WO2023197116A1 - 一种射频功率放大电路及通信设备 - Google Patents

一种射频功率放大电路及通信设备 Download PDF

Info

Publication number
WO2023197116A1
WO2023197116A1 PCT/CN2022/086172 CN2022086172W WO2023197116A1 WO 2023197116 A1 WO2023197116 A1 WO 2023197116A1 CN 2022086172 W CN2022086172 W CN 2022086172W WO 2023197116 A1 WO2023197116 A1 WO 2023197116A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
diode
input
electronic switch
impedance
Prior art date
Application number
PCT/CN2022/086172
Other languages
English (en)
French (fr)
Inventor
伍长林
冷鹏
于艳枫
崔建伟
杨宝锋
朱乐
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2022/086172 priority Critical patent/WO2023197116A1/zh
Publication of WO2023197116A1 publication Critical patent/WO2023197116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for

Definitions

  • the present application relates to the field of power control technology, and in particular to a radio frequency power amplifier circuit and communication equipment.
  • the RF power of mainstream explosion-proof communication equipment does not exceed the standard "valve power" of the explosion-proof protocol.
  • the main influencing factors of the radio frequency output power of explosion-proof communication equipment include: frequency characteristics. Depending on the working frequency of the communication equipment, the transmit power fluctuates greatly at different frequency points, that is, the output power obtained at different operating frequencies has a large difference, resulting in output The power cannot meet the design requirements.
  • embodiments of the present application provide a radio frequency power amplifier circuit and communication equipment to solve the problem of stable output of the power amplifier circuit at different operating frequencies.
  • a radio frequency power amplifier circuit including:
  • a power amplification unit used to amplify the power of the input signal; an input matching circuit, the output end of the input matching circuit is connected to the input end of the power amplification unit, used to provide input matching impedance for the power amplification unit;
  • the input matching circuit includes a first impedance circuit, at least one input control unit and at least one second impedance circuit. Each of the input control units is connected to one of the second impedance circuits. The first impedance circuit and the third impedance circuit are connected to each other. Two impedance circuits are connected in parallel between the input end of the input matching circuit and the output end of the input matching circuit, wherein each of the input control units is used to adjust the impedance value of the corresponding second impedance circuit according to the operating frequency. ; Output matching circuit, the output matching circuit is connected to the output end of the power amplifier unit, and is used to provide output matching impedance for the power amplifier circuit.
  • the radio frequency power amplifier circuit further includes an input capacitor, one end of the input capacitor is used to receive the input signal, and the other end is connected to the input end of the input matching circuit.
  • the second impedance circuit includes: a first matching circuit, a second filter circuit, a second matching circuit, a first diode and a second diode; the first matching circuit matches the input The input end of the circuit is connected; the cathode of the first diode is connected to the first matching circuit, and the anode of the first diode is connected to the second filter circuit; the cathode of the second diode is connected The anode is connected to the second filter circuit, the cathode of the second diode is connected to the second matching circuit; the second matching circuit is connected to the output end of the input matching circuit; the input control unit are respectively connected to the anode of the first diode and the second filter circuit, and are used to control the voltage of the anode of the first diode and the second diode according to the operating frequency to control the first diode. tube and second diode conduction/disconnection.
  • the first matching circuit includes: a first capacitor and a first resistor, one end of the first capacitor is connected to the input end of the input matching circuit, and the other end is connected to ground via the first resistor.
  • the cathode of a diode is connected to the other end of the first capacitor; and/or the second matching circuit includes: a second capacitor and a second resistor, and one end of the second capacitor is connected to the input matching circuit. The output end is connected and the other end is connected to ground via the second resistor, and the cathode of the second diode is connected to the other end of the second capacitor.
  • the input control unit includes: a first electronic switch, the first end of the first electronic switch is connected to the anode of the first diode and the second filter circuit respectively, and the first electronic switch The second end of the first electronic switch is used to connect to the first power supply, the control end of the first electronic switch is used to input the operating frequency, and the control end of the first electronic switch controls the first electronic switch according to the operating frequency. One end is connected to/disconnected from the second end of the first electronic switch.
  • the control end of the first electronic switch controls the first end of the first electronic switch to be conductive with the second end of the first electronic switch,
  • the voltage of the anodes of the first diode and the second diode is high level, and the first diode and the second diode are conductive;
  • the control end of the first electronic switch controls the first end of the first electronic switch to be disconnected from the second end of the first electronic switch, and the first diode and the second diode are The voltage of the anode of the diode is low level, and the first diode and the second diode are disconnected.
  • the first impedance circuit includes: a first filter circuit and a second capacitor, the first filter circuit is connected to the input end of the input matching circuit, and one end of the second capacitor is connected to the first filter circuit. Connect, and the other end is connected to the output end of the input matching circuit.
  • the output matching circuit includes:
  • the third impedance circuit is connected to the power amplification unit and used to provide output matching impedance for the power amplification circuit;
  • the output control unit is connected to the third impedance circuit, It is used to adjust the impedance value of the third impedance circuit according to the magnitude of the working voltage, wherein the working voltage is the voltage required when the power amplification unit operates.
  • the third impedance circuit includes: a third filter circuit, a fourth filter circuit and a third diode; the cathode of the third diode is connected to the output end of the power amplifier circuit, and the The anode of the third diode is connected to the fourth filter circuit, one end of the third filter circuit is connected to the output end of the power amplifier circuit, and the other end of the third filter circuit is connected to the output control unit , the output control unit is used to control the voltage of the cathode of the third diode according to the operating voltage to control the conduction/disconnection of the third diode.
  • the output control unit includes:
  • a second electronic switch the first end of the second electronic switch is connected to the third filter circuit, the second end of the second electronic switch is connected to the second power supply, and the control end of the second electronic switch is When the working voltage is input, the control end of the second electronic switch controls the first end of the second electronic switch and the second end of the second electronic switch to be on/off according to the operating voltage.
  • the control end of the second electronic switch controls the first end of the second electronic switch to be conductive with the second end of the second electronic switch.
  • the voltage of the cathode of the third diode is high level, and the third diode is turned off;
  • the control end of the second electronic switch controls the first end of the second electronic switch to disconnect from the second end of the second electronic switch,
  • the voltage of the cathode of the third diode is low level, and the third diode is turned on.
  • a communication device includes a cascade-connected filter, an antenna, and a radio frequency power amplification circuit as described above.
  • This application provides a radio frequency power amplifier circuit, including a power amplification unit, an input matching circuit and an output matching circuit, wherein the input matching circuit includes a first impedance circuit, at least one input control unit and at least one second impedance circuit, and the input
  • the control unit adjusts the impedance value of the corresponding second impedance circuit according to the operating frequency, so that the input matching circuit can provide the corresponding input matching impedance for the power amplification unit according to the operating frequency, so that the output power is stable, thereby solving the problem of different operating conditions.
  • the problem of stable output at operating frequency is a radio frequency power amplifier circuit, including a power amplification unit, an input matching circuit and an output matching circuit, wherein the input matching circuit includes a first impedance circuit, at least one input control unit and at least one second impedance circuit, and the input
  • the control unit adjusts the impedance value of the corresponding second impedance circuit according to the operating frequency, so that the input matching circuit can provide the corresponding input matching impedance for
  • Figure 1 is a schematic structural diagram of a radio frequency power amplifier circuit provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of an input matching circuit provided by an embodiment of the present application.
  • Figure 3 is another structural schematic diagram of a radio frequency power amplifier circuit provided by an embodiment of the present application.
  • Figure 4 is another circuit structure schematic diagram of an input matching circuit provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an output matching circuit provided by an embodiment of the present application.
  • Figure 6 is another structural schematic diagram of an output matching circuit provided by an embodiment of the present application.
  • Figure 7 is another structural schematic diagram of a radio frequency power amplifier circuit provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the output power of the device is required to remain stable.
  • this application provides a radio frequency power amplification circuit, which can reduce the fluctuation of the output power of different radio frequency signals after power amplification.
  • a radio frequency power amplifier circuit provided by an embodiment of the present application includes:
  • Input matching circuit 100 power amplification unit 200 and output matching circuit 300.
  • the input matching circuit 100 is connected to the input end of the power amplification unit 200, and is used to provide the input matching impedance for the power amplification unit 200;
  • the output matching circuit 300 is connected to the output end of the power amplification unit 200, and is used to provide the power amplification unit 200.
  • the input matching circuit 100 includes a first impedance circuit, at least one input control unit and at least one second impedance circuit. Each input control unit is connected to a second impedance circuit respectively.
  • each input control unit is used to adjust the impedance value of the corresponding second impedance circuit according to the operating frequency.
  • the input matching circuit 100 can adjust the input matching impedance value according to different operating frequencies, so that the output power of the radio frequency amplifier circuit fluctuates less, thereby achieving stable output power of the radio frequency amplifier circuit under different operating frequencies.
  • the input matching circuit 100 includes a first impedance circuit 110, at least one second impedance circuit, and at least one input control unit. Each second impedance circuit is connected to an input control unit respectively, and the first impedance circuit and the second impedance circuit are connected in parallel between the input end of the input matching circuit and the output end of the input matching circuit.
  • FIG. 2 shows a circuit structure in which the input matching circuit 100 includes two second impedance circuits and two input control units. The two second impedance circuits are the second impedance circuit 121 and the second impedance circuit 122 respectively.
  • the two input control units are input control unit 131 and input control unit 132 respectively, that is, the second impedance circuit 121 is connected to the input control unit 131, the second impedance circuit 122 is connected to the input control unit 132, the first impedance circuit 110 is connected to the second impedance circuit 121 and The second impedance circuits 122 are connected in parallel between the input terminal and the output terminal of the input matching circuit 100 .
  • the input control unit 131 receives the operating frequency and adjusts the impedance of the second impedance circuit 121 based on the operating frequency.
  • the input control unit 132 receives the operating frequency and adjusts the impedance of the second impedance circuit 122 based on the operating frequency.
  • the impedance value of the input matching circuit 100 is adjusted.
  • the output power of the radio frequency amplifier circuit fluctuates less, thereby achieving stable output power of the radio frequency amplifier circuit under different operating frequencies.
  • FIG. 2 only shows a circuit structure in which the input matching circuit 100 includes two second impedance circuits and two input control units, this is not used to limit the present application.
  • the number of secondary impedance circuits and input control units can be set according to the number of actual operating frequencies.
  • the input control unit 131 adjusts the impedance value of the second impedance circuit 121 to zero, and the input control unit 132 adjusts the impedance value of the second impedance circuit 121 to zero.
  • the impedance value of the second impedance circuit 122 reaches zero; when the operating frequency of the radio frequency power amplifier circuit is the operating frequency 2, the input control unit 131 adjusts the impedance value of the second impedance circuit 121 to zero, and the input control unit 132 adjusts the second impedance
  • the impedance value of circuit 122 is R; when the operating frequency of the radio frequency power amplifier circuit is operating frequency 3, the input control unit 131 adjusts the impedance value of the second impedance circuit 121 to R1, and the input control unit 132 adjusts the second impedance circuit 122
  • the impedance value is R.
  • the matching impedance of the input matching circuit 100 is different, so that the amplified signal power is dynamically adjusted according to the operating frequency, so that the radio frequency power amplifier circuit operates at different operating frequencies.
  • the output power remains stable at the operating frequency.
  • the operating frequency can be a frequency range or a specific frequency value.
  • Both the input control unit 131 and the input control unit 132 can adjust the impedance value of the second impedance circuit connected to them according to the operating frequency.
  • the adjustment in may refer to changing the impedance value of the second impedance circuit.
  • the radio frequency power amplifier circuit in an embodiment of the present application includes an input capacitor 101, an input matching circuit 100, a power amplifying unit 200 and an output matching circuit 300.
  • the input capacitor 101 and the input matching circuit 100 are Input connection.
  • the input matching circuit 100 includes a first impedance circuit 110, a second impedance circuit 120 and an input control unit 130 connected to the second impedance circuit 120.
  • the first impedance circuit 110 and the second impedance circuit are connected in parallel at the input of the input matching circuit 100. between the terminal and the output terminal.
  • the second impedance circuit 120 includes a first matching circuit 160, a first filter circuit 140, a second matching circuit 170, a first diode D1 and a second diode.
  • Diode D2 the first matching circuit 160 is connected to the input end of the input matching circuit 100, the cathode of the first diode D1 is connected to the first matching circuit 160, and the anode of the first diode D1 is connected to the first filter circuit 140.
  • the anode of the second diode D2 is connected to the first filter circuit 140, and the cathode of the second diode D2 is connected to the second matching circuit 170; the second matching circuit 170 is connected to the output end of the input matching circuit 100, and the input control
  • the unit 130 is connected to the anode of the first diode D1 and the first filter circuit 140 respectively, and is used to control the voltage of the anode of the first diode D1 and the second diode D2 according to the operating frequency to control the first On/off of diode D1 and second diode D2.
  • the first filter circuit 140 includes a first inductor L1, a fourth capacitor C1 and a fifth capacitor C2. One end of the first inductor L1 is connected to the anode of the fourth capacitor C1 and the first diode D1 respectively. The first inductor The other end of L1 is connected to the anode of the fifth capacitor C2 and the second diode D2 respectively, and the ends of the fourth capacitor C1 and the fifth capacitor C2 that are not connected to the first inductor L1 are connected to the ground.
  • FIG. 4 only provides an example of the first filter circuit 140 and is not intended to limit the present application. In practical applications, the structure of the first filter circuit 140 can be designed according to actual needs, as long as the filtering function can be realized. The circuit structures are all within the protection scope of this application.
  • the first matching circuit 160 includes a first capacitor 102 and a first resistor 103 .
  • the first capacitor 102 and the first resistor 103 are connected in series, and the end of the first capacitor 102 that is not connected to the first resistor 103 is connected to the input end of the input matching circuit 100, and the end of the first resistor 103 that is not connected to the first capacitor 102 is connected to ground.
  • the cathode of the first diode D1 is connected between the first capacitor 102 and the first resistor 103 .
  • the second matching circuit 170 includes a second capacitor 104 and a second resistor 105 .
  • the second capacitor 104 and the second resistor 105 are connected in series, and the end of the second capacitor 104 that is not connected to the second resistor 105 is connected to the output end of the input matching circuit 100, and the end of the second resistor 105 that is not connected to the second capacitor 104 is connected to ground.
  • the cathode of the second diode D2 is connected between the second capacitor 104 and the second resistor 105 .
  • the first matching circuit 160 and the second matching circuit 170 are arranged symmetrically about the first filter circuit 150 to provide matching impedance for the power amplification unit 200.
  • FIG. 4 only shows one example of the first matching circuit 160 and the second matching circuit 170. Examples are not used to limit this application.
  • the structures of the first matching circuit 160 and the second matching circuit 170 can be designed according to actual needs. Therefore, in actual use, the circuit structures with the matching function are protected by this application. In the range.
  • the input control unit 130 includes a first electronic switch S1.
  • the first terminal of the first electronic switch S1 is connected to the anode of the first diode D1 and the first filter circuit 140 respectively.
  • the second terminal of the first electronic switch S1 is connected to the anode of the first diode D1 and the first filter circuit 140 respectively.
  • Connected to the first power supply BAT+ the control end of the first electronic switch S1 is used to input the operating frequency.
  • the control end of the first electronic switch S1 controls the first end of the first electronic switch S1 and the third end of the first electronic switch S1 according to the operating frequency. Both ends are connected/disconnected.
  • the input control unit 130 also includes a protection resistor 106 and a pull-up resistor 107.
  • the first end of the first electronic switch S1 is connected to the anode of the first diode D1 and the first filter circuit 140 through the protection resistor 106.
  • the first electronic switch S1 The control terminal of S1 receives the input operating frequency through the pull-up resistor 107.
  • control end of the first electronic switch S1 to control the conduction/disconnection of the first end of the first electronic switch S1 and the second end of the first electronic switch S1 according to the operating frequency includes:
  • the control end of the first electronic switch S1 controls the first end of the first electronic switch S1 to conduct with the second end of the first electronic switch S1, and the first diode D1 and the second The voltage of the anode of diode D2 is high level, and the first diode D1 and the second diode D2 are turned on.
  • the first filter circuit 140 is connected to the first matching circuit 160 and the second matching circuit 170 ;
  • the control terminal of the first electronic switch S1 controls the first terminal of the first electronic switch S1 to disconnect from the second terminal of the first electronic switch S1, and the first diode D1 and the second terminal of the first electronic switch S1 are disconnected.
  • the voltage of the anode of diode D2 is low level, and the first diode D1 and the second diode D2 are disconnected.
  • the first filter circuit 140 and the first matching circuit 160 and the second matching circuit 170 The connection is disconnected, thereby realizing the adjustment of the impedance value of the second impedance circuit 120 .
  • the input control unit 130 can control the impedance value of the second impedance circuit according to the operating frequency.
  • other components and/or circuit structures that can control the impedance value of the second impedance circuit according to the operating frequency are all in within the scope of protection of this application.
  • the first impedance circuit 110 includes a second filter circuit 140 and a third capacitor connected in series.
  • the end of the second filter circuit 140 that is not connected to the third capacitor is the input end of the first impedance circuit 110 .
  • the input end of the first impedance circuit 110 is connected to the input end of the input matching circuit 100 .
  • the third capacitor is not connected to the second impedance circuit 110 .
  • One end connected to the filter circuit 150 is the output end of the first impedance circuit 110 , and the output end of the first impedance circuit 110 is connected to the output end of the input matching circuit 100 .
  • the second filter circuit 140 includes a second inductor L2, a sixth capacitor C3 and a seventh capacitor C4.
  • One end of the second inductor L2 is connected to the sixth capacitor C3 and the input end of the input matching circuit 100 respectively.
  • the other end of the second inductor L2 They are respectively connected to the seventh capacitor C4 and the third capacitor, and the ends of the sixth capacitor C3 and the seventh capacitor C4 that are not connected to the second inductor L2 are grounded.
  • FIG. 4 only provides an example of the second filter circuit 140 and is not intended to limit the present application. In practical applications, the structure of the second filter circuit 140 can be designed according to actual needs, as long as the filter function can be realized. The circuit structures are all within the protection scope of this application.
  • the power amplification unit 200 can ensure that the amplified output signal is within a preset range at different operating frequencies. Compared with the existing radio frequency power amplification circuit, the output signal is reduced. Fluctuations caused by different operating frequencies.
  • the radio frequency power amplifier circuit of the present application also includes an output matching circuit 300.
  • the output matching circuit 300 includes an output control unit 310 and a third impedance circuit 320 .
  • the third impedance circuit 320 is connected to the power amplifier unit 200 and is used to provide output matching impedance for the power amplifier circuit 200;
  • the output control unit 310 is connected to the third impedance circuit 320 and is used to adjust the third impedance circuit 320 according to the size of the operating voltage. Impedance value, where the working voltage is the voltage required when the power amplification unit 200 works.
  • the third impedance circuit 320 includes a third filter circuit 321 , a fourth filter circuit 322 and a third diode D3 .
  • the cathode of the third diode D3 is connected to the output terminal of the power amplifier circuit 200
  • the anode of the third diode D3 is connected to the fourth filter circuit 322
  • one end of the third filter circuit 321 is connected to the output terminal of the power amplifier circuit 200.
  • the other end of the third filter circuit 321 is connected to the output control unit 310.
  • the output control unit 310 is used to control the voltage of the cathode of the third diode D3 according to the operating voltage to control the conduction/disconnection of the third diode D3. .
  • the third filter circuit 321 includes a fourth resistor 302, a fifth resistor 303, a sixth resistor 305, a seventh resistor 306 and a Zener diode 309, wherein one end of the fourth resistor 302 is connected to the output control unit 310, and The other end of the fourth resistor 302 is connected to one end of the fifth resistor 303, the other end of the fifth resistor 303 is connected to the cathode of the third diode D3, and one end of the sixth resistor 305 is connected between the fourth resistor 302 and the fifth resistor 303.
  • the other end of the sixth resistor 305 is connected to one end of the seventh resistor 306, the other end of the seventh resistor 306 is grounded, the anode of the Zener diode 309 is grounded, and its cathode is connected to the cathode of the third diode D3.
  • the Zener diode 309 The third port is connected between the sixth resistor 305 and the seventh resistor 306 .
  • the fourth filter circuit 322 includes an eighth resistor 307 and a ninth capacitor 304, wherein the anode of the third diode D3 is connected to one end of the ninth capacitor 304, the other end of the ninth capacitor 304 is grounded, and the eighth One end of the resistor 307 is connected to the power supply VCC, and the other end is connected to the anode of the third diode D3.
  • the output matching circuit 300 in this embodiment also includes a tenth capacitor 308.
  • the cathode of the third diode D3 is connected to the output end of the power amplification unit 200 through the tenth capacitor 308.
  • the third filter circuit 321 and the fourth filter circuit 322 jointly provide an output matching impedance for the power amplifier unit, and at the same time, the output control unit 310 controls the voltage of the cathode of the third diode D3 according to the operating voltage to control the third diode D3 On/off, thereby adjusting the output matching impedance value.
  • the output control unit 310 includes a second electronic switch S2.
  • the first end of the second electronic switch S2 is connected to the third filter circuit 321, specifically connected to one end of the fourth resistor 302.
  • the second end of the second electronic switch S2 The terminal is connected to the second power supply BAT+.
  • the control terminal of the second electronic switch S2 is used to input the working voltage.
  • the control terminal of the second electronic switch S2 controls the first terminal of the second electronic switch S2 and the second terminal of the second electronic switch S2 according to the working voltage.
  • the second terminal is turned on/off.
  • the second power supply and the first power supply may be the same power supply, which is not limited in this application.
  • control terminal of the second electronic switch S2 controls the conduction/disconnection of the first terminal of the second electronic switch S2 and the second terminal of the second electronic switch S2 according to the operating voltage, including:
  • the control end of the second electronic switch S2 controls the first end of the second electronic switch S2 to conduct with the second end of the second electronic switch S2, and the third diode D3
  • the voltage of the cathode is high level, and the third diode D3 is disconnected
  • the control terminal of the second electronic switch S2 controls the first terminal of the second electronic switch S2 to disconnect from the second terminal of the second electronic switch S2, and the third diode D3
  • the voltage of the cathode is low level, and the third diode D3 is turned on.
  • the output control unit 310 can control the impedance value of the third impedance circuit 320 through the operating voltage, so that the output power of the radio frequency amplifier circuit 200 is not higher than a preset value.
  • other components and/or circuit structures that can control the impedance value of the third impedance circuit according to the operating voltage are within the scope of protection of this application.
  • the radio frequency power amplifier circuit includes an input matching circuit 100 , a power amplification unit 200 and an output matching circuit 300 .
  • the input matching circuit 100 is connected to the input end of the power amplification unit 200, and is used to provide the input matching impedance for the power amplification unit 200;
  • the output matching circuit 300 is connected to the output end of the power amplification unit 200, and is used to provide the power amplification unit 200.
  • Output matching impedance is used to the input matching circuit 100 , a power amplification unit 200, and is used to provide the power amplification unit 200.
  • the input matching circuit 100 can adjust the input matching impedance value according to different operating frequencies, so that the output power of the radio frequency amplifier circuit fluctuates less, thereby achieving stable output power of the radio frequency amplifier circuit under different operating frequencies.
  • the output matching circuit 300 can modulate the output matching impedance according to different operating voltages so that the output power of the radio frequency amplifier circuit is not higher than a preset value, so that when the operating voltage fluctuates, the output power of the radio frequency amplifier circuit is lower than the safety threshold.
  • the power amplification unit 200 includes an amplification circuit 210 and a filter circuit 220.
  • the input end of the amplification circuit 210 is connected to the input matching circuit 100, the output end is connected to the filter circuit 220, and the other end of the filter circuit 220 is connected to the output.
  • Matching circuit 300 the amplifier circuit includes a triode, and the working voltage is the voltage required by the triode for amplification.
  • the filter circuit 220 is configured the same as the first filter circuit 140 and will not be described again.
  • other components and/or circuit structures that are suitable for this circuit and can realize the amplification function and filtering function are within the scope of protection of this application.
  • the communication device includes a radio frequency power amplification circuit, a filter and an antenna cascaded in sequence.
  • the radio frequency power amplification circuit includes an input matching circuit 100, a power amplifying unit 200 and an output matching circuit 300.
  • the input circuit 100, the power amplification unit 200 and the output matching circuit 300 are the same as the above embodiments, and will not be described again here.
  • One end of the filter is connected to the output end of the power amplification unit 200 and the output matching circuit 300, and the other end of the filter is connected to the antenna to filter the signal output by the power amplification unit and then transmit it through the antenna.
  • This application does not involve limitations on filter circuits and antennas. Communication equipment composed of filters and antennas that can achieve the above functions and the radio frequency power amplifier circuits involved in this application are within the scope of protection of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本申请提供的一种射频功率放大电路及通信设备。射频功率放大电路包括功率放大单元、输入匹配电路和输出匹配电路,输入匹配电路的输出端与功率放大单元的输入端连接,输入匹配电路包括第一阻抗电路、至少一个输入控制单元和至少一个第二阻抗电路,每一个输入控制单元分别与一个第二阻抗电路连接,第一阻抗电路和第二阻抗电路并联连接于输入匹配电路的输入端与输入匹配电路的输出端之间,其中,每一个输入控制单元用于根据工作频率调整对应的第二阻抗电路的阻抗值。本申请通过输入控制单元来根据工作频率调整对应的第二阻抗电路的阻抗值,使得输出功率稳定,从而解决了在不同的工作频率下稳定输出的问题。

Description

一种射频功率放大电路及通信设备 【技术领域】
本申请涉及功率控制技术领域,特别涉及一种射频功率放大电路及通信设备。
【背景技术】
目前主流的防爆通信设备射频功率在不超防爆协议标准“阀功率”前提下,正常输出功率越高越具备竞争优势。
防爆通信设备的射频输出功率主要影响因素包括:频率特性,根据通信设备工作频率的不同,发射功率在不同频点的波动较大,即不同工作频率下得到的输出功率相差较大,从而导致输出功率不能满足设计需求。
目前对防爆通信设备中的功率放大电路设计未能解决上述问题。
【发明内容】
有鉴于此,本申请实施例提供一种射频功率放大电路及通信设备,以解决在不同工作频率下功率放大电路的稳定输出问题。
为实现上述目的,本申请实施例提供如下技术方案:
一种射频功率放大电路,包括:
功率放大单元,用于放大输入信号的功率;输入匹配电路,所述输入匹配电路的输出端与所述功率放大单元的输入端连接,用于为所述功率放大单元提供输入匹配阻抗;所述输入匹配电路包括第一阻抗电路、至少一个输入控制单元和至少一个第二阻抗电路,每一个所述输入控制单元分别与一个所述第二阻抗电路连接,所述第一阻抗电路和所述第二阻抗电路并联连接于所述输入匹配电路的输入端与所述输入匹配电路的输出端之间,其中,每一个所述输入控制单元用于根据工作频率调整对应的第二阻抗电路的阻抗值;输出匹配电路,所述输出匹配电路与所述功率放大单元的输出端连接,用于为所述功率放大电路提供输出匹配阻抗。
可选的,所述射频功率放大电路还包括输入电容,所述输入电容的一端用于接收输入信号、另一端与所述输入匹配电路的输入端连接。
可选的,所述第二阻抗电路包括:第一匹配电路、第二滤波电路、第二匹配电路、第一二极管和第二二极管;所述第一匹配电路与所述输入匹配电路的 输入端连接;所述第一二极管的阴极与所述第一匹配电路连接,所述第一二极管的阳极与所述第二滤波电路连接;所述第二二极管的阳极与所述第二滤波电路连接,所述第二二极管的阴极与所述第二匹配电路连接;所述第二匹配电路与所述输入匹配电路的输出端连接;所述输入控制单元分别与所述第一二极管的阳极、第二滤波电路连接,用于根据工作频率控制所述第一二极管、第二二极管的阳极的电压,以控制所述第一二极管、第二二极管的导通/断开。
可选的,所述第一匹配电路包括:第一电容和第一电阻,所述第一电容一端与所述输入匹配电路的输入端连接、另一端经由所述第一电阻接地,所述第一二极管的阴极与所述第一电容的另一端连接;和/或,所述第二匹配电路包括:第二电容和第二电阻,所述第二电容一端与所述输入匹配电路的输出端连接、另一端经由所述第二电阻接地,所述第二二极管的阴极与所述第二电容的另一端连接。
可选的,所述输入控制单元包括:第一电子开关,所述第一电子开关的第一端分别与所述第一二极管的阳极、第二滤波电路连接,所述第一电子开关的第二端用于与第一电源连接,所述第一电子开关的控制端用于输入工作频率,所述第一电子开关的控制端根据所述工作频率控制所述第一电子开关的第一端与所述第一电子开关的第二端导通/断开。
可选的,当所述工作频率属于预设工作频段时,所述第一电子开关的控制端控制所述第一电子开关的第一端与所述第一电子开关的第二端导通,所述第一二极管、第二二极管的阳极的电压为高电平,所述第一二级管和所述第二二极管导通;当所述工作频率不属于所述预设工作频段时,所述第一电子开关的控制端控制所述第一电子开关的第一端与所述第一电子开关的第二端断开,所述第一二极管、第二二极管的阳极的电压为低电平,所述第一二级管和所述第二二极管断开。
可选的,所述第一阻抗电路包括:第一滤波电路和第二电容,所述第一滤波电路与输入匹配电路的输入端连接,所述第二电容的一端与所述第一滤波电路连接、另一端与所述输入匹配电路的输出端连接。
可选的,所述输出匹配电路包括:
输出控制单元和第三阻抗电路;所述第三阻抗电路与所述功率放大单元连接,用于为所述功率放大电路提供输出匹配阻抗;所述输出控制单元与所述第三阻抗电路连接,用于根据工作电压的大小调整所述第三阻抗电路的阻抗值, 其中,所述工作电压为所述功率放大单元工作时所需的电压。
可选的,所述第三阻抗电路包括:第三滤波电路、第四滤波电路和第三二极管;所述第三二极管的阴极与所述功率放大电路的输出端连接,所述第三二极管的阳极与所述第四滤波电路连接,所述第三滤波电路一端与所述功率放大电路的输出端连接,所述第三滤波电路的另一端与所述输出控制单元连接,所述输出控制单元用于根据工作电压控制所述第三二极管的阴极的电压,以控制所述第三二极管的导通/断开。
可选的,所述输出控制单元包括:
第二电子开关,所述第二电子开关的第一端与所述第三滤波电路连接,所述第二电子开关的第二端与第二电源连接,所述第二电子开关的控制端用于输入所述工作电压,所述第二电子开关的控制端根据所述工作电压控制所述第二电子开关的第一端与所述第二电子开关的第二端导通/断开。
可选的,当所述工作电压低于预设工作电压时,所述第二电子开关的控制端控制所述第二电子开关的第一端与所述第二电子开关的第二端导通,所述第三二极管的阴极的电压为高电平,所述第三二级管断开;
当所述工作电压大于或等于所述预设工作电压时,所述第二电子开关的控制端控制所述第二电子开关的第一端与所述第二电子开关的第二端断开,所述第三二极管的阴极的电压为低电平,所述第三二级管导通。
一种通信设备,包括依次级联的滤波器、天线及如上所述的射频功率放大电路。
本申请提供的一种射频功率放大电路,包括功率放大单元、输入匹配电路和输出匹配电路,其中所述输入匹配电路包括第一阻抗电路、至少一个输入控制单元和至少一个第二阻抗电路,输入控制单元根据工作频率调整对应的第二阻抗电路的阻抗值,使得所述输入匹配电路能够根据工作频率为所述功率放大单元提供相应的输入匹配阻抗,使得输出功率稳定,从而解决了在不同的工作频率下稳定输出的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
【附图说明】
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种射频功率放大电路的结构示意图;
图2为本申请实施例提供的一种输入匹配电路的结构示意图;
图3为本申请实施例提供的一种射频功率放大电路的另一结构示意图;
图4为本申请实施例提供的一种输入匹配电路的另一电路结构示意图;
图5为本申请实施例提供的一种输出匹配电路的结构示意图;
图6为本申请实施例提供的一种输出匹配电路的另一结构示意图;
图7为本申请实施例提供的一种射频功率放大电路的又一结构示意图;
图8为本申请实施例提供的一种通信设备的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在某些特殊的应用场景中,会要求设备的输出功率保持稳定。如对于防爆对讲机,为了保证对讲设备的稳定工作,需要减小设备的工作频率对输出功率的影响。为了解决上述问题,本申请提供了一种射频功率放大电路,能够减小不同的射频信号在经过功率放大后输出功率的波动。
参见图1,本申请一实施例提供的射频功率放大电路,包括:
输入匹配电路100、功率放大单元200和输出匹配电路300。其中,输入匹配电路100连接于功率放大单元200的输入端,用于为功率放大单元200提供输入匹配阻抗;输出匹配电路300与功率放大单元200的输出端连接,用于为 功率放大单元200提供输出匹配阻抗。输入匹配电路100包括第一阻抗电路、至少一个输入控制单元和至少一个第二阻抗电路,每一个输入控制单元分别与一个第二阻抗电路连接,第一阻抗电路和第二阻抗电路并联连接于输入匹配电路的输入端与输入匹配电路的输出端之间,其中,每一个输入控制单元用于根据工作频率调整对应的第二阻抗电路的阻抗值。
在本申请中,输入匹配电路100可以根据不同工作频率来调整输入匹配阻抗值,使得射频放大电路的输出功率波动较小,从而实现在不同的工作频率下,射频放大电路的输出功率维持稳定。
在一实施例中,如图2所示,输入匹配电路100包括第一阻抗电路110、至少一个第二阻抗电路及至少一个输入控制单元。其中,每一个第二阻抗电路分别与一个输入控制单元连接,第一阻抗电路和第二阻抗电路并联连接于输入匹配电路的输入端与输入匹配电路的输出端之间。图2示出了输入匹配电路100包括两个第二阻抗电路和两个输入控制单元的电路结构,两个第二阻抗电路分别为第二阻抗电路121和第二阻抗电路122,两个输入控制单元分别为输入控制单元131和输入控制单元132,即第二阻抗电路121与输入控制单元131连接,第二阻抗电路122与输入控制单元132连接,第一阻抗电路110与第二阻抗电路121和第二阻抗电路122均并联于输入匹配电路100的输入端和输出端之间。输入控制单元131接收工作频率,由工作频率调整第二阻抗电路121的阻抗,输入控制单元132接收工作频率,由工作频率调整第二阻抗电路122的阻抗。通过第二阻抗电路121和122的调整,从而调整输入匹配电路100的阻抗值。通过控制单元根据工作频率调整对应的第二阻抗电路的阻抗值,使得射频放大电路的输出功率波动较小,从而实现在不同的工作频率下,射频放大电路的输出功率维持稳定。这里需要说明的是,虽然图2中仅示出了输入匹配电路100包括两个第二阻抗电路和两个输入控制单元的电路结构,但是,这并不用于对本申请进行限定,本申请中第二阻抗电路、输入控制单元的数量可以根据实际工作频率的数量来设定。
可选的,在一具体的实施方式中,当射频功率放大电路所处的工作频率为工作频率1时,输入控制单元131调整第二阻抗电路121的阻抗值至零,输入控制单元132调整第二阻抗电路122的阻抗值至零;当射频功率放大电路所处的工作频率为工作频率2时,输入控制单元131调整第二阻抗电路121的阻抗值至零,输入控制单元132调整第二阻抗电路122的阻抗值为R;当射频功率放大电路所处的工作频率为工作频率3时,输入控制单元131调整第二阻抗电路121的阻抗值为R1,输入控制单元132调整第二阻抗电路122的阻抗值为R。射频功率放大电路在不同的工作频率1、工作频率2、工作频率3时,输入匹配电路100的匹配阻抗不同,从而实现放大后的信号功率根据工作频率动态调整,使得射频功率放大电路在不同的工作频率下输出功率维持稳定。在实际应用中, 工作频率可以是一个频率范围,也可以是一个具体频率值,输入控制单元131和输入控制单元132均可根据工作频率调整其连接的第二阻抗电路的阻抗值,本实施例中的调整可以是指改变第二阻抗电路的阻抗值。
优选的,如图3所示,本申请的一实施例中的射频功率放大电路包括输入电容101、输入匹配电路100、功率放大单元200及输出匹配电路300,输入电容101与输入匹配电路100的输入端连接。其中,输入匹配电路100包括第一阻抗电路110、第二阻抗电路120及与第二阻抗电路120连接的输入控制单元130,第一阻抗电路110与第二阻抗电路并联在输入匹配电路100的输入端和输出端之间。
进一步的,如图4所示,在一具体实施例中,第二阻抗电路120包括第一匹配电路160、第一滤波电路140、第二匹配电路170、第一二极管D1和第二二极管D2,第一匹配电路160与输入匹配电路100的输入端连接,第一二极管D1的阴极与第一匹配电路160连接,第一二极管D1的阳极与第一滤波电路140连接;第二二极管D2的阳极与第一滤波电路140连接,第二二极管D2的阴极与第二匹配电路170连接;第二匹配电路170与输入匹配电路100的输出端连接,输入控制单元130分别与第一二极管D1的阳极、第一滤波电路140连接,用于根据工作频率控制所述第一二极管D1、第二二极管D2的阳极的电压,以控制第一二极管D1、第二二极管D2的导通/断开。
具体地,第一滤波电路140包括第一电感L1、第四电容C1和第五电容C2,第一电感L1的一端分别与第四电容C1、第一二极管D1的阳极连接,第一电感L1的另一端分别与第五电容C2、第二二极管D2的阳极连接,第四电容C1和第五电容C2未与第一电感L1连接的一端接地。图4仅仅是给出了第一滤波电路140的一种示例,并不用于对本申请进行限定,在实际应用中,可以根据实际需要对第一滤波电路140的结构进行设计,只要能够实现滤波功能的电路结构均在本申请保护的范围内。
优选的,第一匹配电路160包括第一电容102、第一电阻103。第一电容102与第一电阻103串联,且第一电容102未与第一电阻103连接的一端与输入匹配电路100的输入端连接,第一电阻103未与第一电容102连接的一端接地,第一二极管D1的阴极连接于第一电容102和第一电阻103之间。第二匹配电路170包括第二电容104、第二电阻105。第二电容104与第二电阻105串联,且第二电容104未与第二电阻105连接的一端与输入匹配电路100的输出端连接,第二电阻105未与第二电容104连接的一端接地,第二二极管D2的阴极连接于第二电容104和第二电阻105之间。第一匹配电路160和第二匹配电路170关于第一滤波电路150对称设置,为功率放大单元200提供匹配阻抗,图4仅仅是给出了第一匹配电路160和第二匹配电路170的一种示例,并不用于对本申请进行限定,可以根据实际需要对第一匹配电路160和第二匹配电路170的结 构进行设计,因此在实际使用中,具有所述匹配功能的电路结构均在本申请保护的范围内。
优选的,输入控制单元130包括第一电子开关S1,第一电子开关S1的第一端分别与第一二极管D1的阳极、第一滤波电路140连接,第一电子开关S1的第二端与第一电源BAT+连接,第一电子开关S1的控制端用于输入工作频率,第一电子开关S1的控制端根据工作频率控制第一电子开关S1的第一端与第一电子开关S1的第二端导通/断开。
输入控制单元130还包括保护电阻106和上拉电阻107,第一电子开关S1的第一端通过保护电阻106分别与第一二极管D1的阳极、第一滤波电路140连接,第一电子开关S1的控制端通过上拉电阻107接收输入的工作频率。
具体地,第一电子开关S1的控制端根据工作频率控制第一电子开关S1的第一端与第一电子开关S1的第二端导通/断开包括:
当工作频率属于预设工作频段时,第一电子开关S1的控制端控制第一电子开关S1的第一端与第一电子开关S1的第二端导通,第一二极管D1、第二二极管D2的阳极的电压为高电平,第一二级管D1和第二二极管D2导通,此时,第一滤波电路140与第一匹配电路160和第二匹配电路170连接;
当工作频率不属于预设工作频段时,第一电子开关S1的控制端控制第一电子开关S1的第一端与第一电子开关S1的第二端断开,第一二极管D1、第二二极管D2的阳极的电压为低电平,第一二级管D1和第二二极管D2断开,此时,第一滤波电路140与第一匹配电路160和第二匹配电路170断开连接,从而实现第二阻抗电路120阻抗值的调整。
输入控制单元130可以通过工作频率控制第二阻抗电路的阻抗值,除了本实施例提供的实施方式外,其他可以根据工作频率控制第二阻抗电路的阻抗值的元器件和/或电路结构均在本申请保护的范围内。
优选的,如图4所示,第一阻抗电路110包括串联的第二滤波电路140和第三电容。其中,第二滤波电路140未与第三电容连接的一端为第一阻抗电路110的输入端,第一阻抗电路110的输入端与输入匹配电路100的输入端连接,第三电容未与第二滤波电路150连接的一端为第一阻抗电路110的输出端,第一阻抗电路110的输出端与输入匹配电路100的输出端连接。
第二滤波电路140包括第二电感L2、第六电容C3和第七电容C4,第二电感L2的一端分别与第六电容C3、输入匹配电路100的输入端连接,第二电感L2的另一端分别与第七电容C4、第三电容连接,第六电容C3和第七电容C4未与第二电感L2连接的一端接地。图4仅仅是给出了第二滤波电路140的一种示例,并不用于对本申请进行限定,在实际应用中,可以根据实际需要对第二滤波电路140的结构进行设计,只要能够实现滤波功能的电路结构均在本申请保护的范围内。
本申请通过输入匹配电路100的设计,使得功率放大单元200可以在不同的工作频率下保证放大后的输出信号在预设的范围内,相对于现有的射频功率放大电路,减小了输出信号因为工作频率不同而造成的波动。
在实际应用中,需要为功率放大单元200中的元器件提供电压,在本申请中所述电压为工作电压,使得功率放大单元200可以实现功率的放大。但由于温度、元器件损耗等原因,工作电压值会产生上下浮动,从而影响功率放大单元200的放大效果。但在一些特殊场景中,为保证安全,射频功率放大电路的输出功率必须低于安全等级所设定的输出功率。为实现上述目的,本申请的射频功率放大电路还包括输出匹配电路300。
在一具体实施例中,如图5所示,输出匹配电路300包括输出控制单元310和第三阻抗电路320。第三阻抗电路320与功率放大单元200连接,用于为功率放大电路200提供输出匹配阻抗;输出控制单元310与第三阻抗电路320连接,用于根据工作电压的大小调整第三阻抗电路320的阻抗值,其中,工作电压为所述功率放大单元200工作时所需的电压。
进一步,如图6所示,在一具体实施例中,第三阻抗电路320包括第三滤波电路321、第四滤波电路322和第三二极管D3。第三二极管D3的阴极与功率放大电路200的输出端连接,第三二极管D3的阳极与第四滤波电路322连接,第三滤波电路321一端与功率放大电路200的输出端连接,第三滤波电路321的另一端与输出控制单元310连接,输出控制单元310用于根据工作电压控制第三二极管D3的阴极的电压,以控制第三二极管D3的导通/断开。
可选的,第三滤波电路321包括第四电阻302、第五电阻303、第六电阻305、第七电阻306及稳压二极管309,其中,第四电阻302一端与输出控制单元310连接,第四电阻302另一端与第五电阻303的一端连接,第五电阻303的另一端连接第三二极管D3的阴极,第六电阻305的一端连接在第四电阻302和第五电阻303之间,第六电阻305的另一端与第七电阻306的一端连接,第七电阻306的另一端接地,稳压二极管309阳极接地,其阴极与第三二极管D3的阴极连接,稳压二极管309的第三端口连接于第六电阻305和第七电阻306之间。
可选的,第四滤波电路322包括第八电阻307及第九电容304,其中,第三二极管D3的阳极与第九电容304的一端连接,第九电容304的另一端接地,第八电阻307的一端连接电源VCC、另一端连接于第三二极管D3的阳极。
本实施例中的输出匹配电路300还包括第十电容308,第三二极管D3的阴极通过第十电容308与功率放大单元200的输出端连接。
第三滤波电路321和第四滤波电路322共同为功率放大单元提供输出匹配阻抗,同时通过输出控制单元310根据工作电压控制第三二极管D3的阴极的电压,以控制第三二极管D3的导通/断开,从而调整输出匹配阻抗值。
可选的,输出控制单元310包括第二电子开关S2,第二电子开关S2的第一 端与第三滤波电路321连接,具体与第四电阻302的一端连接,第二电子开关S2的第二端与第二电源BAT+连接,第二电子开关S2的控制端用于输入工作电压,第二电子开关S2的控制端根据工作电压控制第二电子开关S2的第一端与第二电子开关S2的第二端导通/断开。
其中,第二电源与第一电源可以是相同的电源,在本申请中不做限定。
进一步,第二电子开关S2的控制端根据工作电压控制第二电子开关S2的第一端与第二电子开关S2的第二端导通/断开,包括:
当工作电压低于预设工作电压时,第二电子开关S2的控制端控制第二电子开关S2的第一端与第二电子开S2关的第二端导通,第三二极管D3的阴极的电压为高电平,第三二级管D3断开;
当工作电压大于或等于预设工作电压时,第二电子开关S2的控制端控制第二电子开关S2的第一端与第二电子开关S2的第二端断开,第三二极管D3的阴极的电压为低电平,第三二级管D3导通。
输出控制单元310可以通过工作电压控制第三阻抗电路320的阻抗值,使得射频放大电路200的输出功率不高于预设值。除了本实施例提供的实施方式外,其他可以根据工作电压控制第三阻抗电路的阻抗值的元器件和/或电路结构均在本申请保护的范围内。
如图7所示,本申请提供一具体射频功率放大电路的实施例,射频功率放大电路包含输入匹配电路100、功率放大单元200和输出匹配电路300。其中,输入匹配电路100连接于功率放大单元200的输入端,用于为功率放大单元200提供输入匹配阻抗;输出匹配电路300与功率放大单元200的输出端连接,用于为功率放大单元200提供输出匹配阻抗。在本申请中,输入匹配电路100可以根据不同工作频率来调整输入匹配阻抗值,使得射频放大电路的输出功率波动较小,从而实现在不同的工作频率下,射频放大电路的输出功率维持稳定。输出匹配电路300可以根据不同工作电压来调制输出匹配阻抗,使得射频放大电路的输出功率不高于预设值,实现在工作电压存在波动时,射频放大电路的输出功率低于安全阈值。
输入匹配电路100和输出匹配电路300可参见上述实施例,这里不再赘述。下面具体描述功率放大单元200的电路结构。
在如图7的一具体实施例中,功率放大单元200包括放大电路210和滤波电路220,其中放大电路210输入端连接输入匹配电路100,输出端连接滤波电路220,滤波电路220另一端连接输出匹配电路300。在本实施例中放大电路包括三极管,工作电压为三极管提供放大时所需的电压。滤波电路220在本实施例中设置与第一滤波电路140相同,在此不再赘述。除了本实施例提供的实施方式外,其他适用于本电路并可以实现放大功能功能和滤波功能的元器件和/或电路结构均在本申请保护的范围内。
本申请还保护一种通信设备,如图8所示,在本申请一实施例中,通信设备包括依次级联的射频功率放大电路、滤波器及天线。其中,射频功率放大电路包括输入匹配电路100、功率放大单元200和输出匹配电路300。
输入电路100、功率放大单元200和输出匹配电路300如上述实施例,在此不再赘述。滤波器一端与功率放大单元200的输出端和输出匹配电路300连接,滤波器另一端与天线连接,可对功率放大单元输出的信号进行滤波处理,在经由天线发射出去。在本申请中不涉及对滤波电路及天线的限定,可实现上述功能的滤波器和天线与本申请中涉及的射频功率放大电路组合成的通信设备均在本申请的保护范围。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种射频功率放大电路,其特征在于,包括:
    功率放大单元,用于放大输入信号的功率;
    输入匹配电路,所述输入匹配电路的输出端与所述功率放大单元的输入端连接,用于为所述功率放大单元提供输入匹配阻抗;所述输入匹配电路包括第一阻抗电路、至少一个输入控制单元和至少一个第二阻抗电路,每一个所述输入控制单元分别与一个所述第二阻抗电路连接,所述第一阻抗电路和所述第二阻抗电路并联连接于所述输入匹配电路的输入端与所述输入匹配电路的输出端之间,其中,每一个所述输入控制单元用于根据工作频率调整对应的第二阻抗电路的阻抗值;
    输出匹配电路,所述输出匹配电路与所述功率放大单元的输出端连接,用于为所述功率放大电路提供输出匹配阻抗。
  2. 根据权利要求1所述的射频功率放大电路,其特征在于,所述射频功率放大电路还包括输入电容,所述输入电容的一端用于接收输入信号、另一端与所述输入匹配电路的输入端连接。
  3. 根据权利要求1所述的射频功率放大电路,其特征在于,所述第二阻抗电路包括:第一匹配电路、第一滤波电路、第二匹配电路、第一二极管和第二二极管;
    所述第一匹配电路与所述输入匹配电路的输入端连接;所述第一二极管的阴极与所述第一匹配电路连接,所述第一二极管的阳极与所述第一滤波电路连接;所述第二二极管的阳极与所述第一滤波电路连接,所述第二二极管的阴极与所述第二匹配电路连接;所述第二匹配电路与所述输入匹配电路的输出端连接;所述输入控制单元分别与所述第一二极管的阳极、第一滤波电路连接,用于根据工作频率控制所述第一二极管、第二二极管的阳极的电压,以控制所述第一二极管、第二二极管的导通/断开。
  4. 根据权利要求3所述的射频功率放大电路,其特征在于,所述第一匹配电路包括:第一电容和第一电阻,所述第一电容一端与所述输入匹配电路的输入端连接、另一端经由所述第一电阻接地,所述第一二极管的阴极与所述第一电容的另一端连接;
    和/或,所述第二匹配电路包括:第二电容和第二电阻,所述第二电容一端 与所述输入匹配电路的输出端连接、另一端经由所述第二电阻接地,所述第二二极管的阴极与所述第二电容的另一端连接。
  5. 根据权利要求4所述的射频功率放大电路,其特征在于,所述输入控制单元包括:
    第一电子开关,所述第一电子开关的第一端分别与所述第一二极管的阳极、第一滤波电路连接,所述第一电子开关的第二端用于与第一电源连接,所述第一电子开关的控制端用于输入工作频率,所述第一电子开关的控制端根据所述工作频率控制所述第一电子开关的第一端与所述第一电子开关的第二端导通/断开。
  6. 根据权利要求5所述的射频功率放大电路,其特征在于,所述第一电子开关的控制端根据所述工作频率控制所述第一电子开关的第一端与所述第一电子开关的第二端导通/断开,包括:
    当所述工作频率属于预设工作频段时,所述第一电子开关的控制端控制所述第一电子开关的第一端与所述第一电子开关的第二端导通,所述第一二极管、第二二极管的阳极的电压为高电平,所述第一二级管和所述第二二极管导通;
    当所述工作频率不属于所述预设工作频段时,所述第一电子开关的控制端控制所述第一电子开关的第一端与所述第一电子开关的第二端断开,所述第一二极管、第二二极管的阳极的电压为低电平,所述第一二级管和所述第二二极管断开。
  7. 根据权利要求1所述的射频功率放大电路,其特征在于,所述第一阻抗电路包括:
    第二滤波电路和第三电容,所述第二滤波电路与输入匹配电路的输入端连接,所述第三电容的一端与所述第二滤波电路连接、另一端与所述输入匹配电路的输出端连接。
  8. 根据权利要求1所述的射频功率放大电路,其特征在于,所述输出匹配电路包括:
    输出控制单元和第三阻抗电路;所述第三阻抗电路与所述功率放大单元连接,用于为所述功率放大电路提供输出匹配阻抗;所述输出控制单元与所述第三阻抗电路连接,用于根据工作电压的大小调整所述第三阻抗电路的阻抗值,其中,所述工作电压为所述功率放大单元工作时所需的电压。
  9. 根据权利要求8所述的射频功率放大电路,其特征在于,所述第三阻抗 电路包括:第三滤波电路、第四滤波电路和第三二极管;
    所述第三二极管的阴极与所述功率放大电路的输出端连接,所述第三二极管的阳极与所述第四滤波电路连接,所述第三滤波电路一端与所述功率放大电路的输出端连接,所述第三滤波电路的另一端与所述输出控制单元连接,所述输出控制单元用于根据工作电压控制所述第三二极管的阴极的电压,以控制所述第三二极管的导通/断开。
  10. 根据权利要求9所述的射频功率放大电路,其特征在于,所述输出控制单元包括:
    第二电子开关,所述第二电子开关的第一端与所述第三滤波电路连接,所述第二电子开关的第二端与第二电源连接,所述第二电子开关的控制端用于输入所述工作电压,所述第二电子开关的控制端根据所述工作电压控制所述第二电子开关的第一端与所述第二电子开关的第二端导通/断开。
  11. 根据权利要求10所述的射频功率放大电路,其特征在于,所述第二电子开关的控制端根据所述工作电压控制所述第二电子开关的第一端与所述第二电子开关的第二端导通/断开,包括:
    当所述工作电压低于预设工作电压时,所述第二电子开关的控制端控制所述第二电子开关的第一端与所述第二电子开关的第二端导通,所述第三二极管的阴极的电压为高电平,所述第三二级管断开;
    当所述工作电压大于或等于所述预设工作电压时,所述第二电子开关的控制端控制所述第二电子开关的第一端与所述第二电子开关的第二端断开,所述第三二极管的阴极的电压为低电平,所述第三二级管导通。
  12. 一种通信设备,其特征在于,包括依次级联的滤波器、天线及根据权利要求1-11任一项所述的射频功率放大电路。
PCT/CN2022/086172 2022-04-11 2022-04-11 一种射频功率放大电路及通信设备 WO2023197116A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086172 WO2023197116A1 (zh) 2022-04-11 2022-04-11 一种射频功率放大电路及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086172 WO2023197116A1 (zh) 2022-04-11 2022-04-11 一种射频功率放大电路及通信设备

Publications (1)

Publication Number Publication Date
WO2023197116A1 true WO2023197116A1 (zh) 2023-10-19

Family

ID=88328646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086172 WO2023197116A1 (zh) 2022-04-11 2022-04-11 一种射频功率放大电路及通信设备

Country Status (1)

Country Link
WO (1) WO2023197116A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
CN103181086A (zh) * 2010-11-01 2013-06-26 克里公司 传输电路的匹配网络
CN104716911A (zh) * 2013-12-13 2015-06-17 中兴通讯股份有限公司 一种射频功率放大器、基站及阻抗调整方法
CN110784185A (zh) * 2019-11-11 2020-02-11 北京普能微电子科技有限公司 功率放大器、输出匹配电路和射频模块
CN111865234A (zh) * 2020-07-31 2020-10-30 中国科学院微电子研究所 一种紧凑型宽带Doherty功率放大器
US20210050821A1 (en) * 2019-07-17 2021-02-18 Gatesair, S.R.L. Method for Making a Wideband Doherty Amplifier with Reduced Plan Width and Amplifier Thereof
WO2021059161A1 (en) * 2019-09-23 2021-04-01 University College Dublin, National University Of Ireland Power amplifiers
CN113114132A (zh) * 2021-03-12 2021-07-13 华南理工大学 一种适用于5g基站的功率放大器及通信设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181086A (zh) * 2010-11-01 2013-06-26 克里公司 传输电路的匹配网络
CN102355221A (zh) * 2011-06-17 2012-02-15 雷良军 多频带功率放大器及输出匹配电路
CN104716911A (zh) * 2013-12-13 2015-06-17 中兴通讯股份有限公司 一种射频功率放大器、基站及阻抗调整方法
US20210050821A1 (en) * 2019-07-17 2021-02-18 Gatesair, S.R.L. Method for Making a Wideband Doherty Amplifier with Reduced Plan Width and Amplifier Thereof
WO2021059161A1 (en) * 2019-09-23 2021-04-01 University College Dublin, National University Of Ireland Power amplifiers
CN110784185A (zh) * 2019-11-11 2020-02-11 北京普能微电子科技有限公司 功率放大器、输出匹配电路和射频模块
CN111865234A (zh) * 2020-07-31 2020-10-30 中国科学院微电子研究所 一种紧凑型宽带Doherty功率放大器
CN113114132A (zh) * 2021-03-12 2021-07-13 华南理工大学 一种适用于5g基站的功率放大器及通信设备

Similar Documents

Publication Publication Date Title
JP5259182B2 (ja) 直角位相オフセット電力増幅器
US4054910A (en) Communication system for the transmission of closed circuit television over an ordinary pair of wires
US8798204B2 (en) Serial link receiver for handling high speed transmissions
US4118731A (en) Video amplifier with suppressed radio frequency radiation
DE10347721A1 (de) Leistungsverstärkermodul vom Time-Division-Duplexing-Typ
US5191338A (en) Wideband transmission-mode FET linearizer
US20140033264A1 (en) Network interface device having a solid-state safeguard apparatus for preserving the quality of passive operation in the event of disruptive operational conditions
US6919774B2 (en) Broadband PIN diode attenuator bias network
CN108011599A (zh) 一种有效抑制手机功率放大器低频杂波的匹配电路结构及方法
CN109039288B (zh) 可调增益均衡器
CN112202409A (zh) 低噪声放大模块、接收机和信号处理方法
WO2018040178A1 (zh) 射频电路及具有该射频电路的无线通信装置
US2412995A (en) Amplifier of electromagnetic energy
US20210083510A1 (en) Wireless charger and control method
WO2023197116A1 (zh) 一种射频功率放大电路及通信设备
US11095324B2 (en) Wireless transmission circuit and control method thereof
CN216721309U (zh) 一种连续时间线性均衡电路和宽带接收机
CN109560830A (zh) 一种中心频率和群时延均可调的自匹配负群时延电路
US11978941B2 (en) Bias tee circuit and PoC circuit using the same
CN202586944U (zh) 短波预选器
US20220085794A1 (en) Configurable micro-acoustic rf filter
CN116938165A (zh) 一种射频功率放大电路及通信设备
US3938046A (en) Network for isolating antenna from tuner
US9377796B2 (en) Interference suppression for switched mode power supply
CN104967460A (zh) 手机装置、射频收发器电路及阻抗调整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936776

Country of ref document: EP

Kind code of ref document: A1