WO2023197114A1 - 粒子矫正装置、粒子矫正器模组和粒子系统 - Google Patents

粒子矫正装置、粒子矫正器模组和粒子系统 Download PDF

Info

Publication number
WO2023197114A1
WO2023197114A1 PCT/CN2022/086163 CN2022086163W WO2023197114A1 WO 2023197114 A1 WO2023197114 A1 WO 2023197114A1 CN 2022086163 W CN2022086163 W CN 2022086163W WO 2023197114 A1 WO2023197114 A1 WO 2023197114A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
signal line
shielding
line group
correction device
Prior art date
Application number
PCT/CN2022/086163
Other languages
English (en)
French (fr)
Inventor
马泽
贺佳坤
张文
赵冲
张超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/086163 priority Critical patent/WO2023197114A1/zh
Publication of WO2023197114A1 publication Critical patent/WO2023197114A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/087Deviation, concentration or focusing of the beam by electric or magnetic means by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation

Definitions

  • the present application relates to the field of particle technology, and in particular to a particle correction device, a particle corrector module and a particle system.
  • Nanoscale high-resolution microscopy systems or exposure systems often use charged particles as working particles. Compared to optical microscopy systems or exposure systems with hundreds of nanometer resolution, charged particle systems can use particles with wavelengths smaller than the wavelength of photons to achieve higher resolution. However, charged particle systems often cannot obtain a large-area beam to cover a large area of a sample like an optical system. Instead, they use a particle beam spot with a diameter on the order of nanometers to scan to cover the sample. Therefore, the throughput of the entire particle system is low. . In order to improve the throughput of the particle system, you can use a multi-particle beam particle system. This particle system uses multiple particle beams to work in parallel, which can greatly improve the throughput of the particle system.
  • a single particle source can be used to emit particles, and then a small hole array separates the particle beam into multiple particle beams; a multi-particle source can also be used to emit particles, and the particles emitted by each particle source are separated by small holes. into one or more bundles of particles.
  • a particle beam microcorrector array is required to precisely control the incident angle and position of each particle beam.
  • the electric fields generated by the signal lines that provide voltage signals to these microrectifiers can act on the particle beam, causing crosstalk.
  • This application provides a particle corrector device, a particle corrector module and a particle system to reduce the crosstalk suffered by the micro-corrector of the particle corrector module and improve the accuracy of the particle beam of the particle system.
  • the present application provides a particle correction device.
  • the particle correction device includes a particle correction plate.
  • the particle correction plate includes M through holes, a plurality of electrodes, a signal line group and a first shielding layer, wherein each through hole A plurality of electrodes are provided on the circumferential side of the hole, so that the through hole and the electrodes on its circumferential side form a micro-corrector, where M is an integer greater than or equal to 1.
  • the plurality of electrodes may be disposed on the inner wall of the through hole, or may be disposed around the outside of the through hole.
  • Each of the above-mentioned electrodes is connected to a signal line in the signal line group, so that a certain voltage value can be input to each of the above-mentioned electrodes to generate a correction electric field in the corresponding through hole.
  • the direction and intensity of the correction electric field can be adjusted, thereby adjusting parameters such as the inclination, offset, and astigmatism of the corresponding particle beam for each particle beam, and adjusting the accuracy of the particle beam.
  • the particle correction device has a large number of signal lines, so the possible interference electric field may be strong, and the micro-corrector may suffer significant crosstalk.
  • the above-mentioned first shielding layer is disposed on one or both ends of the signal line group along the central axis direction of the through hole. That is to say, the first shielding layer is disposed on the end of the signal line group facing the surface of the particle correction plate, which can shield the signal line.
  • the interference electric field generated by the group is used to reduce the crosstalk of the signal line group suffered by the micro-corrector and improve the correction effect of the micro-corrector and the accuracy of the particle beam.
  • the above-mentioned particle correction device can specifically have a chip structure, a circuit board structure, or other structures that can be equipped with micro-correctors and signal line groups, which is not limited by this application.
  • the first shielding layer can be provided only at one end of the signal line group. Specifically, the first shielding layer can be located at the end of the signal line group that is closer to the edge of the electrode.
  • the above-mentioned electrode edge refers to The edge along the central axis of the through hole. That is to say, the above-mentioned first shielding layer can be provided at the end of the signal line group facing upwards, or can be provided at the end of the signal line group facing downwards, where the upper side refers to the direction in which the particle beam enters, and the lower side refers to the direction in which the particle beam exits. direction.
  • the above-mentioned first shielding layer can be respectively provided at both ends of the signal line group along the central axis direction of the through hole. In this way, the interference electric field generated by the signal line group can be shielded from two directions and the crosstalk suffered by the micro-rectifier can be reduced.
  • one signal line can be connected to one electrode, so that each electrode can independently input the required voltage value, and the voltage value in each electrode can be independently controlled according to the needs to adjust the micro-corrector
  • the intensity and direction of the internal correction electric field are improved to improve the accuracy of particle beam correction by the particle correction device.
  • This solution requires a large number of signal lines to be laid out on the particle correction board. Therefore, the interference electric field generated by the signal lines is also relatively strong.
  • This application has a relatively important significance by setting up a first shielding layer for shielding the interference electric field generated by the signal line group. , can reduce the crosstalk of the above-mentioned interfering electric fields suffered by the micro-corrector, which is beneficial to improving the accuracy of the micro-corrector.
  • the above-mentioned first shielding layer may be a metal layer, may be a sheet-like structure, or may be a mesh-like structure.
  • the above-mentioned first shielding layer can be disposed inside the particle correction plate or on the surface of the particle correction plate. There is no limitation in this application, and the structure of the above-mentioned first shielding layer can be designed according to the requirements.
  • a second shielding layer can also be provided on the side of the signal line group area of the particle correction device.
  • the plane where the second shielding layer is located is in contact with the plane where the first shielding layer is located.
  • the planes intersect, specifically, the plane where the second shielding layer is located can be perpendicular to the plane where the first shielding layer is located.
  • the above-mentioned second shielding layer can be parallel to the extension direction of the signal line, that is, shielding layers can be provided in all directions on the peripheral sides of the extended square according to needs to improve the shielding effect of the interference electric field of the signal line group.
  • two first shielding layers and two second shielding layers may be arranged around the signal line group of the particle correction device.
  • the two first shielding layers and the two second shielding layers are spaced apart in sequence, and the adjacent first shielding layers and the second shielding layers are connected to form a circumferentially sealed shielding tube.
  • the above-mentioned signal line group is arranged in a shielding tube.
  • the shielding tube has a better shielding effect on the interference electric field of the signal line group, improves the correction effect of the micro-rectifier, and improves the accuracy of the particle beam.
  • the above-mentioned second shielding layer may be a metal layer, may be a sheet-like structure, or may be a mesh-like structure.
  • the above-mentioned first shielding layer structure can be designed according to requirements.
  • the signal line group includes multiple signal lines, and at least the signal line located at the edge of the signal line group is a ground signal line. That is to say, the signal lines located at the edge of the signal line group are grounded to form a shielding structure. Specifically, the signal lines on one layer at the edge of the signal line group can be grounded to form a grounded signal line. In this solution, the grounded signal line It occupies less space and is conducive to improving the integration of the particle correction device. Alternatively, at least two layers of signal lines at the edge of the signal line group can be grounded to form a grounded signal line to improve the shielding effect at the edge of the signal line group.
  • the technical solution of this application can set up a shielding wall around each micro-corrector, and the electrodes and through holes of the micro-correctors are located in the above-mentioned shielding wall. In this way, each micro-corrector can be divided into each other without crosstalk, and the correction effect of the micro-corrector can also be improved.
  • the symmetry axis of the orthographic projection of the shielding wall in the direction perpendicular to the central axis of the through hole overlaps the symmetry axis of the multiple electrode arrangements, so that the shielding wall will not break the electrodes of the original micro-corrector.
  • the symmetry formed will not introduce additional aberrations to the particle beam, ensuring the working effect of the particle corrector module.
  • the orthographic projection of the shielding wall is a circle, that is, the shielding wall forms a circular shape.
  • the orthographic projection of the shielding wall of the micro-rectifier in a direction perpendicular to the central axis of the through hole can be a regular
  • the electrodes face each other one by one, or each corner of the regular X-gon faces each electrode one by one. In short, it is necessary to prevent the shielding wall from destroying the symmetry of the microcorrector.
  • the height of the shielding wall along the central axis of the through hole can also be greater than the height of the electrode along the central axis.
  • the shielding wall can include a main shielding portion and an auxiliary shielding portion along the central axis of the through hole.
  • the main shielding portion is opposite to the electrode. It can be understood that the height of the main shielding portion along the central axis of the through hole is equal to the height of the main shielding portion along the central axis of the through hole.
  • the heights in the direction of the central axis are equal and coincide with each other.
  • the auxiliary shielding parts can be located on both sides of the main shielding part along the central axis of the through hole, thereby extending the shielding height of the shielding wall, improving the shielding effect of the shielding wall, and further reducing crosstalk between micro-rectifiers.
  • this application also provides a particle corrector module.
  • the particle corrector module includes a power supply, a fixing part, and N particle correction devices in any of the above technical solutions, where N is greater than or equal to an integer of 1.
  • the above-mentioned N particle correcting devices are stacked and arranged, and the through holes of the micro correcting devices between any two adjacent particle correcting devices are coaxially arranged to form a group of micro correcting devices for the same particle beam.
  • the above-mentioned power supply component is connected to the signal line group and is used to provide a certain voltage value to the electrode.
  • the above-mentioned particle correction device is fixed with the fixing member to form an integral corrector module structure. In this solution, each micro-corrector may suffer less crosstalk, and the correction effect of the micro-corrector group is better, which is beneficial to improving the accuracy of the particle beam.
  • this application also provides a particle system, which includes a particle source, a collimating lens, a beam splitter, a focusing lens, and the above-mentioned particle corrector module, wherein the particle source, the collimating lens, the beam splitter
  • the plate, particle corrector module and focusing lens are arranged in sequence to form the required particle beam.
  • the correction effect of the particle corrector module is better, so the accuracy of the particle system is higher.
  • Figure 1 is a schematic structural diagram of a particle system in an embodiment of the present application.
  • Figure 2a is a schematic structural diagram of a top view of the particle correction device in the embodiment of the present application.
  • Figure 2b is another top structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 3 is a partial cross-sectional structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 4 is a partial cross-sectional structural diagram of a particle corrector module without a first shielding layer
  • Figure 5 is another partial cross-sectional structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 6 is another partial top view structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 7 is a partial top view structural diagram of the signal line group in the embodiment of the present application.
  • Figure 8 is another partial top view structural diagram of the signal line group in the embodiment of the present application.
  • Figure 9 is another partial top view structural diagram of the signal line group in the embodiment of the present application.
  • Figure 10 is another partial top view structural diagram of the signal line group in the embodiment of the present application.
  • Figure 11 is another partial top view structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 12 is another partial cross-sectional structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 13 is a partial top view structural diagram of a particle correction device without a shielding wall
  • Figure 14 is a partial cross-sectional structural schematic diagram of a particle correction device without a shielding wall
  • Figure 15 is another partial top structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 16 is a partial cross-sectional structural schematic diagram of the particle correction device in the embodiment of the present application.
  • 41-Particle correction plate 411-Micro corrector
  • the particle corrector module and particle system In order to facilitate understanding of the particle corrector module and particle system provided by the embodiments of this application, its application scenarios are first introduced below. Due to the high resolution of particle systems, they are currently used in microscopy systems, detection systems or exposure systems to improve the accuracy of the above systems. Specifically, when the particle system is used in fields such as microscopy imaging, the wavelength of the particles is smaller than the wavelength of the light wave. Therefore, microscopic imaging devices using particle systems (such as electron microscopes) can provide better resolution than optical microscopes and can observe more microscopic structures. In addition, when particle systems are used in fields such as quality inspection, for example, the inspection samples can be various types of entities such as semiconductor devices and masks. Particle beams can detect samples with higher precision. When the particle system is used in the exposure system, the structure to be processed can be exposed to improve exposure accuracy and help simplify the exposure process. The above are only some application scenarios of the particle system. The particle system in the embodiment of the present application can be applied to any required scenario.
  • Figure 1 is a schematic structural diagram of a particle system in an embodiment of the present application.
  • the particle system includes a particle source 1, a collimating lens 2, a beam splitter 3, and a particle corrector module 4 arranged in sequence. and focusing lens 5.
  • the particle source 1 is used to generate the initial particle beam 6;
  • the collimating lens 2 is arranged adjacent to the particle source 1 and is used to collimate the initial particle beam 6, so that when the initial particle beam 6 reaches the beam splitting plate 3, Parallel particle beams 61 that can be in a parallel or nearly parallel state;
  • the beam splitting plate 3 is located on the side of the collimating lens 2 away from the particle source 1.
  • the beam splitting plate 3 includes a plurality of small holes 31, and the plurality of small holes 31 can The array arrangement, or any arrangement according to needs, is used to separate the parallel particle beams 61 to form multiple (four are shown in the figure) particle beams 61; the particle corrector module 4 is located on the beam splitter 3 away from the collimation One side of the straight lens 2 includes a plurality of micro-correctors 411.
  • the plurality of micro-correctors 411 can correspond to the plurality of particle beams 61 one by one, so that the particle corrector module 4 can adjust the inclination angle of each particle beam 61.
  • Parameters such as offset and astigmatism can be adjusted; alternatively, it can also selectively correspond to the particle beam 61 according to needs, which is not limited in this application;
  • the focusing lens 5 is located on the side of the particle corrector module 4 away from the beam splitter 3, It includes focusing units 51 that correspond to the plurality of particle beams 61 one-to-one.
  • Each focusing unit 51 is used to focus a single particle beam 61 to effectively focus the particle beam 61 on the sample 01 and prevent the particle beams 61 from interfering with each other. Crossing each other avoids the mutual influence between different particle beams 61; when the particle beam 61 is focused on the sample 01, the sample 01 can be imaged, detected or exposed with higher precision.
  • the collimating lens 2 may be an electric lens, a magnetic lens, or a combination of an electric lens and a magnetic lens.
  • the type and structure of the collimating lens 2 are not limited in this application.
  • the initial particle beam 6 described below refers to a collection of particles generated by the particle source 1 and not separated.
  • the particle beam 61 refers to the particle set after the initial particle beam 6 is divided.
  • Particles refer to negative electrons.
  • the particles can also be other charged particles such as ions.
  • FIG 2a and Figure 2b are two top structural schematic diagrams of the particle correction device in the embodiment of the present application. Please combine Figure 1, Figure 2a and Figure 2b.
  • the particle corrector module 4 in the embodiment of the present application includes a power supply part and a fixing part. and N stacked particle correction devices.
  • Each particle correction device includes a particle correction plate 41.
  • the particle correction plate 41 includes M micro-correctors 411, a signal line group 412 and a first shielding layer 7, where N is greater than or An integer equal to 1, M is also an integer greater than or equal to 1.
  • the value of M above can also be understood as the number of particle beams 61 formed after passing through the particle corrector module 4; of course, in other embodiments, the value of M can be greater than the number of particle beams 61, or It can be smaller than the number of particle beams 61 .
  • Each of the micro-correctors 411 includes a through hole 4111 and a plurality of electrodes 4112 arranged around the through hole 4111. When different voltage combinations are output to the electrodes 4112, the plurality of electrodes 4112 can be generated in the corresponding through hole 4111. The required correction electric field is used to adjust the inclination angle, offset, astigmatism and other parameters of the particle beam 61 passing through the above-mentioned through hole 4111.
  • the above-mentioned N stacked example correction devices are fixed on the fixing member to form an integral particle correction module structure, and the through holes of any adjacent particle correction devices are arranged coaxially.
  • the plurality of electrodes 4112 may be evenly distributed around a circumference coaxial with the through hole 4111.
  • Each of the above-mentioned electrodes 4112 is connected to a signal line 4121 in the above-mentioned signal line group 412, and the above-mentioned power component is connected to the signal line 4121 in the above-mentioned signal line group 412, thereby inputting a certain voltage value to the above-mentioned electrode 4112, so that multiple electrodes 4112 can precisely control the electric field direction, intensity and other parameters in each through hole 4111.
  • Figure 3 is a partial cross-sectional structural diagram of a particle correction device in an embodiment of the present application.
  • the curve in the figure is the equipotential line of the micro corrector 411, and the dotted line is the central axis 4113 of the through hole 4111 of the micro corrector 411.
  • the cross section in FIG. 3 is parallel to the central axis 4113 of the through hole 4111.
  • the above-mentioned signal line group 412 can be located on the particle correction plate 41 to realize the voltage input of the micro-corrector 411 .
  • the above-mentioned signal line group 412 can be specifically located in the area between the micro correctors 411.
  • the above-mentioned first shielding layer 7 provided on the particle correction plate 41 is specifically located at one end of the signal line group 412 along the direction of the central axis 4113 of the through hole 4111, thereby reducing
  • the crosstalk of the electric field generated by the signal line group 412 on the side where the first shielding layer 7 is provided on the micro straightener 411 is used to shield the interference electric field generated by the signal line group.
  • Figure 4 is a partial cross-sectional structural diagram of a particle correction device without a first shielding layer. Since the particle correction plate 41 of the particle correction module 4 has a large number of signal lines 4121, the generated interference electric field will enter the micro corrector.
  • the first shielding layer 7 is provided on the side of the signal line group 412 facing the surface of the particle correction plate 41 .
  • the shielding layer 7 can reduce the crosstalk generated by the above-mentioned signal line 4121, as shown in Figure 4, thereby reducing the disturbance of the particle beam 61 and improving the correction effect of the particle corrector module 4 and the accuracy of the particle beam 61.
  • the above-mentioned signal line group 412 refers to an assembly formed by multiple signal lines 4121 on the particle correction plate 41 of the particle corrector module 4, and is not necessarily a specific structure.
  • the signal lines on the particle correction plate 41 can be Multiple relatively dense signal lines 4121 can be considered as a signal line group 412, or any adjacent signal lines 4121 can also be considered as a signal line group 412, which is not limited in this application.
  • the technical solution of this application aims to shield the crosstalk caused by the signal line 4121 to the particle beam 61 to reduce the disturbance of the particle beam 61 .
  • the first shielding layer 7 can be set only at one end of the area where the particle correction device 41 has the signal line group 412 , as shown in FIG. 4 .
  • the first shielding layer 7 can be located on the side closer to the edge of the signal line group 412 and the electrode 4112.
  • the edge of the electrode 4112 refers to the edge along the direction of the central axis 4113 of the through hole 4111, as shown in Figure 4 . That is to say, the above-mentioned first shielding layer 7 can be disposed on the upper side of the particle correction plate 41 , or can be disposed on the lower side of the particle correction plate 41 .
  • the upper side mentioned in any of the embodiments of this application is Refers to the direction in which the particle beam 61 enters, and the lower part refers to the direction in which the particle beam 61 exits.
  • Figure 5 is another partial cross-sectional structural diagram of the particle correction device in the embodiment of the present application.
  • the first shielding layer 7 can also be disposed on both sides of the signal line group 412 along the direction of the central axis 4113 of the through hole 4111. That is to say, the first shielding layer 7 can be provided at both ends of the area where the particle correction plate 41 has the signal wire group 412 , and the signal wire group 412 is located between the two first shielding layers 7 .
  • the first shielding layer 7 can be provided on both the upper side and the lower side of the particle correction plate 41 , thereby improving the shielding effect of the interference electric field of the signal line group 412 .
  • a signal line is connected to one electrode 4112, so that the voltage signal of each electrode 4112 can be independently controlled, and the correction of each micro-corrector 411 can be adjusted by adjusting the voltage value input to each electrode 4112.
  • the direction and intensity of the electric field are used to adjust the parameters of each particle beam 61 independently and accurately.
  • the above-mentioned particle correction plate 41 can be a chip structure, a circuit board structure, or other structures that can be equipped with a micro-corrector 411 and a signal line group 412, which is not limited in this application.
  • the above-mentioned signal line group may include one layer of signal lines 4121, or may include at least two layers of signal lines 4121.
  • the signal line 4121 can be located inside the chip, or the particle correction plate 41 has a circuit board structure, and the circuit board structure can be a multi-layer circuit board, and the signal line 4121 is provided on In the multi-layer circuit board, the area occupied by the signal line 4121 can be reduced to facilitate independent control of the voltage value of each electrode 4112.
  • the above-mentioned electrode 4112 is disposed on the peripheral side of the through-hole 4111. Specifically, it may be disposed on the inner wall of the through-hole 4111, or may be disposed on the outside of the through-hole 4111, which is not limited in this application. In the embodiment shown in FIG. 2a, the electrode 4112 is disposed on the inner wall of the through hole 4111. In the embodiment shown in FIG. 2b, the electrode 4112 is disposed on the outside of the through hole 4111.
  • the first shielding layer 7 is a conductor layer, specifically a metal layer, so as to achieve the purpose of shielding.
  • the above-mentioned first shielding layer 7 may have a sheet-like structure, or may not have a sheet-like structure, but may form a mesh-like shielding layer through connected wires.
  • the above-mentioned particle correction plate 41 has a multi-layer structure, including multi-layer wiring.
  • the middle part of the multi-layer wiring is made into a signal line, and the layers at both ends are made into a metal sheet structure, thereby forming the above-mentioned first
  • the shielding layer can also be made into a metal mesh structure in the layers at both ends as the first shielding layer.
  • the particle correction plate includes six metal layers, namely a first metal layer, a second metal layer, a third metal layer, a fourth metal layer, a fifth metal layer and a sixth metal layer, where , the above-mentioned first shielding layer 7 is prepared on the first metal layer and the sixth metal layer, and the above-mentioned signal line is prepared on the second metal layer, the third metal layer, the fourth metal layer and the fifth metal layer.
  • the above-mentioned two ends refer to the two ends of the particle correction plate 41 close to the two surfaces.
  • the first shielding layer can also be fixedly provided on the surface of the particle correction plate 41, which is not limited in this application.
  • FIG. 6 is another partial top view structural diagram of the particle correction device in the embodiment of the present application.
  • a second shielding layer 8 is also provided on the side of the area of the signal line group 412 of the particle correction plate 41.
  • the above-mentioned third The plane where the second shielding layer 8 is located intersects the plane where the first shielding layer 7 is located.
  • the plane where the second shielding layer 8 is located and the plane where the first shielding layer 7 is located can be made perpendicular to each other.
  • the plane on which the first shielding layer 7 is located can be understood as the surface of the particle correction plate 41 .
  • FIG. 7 is a partial top view structural diagram of the signal line group 412 in the embodiment of the present application.
  • the cross section of the signal line group 412 is perpendicular to the extension direction of the signal line 4121 of the signal line group 412 .
  • the signal line group 412 includes a first shielding layer 7 and a second shielding layer 8 .
  • the plane where the second shielding layer 8 is located intersects the plane where the first shielding layer 7 is located.
  • the first shielding layer 7 and the second shielding layer 8 may be connected to form an integrated structure, or may not be connected, or even have a certain gap, which is not limited in this application.
  • the first shielding layer 8 is a conductor layer, specifically a metal layer, so as to achieve the purpose of shielding.
  • the above-mentioned second shielding layer 8 may have a sheet-like structure, or may not have a sheet-like structure, but may form a mesh-like shielding layer through connected wires.
  • the above-mentioned particle correction plate 41 has a multi-layer structure, including multi-layer wiring. Each layer of wiring has a shielded wire on the side of the signal line group, and then the above-mentioned wiring of each layer is connected through a conductive through hole. The shielded wires are connected to form a mesh-like second shielding layer.
  • the second shielding layer 8 with a sheet-like structure can also be made on the particle correction plate 41 , for example, through holes are prepared on the particle correction plate 41 to form the second shielding layer 8 with the above-mentioned sheet structure.
  • a second shielding layer may be fixedly provided on the particle correction plate 41 .
  • FIG. 8 is another partial top view structural diagram of the signal line group 412 in the embodiment of the present application.
  • the cross section of the signal line group 412 is also perpendicular to the extension direction of the signal line 4121 of the signal line group 412 .
  • the particle correction plate 41 is provided with two first shielding layers 7 and two second shielding layers 8 .
  • the first shielding layers 7 and the second shielding layers 8 are connected in sequence to form a shielding tube.
  • the adjacent first shielding layer 7 and the second shielding layer 8 are connected in a closed manner to form a peripherally closed shielding tube.
  • the signal wire group 412 is located in the shielding tube, so that the interference electric field generated by the signal wire group 412 can be eliminated. More particles are shielded, which improves the correction effect of the micro corrector 411 and improves the accuracy of the particle beam 61 .
  • the cross section of the signal line group 412 is also perpendicular to the extension direction of the signal line 4121 of the signal line group 412.
  • the signal line group 412 includes a plurality of signal lines 4121. At least the signal lines 4121 located at the edge of the signal line group 412 are ground signal lines 4122. That is to say, the signal lines 4121 at the edge of the signal line group 412 are grounded to form the above-mentioned ground signal lines 4122. , and then form a shielding structure, which can shield signals.
  • the outermost signal line 4121 located only at the edge of the signal line group 412 can be a ground signal line 4122, so as to reduce the space occupied by the ground signal line 4122 and improve the particle corrector module. Integration of Group 4.
  • at least two layers of signal lines 4121 located at the edge of the signal line group 412 can be ground signal lines 4122 to increase the effective shielding width and improve the shielding effect of the ground signal lines 4122 .
  • only the second shielding layer 8 or only the ground signal line 4122 can be provided, or both the second shielding layer 8 and the ground signal line 4122 can be provided to improve the shielding effect, which is not limited in this application. .
  • FIG 11 is another partial top view structural schematic diagram of the particle correction device in the embodiment of the present application.
  • Figure 12 is another partial cross-sectional structural schematic diagram of the particle correction device in the embodiment of the present application.
  • the cross section of Figure 12 is parallel to the through hole 4111
  • each micro-corrector 411 includes eight electrodes 4112 as an example. In fact, the number and shape of the electrodes 4112 of each micro-corrector 411 are not limited.
  • the curve in the figure is the equipotential line of the micro-corrector 411, and the dash-dotted line is the central axis 4113 of the through hole 4111 of the micro-corrector 411, and is also the optical axis of the micro-corrector 411.
  • a shielding wall 9 is provided on the peripheral side of each micro-corrector 411 of the particle corrector module 4 in the embodiment of the present application.
  • the electrodes 4112 and through holes 4111 of the micro-corrector 411 are located above.
  • the above-mentioned shielding wall 9 is in the form of a "wall" and is a sealed structure.
  • the shielding wall 9 can shield the correction electric field of the micro-correctors 411, prevent crosstalk problems between different micro-correctors 411, and improve the accuracy of the particle beam 61.
  • Figure 13 is a partial top view structural diagram of a particle correction device without a shielding wall.
  • Figure 14 is a partial cross-sectional structural diagram of a particle correction device without a shielding wall.
  • the cross section of Figure 14 is parallel to the center of the through hole 4111. Axis 4113.
  • the equipotential lines of the correction electric field of the micro-corrector 411 can enter other surrounding micro-correctors 411 through the gaps between the electrodes 4112, causing crosstalk.
  • the equipotential lines of the correction electric field of the micro-corrector 411 can enter other surrounding micro-correctors 411 through the top and bottom of the electrode 4112, causing crosstalk.
  • the equipotential lines of the correction electric field of the micro-corrector 411 are shielded within the scope of its own micro-corrector 411, and are not easy to enter other micro-correctors 411, as shown in Figures 11 and 12. Therefore, The technical solution of this application can better prevent the correction electric fields between different micro correctors 411 from forming crosstalk and improve the accuracy of the particle beam 61 .
  • the distance between the shielding wall 9 and the electrode 4112 should not be too large, and may be less than or equal to 10 ⁇ m.
  • the shielding effect of the shielding wall 9 can be improved.
  • the space occupied by the micro-corrector 411 and the shielding wall 9 can also be reduced, and the signal line group between the micro-corrector 411 can be improved.
  • the spatial ratio of 412 is to set the signal line 4121 connected to the electrode 4112 to facilitate the independent control of each electrode 4112.
  • Figure 15 is another partial top view structural diagram of the particle correction device in the embodiment of the present application. Please refer to Figures 11 and 15.
  • the orthographic projection of the shielding wall 9 can be a circle or a regular X-gon. That is to say, the shape enclosed by the shielding wall 9 can be a circle or a regular X-gon, where X is greater than or equal to 3. integer.
  • the shape enclosed by the shielding walls 9 shown in FIG. 11 is a circle
  • the shape enclosed by the shielding walls 9 shown in FIG. 15 is a regular X-gon.
  • the symmetry axis of the shielding wall 9 overlaps with the symmetry axis of the arrangement of the Electrodes 4112.
  • the above-mentioned X electrodes 4112 are opposite to the shielding wall 9 one by one on each side of a regular Alternatively, the electrodes can be located at the corners of the positive side deformation, which is not limited in this application.
  • the symmetry axis of the shielding wall 9 is consistent with the above-mentioned The axes of symmetry of the arrangement overlap.
  • the shielding wall 9 whose orthographic projection is circular and regular The working effect of corrector module 4.
  • the micro-corrector 411 may also include two electrodes 4112.
  • the shape enclosed by the shielding wall may be a circle or a regular quadrilateral, or alternatively, The shielding wall may be provided only outside the two electrodes 4112, that is, the shielding wall does not form a closed shape.
  • the symmetry axis of the orthographic projection shape of the shielding wall 9 may also overlap with the symmetry axis of the arrangement of the electrodes 4112 of the microcorrector 411 to ensure that the shielding wall 9 does not introduce additional aberrations to the particle beam 61 .
  • Figure 16 is a partial cross-sectional structural schematic diagram of the particle correction device in the embodiment of the present application.
  • the section of Figure 16 is parallel to the central axis 4113 of the through hole 4111.
  • the shielding wall 9 includes a main body opposite to the electrode 4112.
  • the shielding portion 91 and the auxiliary shielding portions 92 located on both sides of the main shielding portion 91 along the direction of the central axis 4113 of the through hole 4111 .
  • the height of the shielding wall 9 along the direction of the central axis 4113 of the above-mentioned through hole 4111 is greater than the height of the electrode 4112 along the direction of the central axis 4113 of the above-mentioned through hole 4111, and the electrode 4112 is completely located within the shielding wall 9, that is, That is, the electrode 4112 overlaps the main shield portion 91 along the direction of the central axis 4113 of the through hole 4111.
  • the height of the shielding wall 9 is higher, so the shielding effect is better.
  • the height of the shielding wall 9 along the direction of the central axis 4113 of the above-mentioned through hole 4111 can be equal to the height of the electrode 4112 along the direction of the central axis 4113 of the above-mentioned through hole 4111, and the electrode 4112 is completely located within the shielding wall 9 , that is to say, along the direction of the central axis 4113 of the above-mentioned through hole 4111 , the electrode 4112 overlaps with the shielding wall 9 .

Abstract

本申请提供了一种粒子矫正装置、粒子矫正器模组和粒子系统,涉及粒子技术领域。其中,粒子矫正装置包括M个微矫正器和信号线组,M为大于或者等于1的整数。每个微矫正器包括通孔和设置于通孔周侧的多个电极。每个上述电极与信号线组中的一根信号线连接,从而可以向上述每个电极分别输入一定的电压值,以在对应的通孔内产生矫正电场。通过调整输入至每个电极的电压值,可以调整矫正电场的方向和强度,从而针对每个粒子束调整对应粒子束的倾角、偏移量和像散等参数,调整粒子束的精确性。粒子矫正装置的信号线组的区域的至少一个表面设置有第一屏蔽层,可以屏蔽信号线组产生的干扰电场,以减少微矫正器受到的信号线组的串扰。

Description

粒子矫正装置、粒子矫正器模组和粒子系统 技术领域
本申请涉及粒子技术领域,尤其涉及一种粒子矫正装置、粒子矫正器模组和粒子系统。
背景技术
纳米级高分辨率的显微系统或曝光系统常采用带电粒子作为工作粒子。相比百纳米级分辨率的光学显微系统或曝光系统,带电粒子系统可以采用波长比光子的波长更小的粒子来获得更高的分辨率。然而,带电粒子系统往往无法像光学系统一样获得大面积的光束来覆盖大面积的样品,而是采用直径在纳米量级的粒子束斑进行扫描来覆盖样品,因此,整个粒子系统的吞吐量低下。为提升粒子系统的吞吐量,可以使用多粒子束的粒子系统,这种粒子系统采用多个粒子束并行工作的方式,可以大大提升粒子系统的吞吐量。
在多粒子束系统中,可使用单粒子源发射粒子,再由小孔阵列将粒子束分隔成多个粒子束;也可以使用多粒子源发射粒子,每个粒子源发射的粒子被小孔分隔成一束或几束粒子。在上述多粒子束系统中,需要使用粒子束微矫正器阵列来对每一束粒子的入射角度和位置进行精确的控制。但是,为这些微矫正器提供电压信号的信号线产生的电场会作用在粒子束上,形成串扰。
发明内容
本申请提供了一种粒子矫正装置、粒子矫正器模组和粒子系统,以减少粒子矫正器模组的微矫正器受到的串扰,提高粒子系统的粒子束的精度。
一方面,本申请提供了一种粒子矫正装置,该粒子矫正装置包括粒子矫正板,上述粒子矫正板包括M个通孔、多个电极、信号线组和第一屏蔽层,其中,每个通孔的周侧设置有多个电极,从而通孔与其周侧的电极形成为微矫正器,其中,M为大于或者等于1的整数。具体的,上述多个电极可以设置于通孔的内壁,也可以设置于通孔外部的周围。每个上述电极与信号线组中的一根信号线连接,从而可以向上述每个电极分别输入一定的电压值,以在对应的通孔内产生矫正电场。通过调整输入至每个电极的电压值,可以调整矫正电场的方向和强度,从而针对每个粒子束调整对应粒子束的倾角、偏移量和像散等参数,调整粒子束的精确性。该方案中,粒子矫正装置具有大量的信号线,因此可能产生的干扰电场较强,微矫正器可能受到的串扰较为明显。因此,上述第一屏蔽层设置于信号线组沿通孔的中心轴方向的一端或者两端,也就是说第一屏蔽层设置于信号线组朝向粒子矫正板表面的端部,可以屏蔽信号线组产生的干扰电场,以减少微矫正器受到的信号线组的串扰,提高微矫正器的矫正效果和粒子束的精度。
上述粒子矫正装置具体可以为芯片结构,也可以为电路板结构,或者其它能够设置微矫正器和信号线组的结构,本申请不做限制。
具体设置上述第一屏蔽层时,可以仅在信号线组的一端设置第一屏蔽层,具体的,可以使第一屏蔽层位于信号线组与电极边缘较为靠近的一端,上述电极边缘指的是沿通孔的中心轴方向的边缘。也就是说,上述第一屏蔽层可以设置于信号线组朝向上方的端部,也 可以设置于信号线组朝向下方的端部,其中,上方指粒子束进入的方向,下方指粒子束射出的方向。
另一种技术方案中,可以在信号线组沿通孔的中心轴方向的两端分别设置上述第一屏蔽层。从而可以从两个方向来屏蔽信号线组产生的干扰电场,减少微矫正器受到的串扰。
具体设置上述粒子矫正装置时,可以使一根信号线连接一个电极,从而每个电极都可以独立输入需要的电压值,可以根据需求独立控制各个电极内的电压值的大小,以调整微矫正器内矫正电场的强度和方向,提高粒子矫正装置对粒子束矫正的精度。该方案需要在粒子矫正板布局大量的信号线,因此,信号线产生的干扰电场也较强,本申请通过设置用于屏蔽信号线组产生的干扰电场的第一屏蔽层,具有较为重要的意义,可以减少微矫正器受到的上述干扰电场的串扰,有利于提高微矫正器的精度。
具体设置上述第一屏蔽层时,上述第一屏蔽层具体可以为金属层,可以为片状结构,也可以为网状结构。此外,上述第一屏蔽层可以设置于粒子矫正板的内部,也可以设置于粒子矫正板的表面,本申请不做限制,根据需求设计上述第一屏蔽层结构。
为了进一步的提高对信号线组产生的干扰电场的屏蔽,还可以在粒子矫正装置的信号线组的区域的侧面设置第二屏蔽层,上述第二屏蔽层所在的平面与第一屏蔽层所在的平面相交,具体可以使上述第二屏蔽层所在的平面与第一屏蔽层所在的平面垂直。上述第二屏蔽层可以平行于信号线的延伸方向,也就是在延伸方形的周侧各个方向,都可以根据需求设置屏蔽层,以提高对信号线组的干扰电场的屏蔽效果。
具体设置上述第一屏蔽层和第二屏蔽层时,可以在粒子矫正装置的信号线组的周侧设置两个第一屏蔽层和两个第二屏蔽层。具体的,上述两个第一屏蔽层与两个第二屏蔽层依次间隔设置,且相邻的第一屏蔽层与第二屏蔽层连接,以形成周向密封的屏蔽管。上述信号线组设置于屏蔽管内,屏蔽管对信号线组的干扰电场的屏蔽效果较好,提高微矫正器的矫正效果,提高粒子束的精度。
具体设置上述第二屏蔽层时,上述第二屏蔽层具体可以为金属层,可以为片状结构,也可以为网状结构。本申请不做限制,根据需求设计上述第一屏蔽层结构。
除了设置屏蔽层以外,还可以在信号线组设置接地信号线,以实现屏蔽效果。具体的,信号线组包括多根信号线,至少位于信号线组边缘的信号线为接地信号线。也就是说,将位于信号线组边缘的信号线接地处理,以形成为屏蔽结构,具体可以在信号线组边缘的一层的信号线接地,形成为接地信号线,该方案中,接地信号线占用的空间较小,有利于提高粒子矫正装置的集成度。或者,还可以在信号线组边缘的至少两层信号线接地,形成接地信号线,以提高信号线组边缘的屏蔽效果。
微矫正器之间也可能存在干扰电场,因此,本申请技术方案可以在每个微矫正器的周侧设置屏蔽墙,微矫正器的电极和通孔位于上述屏蔽墙内。从而可以将各个微矫正器之间分割,相互不会出现串扰,也可以提高微矫正器的矫正效果。
具体设置上述屏蔽墙时,可以使屏蔽墙在垂直于通孔的中心轴的方向的正投影的对称轴与多个电极排布的对称轴重叠,从而屏蔽墙不会打破原本微矫正器的电极形成的对称性,也就不会对粒子束引入额外的像差,可以保证粒子矫正器模组的工作效果。例如,在垂直于通孔的中心轴的方向上,屏蔽墙的正投影为圆形,也就是时候屏蔽墙围成圆形状。或者,当微矫正器包括X个电极时,该微矫正器的屏蔽墙在垂直于通孔的中心轴的方向的正投影可以为正X边形,且使正X边形的各个边与各个电极一一相对,或者使正X边形的各个 角与各个电极一一相对,总之需要使屏蔽墙不破坏微矫正器的对称性。
上述屏蔽墙沿通孔的中心轴方向的高度,还可以大于电极沿中心轴方向的高度。具体可以使屏蔽墙沿通孔的中心轴方向包括主屏蔽部和辅助屏蔽部,其中,主屏蔽部与电极相对,可以理解为,主屏蔽部沿通孔的中心轴方向的高度,与电极沿中心轴方向的高度相等,且两者重合。辅助屏蔽部可以位于主屏蔽部沿通孔的中心轴方向的两侧,从而延长屏蔽墙的屏蔽高度,提高屏蔽墙的屏蔽效果,进一步的减少微矫正器之间的串扰。
第二方面,本申请还提供了一种粒子矫正器模组,该粒子矫正器模组包括电源件、固定件和N个上述任一技术方案中的粒子矫正装置,其中,N为大于或等于1的整数。上述N个粒子矫正装置堆叠设置,且任意相邻的两个粒子矫正装置之间的微矫正器的通孔同轴设置,以形成一组针对同一粒子束的微矫正器。上述电源件与信号线组连接,用于向电极提供一定的电压值。上述粒子矫正装置固定与固定件,从而形成为一个整体的例子矫正器模组结构。该方案中,每个微矫正器可能受到的串扰都较少,微矫正器组的矫正效果较好,有利于提高粒子束的精度。
第三方面,本申请还提供了一种粒子系统,该粒子系统包括粒子源、准直透镜、分束板、聚焦透镜和上述粒子矫正器模组,其中,粒子源、准直透镜、分束板、粒子矫正器模组和聚焦透镜依次排布,以形成需要的粒子束。该方案中,粒子矫正器模组的矫正效果较好,因此粒子系统的精度较高。
附图说明
图1为本申请实施例中粒子系统的一种结构示意图;
图2a为本申请实施例中粒子矫正装置的一种俯视结构示意图;
图2b为本申请实施例中粒子矫正装置的另一种俯视结构示意图;
图3为本申请实施例中粒子矫正装置的一种局部剖面结构示意图;
图4为未设置第一屏蔽层的粒子矫正器模组的一种局部剖面结构示意图;
图5为本申请实施例中粒子矫正装置的另一种局部剖面结构示意图;
图6为本申请实施例中粒子矫正装置的另一种局部俯视结构示意图;
图7为本申请实施例中信号线组的一种局部俯视结构示意图;
图8为本申请实施例中信号线组的另一种局部俯视结构示意图;
图9为本申请实施例中信号线组的另一种局部俯视结构示意图;
图10为本申请实施例中信号线组的另一种局部俯视结构示意图;
图11为本申请实施例中粒子矫正装置的另一种局部俯视结构示意图;
图12为本申请实施例中粒子矫正装置的另一种局部剖视结构示意图;
图13为未设置屏蔽墙的粒子矫正装置的一种局部俯视结构示意图;
图14为未设置屏蔽墙的粒子矫正装置的一种局部剖视结构示意图;
图15为本申请实施例中粒子矫正装置的另一种局部俯视结构示意图;
图16为本申请实施例中粒子矫正装置的一种局部剖视结构示意图。
附图标记说明:
01-样品;                         1-粒子源;
2-准直透镜;                      3-分束板;
31-小孔;                         4-粒子矫正器模组;
41-粒子矫正板;                    411-微矫正器;
4111-通孔;                        4112-电极;
4113-中心轴;                      412-信号线组;
4121-信号线;                      4122-接地信号线;
5-聚焦透镜;                       51-聚焦单元;
6-初始粒子束;                     61-粒子束;
7-第一屏蔽层;                     8-第二屏蔽层;
9-屏蔽墙;                         91-主屏蔽部;
92-辅助屏蔽部。
具体实施方式
为了方便理解本申请实施例提供的粒子矫正器模组和粒子系统,下面首先介绍一下其应用场景。由于粒子系统的分辨率较高,因此,目前被应用于显微系统、检测系统或曝光系统,以提高上述系统的精度。具体的,当粒子系统应用在显微成像等领域中时,由于粒子的波长小于光波的波长。因此,应用粒子系统的显微成像装置(如电子显微镜),可以提供优于光学显微镜的分辨率,并且可以观察更加微观的结构。另外,粒子系统应用在质量检测等领域中时,例如,检测样品可以是半导体器件、掩膜版等多种类型的实体。粒子束可以对样品进行较高精度的检测。当粒子系统应用在曝光系统时,可以对待加工结构进行曝光处理,以提高曝光精度,且有利于简化曝光工艺。上述仅仅为粒子系统的部分应用场景,本申请实施例中的粒子系统可以应用于任意需要的场景。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1为本申请实施例中粒子系统的一种结构示意图,如图1所示,该粒子系统包括依次排布的粒子源1、准直透镜2、分束板3、粒子矫正器模组4和聚焦透镜5。其中,粒子源1用于产生初始粒子束6;准直透镜2与粒子源1相邻设置,用于对初始粒子束6进行准直,以使初始粒子束6在到达分束板3时,能够处于平行或接近平行的状态的平行粒子 束61;分束板3位于准直透镜2背离粒子源1的一侧,该分束板3包括多个小孔31,上述多个小孔31可以阵列排布,或者根据需求任意排列,用于对平行粒子束61进行分隔,以形成多个(图中示出有四个)粒子束61;粒子矫正器模组4位于分束板3背离准直透镜2的一侧,包括多个微矫正器411,上述多个微矫正器411可以与多个粒子束61一一对应,从而粒子矫正器模组4可以对每个粒子束61的倾角、偏移量和像散等参数进行调节;或者,还可以根据需求选择性与粒子束61对应,本申请不做限制;聚焦透镜5位于粒子矫正器模组4背离分束板3的一侧,包括与上述多个粒子束61一一对应的聚焦单元51,每个聚焦单元51用于对单个粒子束61进行聚焦,以将粒子束61有效的聚焦在样品01上,防止粒子束61之间相互交叉,避免了不同粒子束61之间的相互影响;当粒子束61聚焦到样品01后,则可以对样品01的进行较高精度的成像、检测或者曝光等处理。
在具体实施时,准直透镜2可以是电透镜,也可以是磁透镜,或者是电透镜和磁透镜结合使用。在具体应用时,准直透镜2的类型和结构本申请不作限制。
需要说明的是,为了便于理解本申请技术方案,下述中所描述的初始粒子束6指的是由粒子源1产生且未被分隔的粒子集合。粒子束61指的是初始粒子束6被分隔后的粒子集合。粒子指的是负电子。当然,在实际应用时,粒子也可以是离子等其它带电粒子。
图2a和图2b为本申请实施例中粒子矫正装置的两种俯视结构示意图,请结合图1、图2a和图2b,本申请实施例中的粒子矫正器模组4包括电源件、固定件和N个堆叠设置的粒子矫正装置,每个粒子矫正装置包括粒子矫正板41,粒子矫正板41包括M个微矫正器411、信号线组412和第一屏蔽层7,其中,N为大于或者等于1的整数,M也为大于或者等于1的整数。一种实施例中,上述M的值也可以理解为通过该粒子矫正器模组4后形成的粒子束61的数量;当然,其它实施例中,M的值可以大于粒子束61的数量,也可以小于粒子束61的数量。每个上述微矫正器411包括通孔4111和设置于通孔4111周侧的多个电极4112,当对上述电极4112输出不同的电压组合时,多个电极4112在对应的通孔4111内可以产生需要的矫正电场,从而对通过上述通孔4111的粒子束61的倾角、偏移量和像散等参数进行调节。上述N个堆叠设置的例子矫正装置固定于固定件,以形成一个整体的粒子矫正模组结构,且任意相邻的粒子矫正装置的通孔一一同轴设置。具体的,上述多个电极4112可以绕与通孔4111同轴的圆周均匀分布。每个上述电极4112与上述信号线组412中的一根信号线4121连接,上述电源件与信号线组412中的信号线4121连接,从而向上述电极4112输入一定的电压值,从而多个电极4112可以对每个通孔4111内的电场方向、强度等参数进行精准的控制。
图3为本申请实施例中粒子矫正装置的一种局部剖面结构示意图,图中曲线为微矫正器411的等势线,点划线为微矫正器411的通孔4111的中心轴4113,也为微矫正器411的光轴,上述图3的剖面平行于通孔4111的中心轴4113。结合图1~图3,上述信号线组412可以位于粒子矫正板41上,以实现微矫正器411的电压输入。上述信号线组412具体可以位于微矫正器411之间的区域,上述设置于粒子矫正板41的第一屏蔽层7具体位于信号线组412沿通孔4111的中心轴4113方向的一端,从而减少信号线组412在设置有第一屏蔽层7的一侧产生的电场对微矫正器411的串扰,用于屏蔽信号线组产生的干扰电场。图4为未设置第一屏蔽层的粒子矫正装置的一种局部剖面结构示意图,由于粒子矫正器模组4的粒子矫正板41具有大量的信号线4121,产生的干扰电场会进入到微矫正器411的通孔4111内,对微矫正器411内的矫正电场形成串扰。本申请技术方案中,通过在粒子矫 正板41具有信号线组412的区域的一侧设置第一屏蔽层7,也就是在信号线组412朝向粒子矫正板41的表面的一侧设置有第一屏蔽层7,可以减少上述信号线4121产生的串扰,如图4所示,从而减少粒子束61的扰动,提高粒子矫正器模组4的矫正效果和粒子束61的精度。
值得说明的是,上述信号线组412指的是粒子矫正器模组4的粒子矫正板41上的多根信号线4121形成的组件,不一定是一个具体的结构,可以将粒子矫正板41上多根较为密集的信号线4121认为成一个信号线组412,或者,也可以将任何相邻的几根信号线4121认为成一个信号线组412,本申请不做限制。本申请技术方案旨在屏蔽信号线4121对粒子束61产生的串扰,以减少粒子束61的扰动。
具体设置上述第一屏蔽层7时,可以仅在粒子矫正装置41具有信号线组412的区域的一端设置第一屏蔽层7,如图4所示。该方案中,可以使第一屏蔽层7位于信号线组412与电极4112边缘较为靠近的一侧,上述电极4112边缘指的是沿通孔4111的中心轴4113方向的边缘,如图4所示。也就是说,上述第一屏蔽层7可以设置于粒子矫正板41靠近上方的一侧,也可以设置于粒子矫正板41靠近下方的一侧,本申请实施例中任一处提到的上方都指粒子束61进入的方向,下方都指粒子束61射出的方向。
图5为本申请实施例中粒子矫正装置的另一种局部剖面结构示意图,如图5所示,第一屏蔽层7还可以设置于信号线组412沿通孔4111的中心轴4113方向的两端,也就是说,粒子矫正板41具有信号线组412的区域的两端都可以设置第一屏蔽层7,信号线组412位于两层第一屏蔽层7之间。该方案中,是说粒子矫正板41靠近上方的一侧和靠近下方的一侧都可以设置有第一屏蔽层7,从而提高对于信号线组412的干扰电场的屏蔽效果。
具体设置上述电极时,使一根信号线连接一个电极4112,从而可以独立控制每个电极4112的电压信号,从而通过调节输入至各个电极4112的电压值,可以调节每个微矫正器411的矫正电场的方向和强度,以独立且精确的对每个粒子束61的参数进行调节。
具体的实施例中,上述粒子矫正板41可以为芯片结构,也可以为电路板结构,或者其它能够设置微矫正器411和信号线组412的结构,本申请不做限制。上述信号线组可以包括一层信号线4121,也可以包括至少两层信号线4121。例如,粒子矫正板41为芯片结构时,则上述信号线4121可以位于芯片内部,或者,上述粒子矫正板41为电路板结构,该电路板结构可以为多层电路板,上述信号线4121设置于多层电路板内,从而可以减少信号线4121占用的面积,以便于实现对每个电极4112的电压值的独立控制。
在具体设置上述电极4112时,上述电极4112设置于通孔4111的周侧,具体可以设置于通孔4111内壁,也可以设置于通孔4111的外部,本申请不做限制。如图2a所示的实施例中,电极4112设置于通孔4111的内壁,如图2b所示的实施例中,电极4112设置于通孔4111的外部。
具体制备上述第一屏蔽层7时,第一屏蔽层7为导体层,具体可以为金属层,从而实现屏蔽的目的。上述第一屏蔽层7可以为片状结构,也可以不是片状结构,而通过连接的线形成网状屏蔽层。具体的,可以认为上述粒子矫正板41为多层结构,包括多层走线,多层走线中的中间部分制作成信号线,而两端的层中制作成金属片结构,从而形成上述第一屏蔽层,当然,也可以在两端的层中制作成金属网结构,作为第一屏蔽层。例如,粒子矫正板包括六层金属层,依次为第一层金属层、第二层金属层、第三层金属层、第四层金属层、第五层金属层和第六层金属层,其中,在第一层金属层和第六层金属层制备上述第 一屏蔽层7,而在第二层金属层、第三层金属层、第四层金属层和第五层金属层制备上述信号线。上述两端指的是粒子矫正板41靠近两个表面的两端。或者,还可以在粒子矫正板41的表面固定设置第一屏蔽层,本申请不做限制。
图6为本申请实施例中粒子矫正装置的另一种局部俯视结构示意图,如图6所示,粒子矫正板41的信号线组412的区域的侧面还设置有第二屏蔽层8,上述第二屏蔽层8所在的平面与第一屏蔽层7所在的平面相交,具体可以使上述第二屏蔽层8所在的平面与第一屏蔽层7所在的平面相互垂直。上述第一屏蔽层7所在的平面可以理解为粒子矫正板41的表面。图7为本申请实施例中信号线组的一种局部俯视结构示意图,该信号线组412的剖面垂直于信号线组412的信号线4121的延伸方向。如图7所示的实施例中,信号线组412包括一个第一屏蔽层7和一个第二屏蔽层8,第二屏蔽层8所在的平面与第一屏蔽层7所在的平面相交。具体实施例中,上述第一屏蔽层7与第二屏蔽层8之间可以连接成一体结构,也可以不连接,甚至存在一定的缝隙,本申请不做限制。
具体制备上述第二屏蔽层8时,第一屏蔽层8为导体层,具体可以为金属层,从而实现屏蔽的目的。上述第二屏蔽层8可以为片状结构,也可以不是片状结构,而通过连接的线形成网状屏蔽层。具体的一种实施例中,可以认为上述粒子矫正板41为多层结构,包括多层走线,每层走线在信号线组侧面具有屏蔽线,然后通过导电通孔,将各层的上述屏蔽线连接,形成网状第二屏蔽层。或者,还可以在粒子矫正板41制作片状结构的第二屏蔽层8,例如在粒子矫正板41制备通孔,以形成上述片状结构的第二屏蔽层8。或者,还可以在粒子矫正板41上固定设置第二屏蔽层。
图8为本申请实施例中信号线组的另一种局部俯视结构示意图,该信号线组412的剖面也垂直于信号线组412的信号线4121的延伸方向。如图8所示,上述粒子矫正板41设置有两个上述第一屏蔽层7和两个上述第二屏蔽层8,上述第一屏蔽层7与第二屏蔽层8依次间隔连接成屏蔽管。该方案中,相邻的第一屏蔽层7和第二屏蔽层8封闭连接,形成周侧封闭的屏蔽管,信号线组412位于所述屏蔽管内,则可以使信号线组412产生的干扰电场较多的被屏蔽掉,提高微矫正器411的矫正效果,提高粒子束61的精度。
图9和图10为本申请实施例中信号线组的另两种局部俯视结构示意图,该信号线组412的剖面也垂直于信号线组412的信号线4121的延伸方向。信号线组412包括多根信号线4121,至少位于信号线组412边缘的信号线4121为接地信号线4122,也就是说,信号线组412边缘的信号线4121接地,以形成上述接地信号线4122,进而形成为屏蔽结构,可以起到屏蔽信号的作用。
一种实施例中,如图9所示,可以使仅位于信号线组412边缘的最外一层信号线4121为接地信号线4122,以减少接地信号线4122占用的空间,提高粒子矫正器模组4的集成度。另一种实施例中,如图10所示,可以使位于信号线组412边缘的至少两层信号线4121为接地信号线4122,增加有效的屏蔽宽度,以提高接地信号线4122的屏蔽效果。
当然,具体的实施例中,可以仅设置第二屏蔽层8或者仅设置接地信号线4122,或者,可以既设置第二屏蔽层8和接地信号线4122,以提高屏蔽效果,本申请不做限制。
图11为本申请实施例中粒子矫正装置的另一种局部俯视结构示意图,图12为本申请实施例中粒子矫正装置的另一种局部剖视结构示意图,图12的剖面平行于通孔4111的中心轴4113,图中以每个微矫正器411包括八个电极4112为例,实际上,每个微矫正器411的电极4112的数量和形状不做限制。图中曲线为微矫正器411的等势线,点划线为微矫正 器411的通孔4111的中心轴4113,也为微矫正器411的光轴。
如图11和图12所示,本申请实施例中的粒子矫正器模组4的每个微矫正器411的周侧设置有屏蔽墙9,微矫正器411的电极4112和通孔4111位于上述屏蔽墙9内。如图11和图12所示,上述屏蔽墙9为“围墙”的形式,是一个密封结构。该方案中,屏蔽墙9可以屏蔽微矫正器411的矫正电场,防止不同的微矫正器411之间出现串扰问题,提高粒子束61的精度。
图13为未设置屏蔽墙的粒子矫正装置的一种局部俯视结构示意图,图14为未设置屏蔽墙的粒子矫正装置的一种局部剖视结构示意图,图14的剖面平行于通孔4111的中心轴4113。如图13所示,微矫正器411的矫正电场的等势线可以通过电极4112之间的缝隙进入到周围其它微矫正器411中,造成串扰。如图14所述,微矫正器411的矫正电场的等势线可以通过电极4112的上方和下方进入到周围其它微矫正器411中,造成串扰。通过设置上述屏蔽墙9,微矫正器411的矫正电场的等势线都屏蔽在自身的微矫正器411范围内,不易进入到其它的微矫正器411,如图11和图12所示,因此本申请技术方案可以较好的防止不同微矫正器411之间的矫正电场形成互相串扰,提高粒子束61的精度。
在具体设置上述屏蔽墙9时,屏蔽墙9与电极4112之间的距离不应过大,具体可以小于或者等于10μm。屏蔽墙9与电极4112之间的距离较小时,以提高屏蔽墙9的屏蔽效果,此外,还可以减少微矫正器411与屏蔽墙9占用的空间,提高微矫正器411之间的信号线组412的空间比例,以设置与电极4112连接的信号线4121,便于实现每个电极4112的单独控制。
上述屏蔽墙9围成的形状不做限制,图15为本申请实施例中粒子矫正装置的另一种局部俯视结构示意图,请参考图11和图15,在垂直于通孔4111的中心轴4113的方向上,屏蔽墙9的正投影可以为圆形或者正X边形,也就是说,屏蔽墙9围成的形状可以为圆形或者正X边形,其中,X为大于或者等于3的整数。如图11所示的屏蔽墙9围成的形状为圆形,图15所示的屏蔽墙9围成的形状为正X边形。如图15所示,当屏蔽墙9的正投影为正X边形时,屏蔽墙9的对称轴与上述X个电极4112排布的对称轴重叠,图15中,微矫正器411包括X个电极4112,上述X个电极4112与屏蔽墙9在正X边形各个边一一相对,且电极4112位于对应的边的中部。或者,电极可以位于正边变形的角部,本申请不做限制,总之无论是圆形的屏蔽墙9还是正X边形的屏蔽墙9,屏蔽墙9的对称轴都与上述X个电极4112排布的对称轴重叠。该方案中,正投影为圆形和正X边形的屏蔽墙9不会打破原本微矫正器411的电极4112形成的对称性,也就不会对粒子束61引入额外的像差,可以保证粒子矫正器模组4的工作效果。
一种具体的实施例中,上述微矫正器411还可以包括两个电极4112,当微矫正器411包括两个电极时,可以使屏蔽墙围成的形状为圆形或者正四边形,或者,也可以仅在两个电极4112的外部设置屏蔽墙,也就是说,屏蔽墙没有形成闭合形状。也可以使屏蔽墙9的上述正投影的形状的对称轴与微矫正器411的电极4112的排布的对称轴重叠,以保证屏蔽墙9不会对粒子束61引入额外的像差。
图16为本申请实施例中粒子矫正装置的一种局部剖视结构示意图,图16的剖面平行于通孔4111的中心轴4113,如图16所示,屏蔽墙9包括与电极4112相对的主屏蔽部91,和位于主屏蔽部91沿通孔4111的中心轴4113方向两侧的辅助屏蔽部92。如图16所示,屏蔽墙9沿上述通孔4111的中心轴4113方向的高度,大于电极4112沿上述通孔4111的 中心轴4113方向的高度,且电极4112完全位于屏蔽墙9内,也就是说,沿上述通孔4111的中心轴4113方向,电极4112与主屏蔽部91重叠。该方案中,屏蔽墙9的高度较高,因此屏蔽效果较好。当然,在其他实施例中,如图12所示,可以使屏蔽墙9沿上述通孔4111的中心轴4113方向的高度,等于电极4112沿上述通孔4111的中心轴4113方向的高度,且电极4112完全位于屏蔽墙9内,也就是说,沿上述通孔4111的中心轴4113方向,电极4112与屏蔽墙9重叠。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种粒子矫正装置,其特征在于,包括粒子矫正板,所述粒子矫正板包括M个通孔、多个电极、信号线组和第一屏蔽层,其中:
    每个所述通孔周侧设置的多个所述电极,每个所述电极与所述信号线组中的一根信号线连接,所述多个电极用于在对应的所述通孔内产生矫正电场;
    所述第一屏蔽层位于所述信号线组沿所述通孔的中心轴方向的一端或者两端,用于屏蔽所述信号线组产生的干扰电场;
    其中,M为大于或等于1的整数。
  2. 根据权利要求1所述的粒子矫正装置,其特征在于,一根所述信号线连接一个所述电极。
  3. 根据权利要求1或2所述的粒子矫正装置,其特征在于,所述第一屏蔽层位于所述粒子矫正板的内部或者表面。
  4. 根据权利要求1~3任一项所述的粒子矫正装置,其特征在于,所述粒子矫正板的所述信号线组的区域的还设置有第二屏蔽层,所述第二屏蔽层所在的平面与所述第一屏蔽层所在的平面相交。
  5. 根据权利要求4所述的粒子矫正装置,其特征在于,所述粒子矫正装置的每个所述信号线组周侧设置两个所述第一屏蔽层和两个所述第二屏蔽层,所述第一屏蔽层与所述第二屏蔽层依次间隔连接成屏蔽管,所述信号线组位于所述屏蔽管内。
  6. 根据权利要求4或5所述的粒子矫正装置,其特征在于,所述第二屏蔽层为网状第二屏蔽层。
  7. 根据权利要求1~6任一项所述的粒子矫正装置,其特征在于,所述信号线组包括多根信号线,至少位于所述信号线组边缘的所述信号线为接地信号线。
  8. 根据权利要求1~7任一项所述的粒子矫正装置,其特征在于,每个所述通孔的周侧设置有屏蔽墙,所述电极位于所述屏蔽墙内。
  9. 根据权利要求8所述的粒子矫正装置,其特征在于,在垂直于所述通孔的中心轴的方向上,所述屏蔽墙的正投影为圆形或者正X边形,当所述屏蔽墙的所述正投影为所述正X边形时,所述屏蔽墙的对称轴与所述通孔周侧的多个所述电极的排布对称轴重叠,其中,X为大于或等于2的整数。
  10. 根据权利要求8或9所述的粒子矫正装置,其特征在于,所述屏蔽墙包括与所述电极相对的主屏蔽部,和位于所述主屏蔽部沿所述通孔的中心轴方向两侧的辅助屏蔽部。
  11. 一种粒子矫正器模组,其特征在于,包括电源件、固定件和N个根据权利要求1~10任一项所述的粒子矫正装置,N个所述粒子矫正装置堆叠固定于所述固定件,所述电源件与所述信号线组连接,任意相邻的所述粒子矫正装置的所述通孔一一同轴设置,其中,N为大于或等于1的整数。
  12. 一种粒子系统,其特征在于,包括粒子源、准直透镜、分束板、聚焦透镜和权利要求11所述的粒子矫正器模组,且所述粒子源、所述准直透镜、所述分束板、所述粒子矫正器模组和所述聚焦透镜依次排布。
PCT/CN2022/086163 2022-04-11 2022-04-11 粒子矫正装置、粒子矫正器模组和粒子系统 WO2023197114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086163 WO2023197114A1 (zh) 2022-04-11 2022-04-11 粒子矫正装置、粒子矫正器模组和粒子系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086163 WO2023197114A1 (zh) 2022-04-11 2022-04-11 粒子矫正装置、粒子矫正器模组和粒子系统

Publications (1)

Publication Number Publication Date
WO2023197114A1 true WO2023197114A1 (zh) 2023-10-19

Family

ID=88328648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086163 WO2023197114A1 (zh) 2022-04-11 2022-04-11 粒子矫正装置、粒子矫正器模组和粒子系统

Country Status (1)

Country Link
WO (1) WO2023197114A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620693A (zh) * 2011-04-27 2014-03-05 迈普尔平版印刷Ip有限公司 包括用于操纵一条或多条带电粒子束的操纵器装置的带电粒子系统
CN103650097A (zh) * 2011-05-30 2014-03-19 迈普尔平版印刷Ip有限公司 带电粒子多小束设备
CN111886669A (zh) * 2018-02-20 2020-11-03 代尔夫特工业大学 用于多束带电粒子检查装置的信号分离器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620693A (zh) * 2011-04-27 2014-03-05 迈普尔平版印刷Ip有限公司 包括用于操纵一条或多条带电粒子束的操纵器装置的带电粒子系统
CN103650097A (zh) * 2011-05-30 2014-03-19 迈普尔平版印刷Ip有限公司 带电粒子多小束设备
CN111886669A (zh) * 2018-02-20 2020-11-03 代尔夫特工业大学 用于多束带电粒子检查装置的信号分离器

Similar Documents

Publication Publication Date Title
JP2018520495A (ja) 複数荷電粒子ビームの装置
JP2019509586A (ja) 複数の荷電粒子ビームの装置
US11798783B2 (en) Charged particle assessment tool, inspection method
JP7286630B2 (ja) 荷電粒子ビームを用いた装置
JP7427794B2 (ja) 荷電粒子操作デバイス
JP2001052998A (ja) 荷電粒子ビーム結像方法、荷電粒子ビーム結像装置及び荷電粒子ビーム露光装置
JP2023541371A (ja) 対物レンズアレイアセンブリ、電子光学系、電子光学系アレイ、集束方法、対物レンズ構成
WO2023197114A1 (zh) 粒子矫正装置、粒子矫正器模组和粒子系统
CN116457652A (zh) 检查方法和检查工具
TW202338893A (zh) 孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置
EP3937205A1 (en) Charged-particle multi-beam column, charged-particle multi-beam column array, inspection method
KR20230098813A (ko) 대물 렌즈 어레이 조립체, 전자-광학 시스템, 전자-광학 시스템 어레이, 포커싱 방법
TW202338342A (zh) 帶電粒子評估工具及檢測方法
TWI835224B (zh) 帶電粒子光學裝置
JP7482238B2 (ja) 検査装置
US8835867B2 (en) Multi-axis magnetic lens for focusing a plurality of charged particle beams
TWI813948B (zh) 帶電粒子評估工具及檢測方法
US11984295B2 (en) Charged particle assessment tool, inspection method
EP4131329A1 (en) Charged-particle optical device
EP4002421A1 (en) Objective lens array assembly, electron-optical system, electron-optical system array, method of focusing
TW202312206A (zh) 聚焦能力增進的多射束產生單元
TW202341211A (zh) 電子光學器件、補償子光束特性之變化的方法
TW202312215A (zh) 評估系統、評估方法
TW202328812A (zh) 帶電粒子裝置及方法
TW202303658A (zh) 補償電極變形之影響的方法、評估系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936774

Country of ref document: EP

Kind code of ref document: A1