TW202338893A - 孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置 - Google Patents

孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置 Download PDF

Info

Publication number
TW202338893A
TW202338893A TW112119823A TW112119823A TW202338893A TW 202338893 A TW202338893 A TW 202338893A TW 112119823 A TW112119823 A TW 112119823A TW 112119823 A TW112119823 A TW 112119823A TW 202338893 A TW202338893 A TW 202338893A
Authority
TW
Taiwan
Prior art keywords
aperture
aperture body
electrode
apertures
charged particle
Prior art date
Application number
TW112119823A
Other languages
English (en)
Inventor
瑪寇 傑 加寇 威蘭德
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202338893A publication Critical patent/TW202338893A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04924Lens systems electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1207Einzel lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1532Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2806Secondary charged particle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Beam Exposure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本發明係關於用於操縱帶電粒子束之裝置及方法。在一種配置中,提供一種孔徑總成,其包含一第一孔徑本體及一第二孔徑本體。該第一孔徑本體中之孔徑與該第二孔徑本體中之孔徑對準。該對準允許帶電粒子束穿過該孔徑總成。該第一孔徑本體包含用於將一電位施加至該第一孔徑本體中之每一孔徑之一孔徑周邊表面的一第一電極系統。該第一電極系統包含複數個電極。每一電極與每一其他電極電隔離且同時電連接至該第一孔徑本體中之該等孔徑之複數個群組中之一不同群組的該等孔徑周邊表面。

Description

孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置
本文中所提供之實施例大體上係關於用於操縱帶電粒子束之裝置及方法,特別是在用於樣本之檢測的帶電粒子束工具之內容背景中。
當製造半導體積體電路(IC)晶片時,由於例如光學效應及偶然粒子所導致的非所需圖案缺陷在製作製程期間不可避免地出現在基板(亦即,晶圓)或遮罩上,藉此降低了良率。因此,監測非所需圖案缺陷之程度為製造IC晶片之重要製程。更一般而言,基板或其他物件/材料之表面的檢測及/或量測為在其製造期間及/或之後的重要製程。
運用帶電粒子束之圖案檢測工具已用以檢測物件,例如以偵測圖案缺陷。此等工具通常使用電子顯微技術,諸如掃描電子顯微鏡(SEM)。在SEM中,運用最終減速步驟以在相對較高能量下之電子的初級電子束為目標以便使其以相對較低著陸能量著陸於樣本上。電子束經聚焦作為樣本上之探測光點。探測光點處之材料結構與來自電子束之著陸電子之間的相互作用使得待自表面發射電子,諸如次級電子、反向散射電子或歐傑(Auger)電子。可自樣本之材料結構發射所產生之次級電子。藉由使初級電子束作為探測光點遍及樣本表面進行掃描,可橫越樣本之表面發射次級電子。藉由收集自樣本表面之此等發射之次級電子,有可能獲得表示樣本之表面之材料結構的特性之影像。
通常需要改良使用帶電粒子束之檢測工具及方法之產出量及其他特性。
根據本發明之一態樣,提供一種用於一帶電粒子投影裝置之一束操縱器單元之孔徑總成,該孔徑總成包含:一第一孔徑本體及一第二孔徑本體,其中:該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,該對準係使得允許各別複數個帶電粒子束中之每一者的一路徑藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成;該第一孔徑本體包含用於將一電位施加至該第一孔徑本體中之每一孔徑之一孔徑周邊表面的一第一電極系統;該第二孔徑本體包含用於將一電位施加至該第二孔徑本體中之每一孔徑之一孔徑周邊表面的一第二電極系統;且該第一電極系統包含複數個電極,每一電極與每一其他電極電隔離且同時電連接至該第一孔徑本體中之該等孔徑之複數個群組中之一不同群組的該等孔徑周邊表面。
根據本發明之一態樣,提供一種用於一帶電粒子投影裝置之一束操縱器單元之孔徑總成,其包含:一第一孔徑本體及一第二孔徑本體,其中:該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,該對準係使得允許各別複數個帶電粒子束中之每一者的一路徑藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成;該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且該第二孔徑本體中之每一對應孔徑係由在至少平行於該伸長隙縫之一最長軸線之一方向上小於該伸長隙縫的一開口組成。
根據本發明之一態樣,提供一種操縱帶電粒子束之方法,其包含:將複數個帶電粒子束通過一孔徑總成引導至一樣本上;及藉由將電位施加至該孔徑總成中之電極來靜電操縱該等帶電粒子束,其中:該孔徑總成包含一第一孔徑本體及一第二孔徑本體;該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,使得該等帶電粒子束中之每一者藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成;且該施加電位包含將電位施加至複數個電極,該複數個電極與每一其他電極電隔離且同時電連接至該第一孔徑本體之該等孔徑之複數個群組中之一不同群組的孔徑周邊表面。
根據本發明之一態樣,提供操縱帶電粒子束之方法,其包含:將複數個帶電粒子束通過一孔徑總成引導至一樣本上;及藉由將電位施加至該孔徑總成中之電極來靜電操縱該等帶電粒子束,其中:該孔徑總成包含一第一孔徑本體及一第二孔徑本體;該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,使得該等帶電粒子束中之每一者藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成;該施加電位包含在該第一孔徑本體中之孔徑與該第二孔徑本體中之對應孔徑之間施加電位差;該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且該第二孔徑本體中之每一對應孔徑係由在至少平行於該伸長隙縫之一最長軸線之一方向上小於該伸長隙縫的一開口組成。
根據本發明之一態樣,提供一種用於一帶電粒子多束投影系統之一操縱器單元之孔徑總成,該孔徑總成包含:一第一孔徑本體,其中界定一第一孔徑陣列;及一第二孔徑本體,其中界定一對應孔徑陣列,該對應孔徑陣列與該第一孔徑陣列對準以界定用於該多束之各別帶電粒子束通過該孔徑總成之路徑;一第一電極系統,其與該第一孔徑本體相關聯,該第一電極系統經組態以將一電位施加至該第一孔徑本體之每一孔徑之一周邊表面;一第二電極系統,其與該第二孔徑本體相關聯,該第二電極系統經組態以將一電位施加至該第二孔徑本體之每一孔徑之一周邊表面,其中該第一電極系統包含複數個電極,每一電極與每一其他電極電隔離且同時電連接至該第一孔徑本體中之該等孔徑之複數個群組中之一不同群組的該周邊表面。
根據本發明之一態樣,提供一種用於一帶電粒子多束投影裝置之一束操縱器單元之孔徑總成,其包含:一第一孔徑本體,其中界定第一複數個孔徑;及一第二孔徑本體,其中界定對應複數個孔徑,該對應複數個孔徑相對於該第一複數個孔徑而定位以界定用於該多束之各別帶電粒子束通過該孔徑總成之路徑,其中:該第一孔徑本體中之該等孔徑之至少一子集中的每一者係一伸長隙縫;且與該伸長隙縫對應的複數個孔徑中之每一對應孔徑為一縱橫比小於該伸長隙縫的一開口。
根據本發明之一態樣,提供一種用於一帶電粒子多束投影系統之束操縱器單元,該操縱器單元包含一透鏡,該透鏡包含:一逆流方向透鏡孔徑陣列,其具有一相關聯逆流方向擾動電極陣列;及一順流方向透鏡孔徑陣列,其具有一相關聯順流方向擾動電極陣列,其中:該逆流方向透鏡孔徑陣列、該順流方向透鏡孔徑陣列及該等擾動陣列相對於彼此定位,以使得每一陣列中之孔徑界定用於該多束之各別帶電粒子束通過該操縱器單元之路徑;且該等逆流方向及順流方向擾動電極可控制以在操作期間將擾動場施加至由該透鏡產生之場。
根據本發明之一態樣,提供一種操縱帶電粒子束之方法,其包含:提供一透鏡,該透鏡包含:一逆流方向透鏡孔徑陣列,其具有一相關聯逆流方向擾動電極陣列;及一順流方向透鏡孔徑陣列,其具有一相關聯順流方向擾動電極陣列;使多個帶電粒子束穿過該逆流方向透鏡孔徑陣列及該順流方向透鏡孔徑陣列中之每一者中的各別孔徑;及控制該等逆流方向及順流方向擾動電極以將擾動場施加至由該透鏡產生之場。
現在將詳細參考例示性實施例,在隨附圖式中說明該等例示性實施例之實例。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同編號表示相同或相似元件。例示性實施例之以下描述中所闡述之實施並不表示符合本發明之所有實施。取而代之,其僅僅為符合關於所附申請專利範圍中所敍述之本發明之態樣的裝置及方法之實例。
可藉由顯著增加IC晶片上之電路組件(諸如電晶體、電容器、二極體等)之填集密度來實現電子器件之增強之計算能力,此減小器件之實體大小。此已藉由提高之解析度來實現,從而使得能夠製作更小的結構。舉例而言,智慧型手機中之IC晶片(其為拇指甲大小且在2019年或早於2019年可用)可包括超過20億個電晶體,每一電晶體之大小小於人類毛髮之1/1000。因此,半導體IC製造係具有數百個個別步驟之複雜且耗時製程並不出人意料。甚至一個步驟中之錯誤亦有可能顯著影響最終產品之功能。甚至一個「致命缺陷」亦可造成器件故障。製造製程之目標為改良製程之總體良率。舉例而言,為獲得50步驟製程(其中步驟可指示形成於晶圓上之層的數目)之75%良率,每一個別步驟必須具有大於99.4%之良率。若個別步驟具有為95%之良率,則總製程良率將低至7%。
雖然在IC晶片製造設施中高製程良率係合乎需要的,但維持高基板(亦即晶圓)產出量(被定義為每小時處理基板之數目)亦係必需的。高製程良率及高基板產出量可受到缺陷之存在影響。若需要操作員干預來檢閱缺陷,則尤其如此。因此,藉由檢測工具(諸如掃描電子顯微鏡(「SEM」))進行高產出量偵測及微米及奈米尺度缺陷之識別對於維持高良率及低成本係至關重要的。
SEM包含掃描器件及偵測器裝置。掃描器件包含:照明裝置,其包含用於產生初級電子之電子源;及投影裝置,其用於運用一或多個聚焦的初級電子束來掃描樣本,諸如基板。至少照明裝置或照明系統及投影裝置或投影系統可統稱為電子光學系統或裝置。初級電子與樣本相互作用,且產生次級電子。偵測裝置在掃描樣本時捕捉來自樣本之次級電子,使得SEM可產生樣本之經掃描區域的影像。為了進行高產出量檢測,檢測裝置中之一些使用多個聚焦之初級電子束,亦即多束。多束之組成束可被稱作子束或細射束。多束可同時掃描樣本之不同部分。多束檢測裝置因此可以比單束檢查裝置高得多的速度檢測樣本。
以下諸圖係示意性的。因此出於清楚起見,圖式中之組件的相對尺寸被誇示。在以下圖式描述內,相同或類似參考數字係指相同或類似組件或實體,且僅描述關於個別實施例之差異。雖然本說明書及圖式係針對電子光學裝置,但應瞭解,實施例並不用以將本發明限制為特定帶電粒子。因此,貫穿本發明文件對電子之參考可被認為對帶電粒子之一般參考,其中帶電粒子未必為電子。
現在參看圖1,其為說明例示性帶電粒子束檢測裝置100之示意圖。圖1之帶電粒子束檢測裝置100包括主腔室10、裝載鎖定腔室20、帶電粒子束工具40 (其可被稱作電子束工具,其中電子用作帶電粒子)、設備前端模組(EFEM) 30及控制器50。帶電粒子束工具40位於主腔室10內。
EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。第一裝載埠30a及第二裝載埠30b可例如收納含有待檢測之基板(例如,半導體基板或由其他材料製成之基板)或樣本的基板前開式單元匣(FOUP) (基板、晶圓及樣本在下文中被集體地稱作「樣本」)。EFEM 30中之一或多個機器人臂(圖中未繪示)將樣本輸送至裝載鎖定腔室20。
裝載鎖定腔室20用以移除樣本周圍之氣體。此產生真空,亦即局部氣體壓力低於周圍環境中之壓力。可將裝載鎖定腔室20連接至裝載鎖定真空泵系統(圖中未繪示),該裝載鎖定真空泵系統移除裝載鎖定腔室20中之氣體粒子。裝載鎖定真空泵系統之操作使得裝載鎖定腔室能夠達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(圖中未繪示)將樣本自裝載鎖定腔室20輸送至主腔室10。將主腔室10連接至主腔室真空泵系統(圖中未繪示)。主腔室真空泵系統移除主腔室10中之氣體粒子,使得樣本周圍之壓力達到低於第一壓力之第二壓力。在達到第二壓力之後,將樣本輸送至藉以可檢測樣本之帶電粒子束工具40。帶電粒子束工具40可包含多束電子光學裝置。
控制器50以電子方式連接至帶電粒子束工具40。控制器50可為經組態以控制帶電粒子束檢測裝置100之處理器(諸如電腦)。控制器50亦可包括經組態以執行各種信號及影像處理功能之處理電路系統。雖然控制器50在圖1中被展示為在包括主腔室10、裝載鎖定腔室20及EFEM 30之結構之外部,但應瞭解,控制器50可為該結構之部分。控制器50可位於帶電粒子束檢測裝置100之組成元件中之一者中或其可分佈於組成元件中之至少兩者上方。雖然本發明提供容納電子束檢測工具之主腔室10的實例,但應注意,本發明之態樣在其最廣泛意義上而言不限於容納電子束檢測工具之腔室。實情為,應瞭解,亦可將前述原理應用於在第二壓力下操作之裝置的其他工具及其他配置。
現在參看圖2,其為說明為圖1之例示性帶電粒子束檢測裝置100之部分的例示性帶電粒子束工具40之示意圖。帶電粒子束工具40 (在本文中亦稱為裝置40)可包含帶電粒子源201 (例如電子源)、投影裝置230、機動載物台209及樣本固持器207。帶電粒子源201及投影裝置230可一起被稱作電子光學裝置。樣本固持器207由機動載物台209支撐,以便固持用於檢測之樣本208 (例如,基板或遮罩)。帶電粒子束工具40可進一步包含電子偵測器件240。
帶電粒子源201可包含陰極(圖中未繪示)及提取器或陽極(圖中未繪示)。帶電粒子源201可經組態以自陰極發射電子作為初級電子。藉由提取器及/或陽極提取或加速初級電子以形成包含初級電子之帶電粒子束202。
投影裝置230經組態以將帶電粒子束202轉換成複數個子束211、212、213且將每一子束引導至樣本208上。儘管為簡單起見說明三個子束,但可能存在數十、數百或數千個子束。該等子束可被稱作細射束。
控制器50可連接至圖1之帶電粒子束檢測裝置100的各種部分,諸如帶電粒子源201、電子偵測器件240、投影裝置230及機動載物台209。控制器50可執行各種影像及信號處理功能。控制器50亦可產生各種控制信號以管控帶電粒子束檢測裝置100 (包括帶電粒子束工具40)之操作。
投影裝置230可經組態以將子束211、212及213聚焦至用於檢測之樣本208上且可在樣本208之表面上形成三個探測光點221、222及223。投影裝置230可經組態以使初級子束211、212及213偏轉,以使探測光點221、222及223橫越樣本208之表面之區段中的個別掃描區域進行掃描。回應於初級子束211、212及213入射於樣本208上之探測光點221、222及223上,可自樣本208產生電子,該等電子可包括次級電子及反向散射電子。次級電子通常具有≤50 eV之電子能。反向散射電子通常具有介於50 eV與初級子束211、212及213之著陸能量之間的電子能。
電子偵測器件240可經組態以偵測次級電子及/或反向散射電子且產生對應信號,該等對應信號被發送至控制器50或信號處理系統(圖中未繪示)例如以建構樣本208之對應掃描區域的影像。電子偵測器件240可併入至投影裝置230中或可與該投影裝置分離,其中次級光學柱經提供以將次級電子及/或反向散射電子引導至電子偵測器件240。
控制器50可包含影像處理系統,該影像處理系統包括影像獲取器(圖中未繪示)及儲存器件(圖中未繪示)。舉例而言,控制器50可包含處理器、電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算器件及其類似者,或其組合。影像獲取器可包含控制器之處理功能的至少部分。因此,影像獲取器可包含至少一或多個處理器。影像獲取器可以通信方式耦合至帶電粒子束工具40之電子偵測器件240從而准許信號通信,諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍牙、網際網路、無線網路、無線電以及其他或其組合。影像獲取器可自電子偵測器件240接收信號,可處理信號中所包含之資料且可根據該資料建構影像。影像獲取器可因此獲取樣本208之影像。影像獲取器亦可執行各種後處理功能,諸如產生輪廓、疊加指示符於所獲取影像上,及其類似者。影像獲取器可經組態以執行所獲取影像之亮度及對比度等的調整。儲存器可為儲存媒體,諸如硬碟、隨身碟、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似者。儲存器可與影像獲取器耦接,且可用於保存經掃描原始影像資料作為原始影像,及後處理影像。
影像獲取器可基於自電子偵測器件240接收之成像信號獲取樣本之一或多個影像。成像信號可對應於用於進行帶電粒子成像之掃描操作。所獲取影像可為包含複數個成像區域之單個影像。可將該單個影像儲存於儲存器中。單個影像可為可劃分成複數個區之原始影像。該等區中之每一者可包含含有樣本208之特徵的一個成像區域。所獲取影像可包含遍及一時間段取樣多次的樣本208之單一成像區域的多個影像。可將該多個影像儲存於儲存器中。控制器50可經組態以運用樣本208之同一位置之多個影像來執行影像處理步驟。
控制器50可包括量測電路系統(例如,類比至數位轉換器)以獲得偵測到之帶電粒子(例如次級電子)的分佈。在偵測時間窗期間收集之帶電粒子(例如電子)分佈資料可與入射於樣本表面上之初級子束211、212及213中之每一者之對應掃描路徑資料結合使用,以重建構受檢測樣本結構之影像。經重建構影像可用以顯露樣本208之內部或外部結構的各種特徵。經重建構影像可藉此用以顯露可存在於樣本中之任何缺陷。
控制器50可控制機動載物台209以在樣本208之檢測期間移動樣本208。控制器50可使得機動載物台209能夠至少在樣本檢測期間例如以恆定速度在一方向上(較佳連續地)移動樣本208。控制器50可控制機動載物台209之移動,使得該控制器取決於各種參數而改變樣本208之移動速度。舉例而言,控制器50可取決於掃描製程之檢測步驟之特性而控制載物台速度(包括其方向)。
可提供包含初級投影裝置、機動載物台及樣本固持器之多束電子束工具。初級投影裝置可包含照明裝置。初級投影裝置可包含以下組件中之一或多者:電子源、槍孔徑板、聚光透鏡、孔徑陣列、束操縱器(其可包含MEMS結構)、物鏡及束分離器(例如韋恩濾波器)。樣本固持器係由機動載物台支撐。樣本固持器經配置以固持用於檢測之樣本(例如,基板或遮罩)。
多束電子束工具可進一步包含次級投影裝置及關聯電子偵測器件。電子偵測器件可包含複數個電子偵測元件。
初級投影裝置經配置以照明樣本。回應於初級子束或探測光點入射於樣本上,自樣本產生包括次級電子及反向散射電子之電子。次級電子在複數個次級電子束上傳播。次級電子束通常包含次級電子(具有≤ 50 eV之電子能量)且亦可包含反向散射電子中之至少一些(具有在50 eV與初級子束之著陸能量之間的電子能量)。初級投影裝置中之束分離器可經配置以使次級電子束之路徑朝向次級投影裝置偏轉。次級投影裝置隨後將次級電子束之路徑聚焦至電子偵測器件之複數個元件上。偵測元件產生對應信號,該等信號可被發送至控制器或信號處理系統,例如以建構樣本之對應經掃描區域之影像。
圖3及圖4為各自例示實施例之帶電粒子束工具40的示意圖。帶電粒子束工具40包含投影裝置230。帶電粒子束工具40可用作如上文所描述之帶電粒子束檢測裝置100之部分。投影裝置230可併入至其他類型之帶電粒子束工具40中,諸如上文所提及之多束電子束工具。
投影裝置230包含聚光透鏡陣列。聚光透鏡陣列將帶電粒子束112劃分成複數個子束114。在一實施例中,聚光透鏡陣列將子束114中之每一者聚焦至各別中間焦點115。
在所展示之實施例中,聚光透鏡陣列包含複數個束孔徑110。束孔徑110可例如藉由大體上平面束孔徑本體111中之開口來形成。束孔徑110將帶電粒子束112劃分成對應複數個子束114。在一些實施例中,帶電粒子包含電子或由電子組成。帶電粒子係由帶電粒子源201提供。帶電粒子源201可或可不形成帶電粒子束工具40之部分。帶電粒子源201可以以上參考圖2所描述之方式中的任一者組態。帶電粒子源201可因此包含陰極(圖中未繪示)及提取器或陽極(圖中未繪示)。帶電粒子源201可包含高亮度熱場發射器,其具有亮度與總發射電流之間的理想平衡。
在所展示之實施例中,聚光透鏡陣列包含複數個聚光透鏡116。該複數個聚光透鏡116可被視為係聚光透鏡陣列且可處於共同平面中。每一聚光透鏡116可與束孔徑110中之一對應束孔徑相關聯。每一聚光透鏡116可(例如)形成於束孔徑110內,定位成直接鄰近於束孔徑110,及/或與束孔徑本體111整合(例如,其中束孔徑本體111形成聚光透鏡116之電極中之一者)。因此,形成聚光透鏡陣列之電極的板或陣列亦可充當束孔徑。形成板或陣列之物件可被稱作孔徑本體。
聚光透鏡116可包含多電極透鏡。透鏡陣列可採取至少兩個板(充當電極)之形式,其中每一板中之孔徑彼此對準且對應於子束之位置。在操作期間將該等板中之至少兩者維持處於不同電位以達成所要透鏡化效應。在一配置中,聚光透鏡陣列係由三個板陣列形成,在該三個板陣列中,帶電粒子在其進入及離開每一透鏡時具有相同能量,該配置可被稱作單透鏡。單透鏡(例如包括可用於聚光透鏡陣列中之單透鏡)亦可通常具有相對於彼此對稱地配置之電極(例如,板陣列),諸如具有在電極之間與電極等距的進入及離開電極。進入及離開電極亦通常經保持處於相同電位。在其他配置中,聚光透鏡係由四個或多於四個電極(例如,板陣列)形成,其中帶電粒子在其進入及離開每一透鏡時具有相同的能量。此類配置可再次具有保持處於相同電位之進入及離開電極及/或電極之對稱配置,但因為存在多於三個電極,所以此等配置可不嚴格地被認為單透鏡。配置透鏡(無論透鏡是否嚴格地為單透鏡)使得帶電粒子在其進入及離開每一透鏡時具有相同的能量意謂分散僅出現在每一透鏡內(透鏡之進入電極與離開電極之間),藉此限制離軸色像差。當聚光透鏡之厚度較低,例如數毫米時,此類像差具有較小或可忽略的影響。
每一聚光透鏡116將子束114中之一者(例如,一不同各別子束)聚焦至各別中間焦點115。複數個聚光透鏡116之中間焦點115可實質上處於共同平面中,該共同平面可被稱作中間影像平面120。
投影裝置230進一步包含複數個物鏡118。物鏡118在中間焦點(及中間影像平面120)之下游。複數個物鏡118可被認為係物鏡陣列且可處於共同平面中。每一物鏡118將子束114中之一者投影(自對應聚光透鏡116)至待評估之樣本208上。因此,在聚光透鏡116與物鏡118之間可能存在一對一對應性,其中每一子束114在一對聚光透鏡116與物鏡118之間傳播,此對於彼子束係唯一的。對應的一對一對應性可存在於聚光透鏡陣列之束孔徑110與物鏡118之間。
如圖3中所例示,投影系統230可經組態以使得每一子束114之(例如對應於子束114之束軸線的子束114之主射線的)路徑122實質上為自每一聚光透鏡116至對應物鏡118 (亦即,至對應於彼聚光透鏡116之物鏡118)之直線。該直線路徑可進一步延伸至樣本208。替代地,如圖4中所例示,準直器524可提供於聚光透鏡116與物鏡118之間,例如提供於中間影像平面120中。準直器524準直子束。子束之準直降低了物鏡118處之場曲率效應,籍此減少由場曲率引起之誤差,諸如像散及聚焦誤差。
在一些實施例中,如圖3及圖4中所例示,投影裝置230進一步包含減少子束114中之一或多個像差之一或多個像差校正器124、125、126。在一實施例中,像差校正器124之至少一子集中的每一者經定位於中間焦點115中的一各別中間焦點中或直接鄰近於中間焦點115中的一各別中間焦點(例如,在中間影像平面120中或鄰近於中間影像平面120)。子束114在諸如中間平面120之焦平面中或附近具有最小橫截面積。與在別處(亦即,中間平面120之逆流方向或順流方向)可用之空間相比(或與將在不具有中間影像平面120之替代配置中可用的空間相比),此為像差校正器124提供更多的空間。在一實施例中,定位於中間焦點115 (或中間影像平面120)中或直接鄰近於中間焦點115 (或中間影像平面120)之像差校正器124包含偏轉器以校正出現在不同束的不同位置處之源201。像差校正器124可用以校正由源201引起之宏觀像差,該等宏觀像差防止每一子束114與對應物鏡118之間的良好對準。像差校正器124可校正防止適當柱對準之像差。此類像差亦可導致子束114與像差校正器124之間的未對準。出於此原因,另外或替代地,可能需要將像差校正器125定位於聚光透鏡116處或附近(例如,其中每一此像差校正器125與聚光透鏡116中之一或多者整合或直接鄰近於聚光透鏡116中之一或多者)。此為合乎需要的,此係因為在聚光透鏡116處或附近,像差將尚未導致對應子束114之移位,此係因為聚光透鏡116與束孔徑110豎直地接近或重合。然而,將校正器125定位於聚光透鏡116處或附近之挑戰在於,子束114在此位置處相對於下游更遠之位置各自具有相對較大的橫截面積及相對較小的節距。
在一些實施例中,如圖3及圖4中所例示,像差校正器126之至少一子集中之每一者與物鏡118中之一或多者整合或直接鄰近於物鏡118之該一或多者。在一實施例中,此等像差校正器126減少以下各者中之一或多者:場曲率;聚焦誤差;及像散。另外或替代地,一或多個掃描偏轉器(圖中未繪示)可與物鏡118中之一或多者整合或直接鄰近於物鏡118中之一或多者,從而使子束114遍及樣本208進行掃描。此配置可例如在EP2425444A1中所描述而實施,該EP2425444A1特此係以引用方式特別併入至將孔徑陣列用作掃描偏轉器之揭示內容。
像差校正器124、125可為如EP2702595A1中所揭示之基於CMOS之個別可程式化偏轉器或如EP2715768A2中所揭示之多極偏轉器陣列,兩個文件中的細射束操縱器之描述特此係以引用方式併入。
在一實施例中,像差校正器,例如與物鏡118相關聯之像差校正器126包含減小場曲率之場曲率校正器。減小場曲率會減小藉由場曲率引起之誤差,諸如像散及聚焦誤差。在不存在校正的情況下,在子束114沿著聚光透鏡116與物鏡118之間的直線路徑傳播的實施例中(如圖3中所例示),歸因於至物鏡118上之所得傾斜入射角,顯著的場曲率像差效應被預期為在物鏡118處發生。
在一實施例中,場曲率校正器與物鏡118中之一或多者整合,或直接鄰近於物鏡118中之一或多者。在一實施例中,場曲率校正器包含被動式校正器。被動式校正器可例如藉由使物鏡118之孔徑的直徑及/或橢圓率發生變化來實施。被動式校正器可例如如EP2575143A1中所描述來實施,該EP2575143A1特此係以引用方式特別併入至用以校正像散之孔徑圖案之所揭示使用。被動式校正器之被動本質係合乎需要的,此係因為其意謂不需要控制電壓。在被動式校正器藉由使物鏡118之孔徑的直徑及/或橢圓率發生變化來實施的實施例中,被動式校正器提供並不需要任何額外元件,諸如額外透鏡元件的其他合乎需要的特徵。關於被動校正器之挑戰在於其係固定的,因此需要預先謹慎地計算所需校正。另外或替代地,在一實施例中,場曲率校正器包含主動式校正器。主動式校正器可以可控制方式校正帶電粒子以提供校正。藉由每一主動式校正器應用之校正可藉由控制主動式校正器之一或多個電極中每一者的電位來控制。在一實施例中,被動式校正器應用粗略校正,且主動式校正器應用較精細及/或可調諧校正。
在下文描述束操縱器單元300之實例。束操縱器單元300包含孔徑總成370。可將束操縱器單元300提供為上文所描述之投影裝置230之組態中的任一者之部分。束操縱器單元300對穿過束操縱器單元300之帶電粒子束施加效應。該效應可包含與帶電粒子束相關聯的像差或多極或聚焦誤差之校正。束操縱器單元300可用以實施上文所提及之像差校正器124、125、126中之一或多者。束操縱器單元300可因此定位於中間焦點115中之一各別中間焦點中或直接鄰近於中間焦點115中之一各別中間焦點。替代地或另外,束操縱器單元300可與物鏡118中之一或多者整合或直接鄰近於該一或多者。替代地或另外,束操縱器單元300可與聚光透鏡116中之一或多者整合或直接鄰近於該一或多者。
如圖5及圖6中所例示,孔徑總成370可包含第一孔徑本體301及第二孔徑本體302。第一孔徑本體301可在第二孔徑本體302之束路徑中的逆流方向,但無需為此狀況。第一孔徑本體301中之複數個孔徑304與第二孔徑本體302中之對應複數個孔徑306對準。該對準係為了向各別複數個帶電粒子束中之每一者提供一帶電粒子路徑。遵循帶電粒子路徑,每一帶電粒子束可穿過孔徑總成370穿過第一孔徑本體301及第二孔徑本體302中之各別孔徑。在帶電粒子束傾斜地入射至孔徑總成370上的情況下,第二孔徑本體302中之孔徑306可相對於第一孔徑本體301中之對應孔徑304側向地位移(亦即,以免在豎直方向上對準)。在此狀況下,側向位移達成與帶電粒子束之路徑的必要對準,以允許帶電粒子束穿過孔徑總成370。在帶電粒子束正交地入射至孔徑總成370上的情況下,第二孔徑本體302中之孔徑306可定位於第一孔徑本體301中之對應孔徑304正下方(亦即,以便在豎直方向上對準)。帶電粒子束之實例路徑在圖5及圖6中被標註為305。第一孔徑本體301中之孔徑304可具有與第二孔徑本體302中之孔徑306相同的大小及/或形狀。替代地,第一孔徑本體301中之孔徑304可具有與第二孔徑本體302中之孔徑306不同的大小及/或形狀。在一些配置中,所有孔徑304、306具有具備彎曲邊緣之形狀,諸如圓形、橢圓形或卵形,但其他形狀係可能的。第一孔徑本體301及第二孔徑本體302可為大體上平面的。通常,第一孔徑本體301中之每一孔徑304之最大平面內尺寸(例如,直徑)小於第一孔徑本體301與第二孔徑本體302之間的分離度。然而,在一些實施例中,第一孔徑本體301中之每一孔徑304之最大平面內尺寸(例如直徑)可等於或大於第一孔徑本體301與第二孔徑本體302之間的分離度(例如其中第一孔徑本體301與第二孔徑本體302形成單透鏡之部分)。
提供電驅動單元320以用於將電位施加至界定第一孔徑本體301及第二孔徑本體302中之孔徑304、306的至少孔徑周邊表面。該驅動單元可經由電壓供應連接件(圖中未繪示)連接至第一孔徑本體301及第二孔徑本體302中之一者或兩者。因此,在操作期間,複數個帶電粒子束朝向樣本208被引導通過孔徑總成。可提供電驅動單元320例如作為包含操縱器單元300之帶電粒子投影系統230及/或束工具40之部分或作為操縱器單元300之部分。帶電粒子束工具40可用作如上文所描述之帶電粒子束檢測裝置100之部分。電驅動單元320可提供於被稱作電子光學系統或裝置之帶電粒子束工具40之一部分中,如上文所描述。
在本文中通常在第一孔徑本體301在第二孔徑本體302之逆流方向的情況下例示實施例。然而,第一孔徑本體301及第二孔徑本體302可以反向組態提供,其中第二孔徑本體302在第一孔徑本體301之逆流方向。
孔徑總成370用以藉由控制帶電粒子束穿過之區中的電場來操縱帶電粒子束。此係藉由將合適電位施加至孔徑總成370之電極來達成。
在一些實施例中,第一孔徑本體301包含第一電極系統311。可以各種方式形成第一電極系統311。第一電極系統311可提供為第一孔徑本體301之整體部分,如圖5中示意性地所描繪。替代地,如圖6中示意性地所描繪,第一電極系統311可提供為第一支撐結構361上之導電層或結構,如圖6中所描繪。在一途徑中,第一電極系統311可使用絕緣體上矽製程而形成。第一電極系統311可提供為氧化矽之絕緣層上的導電層或結構。第一電極系統311可包含金屬化層及/或諸如矽或摻雜矽之導電半導體。第一電極系統311可包含金屬,諸如鉬或鋁。第一電極系統311之實例描繪於圖7至圖12中且在下文論述。第一電極系統311經組態以將電位施加至第一孔徑本體301之每一孔徑304之孔徑周邊表面。第一電極系統311可包含複數個電極。每一電極可包含一導電元件及/或導電軌。每一電極與每一其他電極電隔離且同時電連接至第一孔徑本體301之孔徑304之複數個群組中之一不同群組的孔徑周邊表面。每一群組含有複數個孔徑304。因此,每一電極能夠將電位同時施加至複數個孔徑304,而與施加至第一孔徑本體301中之其他孔徑304的電位無關。相較於每一電極僅連接至一個孔徑情況下的狀況,因此將需要較少電極。具有較少電極會促進電極的佈線,藉此促進製造且視需要啟用電極中之孔徑的更緻密圖案。相較於所有孔徑電連接在一起的情況,諸如當孔徑形成於一體式金屬板中時,獨立地控制施加至孔徑304之群組的電位提供較大程度之控制。因此提供對束操縱器單元之製造簡易性與束操縱之可控性的改良之平衡。
在一些實施例中,第二孔徑本體302包含第二電極系統312。第二電極系統312將電位施加至第二孔徑本體302之每一孔徑306的孔徑周邊表面。第二電極系統312可以上文針對第一電極系統311所描述之方式中的任一者而組態。第二電極系統312可因此包含形成於第二支撐結構362上之複數個電極。每一電極與每一其他電極電隔離且同時電連接至第二孔徑本體302之孔徑306之複數個群組中之一不同群組的孔徑周邊表面。替代地,第二電極系統312可包含電連接至第二孔徑本體302之全部孔徑周邊表面的電極。第二電極系統312可因此實施為單個一體式導電板,使得第二孔徑本體302及第二電極系統312由同一元件提供(亦即,使得第二孔徑本體由第二電極系統312組成)。
在一些實施例中,如圖7至圖12中所例示,相同數目個孔徑304提供於第一孔徑本體301中之孔徑304之群組中的至少兩者中之每一者中。替代地或另外,相同數目個孔徑306可提供於第二孔徑本體302中之孔徑306之群組中的至少兩者中之每一者中。
在一些實施例中,如圖7至圖10中所例示,第一電極系統311之每一電極包含伸長導電帶322、324及/或第二電極系統312之每一電極包含伸長導電帶322、324。每一電極系統中之各別伸長導電帶可經實施為對置之平行板。每一各別電極系統之導電帶322、324較佳彼此平行及/或為實質上線性的。將電極配置於各別電極系統中之導電帶322、324中使得佈線更容易,此係因為可在導電帶322、324之末端處進行至導電帶322、324之電連接。在一些配置中,導電帶322、324經配置以延伸至第一電極系統311或第二電極系統312之周邊邊緣,如圖7至圖10中示意性地所展示。將導電帶322、324延伸至周邊邊緣意謂可在周邊邊緣處進行至導電帶322、324的電連接。諸圖中所展示之電極系統的周邊邊緣係示意性的。周邊表面之形狀及相對大小在實務配置中可為不同的。周邊表面可經設定尺寸(例如)以含有比諸圖中所展示之孔徑多的孔徑304及306。
在一些實施例中,第一孔徑本體301中之孔徑304及/或第二孔徑本體302中之孔徑306各自以規則陣列而配置。規則陣列具有重複單位胞元。規則陣列可包含例如正方形陣列、矩形陣列或六邊形陣列。孔徑304或306可替代地以包含複數個孔徑304或306之不規則配置來配置,該不規則配置可被稱作不規則陣列。在具有規則陣列之配置中,可使得導電帶322、324彼此平行且垂直於陣列之主軸。在圖7至圖10中所展示之實例中,孔徑304、306以正方形陣列形式配置。規則陣列可具有在頁面之平面中為水平的一個主軸及在頁面之平面中為豎直的另一主軸。圖7及圖9中之導電帶322因此彼此平行且垂直於水平主軸。圖8及圖10中之導電帶324彼此平行且垂直於豎直主軸。
導電帶322、324可各自具有短軸及長軸。在圖7及圖9之實例中,每一短軸為水平的且每一長軸為豎直的。在圖8及圖10之實例中,每一短軸為豎直的且每一長軸為水平的。平行於短軸的導電帶322、324之節距可大於平行於短軸的陣列之節距。每一豎直導電帶可因此包含多行孔徑304、306,及/或每一水平帶可因此包含多列孔徑304、306。此途徑提供可控性與製造簡易性之間的良好平衡。替代地,平行於短軸的導電帶322、324之節距可等於平行於短軸的陣列之節距,此提供電場之較精細空間控制。
在一實施例中,第一電極系統311之導電帶322不平行於(例如垂直於)第二電極系統312之導電帶324。此配置可尤其較佳,例如其中第一電極系統311之導電帶322彼此平行且第二電極系統312之導電帶324彼此平行。舉例而言,第一電極系統311可包含如圖7或圖9中所展示之導電帶322,且第二電極系統312可包含如圖8或圖10中所展示之導電帶324,或反之亦然。以此方式使不同電極系統311、312中之導電帶322、324交叉提供了第一孔徑本體301及第二孔徑本體302中之對應孔徑304、306之間的電位差之廣泛範圍的可能組合,而不會使得至各別導電帶322、324之電連接之佈線更加困難。
在另一配置中,如圖11中所例示,複數個電極包含彼此鑲嵌之複數個導電元件326。在所展示之實例中,導電元件326為正方形。可使用其他鑲嵌形狀。此途徑相比於如上文參看圖7至圖10所論述的使用導電帶之配置可提供用於操縱帶電粒子的更多自由度,但電信號至個別電極的佈線可為更複雜的。
在另一配置中,如圖12中所例示,複數個電極包含複數個導電元件328,該複數個導電元件包含同心迴路之至少部分,例如同心環(諸如圓形環)之至少部分。此途徑可允許對具有與同心迴路相同或相似對稱性之像差的高效校正。然而,相比於如上文參看圖7至圖10所論述的使用導電帶之配置,電信號至個別電極的佈線可為更複雜的。
在一些實施例中,第一電極系統311包含如上文參考圖7至圖12所描述的各自連接至孔徑周邊表面之群組的複數個電極,且第二電極系統312包含如圖13中所例示之單一電極319。單一電極319電連接至第二孔徑本體302之全部孔徑周邊表面。第二孔徑本體302之孔徑周邊表面因此保持處於相同電位。替代地,第一電極系統311包含各自連接至孔徑周邊表面之群組的複數個電極,如上文參看圖7至圖12所描述,且第二電極系統312包含各自彼此電隔離且電連接至第二孔徑本體302之孔徑中之不同各別孔徑的孔徑周邊表面之複數個電極,如圖14中所例示。
在一些實施例中,孔徑總成370與帶電粒子投影裝置230一起使用。帶電粒子投影裝置230可形成帶電粒子束工具40之部分。帶電粒子束工具40可包含使用帶電粒子束之任何類型的工具。帶電粒子束工具40及/或投影裝置230包含複數個透鏡。每一透鏡投影各別帶電粒子子束。在圖3或圖4中所描繪之類型之帶電粒子束工具40中,複數個透鏡可包含投影裝置230之複數個聚光透鏡116或複數個物鏡118。在其他帶電粒子束工具40中,可提供其他複數個透鏡。
在此類實施例中,孔徑總成370可與複數個透鏡整合或直接鄰近於該複數個透鏡。在一實施例中,透鏡中之每一者包含多電極透鏡。在此狀況下,第一孔徑本體301可包含多電極透鏡之第一電極。在圖6中所展示之示意性結構中,多電極透鏡之第一電極可為第一孔徑本體301之第一支撐結構361。第一電極系統311之複數個電極與多電極透鏡之第一電極電隔離。此可藉由在圖6中之第一電極系統311與第一支撐結構361 (充當多電極透鏡之電極)之間提供電絕緣層來達成。在一實施例中,第二孔徑本體302包含多電極透鏡之第二電極。在圖6中所展示之示意性結構中,多電極透鏡之第二電極可為第二孔徑本體302之第二支撐結構362。第二電極系統312之複數個電極與多電極透鏡之第二電極電隔離。第一電極系統311、第二電極系統312或此兩者可具有電壓供應連接件。該電壓供應連接件可組態以將電位差施加至第一孔徑本體301及第二孔徑本體302中之至少一者的孔徑之孔徑周邊表面。
孔徑總成370與之整合或直接鄰近的複數個透鏡可包含複數個物鏡118。物鏡118可以上文參看圖3及圖4所描述之方式中之任一者組態。替代地或另外,孔徑總成370與之整合或直接鄰近的複數個透鏡可包含複數個聚光透鏡116。替代地或另外,孔徑總成370提供於中間影像平面120中或直接鄰近於中間影像平面120,該中間影像平面含有由聚光透鏡116聚焦之子束的中間焦點115。聚光透鏡116可以上文參看圖3及圖4所描述之方式中之任一者組態。
第一電極系統311及第二電極系統312可經組態以將擾動(其可被稱作擾動場)提供至由多元件透鏡中之每一者之第一電極及第二電極(及多元件透鏡中之任何其他電極)提供的全局聚焦場。第一電極系統311及第二電極系統312可例如應用對聚焦之局部校正。關於此類型之實施例,第一電極系統311及第二電極系統312可因此被稱作擾動電極系統、擾動電極陣列或局部聚焦校正電極。對聚焦之局部校正可在穿過操縱器單元之不同子束之間係不同的。對聚焦之局部校正可涉及第一電極系統311之不同電極之間或第二電極系統312之不同電極之間的電位差,該等電位差與多元件透鏡之第一電極與第二電極之間的平均總電位差相比較小。電驅動單元320可經組態以控制第一電極系統311及/或第二電極系統312之電極的電位以達成此情形。電驅動單元320可連接至電壓供應連接件。該控制可使得第一電極系統311之最高電位電極與最低電位電極之間的電位差小於第一電極系統311之電極之平均電位與第二電極系統312之電極之平均電位之間的差(視情況小於50%、視情況小於10%、視情況小於5%、視情況小於1%、視情況小於0.1%)。舉例而言,在一個特定實施中,多電極透鏡之第一電極(其具有等於或接近於第一電極系統311之電極之電位之平均值的電位)經提供處於30 kV,多電極透鏡之第二電極(其具有等於或接近於第二電極系統312之電極之電位之平均值的電位)經提供處於2.5 kV,且與此等電位大約100 V的偏差係由第一電極系統311及/或第二電極系統312之電極提供。基於由已知公式 給出之焦距,其中 係帶電粒子束之局部能量,且 係局部電場強度,吾人預期到,針對涉及作為帶電粒子之電子之典型組態,此類電位偏差可應用大約1微米之焦距改變。該途徑因此可用以提供宏觀聚焦及/或位階量測校正。舉例而言,該等校正可用以校正歸因於以下各者中之任一或多者的焦平面偏差: -  有限製作容許度:例如,平坦度(或弓曲)及/或物鏡118之電極之間的間距之控制, -  機械安裝容許度及由物鏡118之機械安裝誘發之變形, -  由靜電場之力誘發之變形, -  對於不具有準直器524之實施例:由通過物鏡118之非遠心通道所引起的場曲率,及 -  聚光透鏡116之場曲率(因為束在穿過聚光透鏡116時並不準直)。
束操縱器單元300之整合可藉由包含如上文所描述之交叉導電帶322、324之第一電極系統311及第二電極系統312特別高效地實施。在兩個電極多電極透鏡之狀況下,沿著 X方向對準之導電帶324可形成於第一電極上,且沿著 Y方向對準之導電帶322可形成於第二電極上。可接著根據以下函數校正焦平面: ,其中 分別表示可依據 XY而應用之聚焦校正。可通常藉由以下操作應用焦點校正:提供自一個導電帶至下一導電帶相對遞增地改變之電位,以使得相鄰導電帶之間的任何電位差保持相對較低,同時仍遍及較長長度尺度提供相對較大的電位改變。可應用於以上所描述之實例幾何形狀之可能校正包括任何傾斜平面校正,以及高階校正,諸如曲線沿著 XY軸對準的彎曲表面,或以 相依性旋轉對稱的校正(其中 )。該途徑亦可與經組態以操作為單透鏡之多電極透鏡一起使用。
在一種類別之實施例中,如圖15至圖17中所例示,第一孔徑本體301中之孔徑304之至少一子集中的每一者係由伸長隙縫組成。每一伸長隙縫可為實質上線性的。該伸長隙縫可具有低於0.5之縱橫比。如圖15中所描繪,伸長隙縫之寬度341與伸長隙縫之長度342的比率因此小於0.5。另外,第二孔徑本體302中之每一對應孔徑306係由在至少平行於伸長隙縫之最長軸線之方向上小於該伸長隙縫的開口組成。第一孔徑本體301可在第二孔徑本體302之束路徑中的逆流方向。第二孔徑本體中之對應孔徑306之形狀可為不同於第一孔徑本體301中之對應伸長隙縫之開口的形狀。開口之至少一子集中之每一者可具有實質上具有彎曲邊緣之形狀,例如以下形狀中之一者:圓形、卵形、橢圓形。當伸長隙縫為矩形時,伸長隙縫之最長軸線將為伸長隙縫之長度,或當伸長隙縫為卵形或橢圓形時,伸長隙縫之最長軸線將為伸長隙縫之長軸。開口可例如具有在0.5與1.0之間,視情況在0.9與1.0之間,視情況實質上等於1.0的縱橫比。因此,第一孔徑本體301中之伸長隙縫可與第二孔徑本體302中之較不伸長(亦即,具有較小縱橫比,意義在於縱橫比更接近1.0)或不伸長(例如,具有接近1.0之縱橫比的圓形、卵形或橢圓形開口)的開口對準。替代地,第二孔徑本體302中之開口可為伸長的但非平行於第一孔徑301中之伸長隙縫。此方法可比具有縱橫比更接近1之開口更不合乎需要,此係因為其可藉由使較少空間可用於佈線而不必要地使第二孔徑本體302中之佈線複雜化。第一孔徑本體301、第二孔徑本體302或此兩者可具有電壓供應連接件。該電壓供應連接件可經組態以具有施加至第一孔徑本體301及第二孔徑本體302中之至少一者之孔徑的孔徑周邊表面之電位差。
在第一孔徑本體301中具有經塑形為伸長隙縫的孔徑304之效應係藉由孔徑304不對稱而對透鏡化效應做出貢獻。該貢獻在平行於伸長隙縫之方向上係可忽略的且在垂直於隙縫之方向上得以加強(相對於圓形開口)。第二孔徑本體302中之對應開口(例如,具有與第一孔徑本體301中之對應孔徑304中之開口不同的形狀)的效應係藉由相反極性貢獻於在平行於伸長隙縫之方向上的較強透鏡化效應(相對於伸長隙縫)及在垂直於伸長隙縫之方向上的較弱或可忽略的透鏡化效應(相對於伸長隙縫)。如上文所提及,第二孔徑本體302中之開口通常為圓形或接近圓形。然而,當第二孔徑本體302中之開口係伸長的且非平行於(例如,垂直於)第一孔徑本體301中之伸長隙縫時,該效應更強。舉例而言,在垂直狀況下,藉由第二孔徑本體302中之開口在平行於第一孔徑本體301中之伸長隙縫之方向上對透鏡化效應的貢獻係相對於第二孔徑本體302中之開口為圓形之狀況的兩倍強,且在垂直於第一孔徑本體301中之伸長隙縫之方向上係可忽略的。
在一實施例中,第一孔徑本體301中之每一伸長隙縫之長度342相對於第一孔徑本體301與第二孔徑本體302之間的分離度足夠大,使得伸長隙縫之末端係由第二孔徑本體302屏蔽(亦即,有效地使末端不存在從而使帶電粒子穿過孔徑總成370)。伸長隙縫之長度可(例如)通常比第一孔徑本體301與第二孔徑本體302之間的分離度大至少兩倍、視情況至少三倍。
第一孔徑本體301與第二孔徑本體302之間的分離度理想地比每一伸長隙縫之寬度大(視情況大至少兩倍,視情況大至少三倍)。此提供了距伸長隙縫之足夠距離以使場在到達第二孔徑本體302之前變得接近均一的,儘管由伸長隙縫在該伸長隙縫之寬度方向上對場造成擾動。
第一孔徑本體301與第二孔徑本體302之間的分離度亦理想地比第二孔徑本體302中之每一孔徑306的最大平面內尺寸(例如,圓形開口之直徑)大(視情況至少兩倍大,視情況至少三倍大)。此再次提供距孔徑306之足夠距離,以使場在到達第一孔徑本體301之前變得接近均一。
第二孔徑本體302中之每一孔徑306的最大平面內尺寸可實質上等於第一孔徑本體301中之對應伸長隙縫的最小平面內尺寸(亦即,寬度)。此可藉由第二孔徑本體302中之孔徑306具有與第一孔徑本體301中之對應伸長隙縫不同的形狀來達成。此允許孔徑306高效地執行其作用同時最小化第二孔徑本體302中之佈線的中斷。由於在第二孔徑本體302中可用於佈線的空間增加,因此相比於第一孔徑本體301需要在第二孔徑本體302中提供更多佈線(如下文進一步所論述)。
如上文所提及,伸長隙縫之伸長率導致來自伸長隙縫之透鏡化效應平行於伸長隙縫之長度係較小的,且在垂直方向上係較大的。此允許產生四極效應。四極效應允許操縱器單元300操作為像差補償器以校正像散。四極效應之大小及極性係藉由各別孔徑304、306之間的電位差予以判定。四極效應之定向係藉由伸長隙縫之定向予以判定。對應用於個別束之像差補償效應的高度控制藉此具備至應用像差補償效應之區所需的最小獨立電連接。針對第二孔徑本體302中之開口為圓形之狀況,在圖16及圖17中定性地描繪該效應。
圖16為沿著 X方向(亦即,平行於伸長隙縫之寬度)之側視截面圖。在圖16中之虛線區之上部部分中,第一孔徑本體301與第二孔徑本體302之間的電位差(在Z方向上)引起在第一孔徑本體301中之孔徑304附近在 X方向(平行於伸長隙縫之寬度341)上的相對較強正透鏡化效應。由於伸長形狀而出現該相對較強正透鏡化效應。無限伸長透鏡(有時被稱作隙縫透鏡)之焦距係由 給出。在 X方向上之負透鏡效應出現在第二孔徑本體302中之對應孔徑306附近。然而,因為孔徑306較不伸長(或不伸長),所以負透鏡效應較小。完美圓形負透鏡(有時被稱作孔徑透鏡)之焦距為 。淨結果為在 X方向上之殘餘正透鏡化效應。殘餘正透鏡化效應可藉由參考對應焦距來進行量化,該對應焦距將在伸長隙縫足夠伸長的情況下大致等於 。此處, 為帶電粒子束之局部能量,且 為局部電場強度。
圖17為沿著 Y方向(亦即,平行於伸長隙縫之長度)之側視截面圖。在此定向中,在第一孔徑本體301中之每一孔徑304附近在 Y方向(平行於伸長隙縫之長度342)上存在小得多(或可忽略)的正透鏡化效應。在 Y方向上之負透鏡效應出現在第二孔徑本體302中之孔徑306附近。在 Y方向上之此負透鏡效應之強度相同於或相似於在孔徑306處在 X方向上之負透鏡效應之強度,如圖16中所展示。在 Y方向上之負透鏡效應大於在 Y方向上來自第一孔徑本體301中之對應孔徑304的正透鏡效應。淨結果為在 Y方向上之殘餘負透鏡化效應,其具有大致等於 之對應焦距。
在第二孔徑本體302中之每一開口伸長且垂直於第一孔徑本體301中之對應伸長隙縫的替代狀況下,藉由第二孔徑本體302中之每一開口對透鏡化效應之貢獻在垂直於開口之伸長的方向上係兩倍強的且在平行於開口之伸長的方向上係可忽略的。淨結果為兩倍強的像散效應。在 X方向上提供殘餘正透鏡效應,其具有大致等於 之對應焦距。在 Y方向上提供殘餘負透鏡效應,其具有大致等於 之對應焦距。
因此,在 X方向上提供殘餘正透鏡效應,且在 Y方向上提供殘餘負透鏡效應,其構成上文所提及之四極效應。
可使用上文參看圖5至圖14所描述之第一電極系統311及第二電極系統312中之任一者來提供孔徑304與306之間的電位差。第一孔徑本體301或第二孔徑本體302兩者之各別第一電極系統311或第二電極系統312或此兩者可經由電壓供應連接件而電連接。此包括使用未必限於將電位提供至電極群組之電極系統。使用伸長隙縫之實施例可使用允許每伸長隙縫或面對伸長隙縫之對應開口個別地控制電位差的電極系統。舉例而言,在一種配置中,第一孔徑本體301包含用於將電位施加至第一孔徑本體301之每一孔徑304之孔徑周邊表面的第一電極系統311。第一電極系統311包含複數個電極。每一電極與第一電極系統311之每一其他電極電隔離且電連接至第一孔徑本體301之孔徑304中之一不同各別孔徑的孔徑周邊表面。替代地或另外,第二孔徑本體302可包含用於將電位施加至第二孔徑本體302之每一孔徑306之孔徑周邊表面的第二電極系統312。第二電極系統312可包含複數個電極。每一電極可與第二電極系統312之每一其他電極電隔離且電連接至第二孔徑本體302之孔徑306中之一不同各別孔徑的孔徑周邊表面。因此,第一孔徑本體301及第二孔徑本體302中之任一者或兩者可包含圖14中所描繪之類型的電極系統。然而,通常,兩個孔徑本體301及302中之僅一者將包含圖14中所描繪之類型的電極系統以避免不必要複雜的電佈線要求。舉例而言,圖14中所描繪之類型的電極系統可提供於兩個孔徑本體301及302中之不包含伸長隙縫的一者中。此配置可為有利的,此係因為不包含伸長隙縫之孔徑本體可具有較不伸長之開口。較不伸長開口可提供用於電連接之佈線的更多空間。然而,如上文所提及,可使用所揭示之第一電極系統311及第二電極系統312之任何其他組合。舉例而言,如圖12中所描繪而實施之第二電極系統312與如圖20或圖21中所描繪而實施之第一孔徑系統311的組合可特別高效。
替代地或除了以上所描述之用於第一電極系統311及第二電極系統312之實例實施以外,亦可使用局部整合式電子器件來提供孔徑304與306之間的電位差。舉例而言,可使用CMOS技術實施局部整合式電子器件。使用CMOS技術之途徑之實例描繪於圖18及圖19中。在此實例中,第二孔徑本體302包含用於第二孔徑本體302之每一孔徑306的局部整合式電子器件。該局部整合式電子器件經組態以將電位施加至孔徑306之孔徑周邊表面。替代地或另外,第一孔徑本體301可包含用於第一孔徑本體301之每一孔徑304的局部整合式電子器件,其中該局部整合式電子器件經組態以將電位施加至孔徑304之孔徑周邊表面。第一孔徑本體301或第二孔徑本體302或此兩者之局部整合式電子器件係藉由電壓供應連接。替代地或另外,可使用整合式被動電路來提供孔徑304與306之間的電位差。該整合式被動電路可包含電阻器網路。電阻器網路允許藉由電位劃分將不同電位施加至第一孔徑本體之孔徑之至少一子集的孔徑周邊表面。電阻器網路可包含串聯之電阻器。可選擇串聯之電阻器以在電阻器之間的節點處達成所要的一系列電位階躍(如在分位器中進行)。節點處之電位用以提供孔徑304與306之間的電位差之所要範圍。電阻器網路可整合至第一孔徑本體301及第二孔徑本體302中之任一者或兩者中。第一孔徑本體301或第二孔徑本體302或此兩者中之電阻器網路係藉由電壓供應連接。局部整合式電子器件及/或整合式被動電路之使用以提供所需電位差會提供高度控制並減少佈線困難。然而,各別第一孔徑本體或第二孔徑本體之構造更複雜。另外,可由此類整合式電子器件及/或整合式被動電路施加之電位差範圍可窄於可使用在外部驅動之電極(例如,使用諸如本文中所描述之電極系統的電極系統)施加之電位差範圍。
四極效應之定向係藉由伸長隙縫之定向予以判定。伸長隙縫之定向可因此根據待校正之像差之預期對稱性而變化。
在一實施例中,如圖20中所例示,伸長隙縫之至少大部分(被標註為孔徑304)相對於垂直穿過第一孔徑本體311之平面的共同軸線徑向地對準。(該共同軸線可相對於頁面之平面在圖20之定向中係豎直的)。第一孔徑本體311 (其可為板)可與複數個孔徑304成平面。在一配置中,界定於第一孔徑本體311中之孔徑為伸長隙縫。該等隙縫可具有長軸及短軸,且可為矩形或橢圓形。矩形隙縫可具有與隙縫之長軸對準之較長側。因此,矩形隙縫之側與針對每一隙縫朝向共同軸線之方向對準。第一孔徑本體311可具有可對應於如圖20中所描繪之第一孔徑本體之中心的軸線。該軸線可被稱作(例如)相對於隙縫孔徑304之共同軸線。至少大部分(若非全部)隙縫孔徑可相對於共同軸線定向,使得隙縫孔徑之長軸與自隙縫孔徑至共同軸線之方向對準。位於界定於第一孔徑本體311中之隙縫孔徑之圖案之反射軸線上的隙縫孔徑沿著反射軸線成角度地相似且僅在圖案中之位置上位移。舉例而言,此等軸線為x軸及y軸且介於45度之間。所有其他隙縫孔徑相對於彼此以及在位置上成角度地位移,但在第一孔徑本體311之平面中在至共同軸線之方向上對準。
在一實施例中,如圖21中所例示,伸長隙縫之至少大部分(被標註為孔徑304)相對於共同軸線實質上方位角地對準,亦即,相對於共同軸線實質上垂直於徑向方向。第一孔徑本體311中之孔徑304的配置為相同的圖案,如圖21中所描繪,但具有關鍵差異。調換每一孔徑之長軸及短軸的對準方向,使得每一孔徑之短軸與朝向第一孔徑本體311之共同軸線的方向對準,且長軸與朝向第一孔徑本體311中之孔徑圖案中的共同軸線之方向正交對準。第一孔徑本體311中之與共同軸線等距的孔徑相對於其自共同軸線之各別共同徑向位移沿切線方向對準。因此,對於矩形隙縫,隙縫之與隙縫之長軸對準的側面與自隙縫朝向共同軸線之方向正交。
在一實施例中,如圖22及圖23中所例示,伸長隙縫之至少大部分彼此平行。該等伸長隙縫可另外橫越第一孔徑本體在列內對準,較佳在第一孔徑本體301之邊緣之間延伸。在第一孔徑本體311中,該等列可為線性的,例如側向的或縱向的,或豎直的或水平的。該等列可相互平行。該等列可或可不平行於第一孔徑本體301之邊緣。
為了提供對像散之更全面控制,包括對像差補償之量值及方向之控制,可由其他孔徑本體提供獨立可控制且傾斜對準之另外四極效應。圖24至圖26中描繪此配置之實例,其中伸長隙縫相對於圖15至圖17之配置旋轉45度。在此類型之實施例中,提供第三孔徑本體351及第四孔徑本體352。第三孔徑本體351可以上文針對第一孔徑本體301所描述之方式中的任一者組態。第四孔徑本體352可以上文針對第二孔徑本體302所描述之方式中的任一者組態。第三孔徑本體351與第四孔徑本體352之間的電位差可以上文針對第一孔徑本體301及第二孔徑本體302所描述之方式中的任一者控制,以便控制另外四極效應。第三孔徑本體351中之複數個孔徑354與第一孔徑本體301、第二孔徑本體302及第四孔徑本體352中之對應複數個孔徑304、306、356對準。該對準允許各別複數個帶電粒子束中之每一者藉由穿過四個各別本體中(例如,第一孔徑本體301、第二孔徑本體302、第三孔徑本體351及第四孔徑本體352中)之各別孔徑304、306、354、356而穿過孔徑總成。第三孔徑本體351中之孔徑354之至少一子集中的每一者係由伸長隙縫組成。第四孔徑本體352中之每一對應孔徑356係由在至少平行於伸長隙縫之最長軸線之方向上小於該伸長隙縫的開口組成。第三孔徑本體351中之伸長隙縫可以上文針對第一孔徑本體301中之伸長隙縫所描述的方式中之任一者組態。第四孔徑本體352中之開口可以上文針對第二孔徑本體302之開口所描述的方式中之任一者組態。(舉例而言,第四孔徑本體352中之開口可具有不同於第三孔徑本體351中之對應伸長隙縫的形狀)。第一孔徑本體301及第三孔徑本體351中之伸長隙縫經對準使得每一帶電粒子束穿過第一孔徑本體301及第三孔徑本體351中之伸長隙縫,該等伸長隙縫在沿著帶電粒子束之路徑檢視時相對於彼此傾斜地對準。在所展示之特定實例中,伸長隙縫以45度對準,但可選擇其他傾斜角。藉由控制由第一孔徑本體301及第二孔徑本體302提供之四極效應及由第三孔徑本體351及第四孔徑本體352提供之傾斜對準四極效應,有可能控制施加至每一帶電粒子子束之總體四極效應的量值及方向兩者。藉此在不需要過多數目個獨立電連接的情況下提供高度控制。
在一實施例中,帶電粒子束工具40包含電子偵測器件240,該電子偵測器件偵測來自樣本之次級電子及反向散射電子中之任一者或兩者。在圖3及圖4中所展示之實例中,電子偵測器件240與物鏡118整合。電子偵測器件240可(例如)包含與物鏡118中之一或多者之底部電極整合的CMOS晶片偵測器。替代地,可提供次級光學柱以將次級電子及/或反向散射電子引導至定位於別處之電子偵測器件240。如上文所描述,電子偵測器件240可產生信號,該等信號被發送至控制器50或如上文參看圖1及圖2所描述之信號處理系統,例如以建構由帶電粒子束工具40掃描所遍及之樣本208之區域的影像或執行其他後處理。
在一實施例中,如下文論述之圖27至圖31中所例示,物鏡包含多電極透鏡,其中多電極透鏡之底部電極與CMOS晶片偵測器陣列整合。多電極透鏡可包含如圖27中所例示之三個電極,如圖28中所例示之兩個電極,或不同數目個電極。偵測器陣列至物鏡中之整合替換對用於偵測次級電子及反向散射電子之次級柱的需求。CMOS晶片較佳地經定向以面向樣本(此係由於電子光學系統之晶圓與底部之間的較小距離(例如,100 μm))。在一實施例中,用以捕捉次級電子信號之電極形成於CMOS器件之頂部金屬層中。電極可形成於其他層中。可藉由矽穿孔將CMOS之功率及控制信號連接至CMOS。為了穩固性,較佳地,底部電極由兩個元件組成:CMOS晶片及具有孔之被動Si板。板屏蔽CMOS以免受高電子場之影響。
為了最大化偵測效率,需要使電極表面儘可能大,使得陣列物鏡之實質上所有的區域(除孔徑之外)係由電極佔據且每一電極具有實質上等於陣列節距之直徑。在一實施例中,電極之外部形狀為圓形,但可將此形狀製成正方形以最大化偵測區域。亦可最小化基板穿孔之直徑。電子束之典型大小為大約5至15微米。
在一實施例中,單一電極包圍每一孔徑。在另一實施例中,複數個電極元件經提供於每一孔徑周圍。由包圍一個孔徑之電極元件捕捉的電子可經組合成單個信號或用以產生獨立信號。電極元件可經徑向劃分(亦即,以形成複數個同心環)、經成角度地劃分(亦即,以形成複數個區段狀塊)、經徑向地及成角度地劃分或以任何其他適宜方式經劃分。
然而,較大電極表面導致較大寄生電容,因此導致較低頻寬。出於此原因,可需要限制電極之外徑。尤其在較大電極僅提供稍微較大偵測效率,但提供顯著較大電容之狀況下。圓形(環形)電極可提供收集效率與寄生電容之間的良好折衷。
電極之較大外徑亦可導致較大串擾(對相鄰孔之信號的敏感度)。此亦可為使電極外徑較小之原因。尤其在較大電極僅提供稍微較大偵測效率,但提供顯著較大串擾之狀況下。
藉由電極收集之反向散射及/或次級電子電流藉由跨阻放大器放大。
圖27及圖28中展示例示性實施例,該等圖以示意性橫截面說明多束物鏡401。在物鏡401之輸出側(面向樣本403之側)上提供了偵測器模組402。圖29為偵測器模組402之仰視圖,其包含基板404,在該基板上提供各自包圍束孔徑406之複數個捕捉電極405。束孔徑406可藉由蝕刻通過基板404來形成。在圖29中所展示之配置中,束孔徑406以矩形陣列形式展示。束孔徑406亦可以不同方式配置,例如以如圖30中所描繪之六邊形封閉封裝陣列形式配置。
圖31以橫截面以較大尺度描繪偵測器模組402之一部分。捕捉電極405形成偵測器模組402之最底部(亦即,最接近樣本的)表面。在捕捉電極405與矽基板404之主體之間提供邏輯層407。邏輯層407可包括放大器(例如跨阻放大器)、類比/數位轉換器及讀出邏輯。在一實施例中,每一捕捉電極405存在一個放大器及一個類比/數位轉換器。可使用CMOS製程製造邏輯層407及捕捉電極405,其中捕捉電極405形成最終金屬化層。
佈線層408提供於基板404之背面上且藉由矽穿孔409連接至邏輯層407。矽穿孔409之數目無需與束孔徑406的數目相同。特定而言,若電極信號在邏輯層407中經數位化,則可僅需要少數矽穿孔來提供資料匯流排。佈線層408可包括控制線、資料線及功率線。應注意,不管束孔徑406,存在用於所有必要連接之充分空間。亦可使用雙極或其他製造技術來製作偵測模組402。印刷電路板及/或其他半導體晶片可提供於偵測器模組402之背面上。
在孔徑總成370與複數個物鏡整合之實施例中,孔徑總成370可與圖27或圖28之多束物鏡401整合。在此狀況下,第一孔徑本體301將包含圖27或圖28之多束物鏡之電極中的一者,且第二孔徑本體302將包含多束物鏡401之電極中的一不同電極。
可以方法之形式提供本發明之實施例,該等方法可使用以上所描述之配置中之任一者或其他配置。
在一種類別之實施例中,提供一種操縱帶電粒子之方法,視情況提供一種檢測方法,其包含將複數個帶電粒子束通過孔徑總成370引導至樣本208上。藉由將電位施加至孔徑總成中之電極來靜電操縱該等帶電粒子束。孔徑總成370可採取以上所描述之形式中之任一者。孔徑總成370可因此包含第一孔徑本體301及第二孔徑本體302。第一孔徑本體301中之複數個孔徑304與第二孔徑本體302中之對應複數個孔徑306對準,使得帶電粒子束中之每一者藉由穿過第一孔徑本體301及第二孔徑本體302中之各別孔徑304、306而穿過孔徑總成370。施加電位包含將電位施加至複數個電極,該複數個電極與每一其他電極電隔離且同時電連接至第一孔徑本體301之孔徑之複數個群組中之一不同群組的孔徑周邊表面。
在另一類別之實施例中,提供一種操縱帶電粒子之方法,視情況提供一種檢測方法,其包含將複數個帶電粒子束通過孔徑總成引導至樣本208上。藉由將電位施加至孔徑總成中之電極來靜電操縱該等帶電粒子束。孔徑總成可採取以上所描述之形式中之任一者。孔徑總成可因此包含第一孔徑本體301及第二孔徑本體302。第一孔徑本體301中之複數個孔徑304與第二孔徑本體302中之對應複數個孔徑306對準,使得帶電粒子束中之每一者藉由穿過第一孔徑本體301及第二孔徑本體302中之各別孔徑304、306而穿過孔徑總成。第二孔徑本體中之孔徑的形狀可不同於第一孔徑本體中之孔徑的形狀,該第一孔徑本體中之孔徑的形狀可為伸長的。施加電位包含在第一孔徑本體301中之孔徑304與第二孔徑本體302中之對應孔徑306之間施加電位差。第一孔徑本體301中之孔徑304之至少一子集中的每一者係由伸長隙縫組成。第二孔徑本體302中之每一對應孔徑306係由在至少平行於伸長隙縫之最長軸線之方向上小於該伸長隙縫的開口組成。可以使得減小帶電粒子束中之像散的方式施加電位。
沿著束路徑鄰近的電子光學元件可例如藉由電隔離元件(諸如隔片)在結構上彼此連接。隔離元件可由電絕緣材料(諸如陶瓷,諸如玻璃)製成。
對組件或組件或元件之系統的參考可控制而以某種方式操縱帶電粒子束包括組態控制器或控制系統或控制單元以控制組件以按所描述方式操縱帶電粒子束,並且視情況使用其他控制器,諸如控制器50或器件(例如,電壓供應件及或電流供應件)以控制組件從而以此方式操縱帶電粒子束。舉例而言,電壓供應件或如本文中所提及之「驅動單元」可電連接至一或多個組件以在控制器或控制系統或控制單元之控制下將電位施加至該等組件,諸如(在非限制清單中)物鏡陣列118、聚光透鏡231、校正器124、125及126、準直器元件陣列524。諸如載物台之可致動組件可為可控制的,以使用一或多個控制器、控制系統或控制單元相對於諸如束路徑之另外組件致動及因此移動,從而控制組件之致動。
本文中所描述之實施例可採用沿著束或多束路徑以陣列形式配置的一系列孔徑陣列或電子光學元件的形式。此類電子光學元件可為靜電的。在一實施例中,例如在樣本之前的子束路徑中自束限制孔徑陣列至最後電子光學元件的所有電子光學元件可為靜電的,及/或可呈孔徑陣列或板陣列之形式。在一些配置中,電子光學元件中之一或多者被製造為微機電系統(MEMS) (亦即,使用MEMS製造技術)。
對上部及下部、向上及向下、上方及下方之參考應被理解為係指平行於照射於樣本208上之電子束或多束之(通常但未必總是豎直的)逆流方向及順流方向的方向。因此,對逆流方向及順流方向之參考意欲係指獨立於任何當前重力場相對於束路徑之方向。
可使用以下條項進一步描述實施例: 1.   一種用於一帶電粒子投影裝置之一束操縱器單元之孔徑總成,該孔徑總成包含: 一第一孔徑本體及一第二孔徑本體,其中: 該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,該對準係使得允許各別複數個帶電粒子束中之每一者的一路徑藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成; 該第一孔徑本體包含用於將一電位施加至該第一孔徑本體中之每一孔徑之一孔徑周邊表面的一第一電極系統; 該第二孔徑本體包含用於將一電位施加至該第二孔徑本體中之每一孔徑之一孔徑周邊表面的一第二電極系統;且 該第一電極系統包含複數個電極,每一電極與每一其他電極電隔離且同時電連接至該第一孔徑本體中之該等孔徑之複數個群組中之一不同群組的該等孔徑周邊表面。 2.   如條項1之總成,其中該等孔徑群組中之至少兩者含有相同數目個孔徑。 3.   如條項1或2之總成,其中該第一電極系統之每一電極包含一伸長導電帶。 4.   如條項3之總成,其中該第一孔徑本體中之該等孔徑以一陣列,較佳一規則陣列之形式配置。 5.   如條項4之總成,其中該等導電帶彼此平行且垂直於該陣列之一主軸。 6.   如條項5之總成,其中平行於該等導電帶之一短軸的該等導電帶之一節距大於平行於該短軸的該陣列之一節距。 7.   如條項5之總成,其中平行於該等導電帶之一短軸的該等導電帶之一節距等於平行於該短軸的該陣列之一節距。 8.   如任一前述條項之總成,其中該複數個電極包含經組態以彼此鑲嵌之複數個導電元件。 9.   如條項1或2之總成,其中該複數個電極包含複數個導電元件,該複數個導電元件包含同心迴路之至少部分。 10.  如任一前述條項之總成,其中該第二電極系統包含電連接至該第二孔徑本體之全部該等孔徑周邊表面的一電極。 11.  如條項1至9中任一項之總成,其中該第二電極系統包含複數個電極,每一電極與每一其他電極電隔離且同時電連接至該第二電極系統之該等孔徑之複數個群組中之一不同群組的該等孔徑周邊表面。 12.  如條項11之總成,其中: 該第一電極系統之每一電極包含一伸長導電帶; 該第二電極系統之每一電極包含一伸長導電帶;且 該第一電極系統之該等導電帶不平行於該第二電極系統之該等導電帶。 13.  如條項12之總成,其中該第一電極系統之該等導電帶彼此平行,該第二電極系統之該等導電帶彼此平行,且該第一電極系統之該等導電帶垂直於該第二電極系統之該等導電帶。 14.  如任一前述條項之總成,其中該第一孔徑本體中之該等孔徑及/或該第二孔徑本體中之該等孔徑具有具備一彎曲邊緣之一形狀,較佳為圓形、橢圓形或卵形。 15.  如任一前述條項之總成,其中: 該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且 該第二孔徑本體中之每一對應孔徑係由在至少平行於該伸長隙縫之一最長軸線之一方向上小於該伸長隙縫的一開口組成。 16.  一種用於一帶電粒子投影裝置之一束操縱器單元之孔徑總成,其包含: 一第一孔徑本體及一第二孔徑本體,其中: 該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,該對準係使得允許各別複數個帶電粒子束中之每一者的一路徑藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成; 該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且 該第二孔徑本體中之每一對應孔徑係由在至少平行於該伸長隙縫之一最長軸線之一方向上小於該伸長隙縫的一開口組成。 16a. 如條項16之孔徑總成,其包含一電壓供應連接件,該電壓供應連接件組態以將一電位差施加至該第一孔徑本體及該第二孔徑本體中之至少一者的該等孔徑之孔徑周邊表面。 16b. 如條項16或16a之孔徑總成,其中該第二孔徑本體中之每一對應孔徑係由一開口組成,該開口具有不同於該對應伸長隙縫之一形狀。 16c. 一種用於一帶電粒子投影裝置之一束操縱器單元之一像差校正器的孔徑總成,其包含:一第一孔徑本體;一第二孔徑本體,該第一孔徑本體經組態以沿著帶電粒子之一路徑在該第二孔徑本體之逆流方向,該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,該對準係使得允許各別複數個帶電粒子束中之每一者的一路徑藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成;該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且該第二孔徑本體中之每一對應孔徑係由一開口組成,該開口具有不同於該對應伸長隙縫之一形狀且在至少平行於該伸長隙縫之一最長軸線之一方向上小於該對應伸長隙縫;及一電壓供應連接件,其組態以將一電位差施加至該第一孔徑本體及該第二孔徑本體中之至少一者的該等孔徑之孔徑周邊表面。 17.  如條項16至16c中任一項之總成,其中: 該第一孔徑本體包含用於將一電位施加至該第一孔徑本體之每一孔徑之一孔徑周邊表面的一第一電極系統,該第一電極系統較佳與該電壓供應連接件相關聯且電連接至該電壓供應連接件,該第一電極系統包含複數個電極,每一電極與該第一電極系統之每一其他電極電隔離且電連接至該第一孔徑本體之該等孔徑中之一不同各別孔徑的該孔徑周邊表面;及/或 該第二孔徑本體包含用於將一電位施加至該第二孔徑本體之每一孔徑之一孔徑周邊表面的一第二電極系統,該第二電極系統較佳與該電壓供應連接件相關聯且電連接至該電壓供應連接件,該第二電極系統包含複數個電極,每一電極與該第二電極系統之每一其他電極電隔離且電連接至該第二孔徑本體之該等孔徑中之一不同各別孔徑的該孔徑周邊表面。 18.  如條項16至16c中任一項之總成,其中: 該第一孔徑本體包含用於該第一孔徑本體之每一孔徑的局部整合式電子器件,該等局部整合式電子器件經組態以將一電位施加至該孔徑之該孔徑周邊表面,該等局部整合式電子器件較佳與該電壓供應連接件相關聯且電連接至該電壓供應連接件;及/或 該第二孔徑本體包含用於該第二孔徑本體之每一孔徑的局部整合式電子器件,該等局部整合式電子器件經組態以將一電位施加至該孔徑之該孔徑周邊表面,該等局部整合式電子器件較佳與該電壓供應連接件相關聯且電連接至該電壓供應連接件。 19.  如條項16至16c或18中任一項之總成,其中: 該第一孔徑本體包含一整合式被動電路,該整合式被動電路包含一電阻器網路,該電阻器網路經組態以允許藉由電位劃分而將不同電位施加至該第一孔徑本體之該等孔徑之至少一子集的該等孔徑周邊表面,該電阻器網路較佳與該電壓供應連接件相關聯且電連接至該電壓供應連接件;及/或 該第二孔徑本體包含一整合式被動電路,該整合式被動電路包含一電阻器網路,該電阻器網路經組態以允許藉由電位劃分而將不同電位施加至該第二孔徑本體之該等孔徑之至少一子集的該等孔徑周邊表面,該電阻器網路較佳與該電壓供應連接件相關聯且電連接至該電壓供應連接件。 20.  如條項15至19中任一項之總成,其中該等伸長隙縫之至少一子集中之每一者係一實質上線性隙縫。 21.  如條項15至20中任一項之總成,其中該等開口之至少一子集中之每一者具有具備一彎曲邊緣之一形狀,較佳實質上為以下形狀中之一者:圓形、卵形、橢圓形。 22.  如條項15至21中任一項之總成,其中該等伸長隙縫之至少大部分相對於垂直穿過該第一孔徑本體之一平面的一共同軸線徑向地對準。 23.  如條項15至22中任一項之總成,其中該等伸長隙縫之至少大部分相對於垂直穿過該第一孔徑本體之一平面的一共同軸線垂直於一徑向方向對準。 24.  如條項15至23中任一項之總成,其中該等伸長隙縫之至少大部分彼此平行。 25.  如條項15至24中任一項之總成,其中該第一孔徑本體中之每一開口的一最大平面內尺寸實質上等於該第二孔徑本體中之該對應伸長隙縫的一最小平面內尺寸。 25a. 如條項15至24中任一項之總成,其中該第二孔徑本體中之每一開口的一最大平面內尺寸實質上等於該第一孔徑本體中之該對應伸長隙縫的一最小平面內尺寸。 26.  如條項15至25a中任一項之總成,其中: 該孔徑總成進一步包含一第三孔徑本體及一第四孔徑本體; 該第三孔徑本體中之複數個孔徑與該第一孔徑本體、該第二孔徑本體及該第四孔徑本體中之對應複數個孔徑對準,該對準係使得允許各別複數個帶電粒子束中之每一者的一路徑藉由穿過該第一孔徑本體、該第二孔徑本體、該第三孔徑本體及該第四孔徑本體中之各別孔徑而穿過該孔徑總成; 該第三孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成; 該第四孔徑本體中之每一對應孔徑係由在至少平行於該伸長隙縫之一最長軸線之一方向上小於該伸長隙縫的一開口組成;且 該第一孔徑本體及該第三孔徑本體中之該等伸長隙縫經對準使得每一帶電粒子束穿過該第一孔徑本體及該第三孔徑本體中之伸長隙縫,該等伸長隙縫在沿著該帶電粒子束之該路徑檢視時相對於彼此傾斜地對準。 27.  一種用於一帶電粒子投影裝置之束操縱器單元,其包含: 如任一前述條項之孔徑總成;及 一電驅動單元,其較佳藉由連接至該電壓供應連接件而組態,以在複數個帶電粒子束朝向一樣本經引導通過該孔徑總成時將電位施加至該第一孔徑本體及/或該第二孔徑本體中之孔徑的該等孔徑周邊表面。 28.  一種帶電粒子投影裝置,其包含: 如條項27之束操縱器單元;及 複數個透鏡,每一透鏡經組態以投影一各別帶電粒子子束。 29.  如條項28之裝置,其中該孔徑總成與該複數個透鏡整合或直接鄰近於該複數個透鏡,較佳直接鄰近包含緊接在該複數個透鏡之逆流方向或順流方向。 30.  如條項29之裝置,其中: 每一透鏡包含一多電極透鏡; 該第一孔徑本體包含該多電極透鏡之一第一電極;且 該第一孔徑本體包含一第一電極系統,該第一電極系統包含與該多電極透鏡之該第一電極電隔離之複數個電極。 31.  如條項30之裝置,其中: 該第二孔徑本體包含該多電極透鏡之一第二電極;且 該第二孔徑本體包含一第二電極系統,該第二電極系統包含與該多電極透鏡之該第二電極電隔離之複數個電極。 32.  如條項30或31之裝置,其中該電驅動單元經組態以控制該第一電極系統之該等電極之電位,使得該第一電極系統之最高電位電極與最低電位電極之間的一電位差小於該第一電極系統之該等電極之一平均電位與該第二電極系統之該等電極之一平均電位之間的一差。 33.  如條項28至32中任一項之裝置,其中該複數個透鏡包含經組態以將各別子束投影至一樣本上之複數個物鏡。 34.  如條項28至32中任一項之裝置,其中該複數個透鏡包含經組態以將各別子束聚焦至中間焦點之複數個聚光透鏡,該等中間焦點在經組態以將該等子束投影至一樣本上之複數個物鏡的逆流方向。 35.  如條項28至32中任一項之裝置,其中: 該裝置包含經組態以將各別子束聚焦至一中間影像平面中之中間焦點的複數個聚光透鏡;且 該孔徑總成提供於該中間影像平面中或直接鄰近於該中間影像平面,較佳直接鄰近包含緊接在該中間影像平面之逆流方向或順流方向或此兩者。 36.  一種帶電粒子束工具,其包含: 如條項28至35中任一項之帶電粒子投影裝置;及 一電子偵測器件,其經組態以偵測來自該樣本之次級電子及反向散射電子中之任一者或兩者。 37.  一種操縱帶電粒子束之方法,其包含: 將複數個帶電粒子束通過一孔徑總成引導至一樣本上;及 藉由將電位施加至該孔徑總成中之電極來靜電操縱該等帶電粒子束,其中: 該孔徑總成包含一第一孔徑本體及一第二孔徑本體; 該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,使得該等帶電粒子束中之每一者藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成;且 該施加電位包含將電位施加至複數個電極,該複數個電極與每一其他電極電隔離且同時電連接至該第一孔徑本體之該等孔徑之複數個群組中之一不同群組的孔徑周邊表面。 38.  一種操縱帶電粒子束之方法,其包含: 將複數個帶電粒子束通過一孔徑總成引導至一樣本上;及 藉由將電位施加至該孔徑總成中之電極來靜電操縱該等帶電粒子束,其中: 該孔徑總成包含一第一孔徑本體及一第二孔徑本體; 該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,使得該等帶電粒子束中之每一者藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成; 該施加電位包含在該第一孔徑本體中之孔徑與該第二孔徑本體中之對應孔徑之間施加電位差; 該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且 該第二孔徑本體中之每一對應孔徑係由在至少平行於該伸長隙縫之一最長軸線之一方向上小於該伸長隙縫的一開口組成。 39.  如條項38之方法,其中以減小該等帶電粒子束中之像散的方式施加該等電位。 40.  一種用於一帶電粒子多束投影裝置之一操縱器單元之孔徑總成,該孔徑總成包含: 一第一孔徑本體,其中界定一第一孔徑陣列;及 一第二孔徑本體,其中界定一對應孔徑陣列,該對應孔徑陣列與該第一孔徑陣列對準以界定用於該多束之各別帶電粒子束通過該孔徑總成之路徑; 一第一電極系統,其與該第一孔徑本體相關聯,該第一電極系統經組態以將一電位施加至該第一孔徑本體之每一孔徑之一周邊表面; 一第二電極系統,其與該第二孔徑本體相關聯,該第二電極系統經組態以將一電位施加至該第二孔徑本體之每一孔徑之一周邊表面, 其中該第一電極系統包含複數個電極,每一電極與每一其他電極電隔離且同時電連接至該第一孔徑本體中之該等孔徑之複數個群組中之一不同群組的該周邊表面。 41.  一種用於一帶電粒子多束投影裝置之一束操縱器單元之孔徑總成,其包含: 一第一孔徑本體,其中界定第一複數個孔徑;及 一第二孔徑本體,其中界定對應複數個孔徑,該對應複數個孔徑相對於該第一複數個孔徑而定位以界定用於該多束之各別帶電粒子束通過該孔徑總成之路徑, 其中該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且 與該伸長隙縫對應的複數個孔徑中之每一對應孔徑為一縱橫比小於該伸長隙縫的一開口。 42.  一種用於一帶電粒子多束投影裝置之束操縱器單元,該操縱器單元包含一透鏡,該透鏡包含: 一逆流方向透鏡孔徑陣列,其具有一相關聯逆流方向擾動電極陣列;及 一順流方向透鏡孔徑陣列,其具有一相關聯順流方向擾動電極陣列,其中該逆流方向透鏡孔徑陣列、該順流方向透鏡孔徑陣列及該等擾動陣列相對於彼此定位,以使得每一陣列中之孔徑界定用於該多束之各別帶電粒子束通過該操縱器單元之路徑;且 該等逆流方向及順流方向擾動電極可控制以在操作期間將擾動場施加至由該透鏡產生之場。 43.  一種操縱帶電粒子束之方法,其包含: 提供一透鏡,該透鏡包含:一逆流方向透鏡孔徑陣列,其具有一相關聯逆流方向擾動電極陣列;及一順流方向透鏡孔徑陣列,其具有一相關聯順流方向擾動電極陣列; 使多個帶電粒子束穿過該逆流方向透鏡孔徑陣列及該順流方向透鏡孔徑陣列中之每一者中的各別孔徑;及 控制該等逆流方向及順流方向擾動電極以將擾動場施加至由該透鏡產生之場。
本文中所論述之帶電粒子束工具40中之任一者可為評估工具。根據本發明之實施例的評估工具可為進行樣本之定性評估(例如,通過/失敗)之工具、進行樣本之定量量測(例如,特徵之大小)或產生樣本之映圖影像的工具。評估工具之實例為檢測工具(例如用於識別缺陷)、檢閱工具(例如用於分類缺陷)及度量衡工具,或能夠執行與檢測工具、檢閱工具或度量衡工具(例如度量衡檢測工具)相關聯的評估功能性之任何組合的工具。電子光學柱40可為評估工具之組件;諸如檢測工具或度量衡檢測工具,或電子束微影工具之部分。本文中對工具之任何參考皆意欲涵蓋器件、裝置或系統,該工具包含可共置或可不共置且甚至可位於單獨房間中尤其例如用於資料處理元件的各種組件。
術語「子束」及「細射束」在本文中可互換使用且均被理解為涵蓋藉由劃分或分裂母輻射光束而自母輻射光束導出之任何輻射光束。術語「操縱器」用以涵蓋影響子束或細射束之路徑之任何元件,諸如透鏡或偏轉器。
雖然已經結合各種實施例描述本發明,但自本說明書之考量及本文中揭示之本發明之實踐,本發明之其他實施例對於熟習此項技術者將顯而易見。意欲本說明書及實例僅被認為係例示性的,其中本發明之真正範疇及精神藉由以下申請專利範圍指示。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。
10:主腔室 20:裝載鎖定腔室 30:設備前端模組(EFEM) 30a:第一裝載埠 30b:第二裝載埠 40:帶電粒子束工具 50:控制器 100:帶電粒子束檢測裝置 110:束孔徑 111:大體上平面束孔徑本體 112:帶電粒子束 114:子束 115:中間焦點 116:聚光透鏡 118:物鏡 120:中間影像平面 122:路徑 124:像差校正器 125:像差校正器 126:像差校正器 201:帶電粒子源 202:帶電粒子束 207:樣本固持器 208:樣本 209:機動載物台 211:初級子束 212:初級子束 213:初級子束 221:探測光點 222:探測光點 223:探測光點 230:投影裝置 240:電子偵測器件 300:束操縱器單元 301:第一孔徑本體 302:第二孔徑本體 304:對應孔徑 305:帶電粒子束之實例路徑 306:孔徑 311:第一電極系統 312:第二電極系統 319:電極 320:電驅動單元 322:伸長導電帶 324:伸長導電帶 326:導電元件 328:導電元件 341:寬度 342:長度 351:第三孔徑本體 352:第四孔徑本體 354:孔徑 356:孔徑 361:第一支撐結構 362:第二支撐結構 370:孔徑總成 401:多束物鏡 402:偵測器模組 403:樣本 404:矽基板 405:捕捉電極 406:束孔徑 407:邏輯層 408:佈線層 409:矽穿孔 524:準直器/準直器元件陣列 X:方向 X-X:線 Y:方向 Y-Y:線 Z:方向
本發明之上述及其他態樣自與隨附圖式結合獲取之例示性實施例之描述將變得更顯而易見。
圖1為說明例示性帶電粒子束檢測裝置的示意圖。
圖2為說明為圖1之例示性帶電粒子束檢測裝置之一部分的例示性帶電粒子束工具之示意圖。
圖3為帶電粒子束工具之示意圖,其中子束以直線在聚光透鏡與物鏡之間行進。
圖4為帶電粒子束工具之示意圖,其中準直器提供於聚光透鏡與物鏡之間。
圖5為包含孔徑總成之束操縱器單元的示意圖。
圖6為圖4中所描繪之類型的束操縱器單元之示意圖,其中孔徑總成與帶電粒子投影裝置之透鏡整合。
圖7為包含在第一方向上對準之相對較寬伸長導電帶的實例第一電極系統或第二電極系統之示意性俯視圖。
圖8為具有在第二方向上對準之相對較寬伸長導電帶的實例第二電極系統或第一電極系統之示意性俯視圖。
圖9為具有在第一方向上對準之相對較窄伸長導電帶的實例第一電極系統或第二電極系統之示意性俯視圖。
圖10為具有在第二方向上對準之相對較窄伸長導電帶的實例第二電極系統或第一電極系統之示意性俯視圖。
圖11為具有較低縱橫比之鑲嵌導電元件的實例第一電極系統或第二電極系統之示意性俯視圖。
圖12為具有包含同心迴路之導電元件的實例第一電極系統或第二電極系統之示意性俯視圖。
圖13為第一電極系統或第二電極系統之示意性俯視圖,該第一電極系統或該第二電極系統包含電連接至各別孔徑本體之全部孔徑周邊表面的單一電極。
圖14為第一電極系統或第二電極系統之示意性俯視圖,其中每一電極與每另一電極電隔離且電連接至各別孔徑本體中之孔徑中之一不同各別孔徑的孔徑周邊表面。
圖15為孔徑總成之示意性俯視圖,其中最上部孔徑本體包含伸長隙縫。
圖16為沿著圖15之單元之線X-X的示意性側視截面圖。
圖17為沿著圖15之單元之線Y-Y的示意性側視截面圖。
圖18為在最低孔徑本體包含用於施加電位之局部整合式電子器件的狀況下沿著圖15中所描繪之類型之單元之線X-X的示意性側視截面圖。
圖19為在最低孔徑本體包含用於施加電位之局部整合式電子器件的狀況下沿著圖15之單元之線Y-Y的示意性側視截面圖。
圖20為具有徑向對準伸長隙縫之實例第一電極系統或第二電極系統的示意性俯視圖。
圖21為具有垂直於徑向方向對準之伸長隙縫的實例第一電極系統或第二電極系統的示意性俯視圖。
圖22為具有與第一方向對準之平行伸長隙縫之實例第一電極系統或第二電極系統的示意性俯視圖。
圖23為具有與第二方向對準之平行伸長隙縫之實例第二電極系統或第一電極系統的示意性俯視圖。
圖24為具有相對於不同孔徑本體之電極系統中之伸長隙縫成45度對準的伸長隙縫的實例第三電極系統之示意性俯視圖。
圖25為具有如圖24中所描繪而組態之第三電極系統及具有圓形開口之第四電極系統的孔徑總成之一部分的示意性側視截面圖,該第四電極系統係沿著垂直於第三電極系統之伸長隙縫的方向檢視。
圖26為沿著平行於第三電極系統之伸長隙縫之方向檢視的圖25之配置的示意性側視截面圖。
圖27為與三電極物鏡整合之電子偵測器件的實例。
圖28為與雙電極物鏡整合之電子偵測器件之實例。
圖29為圖27或圖28中所描繪之類型之偵測器模組的仰視圖。
圖30為替代偵測器模組之仰視圖,其中束孔徑係呈六邊形封閉封裝陣列形式。
圖31以橫截面描繪偵測器模組之一部分。
208:樣本
300:束操縱器單元
301:第一孔徑本體
302:第二孔徑本體
304:對應孔徑
305:帶電粒子束之實例路徑
306:孔徑
311:第一電極系統
312:第二電極系統
320:電驅動單元
361:第一支撐結構
362:第二支撐結構
370:孔徑總成

Claims (15)

  1. 一種用於一帶電粒子投影裝置之一束操縱器單元之孔徑總成,該孔徑總成包含: 一第一孔徑本體及一第二孔徑本體,其中: 該第一孔徑本體中之複數個孔徑與該第二孔徑本體中之對應複數個孔徑對準,該對準係使得允許各別複數個帶電粒子束中之每一者的一路徑藉由穿過該第一孔徑本體及該第二孔徑本體中之各別孔徑而穿過該孔徑總成; 該第一孔徑本體包含用於將一電位施加至該第一孔徑本體中之每一孔徑之一孔徑周邊表面的一第一電極系統; 該第二孔徑本體包含用於將一電位施加至該第二孔徑本體中之每一孔徑之一孔徑周邊表面的一第二電極系統;且 該第一電極系統包含複數個電極,每一電極與每一其他電極電隔離且同時電連接至該第一孔徑本體中之該等孔徑之複數個群組中之一不同群組的該等孔徑周邊表面。
  2. 如請求項1之總成,其中該等孔徑群組中之至少兩者含有相同數目個孔徑。
  3. 如請求項1之總成,其中該第一電極系統之每一電極包含一伸長導電帶(elongate conductive strip)。
  4. 如請求項3之總成,其中該第一孔徑本體中之該等孔徑經配置成一陣列,較佳為配置成一規則陣列。
  5. 如請求項4之總成,其中該等導電帶彼此平行且垂直於該陣列之一主軸。
  6. 如請求項5之總成,其中平行於該等導電帶之一短軸的該等導電帶之一節距大於平行於該短軸的該陣列之一節距,或其中平行於該等導電帶之一短軸的該等導電帶之一節距等於平行於該短軸的該陣列之一節距
  7. 如請求項1至3中任一項之總成,其中該複數個電極包含經組態以彼此鑲嵌(tessellate)之複數個導電元件。
  8. 如請求項1或2之總成,其中該複數個電極包含複數個導電元件,該複數個導電元件包含同心迴路之至少部分。
  9. 如請求項1至3中任一項之總成,其中該第二電極系統包含電連接至該第二孔徑本體之全部該等孔徑周邊表面的一電極。
  10. 如請求項1至3中任一項之總成,其中該第二電極系統包含複數個電極,每一電極與每一其他電極電隔離且同時電連接至該第二電極系統之該等孔徑之複數個群組中之一不同群組的該等孔徑周邊表面。
  11. 如請求項10之總成,其中: 該第一電極系統之每一電極包含一伸長導電帶; 該第二電極系統之每一電極包含一伸長導電帶;且 該第一電極系統之該等導電帶不平行於該第二電極系統之該等導電帶。
  12. 如請求項1至3中任一項之總成,其中該第一孔徑本體中之該等孔徑及/或該第二孔徑本體中之該等孔徑具有具備一彎曲邊緣之一形狀,較佳為圓形、橢圓形或卵形。
  13. 如請求項1至3中任一項之總成,其中: 該第一孔徑本體中之該等孔徑之至少一子集中的每一者係由一伸長隙縫組成;且 該第二孔徑本體中之每一對應孔徑係由在至少平行於該伸長隙縫之一最長軸線之一方向上小於該伸長隙縫的一開口所組成。
  14. 一種用於一帶電粒子投影裝置之束操縱器單元,其包含: 如請求項1至13中任一項之孔徑總成; 一電驅動單元,其經組態以在複數個帶電粒子束經引導通過該孔徑總成而朝向一樣本時,將電位施加至該第一孔徑本體及/或該第二孔徑本體中之孔徑的該等孔徑周邊表面;及 複數個透鏡,每一透鏡經組態以投影一各別帶電粒子子束(sub-beam)。
  15. 如請求項14之束操縱器單元,其中該複數個透鏡包含經組態以將各別子束投影至一樣本上之複數個物鏡。
TW112119823A 2020-04-06 2021-04-01 孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置 TW202338893A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20168281.2 2020-04-06
EP20168281.2A EP3893263A1 (en) 2020-04-06 2020-04-06 Aperture assembly, beam manipulator unit, method of manipulating charged particle beams, and charged particle projection apparatus

Publications (1)

Publication Number Publication Date
TW202338893A true TW202338893A (zh) 2023-10-01

Family

ID=70224281

Family Applications (2)

Application Number Title Priority Date Filing Date
TW112119823A TW202338893A (zh) 2020-04-06 2021-04-01 孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置
TW110112098A TWI799829B (zh) 2020-04-06 2021-04-01 孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110112098A TWI799829B (zh) 2020-04-06 2021-04-01 孔徑總成、束操縱器單元、操縱帶電粒子束之方法、及帶電粒子投影裝置

Country Status (9)

Country Link
US (1) US20230037583A1 (zh)
EP (2) EP3893263A1 (zh)
JP (1) JP2023519542A (zh)
KR (1) KR20220150957A (zh)
CN (1) CN115362525A (zh)
CA (1) CA3173642A1 (zh)
IL (1) IL296329A (zh)
TW (2) TW202338893A (zh)
WO (1) WO2021204733A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4202970A1 (en) 2021-12-24 2023-06-28 ASML Netherlands B.V. Alignment determination method and computer program
EP4250331A1 (en) * 2022-03-22 2023-09-27 ASML Netherlands B.V. Charged particle apparatus and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69738276T2 (de) * 1996-03-04 2008-04-03 Canon K.K. Elektronenstrahl-Belichtungsgerät, Belichtungsverfahren und Verfahren zur Erzeugung eines Objekts
JP2001284230A (ja) * 2000-03-31 2001-10-12 Canon Inc 電子光学系アレイ、これを用いた荷電粒子線露光装置ならびにデバイス製造方法
EP2579273B8 (en) 2003-09-05 2019-05-22 Carl Zeiss Microscopy GmbH Particle-optical systems and arrangements and particle-optical components for such systems and arrangements
GB2408383B (en) * 2003-10-28 2006-05-10 Ims Nanofabrication Gmbh Pattern-definition device for maskless particle-beam exposure apparatus
JP4541798B2 (ja) * 2004-08-06 2010-09-08 キヤノン株式会社 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
NL1036912C2 (en) 2009-04-29 2010-11-01 Mapper Lithography Ip Bv Charged particle optical system comprising an electrostatic deflector.
NL2007604C2 (en) 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2006868C2 (en) 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
JP2014229841A (ja) * 2013-05-24 2014-12-08 キヤノン株式会社 描画装置及び物品の製造方法
JP6215061B2 (ja) * 2014-01-14 2017-10-18 株式会社アドバンテスト 電子ビーム露光装置
EP3576128A1 (en) * 2018-05-28 2019-12-04 ASML Netherlands B.V. Electron beam apparatus, inspection tool and inspection method

Also Published As

Publication number Publication date
IL296329A (en) 2022-11-01
TWI799829B (zh) 2023-04-21
CN115362525A (zh) 2022-11-18
TW202205340A (zh) 2022-02-01
EP3893263A1 (en) 2021-10-13
JP2023519542A (ja) 2023-05-11
EP4133514A1 (en) 2023-02-15
KR20220150957A (ko) 2022-11-11
US20230037583A1 (en) 2023-02-09
CA3173642A1 (en) 2021-10-14
WO2021204733A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US11984295B2 (en) Charged particle assessment tool, inspection method
TWI815101B (zh) 帶電粒子評估工具及檢測方法
US20230037583A1 (en) Aperture assembly, beam manipulator unit, method of manipulating charged particle beams, and charged particle projection apparatus
US20230238215A1 (en) Charged-particle multi-beam column, charged-particle multi-beam column array, inspection method
TW202226313A (zh) 物鏡陣列總成、電子光學系統、電子光學系統陣列、聚焦方法;物鏡配置
CN115151998A (zh) 带电粒子评估工具、检查方法
TWI815231B (zh) 帶電粒子工具、校正方法、檢測方法
JP7457820B2 (ja) 荷電粒子検査ツール、検査方法
KR20230098813A (ko) 대물 렌즈 어레이 조립체, 전자-광학 시스템, 전자-광학 시스템 어레이, 포커싱 방법
TW202217905A (zh) 帶電粒子評估工具及檢測方法
TWI813948B (zh) 帶電粒子評估工具及檢測方法
TWI824604B (zh) 帶電粒子光學裝置、帶電粒子設備及方法
TWI827124B (zh) 帶電粒子設備及方法
TW202303658A (zh) 補償電極變形之影響的方法、評估系統