉冲充电参数。
可选地,电池状态参数和脉冲充电参数的对应关系可以是预配置在功率转 换设备上的。例如,电池状态参数和脉冲充电参数的对应关系可以是以表格的形式预配置在功率转换设备上的,这样,功率转换设备可以通过内部查表的方式确定脉冲充电参数。举例说明,电池状态参数和脉冲充电需求参数的对应关系可以如表1所示,表1中第一行为SOC,第一列为电池温度,A、B和C为脉冲电流需求值。BMS可以根据SOC、电池温度和表1确定脉冲电流需求值,如若电池温度为-10℃,SOC为30%,则BMS可以确定脉冲电流需求值为B。
表1
  0% 10% 20% 30% 40% 50% 60% 100%
-20℃ A A A A A A      
-10℃ A A B B C C      
0℃ B B B B          
10℃ B B B B          
20℃ C C C C          
30℃ C C C C          
                 
应理解,表1仅为示例,SOC不一定为0-100%,电池温度和SOC的梯度值也不一定如表1所示。还应理解,电池状态参数和脉冲充电需求参数的对应关系可以是线性关系也可以是非线性关系。
可选地,电池状态参数和脉冲充电参数的对应关系还可以是功率转换设备从其他设备处获取的。
上述技术方案,功率转换设备可根据其获取的动力电池的电池状态参数,确定对应的脉冲充电参数,从而可以适应动力电池在不同情况下不同的充电需求,具有较高的灵活性和适应性。
在本申请实施例中,作为一种可能的实现方式,功率转换设备可以先进入脉冲充电模式,再根据获取到的电池状态参数判断动力电池的状态是否满足脉冲充电的条件。若电池状态参数满足脉冲充电的条件,则脉冲充电设备执行步骤120;若电池状态参数不满足脉冲充电的条件,则脉冲充电设备从脉冲充电模式切换至直流充电模式。
其中,脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式,直 流充电模式为采用恒定的电压或恒定的电流的充电模式。
举例说明,当电池状态参数包括电池温度时,若电池温度小于或等于温度阈值(示例性地,温度阈值为5℃),功率转换设备可以确定动力电池状态满足脉冲充电条件,执行步骤120。或者,当电池状态参数包括SOC时,若SOC小于或等于SOC阈值,功率转换设备可以确定动力电池状态满足脉冲充电条件,执行步骤120。再或者,当电池状态参数包括电池温度和SOC时,若电池温度小于和/或等于温度阈值且SOC小于或等于SOC阈值,功率转换设备可以确定动力电池状态满足脉冲充电条件,执行步骤120。
为了解决电动汽车低温环境下充电的问题,目前市面上部分电动汽车的动力电池都配有热管理系统。在动力电池的温度过低时,热管理系统可以将一部分电能转化为热能,从而为整个电池组加热。这种预加热的方式可以使动力电池处于一个比较适宜的温度,在此基础上再对动力电池进行充电。然而,这种预加热的方式是将动力电池的温度提高后再对其进行充电,将动力电池的温度提高的空间有限,使得无法从根本上解决电动汽车在低温环境下充电时间过长的问题。此外,在动力电池中配置热管理系统,不仅会增加动力电池的重量而且还会增加动力电池的成本。
上述技术方案,在低温环境下,功率转换设备处于脉冲充电模式,即可以将充电桩输出的直流电流转换为脉冲电流,从而可以实现对动力电池的正常充电。与上述传统方式相比,本申请实施例不用在电池包内设置加装装置来进行动力电池预先加热的,从而可以大大缩短充电时间,使得电池温度可以迅速升高,动力电池的充电效率得到了有效提升。进一步地,由于不用在电池包内设置加热装置,从而上述技术方案还可以减少动力电池的重量和成本。
相反,当电池状态参数包括电池温度时,若电池温度大于温度阈值,功率转换设备可以确定动力电池状态不满足脉冲充电条件,则功率转换设备可以从脉冲充电模式切换至直流充电模式。比如,功率转换设备可以退出工作模式,充电桩直接向动力电池输出直流电流;或者,功率转换设备可以向动力电池转发充电桩输出的直流电流。
在另一种可能的实现方式中,功率转换设备可以先进入直流充电模式,再根据获取到的电池状态参数判断动力电池的状态是否满足脉冲充电的条件。若电池状态参数满足脉冲充电的条件,则脉冲充电设备从直流充电模式切换到脉冲充电模式; 若电池状态参数不满足脉冲充电的条件,则脉冲充电设备继续维持直流充电模式。
在另一种可能的实施例中,功率转换设备可以在获取到电池状态参数后,再根据电池状态参数确定是进入脉冲充电模式还是进入直流充电模式。
在步骤120中,功率转换设备向充电桩(或称为充电机)发送充电信息,充电信息包括由脉冲充电参数计算得到的直流充电参数。
在进入脉冲充电模式以及获取到脉冲充电参数后,功率转换设备可以根据脉冲充电参数,确定与脉冲充电参数对应的直流充电参数。直流充电参数可以包括以下参数中的至少一种:控制充电桩所输出的输出电压、控制充电桩所输出的输出电流以及充电模式。其中,充电模式可以为恒流模式或恒压模式。
具体而言,功率转换设备在获取到脉冲充电参数,可以基于脉冲充电参数进行计算,以得到直流充电参数。或者,功率转换设备可以根据脉冲充电参数与直流充电参数的对应关系以及根据脉冲充电参数,确定与脉冲充电参数对应的直流充电参数。
之后,功率转换设备可以向充电桩发送充电信息,充电信息包括直流充电参数,该充电信息可以作为BMS的充电需求。具体来说,功率转换设备可以向充电桩发送第一报文,第一报文包括的内容可以如表2所示。
表2
Figure PCTCN2021074163-appb-000001
可选地,方法100还可以包括:功率转换设备向充电桩发送允许输出指令,该允许输出指令用于指示充电桩输出直流电流。其中,功率转换设备可以在步骤120之后向充电桩发送允许输出指令,或者,功率转换设备可以在执行步骤120的同时向充电桩发送允许输出指令,即功率转换设备可以同时向充电桩发送充电信息和允许输出指令。
在步骤130中,充电桩向功率转换设备输出直流电流,对应地,功率转换 设备可以接收到充电桩输出的直流电流。
充电桩接收到该充电信息后,可以基于直流充电参数向功率转换设备输出直流电流。
在步骤140中,功率转换设备根据脉冲充电参数将直流电流转换为脉冲电流,脉冲电流用于为动力电池充电。
需要说明的是,本申请实施例的脉冲电流也可以称为脉冲电流波形或脉冲充电波形。
可选地,在本申请实施例中,方法100还可以包括:在脉冲充电过程中,功率转换设备实时判断动力电池的状态是否满足脉冲充电的条件。若动力电池当前时刻的状态满足脉冲充电的条件,则功率转换设备继续保持脉冲充电模式;若动力电池当前时刻的状态不满足脉冲充电的条件,则功率转换设备退出脉冲充电模式。
作为一种示例,功率转换设备可以每隔预设时间段判断动力电池的状态是否满足脉冲充电的条件。例如,功率转换设备可以每隔1s判断动力电池的状态是否满足脉冲充电的条件。
可选地,该预设时间段可以是功率转换设备和BMS协商好的。
可选地,该预设时间段可以是功率转换设备自行确定的。
作为另一种示例,功率转换设备可以在获取到电池状态参数时,判断动力电池的状态是否满足脉冲充电的条件。也就是说,功率转换设备每获取到一次电池状态参数就判断一次动力电池的状态是否满足脉冲充电的条件。
为了输出适合动力电池充电的最佳脉冲电流,方法100还可以包括:功率转换设备实时调整脉冲充电参数。
具体而言,BMS可以实时向功率转换设备发送当前时刻的电池状态参数。例如,若动力电池的电池状态发生变化,则BMS向功率转换设备发送当前时刻的电池状态参数。或者,BMS可以周期性地向功率转换设备发送当前时刻的电池状态参数。在功率转换设备接收到当前时刻的电池状态参数后,可以基于当前时刻的电池状态参数确定脉冲充电参数。如此,确定的脉冲充电参数对应动力电池当前时刻的状态,从而可以输出适合动力电池充电的最佳脉冲电流。
图3为方法100的一个具体流程图。应理解,图3仅是只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
在210中,BMS向功率转换设备发送电池状态参数。
在220中,功率转换设备判断是否进入脉冲充电模式。
例如,功率转换设备将电池温度与温度阈值进行比较,假定温度阈值为5℃。若电池温度小于或等于5℃,则功率转换设备确定进入脉冲充电模式,执行步骤230;若电池温度大于5℃,则功率转换设备进入直流充电模式。
在230中,功率转换设备根据电池状态参数,确定脉冲充电参数。
在240中,功率转换设备根据脉冲充电参数,确定直流充电参数。
在250中,功率转换设备向充电桩发送充电信息,该充电信息包括直流充电参数。
在260中,功率转换设备向充电桩发送允许输出指令,该允许输出指令用于指示充电桩输出直流电流。
在270中,充电桩根据直流充电参数,向功率转换设备输出直流电流。
在280中,功率转换设备接收到直流电流后,根据脉冲充电参数将直流电流转换为脉冲电流。
在290中,功率转换设备向动力电池输出脉冲电流,以给动力电池充电。
在2100中,在脉冲充电过程中,功率转换设备根据当前时刻的电池状态参数,判断动力电池当前时刻的状态是否满足脉冲充电的条件。
若动力电池当前时刻的状态不满足脉冲充电的条件,则功率转换设备执行步骤2110;若动力电池当前时刻的状态满足脉冲充电的条件,则功率转换设备执行步骤230,根据当前时刻的电池状态参数,调整脉冲充电参数。
在2110中,功率转换设备退出脉冲充电模式。
本申请实施例将功率转换设备连接于充电桩和动力电池之间,该功率转换设备可以将充电桩输出的直流电流转换为脉冲电流,再将转换的脉冲电流传输给动力电池,如此可以避免一些场景下充电桩输出的电压和电流的范围无法与动力电池匹配的问题,从而保证了动力电池的正常充电。此外,电池状态参数可以是最能体现动力电池状态的参数,根据电池状态参数转换的脉冲电流可以有效保证动力电池的正常供电。
可选地,在本申请实施例中,如图4所示,功率转换设备可以包括控制单元和功率单元,图4中的实线表示功率线,虚线表示通信线。其中,控制单元负责检测 充电桩和BMS在充电过程中的状态,并分别通过通信线连接充电桩和BMS,以分别与充电桩和BMS进行信息交互。另外,控制单元还通过通信线与功率单元连接,以与功率单元进行信息交互,并控制功率单元进行功率转换。例如,通信线可以为控制器局域网络(Controller Area Network,CAN)通信线或菊花链(daisy chain)通信线。
功率单元负责根据控制单元的指令,将充电桩输出的功率类型转换为动力电池需要的功率类型。功率单元与控制单元通过通信线连接,进行信息交互。控制单元与功率单元之间可以配置通信协议,例如,定义通信的语法、语义和时序等,以保证控制单元与功率单元之间正常交互。
控制单元上可以配置控制策略。例如,控制单元通过解析充电桩和BMS的充电报文,确定当前充电流程的状态,以控制功率单元进行相应的操作。
下面基于图4所示的功率转换设备详细介绍本申请实施例的另一种充电的方法。图5示出了本申请另一个实施例的充电的方法300的示意性流程图。图5所示的方法300可以应用于图3所示的功率转换设备。方法300可以包括以下步骤中的部分或全部。
在步骤310中,控制单元获取动力电池的电池状态参数。
在步骤320中,控制单元根据电池状态参数,获取脉冲充电参数。
在步骤330中,控制单元向功率单元传输脉冲充电参数。
例如,控制单元可以通过CAN通信线,向功率单元传输脉冲充电参数。
例如,控制单元可以向功率单元发送第二报文,该第二报文包括的内容可以如表3所示。
表3
Figure PCTCN2021074163-appb-000002
Figure PCTCN2021074163-appb-000003
在步骤340中,功率单元根据脉冲充电参数,计算得到直流充电参数。
在步骤350中,控制单元获取直流充电参数。
可选地,功率单元可以向控制单元发送直流充电参数,从而控制单元可以获取到直流充电参数。其中,功率单元可以通过主CAN通讯的方式,向控制单元发送直流充电参数。
可选地,功率单元计算得到直流充电参数后,可以将直流充电参数发送给云端,控制单元从云端可以获取到直流充电参数。
在步骤350中,控制单元向充电桩发送直流充电参数,直流充电参数用于指示充电桩输出直流电流。
在步骤360中,控制单元向功率单元发送启动输出指令,该启动输出指令用于控制功率单元将直流电流转换为脉冲电流,脉冲电流用于为动力电池充电。
其中,步骤350和步骤360可以同时执行,或者步骤360可以在步骤350之后执行。
在功率单元接收到启动输出指令后,功率单元可以根据脉冲充电参数,将充电桩输出的直流电流转换为脉冲电流,以给动力电池充电。
可选地,方法300还可以包括:若电池状态参数达到参数阈值,如电池温度为10℃,则控制单元可以向功率单元发送退出指令,该退出指令用于指示功率单元退出脉冲充电模式。
为了更清楚地描述本申请实施例,下面结合图6详细描述方法300的一个具体实现过程。
在步骤410中,BMS向控制单元发送电池状态参数。
在步骤420中,控制单元判断是否进入脉冲充电模式。
例如,控制单元将电池温度与温度阈值进行比较,假定温度阈值为5℃。若电池温度小于或等于5℃,则控制单元确定进入脉冲充电模式;若电池温度大于5℃,则功控制单元进入直流充电模式。
在步骤430中,控制单元根据电池状态参数,确定脉冲充电参数。
例如,控制单元通过内部查表的方式,可以确定脉冲充电参数。
在步骤440中,控制单元向功率单元发送脉冲充电参数。
在步骤450中,功率单元根据脉冲充电参数,计算得到直流充电参数。
在步骤460中,功率单元向控制单元发送直流充电参数。
在步骤470中,控制单元向充电桩转发接收到的直流充电参数。
在步骤480中,控制单元向充电桩发送允许输出指令,该允许输出指令用于指示充电桩输出直流电流。
其中,步骤480可以在步骤470之后执行也可以与步骤470同时执行。
在步骤490中,控制单元向功率单元发送启动输出指令,该启动输出指令用于控制所述功率单元将所述直流电流转换为脉冲电流。
其中,步骤490可以在步骤470之后执行也可以与步骤470同时执行。
在步骤4100中,充电桩根据直流充电参数,向功率单元输出直流电流。
在充电桩接收到允许输出指令后,充电桩可以根据直流充电参数向功率单元输出直流电流。
在步骤4120中,功率单元接收到直流电流后,根据脉冲充电参数将直流电流转换为脉冲电流。
在步骤4120中,功率单元向动力电池输出脉冲电流,以给动力电池充电。
在步骤4130中,在脉冲充电过程中,控制单元根据当前时刻的电池状态参数,判断动力电池当前时刻的状态是否满足脉冲充电的条件。
若动力电池当前时刻的状态不满足脉冲充电的条件,则控制单元执行步骤4140;若动力电池当前时刻的状态满足脉冲充电的条件,则控制单元执行步骤430,即根据当前时刻的电池状态参数,调整脉冲充电参数。
在4140中,控制单元退出脉冲充电模式。
应理解,以上虽然分别描述了方法100和200,但是这并不意味着方法100 和200是独立的,各个方法的描述可以相互参数。在不矛盾的情况下,方法100和200的可选方案可以结合使用或者方法100中的相关描述可以适用于方法200。
在本申请实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
并且,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
上文详细描述了本申请实施例的充电的方法,下面将描述本申请实施例的功率转换设备。应理解,本申请实施例中的功率转换设备可以执行本申请实施例中的充电的方法,具有执行相应方法的功能。
图7示出了本申请实施例的功率转换设备500的示意性框图。该功率转换设备500用于为动力电池充电,如图7所示,该功率转换设备500可以包括:
处理单元510,用于获取所述动力电池的电池状态参数。
通信单元520,用于向所述充电桩发送充电信息,所述充电信息包括由脉冲充电参数计算得到的直流充电参数。
所述通信单元520还用于,接收所述充电桩根据所述直流充电参数输出的直流电流。
所述处理单元510还用于,根据所述脉冲充电参数将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电。
其中,所述电池状态参数用于确定所述脉冲充电参数。
可选地,在本申请实施例中,所述处理单元510还用于:根据所述电池状态参数,确定脉冲充电参数,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
可选地,在本申请实施例中,所述电池状态参数包括以下参数中的至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
可选地,在本申请实施例中,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
可选地,在本申请实施例中,所述处理单元510还用于:根据所述电池状态 参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
可选地,在本申请实施例中,所述电池状态参数包括电池温度,所述处理单元510具体用于:若所述电池温度小于或等于温度阈值,确定进入所述脉冲充电模式。
可选地,在本申请实施例中,所述通信单元520还用于:接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
应理解,该功率转换设备500可以实现该方法100中的相应操作,为了简洁,在此不再赘述。
图8示出了本申请实施例的功率转换设备600的示意性框图。该功率转换设备600用于为动力电池充电,如图8所示,该功率转换设备600可以包括:
控制单元610,用于获取所述动力电池的电池状态参数。
所述控制单元610还用于,根据所述电池状态参数,获取脉冲充电参数。
所述控制单元610还用于,向所述功率转换设备600的功率单元620传输所述脉冲充电参数。
所述控制单元610还用于,获取由所述功率单元620根据所述脉冲充电参数计算得到的直流充电参数。
所述控制单元610还用于,向所述充电桩发送所述直流充电参数,所述直流充电参数用于所述充电桩输出直流电流。
所述控制单元610还用于,向所述功率单元620发送启动输出指令,所述启动输出指令用于控制所述功率单元620将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电。
可选地,在本申请实施例中,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
可选地,在本申请实施例中,所述电池状态参数包括以下参数中的至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
可选地,在本申请实施例中,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
可选地,在本申请实施例中,所述控制单元610还用于:根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
可选地,在本申请实施例中,所述电池状态参数包括电池温度,所述控制单元610具体用于:若所述电池温度小于或等于温度阈值,确定进入所述脉冲充电模式。
可选地,在本申请实施例中,所述控制单元610具体用于:接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
应理解,该功率转换设备600可以实现该方法300中的相应操作,为了简洁,在此不再赘述。
图9示出了本申请另一个实施例的功率转换设备700的示意性框图。如图9所示,该功率转换设备700包括存储器710和处理器720。其中,存储器710与处理器720耦合,存储器710用于存储程序指令,处理器720用于调用存储器710存储的程序指令,以执行前述本申请各种实施例的方法。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种充电的方法,用于为动力电池充电,其特征在于,所述方法包括:
    功率转换设备获取所述动力电池的电池状态参数;
    所述功率转换设备向充电桩发送充电信息,所述充电信息包括由脉冲充电参数计算得到的直流充电参数;
    所述功率转换设备接收所述充电桩根据所述直流充电参数输出的直流电流;
    所述功率转换设备根据所述脉冲充电参数将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电;
    其中,所述电池状态参数用于确定所述脉冲充电参数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述功率转换设备根据所述电池状态参数,确定所述脉冲充电参数,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述电池状态参数包括以下至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
  4. 根据权利要求1或2所述的方法,其特征在于,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
  5. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述功率转换设备根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
  6. 根据权利要求5所述的方法,其特征在于,所述电池状态参数包括电池温度,所述功率转换设备根据所述电池状态参数,确定进入脉冲充电模式,包括:
    若所述电池温度小于或等于温度阈值,所述功率转换设备确定进入所述脉冲充电模式。
  7. 根据权利要求1或2所述的方法,其特征在于,所述功率转换设备获取所述动力电池的电池状态参数,包括:
    所述功率转换设备接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
  8. 一种充电的方法,用于为动力电池充电,其特征在于,所述方法应用于功率转换设备,所述功率转换设备包括控制单元和功率单元,所述方法包括:
    所述控制单元获取所述动力电池的电池状态参数;
    所述控制单元根据所述电池状态参数,获取脉冲充电参数;
    所述控制单元向所述功率单元传输所述脉冲充电参数;
    所述控制单元获取由所述功率单元根据所述脉冲充电参数计算得到的直流充电参数;
    所述控制单元向所述充电桩发送所述直流充电参数,所述直流充电参数用于所述充电桩输出直流电流;
    所述控制单元向所述功率单元发送启动输出指令,所述启动输出指令用于控制所述功率单元将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电。
  9. 根据权利要求8所述的方法,其特征在于,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时。
  10. 根据权利要求8或9所述的方法,其特征在于,所述电池状态参数包括以下至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
  11. 根据权利要求8或9所述的方法,其特征在于,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
  12. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述控制单元根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
  13. 根据权利要求12所述的方法,其特征在于,所述电池状态参数包括电池温度,所述控制单元根据所述电池状态参数,确定进入脉冲充电模式,包括:
    若所述电池温度小于或等于温度阈值,所述控制单元确定进入所述脉冲充电模式。
  14. 根据权利要求8或9所述的方法,其特征在于,所述控制单元获取所述动力电池的电池状态参数,包括:
    所述控制单元接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
  15. 一种功率转换设备,用于为动力电池充电,其特征在于,所述功率转换设备包括:
    处理单元,用于获取所述动力电池的电池状态参数;
    通信单元,用于向所述充电桩发送充电信息,所述充电信息包括由脉冲充电参数计算得到的直流充电参数;
    所述通信单元还用于,接收所述充电桩根据所述直流充电参数输出的直流电流;
    所述处理单元还用于,根据所述脉冲充电参数将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电;
    其中,所述电池状态参数用于确定所述脉冲充电参数。
  16. 根据权利要求15所述的功率转换设备,其特征在于,所述处理单元还用于:
    根据所述电池状态参数,确定脉冲充电参数,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
  17. 根据权利要求15或16所述的功率转换设备,其特征在于,所述电池状态参数包括以下参数中的至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
  18. 根据权利要求15或16所述的功率转换设备,其特征在于,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
  19. 根据权利要求15或16所述的功率转换设备,其特征在于,所述处理单元还用于:
    根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
  20. 根据权利要求19所述的功率转换设备,其特征在于,所述电池状态参数包括电池温度,所述处理单元具体用于:
    若所述电池温度小于或等于温度阈值,确定进入所述脉冲充电模式。
  21. 根据权利要求15或16所述的功率转换设备,其特征在于,所述通信单元还用于:
    接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
  22. 一种功率转换设备,用于为动力电池充电,其特征在于,所述功率转换设备包 括:
    控制单元,用于获取所述动力电池的电池状态参数;
    所述控制单元还用于,根据所述电池状态参数,获取脉冲充电参数;
    所述控制单元还用于,向所述功率转换设备的功率单元传输所述脉冲充电参数;
    所述控制单元还用于,获取由所述功率单元根据所述脉冲充电参数计算得到的直流充电参数;
    所述控制单元还用于,向所述充电桩发送所述直流充电参数,所述直流充电参数用于所述充电桩输出直流电流;
    所述控制单元还用于,向所述功率单元发送启动输出指令,所述启动输出指令用于控制所述功率单元将所述直流电流转换为脉冲电流,所述脉冲电流用于为所述动力电池充电。
  23. 根据权利要求22所述的功率转换设备,其特征在于,所述脉冲充电参数包括以下至少一个参数:脉冲电流有效值、脉冲电流峰值、脉冲电压、脉冲方向、脉冲频率、脉冲间歇及脉冲持续时长。
  24. 根据权利要求22或23所述的功率转换设备,其特征在于,所述电池状态参数包括以下参数中的至少一个参数:电池温度、电池电压、电池容量和电池的荷电状态SOC。
  25. 根据权利要求22或23所述的功率转换设备,其特征在于,所述直流充电参数包括所述充电桩的输出电压和/或输出电流。
  26. 根据权利要求22或23所述的功率转换设备,其特征在于,所述控制单元还用于:
    根据所述电池状态参数,确定进入脉冲充电模式,所述脉冲充电模式为采用脉冲式的电压或脉冲式的电流的充电模式。
  27. 根据权利要求26所述的功率转换设备,其特征在于,所述电池状态参数包括电池温度,所述控制单元具体用于:
    若所述电池温度小于或等于温度阈值,确定进入所述脉冲充电模式。
  28. 根据权利要求22或23所述的功率转换设备,其特征在于,所述控制单元具体用于:
    接收所述动力电池的电池管理系统BMS发送的所述电池状态参数。
PCT/CN2021/074163 2021-01-28 2021-01-28 充电的方法和功率转换设备 WO2022160182A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/074163 WO2022160182A1 (zh) 2021-01-28 2021-01-28 充电的方法和功率转换设备
CN202180041873.5A CN115699505A (zh) 2021-01-28 2021-01-28 充电的方法和功率转换设备
KR1020217039408A KR102681017B1 (ko) 2021-01-28 2021-01-28 충전 방법 및 전력 변환 장치
JP2021575009A JP7357700B2 (ja) 2021-01-28 2021-01-28 充電方法及び電力変換装置
EP21827374.6A EP4064509A4 (en) 2021-01-28 2021-01-28 CHARGING METHOD AND POWER CONVERSION DEVICE
US17/981,551 US20230070522A1 (en) 2021-01-28 2022-11-07 Charging method and power conversion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074163 WO2022160182A1 (zh) 2021-01-28 2021-01-28 充电的方法和功率转换设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/981,551 Continuation US20230070522A1 (en) 2021-01-28 2022-11-07 Charging method and power conversion equipment

Publications (1)

Publication Number Publication Date
WO2022160182A1 true WO2022160182A1 (zh) 2022-08-04

Family

ID=82654116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074163 WO2022160182A1 (zh) 2021-01-28 2021-01-28 充电的方法和功率转换设备

Country Status (6)

Country Link
US (1) US20230070522A1 (zh)
EP (1) EP4064509A4 (zh)
JP (1) JP7357700B2 (zh)
KR (1) KR102681017B1 (zh)
CN (1) CN115699505A (zh)
WO (1) WO2022160182A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115534762A (zh) * 2022-10-18 2022-12-30 北京新能源汽车股份有限公司 脉冲加热控制方法、电子设备和可读存储介质
CN115610278A (zh) * 2022-11-07 2023-01-17 中国第一汽车股份有限公司 电池的充电控制方法和车辆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115836425A (zh) * 2021-01-28 2023-03-21 宁德时代新能源科技股份有限公司 充电的方法、动力电池的电池管理系统和充电桩
CN116250160A (zh) * 2021-01-28 2023-06-09 宁德时代新能源科技股份有限公司 充电的方法和功率转换设备
WO2022160188A1 (zh) * 2021-01-28 2022-08-04 宁德时代新能源科技股份有限公司 充电的方法、动力电池的电池管理系统和充电桩
CN115803983B (zh) * 2021-01-28 2024-02-02 宁德时代新能源科技股份有限公司 功率转换设备的预充电的方法和功率转换设备
KR102681018B1 (ko) * 2021-06-17 2024-07-02 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 충전 제어 방법 및 장치, 배터리 관리 시스템, 판독 가능 저장 매체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479983A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 用于电动汽车动力电池的充电控制方法及装置
CN103117421A (zh) * 2013-03-07 2013-05-22 清华大学 一种电池低温充电方法
JP2016181327A (ja) * 2015-03-23 2016-10-13 三菱電機株式会社 蓄電システム
CN107317365A (zh) * 2016-04-27 2017-11-03 法乐第(北京)网络科技有限公司 充电装置、充电方法以及车辆
CN107719175A (zh) * 2017-11-17 2018-02-23 北京市亿微科技有限公司 基于充电站用大功率dc/dc电源的检测方法和充放电系统
CN209290211U (zh) * 2018-11-26 2019-08-23 河南英开电气股份有限公司 一种充电桩

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2004503C2 (en) * 2010-04-02 2011-10-04 Epyon B V Method and device for charging a battery and battery charger.
US8698458B2 (en) 2010-07-08 2014-04-15 Samsung Sdi Co., Ltd. Battery pack having boosting charge function and method thereof
CN202019221U (zh) * 2011-04-18 2011-10-26 成都秦川科技发展有限公司 电动汽车pwm整流及变压变流脉冲充电系统
JP6048278B2 (ja) 2013-03-28 2016-12-21 マツダ株式会社 車両の充電制御装置
US9963042B2 (en) * 2013-04-01 2018-05-08 Mitsubishi Electric Corporation Apparatus, charging control apparatus, and information input/output apparatus
JP2018026209A (ja) 2016-08-08 2018-02-15 トヨタ自動車株式会社 ニッケル水素電池の充電方法および充電システム
KR20180045694A (ko) * 2016-10-26 2018-05-04 현대오트론 주식회사 배터리 충전 장치 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479983A (zh) * 2010-11-30 2012-05-30 比亚迪股份有限公司 用于电动汽车动力电池的充电控制方法及装置
CN103117421A (zh) * 2013-03-07 2013-05-22 清华大学 一种电池低温充电方法
JP2016181327A (ja) * 2015-03-23 2016-10-13 三菱電機株式会社 蓄電システム
CN107317365A (zh) * 2016-04-27 2017-11-03 法乐第(北京)网络科技有限公司 充电装置、充电方法以及车辆
CN107719175A (zh) * 2017-11-17 2018-02-23 北京市亿微科技有限公司 基于充电站用大功率dc/dc电源的检测方法和充放电系统
CN209290211U (zh) * 2018-11-26 2019-08-23 河南英开电气股份有限公司 一种充电桩

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115534762A (zh) * 2022-10-18 2022-12-30 北京新能源汽车股份有限公司 脉冲加热控制方法、电子设备和可读存储介质
CN115610278A (zh) * 2022-11-07 2023-01-17 中国第一汽车股份有限公司 电池的充电控制方法和车辆

Also Published As

Publication number Publication date
JP2023514885A (ja) 2023-04-12
US20230070522A1 (en) 2023-03-09
CN115699505A (zh) 2023-02-03
EP4064509A1 (en) 2022-09-28
KR20220112177A (ko) 2022-08-10
KR102681017B1 (ko) 2024-07-03
EP4064509A4 (en) 2022-09-28
JP7357700B2 (ja) 2023-10-06

Similar Documents

Publication Publication Date Title
WO2022160182A1 (zh) 充电的方法和功率转换设备
WO2022160188A1 (zh) 充电的方法、动力电池的电池管理系统和充电桩
WO2022160190A1 (zh) 充电的方法、动力电池的电池管理系统和充电桩
US11685289B2 (en) Charging and discharging device, methods of battery charging and discharging, and charging and discharging system
JP7394888B2 (ja) 充電方法及び電力変換装置
CN116325286A (zh) 充放电装置、电池充电的方法和充放电系统
US20230219457A1 (en) Charging and discharging apparatus and power transmission method thereof
CN115885407B (zh) 充放电装置、电池充电的方法和充放电系统
US12051934B2 (en) Method for charging battery, charging and discharging device
US20230035145A1 (en) Method for charging battery, battery management system, charge and discharge device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021575009

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021827374

Country of ref document: EP

Effective date: 20211228

NENP Non-entry into the national phase

Ref country code: DE