WO2023195738A1 - 회전 이동이 가능한 자기부상 기구 - Google Patents

회전 이동이 가능한 자기부상 기구 Download PDF

Info

Publication number
WO2023195738A1
WO2023195738A1 PCT/KR2023/004521 KR2023004521W WO2023195738A1 WO 2023195738 A1 WO2023195738 A1 WO 2023195738A1 KR 2023004521 W KR2023004521 W KR 2023004521W WO 2023195738 A1 WO2023195738 A1 WO 2023195738A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
shaped magnet
unit
magnet unit
coil
Prior art date
Application number
PCT/KR2023/004521
Other languages
English (en)
French (fr)
Inventor
안다훈
박병준
박석환
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220041986A external-priority patent/KR20230143289A/ko
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Publication of WO2023195738A1 publication Critical patent/WO2023195738A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches

Definitions

  • the present invention relates to a freely rotating magnetic levitation device.
  • a force is generated when a current-carrying conductor and a magnet interact, and this force, based on Fleming's left-hand rule, is called magnetic force.
  • the technology to levitate an object using this force is called magnetic levitation.
  • By adjusting the size of the current strong magnetic force can be obtained, making it possible to levitate heavy objects. It is used in magnetic levitation trains, etc., and can also be moved to perform precise work such as substrate processing processes.
  • various substrate processing devices may include an alignment member that can determine the position information of the substrate and position the substrate in the correct position.
  • the alignment member can align the substrate in position and rotate the substrate.
  • the equipment requires a complex mechanism to secure the six degrees of freedom of the substrate, and translational and rotational movements are only possible within a very narrow area. Therefore, there may be limitations in positioning accuracy and rotation of the substrate.
  • a typical problem that accompanies levitating the support plate is that a force equivalent to gravity must be continuously applied even when the support plate is stationary.
  • levitation force is applied using electromagnetic force, such as magnetic levitation, there is a problem in that power consumption and heat are continuously generated because current must be continuously input to the coil.
  • One embodiment of the present invention is intended to solve the problems of the prior art described above, and implements a magnetic levitation mechanism using the Lorentz force, and at the same time, a magnetic levitation device capable of applying a degree of freedom of movement capable of infinite rotation of more than 360 degrees within a plane. We would like to provide a mechanism.
  • the present invention seeks to provide a magnetic levitation mechanism that can provide levitation force using an arc-shaped magnet unit without consuming power.
  • a magnetic levitation mechanism includes a mover formed in a plate shape; a fixing part located below the mover; a tilt driving unit located between the mover and the fixing unit to provide levitation force and tilt rotation force to the mover; and a horizontal driving unit located between the mover and the fixing unit and providing a moving force on a horizontal plane to the mover.
  • the tilt driving unit includes a first ring-shaped magnet unit whose inner and outer sides have different polarities; and a plurality of first coil units located outside the first ring-shaped magnet unit, wound in a vertical direction, and disposed at a predetermined angle to each other, wherein the horizontal driving unit has upper and lower ends having different polarities.
  • the tilt driving unit is located at a position corresponding to the lower part of the first ring-shaped magnet unit and the lower part of the first coil unit, the upper and lower parts have different polarities, and the polarity is opposite to that of the first ring-shaped magnet unit. It further includes a second ring-shaped magnet unit, wherein the horizontal driving unit is located at a position corresponding to the inside of the third ring-shaped magnet unit and the inside of the second coil unit, and the inside and outside have different polarities, It may further include a fourth ring-shaped magnet unit whose polarity is opposite to that of the third ring-shaped magnet unit.
  • the tilt driving unit may include a fifth ring-shaped magnet unit located on the outer side of the upper part of the first coil unit, and having a surface facing the first ring-shaped magnet unit and an outer surface of the first ring-shaped magnet unit having different poles; And a sixth ring-shaped magnet unit located on the outer side of the lower part of the first coil unit and having a surface facing the second ring-shaped magnet unit and a pole different from the outer surface of the second ring-shaped magnet unit. It may further include a sixth ring-shaped magnet unit. .
  • the horizontal driving unit includes a seventh ring-shaped magnet unit located below the outer portion of the second coil unit and having a surface facing the third ring-shaped magnet unit and a pole different from the lower surface of the third ring-shaped magnet unit; And it may further include an eighth ring-shaped magnet unit located at the lower part of the inner part of the second coil unit and having a surface facing the fourth ring-shaped magnet unit and a pole different from the lower surface of the fourth ring-shaped magnet unit.
  • it may further include a magnet fixing part located at the lower part of the mover, having an 'L'-shaped cross-section, and having the seventh ring-shaped magnet unit and the eighth ring-shaped magnet unit fixed to the upper surface.
  • the horizontal driving unit is located at the lower part of the outer part of the second coil unit and includes a seventh ring-shaped magnet unit having a surface facing the third ring-shaped magnet unit and a pole different from the lower surface of the third ring-shaped magnet unit. It further includes a fifth ring-shaped magnet, wherein the tilt driving unit is located on an outer portion of the upper portion of the first coil unit, and a surface facing the first ring-shaped magnet unit and an outer surface of the first ring-shaped magnet unit have different poles. Additional units may be included.
  • the magnetic levitation mechanism of the present invention includes a mover formed in a plate shape, a fixing part located below the mover, and a tilt driving part located between the mover and the fixing part to provide a tilt rotation force to the mover, wherein the tilt driving part is a first ring-shaped magnet unit whose inner and outer surfaces have different polarities, a second ring-shaped magnet unit located at the lower part of the first ring-shaped magnet unit, and whose polarities on the inner and outer surfaces are opposite to those of the first ring-shaped magnet unit.
  • a magnet unit a fifth ring-shaped magnet unit located outside the first ring-shaped magnet unit, the surface facing the first ring-shaped magnet unit having a polarity different from that of the outer surface of the first ring-shaped magnet unit, the second ring-shaped magnet unit
  • a sixth ring-shaped magnet unit is located on the outside of the magnet unit, and the surface facing the second ring-shaped magnet unit has a different polarity from the outer surface of the second ring-shaped magnet unit, and is wound in a vertical direction, and the upper part is the first ring-shaped magnet unit.
  • a plurality of first coil units located between the ring-shaped magnet unit and the fifth ring-shaped magnet unit, the lower part of which is located between the second ring-shaped magnet unit and the sixth ring-shaped magnet unit, and arranged to have a predetermined angle to each other, and the first coil portion 1
  • a first arc-shaped magnet located in the center of the coil unit, the inner surface having the same polarity as the outer surface of the first ring-shaped magnet unit, and the outer surface having the same polarity as the inner surface of the second ring-shaped magnet unit.
  • the first arc-shaped magnet unit may be one permanent magnet formed in an arc shape or a plurality of permanent magnets arranged in an arc shape.
  • it may further include a plurality of second arc-shaped magnet units fixed to the fixing unit and disposed at a predetermined angle at a position corresponding to the first arc-shaped magnet unit.
  • the magnet support portion protrudes from the upper surface of the fixing portion and may further include a magnet support portion on which the second arc-shaped magnet unit is fixed.
  • three of the plurality of first coil units may be arranged at 120 degrees from each other, and two of the plurality of second coil units may be arranged at 90 degrees from each other.
  • the tilt driving unit may be located outside the horizontal driving unit.
  • the tilt driving unit may be located inside the horizontal driving unit.
  • it may further include a rotation driving unit that provides rotational force to the mover.
  • it may further include a non-contact displacement sensor that detects the position of the mover.
  • a magnetic levitation device that can apply a degree of freedom of movement that can rotate infinitely by selecting at least one of the coil parts that affect the ring-type magnet unit and controlling the current. It has the effect of providing.
  • FIG. 1 is a partial cross-sectional perspective view of a magnetic levitation device capable of rotational movement according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of a magnetic levitation device according to a first embodiment of the present invention.
  • Figure 3 is a cross-sectional view taken along line A-A' of Figure 2.
  • Figure 4 is a perspective view of a first coil unit according to an embodiment of the present invention
  • Figure 4(b) is a perspective view of a second coil unit according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view of a magnetic levitation device according to a second embodiment of the present invention.
  • Figure 6 is a cross-sectional view taken along line B-B' of Figure 5.
  • Figure 7 is a cross-sectional view of a magnetic levitation device according to a third embodiment of the present invention.
  • Figure 8 is a cross-sectional view taken along line C-C' of Figure 7.
  • Figure 9 is a cross-sectional view of a magnetic levitation device according to a fourth embodiment of the present invention.
  • Figure 10 is a cross-sectional view taken along line D-D' of Figure 9.
  • Figure 11 is a cross-sectional view of a magnetic levitation device according to a fifth embodiment of the present invention.
  • Figure 12 is a cross-sectional view taken along line E-E' of Figure 11.
  • Figure 13 is a cross-sectional view of a magnetic levitation device according to another embodiment of the present invention.
  • Figure 14 is a partial cross-sectional perspective view of a magnetic levitation device capable of self-weight compensation according to an embodiment of the present invention.
  • Figure 15 is an enlarged view of A in Figure 14.
  • Figure 16 is a cross-sectional view of a magnetic levitation device according to an embodiment of the present invention.
  • 17 and 18 are diagrams for explaining various embodiments of an arc-shaped magnet unit according to an embodiment of the present invention.
  • Figure 19 is a cross-sectional view taken along line B-B' of Figure 18.
  • Figures 20 to 25 are diagrams showing how the moving direction of the mover is controlled by controlling the coil unit.
  • the present invention relates to a magnetic levitation device capable of applying an infinite degree of freedom of rotation.
  • FIG. 1 is a partial cross-sectional perspective view of a magnetic levitation device 10 according to an embodiment of the present invention.
  • the magnetic levitation device 10 includes a mover 100 formed in a plate shape and a fixing part 200 located below the mover 100. At this time, the mover 100 may be floating relative to the fixing part 200. In addition, a plurality of ring-shaped magnet units, which will be described later, are coupled to the mover 100, so that the mover 100 can be moved according to the movement of the ring-shaped magnet units.
  • the magnetic levitation mechanism 10 is located between the mover 100 and the fixing part 200, and includes a tilt driving part 300 that provides levitation and tilt rotation force to the mover 100, and the mover 100 and the fixing part 200. ) and includes a horizontal driving unit 400 that provides moving force on a horizontal plane to the mover 100. Additionally, the tilt driving unit 300 and the horizontal driving unit 400 each include at least one ring-shaped magnet unit and a coil unit, and Lorentz force may be generated as current is applied to the coil unit. A detailed description of this will be provided later.
  • the above-described ring-shaped magnet unit may be formed of a single ring-shaped magnet, but is not limited to this and may be manufactured by combining a plurality of magnets into a ring shape.
  • the tilt drive unit 300 and the horizontal drive unit 400 may each include one ring-shaped magnet unit.
  • the tilt driving unit 300 is located on the outside of the first ring-shaped magnet unit 310 and the first ring-shaped magnet unit 310 whose inner and outer sides have different polarities, is wound in the vertical direction, and has a predetermined angle to each other. It may include a plurality of first coil units 350 arranged.
  • first coil units 350 may be arranged at 120 degrees from each other, but the present invention is not limited to this and four or more first coil units 350 may be arranged.
  • the first coil portion 350 is wound in the vertical direction and formed to stand upright in the vertical direction, and the upper portion 352 of the first coil portion 350 and the first coil portion It may include a lower part 354 of part 350.
  • the first ring-shaped magnet unit 310 may be positioned to correspond to the outside of the upper part 352 of the first coil unit 350, but is not limited to this.
  • the first coil unit 350 may be formed to have a predetermined curvature as a whole so as to correspond to the ring-shaped magnet unit at the same distance apart.
  • the horizontal driving unit 400 is located at the lower part of the third ring-shaped magnet unit 410 and the third ring-shaped magnet unit 410 whose upper and lower parts have different polarities, is wound in the horizontal direction, and has a predetermined angle to each other. It may include a second coil unit 450 disposed.
  • the third ring-shaped magnet unit 410 may be fixed to the lower part of the mover 100.
  • two plurality of second coil units 450 may be arranged at 90 degrees from each other, but the present invention is not limited to this and three or more second coil units 450 may be arranged.
  • the second coil part 450 is wound in the horizontal direction and is formed to lie in the horizontal direction, and the inner part 454 of the second coil part 450 and the second nose A portion 450 may include an outer portion 452 .
  • the third ring-shaped magnet unit 410 may be positioned to correspond to the upper portion of the outer portion 452 of the second coil portion 450, but is not limited to this.
  • the second coil unit 450 may be formed to have a predetermined curvature as a whole so as to correspond to the ring-shaped magnet unit at the same distance apart.
  • the upper surface of the fixing part 200 includes a first coil part support part 210 to which the first coil part 350 is fixed and a second coil part support part to which the second coil part 450 is fixed ( 220) can be formed.
  • the first coil portion support 210 may protrude upward to have a predetermined height, and the first coil portion 350 may be fixed to the upper surface.
  • the second coil portion support 220 may protrude upward to have a predetermined height, and the second coil portion 450 may be fixed to the upper peripheral surface.
  • the tilt drive unit 300 and the horizontal drive unit 400 may each include two ring-shaped magnet units.
  • the tilt driving unit 300 is located at a position corresponding to the lower part of the first ring-shaped magnet unit 310 and the lower part 354 of the first coil unit 350, and the upper and lower parts have different polarities. , It may further include a second ring-shaped magnet unit 320 whose polarity is opposite to that of the first ring-shaped magnet unit 310.
  • the tilt driving unit 300 includes the first coil unit 350, the first ring-shaped magnet unit 310 located inside the upper part 352 of the first coil unit 350, and the first coil unit 350.
  • the horizontal driving unit 400 is located at a position corresponding to the inner side of the third ring-shaped magnet unit 410 and the inner side 454 of the second coil portion 450, the inner and outer sides have different polarities, and the third ring-shaped magnet unit 400 has a different polarity. It may further include a fourth ring-shaped magnet unit 420 whose polarity is opposite to that of the magnet unit 410.
  • the horizontal drive unit 400 includes the second coil unit 450, the third ring-shaped magnet unit 410 located on the upper part of the outer part 452 of the second coil unit 450, and the second coil unit 450. ) may include a fourth ring-shaped magnet unit 420 located on the upper part of the inner portion 454.
  • the magnetic levitation device 10 according to the second embodiment has the advantage of increasing the driving force by utilizing twice the coil portion compared to the magnetic levitation device 10 according to the first embodiment.
  • the tilt drive unit 300 may include four ring-shaped magnet units, and the horizontal drive unit 400 may include two ring-shaped magnet units.
  • the tilt driving unit 300 is located on the outer upper part of the first coil unit 350, and the surface facing the first ring-shaped magnet unit 310 and the outer surface of the first ring-shaped magnet unit 310 are aligned with each other.
  • a fifth ring-shaped magnet unit 330 having different poles, located on the outer part of the lower part 354 of the first coil portion 350, and a surface facing the second ring-shaped magnet unit 320 and the second ring-shaped magnet unit 320 ) may further include a sixth ring-shaped magnet unit 340 having different poles from the outer surface of the.
  • the tilt driving unit 300 includes a first coil unit 350, a first ring-shaped magnet unit 310 located inside the upper part 352 of the first coil unit 350, and a first coil unit 350.
  • a position outside the lower portion 354 of 350 may include a sixth ring-shaped magnet unit 340 .
  • the magnetic levitation mechanism 10 according to the third embodiment increases the levitation force and tilt rotation force by additionally arranging two ring-type magnet units on the tilt drive unit 300.
  • the magnetic levitation mechanism 10 according to the first to third embodiments has the effect of making it easy to assemble the fixing part 200 and the mover 100.
  • the tilt drive unit 300 and the horizontal drive unit 400 may each include four ring-shaped magnet units.
  • the tilt driving unit 300 includes a first coil unit 350, a first ring-shaped magnet unit 310 located inside the upper part 352 of the first coil unit 350, and a first coil unit 350. ), the second ring-shaped magnet unit 320 located inside the lower portion 354, the fifth ring-shaped magnet unit 330 located outside the upper portion 352 of the first coil portion 350, and the first coil portion 350.
  • a position outside the lower portion 354 of the portion 350 may include a sixth ring-shaped magnet unit 340.
  • the horizontal driving unit 400 is located at the lower part of the outer part 452 of the second coil unit 450, and has a surface facing the third ring-shaped magnet unit 410, a lower surface of the third ring-shaped magnet unit 410, and Located at the lower part of the inner part 454 of the seventh ring-shaped magnet unit 430 and the second coil unit 450 having different poles, the surface facing the fourth ring-shaped magnet unit 420 and the fourth ring-shaped magnet It may further include an eighth ring-shaped magnet unit 440 having different poles from the lower surface of the unit 420.
  • the horizontal drive unit 400 includes the second coil unit 450, the third ring-shaped magnet unit 410 located on the upper part of the outer part 452 of the second coil unit 450, and the second coil unit 450.
  • the mover 100 has a cross-section formed in an 'L' shape at the bottom, and a magnet fixing part 110 on which the seventh ring-shaped magnet unit 430 and/or the eighth ring-shaped magnet unit 440 is fixed to the upper surface. ) may further be included.
  • the magnetic levitation mechanism 10 according to the fourth embodiment has two ring-type magnet units additionally disposed on the horizontal driving unit 400 to further increase the horizontal force. There is an advantage.
  • the tilt drive unit 300 and the horizontal drive unit 400 may each include two ring-shaped magnet units.
  • the horizontal drive unit 400 is located at the lower part of the outer part 452 of the second coil unit 450, and has a surface facing the third ring-shaped magnet unit 410 and a lower portion of the third ring-shaped magnet unit 410. It may further include a seventh ring-shaped magnet unit 430 having different poles from each other.
  • the horizontal drive unit 400 includes the second coil unit 450, the third ring-shaped magnet unit 410 located on the upper part of the outer part 452 of the second coil unit 450, and the second coil unit 450.
  • the horizontal drive unit 400 may include a seventh ring-shaped magnet unit 430 located at the lower part of the outer portion 452.
  • the tilt driving unit 300 is located on the upper outer portion of the first coil unit 350, and the surface facing the first ring-shaped magnet unit 310 and the outer surface of the first ring-shaped magnet unit 310 have different poles. It may further include a fifth ring-shaped magnet unit 330 having a.
  • the tilt driving unit 300 includes a first coil unit 350, a first ring-shaped magnet unit 310 located inside the upper part of the first coil unit 350, and an outside upper part of the first coil unit 350. It may include a fifth ring-shaped magnet unit 330 positioned.
  • the magnetic levitation mechanism 10 according to the fifth embodiment additionally disposes one ring-type magnet unit each in the tilt drive unit 300 and the horizontal drive unit 400. , In order to increase the magnetic field, they are arranged to correspond to each other based on the coil parts 350 and 450, which has the advantage of increasing the levitation force and tilt rotation force.
  • the magnetic levitation device 10 has the tilt drive unit 300 located outside the horizontal drive unit 400, but is not limited to this, and as shown in FIG. 13, the tilt drive unit 300 ) may be located inside the horizontal driving unit 400. Since the length of the ring-shaped magnet unit and the coil portion increases on the outer side in the radial direction, it is preferable to place those that require greater driving force on the outer side.
  • the magnetic levitation mechanism 10 may further include a rotational drive unit 500 that provides rotational force to the mover 100.
  • the rotation drive unit 500 may be arranged as a rotary motor or a combination of a permanent magnet and a coil unit.
  • the horizontal drive unit 400 is magnetized in the radial direction and consists of a set of magnet arrays with alternating polarities and two sets of vertically upright multi-phase coil units spaced at a certain angle to apply a rotational force in the Z-axis direction. It can also be configured to function as a rotation driver 500.
  • the magnetic levitation device 10 may further include a non-contact displacement sensor (not shown) that detects the position of the mover 100.
  • the non-contact displacement sensor may be a Hall sensor. Since the Hall sensor is a general configuration, detailed description will be omitted.
  • the magnetic levitation device 10 includes a mover 100 formed in a plate shape and a fixing part 200 located below the mover 100. At this time, the mover 100 may be floating relative to the fixing part 200. In addition, a plurality of ring-shaped magnet units are coupled to the mover 100, so that the mover 100 can be moved according to the movement of the ring-shaped magnet units.
  • the magnetic levitation device 10 is located between the mover 100 and the fixing unit 200 and includes a tilt drive unit 300 that provides levitation force and tilt rotation force to the mover 100.
  • the tilt driving unit 300 each includes at least one ring-shaped magnet unit and a coil unit, and Lorentz force may be generated by applying current to the coil unit. A detailed description of this will be provided later.
  • the above-described ring-shaped magnet unit may be formed of a single ring-shaped magnet, but is not limited to this and may be manufactured by combining a plurality of magnets into a ring shape.
  • the tilt driving unit 300 includes a first ring-shaped magnet unit 310, a second ring-shaped magnet unit 320, a fifth ring-shaped magnet unit 330, a sixth ring-shaped magnet unit 340, and a plurality of It includes a first coil unit 350 and a first arc-shaped magnet unit 360.
  • the first ring-shaped magnet unit 310 has different polarities on the inner and outer surfaces, and may be fixed to the mover 100.
  • the second ring-shaped magnet unit 320 is located below the first ring-shaped magnet unit 310, and its inner and outer surfaces have polarities opposite to those of the first ring-shaped magnet unit 310.
  • the fifth ring-shaped magnet unit 330 is located outside the first ring-shaped magnet unit 310, and the surface facing the first ring-shaped magnet unit 310 has a polarity different from the outer surface of the first ring-shaped magnet unit 310.
  • the sixth ring-shaped magnet unit 340 is located outside the second ring-shaped magnet unit 320, and the surface facing the second ring-shaped magnet unit 320 has a polarity different from the outer surface of the second ring-shaped magnet unit 320.
  • the first coil part 350 is wound in the vertical direction and is formed to stand upright in the vertical direction, and may include an upper part 352 of the first coil part 350 and a lower part 354 of the first coil part 350. You can. Additionally, referring to FIG. 16, three first coil units 350 may be arranged at an angle of 120 degrees, but the present invention is not limited to this, and four or more first coil units 350 may be arranged.
  • the upper portion 352 of the first coil portion 350 is located between the first ring-shaped magnet unit 310 and the fifth ring-shaped magnet unit 330, and the lower portion 354 of the first coil portion 350 is located between the first ring-shaped magnet unit 310 and the fifth ring-shaped magnet unit 330. It may be located between the second ring-shaped magnet unit 320 and the sixth ring-shaped magnet unit 340.
  • the first coil unit 350 may be formed to have a predetermined curvature as a whole so as to correspond to the ring-shaped magnet units at the same distance apart.
  • a first coil portion support portion 210 to which the first coil portion 350 is fixed may be formed on the upper surface of the fixing portion 200.
  • the first coil portion support 210 may protrude upward to have a predetermined height, and the first coil portion 350 may be fixed to the upper surface.
  • the first arc-shaped magnet unit 360 is located in the center of the first coil unit 350, the inner surface is formed with the same polarity as the outer surface of the first ring-shaped magnet unit 310, and the outer surface is formed in the second ring-shaped magnet unit 310. It may have the same polarity as the inner surface of the magnet unit 320.
  • the first ring-shaped magnet unit 310 has an N pole on its inner surface and an S pole on its outer surface
  • the second ring-shaped magnet unit 320 has an S pole on its inner surface
  • the fifth ring-shaped magnet unit 330 has an inner surface with an N-pole
  • the sixth ring-shaped magnet unit 340 has an inner surface with an S-pole. It has a pole, and the outer surface can have an N pole.
  • the first arc-shaped magnet unit has an S pole on the inner surface 360 and an N pole on the outer surface, thereby generating a repulsive force against the first ring-shaped magnet unit 310 and the fifth ring-shaped magnet unit 330.
  • an attractive force is generated for the second ring-shaped magnet unit 320 and the sixth ring-shaped magnet unit 340, thereby providing a lifting force to the mover 100.
  • the first arc-shaped magnet unit 360 may be formed of a single permanent magnet (see FIG. 16) formed in an arc shape, but is not limited thereto, and may be formed of a plurality of permanent magnets (see FIG. 17) arranged in an arc shape. It could be.
  • the magnetic levitation device 10 is fixed to the fixing part 200 and includes a plurality of second plurality of second arc-shaped magnet units disposed at a predetermined angle at a position corresponding to the first arc-shaped magnet unit 360. It may further include an arc-shaped magnet unit 370. Additionally, the second arc-shaped magnet unit 370 may have the same polarity as the first arc-shaped magnet unit 360 on the inner and outer surfaces.
  • the second arc-shaped magnet unit 370 may be fixed to the magnet support portion 230 formed on the upper surface of the fixing portion 200, but is not limited to this.
  • the current supplied to the second coil unit 450 causes the second coil unit 450 to undergo a Lorentz force. Electromagnetic force is induced.
  • current flows in the -y-axis direction inside the second coil part 450, current flows in the y-axis direction in the outer part 452 of the second coil part 450, and the third ring-shaped magnet Magnet density is formed in the -z-axis direction by the unit 410 and the fifth ring-shaped magnet unit 430, and magnet density is formed in the z-axis direction by the fourth ring-shaped magnet unit 420 and the eighth magnet unit.
  • a resultant force acts in the -x-axis direction, but the second coil unit 450 is fixed and does not move. Accordingly, the mover 100 to which the ring-shaped magnet unit is fixed can be moved in the x-axis direction.
  • Lorentzian force is generated in the first coil unit 350 by the current supplied to the first coil unit 350.
  • Electromagnetic force is induced by force.
  • current flows in the x-axis direction in the upper part of the first coil part 350, and current flows in the -x-axis direction in the lower part 354 of the first coil part 350, and the first ring-shaped magnet Magnet density is formed in the y-axis direction by the unit 310 and the fifth ring-shaped magnet unit 330, and magnets are formed in the -y-axis direction by the second ring-shaped magnet unit 320 and the sixth ring-shaped magnet unit 340.
  • Density is formed and a resultant force acts in the z-axis direction, but the second coil unit 450 is fixed and does not move. Accordingly, the mover 100 to which the ring-shaped magnet unit is fixed can rotate based on the upper x-axis by receiving force in the -z-axis direction.
  • the mover 100 may rotate based on an axis in a direction perpendicular to the direction in which the first coil unit 350 is located. You can.
  • fixing part 210 first coil part support part
  • first ring-shaped magnet unit 320 second ring-shaped magnet unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

본 발명의 일 측면에 따른 자기 부상 기구는 판형으로 형성되는 이동자; 상기 이동자의 하부에 위치하는 고정부; 상기 이동자와 고정부 사이에 위치하여, 이동자에 부상력 및 틸트 회전력을 제공하는 틸트 구동부; 및 상기 이동자와 고정부 사이에 위치하여, 상기 이동자에게 수평면 상에서 이동력을 제공하는 수평 구동부를 포함한다. 이때, 상기 틸트 구동부는 내측과 외측이 서로 상이한 극성을 가지는 제1 링형 자석 유닛; 및 상기 제1 링형 자석 유닛의 외측에 위치하고, 수직방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제1 코일부를 포함하고, 상기 수평 구동부는 상부와 하부가 서로 상이한 극성을 가지는 제3 링형 자석유닛; 및 상기 제3 링형 자석 유닛의 하부에 위치하고, 수평방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제2 코일부를 포함한다.

Description

회전 이동이 가능한 자기부상 기구
본 발명은 회전이 자유로운 자기부상 기구에 관한 것이다.
전류가 흐르는 도체와 자석이 상호작용을 하여 힘이 발생하는데 플레밍의 왼손법칙을 적용한 이 힘을 자기력이라고 한다. 이 힘을 이용해서 물체를 부양시키는 기술을 자기부상이라 한다. 전류의 크기 등을 조절하면 강한 자기력을 얻을 수 있으므로 고중량의 물체를 부상시키는게 가능하여, 자기부상열차 등에 이용되며, 기판 처리 공정 등 정밀한 작업을 수행하는데도 이동된다.
특히, 기판에 공정이 수행되기 위해서, 기판 처리 장치 내의 지지 플레이트 상에 기판이 정위치에 위치되어야 한다. 따라서, 다양한 기판 처리 장치들은 기판의 위치 정보를 파악하고, 기판을 정위치로 위치시킬 수 있는 정렬 부재를 포함할 수 있다. 정렬 부재는 기판을 정위치로 정렬하고, 기판을 회전시킬 수 있다. 이러한 정렬 부재를 포함할 경우, 기판의 6자유도를 확보하기 위해 그 장비가 복잡한 메커니즘을 필요로 하고, 매우 좁은 영역 내에서만 병진 및 회전 운동이 가능하다. 따라서, 기판의 위치 결정 정밀도 및 회전에 한계가 발생할 수 있다.
또한, 지지 플레이트를 부상할 때 수반되는 대표적인 문제점은 지지 플레이트가 정지하여 있을 때에도 중력만큼의 힘을 지속적으로 인가해야 한다는 점이다. 자기부상과 같이 전자기력으로 부상력을 인가하는 경우 코일에 지속적으로 전류를 입력해야 하므로 전력소모와 열이 계속해서 발생하는 문제점이 있다.
또한, 자기부상 코일 및 자석에서 생성할 수 있는 힘 중 일정 부분을 부상력에 투입해야 하므로 대상체를 이동시키기 위해 인가할 수 있는 추진력의 비율이 감소하는 문제점이 있다.
[선행기술문헌]
대한민국공개특허 제10-2017-0000460호(발명의 명칭:지지 유닛 및 기판 처리 장치)
본 발명의 일 실시예는 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 로렌츠 힘을 이용하여 자기 부상 기구를 구현하며, 동시에 평면 내에서 360이상 무한히 회전이 가능한 운동자유도를 인가할 수 있는 자기 부상 기구를 제공하고자 한다.
또한, 본 발명은 전력소모 없이 원호형 자석 유닛을 이용하여 부상력을 제공할 수 있는 자기 부상 기구를 제공하고자 한다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면에 따른 자기 부상 기구는 판형으로 형성되는 이동자; 상기 이동자의 하부에 위치하는 고정부; 상기 이동자와 고정부 사이에 위치하여, 이동자에 부상력 및 틸트 회전력을 제공하는 틸트 구동부; 및 상기 이동자와 고정부 사이에 위치하여, 상기 이동자에게 수평면 상에서 이동력을 제공하는 수평 구동부를 포함한다. 이때, 상기 틸트 구동부는 내측과 외측이 서로 상이한 극성을 가지는 제1 링형 자석 유닛; 및 상기 제1 링형 자석 유닛의 외측에 위치하고, 수직방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제1 코일부를 포함하고, 상기 수평 구동부는 상부와 하부가 서로 상이한 극성을 가지는 제3 링형 자석유닛; 및 상기 제3 링형 자석 유닛의 하부에 위치하고, 수평방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제2 코일부를 포함한다.
또한, 상기 틸트 구동부는 상기 제1 링형 자석 유닛의 하부 및 상기 제1 코일부의 하부와 대응되는 위치에 위치하며, 상부와 하부가 서로 상이한 극성을 가지며, 상기 제1 링형 자석 유닛과 극성이 반대로 형성되는 제2 링형 자석 유닛을 더 포함하고, 상기 수평 구동부는 상기 제3 링형 자석 유닛의 내측 및 상기 제2 코일부의 내측부와 대응되는 위치에 위치하며, 내측과 외측이 서로 상이한 극성을 가지며, 상기 제3 링형 자석 유닛과 극성이 반대로 형성되는 제4 링형 자석 유닛을 더 포함할 수 있다.
또한, 상기 틸트 구동부는 상기 제1 코일부의 상부의 외측부에 위치하고, 상기 제1 링형 자석 유닛과 마주보는 면과 상기 제1 링형 자석 유닛의 외측면이 서로 상이한 극을 가지는 제5 링형 자석 유닛; 및 상기 제1 코일부의 하부의 외측부에 위치하고, 상기 제2 링형 자석 유닛과 마주보는 면과 상기 제2 링형 자석 유닛의 외측면과 서로 상이한 극을 가지는 제6 링형 자석 유닛을 더 포함할 수 있다.
또한, 상기 수평 구동부는 상기 제2 코일부의 외측부의 하부에 위치하고, 상기 제3 링형 자석 유닛과 마주보는 면과 상기 제3 링형 자석 유닛의 하부면과 서로 상이한 극을 가지는 제7 링형 자석 유닛; 및 상기 제2 코일부의 내측부의 하부에 위치하고, 상기 제4 링형 자석 유닛과 마주보는 면과 상기 제4 링형 자석 유닛의 하부면과 서로 상이한 극을 가지는 제8 링형 자석 유닛을 더 포함할 수 있다.
또한, 상기 이동자의 하부에 위치하고, 단면이 ‘L’자 형으로 형성되고, 상부면에 상기 제7 링형 자석 유닛 및 제8 링형 자석 유닛이 고정된 자석 고정부를 더 포함할 수 있다.
또한, 상기 수평 구동부는 상기 제2 코일부의 외측부의 하부에 위치하고, 상기 제3 링형 자석 유닛과 마주보는 면과 상기 제3 링형 자석 유닛의 하부면과 서로 상이한 극을 가지는 제7 링형 자석 유닛을 더 포함하고, 상기 틸트 구동부는 상기 제1 코일부의 상부의 외측부에 위치하고, 상기 제1 링형 자석 유닛과 마주보는 면과 상기 제1 링형 자석 유닛의 외측면이 서로 상이한 극을 가지는 제5 링형 자석 유닛을 더 포함할 수 있다.
또한, 본 발명의 자기 부상 기구는 판형으로 형성되는 이동자, 상기 이동자의 하부에 위치하는 고정부 및 상기 이동자와 고정부 사이에 위치하여, 이동자에 틸트 회전력을 제공하는 틸트 구동부을 포함하되, 상기 틸트 구동부는 내측면과 외측면이 서로 상이한 극성을 가지는 제1 링형 자석 유닛, 상기 제1 링형 자석 유닛의 하부에 위치하고, 내측면과 외측면의 극성이 상기 제1 링형 자석 유닛과 반대로 형성되는 제2 링형 자석 유닛, 상기 제1 링형 자석 유닛의 외측에 위치하고, 상기 제1 링형 자석 유닛과 마주보는 면이 상기 제1 링형 자석 유닛의 외측면과 서로 상이한 극성을 가지는 제5 링형 자석 유닛, 상기 제2 링형 자석 유닛의 외측에 위치하고, 상기 제2 링형 자석 유닛과 마주보는 면이 상기 제2 링형 자석 유닛의 외측면과 서로 상이한 극성을 가지는 제6 링형 자석 유닛, 수직방향으로 권취되며, 상부가 상기 제1 링형 자석 유닛과 제5 링형 자석 유닛 사이에 위치하고, 하부가 상기 제2 링형 자석 유닛과 제6 링형 자석유닛 사이에 위치하며, 서로 소정의 각도를 가지도록 배치된 복수의 제1 코일부 및 상기 제1 코일부의 중앙부에 위치하며, 내측면이 상기 제1 링형 자석 유닛의 외측면과 동일한 극성으로 형성되고, 외측면이 상기 제2 링형 자석 유닛의 내측면과 동일한 극성을 가지는 제1 원호형 자석 유닛을 포함한다.
또한, 상기 제1 원호형 자석 유닛은 원호형으로 형성된 하나의 영구 자석 또는 원호형으로 배치된 복수의 영구 자석일 수 있다.
또한, 상기 고정부에 고정되고, 상기 제1 원호형 자석 유닛과 대응되는 위치에 소정의 각도를 가지도록 배치된 복수의 제2 원호형 자석 유닛을 더 포함할 수 있다.
또한, 상기 고정부의 상부면으로부터 돌출형성되고, 상부에 상기 제2 원호형 자석 유닛이 고정된 자석 지지부를 더 포함할 수 있다.
또한, 상기 복수의 제1 코일부는 서로 120도를 가지도록 3개가 배치되며, 상기 복수의 제2 코일부는 서로 90도를 가지도록 2개가 배치될 수 있다.
또한, 상기 틸트 구동부가 상기 수평 구동부의 외측에 위치할 수 있다.
또한, 상기 틸트 구동부가 상기 수평 구동부의 내측에 위치할 수 있다.
또한, 상기 이동자에게 회전력을 제공하는 회전 구동부를 더 포함할 수 있다.
또한, 상기 이동자의 위치를 감지하는 비접촉 변위 센서를 더 포함할 수 있다.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 링형 자석 유닛에 영향을 미치는 코일부 중 적어도 하나 이상을 선택하고, 전류를 제어함에 따라 무한히 회전이 가능한 운동자유도를 인가할 수 있는 자기 부상 기구를 제공할 수 있는 효과가 있다.
또한, 원호형 자석 유닛을 이용하여 부상력을 제공하여, 전력소모와 열발생을 줄이고, 추진력을 높일 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 회전 이동이 가능한 자기 부상 기구의 부분 단면 사시도이다.
도 2는 본 발명의 제1 실시예에 따른 자기 부상 기구의 단면도이다.
도 3는 도 2의 A-A’의 단면도이다.
도 4는 본 발명의 일 실시예에 따른 제1 코일부의 사시도이고, 도 4의 (b)는 본 발명의 일 실시예에 따른 제2 코일부의 사시도이다.
도 5는 본 발명의 제2 실시예에 따른 자기 부상 기구의 단면도이다.
도 6은 도 5의 B-B’의 단면도이다.
도 7은 본 발명의 제3 실시예에 따른 자기 부상 기구의 단면도이다.
도 8은 도 7의 C-C’의 단면도이다.
도 9는 본 발명의 제4 실시예에 따른 자기 부상 기구의 단면도이다.
도 10은 도 9의 D-D’의 단면도이다.
도 11은 본 발명의 제5 실시예에 따른 자기 부상 기구의 단면도이다.
도 12은 도 11의 E-E’의 단면도이다.
도 13은 본 발명의 다른 실시예에 따른 자기 부상 기구의 단면도이다.
도 14는 본 발명의 일 실시예에 따른 자중 보상이 가능한 자기 부상 기구의 부분 단면 사시도이다.
도 15는 도 14의 A의 확대도이다.
도 16은 본 발명의 일 실시예에 따른 자기 부상 기구의 단면도이다.
도 17 및 도 18은 본 발명의 일 실시예에 따른 원호형 자석 유닛의 다양한 실시예를 설명하기 위한 도면이다.
도 19는 도 18의 B-B’의 단면도이다.
도 20 내지 도 25는 코일부를 제어하여 이동자의 이동 방향을 제어하는 모습을 보여주는 도면이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. 또한, 도면을 참고하여 설명하면서, 같은 명칭으로 나타낸 구성일지라도 도면에 따라 도면 번호가 달라질 수 있고, 도면 번호는 설명의 편의를 위해 기재된 것에 불과하고 해당 도면 번호에 의해 각 구성의 개념, 특징, 기능 또는 효과가 제한 해석되는 것은 아니다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 무한히 회전이 가능한 운동자유도를 인가할 수 있는 자기 부상 기구에 관한 것이다.
이하, 도 1을 참조하여, 본 발명의 일 실시예에 따른 자기 부상 기구(10)에 대해서 간략하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 자기 부상 기구(10)의 부분 단면 사시도이다.
자기 부상 기구(10)는 판형으로 형성되는 이동자(100) 및 이동자(100)의 하부에 위치하는 고정부(200)를 포함한다. 이때, 이동자(100)는 고정부(200)에 대해 부상되어 있을 수 있다. 또한, 이동자(100)에는 후술되는 복수의 링형 자석 유닛이 결합되어, 링형 자석 유닛의 이동에 따라 이동자(100)가 이동될 수 있다.
자기 부상 기구(10)는 이동자(100)와 고정부(200) 사이에 위치하여, 이동자(100)에 부상력 및 틸트 회전력을 제공하는 틸트 구동부(300) 및 이동자(100)와 고정부(200) 사이에 위치하여, 이동자(100)에게 수평면 상에서 이동력을 제공하는 수평 구동부(400)를 포함한다. 또한, 틸트 구동부(300) 및 수평 구동부(400)는 각각 적어도 하나 이상의 링형 자석 유닛과 코일부를 포함하며, 코일부에 전류를 인가함에 따라 로렌츠 힘이 발생할 수 있다. 이에 대한 상세한 설명은 후술하도록 한다. 또한, 상술한 링형 자석 유닛은 하나의 링형 자석으로 형성될 수 있으나, 이에 한하지 않고, 복수의 자석을 링형으로 결합하여 제작할 수도 있다.
도 2 내지 도 4을 참조하여, 본 발명의 제1 실시예에 따른 자기 부상 기구(10)에 대해서 설명한다.
제1 실시예에 따른 자기 부상 기구(10)는 틸트 구동부(300) 및 수평 구동부(400)가 각각 1개의 링형 자석 유닛을 포함할 수 있다.
틸트 구동부(300)는 내측과 외측이 서로 상이한 극성을 가지는 제1 링형 자석 유닛(310) 및 제1 링형 자석 유닛(310)의 외측에 위치하고, 수직방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제1 코일부(350)를 포함할 수 있다.
복수의 제1 코일부(350)는, 도 2을 참조하면, 서로 120도를 가지도록 3개가 배치될 수 있으나, 이에 한하지 않고, 4개 이상 배치될 수 있다. 아울러, 도 4의 (b)를 참조하면, 제1 코일부(350)는 수직방향으로 권취되어, 수직방향으로 직립되도록 형성되며, 제1 코일부(350)의 상부(352) 및 제1 코일부(350)의 하부(354)를 포함할 수 있다. 이때, 제1 링형 자석 유닛(310)은 제1 코일부(350)의 상부(352)의 외측과 대응되도록 위치할 수 있으나, 이에 한하지는 않는다. 또한, 제1 코일부(350)는 링형 자석 유닛와 동일한 거리 이격되어 대응되도록 전체적으로 형상이 소정의 곡률을 가지도록 형성될 수 있다.
수평 구동부(400)는 상부와 하부가 서로 상이한 극성을 가지는 제3 링형 자석 유닛(410) 및 제3 링형 자석 유닛(410)의 하부에 위치하고, 수평방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 제2 코일부(450)를 포함할 수 있다.
또한, 제3 링형 자석 유닛(410)은 이동자(100)의 하부에 고정될 수 있다.
복수의 제2 코일부(450)는, 도 2를 참조하면, 서로 90도를 가지도록 2개가 배치될 수 있으나, 이에 한하지 않고, 3개 이상 배치될 수 있다. 아울러, 도 4의 (a)를 참조하면, 제2 코일부(450)는 수평방향으로 권취되어, 수평방향으로 누워있게 형성되며, 제2 코일부(450)의 내측부(454) 및 제2 코일부(450)의 외측부(452)를 포함할 수 있다. 이때, 제3 링형 자석 유닛(410)은 제2 코일부(450)의 외측부(452)의 상부 대응되도록 위치할 수 있으나, 이에 한하지는 않는다. 또한, 제2 코일부(450)는 링형 자석 유닛과 동일한 거리 이격되어 대응되도록 전체적으로 형상이 소정의 곡률을 가지도록 형성될 수 있다.
도 3을 참조하면, 고정부(200)의 상부면에는 제1 코일부(350)가 고정되는 제1 코일부 지지부(210) 및 제2 코일부(450)가 고정되는 제2 코일부 지지부(220)를 형성될 수 있다. 제1 코일부 지지부(210)는 소정의 높이를 가지도록 상부 방향으로 돌출형성되고, 상부면에 제1 코일부(350)가 고정될 수 있다. 제2 코일부 지지부(220)는 소정의 높이를 가지도록 상부 방향으로 돌출형성되고, 상부 둘레면에 제2 코일부(450)가 고정될 수 있다.
이하, 도 5 및 도 6을 참조하여, 본 발명의 제2 실시예에 따른 자기 부상 기구(10)에 대해서 설명한다.
제2 실시예에 따른 자기 부상 기구(10)는 틸트 구동부(300) 및 수평 구동부(400)가 각각 2개의 링형 자석 유닛을 포함할 수 있다.
상세하게는, 틸트 구동부(300)는 제1 링형 자석 유닛(310)의 하부 및 제1 코일부(350)의 하부(354)와 대응되는 위치에 위치하며, 상부와 하부가 서로 상이한 극성을 가지며, 제1 링형 자석 유닛(310)과 극성이 반대로 형성되는 제2 링형 자석 유닛(320)을 더 포함할 수 있다. 다시 말해, 틸트 구동부(300)는 제1 코일부(350), 제1 코일부(350)의 상부(352)의 내측에 위치하는 제1 링형 자석 유닛(310), 및 제1 코일부(350)의 하부(354)의 내측에 위치하는 제2 링형 자석 유닛(320)을 포함할 수 있다.
수평 구동부(400)는 제3 링형 자석 유닛(410)의 내측 및 제2 코일부(450)의 내측부(454)와 대응되는 위치에 위치하며, 내측과 외측이 서로 상이한 극성을 가지며, 제3 링형 자석 유닛(410)과 극성이 반대로 형성되는 제4 링형 자석 유닛(420)을 더 포함할 수 있다. 다시 말해, 수평 구동부(400)는 제2 코일부(450), 제2 코일부(450)의 외측부(452)의 상부에 위치하는 제3 링형 자석 유닛(410), 및 제2 코일부(450)의 내측부(454)의 상부에 위치하는 제4 링형 자석 유닛(420)을 포함할 수 있다.
제2 실시예에 따른 자기 부상 기구(10)는 제1 실시예에 따른 자기 부상 기구(10)에 비해 코일부를 두배로 활용하여 구동력을 높일 수 있는 장점이 있다.
이하, 도 7 및 도 8을 참조하여, 본 발명의 제3 실시예에 따른 자기 부상 기구(10)에 대해서 설명한다.
제3 실시예에 따른 자기 부상 기구(10)는 틸트 구동부(300)가 4개의 링형 자석 유닛을 포함하고, 수평 구동부(400)가 2개의 링형 자석 유닛을 포함할 수 있다.
상세하게는, 틸트 구동부(300)는 제1 코일부(350)의 상부의 외측부에 위치하고, 제1 링형 자석 유닛(310)과 마주보는 면과 제1 링형 자석 유닛(310)의 외측면이 서로 상이한 극을 가지는 제5 링형 자석 유닛(330), 제1 코일부(350)의 하부(354)의 외측부에 위치하고, 제2 링형 자석 유닛(320)과 마주보는 면과 제2 링형 자석 유닛(320)의 외측면과 서로 상이한 극을 가지는 제6 링형 자석 유닛(340)을 더 포함할 수 있다.
다시 말해, 틸트 구동부(300)는 제1 코일부(350), 제1 코일부(350)의 상부(352)의 내측에 위치하는 제1 링형 자석 유닛(310), 제1 코일부(350)의 하부(354)의 내측에 위치하는 제2 링형 자석 유닛(320), 제1 코일부(350)의 상부(352)의 외측에 위치하는 제5 링형 자석 유닛(330), 및 제1 코일부(350)의 하부(354)의 외측에 위치는 제6 링형 자석 유닛(340)을 포함할 수 있다.
제3 실시예에 따른 자기 부상 기구(10)는 제2 실시예에 따른 자기 부상 기구(10)에 비해 틸트 구동부(300)에 2개의 링형 자석 유닛을 추가로 배치하여 부상력 및 틸트 회전력을 높일 수 있는 장점이 있다. 아울러, 제1 내지 제3 실시예에 따른 자기 부상 기구(10)는 고정부(200)와 이동자(100)의 조립이 용이한 효과가 있다.
이하, 도 9 및 도 10을 참조하여, 본 발명의 제4 실시예에 따른 자기 부상 기구(10)에 대해서 설명한다.
제4 실시예에 따른 자기 부상 기구(10)는 틸트 구동부(300) 및 수평 구동부(400)가 각각 4개의 링형 자석 유닛을 포함할 수 있다.
상세하게는, 틸트 구동부(300)는 제1 코일부(350), 제1 코일부(350)의 상부(352)의 내측에 위치하는 제1 링형 자석 유닛(310), 제1 코일부(350)의 하부(354)의 내측에 위치하는 제2 링형 자석 유닛(320), 제1 코일부(350)의 상부(352)의 외측에 위치하는 제5 링형 자석 유닛(330), 및 제1 코일부(350)의 하부(354)의 외측에 위치는 제6 링형 자석 유닛(340)을 포함할 수 있다.
또한, 수평 구동부(400)는 제2 코일부(450)의 외측부(452)의 하부에 위치하고, 제3 링형 자석 유닛(410)과 마주보는 면과 제3 링형 자석 유닛(410)의 하부면과 서로 상이한 극을 가지는 제7 링형 자석 유닛(430) 및 제2 코일부(450)의 내측부(454)의 하부에 위치하고, 상기 제4 링형 자석 유닛(420)과 마주보는 면과 상기 제4 링형 자석 유닛(420)의 하부면과 서로 상이한 극을 가지는 제8 링형 자석 유닛(440)을 더 포함할 수 있다.
다시 말해, 수평 구동부(400)는 제2 코일부(450), 제2 코일부(450)의 외측부(452)의 상부에 위치하는 제3 링형 자석 유닛(410), 제2 코일부(450)의 내측부(454)의 상부에 위치하는 제4 링형 자석 유닛(420), 제2 코일부(450)의 외측부(452)의 하부에 위치하는 제7 링형 자석 유닛(430), 및 제2 코일부(450)의 내측부(454)의 하부에 위치하는 제8 링형 자석 유닛(440)을 포함할 수 있다.
또한, 이동자(100)는 하부에 단면이 ‘L’자 형으로 형성되고, 상부면에 제7 링형 자석 유닛(430) 및/또는 제8 링형 자석 유닛(440)이 고정된 자석 고정부(110)를 더 포함할 수 있다.
제4 실시예에 따른 자기 부상 기구(10)는 제3 실시예에 따른 자기 부상 기구(10)에 비해 수평 구동부(400)에 2개의 링형 자석 유닛이 추가로 배치되어 수평력을 좀 더 높일 수 있는 장점이 있다.
이하, 도 11 및 도 12를 참조하여, 본 발명의 제5 실시예에 따른 자기 부상 기구(10)에 대해서 설명한다.
제5 실시예에 따른 자기 부상 기구(10)는 틸트 구동부(300) 및 수평 구동부(400)가 각각 2개의 링형 자석 유닛을 포함할 수 있다.
상세하게는, 수평 구동부(400)는 제2 코일부(450)의 외측부(452)의 하부에 위치하고, 제3 링형 자석 유닛(410)과 마주보는 면과 제3 링형 자석 유닛(410)의 하부면과 서로 상이한 극을 가지는 제7 링형 자석 유닛(430)을 더 포함할 수 있다.
다시 말해, 수평 구동부(400)는 제2 코일부(450), 제2 코일부(450)의 외측부(452)의 상부에 위치하는 제3 링형 자석 유닛(410), 및 제2 코일부(450)의 외측부(452)의 하부에 위치하는 제7 링형 자석 유닛(430)을 포함할 수 있다.
또한, 틸트 구동부(300)는 제1 코일부(350)의 상부의 외측부에 위치하고, 제1 링형 자석 유닛(310)과 마주보는 면과 제1 링형 자석 유닛(310)의 외측면이 서로 상이한 극을 가지는 제5 링형 자석 유닛(330)을 더 포함할 수 있다.
틸트 구동부(300)는 제1 코일부(350), 제1 코일부(350)의 상부의 내측에 위치하는 제1 링형 자석 유닛(310), 및 제1 코일부(350)의 상부의 외측에 위치하는 제5 링형 자석 유닛(330)을 포함할 수 있다.
제5 실시예에 따른 자기 부상 기구(10)는 제1 실시예에 따른 자기 부상 기구(10)에 비해 틸트 구동부(300) 및 수평 구동부(400)에 각각 1개의 링형 자석 유닛을 추가로 배치하되, 자기장을 증대시키기 위해 코일부(350, 450)를 기준으로 서로 대응되게 배치되어, 부상력 및 틸트 회전력을 높일 수 있는 장점이 있다.
도 13을 참조하여, 본 발명의 다른 실시예에 따른 자기 부상 기구(10)에 대해서 설명한다.
제1 내지 제5 실시예에 따른 자기 부상 기구(10)는 틸트 구동부(300)가 수평 구동부(400)의 외측에 위치하고 있으나, 이에 한하지 않고, 도 13에 도시된 바와 같이, 틸트 구동부(300)가 수평 구동부(400)의 내측에 위치할 수 있다. 반경방향으로 외측이 링형 자석 유닛 및 코일부의 길이가 증가하므로, 구동력을 더 크게 요구되는 것을 외측에 위치시키는 것이 바람직하다.
다시, 도 10을 참조하면, 자기 부상 기구(10)는 이동자(100)에게 회전력을 제공하는 회전 구동부(500)를 더 포함할 수 있다. 예시적으로, 회전 구동부(500)는 회전형 모터 또는 영구자석 및 코일부 조합으로 배치될 수 있다. 또한, 수평 구동부(400)를 반경 방향으로 자화하여 극성이 번갈아 배치되는 자석 배열 세트와 일정 각도 간격으로 이격된 수직방향으로 직립한 다상 코일부 2세트로 구성하여, Z축 방향으로 회전력을 인가하는 회전 구동부(500)의 역할을 하도록 구성할 수도 있다.
자기 부상 기구(10)는 이동자(100)의 위치를 감지하는 비접촉 변위 센서(미도시됨)를 더 포함할 수 있다. 예시적으로, 비접촉 변위 센서는 홀센서일 수 있다. 홀센서는 일반적인 구성이므로 상세한 설명은 생략하기로 한다.
이하, 도 14를 참조하여, 본 발명의 일 실시예에 따른 자중 보상이 가능한 자기 부상 기구에 대해서 설명한다.
도 14를 참조하면, 자기 부상 기구(10)는 판형으로 형성되는 이동자(100) 및 이동자(100)의 하부에 위치하는 고정부(200)를 포함한다. 이때, 이동자(100)는 고정부(200)에 대해 부상되어 있을 수 있다. 또한, 이동자(100)에는 복수의 링형 자석 유닛이 결합되어, 링형 자석 유닛의 이동에 따라 이동자(100)가 이동될 수 있다.
자기 부상 기구(10)는 이동자(100)와 고정부(200) 사이에 위치하여, 이동자(100)에 부상력 및 틸트 회전력을 제공하는 틸트 구동부(300)을 포함한다.
또한, 틸트 구동부(300)는 각각 적어도 하나 이상의 링형 자석 유닛과 코일부를 포함하며, 코일부에 전류를 인가함에 따라 로렌츠 힘이 발생할 수 있다. 이에 대한 상세한 설명은 후술하도록 한다. 또한, 상술한 링형 자석 유닛은 하나의 링형 자석으로 형성될 수 있으나, 이에 한하지 않고, 복수의 자석을 링형으로 결합하여 제작할 수도 있다.
도 15 내지 도 20을 참조하여, 본 발명의 자중 보상이 가능한 자기 부상 기구(10)에 대해서 상세히 설명한다
도 15를 참조하면, 틸트 구동부(300)는 제1 링형 자석 유닛(310), 제2 링형 자석 유닛(320), 제5 링형 자석 유닛(330), 제6 링형 자석 유닛(340), 복수의 제1 코일부(350) 및 제1 원호형 자석 유닛(360)을 포함한다.
제1 링형 자석 유닛(310)은 내측면과 외측면이 서로 상이한 극성을 가지며, 이동자(100)에 고정될 수 있다.
제2 링형 자석 유닛(320)은 제1 링형 자석 유닛(310)의 하부에 위치하고, 내측면과 외측면이 제1 링형 자석 유닛(310)과 극성이 반대로 형성된다.
제5 링형 자석 유닛(330)은 제1 링형 자석 유닛(310)의 외측에 위치하고, 제1 링형 자석 유닛(310)과 마주보는 면이 제1 링형 자석 유닛(310)의 외측면과 서로 상이한 극성을 가진다.
제6 링형 자석 유닛(340)은 제2 링형 자석 유닛(320)의 외측에 위치하고, 제2 링형 자석 유닛(320)과 마주보는 면이 제2 링형 자석 유닛(320)의 외측면과 서로 상이한 극성을 가진다.
제1 코일부(350)는 수직방향으로 권취되어, 수직방향으로 직립되도록 형성되며, 제1 코일부(350)의 상부(352) 및 제1 코일부(350)의 하부(354)를 포함할 수 있다. 또한, 복수의 제1 코일부(350)는, 도 16을 참조하면, 서로 120도의 각도를 가지도록 3개가 배치될 수 있으나, 이에 한하지 않고, 4개 이상 배치될 수 있다.
또한, 제1 코일부(350)의 상부(352)는 제1 링형 자석 유닛(310)과 제5 링형 자석 유닛(330) 사이에 위치하고, 제1 코일부(350)의 하부(354)는 제2 링형 자석 유닛(320)과 제6 링형 자석 유닛(340) 사이에 위치할 수 있다. 아울러, 제1 코일부(350)는 링형 자석 유닛들과 동일한 거리 이격되어 대응되도록 전체적으로 형상이 소정의 곡률을 가지도록 형성될 수 있다.
또한, 고정부(200)의 상부면에는 제1 코일부(350)가 고정되는 제1 코일부 지지부(210)가 형성될 수 있다. 제1 코일부 지지부(210)는 소정의 높이를 가지도록 상부 방향으로 돌출형성되고, 상부면에 제1 코일부(350)가 고정될 수 있다.
제1 원호형 자석 유닛(360)은 제1 코일부(350)의 중앙부에 위치하며, 내측면이 제1 링형 자석 유닛(310)의 외측면과 동일한 극성으로 형성되고, 외측면이 제2 링형 자석 유닛(320)의 내측면과 동일한 극성을 가질 수 있다.
예시적으로, 도 15에 도시된 바와 같이, 제1 링형 자석 유닛(310)은 내측면이 N극을 가지고, 외측면이 S극을 가지며, 제2 링형 자석 유닛(320)은 내측면이 S극을 가지고, 외측면이 N극을 가지며, 제5 링형 자석 유닛(330)은 내측면이 N극을 가지고, 외측면이 S극을 가지며, 제6 링형 자석 유닛(340)은 내측면이 S극을 가지고, 외측면이 N극을 가질 수 있다. 이때, 제1 원호형 자석 유닛은 내측면(360)이 S극을 가지고, 외측면이 N극을 가져, 제1 링형 자석 유닛(310)과 제5 링형 자석 유닛(330)에 대해 척력이 발생하고, 제2 링형 자석 유닛(320)과 제6 링형 자석 유닛(340)에 대해서는 인력이 발생하여, 이동자(100)에 부상력을 제공할 수 있다.
제1 원호형 자석 유닛(360)은 원호형으로 형성된 하나의 영구 자석(도 16 참조)으로 형성될 수 있으나, 이에 한하지 않고, 원호형으로 배치된 복수의 영구 자석(도 17 참조)으로 형성될 수도 있다.
또한, 도 18을 참조하면, 자기 부상 기구(10)는 고정부(200)에 고정되고, 제1 원호형 자석 유닛(360)과 대응되는 위치에 소정의 각도를 가지도록 배치된 복수의 제2 원호형 자석 유닛(370)을 더 포함할 수 있다. 또한, 제2 원호형 자석 유닛(370)은 내측면과 외측면에 제1 원호형 자석 유닛(360)과 동일한 극성을 가질 수 있다.
도 19를 참조하면, 제2 원호형 자석 유닛(370)은 고정부(200)의 상부면에 형성된 자석 지지부(230)에 위해 고정될 수 있으나, 이에 한하지는 않는다.
이하, 도 20 내지 도 25를 참조하여, 본 발명의 코일부를 제어하여 이동자(100)의 이동방향을 제어하는 방법에 대해서 설명한다.
도 20 및 도 21을 참조하면, y축 상에 위치한 제2 코일부(450)에 전류를 공급하면, 제2 코일부(450)에 공급된 전류에 의해, 제2 코일부(450)에는 로렌츠 힘에 의해 전자기력이 유도된다. 상세하게는, 제2 코일부(450)의 내측에는 x축방향으로 전류가 흐르게 되며, 제2 코일부(450)의 외측부(452)에는 -x축 방향으로 전류가 흐르게 되고, 제3 링형 자석 유닛(410) 및 제5 링형 자석 유닛(430)에 의해 -z축 방향으로 자석 밀도가 형성되고, 제4 링형 자석 유닛(420) 및 제8 자석 유닛에 의해 z축 방향으로 자석 밀도가 형성되며, -y축 방향으로 합력이 작용하나, 제2 코일부(450)는 고정되어 이동되지 않는다. 따라서, 링형 자석 유닛이 고정된 이동자(100)는 y축 방향으로 이동될 수 있다.
도 22를 참조하면, x축 상에 위치한 제2 코일부(450)에 전류를 공급하면, 제2 코일부(450)에 공급된 전류에 의해, 제2 코일부(450)에는 로렌츠 힘에 의해 전자기력이 유도된다. 상세하게는, 제2 코일부(450)의 내측에는 -y축방향으로 전류가 흐르게 되며, 제2 코일부(450)의 외측부(452)에는 y축 방향으로 전류가 흐르게 되고, 제3 링형 자석 유닛(410) 및 제5 링형 자석 유닛(430)에 의해 -z축 방향으로 자석 밀도가 형성되고, 제4 링형 자석 유닛(420) 및 제8 자석 유닛에 의해 z축 방향으로 자석 밀도가 형성되며, -x축 방향으로 합력이 작용하나, 제2 코일부(450)는 고정되어 이동되지 않는다. 따라서, 링형 자석 유닛이 고정된 이동자(100)는 x축 방향으로 이동될 수 있다.
도 23 및 도 24를 참조하면, y축 상에 위치한 제1 코일부(350)에 전류를 공급하면, 제1 코일부(350)에 공급된 전류에 의해, 제1 코일부(350)에는 로렌츠 힘에 의해 전자기력이 유도된다. 상세하게는, 제1 코일부(350)의 상부에는 x축방향으로 전류가 흐르게 되며, 제1 코일부(350)의 하부(354)에는 -x축 방향으로 전류가 흐르게 되고, 제1 링형 자석 유닛(310) 및 제5 링형 자석 유닛(330)에 의해 y축 방향으로 자석 밀도가 형성되고, 제2 링형 자석 유닛(320) 및 제6 링형 자석 유닛(340)에 의해 -y축 방향으로 자석 밀도가 형성되며, z축 방향으로 합력이 작용하나, 제2 코일부(450)는 고정되어 이동되지 않는다. 따라서, 링형 자석 유닛이 고정된 이동자(100)는 상부 x축을 기준으로, 상부는 -z축 방향으로 힘을 받아 회전할 수 있다.
또한, 도 25를 참조하면, 다른 각도에 위치한 제1 코일부(350)에 전류를 공급할 경우, 제1 코일부(350)가 위치한 방향에 수직된 방향의 축을 기준으로 이동자(100)가 회전할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 조사 자는 본 발명의 기술적 ㄴ사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
[부호의 설명]
10 : 자기 부상 기구
100 : 이동자
110 : 자석 고정부
200 : 고정부 210 : 제1 코일부 지지부
220 : 제2 코일부 지지부 230 : 자석 지지부
300 : 틸트 구동부
310 : 제1 링형 자석 유닛 320 : 제2 링형 자석 유닛
330 : 제5 링형 자석 유닛 340 : 제6 링형 자석 유닛
350 : 제1 코일부
352 : 제1 코일부의 상부 354 : 제1 코일부의 하부
400 : 수평 구동부
410 : 제3 링형 자석 유닛 420 : 제4 링형 자석 유닛
430 : 제7 링형 자석 유닛 440 : 제8 링형 자석 유닛
450 : 제2 코일부
452 : 제2 코일부의 외측부 454 : 제2 코일부의 내측부
500 : 회전 구동부

Claims (18)

  1. 자기 부상 기구에 있어서,
    판형으로 형성되는 이동자;
    상기 이동자의 하부에 위치하는 고정부;
    상기 이동자와 고정부 사이에 위치하여, 이동자에 부상력 및 틸트 회전력을 제공하는 틸트 구동부; 및
    상기 이동자와 고정부 사이에 위치하여, 상기 이동자에게 수평면 상에서 이동력을 제공하는 수평 구동부를 포함하되,
    상기 틸트 구동부는
    내측과 외측이 서로 상이한 극성을 가지는 제1 링형 자석 유닛; 및
    상기 제1 링형 자석 유닛의 외측에 위치하고, 수직방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제1 코일부를 포함하고,
    상기 수평 구동부는
    상부와 하부가 서로 상이한 극성을 가지는 제3 링형 자석 유닛; 및
    상기 제3 링형 자석 유닛의 하부에 위치하고, 수평방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제2 코일부를 포함하는 것인, 자기 부상 기구.
  2. 제1항에 있어서,
    상기 틸트 구동부는
    상기 제1 링형 자석 유닛의 하부 및 상기 제1 코일부의 하부와 대응되는 위치에 위치하며, 상부와 하부가 서로 상이한 극성을 가지며, 상기 제1 링형 자석 유닛과 극성이 반대로 형성되는 제2 링형 자석 유닛을 더 포함하고,
    상기 수평 구동부는
    상기 제3 링형 자석 유닛의 내측 및 상기 제2 코일부의 내측부와 대응되는 위치에 위치하며, 내측과 외측이 서로 상이한 극성을 가지며, 상기 제3 링형 자석 유닛과 극성이 반대로 형성되는 제4 링형 자석 유닛을 더 포함하는 것인, 자기 부상 기구.
  3. 제2항에 있어서,
    상기 틸트 구동부는
    상기 제1 코일부의 상부의 외측부에 위치하고, 상기 제1 링형 자석 유닛과 마주보는 면과 상기 제1 링형 자석 유닛의 외측면이 서로 상이한 극을 가지는 제5 링형 자석 유닛; 및
    상기 제1 코일부의 하부의 외측부에 위치하고, 상기 제2 링형 자석 유닛과 마주보는 면과 상기 제2 링형 자석 유닛의 외측면과 서로 상이한 극을 가지는 제6 링형 자석 유닛을 더 포함하는 것인, 자기 부상 기구.
  4. 제3항에 있어서,
    상기 수평 구동부는
    상기 제2 코일부의 외측부의 하부에 위치하고, 상기 제3 링형 자석 유닛과 마주보는 면과 상기 제3 링형 자석 유닛의 하부면과 서로 상이한 극을 가지는 제7 링형 자석 유닛; 및
    상기 제2 코일부의 내측부의 하부에 위치하고, 상기 제4 링형 자석 유닛과 마주보는 면과 상기 제4 링형 자석 유닛의 하부면과 서로 상이한 극을 가지는 제8 링형 자석 유닛을 더 포함하는, 자기 부상 기구.
  5. 제4항에 있어서,
    상기 이동자의 하부에 위치하고, 단면이 'L'자 형으로 형성되고, 상부면에 상기 제7 링형 자석 유닛 및 제8 링형 자석 유닛이 고정된 자석 고정부를 더 포함하는 것인, 자기 부상 기구.
  6. 제1항에 있어서,
    상기 수평 구동부는
    상기 제2 코일부의 외측부의 하부에 위치하고, 상기 제3 링형 자석 유닛과 마주보는 면과 상기 제3 링형 자석 유닛의 하부면과 서로 상이한 극을 가지는 제7 링형 자석 유닛을 더 포함하고,
    상기 틸트 구동부는
    상기 제1 코일부의 상부의 외측부에 위치하고, 상기 제1 링형 자석 유닛과 마주보는 면과 상기 제1 링형 자석 유닛의 외측면이 서로 상이한 극을 가지는 제5 링형 자석 유닛을 더 포함하는 것인, 자기 부상 기구.
  7. 제6항에 있어서,
    상기 이동부의 하부에 위치하고, 단면이 'L'자 형으로 형성되고, 상부면에 상기 제7 링형 자석 유닛 및 제8 링형 자석 유닛이 고정된 자석 고정부를 더 포함하는 것인, 자기 부상 기구.
  8. 자기 부상 기구에 있어서,
    판형으로 형성되는 이동자;
    상기 이동자의 하부에 위치하는 고정부; 및
    상기 이동자와 고정부 사이에 위치하여, 이동자에 틸트 회전력을 제공하는 틸트 구동부을 포함하되,
    상기 틸트 구동부는
    내측면과 외측면이 서로 상이한 극성을 가지는 제1 링형 자석 유닛;
    상기 제1 링형 자석 유닛의 하부에 위치하고, 내측면과 외측면의 극성이 상기 제1 링형 자석 유닛과 반대로 형성되는 제2 링형 자석 유닛;
    상기 제1 링형 자석 유닛의 외측에 위치하고, 상기 제1 링형 자석 유닛과 마주보는 면이 상기 제1 링형 자석 유닛의 외측면과 서로 상이한 극성을 가지는 제5 링형 자석 유닛;
    상기 제2 링형 자석 유닛의 외측에 위치하고, 상기 제2 링형 자석 유닛과 마주보는 면이 상기 제2 링형 자석 유닛의 외측면과 서로 상이한 극성을 가지는 제6 링형 자석 유닛;
    수직방향으로 권취되며, 상부가 상기 제1 링형 자석 유닛과 제5 링형 자석 유닛 사이에 위치하고, 하부가 상기 제2 링형 자석 유닛과 제6 링형 자석유닛 사이에 위치하며, 서로 소정의 각도를 가지도록 배치된 복수의 제1 코일부; 및
    상기 제1 코일부의 중앙부에 위치하며, 내측면이 상기 제1 링형 자석 유닛의 외측면과 동일한 극성으로 형성되고, 외측면이 상기 제2 링형 자석 유닛의 내측면과 동일한 극성을 가지는 제1 원호형 자석 유닛을 포함하는 것인, 자기 부상 기구.
  9. 제8항에 있어서,
    상기 제1 원호형 자석 유닛은
    원호형으로 형성된 하나의 영구 자석 또는 원호형으로 배치된 복수의 영구 자석인 것인, 자기 부상 기구.
  10. 제8항에 있어서,
    상기 고정부에 고정되고, 상기 제1 원호형 자석 유닛과 대응되는 위치에 소정의 각도를 가지도록 배치된 복수의 제2 원호형 자석 유닛을 더 포함하는 것인, 자기 부상 기구.
  11. 제10항에 있어서,
    상기 고정부의 상부면으로부터 돌출형성되고, 상부에 상기 제2 원호형 자석 유닛이 고정된 자석 지지부를 더 포함하는 것인, 자기 부상 기구.
  12. 제8항에 있어서,
    적어도 하나 이상의 링형 자석 유닛 및 상기 링형 자석 유닛에 인접한 부분에 위치하고, 수평방향으로 권취되며, 서로 소정의 각도를 가지도록 배치된 복수의 제2 코일부를 포함하고, 상기 이동자와 고정부 사이에 위치하는 수평 구동부를 더 포함하는 것인, 자기 부상 기구.
  13. 제1항에 내지 제12항 중 어느 한항에 있어서,
    상기 복수의 제1 코일부는 서로 120도를 가지도록 3개가 배치되는 것인, 자기 부상 기구.
  14. 제1항 내지 제7항 및 제12항 중 어느 한항에 있어서,
    상기 복수의 제2 코일부는 서로 90도를 가지도록 2개가 배치되는 것인, 자기 부상 기구.
  15. 제1항 내지 제7항 및 제12항 중 어느 한항에 있어서,
    상기 틸트 구동부가 상기 수평 구동부의 외측에 위치하는 것인, 자기 부상기구.
  16. 제1항 내지 제7항 및 제12항 중 어느 한항에 있어서,
    상기 틸트 구동부가 상기 수평 구동부의 내측에 위치하는 것인, 자기 부상 기구.
  17. 제1항에 내지 제12항 중 어느 한항에 있어서,
    상기 이동자에게 회전력을 제공하는 회전 구동부를 더 포함하는 것인, 자기 부상 기구.
  18. 제1항에 내지 제12항 중 어느 한항에 있어서,
    상기 이동자의 위치를 감지하는 비접촉 변위 센서를 더 포함하는 것인, 자기 부상 기구.
PCT/KR2023/004521 2022-04-05 2023-04-04 회전 이동이 가능한 자기부상 기구 WO2023195738A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220041986A KR20230143289A (ko) 2022-04-05 2022-04-05 회전 이동이 가능한 자기부상 기구
KR10-2022-0041986 2022-04-05
KR20230026086 2023-02-27
KR10-2023-0026086 2023-02-27

Publications (1)

Publication Number Publication Date
WO2023195738A1 true WO2023195738A1 (ko) 2023-10-12

Family

ID=88243150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004521 WO2023195738A1 (ko) 2022-04-05 2023-04-04 회전 이동이 가능한 자기부상 기구

Country Status (1)

Country Link
WO (1) WO2023195738A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093724A (ja) * 2000-09-18 2002-03-29 Tokyo Electron Ltd 熱処理装置
JP2012060754A (ja) * 2010-09-08 2012-03-22 Ebara Corp 磁気浮上型回転導入機
KR20190069595A (ko) * 2016-11-09 2019-06-19 티이엘 에프에스아이, 인코포레이티드 공정 챔버에서 마이크로전자 기판을 처리하기 위한 자기적으로 부상되고 회전되는 척
KR20200087549A (ko) * 2019-01-11 2020-07-21 캐논 톡키 가부시키가이샤 성막장치, 전자 디바이스 제조장치, 성막방법, 및 전자 디바이스 제조방법
KR102233438B1 (ko) * 2019-10-17 2021-03-29 공주대학교 산학협력단 자기부상형 스테이지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093724A (ja) * 2000-09-18 2002-03-29 Tokyo Electron Ltd 熱処理装置
JP2012060754A (ja) * 2010-09-08 2012-03-22 Ebara Corp 磁気浮上型回転導入機
KR20190069595A (ko) * 2016-11-09 2019-06-19 티이엘 에프에스아이, 인코포레이티드 공정 챔버에서 마이크로전자 기판을 처리하기 위한 자기적으로 부상되고 회전되는 척
KR20200087549A (ko) * 2019-01-11 2020-07-21 캐논 톡키 가부시키가이샤 성막장치, 전자 디바이스 제조장치, 성막방법, 및 전자 디바이스 제조방법
KR102233438B1 (ko) * 2019-10-17 2021-03-29 공주대학교 산학협력단 자기부상형 스테이지

Similar Documents

Publication Publication Date Title
WO2012026685A2 (ko) 선형 전동기
WO2019177348A1 (en) Display apparatus
WO2011136498A2 (ko) 단자연결모듈 및 이를 구비한 단자연결장치
WO2014092271A1 (en) Optical adjusting apparatus
WO2015046761A1 (ko) 자동 초점 조절 및 손떨림 보정 기능을 갖는 휴대단말기용 카메라 액추에이터
WO2011049298A2 (ko) 선형 전동기
WO2016178473A1 (ko) 자기흐름 제어장치
WO2017052075A1 (ko) 영구자석 응용 전동기
WO2018117414A1 (ko) 비대칭 지지 구조의 자동초점 조절장치
WO2020218746A1 (ko) 카메라용 액추에이터 및 이를 포함하는 카메라 모듈
WO2016024777A1 (en) Washing machine
WO2021215628A1 (ko) 진동발생용 액추에이터
WO2023132435A1 (ko) 밸런스 스테이지
WO2017018592A1 (ko) 하이브리드 얼라인먼트
WO2016117751A1 (ko) 자성체 홀딩 장치
WO2023195738A1 (ko) 회전 이동이 가능한 자기부상 기구
WO2019143116A1 (ko) 렌즈 어셈블리 및 그를 포함하는 카메라 모듈
WO2020138583A1 (ko) 자기부상 회전체를 포함하는 축방향 모터
WO2023113261A1 (ko) 자기부상 회전 장치 및 이를 이용하는 기판 처리 장치
WO2020060093A1 (ko) 모터
WO2017164432A1 (ko) 렌즈 구동 장치
WO2009096739A2 (ko) 발전기 및 이를 포함하는 풍력발전시스템
WO2016171439A1 (en) Laundry treatment apparatus and magnetic gear device
WO2017150774A1 (ko) 홀 센서가 구비된 카메라 모듈
WO2011049282A1 (ko) 영구자석 워크홀딩 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784962

Country of ref document: EP

Kind code of ref document: A1