TW202312206A - 聚焦能力增進的多射束產生單元 - Google Patents

聚焦能力增進的多射束產生單元 Download PDF

Info

Publication number
TW202312206A
TW202312206A TW111120565A TW111120565A TW202312206A TW 202312206 A TW202312206 A TW 202312206A TW 111120565 A TW111120565 A TW 111120565A TW 111120565 A TW111120565 A TW 111120565A TW 202312206 A TW202312206 A TW 202312206A
Authority
TW
Taiwan
Prior art keywords
electrodes
plate
terminal
charged particle
generating unit
Prior art date
Application number
TW111120565A
Other languages
English (en)
Inventor
揚可 薩羅夫
迪瑞克 列德雷
湯瑪士 舒密特
喬治 久里治
馬克思 凱斯特納
尤瑞奇 比爾
沃夫岡 辛格爾
Original Assignee
德商卡爾蔡司多重掃描電子顯微鏡有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司多重掃描電子顯微鏡有限公司 filed Critical 德商卡爾蔡司多重掃描電子顯微鏡有限公司
Publication of TW202312206A publication Critical patent/TW202312206A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04924Lens systems electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/121Lenses electrostatic characterised by shape
    • H01J2237/1215Annular electrodes

Abstract

本發明揭露一種用於多射束系統的多射束產生單元具有用於複數個一次帶電粒子小射束中之每一者的較大個別聚焦功率。該多射束產生單元包含一主動端末多孔板。該端末多孔板可用於一較大的聚焦範圍,其用於複數個一次帶電粒子小射束中之每個小射束的一個別像散焦點調節。

Description

聚焦能力增進的多射束產生單元
本發明係關於多射束光柵,諸如多射束帶電粒子顯微鏡的多射束產生單元與多射束偏折器單元。
專利案WO 2005/024881 A2揭露一種電子顯微鏡系統,該系統係使用多個電子小射束(beamlet)來操作,供使用一束電子小射束對一待檢查的物件進行平行掃描。藉由將一次電子束引導到具有複數個開口之一第一多孔板上而產生該束電子小射束。該電子束的一部分電子係入射到該多孔板上並在其被吸收,而另一部分射束係穿過該多孔板的該等開口,藉此在每一開口之下游的電子束路徑中形成由該開口之剖面所界定的其剖面。此外,在該多孔板之上游及/或下游的該射束路徑中所提供之適當選擇的多個電場使在該多孔板中的每一開口當作經過該開口的該等電子小射束上的一透鏡,使得所述每一電子小射束聚焦在距該多孔板一距離的表面上。形成該等電子小射束之焦點的該表面係藉由多個下游光學元件成像到待檢查的物件或樣品的該表面上。該等一次(primary)電子子小射束係觸發多個二次(secondary)電子或反向散射該等電子以作為二次電子子小射束從該物件發射出,收集這些小射束並成像到一檢測器上。每個二次小射束入射到一單獨的檢測器元件上,使得用其檢測的二次電子強度係提供與相應一次小射束入射到該樣品上之位置處的樣品有關的訊息。在該樣品的該表面上係系統性地掃描該束一次小射束,並以掃描電子顯微鏡的常用方式產生該樣品的電子顯微影像。一掃描電子顯微鏡的解析度受限於入射到該物件上之該一次小射束的焦點直徑。因此,在多射束電子顯微鏡中,所有小射束都應在該物件上形成相同的小焦點。
應瞭解,專利案WO 2005/024881中以多個電子為例詳細說明的該系統及該方法通常非常適用於多個帶電粒子(charged particles)。相對應地,本發明的目的在於提出一種帶電粒子束系統,該系統與複數個帶電粒子束一起工作並且可用於實現更高的成像效能,諸如該等複數個小射束中之每一小射束的更好的解析度以及更窄的解析度範圍的小射束。用於多射束帶電粒子顯微鏡(MCPM)的多個小射束在多射束產生單元中產生。多射束帶電粒子顯微鏡(MCPM)通常在一帶電粒子投影系統中使用多個微光學(MO)元件與多個大型元件兩者。
該等多射束產生單元包含用於分裂、部分吸收並影響該等帶電粒子束的一元件。因此,在一預定光柵組態中產生複數個帶電粒子小射束。該等多射束產生單元包含多個微光學元件,諸如該第一多孔板、另外的多個多孔板與多個微光學偏折元件,以及具有特殊元件設計與特殊配置的多個大型元件,諸如透鏡。
一多射束產生單元可形成在兩或多個平行平面基板或晶圓的總成中,例如藉由矽之微結構所產生。在使用期間,複數個靜電光學元件係由至少兩此平面基板或晶圓中的多個對準孔所形成。一些孔可具有一或多個垂直電極,其係圍繞該等孔而軸對稱配置,例如建立靜電透鏡陣列。已知此靜電透鏡陣列的該等光學像差對該等複數個孔的該等製造偏差是高度敏感的。
為了產生多個預定的靜電光學元件,重要的是精確控制該等複數個電極,例如該等電極的幾何形狀與相對於複數個帶電粒子小射束之每個小射束的橫向對準,以及在發射的複數個帶電粒子小射束的方向上該等電極之間的該等距離。該等平面基板、該等電極以及該等平面基板之組件的製造過程中之偏差係產生該等靜電光學元件的像差並導致像差,諸如各個小射束的像差或與該等小射束的該預定光柵組態的偏差。
用於晶圓檢查的多射束顯微鏡在一晶圓表面上形成複數個一次帶電粒子小射束的複數個焦點。多個成像透鏡係產生一場曲(field curvature),導致複數個主焦點偏離該平坦晶圓表面。最近發現,帶有一分束器的該等多射束顯微鏡係進一步表現出該成像平面的一傾斜。即使在校正該場曲之後,係產生複數個主焦點的該成像平面係亦相對於該晶圓表面而傾斜。該成像平面傾斜的方向係取決於由多個磁光透鏡所引起之複數個一次帶電粒子小射束的拉莫爾旋轉(Larmor rotation)。該成像平面傾斜與該場曲係增加該等焦點位置與一晶圓表面的較大偏差。針對晶圓檢查工作的需要,習知技術的該等多射束產生單元卻未提供足夠的調控來以高精度個別地改變每個一次帶電粒子小射束的該等焦點位置。
帶多個電極的該等多孔板通常係藉由層沉積以及蝕刻技術所形成,並且形成不同層的一堆疊。對於較大幅度的調控,必須向該等靜電透鏡提供更高的電壓。該層沉積的不均勻性以及多個電場的漏電係導致在一多孔板上之多個靜電元件的電子光學特性不均勻。由於在該等多孔元件中之該等電極的傳統配置方式可能會產生雜散場(stray field),進而以一不受控制的方式影響該等電光元件的效能。在習知技術的多個多孔堆疊中,光學效能通常是有限的。
該等多孔板包含多個薄膜,例如藉由薄化製程而從晶圓所製造。在製造期間所產生的或例如由熱膨脹所引起的膜變形,係導致數個多孔板之間的距離不同,因此造成在使用期間所形成的複數個靜電元件在至少兩多孔板之間的一差異。膜變形的變化還可引入該等小射束之複數個焦點的場曲的偏差,或者複數個小射束之遠心特性的偏差。
在習知技術中,已考慮用於提高多孔陣列之理論性能的構件。例如,專利案US 2003/0209673 A1揭露減少複數個一次帶電粒子小射束之間的串擾的構件。專利案US 2003/0209673 A1揭露一種用於複數個電子小射束並具有減少的串擾的靜電單晶透鏡陣列。該靜電單透鏡陣列係配置在一孔陣列之下游的一電子束路徑中,並包含該等單透鏡的一上電極、多個中電極以及一下電極,其中每一成對電極相隔100微米的很大距離。藉由設置在上電極與該等中間電極之間以及該等中間電極與下電極之間的該等遮蔽電極來減少串擾。在另一實例中,考慮用於減少設計偏差的裝置。2014年5月30日申請的專利案DE 10 2014 008 083 A1或相對的專利案US 9,552,957 B2顯示包含具有縮減的球面像差之一透鏡陣列的多孔板的實例。藉由相較於一光束直徑的較大透鏡孔以實現減少設計像差。專利案DE 10 2014 008 083 A1係提出多個多孔板之間的距離係在多個孔直徑的0.1至10倍範圍內,以避免對該等電極產生一充電效應,然而,僅僅如此大的範圍已證明不足以防止該等電極因該等散射帶電粒子而產生未期望的充電效應。
因此,本發明一實施例係提供一種多射束產生單元,該多射束產生單元具有用於個別地改變每個一次帶電粒子小射束之每一焦點位置的大幅度調控。本發明另一實施例係提供一種多孔板,利用該多孔板可用更高的精度調整每個一次小射束的多個焦點位置並且使像差最小化。本發明一實施例係提供多個多射束產生單元,係能夠形成具有多個小焦點直徑、具有更大聚焦功率以及高聚焦精度並且具有最小殘留像差之良好定義的多個小射束。藉由多射束產生或多射束光柵單元的新配置以及最佳化佈局,在該預定的光柵組態中產生複數個小射束的焦點並且具有一大的軸向變化,以允許補償多射束檢測系統之大場曲。如此,提供一種多射束偏折單元,其能夠高精度偏折該等小射束,而不會引入或增加該等小射束的像差。
因此,本發明一實施例係提供一種多射束光柵單元的設計,諸如具有大的個別光功率的一多射束產生或多射束偏折單元,並對偏差不太敏感,且不會顯著地引入或增加像差以及產生在操作期間減少未預期的漏電場。本發明另一實施例係提供多個多射束光柵單元,其在使用期間提供一更高精度的焦點位置控制。
因此,本發明一實施例係提供多個多射束光柵單元,該等多射束光柵單元包含至少三個多孔板,包括提供對偏差不太敏感、產生低像差以及較少散射粒子之多孔板的製程,並且其係允許製造具有高穩定性以及可重複性的一多射束產生或多射束偏折單元。在該多射束光柵單元中之該等多孔板的該新配置係允許一大範圍的聚焦功率,其係用於個別地影響由該多射束光柵單元所產生之複數個帶電粒子小射束的該等焦點位置。
根據一第一實施例,一用於多射束系統(1)的多射束產生單元(305)包含一濾板(304),該濾板(304)具有用於產生複數個一次帶電粒子小射束(3)的複數個第一孔(85.1)係形成一入射、平行的一次帶電粒子束(309),該濾板(304)在使用期間係連接到一接地準位。該一次帶電粒子小射束係藉由穿透複數個第一孔(85.1)而形成,而入射的一次帶電粒子束(309)的大部分帶電粒子係被該濾板(304)的射束入口側上的一導電遮蔽層所吸收。該多射束產生單元(305)更包含一端末多孔板(310)。端末多孔板(310)係按照入射一次帶電粒子束(309)之傳播方向的順序而配置在濾板(304)下游處並且包含複數個端末孔(94)。在每一者端末孔(94)處,一次帶電粒子小射束(3)係離開多射束產生成單元(305)。每一端末孔(94)包含配置在複數個端末孔(94)中之每一者的周邊中的第一複數個可個別定址電極(79.2、81.2)。在端末多孔板(310)的下游,多射束產生單元(305)包含或連接到具有一聚光電極(82、84)的一聚光(condenser)透鏡(307),而聚光透鏡(307)係具有用於傳送複數個一次帶電粒子小射束(3)的一單孔。聚光電極(82、84)產生複數個靜電微透鏡場(92),這些靜電微透鏡場係穿過複數個端末孔(94)中的每一者。多射束產生單元(305)更包含一控制單元(830)。控制單元(830)個別地控制聚光電極(82、84)以及第一複數個可個別定址電極(79.2、81.2)中的每一者,以影響複數個靜電微透鏡場(92)中之每一者的穿透深度及/或形狀,藉此個別地調整複數個一次帶電粒子小射束(3)中之每一者的一橫向與軸向焦點位置。複數個一次帶電粒子小射束(3)係因此在中間且彎曲影像表面(321)中形成複數個焦點(311)。中間且彎曲影像表面(321)是彎曲並具有一傾斜分量(323)以預先補償多射束系統(1)的一場曲以及一成像平面傾斜。
在一實例中,第一複數個可個別定址電極(79.2、81.2)形成為一第一複數個靜電圓柱或環形電極(79.2),每個圓柱或環形電極(79.2)係配置在多個端末孔(94)之一者的周邊中,其產生一吸力場(88)或一凹陷場(90)。藉此,複數個靜電微透鏡場(92)中之每一者的穿透深度係在一對應的端末孔(94)中可减小或增大,並且一焦距可在一寬範圍內進行調節。藉此,一單個一次帶電粒子小射束之一焦點(311)的軸向位置可在大範圍內改變。
在另一實例中,第一複數個可個別定址電極(79.2、81.2)形成為第一複數個靜電多極(multi-pole)電極(81.2),每一多極電極(81.2)配置在該等端末孔(94)之一者的周邊中,以產生一吸力場(88)、一凹陷場(90)及/或一偏折場及/或一影差校正場。藉此,不僅可減小或增加複數個靜電微透鏡場(92)中之每一者的穿透深度,而且橫向位置以及複數個靜電微透鏡場(92)中的每一者的形狀係在一對應的端末孔(94)中改變。藉此,例如可校正類似像散的像差,並可藉由偏折裝置改變一單個一次帶電粒子小射束之一焦點(311)的橫向位置。
端末多孔板(310)可包含一第一端末電極層(129.1、306.3a)及一第二電極層(306.3b),其中該第一端末電極層包含該等第一複數個可個別定址電極(79.2、81.2),該第二電極層係與第一複數個可個別定址電極(79.2、81.2)隔離並配置在第一端末電極層(129.1、306.3a)的上游處。第二電極層(306.3b)在使用期間連接到用於形成一接地電極層的接地準位。在另一形式中,端末多孔板(310)係由一單電極層(129.1)所製成。
多射束產生單元(305)可更包含至少一具有複數個第二孔(85.2)的第二多孔板或接地電極板(306.2)。第二多孔板在使用期間形成一第一接地電極。第二多孔板(306.2)配置在濾板(304)與端末多孔板(310)之間。多射束產生單元(305)可更包含具有複數個第四孔(85.4、85.41)的一第三多孔板或第一多像散板(306.4、306.41),每一者包含一第二複數個可個別定址的多極電極(81、81.1),用於形成配置在複數個第四孔(85.4、85.41)之周圍的一靜電多極元件。第二可個別定址的多極電極(81、81.1)中的每一者係連接到控制單元(830),其配置成額外個別地偏折、聚焦或校正複數個一次帶電粒子小射束(3)中之每一者的一像差。藉此,在一次帶電粒子小射束(3)進入其對應的端末孔(94)之前,可實現一更大範圍的焦點變化並可調整一次帶電粒子小射束(3)的方向。
多射束產生單元(305)可更包含具有複數個第四孔(85.42)的第二多像散板(306.43)或一第四多孔板,每一複數個第四孔(85.42)包含複數個可個別定址的多極電極(81.3),用於形成配置在複數個第四孔(85.42)之周邊中的一靜電多極元件,該等可個別定址電極(81.3)之每一者係連接到控制單元(830),該控制單元配置成個別地偏折、聚焦或校正複數個一次帶電粒子小射束(3)中之每一者的一像差。藉此,可實現一更大範圍的焦點變化。
多射束產生單元(305)可更包含形成為一靜電透鏡陣列(306.3、306.9)的另外一多孔板,其具有包含複數個第二圓柱電極(79)的複數個孔(85.3、85.9),每一者係單獨連接到控制單元(830),該控制單元形成複數個靜電透鏡場。因此,可實現一更大範圍的焦點變化。靜電透鏡陣列(306.3、306.9)可形成為由一單電極層所製成的一透鏡電極板(306.9)。在另一形式中,靜電透鏡陣列(306.3、306.9)係具有一透鏡電極層(306.3a)與一接地電極層(306.3b)的一雙層小透鏡(lens-let)電極板(306.3)。
在實例中,聚光電極(82、84)係形成為一分段(segmented)電極(84),其包含複數個至少四個電極段(84.1至84.4),且控制單元(830)提供一不對稱的電壓分佈給複數個至少四個電極段(84.1至84.4)。藉此,在具有一傾斜分量(323)的彎曲中間影像表面(321)中促成複數個一次帶電粒子小射束(3)的聚焦。
在一實例中,聚光電極(82、84)及端末多孔板(310)相對於彼此以一角度ϕ配置。藉此,在具有一傾斜分量(323)的彎曲中間影像表面(321)中促成複數個一次帶電粒子小射束(3)的聚焦。為了調整角度ϕ,可將聚光電極(82、84)或包含端末多孔板(310)的多孔板堆疊(315)或兩者均可安裝在一操縱器(340)上,該操縱器配置成用於傾斜或旋轉聚光電極(82、84)或多孔板堆疊(315)或兩者。
多射束產生單元(305)可包含一第二或另外接地電極板(306.8),每一者係配置在一成對多孔板之間,其每一者包含一電極層(129.1)及複數多個可個別定址電極(79、81)。藉此,可個別定址的環形電極或多極電極(79、81)在該等一次帶電粒子小射束的傳播方向上是分開且相對於彼此是被遮蔽。
控制單元(830)向端末多孔板(310)、第一多像散板(306.4、306.41)及選擇性第二多像散板(306.43)及/或靜電透鏡陣列(306.3、306.9)的複數個電極(79、81)中的每一者提供複數個個別電壓。端末多孔板(310)、第一多像散板(306.4、306.41)以及(選擇性地)第二多像散板(306.43)及/或靜電透鏡陣列(306.3、306.9)共同形成對於每個可個別定址的多級微透鏡(316)之陣列,該可個別定址的多級微透鏡(316)具有一單獨可變聚焦範圍變化DF,其具有至少DF > 1mm、較佳係至少DF > 3mm、甚至更佳係DF > 5mm。
多射束產生單元(305)更包含複數個間隔件(83.1至83.5)或支撐區(179),用於將複數個多孔板(304、306.2至306.9、310)保持在彼此預定的距離處。
在一第二實施例中,一多孔板被形成為具有電氣配線連接(175)的一倒置的多孔板,而電氣配線連接(175)係用於複數個可個別定址電極(79、79.1、79.2、81、81.1、81.2和81.3),該複數個可個別定址電極(79、79.1、79.2、81、81.1、81.2和81.3)係位於與倒置的多孔板之射束入射側相對的第一側處。在根據第一實施例之多射束產生單元(305)的實例中,多孔板(306.4至306.9、310)中的至少一者係配置為一倒置多孔板。至少一倒置多孔板更包含複數個貫穿連接件(149、149.1、149.2),用於經由配置在倒置多孔板的下側或底側的電氣配線連接(175)而電氣連接複數個可個別定址的電極(79、79.1、79.2、81、81.1、81.3),該倒置多孔板具有多個接觸腳(147、147.1、147.2),其係配置在倒置多孔板的上部或光束入射側。利用倒置配置,通常可改善電氣配線連接(175)的電性隔離以及遮蔽,例如免受一次帶電粒子、散射帶電粒子、次級帶電粒子或由任何種類的帶電粒子所產生之X射線的影響。因此,可更高精度操作可個別定址電極(79、81)。利用一孔板(306、310)之一電極層(129.1)下游處的配線連接,減少來自配線連接的電場洩漏影響,並可向對應的可個別定址電極之每一者提供一較大的電壓,藉此進一步增加聚焦功率。
在一實例中,多射束產生單元(305)的端末多孔板(310)更包含一具有複數個孔(94)的導電遮蔽層(177.2)。導電遮蔽層(177.2)係與第一複數個可個別定址電極(79.2、81.2)電性隔離,且導電遮蔽層(177.2)係配置在可個別定址電極(79.2、81.2)與聚光透鏡(307)之間的端末多孔板(310)的底側(76)處。因此,有效減少複數個靜電微透鏡場(92)的穿透或干擾。
在實例中,濾板(304)的第一孔(85.1)具有一第一、最小直徑D1,且端末孔(94)具有一端末、較大直徑DT。端末直徑DT通常在1.6 x D1 <= DT <= 2.4 x D1之間。接地電極板(306.2)的第二孔(85.2)具有一第二直徑D2。通常,D2在D1與DT之間選擇,D1 < D2 < DT,例如1.4 x D1 <= D2 <= 0.75 x DT。第一或第二多像散板(306.4、306.41、306.43)或靜電透鏡陣列(306.3、306.9)的第三或更多孔(85.3、85.4、85.9)係具有一直徑D3。通常,D3係在D2與DT之間選擇,使得D1 < D2 < D3 < DT,例如1.4 x D1 <= D2 <= 0.9 x D3 <= 0.8 x DT。
根據本發明的一第二實施例,提供一種改善效能的多孔板(306)。改善的多孔板(306)包含複數個孔(85.3、85.4、85.9、94),其在一隔離電極層(129.1)中具有複數個隔離且可個別定址電極(79、81)。複數個電極(79、81)中的每一者係配置在孔(85.3、85.4、85.9、94)之一者的周邊中。改善的多孔板(306)更包含一第一導電遮蔽層(177.1)及一複數個電氣配線連接(175)之層,其中該第一導電遮蔽層(177.1)係位於多孔板(306)之一第一側且具有一第一厚度T1,該第一厚度T1約為T1 <= 1µm,該層複數個電氣配線連接(175)的一第三厚度T3為T3 <= 1µm。具有一第二厚度T2的一第一平坦化隔離層(179.5)係配置在一第一導電遮蔽層(177.1)與該電氣配線連接(175)之層之間。一第三平坦化隔離層(179.3)係形成在該電氣配線連接(175)之層與隔離電極層(129.1)之間。第三平坦化隔離層(179.3)具有一第四厚度T4。第三平坦化隔離層(179.3)係具有在一配線連接(175)與一電極(79、81)中的每一者之間所形成的多個配線接觸點(193)。第一及第三平坦化隔離層(179.5、179.3)係由二氧化矽所製成,且被拉平到第二及第四厚度T2與T4,其每一者都低於3μm,例如其中T2 <= T4 <= 2.5µm。較佳係,第二及第四厚度T2與T4之每一者均小於或等於2μm。在一實例中,該等配線接觸點(193)之每一者係置放在每一可個別定址電極(79、81)的一外邊緣處,並與一孔(85、94)的內側壁(87)相距一距離h。距離h係大於h >6μm,較佳係h >8μm,例如h >=10μm。
多孔版(306)更包含一第二導電遮蔽層(177.2)及一第三平坦化隔離層(129.2),其中該第二導電遮蔽層係配置在具有一第六厚度T6 <=1µm之多孔板(306)的一第二側上,且該第三平坦化隔離層係形成在第二導電遮蔽層(177.2)與電極層(129.1)之間,並具有一第五厚度T5 <=2.5µm。隨著平坦化隔離層(179)的厚度減小,多孔板附近之電場的擾動減小並且可用更高的精度實現微影處理。因此,例如可用更高的精度形成該等配線接觸點。由於該等配線接觸點(193)的大距離h,係進一步減少從該等配線接觸點(193)或該等電氣配線連接(175)所產生之電場的洩漏。藉由在兩側設置並連接到接地準位的遮蔽層(177.1、177.2),係有效地減少電場進入或離開多孔板的穿透。在一實例中,第一或第二導電遮蔽層(177.1、177.2)中的至少一者係具有進入複數個孔(85、94)中之每一者的複數個插入延伸部(189),以形成到電極(79、81)的寬度為g的間隙,其中g < 4µm,較佳係g <= 2µm。藉由此小間隙,更有效減少電場進入或離開多孔板。在一實例中,多孔板(306)更包含在複數個可個別定址電極(79、81)之間的一遮蔽電極(183)。遮蔽電極(183)係連接到接地準位(0V)。因此,有效相互遮蔽該等可個別定址電極(79、81)。
該實施例之改善的多孔板(306)為多射束產生單元(305)的複數個至少兩多孔板(306、306.3、306.4、310)中的一者,其係產生成和聚焦複數個一次帶電粒子小射束(3)。在一第一實例中,改善的多孔板(306)為具有多射束產生單元(305)的複數個端末孔(94)的端末多孔板(310),其中複數個一次帶電粒子小射束(3)係在複數個端末孔(94)中之一者處離開多射束產生單元(305)。一聚光透鏡(307)係配置在改善的多孔板(306)(作為多射束產生單元(305)的端末多孔板(310))之後。聚光透鏡(307)產生複數個靜電微透鏡場(92),這些靜電微透鏡場(92)係穿透到複數個端末孔(94)中。
在一實例中,改善的多孔板(306、310)係成倒置組態,在多孔板(306)的一第一側具有複數個配線連接(175)以及在與多孔板(306)之第一側相對的第二側具有複數個接觸腳(147),其更包含複數個貫穿連接(149),用於將在第一側的複數個配線連接(175)與在第二側的接觸腳(147)連接起來。
在本發明的一第三實施例中,其提供端末多孔板(310)的進一步改善。端末多孔板(310)包含複數個端末孔(94),其形成複數個靜電微透鏡場(92、92.1、92.2),該複數個靜電微透鏡場(92、92.1、92.2)係穿入複數個端末孔(94)。在端末孔(94)的周邊中,其配置複數個可個別定址電極(79.2、81.2)。複數個可個別定址電極(79.2、81.2)配置成單獨地連接到一控制單元(830),個別地影響複數個靜電微透鏡場(92、92.1、92.2)中之每一者的穿透深度及/或形狀。端末多孔板(310)更包含一第一導電遮蔽層(177.2),其係在端末多孔板(310)的端末處或射束射出側(76)處連接到接地準位(0V)。藉此,可遮蔽複數個靜電微透鏡場(92)並防止複數個靜電微透鏡場(92)穿透到端末多孔板(310)中而僅穿透到端末孔(94)中。端末多孔板(310)更包含在複數個可個別定址電極(79.2、81.2)之間的一遮蔽電極(183),其係連接到接地準位(0V)以使複數個可個別定址電極(79.2、81.2)彼此遮蔽。端末多孔板(310)更包含複數個隔離配線連接(175),係用於將複數個個別電壓提供到複數個可個別定址電極(79.2、81.2)。複數個配線連接(175)係連接到一控制單元(830)。
在一實例中,複數個配線連接(175)係配置在端末多孔板(310)的一第一側,其係與導電遮蔽層(177、177.2)隔離,且端末多孔板(310)更包含連接到複數個配線連接(175)的複數個貫穿連接(149)。複數個貫穿連接(149)係連接到控制單元(830)。
端末多孔板(310)更包含一位於端末多孔板(310)之上側的第二導電遮蔽層(177.1),其中該上側是複數個帶電粒子小射束(3)進入端末多孔板(310)的一側。端末多孔板(310)更包含複數個平坦化隔離層(129.2、179、179.1、179.3、179.5)以及位於兩平坦化隔離層(129.2、179、179.1、179.3、179.5)之間的一複數個電氣配線連接(175)之層、一電極層(129.1),其包含複數個可個別定址電極(79.2、81.2)。電極層(129.1)、該層電氣配線連接(175)以及第一或第二導電遮蔽層(177.2、177.2)中的每一者係藉由平坦化隔離層(129.2、179、179.1、179.3、179.5)之一者而與一相鄰層隔離。該等平坦化隔離層(129.2、179、179.1、179.3、179.5)之每一者係由二氧化矽所製成,且被平整到低於T <3μm的厚度T,較佳係低於T <= 2µm。相較之下,電極層(129.1)通常具有在50μm與100μm之間的厚度。
在本發明的一第四實施例中,其係提供一種倒置多孔板(306)。一倒置多孔板(306)包含複數個孔(85、94),其係在一隔離電極層(129.1)中具有複數個隔離且可個別定址電極(79、81)。複數個電極(79、81)中的每一者係配置在一孔(85、94)的周圍。倒置多孔板(306)更包含一位於具有多孔板(306)的一第一側且具有一第一厚度T1 <= 1 µm的第一導電遮蔽層(177.1);第二厚度T2 <= 2.5µm的一第一平坦化隔離層(179.5);具有第三厚度T3 <= 1µm之至少一層複數個電氣配線連接(175);在電極層(129.1)與該等電氣配線連接(175)的至少第一層之間的一第二平坦化隔離層(179.3),而第二平坦化隔離層(179.3)係具有一第四厚度T4 <= 2.5µm。第二平坦化隔離層(179.3)係微影配置而具有形成在一配線連接(175)與一電極(79、81)中的每一者之間的貫穿配線接觸點(193)。
倒置多孔板(306)更包含複數個貫穿連接(149)以及複數個接觸腳(147),其用於在電極層(129.1)的一第二相對側處與控制單元(830)接觸。複數個電氣配線連接(175)係配置在第一隔離電極層(129.1)的一第一側上,且貫穿連接(149)係從第一側經由第一隔離電極層(129.1)的一電性接觸點到第二側。在一實例中,該等配線接觸點(193)之每一者係置放在每一可個別定址電極(79、81)的一外邊緣,其係與孔(85、94)的內側壁相距一距離h,其中h較佳係大於h > 6μm,甚至更佳係h > 10μm,例如h = 12μm。倒置多孔板(306)更包含一第二導電遮蔽層(177.2)以及一第三平坦化隔離層(129.2),第二導電遮蔽層(177.2)係位於多孔板(306)之第二側而具有第六厚度T6 <= 1µm,第三平坦化隔離層(129.2)係形成在第二導電遮蔽層(129.2)和與第二平坦化隔離層(179.3)相對的電極層(129.1)之間。第三平坦化隔離層(129.2)係具有一第五厚度T5 <= 2.5µm。第二導電遮蔽層(177.2)包含多個孔(48),係用於將接觸腳(147)與第二導電遮蔽層(177.2)隔離。在一實例中,第一或第二導電遮蔽層(177.1、177.2)中的至少一者係具有進入複數個孔(85、94)中之每一者的複數個插入延伸部(189),其係形成寬度為g < 4µm的一間隙到該等電極(79、81),較佳係g <= 2µm。倒置多孔板(306)還在複數個可個別定址電極(79、81)之間提供一遮蔽電極(183),其係連接到接地準位(0V)以彼此遮蔽複數個可個別定址電極(79、81)。
在一第五實施例中,其提供大範圍個別地改變複數個一次帶電粒子束點(311)中之每一者的焦距方法。該方法包含在一端末多孔板(310)之複數個端末孔(94)之每一者處提供複數個可個別定址的端末電極(79.2、81.2)。在下一步驟中,該方法包含提供與端末多孔板(310)相鄰且在複數個一次帶電粒子小射束(3)之傳播方向下游處的一聚光透鏡電極(82、84)。在下一步驟中,該方法包含藉由一控制單元(830)向聚光透鏡電極(82、84)提供至少一第一電壓以產生複數個靜電微透鏡場(92),該靜電微透鏡場(92)係穿透複數個端末孔(94)。在該方法的下一步驟中,將複數個個別電壓提供給複數個可個別定址電極(79.2、81.2)中的每一者。還控制可個別定址的端末電極(79.2、81.2)的複數個個別電壓以影響複數個靜電微透鏡場(92)中之每一者的穿透深度,藉此個別地調整複數個一次帶電粒子小射束(3)中之每一者在大範圍的彎曲中間影像表面(321)上的軸向焦點位置,該大範圍係例如DF >1mm、較佳係DF >3mm、甚至更佳者為DF > 5mm。在一實例中,複數個可個別定址電極(79.2、81.2)係形成為複數個多極電極(81.2),並且該方法更包含個別控制到每一多極電極(81.2)的複數個個別電壓以影響每一靜電微透鏡場(92)之形狀及/或橫向位置的步驟。藉此,複數個一次帶電粒子小射束(3)中之每一者的橫向焦點位置與形狀係在彎曲的中間影像表面(321)上獨立且個別地進行調整。個別地控制複數個個別電壓的步驟可配置成調整具有一傾斜分量(232)之彎曲中間影像表面(321)上的複數個一次帶電粒子小射束(3)中之每一者的焦點位置。
該方法可更包含提供具有複數個孔(85.4)與複數個可個別定址的多極電極(81.1)之第一多像散板(306.4、306.41)的步驟,以及藉由控制單元(830)提供複數個個別電壓給複數個可個別定址多極電極(81.1)中之每一者的步驟。根據該實例的該方法更包含個別地控制多極電極(81.1)之複數個個別電壓的步驟。藉此,複數個一次帶電粒子小射束(3)中之每一者的形狀及/或橫向位置在經過端末多孔板(310)的多個端末孔(94)之前受到影響。
該方法可更包含提供具有複數個孔(85.4)與複數個可個別定址的多極電極(81.3)的第二複數像散板(306.4、306.41)的步驟,以及藉由控制單元(830)提供對複數個可個別定址多極電極(81.3)中之每一者的複數個個別電壓的步驟。根據該實例的該方法更包含個別地控制多極電極(81.3)之複數個個別電壓的步驟。藉此,複數個一次帶電粒子小射束(3)中之每一者的形狀及/或橫向位置及/或方向在經過端末多孔板(310)的複數個端末孔(94)之前受到影響。
該方法可更包含提供具有複數個孔(85.3、85.9)以及複數個可個別定址的環形電極(79)之一透鏡陣列(306.3、306.9)的步驟,以及由控制單元(830)向複數個可個別定址的環形電極(79)中之每一者提供複數個個別電壓的步驟。藉由對該等環形電極(79)之複數個個別電壓的個別地控制,複數個一次帶電粒子小射束(3)中之每一者的焦點位置係在經過端末多孔板(310)的複數個端末孔(94)之前受到影響。藉此,透鏡陣列(306.3、306.9)係促成一聚焦,並且實現DF >1mm、較佳係DF >3mm、例如DF >5mm之更大範圍DF的焦點調節。
根據另一實例,該方法更包含個別地控制可個別定址的端末電極(79.2、81.2)、多極電極(81.1、81.3)及/或環形電極(79)中的任一者之步驟。利用該方法,複數個一次帶電粒子小射束(3)中之每一者的軸向與橫向焦點位置、形狀與傳播方向係受到共同影響。根據另一實例,該方法更包含控制一聚光透鏡電極(82、84)或一次多小射束形成單元(305)之多孔板(315)堆疊的一傾斜角或旋轉角或其兩者的步驟。利用該方法,複數個一次帶電粒子小射束(3)中之每一者的軸向焦點位置受到共同影響,以有助於一中間影像表面(321)的傾斜分量(323)。
根據本發明的一第六實施例,提供一種具有至少一倒置多孔板的多射束產生單元(305)。根據該實施例的多射束產生單元(305)包含一具有複數個第一孔(85.1)的濾板(304),用於從一入射的平行一次帶電粒子束(309)而產生複數個一次帶電粒子子射束(3)。濾板(304)連接到一接地準位。多射束產生單元(305)更包含複數個至少兩多孔板(306、306.3、306.4、306.9、310),每一多孔板(306、306.3、306.4、306.9、310)包含一電極層(129.1)以及配置在電極層(129.1)之一第一側的複數個接觸腳(147)。複數個至少兩多孔板(306、306.3、306.4、306.9、310)包含一端末多孔板(310)。每一多孔板(306、306.3、306.4、306.9)更包含至少一具有複數個電氣配線連接(175)之層。至少一多孔板(306、306.3、306.4、306.9)係配置為一倒置多孔板(306、306.3、306.4、306.9),其中複數個電氣配線連接(175)5之層配置在倒置多孔板(306、306.3、306.4、306.9)之電極層(129.1)的第二側。第二側係與配置有該等接觸腳的第一側相對。藉此,多射束產生單元(305)的每一多孔板可在相同的第一側電性接觸,而與該倒置多孔板之該層複數個電氣配線連接(175)的位置無關。倒置多孔板(306、306.3、306.4、306.9)更包含用於將複數個接觸腳(147)與複數個電氣配線連接(175)電氣連接的複數個貫穿連接(149)。端末多孔板(310)包括具有複數個可個別定址電極(79.2、81.2)的一電極層(129.1)、一層複數個電氣配線連接(175)以及配置在電極層(129.1)之第一側的複數個接觸腳(147)。在一實例中,端末多孔板(310)之該層複數個電氣配線連接(175)係配置在端末多孔板(310)之電極層(129.1)的第二側。第一側是上側或射束進入側,第二側是下側或底側,該等一次小射束(3)係在此處離開多孔板(310)。
多射束產生單元(305)更包含一控制單元(830)。控制單元(830)配置成從相同第一側提供複數個個別電壓到每一多孔板(306、306.3、306.4、306.9)及/或端末多孔(310)之複數個接觸腳(147)中的每一者。
根據第六實施例的多射束產生單元(305)更包含一聚光透鏡(307),該聚光透鏡具有聚光電極(82、84),而該聚光透鏡係具有傳輸複數個一次帶電粒子小射束(3)的一單孔。聚光電極(82、84)產生多個靜電微透鏡場(92),該等靜電微透鏡場穿過進入複數個端末孔(94)中的每一者。控制單元(830)配置成個別地控制聚光電極(82、84)與端末多孔板(310)之複數個可個別定址電極(79.2、81.2)中的每一者。藉此,複數個靜電微透鏡場(92)中之每一者的穿透深度及/或形狀受到影響,並且在彎曲的中間影像表面(321)上促成複數個一次帶電粒子小射束(3)中之每一者的橫向和軸向焦點位置。
在本發明的一第七實施例中,提供一種多孔板(306、310)的製造方法。該方法包含在一電極層(129.1)中形成複數個電極(79、81)的步驟。該方法更包含在電極層(129.1)的第一側上形成一第一隔離層(179.1)的步驟,第一隔離層(179.1)係由諸如二氧化矽(SiO2)的一隔離材料所形成。該方法更包含拋光第一隔離層(179.1)以形成一厚度低於2.5μm之一第一平整隔離層(179.3)的步驟。該方法更包含在第一平整隔離層(179.3)上形成與微影處理一層電氣配線連接(175)的步驟。該方法更包含在該層電氣配線連接(175)上形成一第二隔離層(179.4)的步驟,第二隔離層(179.4)係由諸如二氧化矽(SiO2)的一隔離材料所形成。該方法更包含拋光第二隔離層(179.4)以形成一厚度低於2.5μm之一第二平整隔離層(179.5)的步驟。該方法更包含在第二平整隔離層(179.5)上形成一第一導電遮蔽層(177.1)的步驟。
在一實例中,該方法更包含透過電極層(129.1)形成複數個貫穿連接(149)的步驟以及在電極層(129.1)之一第二側上形成一第一隔離層(179.1)的步驟,第二側係與第一側相對;及對第二側的第一隔離層(179.1)進行拋光以形成一厚度低於2.5μm之一第一平整隔離層(179.3)的步驟。該方法更包含在第二側上的第一平整隔離層(179.3)上形成一第二導電遮蔽層(177.2)的步驟,以及將第一側上的多個貫穿連接之每一者與多個電氣配線連接(175)之一者連接並將第二側之多個貫穿連接之每一者與一接觸腳(147)連接的步驟。
在一實例中,該方法更包含在第一側之第二平整隔離層(179.5)上形成一應力降低層(187)的步驟,該應力降低層(187)係由氮化矽(SiOX)所形成。該方法更包含在應力降低層(187)上形成一另外隔離層(179)並拋光該另外隔離層(179)以將另外、平整的隔離層(179)平整到低於2.5µm以下之厚度的步驟。然後在該另外平整的隔離層(179)上形成根據該實例的第一導電遮蔽層(177.1)。
在一實施例中,複數個發射小射束透過複數個多孔板的複數個孔沿第一方向傳播,高電壓源配線連接係從垂直於第一方向的第二方向而提供給多孔板中的至少一者的第一電極,低電壓源配線連接則從垂直於第一與第二方向的一第三方向而提供給該多孔板的至少一者的第二電極。
藉由本發明的實施例,提供大範圍聚焦功率的多射束產生單元(305)。根據該等實施例的多射束產生單元(305)包含一具有複數個第一孔(85.1)的濾板(304),係用於從一入射的平行一次帶電粒子束(309)產生複數個一次帶電粒子小射束(3)。一種多射束產生單元(305)更包含至少一具有一電極層(129.1)的第一多孔板(306.3、306.4、306.9)以及一具有複數個端末孔(129.1)的端末多孔板(310)。一多射束產生單元(305)更包含一聚光透鏡(307)以及一控制單元(830),其中該聚光透鏡具有一聚光電極(82、84)的一聚光透鏡(307),該控制單元配置成提供複數個個別電壓給所述至少一第一多孔板(306.3、306.4、306.9)、端末多孔板(310)與聚光電極(82、84)。在一實例中,控制單元(830)還配置成用聚光電極(82、84)以調整端末多孔板(310)與聚光透鏡(307)之間的角度。根據該等實施例的多射束產生單元(305)配置成用於個別調整具有大於DF >1mm之一聚焦範圍DF的複數個一次帶電粒子小射束(3)中之每一者的軸向焦點位置中的每一者,較佳係DF > 3mm,甚至更佳者DF > 5mm,例如DF >= 6mm。在一實例中,多射束產生單元(305)還配置成用於將複數個一次帶電粒子小射束(3)中的每一者聚焦在一彎曲的中間表面(321)上,其中彎曲的中間表面(321)具有一傾斜分量(323)。利用根據一些實施例之改善的多孔板,多射束產生單元(305)還配置成個別調整在彎曲表面(321)之複數個一次帶電粒子小射束(3)中之每一者的橫向焦點位置,而彎曲表面(321)係具有低於20nm、較佳係低於15nm、甚至更佳係低於10nm的精度。多射束產生單元(305)因此配置成個別調整複數個一次帶電粒子小射束(3)中之每一者的形狀或像差以在具有高精度之彎曲的中間表面(321)上形成複數個像散焦點(311、311.1、311.2、311.3、311.4)。藉由一些實施例提所供之對該等多孔板的改善,其實現更高的小射束品質並且在中間成像平面(321)處的焦點(311)形成具有更低的像差。因此,複數個束斑(5)以更高的精度形成並且與多射束帶電粒子系統(1)的成像平面(101)的偏差更小。因此,本發明實施例允許以更高的精度進行一晶圓檢查,尤其是具有更好的補償或多射束帶電粒子系統(1)的場曲誤差,並因此使得配置在影像平面(101)中之一晶圓表面(25)上的束斑(5)之焦點尺寸變化較小。隨著多射束產生單元(305)之可個別定址的靜電透鏡場之聚焦範圍的增加,多射束帶電粒子系統(1)之場曲誤差的傾斜分量可適應於由多射束帶電粒子系統(1)之物鏡(102)所形成的一次帶電粒子小射束(3)之該光柵的旋轉。即使當改變多射束帶電粒子系統(1)的一成像設定,以及改變一次帶電粒子小射束(3)之光柵的旋轉,或者藉由例如改變由一取樣電壓源(503)提供給晶圓(7)的電壓時,場曲誤差的變化可很容易藉由具有超過1μm或3μm之大的單獨焦點改變功率DF的多射束產生單元(305)來補償,或者DF甚至可藉由該等多孔板的組合、藉由使用具有更好的遮蔽與更精確的配線連接所製造的該等多孔板或者藉由兩者的組合來得更大,如先前多個實施例中的描述。
應瞭解,本發明並未受限於所述實施例與實例,而是亦包含所述實施例與實例的組合和變化。
在下面描述之本發明的例示實施例中,功能與結構類似的組件盡可能用相似或相同的元件編號表示。多個實例的多射束光柵單元在照明射束路徑中描述,其中帶電粒子在正z方向傳播,z方向指向下方。然而,多射束光柵單元亦可應用於成像射束路徑,二次帶電粒子小射束在圖1的座標系中係沿負z方向傳播。儘管如此,該等多孔板在發射之帶電粒子束或小射束的傳播方向上係依序配置。射束入射側或上側係理解為元件在發射之帶電粒子束或小射束方向上的一元件的第一表面或第一側,底側或射束射出側係理解為元件在發射之帶電粒子束或小射束方向上的最後表面或最後側。
例如複數個一次帶電粒子小射束的一些陣列元件係由元件編號所標示。根據情境,相同的元件編號還可標示一單個元件或多個陣列元件。每個一次帶電粒子小射束(3.1、3.2、3.3、3.4)為複數個一次帶電粒子小射束(3)中的一者。從情境中可清楚看出,是否所指的是多個元件陣列中的單一元件。
圖1的示意圖例示根據本發明實施例的多射束帶電粒子顯微系統1的基本特徵和功能。要注意,圖中所使用的符號係為表示其各自的功能而選定。所示的系統類型為多射束掃描電子顯微鏡(MSEM或Multi-SEM)的系統,其使用複數個一次電子小射束3係用於在物件7的表面25上產生複數個一次帶電粒子束點5,諸如位於一物鏡102之物平面101中具有一上表面25的晶圓。為簡單起見,僅顯示五個一次帶電粒子小射束3與五個一次帶電粒子束點5。多小射束帶電粒子顯微系統1的特徵與功能可使用電子或其他類型的一次帶電粒子(諸如離子,特別是氦離子)來實現。在2021年6月16日申請的PCT專利申請案第PCT/EP2021/066255號係提供顯微鏡系統1的更多細節,其在此係以引用方式併入本文供參考。
顯微系統1包含一物件照射單元100與一檢測單元200、及用於將二次帶電粒子束路徑11與一次帶電粒子束路徑13分離的一分束器單元400。物件照射單元100包含一帶電粒子多射束產生器300,用於產生複數個一次帶電粒子小射束3並且調適成將複數個一次帶電粒子小射束3聚焦在物平面101中,其中一晶圓7的表面25藉由一取樣平台500進行定位。
一次射束產生器300在一中間影像表面321中產生複數個一次帶電粒子小射束點311,中間影像表面通常是球形曲面。根據本發明的實施例,中間影像平面321係進一步傾斜以補償由物件照射單元100的離軸對稱性所引起的傾斜。藉由多射束產生單元305在中間影像表面321中調整複數個一次帶電粒子小射束3之複數個焦點311的位置,以預補償多射束產生單元305下游之物件照射單元100的該等光學元件的場曲與成像平面傾斜。成像平面傾斜321的方向以及場曲數量根據物件照射單元100的驅動參數來調整,例如物鏡102的聚焦能力或物鏡102與由樣品電壓源503所提供之電壓的晶圓表面25之間所產生的靜電場,這兩者都是場曲與傾斜影像平面旋轉的主要來源。在德國專利案DE 102021200799 B3中係描述關於中間影像平面曲率與傾斜的更多細節,其在此係以引用方式併入本文供參考。
一次子射束產生器300包含一次帶電粒子源301,例如電子。一次帶電粒子源301發射一發散的一次帶電粒子束,其被至少一準直透鏡303校準以形成準直或平行的一次帶電粒子束309。準直透鏡303通常係由一或多個靜電或磁性透鏡所組成,或者由靜電與磁性透鏡的組合所組成。一次子射束產生器300更包含一偏折器302,用於調整準直或平行一次帶電粒子束309的角度。準直的一次帶電粒子束309入射在一次多射束形成單元305上。多射束形成單元305基本上包含由準直的一次帶電粒子束309照射的第一多孔板或濾板304。第一多孔板或濾板304包含呈一光柵組態的複數個孔,用於產生複數個一次帶電粒子小射束3,這些一次帶電粒子小射束藉由準直的一次帶電粒子束309穿透複數個孔而產生。多小射束形成單元305包含另外多孔板306.3~306.4中的至少兩者,其相對於射束309中電子的移動方向,所述多孔板係位於第一多孔或濾板304的下游處。例如,一第二多孔板306.3具有一微透鏡陣列的功能,其包含複數個環形電極,每一環形電極設定為一單獨定義的電勢,使得在中間影像表面321中個別地調整複數個一次子射束3的焦點位置。一第三多孔板306.4包含例如四或八個用於複數個孔中之每一者的靜電元件,例如以個別偏折複數個子射束中的每一者。根據一些實施例的多子射束形成單元305係配置有一端末多孔板(310)。多子射束形成單元305還配置有一相鄰的靜電場透鏡307,在一些實例中其結合在多子射束形成單元305中。以下描述多子射束形成單元305的更多細節。結合一(選擇性)第二場透鏡308,複數個一次帶電粒子子束3係聚焦在中間影像表面321中或附近。
在中間影像表面321中或附近,一射束控制多孔板390可配置有複數個帶有多個靜電元件的孔,例如偏折器,以個別操縱複數個帶電粒子小射束3中之每一者的傳播方向。即使在一次帶電粒子子束3的多個焦點311係位於彎曲的中間影像表面321上的情況下,射束轉向多孔板390的多個孔配置而具有較大的直徑以允許複數個一次帶電粒子小射束3的通過。一次帶電粒子源301、主動多孔板306.3…306.4與射束轉向多孔板390的每一者係由連接到控制單元800的一次子射束控制模組830所控制。
穿過中間影像表面321的一次帶電粒子小射束3的複數個焦點係被場鏡組103與物鏡102成像到成像平面101中,晶圓7的表面25係位於所述成像平面中。藉由取樣電壓源(503)向晶圓施加一電壓,在物鏡102與晶圓表面之間產生一減速靜電場。物件照明系統100更包含在一第一射束交叉點108附近的一集合多射束光柵掃描器110,藉由該第一束交叉點,複數個帶電粒子小射束3可在垂直於帶電粒子小射束之傳播方向的一方向上偏折。整個實例示中的一次子射束的傳播方向是正z方向。物鏡102與集合多射束光柵掃描器110係以多射束帶電粒子系統1的光軸105為中心,所述光軸係垂直於晶圓表面25。形成以光柵組態配置之複數個光斑5的複數個一次帶電粒子小射束3在晶圓表面25上進行同步掃描。在一實例中,複數個N個一次帶電粒子3之聚焦光斑5的光柵組態係約一百個或多個一次帶電粒子小射束3的六邊形光柵,例如N = 91、N = 100或N近似300個或多個子射束。一次光斑5具有距離約為6μm至15μm,直徑低於5nm,例如3nm、2nm或甚至更小。在一實例中,光斑尺寸約為1.5nm,兩相鄰光斑之間的距離為8μm。在複數個主要光斑5中之每一者的每一掃描位置處,分別產生複數個二次電子,以相同於一次光斑5的光柵組態形成複數個二次電子子束9。每一光斑5所產生之二次帶電粒子束9的強度取決於照射相應光斑5之一次帶電粒子束3的撞擊強度、光斑5下之物件7的材料成分與形貌,以及光斑5處之樣品的充電情況。二次帶電粒子小射束9係被樣品7與物鏡102之間的取樣充電單元503所產生的靜電場加速。複數個二次帶電粒子小射束9係被物鏡102與晶圓表面25之間的靜電場加速並且被物鏡102收集並且以與主要小射束3相反的方向穿過第一集合多射束光柵掃描器110。複數個二次小射束9係被第一集合多射束光柵掃描器110偏折而掃描。然後,複數個二次帶電粒子小射束9係由分束器單元400引導以跟隨檢測單元200的二次射束路徑11。複數個二次電子小射束9與一次帶電粒子小射束3沿相反方向行進,並且分束器單元400經配置而通常藉由磁場或靜電場組合的方式將二次射束路徑11與一次射束路徑13分開。選擇性上,附加的磁校正元件420存在於一次或二次射束路徑中。
檢測單元200係將二次電子小射束9成像到影像感測器207上以在其中形成複數個二次帶電粒子成像點15。檢測器或影像感測器207包含複數個檢測器畫素或個別的檢測器。對於複數個二次帶電粒子束點15中的每一者,分別檢測強度,並且對於具有高產量之晶圓的大影像斑點以高解析度檢測晶圓表面25的材料成分。例如,對於具有8μm間距之10×10個小射束的光柵,利用集合多射束光柵掃描器110的一次影像掃描而產生約88μm×88μm的影像斑點,影像解析度例如為2nm或更低。影像斑點以光斑大小的一半進行取樣,因此每一小射束的每一影像線的畫素數量為8000個畫素,使得由100個小射束所產生的影像斑點包含64億畫素。數位影像資料係由控制單元800進行收集。使用例如並行處理的數位影像資料收集與處理的細節係在PCT專利申請案WO 2020151904 A2與美國專利US 9536702中描述,其在此係併入本文供參考。
投影系統205更包含至少一第二集合光柵掃描器222,其連接到掃描與成像控制單元820。控制單元800與成像控制單元820配置成補償複數個二次電子束9的複數個焦點15的位置中的殘留差異,使得複數個二次電子焦點15的位置在影像感測器207上係保持恆定。
檢測單元200的投影系統205更包含靜電或磁性透鏡208、209、210以及包含複數個二次電子小射束9的一第二交叉點212,而孔214位於第二交叉點212中。在一實例中,孔214更包含連接到成像控制單元820的一檢測器(圖未示)。成像控制單元820還連接到至少一靜電透鏡206以及一第三偏折單元218。投影系統205可更包含至少一第一多孔校正器220,其具有用於個別地影響複數個二次電子小射束9中之每一者的多個孔與電極、以及連接到控制單元800或成像控制單元820之(選擇性)另外主動元件216。
影像感測器207係由感測區域陣列以圖案構成,其圖案係與投影透鏡205聚焦到影像感測器207上之二次電子小射束9的一光柵排列相容。這能夠獨立於入射在影像感測器207上的其他二次電子小射束來檢測每一個別的二次電子小射束。圖1所示的影像感測器207可為一電子敏感檢測器陣列,諸如一CMOS或一CCD感測器。此一電子敏感檢測器陣列可包含一電子到光子轉換單元,諸如一閃爍體元件或多個閃爍體元件陣列。在另一實施例中,影像感測器207可配置成配置在複數個二次電子粒子影像點15之焦平面中的電子對光子轉換單元或閃爍體板。在此實施例中,影像感測器207可更包含一中繼光學系統,用於在諸如複數個光電倍增管或雪崩光電二極管(圖未示)之專用光子檢測元件上,在二次帶電粒子影像點15處成像及引導由電子對光子轉換單元所產生的光子。此一影像感測器係揭露在美國專利案US 9536702中,其係以引用方式併入本文供參考。在一實例中,中繼光學系統更包含一分束器,用於將光進行分光並引導到一第一慢光檢測器以及一第二快光檢測器。第二快光檢測器藉由諸如雪崩光電二極體之光電二極體陣列配置,其足夠快以根據複數個一次帶電粒子的掃描速度而解析複數個二次電子小射束9之影像訊號小射束3。第一慢光檢測器較佳為CMOS或CCD感測器,提供高解析度感測器資料訊號用於監測焦點15或複數個二次電子小射束9並用於控制多射束帶電粒子顯微鏡1的操作。
在藉由掃描複數個一次帶電粒子小射束3來擷取影像斑點期間,平台500較佳係不移動,並且在影像斑點的擷取之後,平台500係移動到要擷取的下一影像斑點。在一替代實施方式中,平台500係沿著一第二方向上連續移動,同時藉由利用集合多射束光柵掃描器110沿著一第一方向掃描複數個一次帶電粒子小射束3來擷取影像。平台移動與平台位置係由所屬技術領域中所熟知的感測器進行監測與控制,諸如雷射干涉儀、光柵干涉儀、共焦微透鏡陣列或類似物。
根據本發明的一實施例,複數個電子訊號係被產生並轉換為數位影像資料並由控制單元800進行處理。在一影像掃描期間,控制單元800配置成觸發影像感測器207以在預定時間間隔檢測來自複數個二次電子小射束9之複數個及時解析的強度訊號,並且累積一影像斑點的該數位影像並且從複數個一次帶電粒子小射束3的所有掃描位置拼接在一起。
一多射束產生單元305係例如在美國專利案US 2019/0259575與US10741355 B1中說明,兩者係以引用方式併入本文供參考。有關製造誤差與散射不敏感的多射束產生單元305的更多細節係在PCT專利案WO 2021180365 A1中揭露,其係以引用方式併入本文供參考。
本發明之該等實施例的一些態樣係例示在圖2中。圖2顯示多射束產生單元305的剖面。圖2僅顯示多射束產生單元305之內部區域或層膜的一部分。如以下將更詳細解釋,多孔板更包含一支撐區,以支撐薄膜區並提供機械穩定性。多射束產生單元305包含具有複數個孔85.1的一第一多孔板或濾板304,其中僅顯示一孔85.1。在入口側74處,每一孔85.1具有直徑為D1的圓形。準直入射電子束309的一部分正在經過孔85.1並且正在形成複數個一次帶電粒子小射束3,例如小射束3.1。第一多孔板304覆蓋一金屬層99,用於在複數個孔85.1的周邊阻止與吸收撞擊電子束309。金屬層99例如由鋁或金所形成並連接到一大電容,例如接地(0V)。在使用期間,來自電子束309的大部分入射電子係在吸收層99中被吸收,並且產生與吸收的電子數量相對應的一電流。例如,在D1=30μm且複數個孔的間距P1為150μm的情況下,來自準直入射電子束309之約97%的入射電子係被吸收並且產生一高電流的電子。因此,吸收層99在使用期間顯示出對應於感應電流的一波動電壓差,因此不適合形成用於一靜電元件的電極。含有金屬層99之上區段331.1具有厚度L1.1,其中2μm≤L1.1≤5μm,為帶電粒子束309的撞擊電子提供足夠的阻止能力並支撐金屬膜99。
圖2之實例的多孔板304更包含一具有約5μm的z延伸L1.2的第二區段331.2。第一多孔板304具有約7μm~10μm的厚度L1。在入口表面74處,孔85.1具有直徑D1。第二區段331.2配置有在xz平面中形成凹圓形截面的內側壁,具有連續增加的直徑並且xz平面中的切線向量103指向遠離的電子束77的主方向。第二區段101.2之內壁處的斜面因此指向遠離的電子束3.1並且在多孔板73.1的出口或下表面107處以一最大孔徑D12結束。出射表面107處的最大孔D12大於第一區段101.1的孔D1。
在一實例中,射束射出表面76係被一導電層98所覆蓋,所述導電層連接到一電位,例如接地準位(0V)。具有直徑D12之邊界或邊緣的導電層形成一用於隨後之第二多孔板或小透鏡板306.9的相對電極,其與第一多孔板304相鄰。為了在使用期間形成複數個靜電透鏡元件,第二多孔板306.9配置有圍繞具有直徑為D3之每一孔85.9的多個環形電極79,例如電極79.1。每一環形電極79連接到一單獨的電壓源,向該等環形電極79之每一者提供0V與100V之間的預定電壓,藉此調整複數個一次帶電粒子小射束3中之每一者的焦點位置,例如小射束3.1。第二多孔板306.9具有長度約為30μm~300μm。
圖2的多射束產生單元305包含一具有複數個孔85.8的一第三多孔板或接地電極306.8。多孔板306.8係由一導電材料形成,或是覆蓋有一導電層(圖未示)並連接到接地準位。多孔板或接地電極板306.8因此與第二多孔板306.9的中心電極79形成複數個靜電單透鏡的該第三電極。第三多孔板306.8的厚度係介於40μm與100μm之間,例如L5=50μm。多孔板304、306.9與306.8之間的距離L2與L4之每一者係均在10μm到40μm的範圍內。該距離可為不均勻,例如藉由多孔板的彎曲或藉由多孔板之厚度分佈,並且兩多孔板之間的距離亦可小於10μm,例如5μm。在圖2與下面的實例中,下部多孔板(諸如板306.9或板306.8)的孔係配置有比D1較大的孔,使得D3 > D1以及D4 > D1。較佳係,直徑D3或D4為D3 > 1.5 x D1以及D4 > 1.5 x D1。下面將顯示直徑增加之更多的實例。
使用圖2的多射束產生單元305,一場曲的補償以及一成像平面傾斜的補償係僅在有限範圍中是可能的。如果沒有下面所示的改善設計,由環形電極79.1所形成之每一個別的小透鏡係對一聚焦能力的調整是有限範圍的。通常,使用此一單透鏡(Einzel-lens),可在中間平面321中實現小於1mm的聚焦能力;通常,每一電壓的焦點位置變化比率係低於1mm/100V,例如9μm/1V。對於較大的聚焦行程而言,必須將大電壓提供給電極,這會導致大的像差與串擾,例如感應充電以及電場洩漏。對於用於晶圓檢查之多射束系統1的高規格要求,以及對於具有較大數量的一次帶電粒子小射束也因此具有較大場的多射束系統1,例如具有複數個N > 200或N > 300一次帶電粒子小射束。在這樣的系統中,具有一成像平面傾斜的彎曲中間影像平面321對於DF >1mm、較佳係DF >3mm或甚至的複數個一次帶電粒子小射束(3)中之每一者需要聚焦功率DF的個別且獨立的改變DF > 5mm。例如,一成像平面傾斜的方向以及場曲數量係取決於多射束系統1之磁光場透鏡組103以及磁光物鏡102的設定,並且對於場透鏡組103與物鏡102的每一不同設定,複數個一次帶電粒子小射束(3)中之每一者的聚焦功率DF必須根據場曲量以及影像平面的傾斜方向獨立且個別地改變。
圖3例示本發明的一第一實例。根據圖3,第一實例的多射束產生單元305在傳播電子的z方向包含一序列的五個多孔板304與306.2至306.5,以及一球狀聚光透鏡307。每一多孔板304與306.2至306.5包含複數個孔85.1至85.5,在每一板中係以相同的橫向距離P1隔開,且每一板對齊而使得產生與成形複數個一次帶電粒子小射束3。複數個多孔板304與306.2至306.5以及該等球狀透鏡電極307係由間隔件83.1至83.4以及間隔件86所隔開。多射束產生單元305係以橫截面(x,z)顯示,在每一多孔板中僅顯示四個孔85.1至85.5,具有內膜區域335以及支撐區域333。第一多孔或濾板304具有相同的功能並且類似於圖2的濾板304,但不一定在底側76處具有一導電層98。濾板304的塊體材料係由一導電材料所製成,例如摻雜矽,並連接到接地準位。第二多孔板306.2是一接地電極板,類似於圖2的多孔板306.8。第二多孔或接地電極板306.2係由一導電材料所製成,例如摻雜矽,並連接到接地準位(0V)。
第三多孔板306.3係具有第一層306.3a的一雙層小透鏡板,所述第一層包含用於複數個孔的複數個環形電極79,其每一者係配置成用於個別地改變一對應之一次帶電粒子小射束的一焦點位置,例如帶電粒子小射束3.1至3.4。位於第一層306.3a下游的第二層306.3b係與第一層隔離並且由諸如摻雜矽的導電材料所製成。第二層306.3b係連接到接地準位(0V)。接地電極板306.2、第一層306.3a以及第二層306.3b形成用於複數個一次帶電粒子小射束3之複數個個別可調的單透鏡。下面將解釋具有更大聚焦範圍DF之雙層小透鏡板306.3的更多細節。
多射束產生單元305更包含多像散板306.4的一第四多孔,其亦可用作一多偏折板。多像散板306.4包含複數個四個或多個電極81,例如用於複數個孔85.4中之每一者的八個電極(在圖3中未標示)。在使用期間,可針對多個電極中的每一者提供-20V至+20V範圍內的不同電壓,藉此可個別地影響每一小射束3.1至3.4。例如,在一反對稱電壓差的情況下,每一小射束3.1至3.4可在每一方向上偏折多達數個µm,以預補償照明單元100的之畸變像差。通常,中間影像表面321中約+/-10μm的失真或影像平面101中約+/-0.5μm的失真可藉由多達±10V的電壓來補償。例如,可補償每個小射束3.1至3.4的像散。借助偏移電壓,每一多極元件可額外執行一單透鏡的作用。每一多極元件可與第二層306.3b與混合透鏡板306.5共同形成一圓形透鏡場的偏移,其兩者連接到接地準位(0V)。藉此,額外增加一對焦範圍DF。
第五多孔板或混合透鏡板306.5係由摻雜矽所製成並形成連接到接地準位(0V)的另一電極。在一實例中,第五多孔板306.5亦可被一導電層所覆蓋,例如藉由一金屬層的沉積,例如金(Au)或諸如AuPd的複合層。在圖3的實例中,第一聚光透鏡307係連接到多射束形成單元305。聚光透鏡307包含一環形電極82,-3kV至-20kV的高電壓可施加到該環形電極,例如-12kV至-17kV。聚光透鏡307一方面形成一球形靜電透鏡場,其係用於對包括小射束3.1~3.4之複數個一次帶電粒子小射束3的一球形聚焦作用。靜電透鏡場穿透混合透鏡板306.5的孔,例如進入該等孔85.5中的每一者,並且在混合透鏡板306.5的每一孔中產生具有聚焦能力的附加靜電透鏡場。然而,習知技術之混合透鏡板306.5的靜電透鏡場不能個別調整,且不允許對一可變影像平面傾斜或一可變場曲量進行補償。
利用選擇性另外的聚光透鏡308,含有小射束3.1至3.4的複數個一次帶電粒子小射束3中的每一者係在使用期間聚焦到彎曲與傾斜的中間影像平面321中,以形成多個焦點像散校正點。
圖4例示具有增加之聚焦範圍DF的雙層小透鏡板306.3的區段306.3a。雙層小透鏡板306.3包含具有多個孔85.3與85.4(僅顯示兩個)以及配置在孔85.33與85.34周圍之環形電極79.3與79.4的一內部區域或層膜。該等孔係與濾板304的多個孔85.1對齊以穿透帶電粒子小射束3.3與3.4。該等環形電極係經由隔離間隙185而與塊材矽或SOI基底隔離,例如藉由隔離材料二氧化矽。例如,塊材矽或SOI基底係由摻雜矽所製成並且用作設定為接地準位的遮蔽電極183。每一環形電極79.3、79.4經由例如配線連接175.4的電氣配線連接175而電氣連接到控制單元830(參考圖1)的一電壓支撐(圖未示)並藉由隔離材料於與基底182隔離。隔離材料係例如氧化矽,其或者藉由塊體材料(摻雜矽)的熱氧化或藉由例如從四乙氧基矽烷(TEOS)之氧化矽的沉積而產生。隔離材料179係在配線連接175.4上方延伸,使得配線175.4與塊體材料183在該上側被完全覆蓋。圓形電極79的該等內側壁並未被隔離材料179所覆蓋。在隔離材料上方,係形成一導電遮蔽層177,其形成雙層小透鏡板306.3的射束入口或上表面173。導電層係延伸入具有多個插入延伸部189的孔中,並且在導電遮蔽層177與電極79.4之間形成寬度為g的一小隔離間隙181,藉此導電層177係與電極79.4隔離。導電層177連接到一大容量,例如接地(U = 0V)。在使用期間,散射的帶電粒子因此被導電遮蔽層177吸收並被傳導離開且避免干擾多個表面電荷。藉由連接一大容量的導電層177,在使用期間係產生穩定的靜電元件。藉此,相較於習知的多孔板,使用期間的表面電荷係減少到10%以下。間隙距離g係低於6μm,例如低於4μm,較佳係甚至低於2μm,例如1μm。由於隔離間隙181的小距離g,小隔離間隙181中的表面電荷消失。此外,藉由改善的設計,配線連接175.4與電極79.4相連接,其與孔85.4之圓柱形內壁的距離h較大,使得配線連接所引起的靜電場藉由隔離間隙181洩漏並且被最小化。例如,在環狀電極79.4的外緣附近形成配線連接。藉由此配置,可向多個環形電極79中的每一者施加較大的電壓,例如高達200V的電壓,較佳係0V與500V之間的電壓。距離h較佳係大於6μm,例如10μm或12μm。藉由為導電遮蔽層177提供插入透鏡層306.3a之孔85的一延伸部分,並在電極79上形成寬度為g的小間隙181以及具有到配線連接175的大距離h,超過100V的較大電壓,例如可提供150V或200V,甚至500V,並且可產生更大聚焦範圍DF以及更低像差的靜電透鏡元件。
導電遮蔽層177係由厚度a約為2μm的金屬(例如鋁)所製成並接地。配線連接175.4例如由具有厚度為d=1μm的鋁、金或銅所形成。隔離氧化矽179的多個隔離層中的每一者具有2μm至4μm的厚度b1、b2或b3。為了避免應力所引起的變形,可提供一選擇性另外之應力補償層187。應力補償層187可例如由SiNx所形成,其厚度c係介於1μm與2μm之間。層177、175及187係與隔離材料179共同形成一多層堆疊MLS。較佳係,例如,藉由化學機械研磨(CMP)將每一隔離層平坦化並平整到低於2.5µm的厚度。平整係能夠執行例如配線連接175或插入延伸部189之更精確的微影處理。藉由平整,可省略應力補償層187,這減小多層堆疊MLS的整體厚度。一改善後之多孔板的多層堆疊不超過10μm厚度,較佳係約8μm厚度。藉此,可製作出對靜電透鏡場之干擾較小的導電遮屏蔽層177的一平坦表面。
圖5例示本發明的另一實例。圖5的實例係類似於圖3的實例,請參見圖3。在圖5中,第二多孔板或接地電極板306.2與第三多孔板或雙層小透鏡板306.3的順序顛倒,使得複數個一次帶電粒子小射束首先進入雙層小透鏡板306.3的第二層或接地層306.3b且在之後與含有複數個環形電極的第二層306.3a相交。在雙層小透鏡板306.3的下游,含有小射束3.1至3.4的複數個一次帶電粒子小射束(3)與接地電極板306.2的孔相交。藉由此配置,更少的散射粒子可撞擊在雙層小透鏡板306.3之多層堆疊MLS的遮蔽層177上,並且可在MLS中產生更少的干擾電荷。在使用期間提供給複數個環形孔79的電壓可用更高的精度與更少的波動進行控制。此外,MLS的厚度可進一步減小。例如,雙層小透鏡板306.3底部之導電遮蔽層177的厚度可減小到a=1μm左右,MLS的厚度可減小到7μm左右。
利用雙層小透鏡板306.3的倒置配置,任何二次或散射電子到環形電極的流動都顯著減少,接地電極層306.3b係位於電極層306.3a的上游。此外,藉由接地電極層306.3b中的深孔而減少串擾,並且X射線或電子排斥係在到達電極層306.3a之前被更有效地過濾。可減少電極層306.3a下游的遮蔽層177,或者可提供較大的電壓。因此,使用圖5的實例可實現較大的聚焦範圍DF > 1mm,例如DF > 3mm。
圖6例示本發明的另一改良。圖6的實例係類似於圖5的實例,請參考圖3與圖5。在圖6中,多像散板306.4的位置係發生變化。多像散板306.4配置在雙層小透鏡板306.3的上游。藉此,可精確控制每一小射束3.1至3.4的交叉位置,並且可在進入雙層小透鏡板306.3的小透鏡之前預補償殘留像差。
圖7例示本發明的另一實例。圖7係類似於圖6,但混合透鏡板306.5藉由形成為一單個小透鏡層的端末多孔板310所取代。端末多孔板310包含配置在端末多孔板310之每一或複數個端末孔94周圍的複數個環形電極79.2。多個環形電極79.2中的每一者係個別連接到控制單元830,該控制單元更配置成在使用期間提供複數個個別的電壓給環形電極79.2,其係用於個別且獨立操縱靜電透鏡場92的穿透深度(參考下列的圖8)進入端末孔94。端末多孔板310的功能係更詳細地顯示在圖8中。利用靜電聚光透鏡307的環形電極82,在端末多孔板310與環形電極82之間產生一靜電場92。靜電場92穿透端末多孔板310的端末孔94並在端末孔94中形成多個微透鏡(92.1、92.2),其有助於多射束產生單元305的整體聚焦能力。這在圖8a中在靜電小透鏡場分佈92的等位線上進行說明。藉由端末多孔板310,靜電小透鏡場分佈92的穿透深度可由複數個環形電極79.2進行個別地控制,形成個別可調的微透鏡。例如,相對於靜電聚光透鏡307之電壓較大的電壓差係施加到環形電極79.21,並且在使用期間產生一吸力場88。因此,產生更大功率的微透鏡92.1,並且帶電粒子小射束3.1聚焦到距多射束產生單元305較短距離的焦點311.1。相對於聚光透鏡307之電壓的較小電壓差係施加到環形電極79.22,並且在使用期間產生一抑制場90。因此,產生較小聚焦功率的一微透鏡92.2,並且帶電粒子小射束3.2聚焦到與第一焦點位置311.1下游分隔開的第二焦點位置311.2。以圖8a的電極79.21與79.22為例,可個別形成或調整諸如透鏡場92.1與92.2的複數個靜電微透鏡場(92)、以及可實現多光射束產生單元的較大聚焦範圍DF,例如 DF > 1mm或DF > 3mm。
圖8b顯示端末多孔板310的一些改良。端末多孔板310在兩側係被導電遮蔽層177.1與177.2所覆蓋。導電遮蔽層177.1與177.2都接地並有效遮蔽端末多孔板310。因此,防止靜電微透鏡場(92)穿透到除了端末孔94之外的端末多孔板310。複數個電極79.2係連接到接地準位的遮蔽孔183而被進一步遮蔽。藉此,減少串擾。因此,可實現多射束產生單元的甚至較大聚焦範圍DF,例如DF >3mm。
電極79.2可形成在端末孔94的下邊緣,如圖8a所示。這具有實現高靈敏度的優點。電極79.2亦可形成在端末孔94內,其距端末多孔板310之下表面的距離m,其中距離m係在2μm <= m <= 10µm之間選擇。一較佳的距離m係給予例如m=4μm或6μm。距離m越小,靈敏度越高。對於一較大的靈敏度,電極79.2需要較低的電壓來抑制或放大微透鏡92.1或92.2。然而,隨著靈敏度的提高,端末多孔板310亦變得對像差或干擾敏感;因此,為了更穩定的操作,較佳係較大的距離m > 3µm,例如m = 4µm或m = 6µm。距離m越大,電極79.21與79.22之間的導電遮蔽層177.2與隔離層179以及導電遮蔽層177.2的厚度亦可設置得更大,以防止靜電場洩漏入或洩漏出端末多孔板310。利用導電遮蔽層177.2,場電極79.2與聚光電極82之間的電弧放電亦被防止,並且場電極79.2與連接到場電極79.2之控制單元(830)的電子元件係被保護而避免受損壞。導電遮蔽層177還可具有插入端末孔94的延伸部189(圖8中未顯示),如前更詳細描述。藉由如上所述的隔離層179的平整(參考圖4與對應的描述),可在下表面76提供高品質的平面遮蔽層177.2,並形成靜電透鏡場分佈92高精度與低干擾或畸變。
藉由圖7與圖8的實施例,可實現複數個一次帶電粒子小射束之甚至較大聚焦範圍DF以及甚至較大的焦點位置變化,並可預補償影像平面101之甚至較大場曲與傾斜。靜電透鏡場分佈92隨著施加到電極79.2的各個電壓而改變,藉此高效實現對複數個一次帶電粒子小射束(3)之焦點位置311的個別地控制。致動之端末多孔板310的可變靜電小透鏡場分佈92係因此允許場曲之更有效的預補償。由於可變靜電小透鏡場分佈92的複數個透鏡效應係一階(first order)效應,因此需要較低的電壓來實現對每個可變靜電小透鏡場分佈92的聚焦能力的變化的較大影響,例如,小透鏡場分佈92.1或92.2。每個可變靜電透鏡場分佈92.1或92.2的變化亦可以是正向或負向。因此,在已經具有約超過+/-20V的中度電壓,就可實現大的聚焦功率。聚焦能力特別大,如前述具有例如超過50V或100V的電壓的單透鏡。在端末孔94處具有約+/-25V或+/-50V的類似電壓差,聚焦範圍可在z範圍上調整,相較於單透鏡為至少兩倍大。使用 改善的製造方法和遮蔽靜電場的構件,例如在下面的圖4和圖16中描述,端末孔板310可高精度製造,使得可施加甚至超過+/-50V的更大電壓差,例如+/-100V或更高,並且可實現甚至較大的聚焦範圍。
一端末多孔板(310)的端末孔94具有直徑DT。在圖7的實例中,描述孔85.1至85.4的多個直徑的一些實例。端末孔具有最大孔,通常在1.6 x D1 <= DT <= 2.4 x D1範圍內。藉此,在濾光孔85.1處形成的一次小射束具有較小於端末孔的直徑。另一方面,端末孔的直徑受到限制,使得可藉由靜電微透鏡場(92.1、92.2)實現較大的聚焦能力。第二孔鏡的直徑(在此是多像散板306.4的孔85.4)係由D2所給予。D2係在D1與DT之間,其中1.4 x D1 <= D2 <= 0.75 x DT。雙層小透鏡電極板306.3的第三孔具有介於D2與DT之間的直徑,其中1.4 x D1 <= D2 <= 0.9 x D3 <= 0.8 x DT。
圖9顯示圖7的進一步改良,並且還參考圖7與圖8的描述。相對於圖7,端末多孔板310的單透鏡層變為兩層透鏡板,形成端末多孔板310。此外,接地電極板306.2的位置改變為濾板304與多像散板306.4之間的位置。如前參考圖3所述,在複數個孔85.4中的每一者處對多像散板306.4的八個電極中的每一者係具有恆定的電壓偏移,多像散板306.4與接地電極板306.2以及接地層306.3b形成為複數個可調單透鏡(Einzel-lenses)。利用形成端末多孔板310之倒置兩層透鏡板的環形電極層306.3a的圓形電極79,靜電場進入端末多孔靜板310的孔94的穿透深度可進行控制,如圖8所示。在該實例中,靜電聚光器或場透鏡307包括第一環形電極307.1與第二環形電極307.2。第一環形電極307.1可例如連接到接地準位,第二電極82可連接到例如25kV或更高的高電壓。由具有場透鏡307.1與307.2的靜電聚光器產生的靜電場92由等位線顯示。藉由在端末多孔板310上游配置多像散板306.4,含有小射束(3.1~3.4)的多個一次帶電粒子小射束(3)中的每一者可在其進入對應的端末孔94之前偏折或成形。藉此,例如,可預補償可變靜電透鏡場分佈92的像差。
藉由在多像散板306.4之複數個孔處的偏移電壓所控制的複數個單透鏡的組合作用以及對靜電微透鏡場92進入到具有複數個環形電極79的環形電極層306.3a之端末孔94的穿透深度的控制,可精確控制小射束3.1至3.4的焦點311.1至311.4的位置,以使預定中間影像表面321與傾斜分量323匹配。藉由多像散板306.4,可進一步控制和調整複數個焦點311的橫向位置,以及在使用期間預補償像散像差。藉此,可實現中間影像表面321的曲率,以預補償多射束產生單元305下游的帶電粒子成像系統的場曲與成像平面323傾斜(參考圖1)。中間影像平面321的曲率在一次帶電粒子小射束的傳播方向上是凸形的,使得彎曲的中間影像平面321的曲率中心在中間影像平面321的下游。
圖10例示對圖9的進一步改良並且參考圖9。這裡省略接地電極板306.2。濾板304可具有如圖2所示的電極層98(圖10中未顯示)。
在底側的最後多孔板306.3之孔邊緣的精度對於穿透場的精度以及因此對於靜電微透鏡場92的精度很重要。因此必須以高精度生產孔邊緣。圖11顯示圖7的改良並且參考圖7與圖8。圖11的實例包含兩多極元件306.4與310及一用於複數個一次帶電粒子小射束3.1至3.4之每一者的環形電極79。與圖7的實例不同之處在於第二多像散板的配置形成端末多孔板310,以替代圖7的單個小透鏡層。使用端末多像散板310,可藉由以類似於圖8所述的方式將恆定電壓偏移施加到每個端末孔94處的八個電極來實現對靜電電容器場的穿透深度的控制。此外,穿透場可移動與成形,並且可以個別實現每個小射束的傾斜與像散校正。在該實例中,藉由提供預定補償電壓給每個多極電極81.2,可在電光上補償與底側76處最後多孔板310之孔邊緣的理想形狀的偏差。例如,這些電壓可在校準步驟中確定。圖12例示圖11的實例的另一改變實例,其中雙層小透鏡板306.3係被取代為接地電極板306.8與透鏡電極板306.9,其由附加的間隔件所隔開。圖13顯示圖12的另一改變實例,其中透鏡電極板306.9取代成另一多像散板306.43。在此,可藉由不同的方法來實現多個小射束3.1至3.4之每一者的單獨透鏡作用。第一與第二聚焦功率在使用期間藉由將偏移電壓施加到用於形成具有接地電極306.2與306.8之單透鏡的多像散板306.41與306.43中的任一者的一組八個孔上來實現。在使用期間,藉由將偏移電壓施加到端末多孔板310的一組八個孔來實現第三聚焦功率,以實現如圖8所示的吸力場88或抑制場90。第四種方法是藉由產生一系列四極場來實現,如專利案DE 102020107738 B3中所述,其在此係以引用方式併入本文供參考。至少三個多極元件之每一者的每個四極場相對於彼此旋轉,藉此可實現像散聚焦。可理解到,為了改變或調整聚焦功率而提供給多像散陣列306.41、306.43和端末多孔板310的各個電壓可分別進行調整,以實現對橫向束斑位置的額外校正與額外的像散矯正。還應理解,在具有一個以上的多像散板306.4或310的實例中,多極元件對於多像散板306.4或310中的每一者可處於不同的旋轉角度,並可亦補償高階像散或三葉草形(trefoil)像差。藉由組合控制圖7至圖14之實例的複數個多孔板306.3至306.9與310(包括端末多孔板310)中的多個連續電極79與81中的每一者,形成複數個多平台微透鏡316,其中增大聚焦能力或具有大於DF >1mm的聚焦範圍DF,較佳係DF >3mm,甚至更佳係DF >5mm,例如DF >=6mm。
圖14例示圖9中描述之實例的另一變化實例。相對於圖9的實例,靜電聚光透鏡307的圓形電極82被分成環形區段,例如四或八個環形區段84.1至84.8,因此形成四或八極元件。因此,穿透到端末多孔板310之端末孔94中的靜電微透鏡場92具有例如由分段孔84的環形區段84.1至84.8產生的不對稱或不均勻性。利用環形電極84的這些區段,例如可引入靜電微透鏡場92的線性變化,如等位平面所示。藉此,可促成中間影像321的所需傾斜。複數個一次帶電粒子小射束(3)的殘留傾斜可藉由靜電聚光透鏡307下游的一附加偏折器(圖14中未顯示)來補償。
圖15a示意性例示具有用於每個孔85.4的八個電極81.11至81.18的多色像散板306.4的頂視圖(只有三個由85.41、85.42與85.43標示)。八個電極81.11至81.18一起形成多極電極81,能夠例如偏折或成形傳輸的一次小射束。複數個多極電極81中的每一者藉由配線連接175連接到電壓源。在使用期間,-20V至20V範圍內的複數個低電壓係施加到複數個電極。電極81.11至81.18的每個環藉由隔離間隙185與導電塊體材料隔離,這在多極電極81之間形成遮蔽層183。遮蔽層183連接到接地準位。多極電極81因此嵌入在塊體材料中,兩者均由例如摻雜矽形成。多像散板306.4還覆蓋有一遮蔽層(圖15a中未顯示)。
在對應的孔85或94的周邊中的每個電極環79或81具有介於6μm至15μm之間的寬度,例如12μm。例如,孔85或95的直徑D3為50µm <= D3 <= 70µm。因此,每個電極環的直徑D3o介於65µm <= D3 <= 95µm之間。最小間距P1通常受直徑D3o與由兩相鄰電極環79或81之間的遮蔽層183所形成的其餘隔離間隙的限制。最小遮蔽距離約為10µm,較佳係約為15µm,間距P1可選擇為P1 >= 75µm,例如P1 = 100µm或P1 = 150µm。通常,電極的較小寬度會減小體積,因此減小每個電極的容量。較小的容量有利於電極產生的靜電場的較快變化。較大的容量對於波動的電荷或電荷擴散提供了更多的穩定性。因此,根據改變靜電場或保持靜電場恆定的時間要求來選擇電極的電容尺寸。通常,圓柱電極79具有約15μm的環寬,藉此提供大容量和高穩定性的電磁透鏡場。通常,多極電極81具有較小的寬度,例如6μm,藉此每個電極81.1至81.8具有用於改變電磁多極場之高速的小型能力。
圖15b示意性例示環形電極84的區段,包含區段84.1至84.8,用於施加具有線性梯度的靜電場。
圖16a與圖16b例示用於製造諸如透鏡電極板306.9、雙層小透鏡板306.3的透鏡電極層306.3a、多像散板306.4或端末多孔板310之多孔板306的實例。圓柱形孔85、94由半圓表示並且通過圖示右側的步驟S1至S11。多個孔可在步驟S1之前形成並在步驟S2至步驟S11期間用可去除的保護塗佈(例如光阻)進行保護。在一替代方案中,可在形成步驟S1至S11之後藉由微影製程與所熟知的蝕刻技術形成多個孔。
座標系統根據圖1中的座標系選擇,其中z軸的正方向為一次帶電粒子小射束的傳播方向。正z方向與傳播方向在正常意義上是「向下」。與圖1、圖2或圖16中指向「向下」的正z方向無關,「上」平面或位置是指首先與一次帶電粒子小射束相交的平面,且「下」或「底」平面或位置是指之後與一次帶電粒子小射束相交的平面。因此,在所選定座標系中,「上」位置具有較低的z座標作為較低或底部位置。
在步驟S1中,為SOI晶圓具有雙層,一第一頂層129.1及第二層129.2。這些層的厚度通常介於30µm與300µm之間。第二層129.2形成為氧化矽層(例如二氧化矽)。第二層129.2可藉由化學機械研磨(CMP)將第二層129.2的厚度縮減到約低於2μm或更小,例如1μm或甚至0.2μm而具有縮減的厚度。頂層129.1具有例如50μm的厚度。
在一替代實例中,SOI晶圓包含例如200μm厚度的第三層(129.3,圖未示),用於提供雙層小透鏡板306.3的接地電極層。第一層與選擇性第三層(129.1、129.3)由摻雜的矽所組成並且具有有限的導電性,使得電極可直接形成在第一層或第三層中。
在步驟S2中,在元件層129.1中形成多個圓環,在電極79和塊體材料183之間形成隔離間隙185。對於多極電極81,藉由RIE蝕刻產生用於分離多極電極之另外的溝槽或隔離間隙。
在步驟S3中,例如熱氧化形成厚的電性隔離層179.1,因此形成約2~3μm厚度的氧化矽膜(二氧化矽)(注意:在步驟S3與後續的步驟中,已省略第二層129.2的例示)。
在步驟S4中,填充隔離間隙中的電性隔離層179.1中的其餘間隙並藉由沉積氧化矽膜179.2(來自TEOS氣體分解的氧化物;TEOS=四乙氧基矽烷)實現部分平坦化。
在步驟S5中,藉由CMP(化學機械研磨)去除SiO2層179.2的不必要部分及部分氧化矽層179.1,因此形成約2μm或更小的恆定且平坦的隔離層179.3,例如具有厚度為1µm或甚至是0.5µm。藉此,避免厚的二氧化矽層,以減少應力。此外,藉由平坦化的氧化矽層,可用更高的精度對多孔板進行進一步的微影處理。厚度減小的SiO2層亦有利於進一步的蝕刻步驟。在孔與其他精細結構的蝕刻期間,輪廓係由一光阻遮罩層所界定。例如藉由CMP進行的平坦化與縮減的厚度提高蝕刻結構的邊緣與側壁的精度,這對於靜電元件的低像差效能是必要的。
厚且不均勻的二氧化矽層這兩問題都導致不可靠與不可再現的蝕刻順序以及缺陷的形成(蝕刻不足、孔洞缺陷、粗糙的壁體)。這種缺陷與粗糙的側壁是像散與高階像差的已知來源。本發明的一態樣是藉由根據步驟S5平整化的二氧化矽層或隔離層,以避免這些問題。
在步驟S6中,在隔離層179.3中遠離內孔側壁87的位置處形成用於配線接觸193的開口。
在步驟S7中,在平坦化隔離層179.3上方形成一導電層。導電層例如可為1μm厚的鋁或銅層。導電層亦可亦由金所形成,厚度介於50nm~200nm之間。導電層175以這樣的方式微影結構化,使得可藉由電氣配線連接175(僅示出一個)向每個電極79或81個別提供預定的個別電壓。
在步驟S8中,形成另一隔離TEOS層179.4以完全覆蓋複數個配線連接175。TEOS層179.4被微影結構化以與孔的內壁87形成間隙145。
在步驟S9中,藉由CMP拋光隔離TEOS層179.4,並在配線連接175上方形成厚度約為0.5μm至2μm的殘留隔離TEOS層179.5。步驟S9亦可在步驟S8的微影結構化之前進行。
在步驟S10中,藉由金屬沉積在剩餘的隔離氧化矽層179.5上形成導電遮蔽層177.1,並在間隙145中形成插入延伸部189。金屬膜形成為具有高達2μm的厚度,例如1μm,以提供足夠的電場遮蔽並吸收散射的帶電粒子。
在步驟S9與S10之間的另外兩可選步驟中,由SiNx形成的應力補償層沉積在殘留隔離TEOS層179.5上,並且提供另外的二氧化矽隔離層以覆蓋應力隔離層。隔離層可再次用化學機械研磨平坦化。對於PECVD(電漿增強化學氣相沉積),根據組成x與沉積參數,可實現從SiNx的ca. -1GPa(壓縮)至+1GPa(拉伸)變化的所需應力。
在進一步選擇性步驟S11(未單獨顯示)中,底側76可進一步被類似於射束上側上之層177.1的導電遮蔽層177.2所覆蓋。顯然,在第三層129.3的情況下,第二導電遮蔽層177.2形成在第三層129.3的底側。導電層177.2可由2μm厚的鋁層形成。遮蔽層177.1與177.2兩者為接地並且防止電場洩漏到多孔板306中。第二遮蔽層177.2對於多孔板306.3的倒置配置尤其重要,諸如在圖5、6、9至11與14的實例中所示。然而,倒置配置不限於雙層小透鏡板306.3的倒置配置,並且諸如多像散板306.4的其他多孔板亦可倒置配置,其中配線連接175在傳播中在電極層後面或之後的帶電粒子的方向。在這樣的配置中,配線連接175被很好地覆蓋並且對散射的帶電粒子不敏感,並且例如減少或完全防止來自電極79或81的感應電荷。在倒置配置中,配線連接175亦得到更好的保護以免受在濾板304的上表面處產生的電子排斥。在倒置配置的一些實例中,甚至可省略配線連接175下方或下游的遮蔽層。
在選擇性步驟S12(圖未示出)中,可藉由例如使用CMP製程之額外的拋光而進一步平坦化遮蔽層177.1與177.2。
藉由圖16中所提供的處理步驟,可為較大的聚焦範圍提供較大的電壓。此外,隨著藉由CMP薄化氧化矽層,引入較少的應力所引起的變形,並且根據處理步驟S1至S12所製造的多孔板306對熱變化不太敏感。
使用處理步驟S1到S12,產生具有複數個電極的多孔陣列306,該等複數個電極在薄隔離層內具有單獨的金屬配線連接175與導電遮蔽層177.1,其中MLS的厚度顯著亦縮減到低於6μm,較佳係低於5μm。在第一電極層129.1的表面需要數個隔離層179.1至179.5來填充隔離間隙185,以形成金屬配線連接175的隔離層,並隔離導電遮蔽層177.1。藉由化學機械研磨(CMP),隔離層隨後進行拋光與平坦化,因此可用更高的精度執行例如配線連接之層或結構的形成。此外,顯著減少用於蝕刻孔或形成配線連接或其他結構的後續蝕刻製程。
使用CMP,可產生具有更高重複性的多孔陣列306。藉由平坦化,導電遮蔽層177.1以更高的品質形成並且可高精度控制電場。
藉由雙層小透鏡板306.3或其他多孔板306的倒置配置,電氣配線連接175可位於多孔板306的兩側。圖17例示一種製造與配線電氣配線連接175穿過一層多孔板306的方法。藉由貫穿晶片配線連接,可從上側電性接觸每個多孔板306,使得倒置配置不受限制。
在步驟C1中,類似於前述步驟S6,提供電極層129.1。厚度為50μm至150μm的電極層129.1由塊體材料183製成,例如摻雜矽。電極層亦可形成為具有30μm至300μm之間的更大或更小的厚度。電極層亦可形成為具有30μm至300μm之間的更大或更小的厚度。
在步驟C2中,在電極層129.1的下側微影形成複數個用於電壓供給的配線連接,包括配線連接175.1、175.2與175.3。一組通孔151填充有諸如金屬或摻雜矽的導電材料,形成貫穿連接149.1與149.2。貫穿連接149的數量N係對應於可個別定址的環形電極79(或同樣地,多極電極81)的數量N。每個可個別定址的環形電極79係連接到一貫穿連接149,例如,環形電極79.1連接到貫穿連接149.1。所有連接製造在電極層129.1的底部或下側。提供另外的隔離層179.2以隔離配線連接175。可在每個沉積步驟之後應用化學機械研磨,以產生用於接下來的微影與蝕刻處理步驟的平面。最後,將導電遮蔽層177.1施加到電極層129.1的底部或下側76。
在步驟C3中,上側74上的貫穿連接149.1與149.2連接到連接或焊接接腳147.1與147.2。這些接腳或焊墊147位於多孔板的外圍,遠離孔與帶電粒子小射束。提供另一隔離層179.3。最後,提供導電遮蔽層177.2,其與包括焊接接腳147.1與147.2的焊接接腳147隔離。如上所述(圖17中未顯示),可針對每個導電遮蔽層177.1、177.2而製造插入延伸部。
複數個孔洞,包括孔85.1至85.3係例如在步驟C2與C3之後,蝕刻穿過電極層129.1。每個孔85.1至85.3具有約50μm至70μm的直徑,並且形成用於環形電極79.1至79.3的複數個隔離間隙185。在一實例中,在電極層上形成隔離間隙185之後,可藉由微影方式界定孔並藉由垂直深RIE(DRIE)蝕刻而穿過這些孔。
此外,在電極層129.1的外周圍,藉由蝕刻而產生通孔151。通孔151可明顯小於例如10μm,甚至低於2μm。一些通孔151.1與151.2係用於對準或電極層129.1與其他多孔板306或間隔件83。使用貫穿連接149,單個小透鏡板或透鏡電極板306.9或雙層小透鏡板306.3的複數個環形電極79中的每一者可從相對位置電氣連接,與接線連接175的側面相對。同樣地,多像散板306.4的複數個多極電極81中的每一者可從相對位置電氣連接,其係與配線連接175的一側相對。利用貫穿連接149與處理步驟C1到C3,還可從兩側連接環形電極79或多極電極81,而連接控制裝置,諸如與一次射束路徑控制模組830的連接僅從多孔板306的一側實現。
可理解,製程的一些變化是可能的。例如,通孔可初始產生,甚至可在步驟C1之前填充例如導電材料,並且在步驟C2中藉由蝕刻而打開對準孔151.1與151.2。
圖18例示複數個多孔板的對準與堆疊,包括一倒置透鏡電極板306.9。用於晶圓檢查的先進多射束帶電粒子系統需要復雜的多射束產生單元305或多射束偏折單元390(參考圖1)。根據本發明的多個實例,一多射束產生單元305是藉由將至少三個具有間隔物的多孔板306堆疊而形成。一第一多孔板或濾板304用於分割入射小射束309並產生複數個一次帶電粒子小射束3,包括小射束3.1至3.3。在圖18的實例中,三個多孔板306.3、306.4與306.9用於以大聚焦功率或大行程對複數個發射帶電粒子束3.1至3.3中的每一者進行個別聚焦。至少一多像散陣列306.4用於控制每個小射束3.1至3.3的橫向位置,並預補償任何殘留像散。使用貫穿接觸點149,可提供配線連接175,諸如,例如在對應的倒置多孔板306.3與306.4的底側處的配線連接175.1與175.2。藉此,因散射的帶電粒子所造成對配線連接的任何未期望的充電被最小化,並且配線連接175的殘留雜散場也被最小化。使用貫穿接觸點149,可分別在每個多孔板306.3、306.4與306.9的頂部或上表面提供焊接接腳147,包括焊接接腳147.3、147.4與147.6。經由焊接接腳147.3、147.4與147.6,建立了到控制單元830(圖18中未顯示)的配線連接157(僅在圖18中標出的157.3),並且可向複數個環形電極79.1與79.2提供個別的電壓以及複數個多極電極82。多孔板306可用最佳化的預定方向堆疊。藉由至少三個通孔151(圖18中未顯示;參見圖17),實現多孔板堆疊的精確對準。
除了貫穿連接149之外,兩多孔板306可藉由倒置晶片接合技術(共晶接合或熱壓接合)彼此附接,並且可藉由第二多孔板的貫穿連接149建立與第一多孔板的電性接觸。
多孔板306的堆疊可包含用於以預定距離堆疊多孔板的間隔件。在圖18的實例中,預定厚度的支撐區域197設置在膜區域199或多孔板306的外周圍。使用這種框內膜結構,可在約數個µm的小間隙處調整相鄰多孔板的膜區域199,並以低於1µm、較佳係低於0.5µm的高精度橫向對齊與調整孔開口。此外,可藉由施加顯著的力或壓力將多孔板堆疊與支撐區域或框架197固定。
為了在使用期間增強多射束帶電粒子顯微鏡的效能,複數個帶電粒子小射束中的每一者被個別地控制,例如藉由使用像散器或偏折器的複數個個別地控制的環形電極79或複數個個別地控制電極81的個別焦點校正來個別地控制。複數個電極的個別地控制由配線提供,附加的配線係提供用於上述遮蔽和吸收層,或用於感測器。一用於複數個例如N=100個小射束的多射束光柵單元包含約1000個或多個電極,具有約1000個或1000個以上的個別配線連接。電極與遮蔽或吸收層需要具有數量級差異的驅動電壓,例如在10V至1kV之間。例如,多焦點校正需要100根高壓配線,約200V,多像散校正需要例如數伏特及低雜訊的800根低壓配線,且吸收層產生大電流。具有這種電壓差的配線很容易相互影響,藉此降低多射束產生單元305的效能。在一實施例中,多射束產生或光柵單元305包括設計特徵與結構以最小化電壓差的影響。多射束光柵單元包括用於不同電壓與電流的混合訊號架構。高壓由外部控制器提供。由放置在真空中的ASIC提供低電壓,並聚有與外部控制器連接的數位介面。訊號與電壓供應的配線是經由超高真空凸緣(UHV-Flange)所獲得的。藉由從不同方向提供電壓來實現具有不同電壓的配線的分離。對於發射的帶電粒子小射束的第一方向(z方向),例如從第二方向(x方向)提供低電壓,並且從第三方向提供高電壓。可以從第四方向提供到吸收層的高電流連接,例如從z方向或平行於第三方向。所有配線都可以單獨遮蔽,或者低壓電源接線可以成組的低壓配線進行遮蔽。較少的高壓配線可以提供較大的距離。在一實施例中,從上側與下側交替地從電極到電極提供到用於靜電透鏡的環形電極的配線連接,以保持配線之間的距離盡可能大。圖19以一個實例以說明實施例。多射束光柵單元305,包括5個多孔板304至306.9與310,每個在層膜區域199中具有平行配置的層膜,在支撐區域197中具有支撐結構,其安裝在間隔件86上,並具有附加的支持板的功能。經由支撐結構與支撐板,高壓配線連接201沿正與負y方向提供到具有複數個孔85(僅顯示4 x 5個)。高壓配線連接係被接地線253遮蔽,接地線253係連接到接地。在外圍區域中,高壓線藉由同軸遮蔽與隔離255(四個高壓線連接,顯示同軸遮蔽,僅一個由元件編號251與255指示)進行遮蔽。從安裝在支撐板86上的ASICS 261與265的兩x方向(僅顯示正方向)提供用於靜電像散器與偏折器的低壓配線連接257與259。低壓配線還藉由低壓配線之間的接地配線(圖未示)相互遮蔽。ASICS經由數位訊號線267.1與267.2獲得數位訊號,並藉由低壓供電線269.1與269.2供電。藉此,高壓與低壓訊號盡可能分離,減少漏電互感的負面影響,使多射束光柵單元的光學效能更加可靠。
圖20例示圖14中描述之實例的另一變化實例。與圖14的實例相反,多孔板315的堆疊與靜電聚光透鏡307的電極82不平行,而是在彼此之間形成角度θ。在端末多孔板310與電極82之間產生的靜電場92因此顯示出不對稱性。靜電場92穿透端末多孔板310的端末孔94並在端末孔94中形成微透鏡,這有助於多射束產生單元305的整體聚焦能力。靜電場92的靜電微透鏡場具有不對稱性,這有助於靜電微透鏡場的聚焦功率在端末多孔板310的出射平面上的線性變化。靜電微透鏡場正在形成不同的焦距,包括焦距相對於x座標具有線性依賴性的線性分量。因此,除了場曲之外,還產生中間影像表面321的傾斜分量323。因此,係預補償配置在帶電粒子多射束產生器300下游的電子光學元件的成像平面的角度的場曲和傾斜分量。該實例不限於端末多孔板310,還可與混合透鏡板306.5結合使用而無需附加電極79。
根據該實例,一次多射束形成單元305的靜電聚光透鏡電極82或/及多孔板315的堆疊,相對於一次多射束形成單元305下游處之複數個一次帶電粒子小射束3的平均傳播軸z傾斜。在圖20的實例中,一次帶電粒子源301與準直透鏡303配置成使得入射光束309的傳播方向垂直於濾板304。在該實例中,含有濾板204與端末多孔板310的多孔板315的堆疊係相對於x軸傾斜角度ϕ1,因此入射光束309相對於z軸傾斜相同的角度ϕ1。入射光束309的傾斜角ϕ1既可藉由光源301與準直透鏡303的機械傾斜來實現,也可藉由設置在濾板304上游的靜態偏折器302來實現,其中入射光束309的傳播方向可藉由該偏折器因此傾斜。
在圖20的實例中,靜電聚光透鏡307的電極84進一步相對於x軸傾斜角度ϕ2,並且得到端末孔板310與靜電聚光透鏡307的電極84之間的總角度ϕ= ϕ1 +ϕ2。藉此獲得具有角度ϕ3的中間影像表面321的傾斜分量323。角度ϕ1可選擇,使得端末多孔板310的出射平面與傾斜分量323的平面在角度ϕ3處與靜電透鏡場92的單位平面相交,該單位平面包含形成在端末孔板310之孔94中的微透鏡。
根據該實例,一次多射束形成單元305的靜電聚光透鏡電極82或多孔板堆疊,或兩者可安裝在操縱器340.1或340.2上,配置成個別調節傾斜角ϕ1與ϕ2。藉由至少一操縱器340對角度ϕ1與ϕ2的適當調整,可調整中間影像表面321的傾斜分量323。如前述,場曲與傾斜分量323受到多小射束帶電粒子顯微系統1的成像設定的影響。特別是,例如由於物鏡203的不同聚焦能力,可能需要傾斜分量323的不同旋轉。利用例如用於聚光透鏡307的電極84的至少一傾斜或旋轉操縱器340.2,可調整或旋轉傾斜分量323以預補償磁性物鏡102的不同影像旋轉。多射束帶電粒子顯微鏡系統(1)的控制單元(800)因此可配置成在使用期間根據多射束系統(1)的影像設定之影像平面傾斜而控制傾斜角ϕ、ϕ1、ϕ2中的至少一者。
藉由本發明的改善,實現對複數個一次帶電粒子小射束的個別聚焦的更大聚焦範圍。本發明的一實例的改善的多射束產生單元包含至少一具有複數個可個別定址電極的端末多孔板,其可在端末多孔板之所述複數個端末孔的每一者處形成環形電極或多極電極。在這配置下,可個別操縱每個穿透微透鏡場,這些穿透微透鏡場是藉由將球形靜電場穿透到端末孔中所形成。藉此,藉由施加到複數個可個別定址電極的小個別電壓差來實現大聚焦範圍。
一實例的改善多射束產生單元包含至少第二或另外的多孔板。複數個多孔板可電性接觸到控制單元,其中電性接觸點可配置在每個多孔板的相同側,例如每個多孔板的上側的第一側或第二側與底側。一些多孔板可包含貫穿連接,以將一側的複數個配線連接與另一側的電性接觸點電氣連接。
在實施例中將一般多射束光柵單元描述為多射束產生單元305時,實施例的特徵亦適用於其他多射束光柵單元,諸如多射束偏折器或多射束像散單位。通常,根據本發明實例的具有增加的聚焦範圍的多射束光柵單元亦可應用在例如次級射束路徑11(參考圖1)中,例如作為多孔校正器220。
實施例的特徵係改善多射束帶電粒子顯微鏡的效能以實現5nm以下、較佳係3nm以下、更佳係2nm以下或甚至1nm以下的更高解析度。這些改善對於進一步發展具有更大數量的複數個小射束(諸如超過100個小射束、超過300個小射束、超過1000個小射束或甚至超過10000個小射束)的多射束帶電粒子顯微鏡特別相關。這種多射束帶電粒子顯微鏡需要具有更大直徑的多孔板與更多的孔與電極,包括例如甚至更多的配線連接。這些改善與多射束帶電粒子顯微鏡的常規應用特別相關,例如在需要高可靠性與高再現性以及低機器到機器之偏差的半導體檢查與審查之中。
實施例係提供一種帶電粒子束系統,其以複數個帶電粒子束操作並且可用於實現更高的成像效能。具體係,利用本發明的一次多小射束形成單元305的較大聚焦範圍DF,實現複數個小射束中的每個小射束的較窄範圍的解析度。本發明實施例的特徵尤其允許場曲率與成像平面傾斜的大範圍的預補償,這對於隨著帶電粒子小射束數量增加而用於平面晶片檢查任務的多射束系統變得越來越重要。利用實施例中描述的特徵與方法以及其組合,為複數個小射束中的每個小射束提供小射束直徑,例如在從2nm至2.1nm的跨度中,平均解析度為2.05nm,解析度的範圍藉由實施例的特徵與方法所實現的解析度係低於平均解析度的0.15%,較佳係0.1%,甚至更佳係0.05%。
本發明不限於上述實施例或實例。實施例或實例可完全或部分相互組合。從以上解釋可看出,可進行多種變化與改良,顯然本申請的範疇不受具體實例的限制。
儘管在多射束帶電粒子顯微鏡的實例中係描述改善,但這些改善不僅限於用於晶片檢查的多射束帶電粒子系統,還適用於其他多射束帶電粒子系統,例如多射束微影系統。
在整個實施例中,電子通常係理解為帶電粒子。儘管以電子為例說明一些實施例,但其不應限於電子,而是完美適用於所有類型的帶電粒子,諸如,例如氦離子或氖離子。
本發明與本發明的實施例可藉由以下各項目進行描述。然而,本發明不限於以下各項目。可理解,還可有各種組合與修改。
第1項:一種用於一多射束系統(1)的多射束產生單元(305),其包含:按入射一次帶電粒子束(309)傳播方向的順序, 一濾板(304),其具有用於產生複數個一次帶電粒子小射束(3)的複數個第一孔(85.1),該濾板(304)連接到一接地準位; 一端末多孔板(310),其包含複數個端末孔(94),其包含配置在複數個端末孔(94)中的每一者的周邊中的一第一複數個可個別定址電極(79.2、81.2); 一聚光透鏡(307),其具有一聚光電極(82、84)與傳輸該複數個一次帶電粒子小射束(3)的一單孔; 其中該聚光電極(82、84)產生穿透到該複數個端末孔(94)中的每一者中的複數個靜電微透鏡場(92);其中該多射束產生單元(305)更包含一控制單元(830),其配置成個別地控制該聚光電極(82、84)與該第一複數個可個別定址電極(79.2、81.2)中的每一者,以影響該複數個靜電微透鏡場(92)中的每一者的穿透深度及/或形狀,藉此個別地調整中間影像表面(321)上的該複數個一次帶電粒子小射束(3)中的每一者的橫向及/或軸向焦點位置,以預補償該多射束系統(1)的一場曲及/或一成像平面傾斜。
第2項:如項目1所述之多射束產生單元(305),其中所述第一複數個可個別定址電極(79.2、81.2)形成為第一複數個靜電圓柱電極(79.2),每一該些圓柱電極(79.2)配置在該複數個端末孔(94)之一者的周邊中,其產生一吸力場(88)或一凹陷場(90)。
第3項:如項目1所述之多射束產生單元(305),其中所述第一複數個可個別定址電極(79.2、81.2)形成為第一複數個靜電多極電極(81.2),每一該些第一靜電多極電極(81.2)配置在該複數個端末孔(94)之一者的周邊中,其產生一吸力場(88)、一凹陷場(90)及/一或偏折場及/或一像散校正場。
第4項。如先前項中任一項所述之多射束產生單元(305),其中該端末多孔板(310)包含一第一端末電極層(306.3a),該第一端末電極層包含該第一複數個可個別定址電極(79.2、81.2);以及一第二電極層(306.3b),其係與該第一複數個可個別定址電極(79.2、81.2)隔離並配置在該第一端末電極層(306.3a)的上游,該第二電極層(306.3b)連接到接地準位,以形成一接地電極層。
第5項:如項目1至3中任一項所述之多射束產生成單元(305),其中該端末多孔板(310)係由一單電極層製成。
第6項:如先前項中任一項所述之多射束產生單元(305),其更包含一另一多孔板,該另一多孔板係配置成配置在該端末多孔(310)上游的一第一多像散板(306.4、306.41),該第一多像散板(306.4、306.41)具有複數個孔(85.4、85.41),每個孔包含一第二複數個可個別定址多極電極(81、81.1),以形成配置在該複數個孔(85.4、85.41)的周圍中的複數個靜電多極元件,該第二複數個可個別定址多極電極(81、81.1)中的每一者連接到該控制單元(830),該控制單元(830)配置成偏折、聚焦或校正該複數個一次帶電粒子小射束(3)中的每個個別小射束的像差。
第7項:如項目6所述之多射束產生單元(305),其更包含一再一多孔板,該再一多孔板係配置成配置在所述端末多孔板(310)的上游的一第二多像散板(306.43),該第二多像散板(306.43)具有複數個孔(85.43),每個孔包含一第三複數個可個別定址的多極電極(81.3),以形成配置在複數個孔(85.43)的周邊中的複數個靜電多極元件,該等第三可個別定址電極(81.3)中的每一者連接到該控制單元(830),該控制單元(830)偏折、聚焦或校正該複數個一次帶電粒子小射束(3)中的每個個別小射束的像差。
第8項:如先前項中任一項所述之多射束產生單元(305),其更包含一又一多孔板,該又一多孔板係配置成配置在所述端末多孔板(310)的上游的一靜電透鏡陣列(306.3、306.9),該靜電透鏡陣列(306.3、306.9)具有複數個孔(85.3、85.9),其包含複數個第二圓柱電極(79),每個複數個第二圓柱電極個別連接到該控制單元(830),其配置成形成複數個靜電透鏡場。
第9項:如項目8所述之多射束產生單元(305),其中該靜電透鏡陣列(306.3、306.9)係由單電極層製成的一透鏡電極板(306.9)。
第10項:如項目8所述之多射束產生單元(305),其中該靜電透鏡陣列(306.3、306.9)係具有一透鏡電極層(306.3a)與一接地電極層(306.3b)的雙層小透鏡電極板(306.3)。
第11項:如先前項中任一項所述之多射束產生單元(305),其中所述聚光電極(82、84)形成為一分段電極(84),其包含複數個至少四個電極段(84.1至84.4),且該控制單元(830)提供不對稱電壓分佈給該複數個至少四個電極區段(84.1至84.4),以促成該複數個一次帶電粒子小射束(3)在具有一傾斜分量(323)之彎曲的中間影像表面(321)中的聚焦。
第12項:如先前項中任一項所述之多射束產生單元(305),其更包含具有多個孔(85.2)的至少第一接地電極板(306.2),該第一接地電極板(306.2)形成一第一接地電極,該第一接地電極板(306.2)係配置在該濾板(304)與該端末多孔板(310)之間。
第13項:如項目12所述之多射束產生單元(305),其更包含一第二接地電極板(306.8)。
第14項:如項目8至13中任一項所述之多射束產生單元(305),其中該控制單元(830提供複數個個別的電壓給該端末多孔板(310)、該第一多像散板(306.4、306.41)、及/或、該第二多像散板(306.43)及/或、該靜電透鏡陣列(306.3、306.9)的複數個電極(79、81、79.1、81.1、79.2、81.2、81.3)中的每一者,以共同形成一可個別定址的多級微透鏡(316)的陣列,對於該每個可個別定址的多級微透鏡(316)具有至少6mm、較佳係至少8mm、甚至更佳者大於10mm的單獨可變聚焦範圍變化DF。
第15項:如先前項中任一項所述之多射束產生單元(305),其更包含用於保持該複數個多孔板(306.2至306.9、310)彼此相距預定距離的複數個間隔件(83.1至83.5)或支撐區域(179)。
第16項:如先前項中任一項所述之多射束產生單元(305),其中該複數個多孔板(306.4至306.9、310)中的至少一者係配置成一倒置多孔板,其具有用於與位於倒置多孔板之射束入口側相對的下側或底側的該複數個可個別定址電極(79、79.1、79.2、81、81.1、81.2、81.3)的電氣配線連接(175)。
第17項:如項目16所述之多射束產生單元(305),其中該至少一倒置多孔板更包含複數個貫穿連接(149、149.1、149.2),其用於經由在該倒置多孔板的下側或底側的該電氣配線連接(175)而與該複數個可個別定址電極(79、79.1、79.2、81、81.1、81.2、81.3)電性接觸,而該倒置多孔板具有配置在該倒置多孔板的上側或射束入口側處的接觸腳(147、147.1、147.2)。
第18項:如先前項中任一項所述之多射束產生單元(305),其中該端末多孔板(310)更包含具有該複數個孔(94)的一導電遮蔽層(177.2),該導電遮蔽層(177.2)與該第一複數個可個別定址電極(79.2、81.2)電性隔離,該導電遮蔽層(177.2)配置在該可等個別定址電極(79.2、81.2)與該聚光透鏡(307)之間的該端末多孔板(310)的底側(76)。
第19項:如先前項中任一項所述之多射束產生單元(305),其中在入射的一次帶電粒子束(309)的傳播方向上,該濾板(304)的第一孔(85.1)具有一第一直徑D1,且該端末孔(94)之每一者具有一端末直徑DT,其中該端末直徑DT係介於1.6×D1 <= DT <= 2.4 x D1之間的範圍內。
第20項:如項目6至19任一項所述之多射束產生單元(305),其中在入射的一次帶電粒子束(309)的該傳播方向上,該濾板304的該第一孔(85.1)具有一第一直徑D1,該另一多孔板(306.2、306.3、306.4、306.9)的該第二孔(85.2、85.3、85.4、85.9)具有一第二直徑D2,並且該端末孔(94)具有該端末直徑DT,並且其中D1 < D2 < DT,較佳係1.3 x D1 <= D2 <= 0.8 x DT。
第21項:如項目6至20任一項所述之多射束產生單元(305),其中在入射的一次帶電粒子束(309)的該傳播方向上,該濾板206.1的該第一孔(85.1)具有一第一直徑D1,該第二多孔板(306.2、306.3、306.4、306.9)的該第二孔(85.2、85.3、85.4、85.9)具有一第二直徑D2,該第三或另一多孔板(306.3、306.4、306.41、306.43、306.9)的該第三孔(85.2、85.3、85.4、85.9)具有一第三直徑D3,並且該端末孔(94)具有一端末直徑DT,該些多孔板沿一次帶電粒子的該傳播方向配置,其中D1 <D2 <D3 <DT,較佳係1.4×D1 <= D2 <= 0.9 x D3 <= 0.8 x DT。
第22項:一種多孔板(306),其包含: 複數個孔(85.3、85.4、85.9、94),其在一隔離電極層(129.1)中具有複數個隔離與可個別定址電極(79、81),該複數個隔離與可個別定址電極(79、81)配置在該等孔(85.3、85.4、85.9、94)的周邊上; 一第一導電遮蔽層(177.1),其具有一第一厚度T1,並位於該多孔板(306)的一第一側; 一第一平坦化隔離層(179.5),其具有一第二厚度T2; 一複數個電氣配線連接(175)之層,其具有一第三厚度T3; 一第二平坦化隔離層(179.3),其配置在該隔離電極層(129.1)與該電氣配線連接(175)的層之間,其在每個配線連接與每個隔離與可個別定址電極(79、81)之間形成有配線接觸點(193),該第二平坦化隔離層(179.3)具有一第四厚度T4; 其中該第一平坦化隔離層與該第二平坦化隔離層(179.5、179.3)由二氧化矽製成並且被拉平到第二與第四厚度T2與T4,該第二與第四厚度T2與T4皆低於2μm,其中T2 <= T3 <= 2µm。
第23項:如項目22所述之多孔板(306),其中該等配線接觸點(193)之每一者係置放在每個可個別定址電極(79、81)的外邊緣處,其具有到該些孔(85、94)其中之一的內側壁之距離為h(87),其中h大於h >=6μm,較佳係h >8μm,例如h >=10μm。
第24項:如項目22至23中任一項所述之多孔板(306),其更包含在該多孔板(306)的一第二側上的具有第六厚度T6的一第二導電遮蔽層(177.2);及一第三平坦化隔離層(129.2),其形成於該第二導電遮蔽層(177.2)與該電極層(129.1)之間,其具有第五厚度T5<2.5μm。
第25項:如項目22至24所述之多孔板(306),其中該第一或第二導電遮蔽層(177.1、177.2)中的至少一者具有進入該複數個孔(85、94)中的每一者的複數個插入延伸部(189),以與該複數個隔離與可個別定址電極(79、81)形成寬度為g的間隙,其中g < 4μm,較佳係g <= 2µm。
第26項:如項目22至25任一項所述之多孔板(306),其更包含一遮蔽電極層(183),其設置在該複數個隔離與可個別定址電極(79、81)之間,其連接到接地準位(0V),用於將該複數個隔離與可個別定址電極(79、81)彼此遮蔽。
第27項:如項目22至26任一項所述之多孔板(306),其中該多孔板(306)為一多射束產生單元(305)的複數個至少兩多孔板(306、306.3、306.4、306.9、310)中的一者,其聚焦複數個一次帶電粒子小射束(3)。
第28項:如項目22至27中任一項所述之多孔板(306),其中所述多孔板(306)是一具有多射束產生單元(35)之複數個端末孔(94)的端末多孔板(310),其中該複數個一次帶電粒子小射束(3)中的每一者在該複數個端末孔(94)之一者處離開該多射束產生單元(305),並且其中該複數個電極(79、81)操縱複數個穿透微透鏡場(92),該複數個穿透微透鏡場穿透到該複數個端末孔(94)中。
第29項:如項目28所述之多孔板(306),其中該多孔板(306)中作為該多射束產生單元(305)的該端末多孔板(310),而一聚光透鏡(307)係配置在該多孔板(306)之後,該聚光透鏡(307)產生穿過該複數個端末孔(94)之該複數個靜電微透鏡場(92)。
第30項:如項目22至29任一項所述之多孔板(306),其中該多孔板(306)配置成倒置組態,其中在該多孔板(306)的一第一側處具有複數個配線連接(175)且在相對於所述多孔板(306)的第一側的第二側處具有複數個接觸腳(147),其更包含複數個貫穿連接(149),用於將該第一側處的該複數個配線連接(175)與該第二側處的該接觸腳(147)連接在一起。
第31項:一種端末多孔板(310),其包含: 複數個端末孔(94),其配置成形成穿透到該複數個端末孔(94)中的複數個靜電微透鏡場(92、92.1、92.2); 複數個可個別定址電極(79.2、81.2),該複數個可個別定址電極(79.2、81.2)配置在該複數個端末孔(94)的周邊上;其中該複數個可個別定址電極(79.2、81.2)配置成個別連接到一控制單元(830),並且個別地影響複數個靜電微透鏡場(92、92.1、92.2)中的每一者的穿透深度及/或形狀。
第32項:如項目31所述之端末多孔板(310),其更包含一第一導電遮蔽層(177.2),其配置在該端末多孔板(310)的端末或射束出射側(76),連接到接地準位且遮蔽該複數個靜電微透鏡場(92)以避免穿透到該端末多孔板(310)中,使得該複數個靜電微透鏡場(92)僅穿進該端末孔(94)中。
第33項:如項目31至32所述之端末多孔板(310),其更包含一遮蔽電極層(183),其配置在該複數個可個別定址電極(79.2、81.2)之間,其係連接到接地準位並將該複數個可個別定址電極(79.2、81.2)相互遮蔽。
第34項:如項目31至33中任一項所述之端末多孔板(310),其更包含複數個配線連接(175),用於提供複數個個別的電壓給該複數個可個別定址電極(79.2、81.2),該複數個配線連接(175)配置成連接到該控制單元(830)。
第35項:如項目34所述之端末多孔板(310),其中該複數個配線連接(175)配置在該端末多孔板(310)的一第一側,其係與該導電遮蔽層(177、177.2)隔離,且該端末多孔板(310)更包含複數個貫穿連接(149),其連接到該複數個配線連接(175)且連接到該控制單元(830)。
第36項:如項目32至35中任一項所述之端末多孔板(310),其更包含: 一第二導電遮蔽層(177.1),其配置在該端末多孔板(310)的上側上,其中該上側是複數個帶電粒子小射束(3)進入該端末多孔板(310)的一側; 複數個平坦化隔離層(129.2、179、179.1、179.3、179.5); 一複數個電氣配線連接(175)之層; 一電極層(129.1),其包含複數個可個別定址電極(79.2、81.2); 其中該電極層(129.1)、該複數個電氣配線連接(175)之層以及該第一或第二導電遮蔽層(177.2、177.2)中的每一者係藉由該等平坦化隔離層(129.2、179、179.1、179.3、179.5)中的一者而與相鄰層隔離;並且其中該等平坦化隔離層(129.2、179、179.1、179.3、179.5)中的每一者由二氧化矽製成並且被拉平到厚度T低於T <3μm,較佳係低於T <= 2.5µm。
第37項:如項目36所述之端末多孔板(310),其中該隔離電極層(129.1)具有介於50μm與100μm之間的厚度。
第38項:一種倒置多孔板306,其包含: 複數個孔(85、94),其在一隔離電極層(129.1)中具有複數個隔離與可個別定址電極(79、81),該複數個隔離與可個別定址電極(79、81)配置在該等孔孔(85、94)的周邊上; 一第一導電遮蔽層(177.1),其具有一第一厚度T1,並位於該多孔板(306)的一第一側; 一第一平坦化隔離層(179.5),其具有一第二厚度T2; 一層複數個電氣配線連接(175),其具有一第三厚度T3; 一第二平坦化隔離層(179.3),其配置在該隔離電極層(129.1)與該電氣配線連接(175)的層之間,其在每個配線連接與每個隔離與可個別定址電極(79、81)之每一者之間形成有貫穿的配線接觸點(193),該第二平坦化隔離層(179.3)具有一第四厚度T4; 複數個貫穿連接(149)與接觸腳(147),用於透過該第一隔離電極層(129.1)接觸該複數個電氣配線連接(175),該第一隔離電極層係配置成將該第一隔離電極層(129.1)之第一側上的該複數個電氣配線連接(175)與該第一隔離電極層(129.1)之第二相對側上的接觸腳(147)電氣連接。
第39項:如項目38所述之多孔板306,其中該等配線接觸點(193)之每一者係置放在該每個可個別定址電極(79、81)的外邊緣處,其係與該些孔(85、94)其中之一的內側壁(87)具有一距離h,其中h較佳係大於h >6μm,甚至更佳係h >10μm,例如h=12μm。
第40項:如項目38至39中任一項所述之多孔板306,其更包含一第二導電遮蔽層(177.2),其配置在所述多孔板(306)的一第二側上且具有第六厚度T6;及一第三平坦化隔離層(129.2),其形成在第二導電遮蔽層(177.2)與相對於第二平坦化隔離層(129.2)的該電極層之間,其具有一第五厚度T5,並且其中第二導電遮蔽層(177.2)包含多個孔(148),用於將該些接觸腳(147)與該第二導電遮蔽層(177.2)隔離。
第41項:如項目38至40任一項所述之多孔板306,其中第一或第二導電遮蔽層(177.1、177.2)中的至少一者具有插入複數個孔(85、94)中的每一者的複數個插入延伸部(189),形成到該複數個隔離與可個別定址電極(79、81)之具有寬度g的間隙,其中g < 4µm,較佳係g <= 2µm。
第42項:如項目38至41任一項所述之多孔板306,其更包含一遮蔽電極(183),其配置在該複數個可個別定址電極(79、81)之間,其連接到接地準位,用於將該複數個可個別定址電極(79、81)彼此遮蔽。
第43項:一種個別地改變複數個一次帶電粒子焦點(311)中的每一者的焦距的方法,該方法包含: 在一端末多孔板(310)的複數個端末孔(94)的每一者處提供複數個可個別定址的端末電極(79.2、81.2); 在複數個一次帶電粒子小射束(3)的傳播方向上鄰近該端末多孔板(310)與該端末多孔板(310)的下游處提供一聚光透鏡電極(82、84); 藉由一控制單元(830)提供至少一第一電壓給該聚光透鏡電極(82、84)以產生複數個靜電微透鏡場(92),其穿過該複數個端末孔(94); 藉由該控制單元(830)提供複數個個別電壓給該複數個可個別定址電極(79.2、81.2)中的每一者;及 個別地控制該複數個可個別定址的端末電極(79.2、81.2)的該複數個個別電壓,以影響該複數個靜電微透鏡場(92)中的每一者的穿透深度,藉此個別地調整在一彎曲中間影像表面(321)上的該複數個一次帶電粒子小射束(3)中之每一者的軸向焦點位置。
第44項:如項目43所述之方法,其中該複數個可個別定址電極(79.2、81.2)形成為複數個第一多極電極(81.2)且更包含個別地控制該複數個第一多極電極(81.2)的該複數個個別電壓以影響該複數個靜電微透鏡場(92)中之每一者的形狀及/或橫向位置的步驟,藉此個別地調整該彎曲中間影像表面(321)上之該複數個一次帶電粒子小射束(3)中的每一者的橫向焦點位置與形狀。
第45項:如項目42至44中任一項所述之方法,其中個別地控制該複數個個別電壓的步驟係(232)調整具有一傾斜分量(323)之該彎曲中間影像表面(321)上之該複數個一次帶電粒子小射束(3)中的每一者的焦點位置。
第46項:如項目43至45中任一項所述之方法,其更包含: 在該端末多孔板(310)的上游處提供一具有複數個孔(85.4)與複數個可個別定址的第二多極電極(81.1)的第一像散板(306.4、306.41); 藉由該控制單元(830)提供複數個個別的電壓給複數個可個別定址的第二多極電極(81.1)中的每一者;及 在該複數個一次帶電粒子小射束(3)經過該端末多孔板(310)的該複數個端末孔(94)之前,個別地控制該第二多極電極(81.1)的該複數個個別電壓以影響該複數個一次帶電粒子小射束(3)中的每一者的形狀及/或橫向位置。
第47項:如項目46所述之方法,其更包含: 提供一具有複數個孔(85.4)以及複數個可個別定址的第三多極電極(81.3)的第二多像散板(306.4、306.41); 藉由該控制單元(830)提供複數個個別的電壓給該複數個可個別定址的第三多極電極(81.3)中的每一者;及 在該複數個一次帶電粒子小射束(3)經過該端末多孔板(310)的複數個端末孔(94)之前,個別地控制該第三多極電極(81.3)的該複數個個別電壓以影響該複數個一次帶電粒子小射束(3)中的每一者的形狀及/或橫向位置及/或方向。
第48項:如項目43至47中任一項所述之方法,其更包含: 提供一具有複數個孔(85.3、85.9)以及複數個可個別定址的環形電極(79)的小透鏡板(306.3、306.9); 藉由該控制單元(830)提供複數個個別的電壓給該複數個可個別定址的環形電極(79)中的每一者;及 在該複數個一次帶電粒子小射束(3)經過該端末多孔板(310)的複數個端末孔(94)之前,個別地控制環形電極(79)的該複數個個別電壓以影響該複數個一次帶電粒子小射束(3)之每一者的焦點位置。
第49項:如項目43至48中任一項所述之方法,其更包含個別地控制該複數個可個別定址的端末電極(79.2、81.2)、任何多極電極(81.1、81.3)及/或小透鏡板(306.3、306.9)之環狀電極(79)的複數個個別電壓,以共同影響該複數個一次帶電粒子小射束(3)之每一者的軸向與橫向焦點位置、形狀以及傳播方向。
第50項:一種用於多射束系統(1)的多射束產生單元(305),其包含: 一濾板(304),其具有用於產生複數個一次帶電粒子小射束(3)的複數個第一孔(85.1),該濾板(304)連接到一接地準位; 複數個多孔板(306、306.3、306.4、306.9),每個多孔板(306、306.3、306.4、306.9)包含一電極層(129.1)以及配置在該電極層(129.1)之一第一側處的複數個接觸腳(147); 一端末多孔板(310); 其中每個多孔板(306、306.3、306.4、306.9)更包含一複數個電氣配線連接(175)之層,且其中該複數個多孔板(306、306.3、306.4、306.9)中的至少一者係配置成一具有該複數個電氣配線連接(175)之層的倒置多孔板(306、306.3、306.4、306.9),其係配置在該倒置多孔板(306、306.3、306.4、306.9)的該電極層(129.1)的一第二側。
第51項:如項目50所述之多射束產生單元(305),其中該倒置多孔板(306、306.3、306.4、306.9)更包含複數個貫穿連接(149),用於將該複數個接觸腳(147)與該複數個電氣配線連接(175)電氣連接。
第52項:如項目50至51中任一項所述之多射束產生單元(305),其中該端末多孔板(310)包含一具有複數個可個別定址電極(79.2、81.2)的電極層(129.1)、以及複數個電氣配線連接(175)之層與複數個接觸腳(147),複數個接觸腳(147)係配置在該電極層(129.1)的一第一側。
第53項:如項目52所述之多射束產生單元(305),其中該複數個電氣配線連接(175)之層係配置在該端末多孔板(310)的該電極層(129.1)的該第二側。
第54項:如項目50至53中任一項所述之多射束產生單元(305),其更包含一控制單元(830),其從相同的第一側提供複數個電壓給每個多孔板(306、306.3、306.4、306.9)及/或該端末多孔板(310)的該複數個接觸腳(147)中的每一者。
第55項:如項目50至54中任一項所述之多射束產生單元(305),其更包含: 一聚光透鏡(307),其具有一聚光電極(82、84),配置在該端末多孔板(310)的下游,該聚光透鏡具有傳輸該複數個一次帶電粒子小射束(3)的一單孔; 該聚光電極(82、84),其產生穿過該複數個端末孔(94)中的每一者的複數個靜電微透鏡場(92); 一控制單元(830),其個別地控制聚光電極(82、84)與該端末多孔板(310)的複數個可個別定址電極(79.2、81.2)中的每一者,以影響該複數個靜電微透鏡場(92)中之每一者的穿透深度及/或形狀,藉此個別地調整在彎曲中間影像表面(321)上的該複數個一次帶電粒子小射束(3)中的每一者的橫向與軸向焦點位置。
第56項:一種用於多射束系統(1)的多射束產生單元(305),其包含 一濾板(304),其具有複數個第一孔(85.1),用於從入射的一次帶電粒子小射束(309)產生複數個一次帶電粒子小射束(3); 至少一第一多孔板(306.3、306.4、306.9),其具有一電極層(129.1); 一端末多孔板(310),其具有複數個端末孔(94); 一聚光透鏡(307),其具有一聚光電極(82、84); 一控制單元(830),其配置成提供多個個別的電壓給該至少一第一多孔板(306.3、306.4、306.9)、該端末多孔板(310)以及該聚光電極(82、84),且其中該多射束產生單元(305)係配置成個別調整該複數個一次帶電粒子小射束(3)中的每一者的軸向焦點位置中的每一者,其中焦點範圍DF大於DF >3mm,較佳係DF >4mm,甚至更佳係DF > 6mm,例如DF >= 8mm。
第57項:如項目56所述之多射束產生單元(305),其中該端末多孔板(310)包含複數個可個別定址電極(79.2、81.2),其配置在該複數個端末孔(94)的每一者的周邊中;且其中該控制單元(830)提供複數個個別電壓給該複數個可個別定址電極(79.2、81.2)中的每一者。
第58項:如項目56至57中任一項所述之多射束產生單元(305),其中該多射束產生單元(305)還配置成將該複數個一次帶電粒子小射束(3)中的每一者聚焦在一彎曲中間表面(321)上。
第59項:如項目58所述之多射束產生單元(305),其中該彎曲中間表面(321)具有一傾斜分量(323)。
第60項:如項目58至59中任一項所述之多射束產生單元(305),其中該多射束產生單元(305)還配置成低於20nm、較佳係低於15nm、甚至更佳係低於10nm的精度而個別調整該彎曲中間曲面(321)上的該複數個一次帶電粒子小射束(3)中的每一者的橫向焦點位置中的每一者。
第61項:如項目58至60中任一項所述之多射束產生單元(305),其中該多射束產生單元(305)還配置成個別調整該複數個一次帶電粒子小射束(3)中的每一者的形狀或像差以在該彎曲中間表面(321)上形成複數個像散焦點(311、311.1、311.2、311.3、311.4)。
第62項:如項目58至61中任一項所述之多射束產生單元(305),其更包含提供具有複數個孔(85.4)以及複數個可個別定址的多極電極(81.1)的第一多像散板(306.4、306.41)的步驟,其中該控制單元(830)還提供複數個個別的電壓給該複數個可個別定址的多極電極(81.1)中的每一者,並且其中在該複數個一次帶電粒子小射束(3)經過該端末多孔板(310)的該複數個端末孔(94)之前,該控制單元(830)個別地控制該複數個可個別定址的多極電極(81.1)的該複數個個別電壓以影響該複數個一次帶電粒子小射束(3)中之每一者的形狀及/或橫向位置。
第63項:一種製造多孔板(306、310)的方法,該方法包含: 在一電極層(129.1)中形成複數個電極(79、81); 在該電極層(129.1)的一第一側上形成一第一隔離層(179.1),該第一隔離層(179.1)由諸如二氧化矽的隔離材料所形成; 拋光該第一隔離層(179.1)以形成厚度低於2.5μm的一第一平整的隔離層(179.3); 在該第一平整的隔離層(179.3)上形成並微影處理一電氣配線連接(175)之層; 在該電氣配線連接(175)之層上形成一第二隔離層(179.4),該第二隔離層(179.4)由諸如二氧化矽的隔離材料所形成; 拋光該第二隔離層(179.4)以形成厚度低於2.5μm的一第二平整隔離層(179.5);及 在該第二平整隔離層(179.5)上形成一第一導電遮蔽層(177.1)。
第64項:如項目63所述之方法,其更包含: 透過該電極層(129.1)形成複數個貫穿連接(149); 在該電極層(129.1)的一第二側上形成一第一隔離層(179.1),該第二側與該第一側相對; 拋光在該第二側上的該第一隔離層(179.1)以形成厚度低於2.5μm的一第一平整的隔離層(179.3); 在該第二側的該第一平整隔離層(179.3)上形成一第二導電遮蔽層(177.2); 將該第一側上的該等貫穿連接之每一者係與該等電氣配線連接(175)中的一者連接並且在該第二側上與一接觸腳(147)連接。
第65項:如項目63至64中任一項所述之方法,其更包含: 在該第一側的該第二平整隔離層(179.5)上形成一應力降低層(187),該應力降低層(187)係由氮化矽(SiNX)所形成; 在該應力降低層(187)上形成一另外隔離層(179)並且將該另外隔離層(179)拋光到使該另外隔離層(179)的厚度低於2.5μm;及 在該另外平整的隔離層(179)上形成該第一導電遮蔽層(177.1)。
第66項:一種多射束系統(1),其包含: 一帶電粒子束源(301)以及至少一用於產生準直帶電粒子束(309)的準直透鏡303; 一多射束產生單元(305),用於形成複數個一次帶電粒子小射束(3); 一分束器(400),用於將該複數個一次帶電粒子小射束(3)與複數個二次電子小射束(9)進行分離; 一物鏡(102),用於在使用期間將該複數個一次帶電粒子小射束(3)聚焦在一樣品(7)的表面(25)上,並在該樣品(7)的該表面(25)處收集所產生的該複數個二次電子小射束(9); 其中該多射束產生單元(305)包含: 一多孔板(315)的堆疊,其包含具有複數個第一孔(85.1)的至少一濾板(304),用於產生該複數個一次帶電粒子小射束(3);及含有複數個端末孔(94)的一混合或端末多孔板(306.5、310);及 一聚光透鏡(307),其具有一聚光電極(82、84)與傳輸該複數個一次帶電粒子小射束(3)的一單孔,其中該聚光電極(82、84)產生複數個靜電微透鏡場(92),該複數個靜電微透鏡場穿透到該複數個端末孔(94)中的每一者;及 其中該多孔板(315)的堆疊與該聚光透鏡(307)的該聚光電極(82、84)相對於彼此形成一角度ϕ,角度ϕ偏離0°以預補償該多射束系統(1)的影像平面傾斜。
第67項:如項目66所述之系統(1),其中該多孔板(315)的堆疊或該聚光透鏡(307)的該聚光電極(82、84)中的至少一者安裝在一操縱器(340.1、340.2)上,該操縱器調節該多孔板(315)之堆疊的一傾斜角ϕ1或該聚光透鏡(307)的該聚光電極(82、84)的一傾斜角ϕ2。
第68項:如項目66或67所述之系統(1),其更包含一準靜態偏折器(302),其配置在該準直帶電粒子束(309)的傳播方向上該濾板(304)上游的,將該準直帶電粒子束(309)的傳播角調整為垂直於該多孔板(315)的一傾斜堆疊。
第69項:如項目66至68中任一項所述之系統(1),其中該端末孔板(310)包含一第一複數個可個別定址電極(79.2、81.2),其配置在該等端末孔(94)之每一者的周邊中。
第70項:如項目66至69中任一項所述之系統(1),其中該多射束產生單元(305)更包含一控制單元(830),其配置成個別地控制該聚光電極(82、84)以及該第一複數個可個別定址電極(79.2、81.2)中的每一者以影響穿透該複數個靜電微透鏡場(92)中之每一者的深度及/或形狀,藉此個別地調整一中間影像平面(321)上之該複數個一次帶電粒子小射束(3)中之每一者的橫向及/或軸向焦點位置以預補償該多射束系統(1)的一場曲與一成像平面傾斜。
第71項:如項目69或70所述之系統(1),其中該第一複數個可個別定址電極(79.2、81.2)形成為一第一複數個靜電圓柱電極(79.2),該第一複數個靜電圓柱電極(79.2)的每一者配置在該複數個端末孔(94)之一者的周邊上,其產生一吸力場(88)或一凹陷場(90)。
第72項:如項目69或70所述之系統(1),其中第一複數個可個別定址電極(79.2、81.2)形成為一第一複數個靜電多極電極(81.2),該第一複數個靜電多極電極(81.2)的每一者配置在該複數個端末孔(94)之一者的周邊中,其配置產生一吸力場(88)、一凹陷場(90)及/或一偏折場及/或一像散校正場。
第73項:如項目66至72中任一項所述之系統(1),其中該多射束產生單元(305)包含一另一多孔板,其配置成為一第一多像散板(306.4、306.41),其係配置在該端末多孔板(310)的上游,該第一多像散板(306.4、306.41)具有複數個孔(85.4、85.41),每個孔包含一第二複數個可個別定址的多極電極(81、81.1),以形成配置在該複數個孔(85.4、85.41)的周邊處的複數個靜電多極元件,該等第二可個別定址多極電極(81、81.1)中的每一者係連接到該控制單元(830),以偏折、聚焦或校正該複數個一次帶電粒子小射束(3)中之每個個別小射束的像差。
第74項:如項目73所述之系統(1),其中該多射束產生單元(305)包含一另一多孔板,該另一多孔板係其配置成為配置在所述端末多孔板(310)之上游的一第二多像散板(306.43),該第二多像散板(306.43)具有複數個孔(85.43),每個孔包含一第三複數個可個別定址的多極電極(81.3),其係形成配置在複數個孔之周邊中的複數個靜電多極元件(85.43),該等第三可個別定址電極(81.3)中的每一者係連接到該控制單元(830),該控制單元偏折、聚焦或校正該複數個一次帶電粒子小射束(3)中的每個個別小射束的像差。
第75項:如項目69至74中任一項所述之系統(1),其中該等多孔板(306、310)中的至少一者係配置成為一倒置多孔板,其在相對於該倒置多孔板之光束入口側的下側或底側上具有用於該複數個可個別定址電極(79、81)的電氣配線連接(175)。
第76項:如項目第75所述之系統(1),其中至少一倒置多孔板更包含複數個貫穿連接(149、149.1、149.2),用於經由在倒置多孔板之下側或底側的配線連接(175)而與該複數個可個別定址電極(79、79.1、79.2、81、81.1、81.2、81.3)電性接觸,該配線連接係具有配置在該倒置多孔板的上側或光束入口側的接觸腳(147、147.1、147.2)。
第77項:如項目67至76中任一項所述之系統(1),其更包含一控制單元(800),其根據該多射束系統(1)的影像設定取決於一影像平面傾斜而控制傾斜角ϕ、ϕ1、ϕ2中的至少一者,該影像設定包括藉由物鏡(102)的影像旋轉。
1:多射束帶電粒子顯微鏡系統 3:一次帶電粒子小射束或複數個一次帶電粒子小射束 3.1~3.4:一次帶電粒子小射束 5:一次帶電粒子束斑 7:物件 9:二次電子小射束,形成複數個二次電子小射束 11:二次電子束路徑 13:主要電子路徑 15:二次帶電粒子影像點 25:晶圓表面 74:射束入口或上側 76:底側或射束出口側 79,79.1,79.2,79.21,79.22,79.3,79.4,81,81.1,81.2,81.3:環形電極 81.11~81.18:電極 82:環狀電極 83:間隔件 83.1~83.5:間隔件 84:分段環形電極 84.1~84.8:電極段 85,85.1~85.8,85.33,85.34,85.41,85.42,85.43:孔 86,86.1,86.2:間隔件 87:孔的內壁 88:吸力場 90:凹陷場 92,92.1,92.2:靜電微透鏡場(等位線) 94:端末孔 98:一層導電材料 99:吸收與導電層 100:物件照明單元 101:成像平面 102:物鏡 103:場透鏡組 105:多射束帶電粒子顯微鏡系統的光軸 108:第一射束交叉點 110:集合多射束光柵掃描器 115:晶圓表面 129.1,306.3a:第一端末電極層 129.2,179,179.1,179.3,179.5:平坦化隔離層 145:間隙 147,147.1,147.2147.3,147.4,147.6:焊料接觸點或接觸腳 148:將接觸腳與遮蔽層隔離開的孔 149:貫穿連接 151,151.1,151.2:通孔 153:支撐單元 157:將電線連接到控制單元 173:第二個多孔板的射束入口或上表面 175,175.1,175.2,175.3,175.4:電氣配線連接 177,177.1,177.2:導電遮蔽層 179,179.2,179.4:隔離材料 181:隔離間隙 183:塊體材料,形成一遮蔽電極 185:隔離間隙 187:應力補償層 189:插入延伸部 191:環形電極的外邊緣 193:佈接線觸點開口 195:複數個孔 197:支撐區域 199:膜區域 200:檢測單元 205:投影系統 206:靜電透鏡 207:影像感測器 208:成像透鏡 209:成像透鏡 210:成像透鏡 212:第二交叉點 214:孔濾光器 216:主動元件 218:第三偏折系統 220:多孔校正器 222:第二偏折系統 251:高電壓配線連接 253:接地線 255:同軸遮蔽與隔離 261:特定應用積體電路 265:特定應用積體電路 267,267.1,267.2:數位訊號線 269,269.1,269.2:低壓供電線 300:帶電粒子多小射束產生器 301:帶電粒子源 302:準靜態偏折器 303:準直透鏡 304:濾板 305:主要多小射束形成單元 306:多孔板 306.2:接地電極板 306.3:兩層微透鏡板 306.3a:環形電極層 306.3b:接地層 306.4,306.41,306.43:多像散板 306.5:混合透鏡板 306.8:接地電極板 306.9:透鏡電極板 307:第一場透鏡 307.1,307.2:環形電極(場透鏡) 308:第二場透鏡 309:主要電子束 310:端末多孔板 311,311.1,311.2,311.3,311.4:一次電子小射束焦點 315:多孔板堆疊 316:多級微透鏡 321:中間影像表面 323:中間影像表面傾斜分量 331.1:上區段 331.2:第二區段 333:支撐區域 335:膜區域 340:傾斜或旋轉操縱器 390:射束轉向多孔板 400:分束器單元 420:磁性元件 500:取樣平台 503:取樣電壓源 800:控制單元 820:成像控制模組 830:一次射束路徑控制模組
將參考多個圖式更詳細解釋本發明的多個實施例,其中: 圖1為用於晶圓檢測之多射束帶電粒子系統的剖面示意圖。 圖2例示多射束光柵單元305的一些態樣。 圖3顯示一多射束產生單元305的第一實例。 圖4顯示一雙層小透鏡板306.3的一些細節。 圖5顯示具有倒置雙層小透鏡板306.3的多射束產生單元305的第二實例。 圖6顯示具有改變的元件順序之多射束產生單元305的一第三實例。 圖7顯示具有一端末多孔板310之多射束產生單元305的第四實例,該端末多孔板形成為小透鏡板。 圖8例示在兩實例中之端末多孔板310的功能。 圖9顯示一多射束產生單元305的第五實例。 圖10顯示一多射束產生單元305之進一步簡化的第六實例。 圖11顯示具有增強校正能力之一多射束產生單元305的第七實例。 圖12顯示具有增強校正能力之一多射束產生單元305的第八實例。 圖13顯示具有增強校正能力之一多射束產生單元305的第九實例。 圖14顯示具有聚光透鏡307之一多射束產生單元305的第十實例,所述聚光透鏡具有多個環形多極電極區段。 圖15(a)例示多像散板306.4的前視圖以及圖15(b)顯示聚光透鏡307的環形多極電極區段84.1至84.8。 圖16例示製造一具有改善效能之透鏡電極層的製造步驟。 圖17例示用於製造具有多個貫穿連接149與通孔151之透鏡電極層的製造步驟。 圖18顯示複數個多孔板的一堆疊實例,其包括倒置的多孔板306.3與306.4,以及從頂部或上側(在負z方向)的多個配線連接。 圖19顯示根據實施例的多射束光柵單元,其具有來自多個正交方向的訊號與電壓供應配線。 圖20顯示根據一實施例的多射束光柵單元,其在端末多孔板與聚光透鏡電極之間具有一傾斜角。
3.1~3.4:一次帶電粒子小射束
79.2,81:環形電極
82:環狀電極
83.1~83.3:間隔件
85.2,85.4:孔
86.1,86.2:間隔件
92:靜電微透鏡場(等位線)
94:端末孔
304:濾板
305:主要多小射束形成單元
306.2:接地電極板
306.3a:環形電極層
306.3b:接地層
306.4:多像散板
307.1,307.2:環形電極(場透鏡)
309:主要電子束
310:端末多孔板
311.1,311.2,311.3,311.4:一次電子小射束焦點
316:多級微透鏡
321:中間影像表面
323:中間影像表面傾斜分量

Claims (48)

  1. 一種用於一多射束系統(1)的多射束產生單元(305),其包含:按一入射一次帶電粒子束(309)傳播方向的順序, 一濾板(304),其具有用於產生複數個一次帶電粒子小射束(3)的複數個第一孔(85.1),該濾板(304)係連接到一接地準位; 一端末多孔板(310),其包含複數個端末孔(94),該等端末孔包含一第一複數個可個別定址電極(79.2、81.2),在該等端末孔(94)之每一者的周邊中係配置有一可個別定址電極(79.2、81.2); 一聚光透鏡(307),其具有一聚光電極(82、84)與傳輸該等複數個一次帶電粒子小射束(3)的一單孔; 其中該聚光電極(82、84)產生穿過該等複數個端末孔(94)中之每一者的複數個靜電微透鏡場(92);及 其中該多射束產生單元(305)更包含一控制單元(830),其配置成個別地控制該聚光電極(82、84)及該等第一複數個可個別定址電極(79.2、81.2)中的每一者,以影響該等複數個靜電微透鏡場(92)中之每一者的穿透深度及/或形狀,藉此個別地調整在一中間影像表面(321)上之該等複數個一次帶電粒子小射束(3)中之每一者的橫向及/或軸向焦點位置,以預補償該多射束系統(1)的一場曲及/或一成像平面傾斜。
  2. 如請求項1所述之多射束產生單元(305),其中該等第一複數個可個別定址電極(79.2、81.2)係形成為一第一複數個靜電圓柱電極(79.2),每一靜電圓柱電極(79.2)係配置在該等複數個端末孔(94)中之一者的周邊中,其產生一吸力場(88)或一凹陷場(90)。
  3. 如請求項1所述之多射束產生單元(305),其中該等第一複數個可個別定址電極(79.2、81.2)係形成為一第一複數個靜電多極電極(81.2),每一該些第一靜電多極電極(81.2)係配置在該等複數個端末孔(94)中之一者的周邊中,其產生一吸力場(88)、一凹陷場(90)及/或一偏折場及/或一像散校正場。
  4. 如前述請求項中任一項所述之多射束產生單元(305),其中該端末多孔板(310)包含該第一端末電極層(306.3a),該第一端末電極層包含該等複數個可個別定址電極(79.2、81.2);及一第二電極層(306.3b),其係與該等第一複數個可個別定址電極(79.2、81.2)隔離,並配置在該第一端末電極層(306.3a)的上游, 該第二電極層(306.3b)連接到接地準位,以形成一接地電極層。
  5. 如請求項1至3中任一項所述之多射束產生單元(305),其中該端末多孔板(310)係由一單電極層所製成。
  6. 如前述請求項中任一項所述之多射束產生單元(305),其更包含一另一多孔板,該另一多孔板係配置成為設置在該端末多孔板(310)上游的第一多像散板(306.4、306.41),該第一多像散板(306.4、306.41)具有複數個孔(85.4、85.41),每一孔包含一第二複數個可個別定址多極電極(81、81.1),該第二複數個可個別定址多極電極形成設置在該等複數個孔(85.4、85.41)的周圍中的複數個靜電多極元件,該等第二可個別定址的多極電極(81、81.1)中的每一者係連接到該控制單元(830),該控制單元(830)偏折、聚焦或校正該等複數個一次帶電粒子小射束(3)中之每一個別小射束的像差。
  7. 如請求項6所述之多射束產生單元(305),其更包含一再一多孔板,該再一多孔板配置成為一第二多像散板(306.43),其設置在該端末多孔板(310)的上游,該第二多像散板(306.43)具有複數個孔(85.43),每一孔包含一第三複數個可個別定址的多極電極(81.3),形成設置在該等複數個孔之周邊中的複數個靜電多極元件(85.43),該等第三可個別定址電極(81.3)中的每一者係連接到該控制單元(830),該控制單元偏折、聚焦或校正該等複數個一次帶電粒子小射束(3)中之每一個別小射子束的像差。
  8. 如前述請求項中任一項所述之多射束產生單元(305),其更包含一又一多孔板,該又一多孔板係配置成為一靜電透鏡陣列(306.3、306.9),其係設置在該端末多孔板(310)的上游,該靜電透鏡陣列(306.3、306.9)具有複數個孔(85.3、85.9),其包含複數個第二圓柱電極(79),每一複數個第二圓柱電極係個別連接到該控制單元(830),其配置成形成複數個靜電透鏡場。
  9. 如請求項8所述之多射束產生單元(305),其中該靜電透鏡陣列(306.3、306.9)係由一單電極層所製成的透鏡電極板(306.9)。
  10. 如請求項8所述之多射束產生單元(305),其中該靜電透鏡陣列(306.3、306.9)為具有一透鏡電極層(306.3a)及一接地電極層(306.3b)的兩層透鏡電極板(306.3)。
  11. 如前述請求項中任一項所述之多射束產生單元(305),其中該聚光電極(82、84)係形成為一分段電極(84),其包含複數個至少四個電極區段(84.1至84.4),並且該控制單元(830)提供一不對稱電壓分佈於該等複數個至少四個電極區段(84.1至84.4),以促成該複數個一次帶電粒子小射束(3)在具有一傾斜分量(323)之彎曲與傾斜的中間影像表面(321)中的聚焦。
  12. 如前述請求項中任一項所述之多射束產生單元(305),其更包含至少一第一接地電極板(306.2),其係具有複數個孔(85.2);該第一接地電極板(306.2),其係形成一第一接地電極;該第一接地電極板(306.2),其設置在該濾板(304)與該端末多孔板(310)之間。
  13. 如前述請求項中任一項所述之多射束產生單元(305),其中具有該聚光電極(82、84)的該聚光透鏡(307)與該端末孔板(310)係相對於彼此配置成一角度ϕ配置,該角度ϕ係不同於0°。
  14. 如請求項8至13中任一項所述之多射束產生單元(305),其中該控制單元(830)提供複數個個別的電壓給該端末多孔板(310)、該第一多像散板(306.4、306.41)、及/或該第二多像散板(306.43)、及/或該靜電透鏡陣列(306.3、306.9)之該等複數個電極(79、81、79.1、81.1、79.2、81.2、81.3)中的每一者,以共同形成可個別定址的多級微透鏡(316)的一陣列,其對於每一可個別定址的多級微透鏡(316)具有至少6mm、較佳係至少8mm、甚至更佳係大於10mm的一單獨可變聚焦範圍變化DF。
  15. 如前述請求項中任一項所述之多射束產生單元(305),其更包含複數個間隔件(83.1至83.5)或支撐區域(179),其用於將該等複數個多孔板(306.2至306.9、310)保持在彼此預定的距離處。
  16. 如前述請求項中任一項所述之多射束產生單元(305),其中該等複數個多孔板(306.4至306.9、310)中的至少一者係配置成為一倒置多孔板,其係具有用於在與該倒置多孔板的該射束入口側相對的該下側或底側處之該等複數個可個別定址電極(79、79.1、79.2、81、81.1、81.2、81.3)的多個電氣配線連接(175)。
  17. 如請求項16所述之多射束產生單元(305),其中該至少一倒置多孔板更包含複數個貫穿連接(149、149.1、149.2),用於經由該等電氣配線連接(175),在該倒置多孔板的該下側或底側處與該等複數個可個別定址電極(79、79.1、79.2、81、81.1、81.2、81.3)電性接觸,而該倒置多孔板具有配置在該倒置多孔板的上側或射束入口側處的多個接觸腳(147、147.1、147.2)。
  18. 如前述請求項中任一項所述之多射束產生單元(305),其中該端末多孔板(310)更包含一具有該複數個孔(94)的一導電遮蔽層(177.2),該導電遮蔽層(177.2)與該等第一複數個可個別定址電極(79.2、81.2)為電性隔離,該導電遮蔽層(177.2)配置在該等可個別定址電極(79.2、81.2)與該聚光透鏡(307)之間的該端末多孔板(310)的該底側(76)處。
  19. 如前述請求項中任一項所述之多射束產生單元(305),其中在入射的一次帶電粒子束(309)的該傳播方向上,該濾板(304)的該等第一孔(85.1)係具有一第一直徑D1,且該等端末孔(94)具有一端末直徑DT,其中DT係在1.6×D1 <= DT <= 2.4 x D1之間的範圍內。
  20. 如請求項6至19中任一項所述之多射束產生單元(305),其中在入射的一次帶電粒子束(309)的該傳播方向上,該濾板304的該第一孔(85.1)係具有一第一直徑D1,一另一多孔板(306.2、306.3、306.4、306.9)的該等第二孔(85.2、85.3、85.4、85.9)係具有一第二直徑D2,且該等端末孔(94)具有一端末直徑DT,並且其中D1 < D2 < DT,較佳係1.3 x D1 <= D2 <= 0.8 x DT。
  21. 如請求項13所述之多射束產生單元(305),其中具有該聚光電極(82、84)的該聚光透鏡(307)與該端末孔板(310)中的至少一者係安裝在一操縱器(340、340.1、340.2)上,該操縱器調節具有該聚光電極(82、84)的該聚光透鏡(307)與該端末孔板(310)中的至少一者的一傾斜角或旋轉。
  22. 一種端末多孔板(310),其包含: 複數個端末孔(94),其配置成形成穿透到該等複數個端末孔(94)中的複數個靜電微透鏡場(92、92.1、92.2); 複數個可個別定址電極(79.2、81.2),該等複數個個別定址電極(79.2、81.2)係配置在該等端末孔(94)的周邊上; 其中該等複數個可個別定址電極(79.2、81.2)係配置成個別連接到一控制單元(830)並且個別地影響複數個靜電微透鏡場(92、92.1、92.2)中之每一者的穿透深度及/或形狀。
  23. 如請求項22所述之端末多孔板(310),其更包含一第一導電遮蔽層(177.2),其位於該端末多孔板(310)的該端末或射束出口側(76),連接到接地準位且遮蔽該等複數個靜電微透鏡場(92)以避免穿透到該端末多孔板(310)中,使得該等複數個靜電微透鏡場(92)僅穿進到該等端末孔(94)中。
  24. 如請求項22或23所述之端末多孔板(310),其更包含一遮蔽電極層(183),其配置在該等複數個可個別定址電極(79.2、81.2)之間,連接到接地準位且將該等複數個可個別定址電極(79.2、81.2)相互遮蔽。
  25. 如請求項22至24中任一項所述之端末多孔板(310),其更包含複數個配線連接(175),用於提供複數個個別電壓給該複數個可個別定址電極(79.2、81.2),該等複數個配線連接(175)配置成連接到該控制單元(830)。
  26. 如請求項25所述之端末多孔板(310),其中該等複數個配線連接(175)配置在該端末多孔板(310)的一第一側,其與該導電遮蔽層(177、177.2)隔離,且其中該端末多孔板(310)更包含複數個貫穿連接(149),其係連接到該等複數個配線連接(175)且配置成連接到該控制單元(830)。
  27. 如請求項22至26中任一項所述之端末多孔板(310),其更包含 一第二導電遮蔽層(177.1),其配置在該端末多孔板(310)的一上側上,其中該上側是複數個帶電粒子小射束(3)進入該端末多孔板(310)的一側; 複數個平坦化隔離層(129.2、179、179.1、179.3、179.5); 一複數個電氣配線連接之層(175); 一電極層(129.1),其包含該等複數個可個別定址電極(79.2、81.2); 其中該電極層(129.1)、該複數個電氣配線連接之層(175)及該第一或第二導電遮蔽層(177.2、177.2)中的每一者係藉由該等平坦化隔離層(129.2、179、179.1、179.3、179.5)中的一者而與一相鄰層隔離隔離; 且其中該等平坦化隔離層(129.2、179、179.1、179.3、179.5)之每一者係由二氧化矽製成並且被平整到厚度T低於T <3μm,較佳係低於T<= 2.5µm。
  28. 如請求項27所述之端末多孔板(310),其中該電極層(129.1)具有介於50µm與100µm之間的厚度。
  29. 一種個別地改變複數個一次帶電粒子束斑(311)中之每一者的焦距的方法,該方法包含: 在一端末多孔板(310)之複數個端末孔(94)的每一者處提供複數個可個別定址的端末電極(79.2、81.2); 在複數個一次帶電粒子小射束(3)的一傳播方向上鄰近該端末多孔板(310)與該端末多孔板(310)的下游提供一聚光透鏡電極(82、84); 藉由一控制單元(830)提供至少第一電壓給該聚光透鏡電極(82、84)以產生複數個靜電微透鏡場(92),其係穿過該複數個端末孔(94); 藉由該控制單元(830)提供複數個個別電壓給該等複數個可個別定址電極(79.2、81.2)中的每一者;及 個別地控制該等可個別定址的端末電極(79.2、81.2)之該複數個個別電壓,以影響該等複數個靜電微透鏡場(92)中之每一者的穿透深度,藉此個別地調整在一彎曲中間影像表面(321)上之該等複數個一次帶電粒子小射束(3)中之每一者的軸向焦點位置。
  30. 如請求項29所述之方法,其中該等複數個可個別定址的端末電極(79.2、81.2)形成為多個第一多極電極(81.2)並且更包含個別地控制該等複數個個別電壓到該等第一多極電極(81.2)的步驟,以影響該等複數個靜電微透鏡場(92)中之每一者的形狀及/或橫向位置,藉此個別地調整在該彎曲中間影像表面(321)上之複該數個一次帶電粒子小射束(3)中之每一者的橫向焦點位置與形狀。
  31. 如請求項29或30中任一項所述之方法,其中個別地控制該等複數個個別電壓的步驟係調整具有一傾斜分量(232)之該彎曲中間影像表面(321)上的該等複數個一次帶電粒子小射束(3)中之每一者的焦點位置。
  32. 如請求項29至31中任一項所述之方法,其更包含: 在該端末多孔板(310)上游提供具有複數個孔(85.4)以及複數個可個別定址的第二多極電極(81.1)之一第一多像散板(306.4、306.41); 藉由該控制單元(830)提供複數個個別的電壓給該等複數個可個別定址的第二多極電極(81.1)中的每一者;及 在該複數個一次帶電粒子小射束(3)經過該端末多孔板(310)的該等複數個端末孔(94)之前,個別地控制該等第二多極電極(81.1)的該等複數個個別電壓,以影響該等複數個一次帶電粒子小射束(3)中之每一者的形狀及/或橫向位置。
  33. 如請求項32所述之方法,其更包含: 提供具有複數個孔(85.4)以及複數個可個別定址的第三多極電極(81.3)之一第二多像散板(306.4、306.41); 藉由該控制單元(830)提供複數個個別的電壓給該等複數個可個別尋址的第三多極電極(81.3)中的每一者;及 在該複數個一次帶電粒子小射束(3)經過該端末多孔板(310)的該等複數個端末孔(94)之前,個別地控制該等第三多極電極(81.3)的該等複數個個別電壓,以影響該等複數個一次帶電粒子小射束(3)中之每一者的形狀及/或橫向位置及/或方向。
  34. 如請求項29至33中任一項所述之方法,其更包含: 提供具有複數個孔(85.3、85.9)以及複數個可個別定址的環形電極(79)之一小透鏡板(306.3、306.9); 藉由該控制單元(830)提供複數個個別的電壓給該等複數個可個別定址的環形電極(79)中的每一者;及 在經過該端末多孔板(310)的該等複數個端末孔(94)之前,個別地控制該等環形電極(79)的該等複數個個別電壓,以影響該等複數個一次帶電粒子小射束(3)中之每一者的焦點位置。
  35. 如請求項29至34中任一項所述之方法,其更包含個別地控制該等可個別定址的端末電極(79.2、81.2)、任何該等多極電極(81.1、81.3)及/或小透鏡板(306.3、306.9)之該等環形電極(79)的複數個個別電壓,以共同影響該等複數個一次帶電粒子小射束(3)中之每一者的軸向與橫向焦點位置、形狀和傳播方向的步驟。
  36. 一種用於多射束系統(1)的多射束產生單元(305),其包含: 一濾板(304),其具有用於產生複數個一次帶電粒子小射束(3)的複數個第一孔(85.1),該濾板(304)連接到一接地準位; 複數個多孔板(306、306.3、306.4、306.9),每一多孔板(306、306.3、306.4、306.9)包含一電極層(129.1)及複數個配置在該電極層(129.1)的一第一側處的接觸腳(147); 一端末多孔板(310); 其中每一多孔板(306、306.3、306.4、306.9)更包含一複數個電氣配線連接(175)之層,以及 其中該等複數個多孔板(306、306.3、306.4、306.9)中的至少一者係配置成具有該複數個電氣配線連接(175)之層的一倒置多孔板(306、306.3、306.4、306.9),該複數個電氣配線連接之層係配置在該倒置多孔板(306、306.3、306.4、306.9)之該電極層(129.1)的一第二側。
  37. 如請求項36所述之多射束產生單元(305),其中該倒置多孔板(306、306.3、306.4、306.9)更包含複數個貫穿連接(149),用於電氣連接該等複數個接觸腳(147)與該等複數個電氣配線連接(175)。
  38. 如請求項36至37中任一項所述之多射束產生單元(305),其中該端末多孔板(310)包含一具有複數個可個別定址電極(79.2、81.2)之電極層(129.1)以及一複數個電氣配線連接(175)之層與複數個接觸腳(147)之層,該等複數個接觸腳(147)係配置在該電極層(129.1)的一第一側處。
  39. 如請求項38所述之多射束產生單元(305),其中該複數個電氣配線連接(175)之層係配置在該端末多孔板(310)之該電極層(129.1)的該第二側處。
  40. 如請求項36至39中任一項所述之多射束產生單元(305),其更包含一控制單元(830),其從相同的第一側提供複數個電壓給每一多孔板(306、306.3、306.4、306.9)之該等複數個接觸接脚(147)中的每一者及/或該端末多孔板(310)。
  41. 如請求項36至40中任一項所述之多射束產生單元(305),其更包含: 一聚光透鏡(307),其具有一聚光電極(82、84),其配置在該端末多孔板(310)的下游,該聚光透鏡具有傳輸該等複數個一次帶電粒子小射束(3)的一單孔; 該聚光電極(82、84),其產生穿過該等複數個端末孔(94)中之每一者的複數個靜電微透鏡場(92); 一控制單元(830),其係配置成個別地控制該聚光電極(82、84)與該端末多孔板(310)之該等複數個可個別定址電極(79.2、81.2)中的每一者,以影響該等複數個靜電微透鏡場(92)中之每一者的穿透深度及/形狀,藉此個別地調整在該彎曲中間影像表面(321)上之該複數個一次帶電粒子小射束(3)中之每一者的橫向與軸向焦點位置。
  42. 一種用於多射束系統(1)的多射束產生單元(305),其包含: 一濾板(304),其具有複數個第一孔(85.1),用於從一入射的一次帶電粒子小射束(309)產生複數個一次帶電粒子小射束(3); 至少一第一多孔板(306.3、306.4、306.9),其具有一電極層(129.1); 一端末多孔板(310)其,具有複數個端末孔(94); 一聚光透鏡(307),其具有一聚光電極(82、84); 一控制單元(830),其配置成提供複數個個別的電壓給該至少第一多孔板(306.3、306.4、306.9)、該端末多孔板(310)以及該聚光電極(82、84); 其中該多射束產生單元(305)配置成個別調整該等複數個一次帶電粒子小射束(3)中之每一者的軸向焦點位置,該等複數個一次帶電粒子小射束中之每一具有一焦點範圍DF大於DF >3mm,較佳係DF >4mm,甚至更佳者DF > 6mm,例如DF >= 8mm。
  43. 如請求項42所述之多射束產生單元(305),其中該端末多孔板(310)包含複數個可個別定址電極(79.2、81.2),其係配置在該等複數個端末孔(94)中之每一者的周邊中;且其中該控制單元(830)配置成在使用期間提供複數個個別電壓給該等複數個可個別定址電極(79.2、81.2)中的每一者。
  44. 如請求項42至43中任一項所述之多射束產生單元(305),其中該多射束產生單元(305)還配置成將該等複數個一次帶電粒子小射束(3)中之每一者聚焦在一彎曲中間表面(321)上。
  45. 如請求項44所述之多射束產生單元(305),其中該彎曲中間表面(321)具有一傾斜分量(323)。
  46. 如請求項42至45中任一項所述之多射束產生單元(305),其中該多射束產生單元(305)還配置成低於20nm、較佳係低於15nm、甚至更佳係低於10nm的精度而個別調整在該彎曲中間表面(321)上之該等複數個一次帶電粒子小射束(3)中之每一者的一橫向焦點位置中的每一者。
  47. 如請求項42至46中任一項所述之多射束產生單元(305),其中該多射束產生單元(305)還配置成個別調整該等複數個一次帶電粒子小射束(3)中之每一者的形狀或像差,以在該彎曲中間表面(321)上形成複數個像散焦點(311、311.1、311.2、311.3、311.4)。
  48. 如請求項42至47中任一項所述之多射束產生單元(305),其更包含一第一多像散板(306.4、306.41),其具有複數個孔(85.4)以及複數個可個別定址的多極電極(81.1);且其中該控制單元(830)還配置成提供複數個個別的電壓給該等複數個可個別定址的多極電極(81.1)中的每一者,其中在該複數個一次帶電粒子小射束(3)經過該端末多孔板(310)的該等複數個端末孔(94)之前,該控制單元(830)個別地控制該等可個別定址的多極電極(81.1)的該等複數個個別電壓,以影響該等複數個主要電荷粒子小射束(3)中之每一者的形狀及/或橫向位置。
TW111120565A 2021-08-10 2022-06-02 聚焦能力增進的多射束產生單元 TW202312206A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021208700.0 2021-08-10
DE102021208700 2021-08-10

Publications (1)

Publication Number Publication Date
TW202312206A true TW202312206A (zh) 2023-03-16

Family

ID=82218361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120565A TW202312206A (zh) 2021-08-10 2022-06-02 聚焦能力增進的多射束產生單元

Country Status (4)

Country Link
KR (1) KR20240042652A (zh)
CN (1) CN117897793A (zh)
TW (1) TW202312206A (zh)
WO (1) WO2023016678A1 (zh)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585661B2 (ja) 2000-03-31 2010-11-24 キヤノン株式会社 電子光学系アレイ、荷電粒子線露光装置およびデバイス製造方法
US6768125B2 (en) * 2002-01-17 2004-07-27 Ims Nanofabrication, Gmbh Maskless particle-beam system for exposing a pattern on a substrate
EP2579273B8 (en) 2003-09-05 2019-05-22 Carl Zeiss Microscopy GmbH Particle-optical systems and arrangements and particle-optical components for such systems and arrangements
DE102014008083B9 (de) 2014-05-30 2018-03-22 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem
DE102014008105B4 (de) 2014-05-30 2021-11-11 Carl Zeiss Multisem Gmbh Mehrstrahl-Teilchenmikroskop
CN111108582A (zh) * 2017-08-08 2020-05-05 Asml荷兰有限公司 带电粒子阻挡元件、包括这样的元件的曝光装置以及使用这样的曝光装置的方法
DE102018202421B3 (de) 2018-02-16 2019-07-11 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem
DE102018007652B4 (de) * 2018-09-27 2021-03-25 Carl Zeiss Multisem Gmbh Teilchenstrahl-System sowie Verfahren zur Stromregulierung von Einzel-Teilchenstrahlen
DE102018124219A1 (de) * 2018-10-01 2020-04-02 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem und Verfahren zum Betreiben eines solchen
TWI743626B (zh) 2019-01-24 2021-10-21 德商卡爾蔡司多重掃描電子顯微鏡有限公司 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品
US10741355B1 (en) 2019-02-04 2020-08-11 Carl Zeiss Multisem Gmbh Multi-beam charged particle system
DE102019005362A1 (de) * 2019-07-31 2021-02-04 Carl Zeiss Multisem Gmbh Verfahren zum Betreiben eines Vielzahl-Teilchenstrahlsystems unter Veränderung der numerischen Apertur, zugehöriges Computerprogrammprodukt und Vielzahl-Teilchenstrahlsystem
EP4118673A1 (en) 2020-03-12 2023-01-18 Carl Zeiss MultiSEM GmbH Certain improvements of multi-beam generating and multi-beam deflecting units
DE102020107738B3 (de) 2020-03-20 2021-01-14 Carl Zeiss Multisem Gmbh Teilchenstrahl-System mit einer Multipol-Linsen-Sequenz zur unabhängigen Fokussierung einer Vielzahl von Einzel-Teilchenstrahlen, seine Verwendung und zugehöriges Verfahren
DE102021200799B3 (de) 2021-01-29 2022-03-31 Carl Zeiss Multisem Gmbh Verfahren mit verbesserter Fokuseinstellung unter Berücksichtigung eines Bildebenenkipps in einem Vielzahl-Teilchenstrahlmikroskop

Also Published As

Publication number Publication date
WO2023016678A1 (en) 2023-02-16
KR20240042652A (ko) 2024-04-02
CN117897793A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
KR101051370B1 (ko) 입자광 시스템 및 장치와 이와 같은 시스템 및 장치용입자광 부품
US20220392734A1 (en) Certain improvements of multi-beam generating and multi-beam deflecting units
US11798783B2 (en) Charged particle assessment tool, inspection method
WO2016036246A2 (en) Multi electron beam inspection apparatus
TW201729233A (zh) 靜電多極元件、靜電多極裝置及製造靜電多極元件的方法
JP2024056720A (ja) 荷電粒子操作デバイス
JP2007266525A (ja) 荷電粒子線レンズアレイ、該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
CN116325064A (zh) 物镜阵列组件、电子光学系统、电子光学系统阵列、聚焦方法、物镜布置
JP2024050537A (ja) 静電レンズ設計
TW202307899A (zh) 帶電粒子評估系統及方法
TW202312206A (zh) 聚焦能力增進的多射束產生單元
CN116762152A (zh) 带电粒子工具、校准方法、检查方法
US11984295B2 (en) Charged particle assessment tool, inspection method
TWI813948B (zh) 帶電粒子評估工具及檢測方法
EP3975222A1 (en) Charged particle assessment tool, inspection method
TW202410101A (zh) 用於電子光學組件之隔離間隔物
TW202410107A (zh) 電子光學組件
TW202328812A (zh) 帶電粒子裝置及方法
CN117769753A (zh) 带电粒子光学设备