WO2023197167A1 - 一种控制方法及叠片系统 - Google Patents

一种控制方法及叠片系统 Download PDF

Info

Publication number
WO2023197167A1
WO2023197167A1 PCT/CN2022/086408 CN2022086408W WO2023197167A1 WO 2023197167 A1 WO2023197167 A1 WO 2023197167A1 CN 2022086408 W CN2022086408 W CN 2022086408W WO 2023197167 A1 WO2023197167 A1 WO 2023197167A1
Authority
WO
WIPO (PCT)
Prior art keywords
overhang
value
composite
pole piece
deviation value
Prior art date
Application number
PCT/CN2022/086408
Other languages
English (en)
French (fr)
Inventor
段彭飞
陈琪
王建磊
戴亚
卢浩冉
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/086408 priority Critical patent/WO2023197167A1/zh
Priority to CN202280041093.5A priority patent/CN117480648A/zh
Publication of WO2023197167A1 publication Critical patent/WO2023197167A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general

Definitions

  • the present application relates to the field of battery technology, specifically, to a control method and a lamination system.
  • Power batteries have developed a laminated forming process based on winding forming, that is, laminated batteries.
  • the structure of the existing laminated battery includes a positive electrode plate and a cross-stacked negative electrode plate. The positive electrode plate and the negative electrode plate are separated by a separator.
  • OverHang alignment of laminated batteries is an important parameter in the production process of laminated batteries. OverHang refers to the length and width of the negative electrode piece beyond the positive and negative electrode piece. OverHang will affect the electrochemical performance of stacked batteries. Therefore, during the production process of laminated batteries, OverHang needs to be strictly controlled.
  • the current OverHang control method for laminated batteries is that after the laminated system has formed the entire laminated battery (including the composite of pole pieces, battery injection, and volume separation and formation processes), the staff will perform the OverHang of the laminated battery. detection. When the OverHang of the laminated battery is abnormal, the staff manually adjusts the laminated system and improves the system structure. It can be seen that this method requires personnel participation, is too cumbersome, and the adjustment process has lag, and cannot be adjusted in time when the OverHang of the laminated battery is abnormal.
  • the purpose of the embodiments of the present application is to provide a control method and a stacking system to reduce personnel participation, simplify the adjustment process, and make timely adjustments when the OverHang of the stacked battery is abnormal.
  • the present invention is implemented as follows:
  • embodiments of the present application provide a control method, which method includes: obtaining image information of a composite rear pole piece; wherein the composite rear pole piece includes an anode pole piece, a cathode pole piece, and a separator; based on the The image information calculates the OverHang value of the composite rear pole piece; based on the OverHang values of all composite rear pole pieces corresponding to the laminated battery, determines the OverHang deviation value of the lamination system during the composite process; and compensates the above based on the OverHang deviation value.
  • the placement position of the pole piece before lamination in the lamination system includes: obtaining image information of a composite rear pole piece; wherein the composite rear pole piece includes an anode pole piece, a cathode pole piece, and a separator; based on the The image information calculates the OverHang value of the composite rear pole piece; based on the OverHang values of all composite rear pole pieces corresponding to the laminated battery, determines the OverHang deviation value of the lamination system during the composite
  • the embodiment of the present application provides a control method. After the anode electrode piece, the cathode electrode piece and the separator are combined, the collected image information of the composite rear electrode piece is obtained, and then the stacking system is determined by calculating the OverHang value of the composite rear electrode piece. The OverHang deviation value during the compounding process is used to compensate the pole piece placement position before compounding in the lamination system based on the OverHang deviation value. In this way, the lamination system can be adjusted in a timely manner during the processing stages of anode plates, cathode plates and separators, simplifying the adjustment process. At the same time, by automatically adjusting the stacking system, the position of the pole pieces can be continuously adjusted, the OverHang deviation can be compensated, the composite effect can be ensured, and the quality of the stacked battery can be improved.
  • the OverHang deviation value of the stacked system during the composite process is determined based on the OverHang values of all composite rear electrode sheets corresponding to the stacked battery, including: Generate an OverHang value group based on the OverHang values of all composite rear pole pieces in the laminated battery for which the OverHang value is successfully calculated; calculate the mean value of the OverHang value group; based on the mean value of the OverHang value group and the preset standard value The difference value determines the OverHang deviation value of the lamination system during the composite process.
  • the OverHang deviation value of the lamination system during the composite process is determined by the average value of the OverHang value of all composite rear electrode plates for which the OverHang value is successfully calculated in the laminate battery, so as to reasonably determine the OverHang deviation value of the lamination system.
  • the OverHang deviation value of the system during the composite process also avoids the influence of the unsuccessfully calculated OverHang value on the calculation of the OverHang deviation value due to equipment calculation reasons or image acquisition reasons.
  • calculating the mean value of the OverHang value group includes: sorting the OverHang values in the OverHang value group according to the order of numerical size; based on the sorting In order, remove the first N values and the last N values in the OverHang value group; where N is a positive integer; based on the remaining OverHang values in the OverHang value group, calculate the mean of the OverHang value group.
  • the compensation of the pole piece placement position before compounding in the lamination system based on the OverHang deviation value includes: comparing the OverHang deviation value with The preset deviation value is compared; when the OverHang deviation value is greater than the preset deviation value, the pole piece placement position before compounding in the lamination system is compensated based on the OverHang deviation value.
  • the pole piece placement position before compounding in the stacking system is compensated based on the OverHang deviation value to avoid repeated adjustments when the error is small.
  • the lamination system causes the lamination system to fail to operate stably.
  • inventions of the present application provide a control method applied to a lamination system.
  • the lamination system includes an image acquisition device, a controller and a host computer; the controller is connected to the image acquisition device and the host computer respectively.
  • the image acquisition device is connected to the host computer, and the image acquisition device is also connected to the host computer.
  • the method includes: the controller controls the anode pole piece, the cathode pole piece and the diaphragm to be combined to generate a composite rear pole piece; the image acquisition device Photograph the composite back pole piece and send the image information of the composite back pole piece to the host computer; the host computer calculates the OverHang value of the composite back pole piece based on the image information; and based on the lamination
  • the OverHang values of all composite rear pole pieces corresponding to the battery determine the OverHang deviation value of the lamination system during the composite process; and the OverHang deviation value is fed back to the controller; the controller is based on the OverHang deviation The value compensates for the pole piece placement position before lamination in the laminate system.
  • the embodiment of the present application provides a control method applied to the stacking system.
  • the image acquisition device is used to collect the image information of the composite pole piece after the anode pole piece, cathode pole piece and separator are combined.
  • the host computer calculates the composite
  • the OverHang value of the rear pole piece is used to determine the OverHang deviation value of the lamination system during the lamination process.
  • the controller compensates the pole piece placement position before lamination in the lamination system based on the OverHang deviation value.
  • the controller, host computer and image acquisition device the online closed-loop control of the OverHang of the composite rear pole piece is realized, that is, the stacking system can be adjusted in a timely manner during the processing stages of the anode pole piece, cathode pole piece and separator. , simplifying the adjustment process.
  • the position of the pole pieces can be continuously adjusted, the OverHang deviation can be compensated, the composite effect can be ensured, and the quality of the stacked battery can be improved.
  • the host computer determines the OverHang deviation of the lamination system during the composite process based on the OverHang values of all composite rear pole pieces corresponding to the lamination battery. Values include: the host computer generates an OverHang value group based on the OverHang values of all composite rear pole pieces for which the OverHang value is successfully calculated in the laminated battery; calculates the mean value of the OverHang value group; and based on the OverHang value The difference between the mean value of the group and the preset standard value determines the OverHang deviation value of the lamination system during the composite process.
  • the host computer calculates the mean value of the OverHang value group, including: the host computer calculates the OverHang value in the OverHang value group according to the value size. Sorting in order; based on the sorting order, removing the first N values and the last N values in the OverHang value group; where N is a positive integer; and based on the remaining OverHang values in the OverHang value group, calculating the OverHang The mean of a numerical group.
  • the method before the controller compensates the pole piece placement position before compounding of the lamination system based on the OverHang deviation value, the method further includes: The host computer compares the OverHang deviation value with a preset deviation value; when the OverHang deviation value is greater than the preset deviation value, the OverHang deviation value is fed back to the controller.
  • the method before the image acquisition device captures the composite rear pole piece, the method further includes: the controller determines the pole position on the detection station according to the The piece mark code triggers the image acquisition device to take pictures; wherein, the detection station is an ejection station that generates the composite rear electrode piece.
  • embodiments of the present application provide a lamination system, including: an image acquisition device, a controller, and a host computer; the controller is connected to the image acquisition device and the host computer respectively, and the image acquisition device It is also connected to the host computer; the controller is used to control the anode electrode piece, the cathode electrode piece and the separator to be combined to generate a composite rear electrode piece; the image acquisition device is used to photograph the composite rear electrode piece, and The image information of the composite rear pole piece is sent to the host computer; the host computer is used to calculate the OverHang value of the composite rear pole piece based on the image information; and based on the OverHang value of all composite rear pole pieces corresponding to the laminated battery OverHang value is used to determine the OverHang deviation value of the lamination system during the composite process; and the OverHang deviation value is fed back to the controller; the controller is used to compensate for the OverHang deviation value of the lamination system based on the OverHang deviation value.
  • the pole piece placement position before compounding.
  • Figure 1 is a schematic diagram of the processing process of an anode pole piece, a cathode pole piece and a separator provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a composite rear pole piece provided by an embodiment of the present application.
  • Figure 3 is a step flow chart of the first control method provided by the embodiment of the present application.
  • Figure 4 is a step flow chart of the second control method provided by the embodiment of the present application.
  • Figure 5 is a module block diagram of a lamination system provided by an embodiment of the present application.
  • Figure 6 is a step flow chart of the third control method provided by the embodiment of the present application.
  • Icon 10-laminated battery; 11-upper cathode plate; 12-lower cathode plate; 21-upper diaphragm; 22-lower diaphragm; 3-anode; 100-laminated system; 101-image acquisition device; 102- Controller; 103-host computer.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • Power batteries have developed a lamination forming process based on winding forming, that is, laminated batteries.
  • the structure of the existing laminated battery includes a positive electrode plate and a cross-stacked negative electrode plate. The positive electrode plate and the negative electrode plate are separated by a separator.
  • OverHang of laminated batteries is an important parameter in the production process of laminated batteries. OverHang refers to the length and width of the negative electrode piece beyond the positive and negative electrode piece. OverHang will affect the electrochemical performance of stacked batteries. Therefore, during the production process of laminated batteries, OverHang needs to be strictly controlled.
  • the current OverHang control method for laminated batteries is that after the laminated system shapes the entire laminated battery (including the composite of pole pieces, battery injection, and volume separation and formation processes), the staff stacks the Check the OverHang of the chip battery. When the OverHang of the laminated battery is abnormal, the staff manually adjusts the laminated system and improves the system structure. It can be seen that this method requires personnel participation, is too cumbersome, and the adjustment process has lag, and cannot be adjusted in time when the OverHang of the laminated battery is abnormal.
  • the inventor found that the OverHang of the stacked battery can be detected during the processing stage of the anode plate, cathode plate and separator of the stacked battery, and then dynamically adjust the stacking system according to the detection results.
  • the pole piece placement position before compounding is used to compensate for the OverHang deviation. For example, during the processing stage of the anode pole piece, cathode pole piece and separator, the image of the composite rear pole piece is collected through the camera, and then the OverHang of the composite rear pole piece and the OverHang of the current lamination system during the compounding process are calculated by analyzing the image. deviation value, and finally adjust the stacking system based on OverHang deviation value feedback.
  • embodiments of the present application provide a control method and a lamination system to solve the above technical problems.
  • A101 is the anode unwinding incoming material
  • A102 is the anode heating station
  • A103 is the upper diaphragm heating station
  • A104 is the lower diaphragm heating station
  • A105 is the upper diaphragm unwinding incoming material
  • A106 is the lower diaphragm unwinding Incoming materials
  • A107 is the anode separator thermal compounding station
  • A108 is the upper cathode unwinding incoming material
  • A109 is the upper cathode cutter
  • A110 is the upper cathode pole piece compounding position
  • A111 is the lower cathode unwinding incoming material
  • A112 is the lower cathode
  • the cutter A113 is the composite position of the lower cathode pole piece
  • A114 is the composite rear pole piece
  • A115 is the upper station camera added by this application
  • A116 is the lower station camera added by this application.
  • the specific processing process is: after a roll of anode material A101 enters the lamination system, it is heated at the anode heating station A102, and then is heated with a roll of upper separator A105 and a heated roll of lower separator A106 at the anode separator heat.
  • Composite work is performed at composite station A107.
  • a roll of upper cathode material A108 is cut by an upper cathode cutter A109, and a roll of lower cathode material A111 is cut by a lower cathode cutter A112.
  • the cut upper cathode pole piece is placed at the upper cathode pole piece recombination position A110, and the cut lower cathode pole piece is placed at the lower cathode pole piece recombination position A113.
  • the upper cathode pole piece and the lower cathode pole piece are then connected through the anode diaphragm.
  • the compounded composite materials (including the upper separator, anode and lower separator) are compounded at the thermal compounding station A107 to form the composite rear pole piece A114.
  • the composite rear pole piece A114 is composed of an upper cathode, an upper diaphragm, an anode, a lower diaphragm and a lower cathode from top to bottom.
  • the stacked battery 10 as shown in FIG. 2 can be formed.
  • the anode 3 is located between the upper separator 21 and the lower separator 22.
  • the upper cathode plate 11 is attached to the other side of the upper separator 21, and the lower cathode is attached to the other side of the lower separator 22.
  • Pole piece 12 is attached to the other side of the lower separator 22.
  • the above embodiments provide a composite rear electrode piece with a cut cathode and a continuous anode.
  • the control method mentioned later can also be applied to the processing process of the composite rear electrode piece with the anode continuous and the cathode cut off, and can also be applied to the processing process of the composite rear electrode piece with both the anode and cathode cut off.
  • the processing process of the composite back pole piece can adopt the implementation process of the lamination system in the prior art, which is not limited in this application.
  • control method can be applied to a control device that is communicatively connected to the lamination system, and can also be applied to the lamination system.
  • the control device may be, but is not limited to, an industrial computer, a personal computer (Personal Computer, PC), a tablet computer, etc.
  • the control method When the control method is applied to the control device, the method specifically includes: steps S101 to S104.
  • Step S101 Obtain the image information of the composite back electrode piece; wherein the composite back electrode piece includes an anode electrode piece, a cathode electrode piece and a separator.
  • control device can be connected to the image acquisition device in the control system, and the image acquisition device in the control system is used to take composite posterior pole films.
  • the image acquisition device can be the upper workstation camera A115 and the lower workstation camera A116 in Figure 1
  • the control device is connected to the upper workstation camera A115 and the lower workstation camera A116 in Figure 1 .
  • Step S102 Calculate the OverHang value of the composite rear pole piece based on the image information.
  • the control device After acquiring the image information of the composite back pole piece, the control device calculates the OverHang value of the composite back pole piece.
  • the calculation of the OverHang value of the composite rear pole piece can use the existing technology image processing algorithm, such as fitting the characteristic edge straight line of the cathode, anode and separator, and then calculating the OverHang value based on the fitting results.
  • Step S103 Based on the OverHang values of all composite rear pole pieces corresponding to the laminated battery, determine the OverHang deviation value of the laminated system during the composite process.
  • one laminated battery is used as a unit, and the OverHang deviation value of the laminated system during the composite process is determined based on the OverHang values of all composite rear electrode sheets corresponding to the laminated battery.
  • the laminated battery includes 54 composite rear electrode sheets
  • the control device integrates the 54 composite rear electrode sheets of the laminated battery, and then determines the laminate system's progress in the composite process based on the OverHang value of these 54 composite rear electrode sheets. OverHang deviation value in .
  • step S103 may also specifically include: step S201-step S203.
  • Step S201 Generate an OverHang value group based on the OverHang values of all composite rear pole pieces in the laminated battery for which the OverHang value is successfully calculated.
  • the OverHang value of the composite rear pole piece there may be equipment calculation reasons or image acquisition reasons that may cause the OverHang value group of the composite rear pole piece to be unable to be calculated. If it is used for subsequent calculation of the OverHang deviation value , will inevitably lead to a large difference in the calculated OverHang deviation value, which will have a greater impact on the control of the lamination system. For example, due to light reasons, the image acquisition is not clear, or the equipment fails to fit the characteristic edge straight line of the cathode, anode and diaphragm, which will result in the failure to successfully calculate the OverHang value. Therefore, in this step, only the OverHang values of all composite rear pole pieces in the laminated battery for which the OverHang value is successfully calculated are screened out, and an OverHang value group is generated.
  • the OverHang deviation value of the laminated system during the composite process can be determined by the average value of the OverHang value of all composite rear electrode plates for which the OverHang value is successfully calculated in the laminated battery.
  • the deviation value of the laminated system during the composite process can be reasonably determined. At the same time, it also avoids the influence of the unsuccessfully calculated OverHang value on the calculation of the OverHang deviation value due to device calculation reasons or image acquisition reasons.
  • the first composite rear electrode piece and the last composite rear electrode piece of the stacked battery are more likely to cause accidental errors, when generating the OverHang value group, the first composite rear electrode piece of the stacked battery can also be discarded. OverHang value and the OverHang value of the tail piece composite rear pole piece.
  • step S201 the OverHang value of the first composite rear pole piece and the OverHang value of the last composite rear pole piece of the laminated battery can also be discarded first, and then the stacked sheets are screened out from the remaining composite rear pole sheets.
  • the OverHang values of all composite rear pole pieces in the battery for which the OverHang value is successfully calculated are generated, and an OverHang value group is generated.
  • the control device integrates the OverHang values of the 54 composite rear pole pieces of the laminated battery, first discards the OverHang value of the first composite rear pole piece and the OverHang value of the last composite rear pole piece of the laminated battery, and then starts from the first composite rear pole piece. From the 2 composite back pole pieces to the 53rd composite back pole piece, the OverHang values of all composite back pole pieces with successfully calculated OverHang values are screened out, and an OverHang value group is generated.
  • Step S202 Calculate the mean value of the OverHang value group.
  • step S202 may specifically include: sorting the OverHang values in the OverHang value group according to numerical order; based on the sorting order, removing the first N values and the last N values in the OverHang value group; where N is Positive integer; calculates the mean of the OverHang value group based on the remaining OverHang values in the OverHang value group.
  • N can be set according to requirements.
  • the value of N can be 1, 3, or 5, which is not limited in this application.
  • the OverHang value group when calculating the mean of the OverHang value group, first sort the OverHang values in the OverHang value group according to the numerical order, such as sorting from large to small, or sorting from small to large. , then discard the largest N values and the smallest N values, and finally use the remaining OverHang values in the OverHang value group to calculate the average. In this way, the impact of accidental errors caused by maximum or minimum values on the results can be avoided.
  • Step S203 Based on the difference between the mean value of the OverHang value group and the preset standard value, determine the OverHang deviation value of the lamination system during the composite process.
  • the control device after calculating the mean value of the OverHang value group, the control device makes a difference between the mean value and the preset standard value, thereby obtaining the OverHang deviation value of the lamination system during the composite process.
  • the above-mentioned preset standard value can be set according to actual needs, for example, it can be set according to different types and sizes of laminated batteries, which is not limited in this application.
  • Step S104 Compensate the pole piece placement position before compounding in the lamination system based on the OverHang deviation value.
  • the OverHang deviation value is used to compensate for the pole piece placement before compounding in the lamination system, that is, the control device sends an adjustment instruction to the lamination system, which then causes the lamination system to adjust the pole piece placement before compounding based on the adjustment instruction.
  • the placement position of the cathode electrode such as adjusting the upper cathode electrode in Figure 1
  • the adjustment position here can be understood as adjusting the transportation position of the cathode electrode. For example, if the deviation value indicates that the cathode electrode is deflected to the left, then the transportation position of the cathode electrode should be moved closer to the anode separator thermal compounding station. Adjust the direction of A107.
  • the deviation value indicates that the cathode plate is deflected to the right, adjust it in the direction away from the anode separator thermal compounding station A107.
  • the specific adjustment process may be determined according to the actual structure of the lamination system, and is not limited in this application.
  • the above-mentioned step S104 may also specifically include: comparing the OverHang deviation value with a preset deviation value; when the OverHang deviation value is greater than the preset deviation value, compensating the pre-composite deviation in the lamination system based on the OverHang deviation value. Pole piece placement position.
  • the preset deviation value can also be set according to actual needs, and the numerical value is not limited in this application.
  • the embodiments of this application provide a control method. After the anode electrode piece, the cathode electrode piece and the separator are combined, the collected image information of the composite rear electrode piece is obtained, and then the OverHang value of the composite rear electrode piece is calculated to determine The OverHang deviation value of the lamination system during the lamination process is used to compensate the pole piece placement position before lamination in the lamination system based on the OverHang deviation value. In this way, the stacking system can be adjusted in a timely manner during the processing stages of the anode pole piece, cathode pole piece and separator, simplifying the adjustment process. At the same time, by automatically adjusting the stacking system, the position of the pole pieces can be continuously adjusted, the OverHang deviation can be compensated, the composite effect can be ensured, and the quality of the stacked battery can be improved.
  • the above control method can also be applied to a lamination system. Please refer to Figure 5.
  • the lamination system 100 includes an image acquisition device 101, a controller 102 and a host computer 103.
  • the controller 102 is connected to the image acquisition device 101 and the host computer 103 respectively.
  • the image acquisition device 101 is also connected to the host computer 103 .
  • the controller 102 is mainly used to control the manufacturing process of the laminated battery. Specifically, the controller 102 is used to control the anode electrode piece, the cathode electrode piece and the separator to be combined to generate a composite rear electrode piece.
  • the image acquisition device 101 is mainly used to photograph the composite posterior pole piece. Specifically, the image acquisition device 101 is used to photograph the composite posterior pole piece and send the image information of the composite posterior pole piece to the host computer 103 .
  • the host computer 103 is mainly used to calculate the OverHang value of the composite rear pole piece and the OverHang deviation value of the lamination system 100 during the composite process.
  • the host computer 103 is used to calculate the OverHang value of the composite back pole piece based on the image information; and based on the OverHang values of all the composite back pole pieces corresponding to the laminated battery, determine the OverHang deviation value of the lamination system during the composite process. ; and feedback the OverHang deviation value to the controller 102.
  • the controller 102 is also used to compensate the pole piece placement position before compounding in the lamination system 100 based on the OverHang deviation value.
  • the above-mentioned controller 102 may include, but is not limited to, PLC (Programmable Logic Controller, programmable logic controller), single chip microcomputer, application specific integrated circuit (Application Specific Integrated Circuit, ASIC), discrete gate or transistor logic devices, discrete hardware components, etc.
  • the image acquisition device 101 may include, but is not limited to, an industrial camera, a video camera, a CCD (Charge-coupled Device) camera, a panoramic camera, etc.
  • the host computer 103 may include but is not limited to a computer.
  • control method When the control method is applied to the above-mentioned lamination system 100, the method specifically includes: steps S301 to S304.
  • Step S301 The controller controls the anode electrode piece, the cathode electrode piece and the separator to be combined to generate a composite rear electrode piece.
  • the controller controls a roll of anode material A101 to enter the lamination system, and after being heated at the anode heating station A102, it will be connected with a heated roll of upper separator A105 and a heated roll of lower separator A106.
  • the anode separator is composited at the thermal lamination station A107.
  • the controller controls a roll of upper cathode material A108 to be cut by the upper cathode cutter A109, and a roll of lower cathode material A111 to be cut by the lower cathode cutter A112.
  • the cut upper cathode electrode piece is placed at the upper cathode electrode piece recombination position A110, and the cut lower cathode electrode piece is placed at the lower cathode electrode piece recombination position A113.
  • the upper cathode electrode piece and the lower cathode electrode piece are then thermally combined with the anode separator.
  • the compounded composite materials (including the upper separator, anode and lower separator) are compounded at station A107 to form the composite rear pole piece A114.
  • Step S302 The image acquisition device captures the composite back pole piece and sends the image information of the composite back pole piece to the host computer.
  • the image acquisition device is arranged at the stacking position of the composite back pole piece. After the separator, anode pole piece and cathode pole piece are compounded, the image acquisition device captures the composite rear pole piece and sends the image information of the composite rear pole piece to the host computer.
  • the method before the image acquisition device captures the composite rear pole piece, the method also includes: the controller triggers the image acquisition device to capture the pole piece according to the pole piece mark code on the detection station; wherein the detection station is to generate the composite rear pole piece.
  • the film unloading station before the image acquisition device captures the composite rear pole piece, the method also includes: the controller triggers the image acquisition device to capture the pole piece according to the pole piece mark code on the detection station; wherein the detection station is to generate the composite rear pole piece.
  • the film unloading station before the image acquisition device captures the composite rear pole piece.
  • the detection station can also be the setting station of the image acquisition device, and the pole piece mark code is automatically generated by the internal program of the controller.
  • the pole piece mark code indicates the number of pole pieces after composite.
  • the marking code of the composite back electrode piece is 47, which means that the composite back electrode piece is the 47th composite back electrode piece of the current stacked battery.
  • Step S303 The host computer calculates the OverHang value of the composite rear pole piece based on the image information; and based on the OverHang values of all the composite rear pole pieces corresponding to the laminated battery, determines the OverHang deviation value of the laminated system during the composite process; and calculates the OverHang deviation The value is fed back to the controller.
  • the host computer can calculate the OverHang value of the composite rear pole piece by using the image processing algorithm of the existing technology, such as fitting the characteristic edge straight line of the cathode, anode and separator, and then calculating the OverHang value based on the fitting results.
  • the host computer uses a stacked battery as a unit and determines the OverHang deviation value of the stacked system during the composite process based on the OverHang values of all composite rear electrode sheets corresponding to the stacked battery.
  • the laminated battery includes 54 composite rear electrode sheets
  • the 54 composite rear electrode sheets of the laminated battery are integrated, and then the host computer determines based on the OverHang value of these 54 composite rear electrode sheets to determine whether the lamination system is in the composite state. OverHang deviation value in the process.
  • the above-mentioned process of determining the OverHang deviation value of the stacked system during the composite process based on the OverHang values of all the composite rear electrode sheets corresponding to the stacked battery may specifically include: the host computer calculates the OverHang deviation value based on all the successfully completed stacked batteries.
  • the OverHang value of the composite rear pole piece is used to generate the OverHang value group; the mean value of the OverHang value group is calculated; and based on the difference between the mean value of the OverHang value group and the preset standard value, the OverHang of the lamination system during the composite process is determined Deviation.
  • the OverHang value of the composite rear pole piece there may be equipment calculation reasons or image acquisition reasons that may cause the OverHang value group of the composite rear pole piece to be unable to be calculated. If it is used for subsequent calculation of the OverHang deviation value , will inevitably lead to a large difference in the calculated OverHang deviation value, which will have a greater impact on the control of the lamination system. For example, due to light reasons, the image acquisition is not clear, or the equipment fails to fit the characteristic edge straight line of the cathode, anode and diaphragm, which will result in the failure to successfully calculate the OverHang value.
  • the host computer only screens out the OverHang values of all composite rear pole pieces in the laminated battery for which the OverHang value is successfully calculated, and generates an OverHang value group.
  • the OverHang deviation value of the lamination system during the composite process can be reasonably determined.
  • it can also avoid the influence of the unsuccessfully calculated OverHang value on the calculation of the OverHang deviation value due to equipment calculation reasons or image acquisition reasons.
  • the first composite rear electrode piece and the last composite rear electrode piece of the stacked battery are more likely to cause accidental errors, when generating the OverHang value group, the first composite rear electrode piece of the stacked battery can also be discarded. OverHang value and the OverHang value of the tail piece composite rear pole piece.
  • the host computer can also first discard the OverHang value of the first composite rear pole piece and the OverHang value of the tail composite rear pole piece of the laminated battery, and then screen out the remaining composite rear pole pieces.
  • the OverHang values of all composite rear pole pieces in the laminated battery for which the OverHang value is successfully calculated are generated, and an OverHang value group is generated.
  • the host computer integrates the OverHang values of the 54 composite rear pole pieces of the laminated battery, first discards the OverHang value of the first composite rear pole piece of the laminated battery and the OverHang value of the tail composite rear pole piece, and then starts from the From the 2 composite back pole pieces to the 53rd composite back pole piece, the OverHang values of all composite back pole pieces with successfully calculated OverHang values are screened out, and an OverHang value group is generated.
  • the host computer After the host computer obtains the OverHang value group, it adds and averages all the OverHang values in the OverHang value group to obtain the mean value of the OverHang value group.
  • the process of calculating the mean value of the OverHang value group may specifically include: the host computer sorts the OverHang values in the OverHang value group according to numerical order; based on the sorting order, removes the first N values and the last N values in the OverHang value group. N values; where N is a positive integer; based on the remaining OverHang values in the OverHang value group, calculate the mean of the OverHang value group.
  • N can be set according to requirements.
  • the value of N can be 1, 3, 5, or 7, which is not limited in this application.
  • the host computer when it calculates the mean value of the OverHang value group, it first sorts the OverHang values in the OverHang value group according to the numerical order, such as sorting the values from large to small, or in the order of small to large values. Sort, then discard the largest N values and the smallest N values, and finally use the remaining OverHang values in the OverHang value group to calculate the average. In this way, the impact of accidental errors caused by maximum or minimum values on the results can be avoided.
  • the host computer determines the OverHang deviation value of the lamination system during the composite process based on the difference between the mean value of the OverHang value group and the preset standard value.
  • the host computer calculates the mean value of the OverHang value group, it makes a difference between the mean value and the preset standard value, and then obtains the OverHang deviation value of the lamination system during the composite process.
  • the host computer calculates the stack value. After the chip system determines the OverHang deviation value during the compounding process, the OverHang deviation value is fed back to the controller.
  • the above-mentioned preset standard value can be set according to actual needs, for example, it can be set according to different types and sizes of laminated batteries, which is not limited in this application.
  • Step S304 The controller compensates the pole piece placement position before compounding in the lamination system based on the OverHang deviation value.
  • the controller compensates for the pole piece placement before compounding in the lamination system based on the OverHang deviation value sent by the host computer.
  • the controller adjusts the placement position of the cathode electrode at this time, such as adjusting the upper position of the cathode electrode in Figure 1
  • the adjustment position here can be understood as adjusting the transportation position of the cathode electrode. For example, if the deviation value indicates that the cathode electrode is deflected to the left, then the transportation position of the cathode electrode should be moved closer to the anode separator thermal compounding station.
  • Adjust the direction of A107 If the deviation value indicates that the cathode plate is deflected to the right, adjust it in the direction away from the anode separator thermal compounding station A107.
  • the specific adjustment process may be determined according to the actual structure of the lamination system, and is not limited in this application.
  • the above-mentioned step S304 may also specifically include: the controller compares the OverHang deviation value with a preset deviation value; when the OverHang deviation value is greater than the preset deviation value, compensates the composite in the stacking system based on the OverHang deviation value.
  • the front pole piece placement position may also include: the controller compares the OverHang deviation value with a preset deviation value; when the OverHang deviation value is greater than the preset deviation value, compensates the composite in the stacking system based on the OverHang deviation value.
  • the front pole piece placement position may also specifically include: the controller compares the OverHang deviation value with a preset deviation value; when the OverHang deviation value is greater than the preset deviation value, compensates the composite in the stacking system based on the OverHang deviation value.
  • the preset deviation value can also be set according to actual needs, and the numerical value is not limited in this application.
  • the embodiments of this application provide a control method applied to the lamination system.
  • the image acquisition device is used to collect the image information of the composite electrode piece after the anode electrode piece, cathode electrode piece and separator are combined, and then the upper computer By calculating the OverHang value of the pole piece after compounding, the OverHang deviation value of the lamination system during the compounding process is determined. Finally, the controller compensates the pole piece placement position before compounding in the lamination system based on the OverHang deviation value.
  • the online closed-loop control of the OverHang of the composite rear pole piece is realized, that is, the stacking system can be adjusted in a timely manner during the processing stages of the anode pole piece, cathode pole piece and separator. , simplifying the adjustment process.
  • the position of the pole pieces can be continuously adjusted to compensate for the OverHang deviation, ensuring the composite effect and improving the quality of the stacked battery.
  • embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the method provided in the above embodiments is executed.
  • the storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)), etc.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种控制方法及叠片系统。该方法包括:获取复合后极片的图像信息;其中,复合后极片包括阳极极片、阴极极片及隔膜;基于图像信息计算复合后极片的OverHang数值;基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值;基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。通过该方式,能够在阳极极片、阴极极片及隔膜的加工阶段中,及时地对叠片系统进行调整,简化调整过程。同时通过对叠片系统进行自动化地调整,可以不断地调优极片位置,补偿OverHang偏差,保证复合效果,提高叠片电池的品质。

Description

一种控制方法及叠片系统 技术领域
本申请涉及电池技术领域,具体而言,涉及一种控制方法及叠片系统。
背景技术
动力电池在卷绕成形基础上发展出叠片成形工艺,即叠片电池。现有的叠片电池在结构上包括正极极片和与之交叉层叠的负极极片,正极极片和负极极片之间采用隔膜分隔。
叠片电池的OverHang(对齐度)是叠片电池生产过程中的重要参数。OverHang是指负极极片长度和宽度方向多出正负极极片之外的部分。OverHang会影响叠片电池的电化学性能。因此,在叠片电池的生产过程中,需要对OverHang进行严格管控。
目前针对叠片电池的OverHang管控方式,是在叠片系统将整个叠片电池制作成形(包括极片的复合、电池注液、分容化成工艺)后,由工作人员对叠片电池的OverHang进行检测。当叠片电池的OverHang出现异常时,由工作人员手动调整叠片系统,对系统结构进行改进。可见,该方式需要人员参与,过于繁琐,且调整过程具有滞后性,无法在叠片电池的OverHang出现异常时及时地进行调整。
发明内容
本申请实施例的目的在于提供一种控制方法及叠片系统,用以减少人员参与,简化调整过程,并在叠片电池的OverHang出现异常时及时地进行调整。
本发明是这样实现的:
第一方面,本申请实施例提供一种控制方法,所述方法包括:获取复合后极片的图像信息;其中,所述复合后极片包括阳极极片、阴极极片及隔膜;基于所述图像信息计算所述复合后极片的OverHang数值;基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值;基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
本申请实施例中提供一种控制方法,在阳极极片、阴极极片及隔膜复合后,获取采集的复合后极片的图像信息,然后通过计算复合后极片的OverHang数值来确定叠片系统在复合过程中的OverHang偏差值,以基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。通过该方式,能 够在阳极极片、阴极极片及隔膜的加工阶段中,及时地对叠片系统进行调整,简化调整过程。同时通过对叠片系统进行自动化地调整,可以不断地调优极片位置,补偿OverHang偏差,保证复合效果,提高叠片电池的品质。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值,包括:基于所述叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,生成OverHang数值组;计算所述OverHang数值组的均值;基于所述OverHang数值组的均值与预设的标准值的差值,确定所述叠片系统在复合过程中的OverHang偏差值。
在本申请实施例中,通过叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值的均值来确定出叠片系统在复合过程中的OverHang偏差值,以合理地确定出叠片系统在复合过程中的OverHang偏差值,同时,也避免由于设备计算原因或图像采集原因,导致未成功计算出的OverHang数值对计算OverHang偏差值造成影响。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述计算所述OverHang数值组的均值,包括:将所述OverHang数值组中的OverHang数值根据数值大小顺序进行排序;基于排序顺序,去除所述OverHang数值组中的前N个数值和后N个数值;其中,N为正整数;基于所述OverHang数值组中剩余的OverHang数值,计算所述OverHang数值组的均值。
在本申请实施例中,通过去除OverHang数值组中排序的前N个数值和后N个数值,然后基于剩余的OverHang数值,计算OverHang数值组的均值,以避免极大值或极小值所造成的偶然误差对结果造成的影响。
结合上述第一方面提供的技术方案,在一些可能的实现方式中,所述基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置,包括:将所述OverHang偏差值与预设的偏差值进行比较;当所述OverHang偏差值大于所述预设的偏差值时,基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
在本申请实施例中,只有当OverHang偏差值大于预设的偏差值时,才基于OverHang偏差值补偿叠片系统中复合前的极片放置位置,以避免在误差较小的情况下,反复调整叠片系统,导致叠片系统无法稳定运行。
第二方面,本申请实施例提供一种控制方法,应用于叠片系统,所述叠片系统包括图像采集装置、控制器及上位机;所述控制器分别与所述图像采集装置及所述上位机连接,所述图像采集装置还与所述上位机连 接,所述方法包括:所述控制器控制阳极极片、阴极极片及隔膜进行复合,生成复合后极片;所述图像采集装置拍摄所述复合后极片,并将所述复合后极片的图像信息发送至所述上位机;所述上位机基于所述图像信息计算所述复合后极片的OverHang数值;并基于叠片电池对应的所有复合后极片的OverHang数值,确定所述叠片系统在复合过程中的OverHang偏差值;并将所述OverHang偏差值反馈至所述控制器;所述控制器基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
本申请实施例中提供一种应用于叠片系统的控制方法,图像采集装置用于在阳极极片、阴极极片及隔膜复合后,采集复合后极片的图像信息,然后上位机通过计算复合后极片的OverHang数值来确定叠片系统在复合过程中的OverHang偏差值,最后由控制器基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。通过控制器、上位机和图像采集装置实现了对复合后极片的OverHang的在线闭环控制,即,能够在阳极极片、阴极极片及隔膜的加工阶段中,及时地对叠片系统进行调整,简化调整过程。同时通过对叠片系统进行自动化地调整,可以不断地调优极片位置,补偿OverHang偏差,保证复合效果,提高叠片电池的品质。
结合上述第二方面提供的技术方案,在一些可能的实现方式中,所述上位机基于叠片电池对应的所有复合后极片的OverHang数值,确定所述叠片系统在复合过程中的OverHang偏差值,包括:所述上位机基于所述叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,生成OverHang数值组;计算所述OverHang数值组的均值;及基于所述OverHang数值组的均值与预设的标准值的差值,确定所述叠片系统在复合过程中的OverHang偏差值。
结合上述第二方面提供的技术方案,在一些可能的实现方式中,所述上位机计算所述OverHang数值组的均值,包括:所述上位机将所述OverHang数值组中的OverHang数值根据数值大小顺序进行排序;基于排序顺序,去除所述OverHang数值组中的前N个数值和后N个数值;其中,N为正整数;及基于所述OverHang数值组中剩余的OverHang数值,计算所述OverHang数值组的均值。
结合上述第二方面提供的技术方案,在一些可能的实现方式中,在所述控制器基于所述OverHang偏差值补偿所述叠片系统复合前的极片放置位置之前,所述方法还包括:所述上位机将所述OverHang偏差值与预设的偏差值进行比较;当所述OverHang偏差值大于所述预设的偏差值时,将所述OverHang偏差值反馈至所述控制器。
结合上述第二方面提供的技术方案,在一些可能的实现方式中,在所述图像采集装置拍摄所述复合后极片之前,所述方法还包括:所述控制器根据检测工位上的极片标记代号,触发所述图像采集装置进行拍摄;其 中,所述检测工位为生成所述复合后极片的出栈工位。
第三方面,本申请实施例提供一种叠片系统,包括:图像采集装置、控制器及上位机;所述控制器分别与所述图像采集装置及所述上位机连接,所述图像采集装置还与所述上位机连接;所述控制器用于控制阳极极片、阴极极片及隔膜进行复合,生成复合后极片;所述图像采集装置用于拍摄所述复合后极片,并将所述复合后极片的图像信息发送至所述上位机;所述上位机用于基于所述图像信息计算所述复合后极片的OverHang数值;并基于叠片电池对应的所有复合后极片的OverHang数值,确定所述叠片系统在复合过程中的OverHang偏差值;并将所述OverHang偏差值反馈至所述控制器;所述控制器用于基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种阳极极片、阴极极片及隔膜加工过程示意图。
图2为本申请实施例提供的一种复合后极片的示意图。
图3为本申请实施例提供的第一种控制方法的步骤流程图。
图4为本申请实施例提供的第二种控制方法的步骤流程图。
图5为本申请实施例提供的一种叠片系统的模块框图。
图6为本申请实施例提供的第三种控制方法的步骤流程图。
图标:10-叠片电池;11-上阴极极片;12-下阴极极片;21-上隔膜;22-下隔膜;3-阳极;100-叠片系统;101-图像采集装置;102-控制器;103-上位机。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和 权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
从目前新能源技术的发展来看,动力电池的发展也越来越迅速,动力电池在卷绕成形基础上发展出叠片成形工艺,即叠片电池。现有的叠片电池在结构上包括正极极片和与之交叉层叠的负极极片,正极极片和负极极片之间采用隔膜分隔。
叠片电池的OverHang是叠片电池生产过程中的重要参数。OverHang是指负极极片长度和宽度方向多出正负极极片之外的部分。OverHang会影响叠片电池的电化学性能。因此,在叠片电池的生产过程中,需要对OverHang进行严格管控。
发明人注意到,目前针对叠片电池的OverHang管控方式,是在叠 片系统将整个叠片电池制作成形(包括极片的复合、电池注液、分容化成工艺)后,由工作人员对叠片电池的OverHang进行检测。当叠片电池的OverHang出现异常时,由工作人员手动调整叠片系统,对系统结构进行改进。可见,该方式需要人员参与,过于繁琐,且调整过程具有滞后性,无法在叠片电池的OverHang出现异常时及时地进行调整。
为了解决上述问题,发明人研究发现,可以在叠片电池的阳极极片、阴极极片及隔膜的加工阶段就对叠片电池的OverHang进行检测,然后根据检测结果,动态地调整叠片系统中复合前的极片放置位置,以补偿OverHang偏差。例如,在阳极极片、阴极极片及隔膜的加工阶段通过相机采集复合后极片的图像,然后通过对图像进行解析,计算复合后极片的OverHang以及当前叠片系统在复合过程中的OverHang偏差值,最后根据OverHang偏差值反馈调整叠片系统。
基于上述研究发现,本申请实施例提供一种控制方法及叠片系统以解决上述技术问题。
为了便于理解本方案,下面结合图1,先对一种阳极极片、阴极极片及隔膜加工形成复合后极片的工艺流程进行说明。
图1中,A101为阳极放卷来料、A102为阳极加热工位、A103为上隔膜加热工位、A104为下隔膜加热工位、A105为上隔膜放卷来料、A106为下隔膜放卷来料、A107为阳极隔膜热复合工位、A108为上阴极放卷来料、A109为上阴极切刀、A110为上阴极极片复合位置、A111为下阴极放卷来料、A112为下阴极切刀、A113为下阴极极片复合位置、A114为复合后极片、A115为本申请所增设的上工位相机、A116为本申请所增设的下工位相机。
具体的加工过程为:一卷阳极材料A101进入叠片系统后,在阳极加热工位A102加热后,与经过加热后的一卷上隔膜A105及经过加热后的一卷下隔膜A106在阳极隔膜热复合工位A107处进行复合。一卷上阴极材料A108被上阴极切刀A109切割,一卷下阴极材料A111被下阴极切刀A112切割。切割后的上阴极极片被放置在上阴极极片复合位置A110,切割后的下阴极极片被放置在下阴极极片复合位置A113,上阴极极片、下阴极极片再与在经阳极隔膜热复合工位A107复合后的复合材料(包括上隔膜、阳极和下隔膜)进行复合,以形成复合后极片A114。复合后极片A114从上至下依次为上阴极、上隔膜、阳极、下隔膜和下阴极。
经过上述加工工艺,即可形成如图2所示出的叠片电池10。其中,在叠片电池10中,阳极3位于上隔膜21和下隔膜22之间,上隔膜21的另一侧贴合有上阴极极片11,下隔膜22的另一侧贴合有下阴极极片12。
需要说明的是,上述实施例所提供的是一种阴极切断、阳极连续的复合后极片。后文所提及的控制方法,还可以应用于阳极连续、阴极切断 的复合后极片的加工过程,还可以应用于阳极、阴极均切断的复合后极片的加工过程。复合后极片的加工过程可以采用现有技术中叠片系统的实现过程,本申请不作限定。
下面对本申请实施例提供的控制方法进行说明,该控制方法可以应用于与叠片系统通信连接的控制设备中,也可以应用于叠片系统中。其中,控制设备可以是但不限于但不限于工业计算机、个人计算机(Personal Computer,PC)、平板电脑等。
请参阅图3,当控制方法应用于控制设备中时,该方法具体包括:步骤S101~步骤S104。
步骤S101:获取复合后极片的图像信息;其中,复合后极片包括阳极极片、阴极极片及隔膜。
其中,控制设备可以与控制系统中的图像采集装置连接,控制系统中的图像采集装置用于拍摄复合后极片。比如图像采集装置可以是图1中的上工位相机A115及下工位相机A116,控制设备与图1中上工位相机A115及下工位相机A116连接。
步骤S102:基于图像信息计算复合后极片的OverHang数值。
控制设备在获取到复合后极片的图像信息后,计算复合后极片的OverHang数值。
其中,计算复合后极片的OverHang数值可以采用现有技术的图像处理算法,比如通过对阴极、阳极及隔膜进行特征边缘直线拟合,进而根据拟合结果计算OverHang数值。
步骤S103:基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值。
于本申请实施例中,以一个叠片电池为单位,基于该叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值。
示例性的,叠片电池包括54片复合后极片,则控制设备整合该叠片电池的54片复合后极片,然后基于这54片复合后极片的OverHang数值确定叠片系统在复合过程中的OverHang偏差值。
请参阅图4,一实施例中,步骤S103还可以具体包括:步骤S201-步骤S203。
步骤S201:基于叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,生成OverHang数值组。
由于在计算复合后极片的OverHang数值阶段,可能会出现由于设备计算原因或图像采集原因,导致无法计算出该片复合后极片的OverHang数值组,若将其用于后续OverHang偏差值的计算,必然会导致所计算出的OverHang偏差值差异性较大,会对叠片系统的控制造成较大的影响。 比如由于光线原因,导致图像采集不清晰,或设备在对阴极、阳极及隔膜进行特征边缘直线拟合时,拟合失败,均会导致无法成功计算出OverHang数值。因此,该步骤中,仅筛选出叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,并生成OverHang数值组。
可见,通过叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值的均值来确定出叠片系统在复合过程中的OverHang偏差值,可以合理地确定出叠片系统在复合过程中的OverHang偏差值,同时,也避免由于设备计算原因或图像采集原因,导致未成功计算出的OverHang数值对计算OverHang偏差值造成影响。
此外,由于叠片电池的首片复合后极片和尾片复合后极片较容易带来偶然误差,因此,在生成OverHang数值组时,还可以摒弃叠片电池的首片复合后极片的OverHang数值和尾片复合后极片的OverHang数值。
当然,在步骤S201中,还可以是先摒弃叠片电池的首片复合后极片的OverHang数值和尾片复合后极片的OverHang数值,然后从剩余的复合后极片中,筛选出叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,并生成OverHang数值组。
示例性的,控制设备整合叠片电池的54片复合后极片的OverHang数值,首先摒弃叠片电池的首片复合后极片的OverHang数值和尾片复合后极片的OverHang数值,然后从第2片复合后极片~第53片复合后极片中筛选出所有成功计算出OverHang数值的复合后极片的OverHang数值,并生成OverHang数值组。
步骤S202:计算OverHang数值组的均值。
在获取到OverHang数值组后,将OverHang数值组中的所有OverHang数值相加求平均,得到该OverHang数值组的均值。
一实施例中,步骤S202可以具体包括:将OverHang数值组中的OverHang数值根据数值大小顺序进行排序;基于排序顺序,去除OverHang数值组中的前N个数值和后N个数值;其中,N为正整数;基于OverHang数值组中剩余的OverHang数值,计算OverHang数值组的均值。
上述的N的数值可以根据需求设定,比如N的数值可以是1、3、5,本申请不作限定。
即,在计算OverHang数值组的均值时,先将OverHang数值组中的各个OverHang数值根据数值大小顺序进行排序,比如按照数值从大到小的顺序进行排序,或按照数值从小到大的顺序进行排序,然后摒弃最大的N个数值和最小的N个数值,最后用OverHang数值组中剩余的OverHang数值来求平均值。通过该方式可以避免极大值或极小值所造成的偶然误差对结果造成的影响。
步骤S203:基于OverHang数值组的均值与预设的标准值的差值, 确定叠片系统在复合过程中的OverHang偏差值。
于本申请实施例中,控制设备在计算出OverHang数值组的均值后,将均值与预设的标准值做差,进而得到叠片系统在复合过程中的OverHang偏差值。
上述的预设的标准值可以根据实际需求设定,比如可以根据不同类型、尺寸的叠片电池而设定,本申请不作限定。
步骤S104:基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。
最后,根据OverHang偏差值来补偿叠片系统中复合前的极片放置,即,控制设备向叠片系统发送调整指令,进而使得叠片系统基于该调整指令调整复合前的极片放置位置。
示例性的,当复合后极片是如图2所示出的阴极切断、阳极连续的复合后极片时,则此时调整的是阴极极片的放置位置,比如调整图1中上阴极极片复合位置A110,和/或下阴极极片复合位置A113。需要说明的是,此处的调整位置可以理解为,调整阴极极片的输送位置,比如,偏差值表征阴极极片向左偏,则将阴极极片的输送位置向靠近阳极隔膜热复合工位A107的方向调节,若偏差值表征阴极极片向右偏,则向远离阳极隔膜热复合工位A107的方向调节。具体的调整过程可以根据叠片系统实际的结构而定,本申请不作限定。
一实施例中,上述步骤S104还可以具体包括:将OverHang偏差值与预设的偏差值进行比较;当OverHang偏差值大于预设的偏差值时,基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。
其中,预设的偏差值也可以根据实际需求进行设定,在数值上,本申请不作限定。
可见,在本申请实施例中,只有当OverHang偏差值大于预设的偏差值时,才基于OverHang偏差值补偿叠片系统中复合前的极片放置位置,以避免在误差较小的情况下,反复调整叠片系统,导致叠片系统无法稳定运行。
综上,本申请实施例中提供一种控制方法,在阳极极片、阴极极片及隔膜复合后,获取采集的复合后极片的图像信息,然后通过计算复合后极片的OverHang数值来确定叠片系统在复合过程中的OverHang偏差值,以基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。通过该方式,能够在阳极极片、阴极极片及隔膜的加工阶段中,及时地对叠片系统进行调整,简化调整过程。同时通过对叠片系统进行自动化地调整,可以不断地调优极片位置,补偿OverHang偏差,保证复合效果,提高叠片电池的品质。
上述的控制方法还可以应用于叠片系统中,请参阅图5,叠片系统 100包括图像采集装置101、控制器102及上位机103。
其中,控制器102分别与图像采集装置101及上位机103连接。图像采集装置101还与上位机103连接。
控制器102主要用于对叠片电池的制作流程进行控制,具体的,控制器102用于控制阳极极片、阴极极片及隔膜进行复合,生成复合后极片。图像采集装置101主要用于拍摄复合后极片,具体的,图像采集装置101用于拍摄复合后极片,并将复合后极片的图像信息发送至上位机103。上位机103主要用于对复合后极片的OverHang数值及叠片系统100在复合过程中的OverHang偏差值进行计算。具体的,上位机103用于基于图像信息计算复合后极片的OverHang数值;并基于叠片电池对应的所有复合后极片的OverHang数值,确定所述叠片系统在复合过程中的OverHang偏差值;并将OverHang偏差值反馈至控制器102。控制器102还用于基于OverHang偏差值补偿叠片系统100中复合前的极片放置位置。
上述的控制器102可以包括但不限于,PLC(Programmable Logic Controller,可编程逻辑控制器)、单片机、专用集成电路(Application Specific Integrated Circuit,ASIC)、分立门或晶体管逻辑器件、分立硬件组件等。图像采集装置101可以包括但不限于工业相机、摄像机、CCD(Charge-coupled Device,电荷耦合器件)相机、全景相机等。上位机103可以包括但不限于计算机。
请参阅图6,当控制方法应用于上述叠片系统100中时,该方法具体包括:步骤S301~步骤S304。
步骤S301:控制器控制阳极极片、阴极极片及隔膜进行复合,生成复合后极片。
如图1所示,控制器控制一卷阳极材料A101进入叠片系统后,在阳极加热工位A102加热后,与经过加热后的一卷上隔膜A105及经过加热后的一卷下隔膜A106在阳极隔膜热复合工位A107处进行复合。同时,控制器控制一卷上阴极材料A108被上阴极切刀A109切割,一卷下阴极材料A111被下阴极切刀A112切割。切割后的上阴极极片放置在上阴极极片复合位置A110,切割后的下阴极极片放置在下阴极极片复合位置A113,上阴极极片、下阴极极片再与在经阳极隔膜热复合工位A107复合后的复合材料(包括上隔膜、阳极和下隔膜)进行复合,以形成复合后极片A114。
步骤S302:图像采集装置拍摄复合后极片,并将复合后极片的图像信息发送至上位机。
其中,图像采集装置设置在复合后极片的出栈位置。在隔膜、阳极极片和阴极极片的复合之后,图像采集装置拍摄复合后极片,并将复合后极片的图像信息发送至上位机。
可选地,在图像采集装置拍摄复合后极片之前,该方法还包括:控制器根据检测工位上的极片标记代号,触发图像采集装置进行拍摄;其中,检测工位为生成复合后极片的出栈工位。
其中,检测工位也可以为图像采集装置的设置工位,极片标记代号由控制器内部程序自动生成。极片标记代号表征复合后极片的片数。比如复合后极片的标记代号为47,则表征该复合后极片为当前叠片电池的第47片复合后极片。
步骤S303:上位机基于图像信息计算复合后极片的OverHang数值;并基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值;并将OverHang偏差值反馈至控制器。
其中,上位机计算复合后极片的OverHang数值可以采用现有技术的图像处理算法,比如通过对阴极、阳极及隔膜进行特征边缘直线拟合,进而根据拟合结果计算OverHang数值。
于本申请实施例中,上位机以一个叠片电池为单位,基于该叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值。
示例性的,叠片电池包括54片复合后极片,则整合该叠片电池的54片复合后极片,然后上位机基于这54片复合后极片的OverHang数值确定确定叠片系统在复合过程中的OverHang偏差值。
一实施例中,上述基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值的过程可以具体包括:上位机基于叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,生成OverHang数值组;计算OverHang数值组的均值;及基于OverHang数值组的均值与预设的标准值的差值,确定叠片系统在复合过程中的OverHang偏差值。
由于在计算复合后极片的OverHang数值阶段,可能会出现由于设备计算原因或图像采集原因,导致无法计算出该片复合后极片的OverHang数值组,若将其用于后续OverHang偏差值的计算,必然会导致所计算出的OverHang偏差值差异性较大,会对叠片系统的控制造成较大的影响。比如由于光线原因,导致图像采集不清晰,或设备在对阴极、阳极及隔膜进行特征边缘直线拟合时,拟合失败,均会导致无法成功计算出OverHang数值。因此,该步骤中,上位机仅筛选出叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,并生成OverHang数值组。通过上述方式可以合理地确定出叠片系统在复合过程中的OverHang偏差值,同时,也避免由于设备计算原因或图像采集原因,导致未成功计算出的OverHang数值对计算OverHang偏差值造成影响。
此外,由于叠片电池的首片复合后极片和尾片复合后极片较容易带来偶然误差,因此,在生成OverHang数值组时,还可以摒弃叠片电池的首片复合后极片的OverHang数值和尾片复合后极片的OverHang数值。
当然,在上述步骤中,还可以是上位机先摒弃叠片电池的首片复合后极片的OverHang数值和尾片复合后极片的OverHang数值,然后从剩余的复合后极片中,筛选出叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,并生成OverHang数值组。
示例性的,上位机整合叠片电池的54片复合后极片的OverHang数值,首先摒弃叠片电池的首片复合后极片的OverHang数值和尾片复合后极片的OverHang数值,然后从第2片复合后极片~第53片复合后极片中筛选出所有成功计算出OverHang数值的复合后极片的OverHang数值,并生成OverHang数值组。
上位机在获取到OverHang数值组后,将OverHang数值组中的所有OverHang数值相加求平均,得到该OverHang数值组的均值。
一实施例中,计算OverHang数值组的均值的过程可以具体包括:上位机将OverHang数值组中的OverHang数值根据数值大小顺序进行排序;基于排序顺序,去除OverHang数值组中的前N个数值和后N个数值;其中,N为正整数;基于OverHang数值组中剩余的OverHang数值,计算OverHang数值组的均值。
上述的N的数值可以根据需求设定,比如N的数值可以是1、3、5,7,本申请不作限定。
即,上位机在计算OverHang数值组的均值时,先将OverHang数值组中的各个OverHang数值根据数值大小顺序进行排序,比如按照数值从大到小的顺序进行排序,或按照数值从小到大的顺序进行排序,然后摒弃最大的N个数值和最小的N个数值,最后用OverHang数值组中剩余的OverHang数值来求平均值。通过该方式可以避免极大值或极小值所造成的偶然误差对结果造成的影响。
最后,上位机基于OverHang数值组的均值与预设的标准值的差值,确定叠片系统在复合过程中的OverHang偏差值。
于本申请实施例中,上位机在计算出OverHang数值组的均值后,将均值与预设的标准值做差,进而得到叠片系统在复合过程中的OverHang偏差值,上位机在计算得到叠片系统在复合过程中的OverHang偏差值后,将OverHang偏差值反馈至控制器。
上述的预设的标准值可以根据实际需求设定,比如可以根据不同类型、尺寸的叠片电池而设定,本申请不作限定。
步骤S304:控制器基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。
最后,控制器根据上位机发送的OverHang偏差值来补偿叠片系统中复合前的极片放置。
示例性的,当复合后极片是如图2所示出的阴极切断、阳极连续的复合后极片时,则此时控制器调整的是阴极极片的放置位置,比如调整图1中上阴极极片复合位置A110,和/或下阴极极片复合位置A113。需要说明的是,此处的调整位置可以理解为,调整阴极极片的输送位置,比如,偏差值表征阴极极片向左偏,则将阴极极片的输送位置向靠近阳极隔膜热复合工位A107的方向调节,若偏差值表征阴极极片向右偏,则向远离阳极隔膜热复合工位A107的方向调节。具体的调整过程可以根据叠片系统实际的结构而定,本申请不作限定。
一实施例中,上述步骤S304还可以具体包括:控制器将OverHang偏差值与预设的偏差值进行比较;当OverHang偏差值大于预设的偏差值时,基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。
其中,预设的偏差值也可以根据实际需求进行设定,在数值上,本申请不作限定。
可见,在本申请实施例中,只有当OverHang偏差值大于预设的偏差值时,才基于OverHang偏差值补偿叠片系统中复合前的极片放置位置,以避免在误差较小的情况下,反复调整叠片系统,导致叠片系统无法稳定运行。
综上,本申请实施例中提供一种应用于叠片系统的控制方法,图像采集装置用于在阳极极片、阴极极片及隔膜复合后,采集复合后极片的图像信息,然后上位机通过计算复合后极片的OverHang数值来确定叠片系统在复合过程中的OverHang偏差值,最后由控制器基于OverHang偏差值补偿叠片系统中复合前的极片放置位置。通过控制器、上位机和图像采集装置实现了对复合后极片的OverHang的在线闭环控制,即,能够在阳极极片、阴极极片及隔膜的加工阶段中,及时地对叠片系统进行调整,简化调整过程。同时通过对叠片系统进行自动化地调整,可以不断地调优极片位置,补偿OverHang偏差,能够保证复合效果,提高叠片电池的品质。
需要说明的是,由于所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统的具体工作过程,可以方法实施例中的对应过程,在此不再赘述。
基于同一发明构思,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序在被运行时执行上述实施例中提供的方法。
该存储介质可以是计算机能够存取的任何可用介质或者是包含一 个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种控制方法,其特征在于,所述方法包括:
    获取复合后极片的图像信息;其中,所述复合后极片包括阳极极片、阴极极片及隔膜;
    基于所述图像信息计算所述复合后极片的OverHang数值;
    基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值;
    基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
  2. 根据权利要求1所述的方法,其特征在于,所述基于叠片电池对应的所有复合后极片的OverHang数值,确定叠片系统在复合过程中的OverHang偏差值,包括:
    基于所述叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,生成OverHang数值组;
    计算所述OverHang数值组的均值;
    基于所述OverHang数值组的均值与预设的标准值的差值,确定所述叠片系统在复合过程中的OverHang偏差值。
  3. 根据权利要求2所述的方法,其特征在于,所述计算所述OverHang数值组的均值,包括:
    将所述OverHang数值组中的OverHang数值根据数值大小顺序进行排序;
    基于排序顺序,去除所述OverHang数值组中的前N个数值和后N个数值;其中,N为正整数;
    基于所述OverHang数值组中剩余的OverHang数值,计算所述OverHang数值组的均值。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置,包括:
    将所述OverHang偏差值与预设的偏差值进行比较;
    当所述OverHang偏差值大于所述预设的偏差值时,基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
  5. 一种控制方法,其特征在于,应用于叠片系统,所述叠片系统包括图像采集装置、控制器及上位机;所述控制器分别与所述图像采集装置及所述上位机连接,所述图像采集装置还与所述上位机连接,所述方法包括:
    所述控制器控制阳极极片、阴极极片及隔膜进行复合,生成复合后极片;
    所述图像采集装置拍摄所述复合后极片,并将所述复合后极片的图像信息发送至所述上位机;
    所述上位机基于所述图像信息计算所述复合后极片的OverHang数值;并基于叠片电池对应的所有复合后极片的OverHang数值,确定所述叠片系统在复合过程中的OverHang偏差值;并将所述OverHang偏差值反馈至所述控制器;
    所述控制器基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
  6. 根据权利要求5所述的方法,其特征在于,所述上位机基于叠片电池对应的所有复合后极片的OverHang数值,确定所述叠片系统在复合过程中的OverHang偏差值,包括:
    所述上位机基于所述叠片电池中所有成功计算出OverHang数值的复合后极片的OverHang数值,生成OverHang数值组;计算所述OverHang数值组的均值;及基于所述OverHang数值组的均值与预设的标准值的差值,确定所述叠片系统在复合过程中的OverHang偏差值。
  7. 根据权利要求6所述的方法,其特征在于,所述上位机计算所述OverHang数值组的均值,包括:
    所述上位机将所述OverHang数值组中的OverHang数值根据数值大小顺序进行排序;基于排序顺序,去除所述OverHang数值组中的前N个数值和后N个数值;其中,N为正整数;及基于所述OverHang数值组中剩余的OverHang数值,计算所述OverHang数值组的均值。
  8. 根据权利要求5所述的方法,其特征在于,在所述控制器基于所述OverHang偏差值补偿所述叠片系统复合前的极片放置位置之前,所述方法还包括:
    所述上位机将所述OverHang偏差值与预设的偏差值进行比较;当所述OverHang偏差值大于所述预设的偏差值时,将所述OverHang偏差值反馈至所述控制器。
  9. 根据权利要求5所述的方法,其特征在于,在所述图像采集装置拍摄所述复合后极片之前,所述方法还包括:
    所述控制器根据检测工位上的极片标记代号,触发所述图像采集装置进行拍摄;其中,所述检测工位为生成所述复合后极片的出栈工位。
  10. 一种叠片系统,其特征在于,包括:图像采集装置、控制器及上位机;
    所述控制器分别与所述图像采集装置及所述上位机连接,所述图像采集装置还与所述上位机连接;
    所述控制器用于控制阳极极片、阴极极片及隔膜进行复合,生成复合后极片;
    所述图像采集装置用于拍摄所述复合后极片,并将所述复合后极片的图像信息发送至所述上位机;
    所述上位机用于基于所述图像信息计算所述复合后极片的OverHang数值;并基于叠片电池对应的所有复合后极片的OverHang数值,确定所述叠片系统在复合过程中的OverHang偏差值;并将所述OverHang偏差值反馈至所述控制器;
    所述控制器用于基于所述OverHang偏差值补偿所述叠片系统中复合前的极片放置位置。
PCT/CN2022/086408 2022-04-12 2022-04-12 一种控制方法及叠片系统 WO2023197167A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/086408 WO2023197167A1 (zh) 2022-04-12 2022-04-12 一种控制方法及叠片系统
CN202280041093.5A CN117480648A (zh) 2022-04-12 2022-04-12 一种控制方法及叠片系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086408 WO2023197167A1 (zh) 2022-04-12 2022-04-12 一种控制方法及叠片系统

Publications (1)

Publication Number Publication Date
WO2023197167A1 true WO2023197167A1 (zh) 2023-10-19

Family

ID=88328712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086408 WO2023197167A1 (zh) 2022-04-12 2022-04-12 一种控制方法及叠片系统

Country Status (2)

Country Link
CN (1) CN117480648A (zh)
WO (1) WO2023197167A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118463865A (zh) * 2024-07-12 2024-08-09 比亚迪股份有限公司 数据采集方法、装置、叠片机、电子设备及可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270686A1 (en) * 2004-06-02 2005-12-08 Hitachi Global Storage Technologies Netherlands B.V. Disk device, and positioning control method and signal-processing circuit for head
CN203850392U (zh) * 2014-04-02 2014-09-24 东莞市博拓自动化设备有限公司 电池卷绕机
CN206056512U (zh) * 2016-08-31 2017-03-29 天津市捷威动力工业有限公司 用于极片涂布对齐度检测及纠偏调整的设备
CN106980491A (zh) * 2017-03-30 2017-07-25 西京学院 一种a/d采样的改进的均值滤波算法
CN108417903A (zh) * 2018-02-01 2018-08-17 深圳前海优容科技有限公司 一种叠片机及电池极片叠片方法
CN211700477U (zh) * 2020-03-31 2020-10-16 深圳吉阳智能科技有限公司 一种叠片复合单元制作系统
CN112310461A (zh) * 2019-10-10 2021-02-02 宁德时代新能源科技股份有限公司 制造二次电池的电极组件的方法以及设备
CN213752778U (zh) * 2020-12-24 2021-07-20 蜂巢能源科技有限公司 电池叠片平台机构
CN113306264A (zh) * 2021-05-28 2021-08-27 广东利元亨智能装备股份有限公司 极片复合设备及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050270686A1 (en) * 2004-06-02 2005-12-08 Hitachi Global Storage Technologies Netherlands B.V. Disk device, and positioning control method and signal-processing circuit for head
CN203850392U (zh) * 2014-04-02 2014-09-24 东莞市博拓自动化设备有限公司 电池卷绕机
CN206056512U (zh) * 2016-08-31 2017-03-29 天津市捷威动力工业有限公司 用于极片涂布对齐度检测及纠偏调整的设备
CN106980491A (zh) * 2017-03-30 2017-07-25 西京学院 一种a/d采样的改进的均值滤波算法
CN108417903A (zh) * 2018-02-01 2018-08-17 深圳前海优容科技有限公司 一种叠片机及电池极片叠片方法
CN112310461A (zh) * 2019-10-10 2021-02-02 宁德时代新能源科技股份有限公司 制造二次电池的电极组件的方法以及设备
CN211700477U (zh) * 2020-03-31 2020-10-16 深圳吉阳智能科技有限公司 一种叠片复合单元制作系统
CN213752778U (zh) * 2020-12-24 2021-07-20 蜂巢能源科技有限公司 电池叠片平台机构
CN113306264A (zh) * 2021-05-28 2021-08-27 广东利元亨智能装备股份有限公司 极片复合设备及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 30 June 2017, SHENZHEN UNIVERSITY, CN, article WANG, HAO: "Research and Implementation of Deviation Correction Control Algorithm for Square Lithium Battery Winding System", pages: 1 - 53, XP009549532 *

Also Published As

Publication number Publication date
CN117480648A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US20190372168A1 (en) Battery and battery manufacturing method
US10957944B2 (en) Electrode plate aligned state inspection system and method
KR102167118B1 (ko) 이차전지용 라미네이션장치
WO2023197167A1 (zh) 一种控制方法及叠片系统
EP4369447A1 (en) Electrode plate stacking method and apparatus, and stacking machine
KR20240050461A (ko) 배터리 전극 시트 절연 코팅층 결함의 검출 방법, 장치 및 컴퓨터 장치
KR101731146B1 (ko) 전극 조립체의 복수개의 전극 탭과 전극 리드의 연결부의 포밍 방법 및 이를 이용하여 제조된 이차 전지
EP4024545A1 (en) Automatic electrode supply apparatus for manufacturing secondary battery and automatic electrode supply method using same
WO2014133303A1 (ko) 안정성이 향상된 이차전지용 바이셀 및 그 제조방법
KR20190091745A (ko) 전극 조립체 제조방법 및 이차전지 제조방법
WO2024027530A1 (zh) 对齐度检测装置、检测方法、电芯制造装置和制造方法
KR101773728B1 (ko) 축전 디바이스의 제조 장치 및 축전 디바이스의 제조 방법
KR20220011029A (ko) 단위 셀 제조 장치 및 방법
KR102515416B1 (ko) 이차전지 제조 장치
KR20210061112A (ko) 전극조립체 제조장치 및 방법
JP2003500823A (ja) 積層ポリマー蓄電池セルの製造方法
KR20190083129A (ko) 전극 조립체 제조방법
WO2023093345A1 (zh) 充电控制方法、控制器、充电终端及可读存储介质
CN117133961A (zh) 纠偏方法、装置、叠片机和存储介质
KR102322793B1 (ko) 이차전지의 전극셀 제조방법
KR20220122401A (ko) 전극 조립체 제조장치 및 이를 사용한 전극 조립체 제조방법
JP2019102196A (ja) 電池の製造方法
KR102259233B1 (ko) 다기종 2차전지 적층장치 및 그 제어방법
CN221080077U (zh) 一种叠片位自动单独排废的切叠一体机
KR20170052302A (ko) 이차전지용 크루드 셀의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041093.5

Country of ref document: CN