WO2023197241A1 - 显示面板显示缺陷的修复方法及显示装置 - Google Patents

显示面板显示缺陷的修复方法及显示装置 Download PDF

Info

Publication number
WO2023197241A1
WO2023197241A1 PCT/CN2022/086806 CN2022086806W WO2023197241A1 WO 2023197241 A1 WO2023197241 A1 WO 2023197241A1 CN 2022086806 W CN2022086806 W CN 2022086806W WO 2023197241 A1 WO2023197241 A1 WO 2023197241A1
Authority
WO
WIPO (PCT)
Prior art keywords
data voltage
display panel
pixel
display
driving current
Prior art date
Application number
PCT/CN2022/086806
Other languages
English (en)
French (fr)
Inventor
白妮妮
张永红
刘亮亮
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000755.4A priority Critical patent/CN117529767A/zh
Priority to PCT/CN2022/086806 priority patent/WO2023197241A1/zh
Publication of WO2023197241A1 publication Critical patent/WO2023197241A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a method for repairing display defects of a display panel and a display device.
  • OLED Organic Light-Emitting Diode
  • the backplane circuit of current OLED products is relatively complex, and the process has higher challenges than traditional liquid crystal display (LCD) products, such as thinner line width, smaller volume, and more Film layer stacking structure, etc.
  • LCD liquid crystal display
  • More complex and denser backplane circuit distribution brings more point/line display defects to OLED products, such as bright spot defects.
  • the repair steps are cumbersome, the repair rate is low, and the labor cost and production capacity are low.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art and provide a method for repairing display defects in a display panel and a display device.
  • an embodiment of the present disclosure provides a method for repairing display defects of a display panel, which includes:
  • the first data voltage is input to each pixel point in the display panel, so that the display panel displays the image to be detected, and the brightness of each pixel point is obtained;
  • a first data voltage is input to the reference pixel point, and a second data voltage is input to the defective pixel point; the second data voltage is the first data voltage and the compensation data sum of voltages.
  • obtaining the brightness of each pixel point includes:
  • the enhancement processing of the matrix data includes:
  • the matrix data is processed by squaring or taking logarithms.
  • the compensation data voltage includes: a first compensation data voltage
  • the first compensation data voltage is the difference between the peak value of the data voltage input by the reference pixel point and the current data voltage of the defective pixel point.
  • the compensation data voltage further includes: a second compensation data voltage
  • the second compensation data voltage is calculated and obtained through a compensation algorithm.
  • the pixel points include: red sub-pixels, green sub-pixels and blue sub-pixels; and inputting the first data voltage to each pixel point in the display panel includes:
  • a first red data voltage, a first green data voltage, and a first blue data voltage are respectively input to each red sub-pixel, each green sub-pixel, and each blue sub-pixel in the display panel.
  • determine the reference pixels and defective pixels including:
  • the pixel is determined to be a defective pixel
  • the pixel is determined to be a reference pixel.
  • determining the reference driving current includes:
  • the minimum value of the second driving current is determined to be the reference driving current.
  • calculating the compensation data voltage of the defective pixel point based on the brightness difference between the reference pixel point and the defective pixel point includes:
  • the compensation data voltage is calculated based on the pre-adjusted data voltage and the post-adjusted data voltage.
  • calculating the compensation data voltage of the defective pixel point based on the brightness difference between the reference pixel point and the defective pixel point further includes:
  • the compensated data voltage is stored.
  • storing the compensated data voltage further includes:
  • the brightness of the defective pixel is less than or equal to the brightness of the reference pixel, it is determined that the display defect is repaired successfully.
  • an embodiment of the present disclosure provides a display device, wherein the display device includes: a display panel and a storage module; the storage module stores a compensation data voltage; the compensation data voltage passes through the display provided as above A fix for the panel display defect is obtained.
  • Figure 1 is a schematic flowchart of a method for repairing display defects in a display panel according to an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a method for obtaining the brightness of each pixel provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a method for determining reference pixels and defective pixels according to an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of a method for determining a reference driving current provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for calculating the compensation data voltage of a defective pixel according to an embodiment of the present disclosure.
  • OLED products Compared with traditional LCD products, OLED products have absolute advantages in display screen, energy consumption, etc., such as high brightness, wide color gamut, large viewing angle, transparent display, ultra-thin, low power consumption, etc. Therefore, OLED products are becoming more and more popular. It has become more and more trusted by users.
  • the preparation process of OLED products is mainly divided into four stages, namely the color film substrate (Color film) process stage, the array substrate (Array) process stage, the panel (Cell) process stage and the module (Module) process stage.
  • the display panel constructed after the Cell stage needs to undergo a lighting test. If the display panel is found to have display defects, such as bright spot defects, the bright spot defects must be repaired.
  • the process of repairing bright spot defects is as follows: 1) Use lighting equipment to conduct a lighting test on the display panel to detect the bright spot defects of the display panel; 2) Mark the position of the bright spot defect with special marks (circles, triangles, etc.), and place them The display panel with bright spot defects is sent to the maintenance process; 3) The display panel with bright spot defects is manually put into the maintenance equipment and manually lit, and the operator looks for it under the Charge Coupled Device (CCD) camera lens according to special marks.
  • CCD Charge Coupled Device
  • the position of the bright spot defect (4) Manually move the laser repair probe to the position of the bright spot defect and perform cutting and repair; after the repair is completed, the display panel will be sent to the secondary inspection process, and the repair screen will undergo a second lighting inspection to confirm the repair effect. If the repair is successful, It will be transferred to the next site normally. If the repair fails, the product will be scrapped. It can be seen from the above steps of repairing bright spot defects that most of the current bright spot repair methods use manual operations. The repair steps are cumbersome and are greatly affected by human factors. This is not conducive to improving the efficiency of bright spot repair, resulting in a low repair rate. At the same time, labor costs are high, which affects the production capacity of OLED products.
  • embodiments of the present disclosure provide a method for repairing display defects in a display panel and a display device.
  • the following will describe the repair of bright spots on a display panel provided by embodiments of the present disclosure in conjunction with the accompanying drawings and specific implementations. The method and display device are described in further detail.
  • an embodiment of the present disclosure provides a method for repairing display defects of a display panel.
  • Figure 1 is a schematic flow chart of a method of repairing display defects of a display panel provided by an embodiment of the present disclosure. As shown in Figure 1, the present disclosure The method for repairing display defects of the display panel provided by the embodiment includes the following steps:
  • Step S101 In the module process stage, the first data voltage is input to each pixel point in the display panel, so that the display panel displays the image to be detected, and the brightness of each pixel point is obtained.
  • the first data signal is a test data signal.
  • the display panel has been basically assembled. At this stage, the display panel needs to be tested for a series of display defects, such as uneven brightness, which can be
  • the first data voltage is input to each pixel point to light up each pixel point to form a picture to be detected. The brightness of each pixel is obtained through the formed detection screen.
  • Step S102 Determine reference pixels and defective pixels based on the image to be detected.
  • step S102 if there is a display defect in the display panel, the brightness of the point in the picture to be detected is different from the surrounding brightness, and generally the defective pixels in the display panel only account for a small part of the total pixels, so that
  • certain pixels among the normal pixels are determined as reference pixels, and abnormal pixels that are different from the normal pixels are determined as defective pixels. For example, within a range of 4*4 pixels, if the brightness of the second pixel in the second row is significantly higher than the brightness of other surrounding pixels, then the pixel is a defective pixel.
  • Step S103 Calculate the compensation data voltage of the defective pixel according to the brightness difference between the reference pixel and the defective pixel.
  • step S103 the brightness of the defective pixel in the display panel is much higher than the brightness of the reference pixel.
  • the compensation data voltage of the defective pixel can be calculated.
  • the compensation data voltage can be calculated for each reference pixel. The difference between the peak value of the input data voltage and the current data voltage of the defective pixel reduces the brightness of the defective pixel, so that the brightness of the defective pixel is lower than or equal to the brightness of the reference pixel, thereby realizing the display defect of the display panel. repair.
  • Step S104 According to the compensation data voltage, a first data voltage is input to the reference pixel point, and a second data voltage is input to the defective pixel point; the second data voltage is the sum of the first data voltage and the compensation data voltage.
  • step S104 the first data voltage is input to the reference pixel point, and the first data voltage and the compensation data voltage are simultaneously input to the defective pixel point.
  • Vdata In practical applications, generally Vdata ⁇ VDD (related to the switching characteristics of the thin film transistor itself in the display panel), so the larger the Vdata, the smaller the (Vdata-VDD) 2 value, that is, the smaller the current Id, the lower the brightness.
  • a compensation data voltage is input to form a second data voltage.
  • the second data voltage is greater than the first data voltage. This can reduce the current Id of the defective pixel point, thereby reducing the brightness of the defective pixel point. Lower than or equal to the brightness of the reference pixel, the display defect repair of the display panel can be realized.
  • the compensation data voltage is used to repair defective pixels in the display panel during the module process stage, so that the brightness of the defective pixels is lower than or equal to that of the reference pixels. Brightness, this eliminates the need to repair display panel display defects through lighting tests during the panel process stage.
  • Manual repair can be replaced by automatic feedback repair by controlling the data signal input to the defective pixel, which can reduce the module process stage. It reduces the waste of manpower and equipment costs, and at the same time can greatly improve the accuracy and success rate of repairing display defects on display panels, thereby greatly improving the efficiency of repairing display defects on display panels, thereby increasing the production capacity of OLED products.
  • display defect repair is completed in the module process stage, secondary damage to the display panel during the module process stage can be avoided, thus further reducing the cost of repairing bright spots and improving product competitiveness.
  • Figure 2 is a schematic flowchart of a method for obtaining the brightness of each pixel point provided by an embodiment of the present disclosure. As shown in Figure 2, obtaining the brightness of each pixel point includes the following steps:
  • S201 use a high-definition camera to take pictures of the scene to be detected, and obtain the image of the scene to be detected.
  • S202 convert the image into matrix data through Fourier transform, and perform enhancement processing on the matrix data to obtain the brightness of each pixel.
  • a high-definition camera can be used to take pictures of the image to be detected formed by inputting the first data voltage to obtain the image to be detected.
  • the image information is transmitted to the processor.
  • the processor can be a computer.
  • the computer can convert the image information into matrix data through Fourier transform. In order to further obtain the brightness of each pixel more accurately, the matrix data can be enhanced. .
  • enhancing the matrix data includes: processing the matrix data by squaring or taking logarithms.
  • the matrix data can be processed by squaring or taking logarithms to make the brightness of each defective pixel brighter and improve the contrast with the surrounding reference pixels to further accurately obtain the brightness of each pixel and thereby accurately determine the reference pixel. and defective pixels, thereby avoiding misjudgment of defective pixels and affecting display defect repair efficiency.
  • the compensation data voltage includes: a first compensation data voltage; the first compensation data voltage is the difference between the peak value of the data voltage input by the reference pixel point and the current data voltage of the defective pixel point.
  • the first compensation data voltage ⁇ V(ng) Vmax-V(ng), where Vmax is the peak value of the data voltage input by the reference pixel point, and V(ng) is the current data voltage of the defective pixel point, that is, the first compensation data voltage is the difference between the peak value of the data voltage input by the reference pixel point and the current data voltage of the defective pixel point.
  • the data voltage of the defective pixel point after compensation is Vmax.
  • Id K*(Vdata-VDD) 2
  • the compensation data voltage further includes: a second compensation data voltage; the second compensation data voltage is calculated through a compensation algorithm.
  • the compensation data voltage also includes a second compensation data voltage for compensating for display unevenness defects.
  • the second compensation data voltage can be calculated by a display unevenness compensation algorithm. Obtained, in this way, when the display panel is compensated for uneven display defects during the module process stage, the display panel can be directly compensated for the display defects, thereby reducing the detection and repair steps, improving the repair efficiency of the display panel, and thereby increasing the production capacity of the display panel. .
  • the pixel points include: red sub-pixels, green sub-pixels and blue sub-pixels; inputting the first data voltage to each pixel point in the display panel includes: supplying each red sub-pixel, each The green subpixel and each blue subpixel sequentially input the first red data voltage, the first green data voltage, and the first blue data voltage.
  • Each pixel can be composed of red sub-pixels, green sub-pixels and blue sub-pixels. Of course, each pixel can also be provided with white sub-pixels.
  • the implementation principle is the same as that of setting three sub-pixels and will not be discussed further. Elaborate.
  • the same data voltage can be input only to the sub-pixels of the same color each time, so that the display panel only displays an image of one color, such as a red image, a green image or a blue image. Color image, which is more conducive to determining the location of defective pixels.
  • the display panel only has sub-pixels of one color with display defects, it is not necessary to repair sub-pixels of other colors, thereby improving the efficiency of bright spot repair.
  • Figure 3 is a schematic flowchart of a method for determining reference pixels and defective pixels provided by an embodiment of the present disclosure. As shown in Figure 3, determining reference pixels and defective pixels includes the following: step:
  • S301 Determine the reference driving current based on the known normal display panel and the known defective display panel.
  • S302 Obtain the current driving current of each pixel point, and compare the current driving current of each pixel point with the reference driving current. If the current driving current of the pixel is greater than the reference driving current, the pixel is determined to be a defective pixel; if the current driving current of the pixel is less than or equal to the reference driving current, the reference pixel is determined.
  • each pixel in the display panel can be scanned point by point to obtain and record the current driving current of each pixel.
  • the greater the driving current the higher the brightness of the pixel.
  • the current driving current of the pixel is greater than the reference driving current, it means that the brightness of the pixel is greater than the brightness of the normal pixel, and there is a display defect.
  • the current driving current of the pixel is less than or equal to the reference driving current, it means that the brightness of the pixel is less than or equal to the brightness of a normal pixel, and the pixel is a normal pixel, and the pixel can be determined as a reference pixel. In this way, there is no need to use manual operations to determine the location of defective pixels, and errors caused by manual operations can be avoided, thereby improving the efficiency of bright spot repair and thereby increasing the productivity of display panels.
  • FIG. 4 is a schematic flowchart of a method for determining a reference driving current provided by an embodiment of the present disclosure. As shown in FIG. 4 , the method for determining a reference driving current includes the following steps:
  • S401 Collect the first driving current of each pixel in the known normal display panel, and record the maximum value of the first driving current.
  • S402 Collect the second driving current of each pixel in the display panel with known defects, and record the minimum value of the second driving current.
  • S403 Compare the maximum value of the first driving current and the minimum value of the second driving current. If the ratio of the maximum value of the first driving current to the minimum value of the second driving current is greater than the preset value, the minimum value of the second driving current is determined to be the reference driving current.
  • the first driving current of each pixel in the known normal display panel can be collected, the maximum value Id (OK-max) of the first driving current can be recorded, and the known display with display defects can be collected.
  • the second driving current of each pixel in the panel is recorded, and the minimum value Id (NG-min) of the second driving current is recorded. Comparing Id(OK-max) and Id(NG-min), if Id(OK-max)/Id(NG-min) is greater than the preset value, the preset value can be 50%, 60% or 70%, then Determine Id(NG-min) as the reference driving current. It is understandable that the preset value can also be set according to actual needs, and the value should not be set too small to avoid misjudgment of defective pixels.
  • Figure 5 is a schematic flowchart of a method for calculating the compensation data voltage of a defective pixel point provided by an embodiment of the present disclosure. As shown in Figure 5, the method of calculating the compensation data voltage of a defective pixel point includes the following steps :
  • S503 Calculate the compensation data voltage based on the data voltage before adjustment and the data voltage after adjustment.
  • the driving current can be adjusted by adjusting the data voltage input to the pixel, so that the driving current of the pixel with display defects is less than or equal to the reference driving current. , so that the brightness of the defective pixel can be reduced to the same brightness as the surrounding normal pixels, or the defective pixel can be adjusted to a dark point to complete the repair of display defects.
  • the pre-adjusted data voltage and the adjusted data voltage input to the pixel are recorded respectively. The difference between the two is the compensation data voltage that needs to be input.
  • the compensation data voltage can be stored in the storage module of the display module. During the application process of the display module, the stored compensation data voltage can be directly called from the storage module to compensate for the display defective pixels in the display panel, making the display The picture is uniform, thereby improving the display effect and improving the user experience.
  • storing the compensation data voltage also includes: extracting the stored compensation data voltage and inputting the compensation data voltage to the defective pixel; if the brightness of the defective pixel is less than or equal to the brightness of the reference pixel, , then it is determined that the defect is repaired successfully.
  • the stored compensation data voltage can be directly extracted and the compensation data voltage can be directly extracted. Input to defective pixels, and detect whether there are display defects in the display panel by observing or detecting the driving current. If there are no display defects, it is confirmed that the display defects have been repaired successfully. If display defects still exist, it is determined that the display defects have failed to be repaired, and the display panel is scrapped.
  • an embodiment of the present disclosure provides a display device.
  • the display device includes a display panel and a storage module.
  • the storage module stores a compensation data voltage; the compensation data voltage displays defects through the display panel provided in any of the above embodiments.
  • the repair method is obtained.
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc. Its implementation principle and beneficial effects are the same as the above-mentioned method of repairing display defects of the display panel. The implementation principles and beneficial effects are the same and will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板显示缺陷的修复方法及显示装置,属于显示技术领域,其可解决现有的显示面板显示缺陷修复步骤繁琐,修复率较低,人工成本、产能较低的问题。该显示面板显示缺陷的修复方法包括:在模组工艺阶段,向显示面板中的各个像素点输入第一数据电压,使得显示面板显示待检测画面,并获取各个像素点的亮度(S101);根据待检测画面,确定出参考像素点和缺陷像素点(S102);根据参考像素点和缺陷像素点的亮度差异,计算缺陷像素点的补偿数据电压(S103);根据补偿数据电压,向参考像素点输入第一数据电压,同时向缺陷像素点输入第二数据电压;第二数据电压为第一数据电压与补偿数据电压之和(S104)。

Description

显示面板显示缺陷的修复方法及显示装置 技术领域
本公开属于显示技术领域,具体涉及一种显示面板显示缺陷的修复方法及显示装置。
背景技术
有机电致发光二极管(Organic Light-Emitting Diode,OLED)是一种利用有机固态半导体作为发光材料的发光器件,由于其具有制备工艺简单、成本低、功耗低、发光亮度高、工作温度适应范围广等优点,因而有着广阔的应用前景。
然而,目前的OLED产品的背板电路较为复杂,在工艺上有着比传统的液晶显示(Liquid Crystal Display,LCD)产品更高的挑战,比如更细的线宽、更小的体积、更多的膜层堆叠结构等。更复杂更密集的背板电路分布给OLED产品带来了更多的点类/线类显示缺陷,例如亮点缺陷,其修复步骤繁琐,修复率较低,人工成本、产能较低。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供一种显示面板显示缺陷的修复方法及显示装置。
第一方面,本公开实施例提供了一种显示面板显示缺陷的修复方法,其中,包括:
在模组工艺阶段,向显示面板中的各个像素点输入第一数据电压,使得所述显示面板显示待检测画面,并获取各个所述像素点的亮度;
根据所述待检测画面,确定出参考像素点和缺陷像素点;
根据所述参考像素点和所述缺陷像素点的亮度差异,计算所述缺陷像素点的补偿数据电压;
根据所述补偿数据电压,向所述参考像素点输入第一数据电压,同时向所述缺陷像素点输入第二数据电压;所述第二数据电压为所述第一数据电压与所述补偿数据电压之和。
可选地,所述获取各个所述像素点的亮度,包括:
利用高清相机对所述待检测画面进行拍照,并获取所述待检测画面的图像;
通过傅里叶变换转化为矩阵数据,并对所述矩阵数据进行增强处理,以获取各个所述像素点的亮度。
可选地,所述对所述矩阵数据进行增强处理,包括:
对所述矩阵数据通过平方或取对数方式进行处理。
可选地,所述补偿数据电压包括:第一补偿数据电压;
所述第一补偿数据电压为所述参考像素点输入的数据电压的峰值与所述缺陷像素点当前的数据电压之差。
可选地,所述补偿数据电压还包括:第二补偿数据电压;
所述第二补偿数据电压通过补偿算法计算获得。
可选地,所述像素点包括:红色子像素、绿色子像素和蓝色子像素;所述向显示面板中的各个像素点输入第一数据电压,包括:
向显示面板中的各个红色子像素、各个绿色子像素、各个蓝色子像素分别依次输入第一红色数据电压、第一绿色数据电压、第一蓝色数据电压。
可选地,确定出参考像素点和缺陷像素点,包括:
根据已知的正常显示面板和已知的缺陷显示面板,确定基准驱动电流;
获取各个所述像素点当前的驱动电流,并比较各个像素点当前的驱动电流与基准驱动电流的大小;
若所述像素点当前的驱动电流大于所述基准驱动电流,则确定所述像素点为缺陷像素点;
若所述像素点当前的驱动电流小于或等于所述基准驱动电流,则确定所述像素点位参考像素点。
可选地,所述确定基准驱动电流,包括:
采集多个已知的正常显示面板中的各个像素点的第一驱动电流,并记录所述第一驱动电流的最大值;
采集多个已知的亮度缺陷显示面板中各个像素点的第二驱动电流,并记录所述第二驱动电流的最小值;
比较所述第一驱动电流的最大值与所述第二驱动电流的最小值;
若所述第一驱动电流的最大值与所述第二驱动电流的最小值的比值大于预设值,则确定所述第二驱动电流的最小值为基准驱动电流。
可选地,根据所述参考像素点和所述缺陷像素点的亮度差异,计算所述缺陷像素点的补偿数据电压,包括:
调节所述缺陷像素点的亮度,使得所述缺陷像素点的电流小于或等于所述基准驱动电流;
记录所述缺陷像素点的调节前数据电压和调节后数据电压;
根据所述调节前数据电压和所述调节后数据电压,计算所述补偿数据电压。
可选地,所述根据所述参考像素点和所述缺陷像素点的亮度差异,计算所述缺陷像素点的补偿数据电压,之后还包括:
将所述补偿数据电压进行存储。
可选地,所述将所述补偿数据电压进行存储,之后还包括:
将存储的所述补偿数据电压提取,并将所述补偿数据电压输入至所述缺陷像素点;
若所述缺陷像素点的亮度小于或等于所述参考像素点的亮度,则确定所述显示缺陷修复成功。
第二方面,本公开实施例提供了一种显示装置,其中,所述显示装置包括:显示面板及存储模块;所述存储模块存储有补偿数据电压;所述补偿数据电压通过如上述提供的显示面板显示缺陷的修复方法获得。
附图说明
图1为本公开实施例提供的一种显示面板显示缺陷的修复方法的流程示意图;
图2为本公开实施例提供的一种获取各个像素点的亮度的方法的流程示意图;
图3为本公开实施例提供的一种确定出参考像素点和缺陷像素点的方法的流程示意图;
图4为本公开实施例提供的一种确定基准驱动电流的方法的流程示意图;
图5为本公开实施例提供的一种计算缺陷像素点的补偿数据电压的方法的流程示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词 前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
OLED产品相比传统的LCD产品,在显示画面、能耗等方面有着绝对的优势,比如高亮度、广色域、大视角、透明显示、超薄、低功耗等等,因此,OLED产品越来越受到了用户的信赖。OLED产品的制备工艺主要分为四个阶段,分别为彩膜基板(Color film)工艺阶段、阵列基板(Array)工艺阶段、面板(Cell)工艺阶段和模组(Module)工艺阶段。
目前,在Cell阶段后构成的显示面板需要进行点灯测试,若发现显示面板具有显示缺陷,例如亮点缺陷,则进行亮点缺陷修复。一般地,亮点缺陷修复的过程如下:1)利用点灯设备对显示面板进行点灯测试,检测出显示面板的亮点缺陷;2)在亮点缺陷的位置进行特殊标记(圆圈、三角形等符号),并将具有亮点缺陷的显示面板传送至维修工序;3)具有亮点缺陷的显示面板被手动放进维修设备并手动点亮,作业员根据特殊标记在电荷耦合器件(Charge Coupled Device,CCD)相机镜头下寻找亮点缺陷的位置;4)将激光维修探头手动移至亮点缺陷的位置,进行切割修复;修复完成后将显示面板至二次检测工序,修复屏进行二次点灯检测确认修复效果,若修复成功则正常传输至下一站点,若修复失败则产品报废。由上述的亮点缺陷修复的步骤可以看出,目前的亮点修复方法多数步骤采用人工操作,其修复步骤繁琐,受到人为因素的影响较大,不利于提高亮点修复的效率,导致修复率较低,同时人工成本较高,影响OLED产品的产能。
为了至少解决上述的技术问题之一,本公开实施例提供了一种显示面板显示缺陷的修复方法及显示装置,下面将结合附图及具体的实施方式,对本 公开实施例提供的显示面板亮点修复的方法及显示装置进行进一步详细描述。
第一方面,本公开实施例提供了一种显示面板显示缺陷的修复方法,图1为本公开实施例提供的一种显示面板显示缺陷的修复方法的流程示意图,如图1所示,本公开实施例提供的显示面板显示缺陷的修复方法包括如下步骤:
步骤S101,在模组工艺阶段,向显示面板中的各个像素点输入第一数据电压,使得显示面板显示待检测画面,并获取各个像素点的亮度。
在步骤S101中,第一数据信号为测试数据信号,在模组工艺阶段,显示面板已经基本组装完成,在该阶段需要对显示面板进行一系列的显示缺陷的测试,例如亮度不均等,可以在模组工艺阶段将第一数据电压输入至各个像素点,以点亮各个像素点,形成待检测画面。通过形成的检测画面来获取各个像素点的亮度。
步骤S102,根据待检测画面,确定出参考像素点和缺陷像素点。
在步骤S102中,若显示面板中存在显示缺陷,在待检测画面中该点的亮度与周围的亮度是不同的,并且一般显示面板中的缺陷像素点仅占全部像素点的小部分,这样可以确定出显示面板中的像素点是否正常,以正常的像素点中的某些像素点确定为参考像素点,以正常像素点不同的非正常的像素点确定为缺陷像素点。例如,在4*4个像素点的范围内,其中,第二行第二个像素点的亮度明显高于其周围的其他的像素点的亮度,则该像素点即为缺陷像素点。
步骤S103,根据参考像素点和缺陷像素点的亮度差异,计算缺陷像素点的补偿数据电压。
在步骤S103中,显示面板中缺陷像素点的亮度要远高于参考像素点的亮度,可以根据二者的亮度差异,计算出缺陷像素点的补偿数据电压,该补 偿数据电压可以各个参考像素点输入的数据电压的峰值与该缺陷像素点当前的数据电压的差值,使得缺陷像素点的亮度降低,以使得缺陷像素点的亮度低于或等于参考像素点的亮度,实现显示面板的显示缺陷修复。
步骤S104,根据补偿数据电压,向参考像素点输入第一数据电压,同时向缺陷像素点输入第二数据电压;第二数据电压为第一数据电压与补偿数据电压之和。
在步骤S104中,将第一数据电压输入至参考像素点,同时将第一数据电压与补偿数据电压同时输入至缺陷像素点,在显示面板中,像素点的亮度是由经过该像素点的电流决定的,其电流Id=K*(Vdata-VDD) 2,其中K为常数,Vdata可以表示第一数据电压,VDD为固定的电源电压。在电流公式中,Vdata为变量,通过Vdata的调节来控制电流Id,从而控制像素点的亮度,其中电流Id越大,像素点的亮度越高。在实际应用中,一般Vdata≤VDD(跟显示面板中的薄膜晶体管本身的开关特性相关),所以Vdata越大,(Vdata-VDD) 2值越小,即电流Id越小,亮度越低。在原有的第一数据电压基础上,输入补偿数据电压,形成第二数据电压,第二数据电压要大于第一数据电压,这样可以使得缺陷像素点的电流Id减少,从而使得缺陷像素点的亮度低于或等于参考像素点的亮度,实现显示面板的显示缺陷修复。
本公开实施例提供的显示面板显示缺陷的修复方法中,在模组工艺阶段利用补偿数据电压对显示面板中的缺陷像素点进行修复,使得点缺陷像素点的亮度低于或等于参考像素点的亮度,这样可以不必在面板工艺阶段通过点灯测试来对显示面板显示缺陷进行修复,可以将人工手动修复改为通过控制输入至缺陷像素点的数据信号来实现自动反馈修复,可以减少模组工艺阶段的人力及设备成本的浪费,同时可以大大提高显示面板显示缺陷修复的精准度与成功率,从而可以大大提高显示面板显示缺陷修复的效率,进而可以提高OLED产品的产能。另一方面,由于显示缺陷修复在模组工艺阶段完成, 可以避免模组工艺阶段对显示面板造成二次损伤,因此可以进一步降低亮点修复成本,提高产品竞争力。
在一些实施例中,图2为本公开实施例提供的一种获取各个像素点的亮度的方法的流程示意图,如图2所示,获取各个像素点的亮度,包括如下步骤:
S201,利用高清相机对待检测画面进行拍照,并获取待检测画面的图像。
S202,通过傅里叶变换将图像转化为矩阵数据,并对矩阵数据进行增强处理,以获取各个像素点的亮度。
实际应用中,对于显示面板中的各个像素点的亮度获取的方式有多种,在本公开实施例中,可以利用高清相机对输入第一数据电压形成的待检测图像进行拍照,以获取待检测画面的图像信息。将图像信息传输至处理器中,处理器可以为计算机,计算机可以对图像信息通过傅里叶变换转化为矩阵数据,为了进一步更为精确地获取各个像素点的亮度,可以对矩阵数据进行增强处理。
在一些实施例中,对矩阵数据进行增强处理,包括:对矩阵数据通过平方或取对数方式进行处理。
可以通过平方或取对数方式对矩阵数据进行处理,使得各个缺陷像素点的亮度更亮,提高与周围参考像素点的对比度,以进一步精确地获取各个像素点的亮度,从而准确确定参考像素点和缺陷像素点,进而避免造成缺陷像素点的误判而影响显示缺陷修复效率。
在一些实施例中,补偿数据电压包括:第一补偿数据电压;第一补偿数据电压为参考像素点输入的数据电压的峰值与缺陷像素点当前的数据电压之差。
第一补偿数据电压△V(ng)=Vmax-V(ng),其中,Vmax为参考像素点输入的数据电压的峰值,V(ng)缺陷像素点当前的数据电压,即第一补偿数据电 压为参考像素点输入的数据电压的峰值与缺陷像素点当前的数据电压之差,补偿后的缺陷像素点的数据电压为Vmax,根据上述的电流公式:Id=K*(Vdata-VDD) 2,可以使得补偿后的数据电压Vdata=Vmax接近于VDD,使得电流Id接近零,该缺陷像素点的亮度几乎为零,由亮点变为暗点,从而实现显示缺陷修复。
在一些实施例中,补偿数据电压还包括:第二补偿数据电压;第二补偿数据电压通过补偿算法计算获得。
补偿数据电压除了包括上述的用于显示缺陷补偿的第一补偿数据电压外,还包括用于补偿显示不均缺陷的第二补偿数据电压,该第二补偿数据电压可以通过显示不均补偿算法来获得,这样在模组工艺阶段对显示面板进行显示不均缺陷补偿时可以直接对显示面板进行显示缺陷补偿,从而可以减少检测及修复的步骤,提高显示面板的修复效率,进而提高显示面板的产能。
在一些实施例中,像素点包括:红色子像素、绿色子像素和蓝色子像素;向显示面板中的各个像素点输入第一数据电压,包括:向显示面板中的各个红色子像素、各个绿色子像素、各个蓝色子像素分别依次输入第一红色数据电压、第一绿色数据电压、第一蓝色数据电压。
每个像素点可以由红色子像素、绿色子像素和蓝色子像素组成,当然每个像素点还可以设置有白色子像素,其实现原理与设置三个子像素的实现原理相同,将不再进行详述。在向显示面板中各个像素点输入第一数据电压时,可以每次只向同一颜色的子像素输入相同的数据电压,使得显示面板仅显示一种颜色的图像,例如红色图像、绿色图像或蓝色图像,这样更有利于确定缺陷像素点的位置。并且在显示面板仅有一种颜色的子像素具有显示缺陷时,可以不必对其他颜色的子像素进行修复,从而可以提高亮点修复效率。
在一些实施例中,图3为本公开实施例提供的一种确定出参考像素点和缺陷像素点的方法的流程示意图,如图3所示,确定出参考像素点和缺陷像 素点,包括如下步骤:
S301,根据已知的正常显示面板和已知的缺陷显示面板,确定基准驱动电流。
S302,获取各个像素点当前的驱动电流,并比较各个像素点当前的驱动电流与基准驱动电流的大小。若像素点当前的驱动电流大于基准驱动电流,则确定像素点为缺陷像素点;若像素点当前的驱动电流小于或等于基准驱动电流,则确定像素点位参考像素点。
在实际应用中,可以逐点对显示面板中的各个像素点进行扫描,获取并记录各个像素点当前的驱动电流,其驱动电流越大则该像素点的亮度越高。如果该像素点当前的驱动电流大于基准驱动电流,则表示该像素点的亮度大于正常像素点的亮度,存在显示缺陷。如果该像素点当前的驱动电流小于或等于基准驱动电流,则表示该像素点的亮度小于或等于正常像素点的亮度,该像素点为正常像素点,可以将该像素点确定为参考像素点。这样,不必利用人工操作来确定缺陷像素点的位置,通可以避免人工操作产生的误差,从而可以提高亮点修复的效率,进而提高显示面板的产能。
在一些实施例中,图4为本公开实施例提供的一种确定基准驱动电流的方法的流程示意图,如图4所示,确定基准驱动电流的方法包括如下步骤:
S401,采集已知的正常显示面板中的各个像素点的第一驱动电流,并记录第一驱动电流的最大值。
S402,采集已知的缺陷显示面板中各个像素点的第二驱动电流,并记录第二驱动电流的最小值。
S403,比较第一驱动电流的最大值与第二驱动电流的最小值。若第一驱动电流的最大值与第二驱动电流的最小值的比值大于预设值,则确定第二驱动电流的最小值为基准驱动电流。
在实际应用过程中,可以采集已知的正常显示面板中的各个像素点的第 一驱动电流,并记录第一驱动电流的最大值Id(OK-max)以及采集已知的存在显示缺陷的显示面板中各个像素点的第二驱动电流,并记录第二驱动电流的最小值Id(NG-min)。对比Id(OK-max)和Id(NG-min),如果Id(OK-max)/Id(NG-min)大于预设值,该预设值可以为50%、60%或者70%,则确定Id(NG-min)为基准驱动电流。可以理解的是,预设值还可以根据实际需要进行设置,该值不宜设置过小,以避免对缺陷像素点造成误判。
在一些实施例中,图5为本公开实施例提供的一种计算缺陷像素点的补偿数据电压的方法的流程示意图,如图5所示,计算缺陷像素点的补偿数据电压的方法包括如下步骤:
S501,调节缺陷像素点的亮度,使得缺陷像素点的电流小于或等于基准驱动电流。
S502,记录缺陷像素点的调节前数据电压和调节后数据电压。
S503,根据调节前数据电压和调节后数据电压,计算补偿数据电压。
在实际应用中,由于像素点的亮度与其驱动电流是正相关的,可以通过调节输入该像素点的数据电压来调整驱动电流的大小,使得存在显示缺陷的像素点的驱动电流小于或等于基准驱动电流,这样就可以使得缺陷像素点的亮度降低为与周围正常像素点相同的亮度,或者将该缺陷像素点调整为暗点,以完成对显示缺陷的修复。同时分别记录该像素点输入的调整前的数据电压和调整后的数据电压,二者之差即为需要输入的补偿数据电压。
在一些实施例中,根据参考像素点和缺陷像素点的亮度差异,计算缺陷像素点的补偿数据电压,之后还包括:将补偿数据电压进行存储。
补偿数据电压可以存储在显示模组的存储模块中,在显示模组的应用过程中,可以直接从存储模块中调用存储的补偿数据电压,以对显示面板中的显示缺陷像素进行补偿,使得显示画面均匀,从而提高显示效果,提高用户的使用体验。
在一些实施例中,将补偿数据电压进行存储,之后还包括:将存储的补偿数据电压提取,并将补偿数据电压输入至缺陷像素点;若缺陷像素点的亮度小于或等于参考像素点的亮度,则确定显示缺陷修复成功。
在将补偿数据电压后,还需要对显示面板显示缺陷修复进行进一步确认,以确定存储的补偿数据电压是否满足亮点修复需要,具体地,可以直接提取存储的补偿数据电压,并将该补偿数据电压输入至缺陷像素点,通过观察或者检测驱动电流的方式,检测显示面板中是否存在显示缺陷。若无显示缺陷,则确认显示缺陷修复成功,若依然存在显示缺陷,则确定显示缺陷修复失败,将该显示面板进行报废处理。
第二方面,本公开实施例提供了一种显示装置,该显示装置包括显示面板及存储模块,存储模块存储有补偿数据电压;该补偿数据电压通过如上述任一实施例提供的显示面板显示缺陷的修复方法获得。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,其实现原理及有益效果与上述的显示面板显示缺陷的修复方法的实现原理及有益效果相同,在此不再进行赘述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (12)

  1. 一种显示面板显示缺陷的修复方法,其中,包括:
    在模组工艺阶段,向显示面板中的各个像素点输入第一数据电压,使得所述显示面板显示待检测画面,并获取各个所述像素点的亮度;
    根据所述待检测画面,确定出参考像素点和缺陷像素点;
    根据所述参考像素点和所述缺陷像素点的亮度差异,计算所述缺陷像素点的补偿数据电压;
    根据所述补偿数据电压,向所述参考像素点输入第一数据电压,同时向所述缺陷像素点输入第二数据电压;所述第二数据电压为所述第一数据电压与所述补偿数据电压之和。
  2. 根据权利要求1所述的显示面板显示缺陷的修复方法,其中,所述获取各个所述像素点的亮度,包括:
    利用高清相机对所述待检测画面进行拍照,并获取所述待检测画面的图像;
    通过傅里叶变换转化为矩阵数据,并对所述矩阵数据进行增强处理,以获取各个所述像素点的亮度。
  3. 根据权利要求2所述的显示面板显示缺陷的修复方法,其中,所述对所述矩阵数据进行增强处理,包括:
    对所述矩阵数据通过平方或取对数方式进行处理。
  4. 根据权利要求3所述的显示面板显示缺陷的修复方法,其中,所述补偿数据电压包括:第一补偿数据电压;
    所述第一补偿数据电压为所述参考像素点输入的数据电压的峰值与所述缺陷像素点当前的数据电压之差。
  5. 根据权利要求4所述的显示面板显示缺陷的修复方法,其中,所述补偿数据电压还包括:第二补偿数据电压;
    所述第二补偿数据电压通过补偿算法计算获得。
  6. 根据权利要求2所述的显示面板显示缺陷的修复方法,其中,所述像素点包括:红色子像素、绿色子像素和蓝色子像素;所述向显示面板中的各个像素点输入第一数据电压,包括:
    向显示面板中的各个红色子像素、各个绿色子像素、各个蓝色子像素分别依次输入第一红色数据电压、第一绿色数据电压、第一蓝色数据电压。
  7. 根据权利要求1所述的显示面板显示缺陷的修复方法,其中,确定出参考像素点和缺陷像素点,包括:
    根据已知的正常显示面板和已知的缺陷显示面板,确定基准驱动电流;
    获取各个所述像素点当前的驱动电流,并比较各个像素点当前的驱动电流与基准驱动电流的大小;
    若所述像素点当前的驱动电流大于所述基准驱动电流,则确定所述像素点为缺陷像素点;
    若所述像素点当前的驱动电流小于或等于所述基准驱动电流,则确定所述像素点位参考像素点。
  8. 根据权利要求7所述的显示面板显示缺陷的修复方法,其中,所述确定基准驱动电流,包括:
    采集已知的正常显示面板中的各个像素点的第一驱动电流,并记录所述第一驱动电流的最大值;
    采集已知的缺陷显示面板中各个像素点的第二驱动电流,并记录所述第二驱动电流的最小值;
    比较所述第一驱动电流的最大值与所述第二驱动电流的最小值;
    若所述第一驱动电流的最大值与所述第二驱动电流的最小值的比值大于预设值,则确定所述第二驱动电流的最小值为基准驱动电流。
  9. 根据权利要求8所述的显示面板显示缺陷的修复方法,其中,根据所述参考像素点和所述缺陷像素点的亮度差异,计算所述缺陷像素点的补偿数据电压,包括:
    调节所述缺陷像素点的亮度,使得所述缺陷像素点的电流小于或等于所述基准驱动电流;
    记录所述缺陷像素点的调节前数据电压和调节后数据电压;
    根据所述调节前数据电压和所述调节后数据电压,计算所述补偿数据电压。
  10. 根据权利要求1所述的显示面板显示缺陷的修复方法,其中,所述根据所述参考像素点和所述缺陷像素点的亮度差异,计算所述缺陷像素点的补偿数据电压,之后还包括:
    将所述补偿数据电压进行存储。
  11. 根据权利要求10所述的显示面板显示缺陷的修复方法,其中,所述将所述补偿数据电压进行存储,之后还包括:
    将存储的所述补偿数据电压提取,并将所述补偿数据电压输入至所述缺陷像素点;
    若所述缺陷像素点的亮度小于或等于所述参考像素点的亮度,则确定所述显示缺陷修复成功。
  12. 一种显示装置,其中,所述显示装置包括:显示面板及存储模块;所述存储模块存储有补偿数据电压;所述补偿数据电压通过如权利要求1至11任一项所述的显示面板显示缺陷的修复方法获得。
PCT/CN2022/086806 2022-04-14 2022-04-14 显示面板显示缺陷的修复方法及显示装置 WO2023197241A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000755.4A CN117529767A (zh) 2022-04-14 2022-04-14 显示面板显示缺陷的修复方法及显示装置
PCT/CN2022/086806 WO2023197241A1 (zh) 2022-04-14 2022-04-14 显示面板显示缺陷的修复方法及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086806 WO2023197241A1 (zh) 2022-04-14 2022-04-14 显示面板显示缺陷的修复方法及显示装置

Publications (1)

Publication Number Publication Date
WO2023197241A1 true WO2023197241A1 (zh) 2023-10-19

Family

ID=88328589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086806 WO2023197241A1 (zh) 2022-04-14 2022-04-14 显示面板显示缺陷的修复方法及显示装置

Country Status (2)

Country Link
CN (1) CN117529767A (zh)
WO (1) WO2023197241A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184671A1 (en) * 2012-12-28 2014-07-03 Gil-Jae Lee Display device, and optical compensation system and optical compensation method thereof
CN106328030A (zh) * 2015-07-06 2017-01-11 力领科技股份有限公司 校正方法与显示设备
CN107331347A (zh) * 2017-08-25 2017-11-07 惠科股份有限公司 亮度补偿的优化方式及前阶段设备
US20170352310A1 (en) * 2016-06-03 2017-12-07 Samsung Electronics Co., Ltd. Module type display apparatus, display apparatus comprising the module type display apparatus, and control method thereof
CN109727569A (zh) * 2017-10-27 2019-05-07 优显科技股份有限公司 发光装置的亮度补偿方法
CN110580885A (zh) * 2018-06-11 2019-12-17 郭弘政 改善显示器面板亮度均匀度的方法
US20200090565A1 (en) * 2018-09-14 2020-03-19 Sakai Display Products Corporation Correction data generating device, computer program, method for generating correction data, and method for producing display panel
CN111554238A (zh) * 2019-02-12 2020-08-18 陕西坤同半导体科技有限公司 有机发光二极体显示面板亮度补偿方法
CN112950657A (zh) * 2021-03-29 2021-06-11 合肥京东方显示技术有限公司 伽马值校正方法及其装置、电子装置和可读存储介质
CN113160768A (zh) * 2021-04-15 2021-07-23 惠州市华星光电技术有限公司 显示面板及其控制方法、存储介质
CN113241030A (zh) * 2021-04-27 2021-08-10 广东小天才科技有限公司 一种显示屏亮度补偿方法、装置及电子设备
CN113284461A (zh) * 2021-05-31 2021-08-20 武汉华星光电半导体显示技术有限公司 显示面板的光学补偿方法及存储介质
CN113496688A (zh) * 2020-04-01 2021-10-12 乐金显示有限公司 用于补偿亮度偏差的方法和装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184671A1 (en) * 2012-12-28 2014-07-03 Gil-Jae Lee Display device, and optical compensation system and optical compensation method thereof
CN106328030A (zh) * 2015-07-06 2017-01-11 力领科技股份有限公司 校正方法与显示设备
US20170352310A1 (en) * 2016-06-03 2017-12-07 Samsung Electronics Co., Ltd. Module type display apparatus, display apparatus comprising the module type display apparatus, and control method thereof
CN107331347A (zh) * 2017-08-25 2017-11-07 惠科股份有限公司 亮度补偿的优化方式及前阶段设备
CN109727569A (zh) * 2017-10-27 2019-05-07 优显科技股份有限公司 发光装置的亮度补偿方法
CN110580885A (zh) * 2018-06-11 2019-12-17 郭弘政 改善显示器面板亮度均匀度的方法
US20200090565A1 (en) * 2018-09-14 2020-03-19 Sakai Display Products Corporation Correction data generating device, computer program, method for generating correction data, and method for producing display panel
CN111554238A (zh) * 2019-02-12 2020-08-18 陕西坤同半导体科技有限公司 有机发光二极体显示面板亮度补偿方法
CN113496688A (zh) * 2020-04-01 2021-10-12 乐金显示有限公司 用于补偿亮度偏差的方法和装置
CN112950657A (zh) * 2021-03-29 2021-06-11 合肥京东方显示技术有限公司 伽马值校正方法及其装置、电子装置和可读存储介质
CN113160768A (zh) * 2021-04-15 2021-07-23 惠州市华星光电技术有限公司 显示面板及其控制方法、存储介质
CN113241030A (zh) * 2021-04-27 2021-08-10 广东小天才科技有限公司 一种显示屏亮度补偿方法、装置及电子设备
CN113284461A (zh) * 2021-05-31 2021-08-20 武汉华星光电半导体显示技术有限公司 显示面板的光学补偿方法及存储介质

Also Published As

Publication number Publication date
CN117529767A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
RU2660628C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
TWI411998B (zh) 有機發光二極體顯示器、資訊裝置、與在有機發光二極體顯示器中顯示影像之方法
KR101286534B1 (ko) 액정표시장치의 검사장치 및 검사방법
TWI610291B (zh) 液晶顯示裝置以及液晶顯示裝置的局部調光方法
CN105679798A (zh) Oled显示装置及其像素修复方法
KR102350818B1 (ko) 화상에 있어서의 고주파 성분을 검출하는 방법 및 장치
CN107481689A (zh) 图像处理装置及其处理方法
WO2018045676A1 (zh) 显示面板的亮度和色度的调节计算方法及系统
CN110444176B (zh) 显示面板的像素色差补偿方法及系统、显示装置
US11150498B2 (en) Detection method and device of display panel and automatic optic inspection apparatus
US20240029601A1 (en) Compensation method and compensation device of display panel
US20230058388A1 (en) Gamma debugging method and apparatus
CN101350181B (zh) 信号处理设备、信号处理方法和显示装置
WO2020093528A1 (zh) 一种显示面板的驱动方法、驱动装置及显示装置
TW202008347A (zh) 顯示面板與顯示面板圖像資料補償方法
US11810521B1 (en) Display drive method for reducing difference between light emitting efficiencies of subpixels, display driver, and display device
KR20190027266A (ko) 표시장치의 무라 보상 장치 및 이를 이용한 무라 보상 방법
WO2023197241A1 (zh) 显示面板显示缺陷的修复方法及显示装置
CN109584768A (zh) 影像色温的获取方法
CN109767728A (zh) Oled显示器件屏幕亮度的补偿方法
WO2019100551A1 (zh) 显示面板Mura的检测方法、检测装置及计算机可读存储介质
US20240029663A1 (en) Method and device for establishing brightness correction database of display panel
WO2023159655A1 (zh) 像素补偿方法及系统
WO2019019314A1 (zh) 阵列基板、显示面板和显示装置
WO2022021423A1 (zh) 液晶显示装置中补偿校正表的构建方法与液晶显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000755.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936890

Country of ref document: EP

Kind code of ref document: A1