WO2023195598A1 - Apparatus for suppressing current distortion and circulation current of parallel three-phase two-level inverter and operating method of apparatus - Google Patents

Apparatus for suppressing current distortion and circulation current of parallel three-phase two-level inverter and operating method of apparatus Download PDF

Info

Publication number
WO2023195598A1
WO2023195598A1 PCT/KR2022/020039 KR2022020039W WO2023195598A1 WO 2023195598 A1 WO2023195598 A1 WO 2023195598A1 KR 2022020039 W KR2022020039 W KR 2022020039W WO 2023195598 A1 WO2023195598 A1 WO 2023195598A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
phase
current
control device
obtaining
Prior art date
Application number
PCT/KR2022/020039
Other languages
French (fr)
Korean (ko)
Inventor
박용순
최승보
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2023195598A1 publication Critical patent/WO2023195598A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present disclosure relates to a device for suppressing current distortion and circulating current of a three-phase, two-level inverter connected in parallel. More specifically, it relates to a device that controls a second inverter by receiving a minimum control signal from the first inverter.
  • a current controller is implemented by sensing the output current of all inverters, the data required to communicate between master and slave increases because the output current of all inverters must be known. Therefore, a correction method is needed that can prevent distortion of output current between circulating current and inverter, increase energy conversion efficiency delivered to the system, and reduce communication burden.
  • the control method of the second inverter for suppressing the circulating current of the second inverter connected in parallel with the first inverter includes the three-phase command voltage of the first inverter generated by the control device of the first inverter. receiving, obtaining a three-phase compensation voltage based on the three-phase zero phase current of the second inverter, and obtaining a three-phase command voltage of the second inverter based on the three-phase command voltage and the three-phase compensation voltage of the first inverter. It includes the step of obtaining, and the step of operating the second inverter based on the three-phase command voltage of the second inverter.
  • the step of acquiring the three-phase compensation voltage of the control method includes obtaining a three-phase target current signal, measuring the three-phase current of the second inverter, and measuring the three-phase current of the second inverter. Obtaining a three-phase zero-phase current of the second inverter based on the three-phase zero-phase current of the second inverter, obtaining a three-phase estimated current of the first inverter based on the three-phase zero-phase current of the second inverter and the three-phase target current signal, Obtaining a three-phase error current for the second inverter based on the phase estimate current and the three-phase current of the second inverter, and obtaining a three-phase compensation voltage based on the three-phase error current for the second inverter. Includes.
  • the step of acquiring the 3-phase estimated current of the first inverter in the control method according to an embodiment of the present disclosure is to subtract the 3-phase zero phase current of the second inverter from the 3-phase target current signal to obtain the 3-phase estimated current of the first inverter. Includes acquisition steps.
  • the step of acquiring the 3-phase error current for the second inverter in the control method according to an embodiment of the present disclosure is to subtract the 3-phase estimated current of the first inverter from the 3-phase current of the second inverter to obtain 3-phase error current for the second inverter. and obtaining phase error current.
  • the step of acquiring the three-phase compensation voltage of the control method according to an embodiment of the present disclosure is performed according to the equation below,
  • the step of acquiring the three-phase command voltage of the second inverter in the control method includes obtaining the three-phase command voltage of the second inverter by adding the three-phase command voltage of the first inverter to the three-phase compensation voltage. Includes steps.
  • the step of acquiring the three-phase zero phase current of the second inverter in the control method includes the measured current of phase A of the second inverter, the measured current of phase B of the second inverter, and the measured current of phase B of the second inverter. It includes obtaining the average of the currents of phase C as the three-phase zero phase current of the second inverter.
  • the step of acquiring the three-phase estimated current of the first inverter in the control method includes measuring the three-phase zero phase current using a sensor included in the second inverter.
  • the step of acquiring the three-phase estimated current of the first inverter in the control method includes the step of obtaining a predetermined three-phase zero phase current, and the magnitude of the three-phase zero phase current is greater than or equal to zero. .
  • a control device for the second inverter for suppressing the circulating current of the second inverter connected in parallel with the first inverter includes a processor and a memory, and the processor receives the three-phase command voltage of the first inverter generated by the control device of the first inverter based on instructions stored in the memory, and Obtain a three-phase compensation voltage based on the three-phase zero-phase current, obtain a three-phase command voltage of the second inverter based on the three-phase command voltage and three-phase compensation voltage of the first inverter, and obtain a three-phase command of the second inverter.
  • the second inverter is operated based on the voltage.
  • the control device of the second inverter includes a processor acquiring a three-phase target current signal based on an instruction stored in a memory, measuring the three-phase current of the second inverter, and controlling the three-phase current of the second inverter. Obtain the three-phase zero phase current of the second inverter based on the phase current, obtain the three-phase estimated current of the first inverter based on the three-phase zero phase current of the second inverter and the three-phase target current signal, and obtain the three-phase estimated current of the first inverter.
  • a three-phase error current for the second inverter is obtained based on the three-phase estimated current and the three-phase current of the second inverter, and a three-phase compensation voltage is obtained based on the three-phase error current for the second inverter.
  • the method for suppressing current distortion and circulating current in a three-phase, two-level inverter parallel operation system of the present invention is to eliminate physical differences caused by delays caused by differences in the nonlinear turn-on, turn-off, and parasitic capacitance of the inverter. It has a corrective effect.
  • inverters such as grid-connected inverters, renewable energy generation, and large-capacity motor drives.
  • FIG. 1 is a diagram showing a conventional method of controlling inverters connected in parallel.
  • Figure 2 shows a circuit diagram of a control device in one embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram for explaining why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram to explain why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
  • Figure 6 This is a diagram showing the process of deriving .
  • Figure 7 discloses the hardware configuration of a control device according to an embodiment of the present disclosure.
  • Figure 8 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
  • Figure 9 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
  • Figure 10 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
  • FIG. 11 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
  • Figure 12 is a waveform diagram showing the effect of the control device according to an embodiment of the present disclosure.
  • unit refers to a software or hardware component, and the “unit” performs certain roles. However, “wealth” is not limited to software or hardware.
  • the “copy” may be configured to reside on an addressable storage medium and may be configured to run on one or more processors.
  • part refers to software components, such as object-oriented software components, class components, and task components, processes, functions, properties, procedures, Includes subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and “parts” may be combined into smaller numbers of components and “parts” or may be further separated into additional components and “parts”.
  • unit may be implemented with a processor and memory.
  • processor should be interpreted broadly to include general purpose processors, central processing units (CPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, etc.
  • processor may refer to an application-specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor refers to a combination of processing devices, for example, a combination of a DSP and a microprocessor, a combination of a plurality of microprocessors, a combination of one or more microprocessors in combination with a DSP core, or any other such combination of configurations. It may also refer to
  • memory should be interpreted broadly to include any electronic component capable of storing electronic information.
  • the terms memory include random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), erasable-programmable read-only memory (EPROM), electrical may refer to various types of processor-readable media, such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, etc.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EPROM erasable-programmable read-only memory
  • electrical may refer to various types of processor-readable media, such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, etc.
  • EEPROM erasable PROM
  • flash memory magnetic or optical data storage, registers, etc.
  • FIG. 1 is a diagram showing a conventional method of controlling inverters connected in parallel.
  • Inverter #1 represents the first inverter or master inverter.
  • Inverter #2 represents the second inverter or slave inverter.
  • the slave inverter could be controlled only by knowing information about the output current of the master inverter. In other words, when the size of communication data between the slave inverter and the master inverter is large, when there is a communication delay due to the distance between the master inverter and the slave inverter, and when it is difficult to immediately respond to signal changes and control of the slave inverter becomes difficult. There was.
  • the purpose of the slave inverter control method according to the present disclosure is to allow the slave inverter to be controlled normally while significantly reducing the amount of communication data between the master inverter and the slave inverter control device. More specifically, the present disclosure describes a control method for preventing circulating current from occurring between the master inverter and the slave inverter by controlling the slave inverter while reducing the amount of communication data.
  • Figure 2 shows a circuit diagram of a control device in one embodiment of the present disclosure.
  • 3 to 5 are diagrams to explain why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
  • Figure 2 shows a parallel operation system of a three-phase, two-level inverter according to an embodiment of the present disclosure.
  • the master inverter is the same as the first inverter 220.
  • the slave inverter is the same as the second inverter 240.
  • Inverter #1 in FIG. 2 represents the first inverter or master inverter.
  • Inverter #2 in FIG. 2 represents a second inverter or slave inverter.
  • IGBT Insulated Gate Bipolar Transistor
  • an ideal PWM signal can be created as shown in Figure 3.
  • the A-phase command voltage of the first inverter 220 may be included in the three-phase command voltage of the first inverter.
  • the control device of the first inverter is Compare to triangle wave A signal like this can be obtained. If is the PWM signal of the positive switch 221 of phase A, may be a PWM signal of the A-phase cathode switch 222. Is It may be complementary to The positive and negative switches can be IGBTs.
  • Figure 4 shows the voltage around the inverter when the first inverter is assumed to be ideal and there is a non-linear element in the second inverter.
  • a voltage difference occurs between one phase of the first inverter and one phase of the second inverter, and a circulating current may occur due to the voltage difference.
  • Figure 4(A) shows a case where the direction of the current flowing through the switch of the first inverter is positive.
  • the direction of the current flowing through the switch of the second inverter may also be positive.
  • Figure 4(B) shows a case where the direction of the current flowing through the switch of the first inverter is negative.
  • the direction of the current flowing through the switch of the first inverter is negative, the direction of the current flowing through the switch of the second inverter may also be negative.
  • Figure 4 represents the output voltage of the first inverter 220. Since the first inverter 220 was assumed to be ideal, can have a perfect square wave. The output voltage of the first inverter 220 may refer to the voltage between point A1 and point N in FIG. 2.
  • the output voltage of the second inverter 240 may refer to the voltage between point A2 and point N in FIG. 2. Since the output voltage of the second inverter 240 is not ideal, a delay may occur.
  • the output voltage of the second inverter 240 may be the same as the waveform 411.
  • the output voltage of the second inverter 240 may be the same as the waveform 421.
  • the output voltage of the second inverter 240 when the output voltage of the second inverter 240 is the same as the waveform 411, the output voltage of the first inverter 220 and the second inverter 240 The difference in output voltage ( ) may be the same as waveform 412.
  • the output voltage of the second inverter 240 when the output voltage of the second inverter 240 is the same as the waveform 421, the output voltage of the first inverter 220 and the second inverter ( 240) difference in output voltage ( ) may be the same as waveform 422.
  • the difference between the output voltage of the first inverter 220 and the output voltage of the second inverter 240 ( ) a circulating current may be generated between the first inverter 220 and the second inverter 240.
  • the output voltage of the second inverter 240 when the output voltage of the second inverter 240 is the same as the waveform 431, the output voltage of the first inverter 220 and the second inverter ( 240) difference in output voltage ( ) may be the same as waveform 432.
  • the output voltage of the first inverter 220 and the second inverter ( 240) difference in output voltage ( ) when the output voltage of the second inverter 240 is the same as the waveform 441, the output voltage of the first inverter 220 and the second inverter ( 240) difference in output voltage ( ) may be the same as waveform 442.
  • the difference between the output voltage of the first inverter 220 and the output voltage of the second inverter 240 ( ) a circulating current may be generated between the first inverter 220 and the second inverter 240.
  • Figure 4 focuses on phase A, but since the same description can be applied to phases B and C, overlapping descriptions will be omitted.
  • the inverter output voltages of the first inverter and the second inverter are (A) in FIG. It may appear as in (B) in 4. Due to the non-linear elements of the inverter, a difference occurs in the inverter output voltage depending on the current direction of the second inverter every switching cycle, and this can be expressed as Equations 1 and 2 in FIG. 5. Referring to FIG. 5, the output voltage of the first inverter 220 can be expressed as follows.
  • the output voltage of the second inverter 240 can be expressed as follows.
  • Equation 2 is the voltage caused by the nonlinearity delay of the switch according to the direction of the output current of the A-phase inverter of the second inverter 240, which is , , , , All delays caused by can be included.
  • Figure 6 shows that in Equation 2 This is a diagram showing the process of deriving . can be expressed as equation (610) in FIG. 6. Figure 6 is explained focusing on phase A, but since the same description can be applied to phases B and C, overlapping descriptions will be omitted.
  • the voltage that causes a circulating current from point (A1, B1, or C1) of the first inverter 220 in FIG. 2 to point (A2, B2, or C2) through point (A, B, or C) is generated. If expressed as an equation, it can be as follows.
  • Equation 3 can be modified as Equation 3-1 to reflect this.
  • Figure 7 discloses the hardware configuration of a control device according to an embodiment of the present disclosure.
  • the control device 700 may include a processor 710 and a memory 720.
  • the processor 710 may execute instructions stored in the memory 720.
  • the control device 700 may control the second inverter 240 based on commands stored in the memory 720.
  • the control device 700 may be implemented as hardware or software.
  • the control device 700 may be implemented with only hardware to perform the corresponding function. However, it is not limited to this, and the control device 700 may be implemented with a general-purpose processor 710, and the general-purpose processor 710 of the control device 700 may be implemented to execute a program stored in the memory 720.
  • the control device of the first inverter may include the same configuration as the control device 700 of the second inverter.
  • the control device 700 of the first inverter and the second inverter may include a communication unit.
  • the control device of the first inverter and the control device 700 of the second inverter can communicate wired or wirelessly.
  • the control device 700 of the second inverter may receive the three-phase command voltage of the first inverter 220 from the control device of the first inverter.
  • one control device can control both the first inverter and the second inverter.
  • simply referring to the control device 700 may refer to the control device of the second inverter.
  • Figure 8 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
  • the second inverter 240 may be connected in parallel with the first inverter 220.
  • the first inverter 220 may be a master inverter
  • the second inverter 240 may be a slave inverter.
  • Master inverter and slave inverter can be determined by the administrator.
  • the master inverter can be controlled independently without receiving control signals from the slave inverter.
  • the slave inverter can be controlled by receiving a control signal from the master inverter.
  • the control device 700 of the second inverter 240 may perform the following control method to suppress circulating current between the second inverter 240 and the first inverter 220.
  • the control device 700 of the second inverter 240 controls the three-phase command voltage ( ) may be performed (step 810). More specifically, the control device 700 of the second inverter 240 controls the three-phase command voltage of the first inverter 220 generated by the control block 210 ( ) may be performed (step 810).
  • the control device of the first inverter 220 can generate a three-phase command voltage. For example, the three-phase command voltage of the first inverter 220 may be generated by the block 210.
  • the three-phase command voltage of the first inverter 220 is , ,and may include. is the command voltage of phase A, is the command voltage of phase B, may be the command voltage of phase C.
  • the control device of the first inverter 220 may generate a pulse wave by comparing the three-phase command voltage of the first inverter 220 with a triangle wave, and transmit the pulse wave to the switch (IGBT; Insulated Gate) of the first inverter 220. Bipolar Transistor). Additionally, the control device of the first inverter 220 may transmit the three-phase command voltage of the first inverter 220 to the control device 700 of the second inverter 240. The control device 700 of the second inverter 240 may receive the three-phase command voltage of the first inverter 220.
  • the control device 700 controls the three-phase zero phase current of the second inverter ( )
  • a step 820 of acquiring a three-phase compensation voltage can be performed.
  • the control device 700 may perform the following steps to obtain the three-phase zero phase current of the second inverter.
  • the control device 700 obtains the average of the measured current in phase A of the second inverter, the measured current in phase B of the second inverter, and the measured current in phase C of the second inverter as the three-phase zero phase current of the second inverter. You can follow the steps. More specifically, the three-phase zero phase current of the second inverter ( ) can be obtained by the following equation.
  • Equation 4 may be the current flowing from point A2 to point A. may be the current flowing from point B2 to point B. may be the current flowing from point C2 to point C.
  • the control device 700 of the second inverter controls the three-phase zero phase current (700) of the second inverter without the need for communication with the control device of the first inverter. ) can be obtained.
  • the control device 700 measures the current using a sensor included in the second inverter 240 and determines the three-phase zero phase current ( ) can be obtained.
  • the control device 700 controls the three-phase zero phase current ( ) can be obtained.
  • 3-phase zero current ( ) may have a value set by the user.
  • the control device of the first inverter or the control device 700 of the second inverter controls three-phase zero phase current ( ) can be input from the user.
  • Pre-stored three-phase zero current ( ) can have a value greater than or equal to 0.
  • Pre-stored three-phase zero current ( ) may be smaller than the target current signal or the three-phase target current signal in the dq coordinate system. Accordingly, the size of communication data of the first inverter 220 to the second inverter 240 can be reduced, and control errors of the second inverter 240 due to communication delay can be reduced. Step 820 will be described in detail with reference to FIG. 9.
  • the three-phase compensation voltage may be configured to obtain the three-phase command voltage of the second inverter 240 by compensating for the three-phase command voltage of the first inverter 220.
  • the control device 700 controls the three-phase command voltage of the first inverter ( , ,and ) and three-phase compensation voltage ( , , ) Based on the three-phase command voltage of the second inverter ( , ,and ) can be performed (step 830).
  • the control device 700 may further perform the following steps to perform the step 830 of acquiring the three-phase command voltage of the second inverter.
  • the control device 700 uses a three-phase compensation voltage ( , , ) to the three-phase command voltage of the first inverter ( , ,and ) is added to obtain the three-phase command voltage of the second inverter ( , ,and ) can be performed.
  • step 840 of operating the second inverter based on the three-phase command voltage of the second inverter may be performed. More specifically, the control device 700 of the second inverter 240 controls the three-phase command voltage of the second inverter 240 ( , ,and ) can be compared with a triangle wave to generate a pulse PWM signal, and the PWM signal can be input to the positive and negative switches included in the second inverter 240.
  • Figure 9 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart specifying step 820 of FIG. 8.
  • the step 820 of acquiring a three-phase compensation voltage may further include the following processes.
  • the control device 700 may perform step 910 of acquiring a three-phase target current signal.
  • the three-phase target current signal may refer to the current supplied to the load 250 by the first inverter 220 or the second inverter 240.
  • the three-phase target current signal obtained by the control device 700 of the second inverter 240 is , , and may include.
  • the three-phase target current signal may be a predetermined value.
  • the three-phase target current signal can be set by the manager of the control device 700.
  • the control device 700 of the second inverter 240 may perform control using the dq coordinate system. That is, the target current signal in the predetermined dq coordinate system is and It may be the same as may be the d-axis component of the target current signal. also, may be the q-axis component of the target current signal.
  • the control device 700 of the second inverter 240 may convert the target current signal in the dq coordinate system into a three-phase target current signal.
  • the control device of the first inverter 220 and the control device of the second inverter 240 may share the target current signal in the d-q coordinate system.
  • the control device of the first inverter 220 and the control device of the second inverter 240 may communicate using a target current signal in the d-q coordinate system.
  • the control device of the first inverter 220 and the control device of the second inverter 240 may transmit and receive a target current signal in the d-q coordinate system.
  • the control device of the first inverter 220 and the control device of the second inverter 240 perform a step 910 of converting the target current signal in the d-q coordinate system into a three-phase target current signal to obtain the three-phase target current signal. It can be done.
  • the d-axis and q-axis components can be expressed as DC components. Therefore, when communicating using a target current signal in the d-q coordinate system, the control device of the first inverter 220 and the control device of the second inverter 240 can transmit and receive a constant value regardless of the communication period. However, since three phases are changing alternating current components, when the control device of the first inverter 220 and the control device of the second inverter 240 exchange a three-phase target current signal, the three-phase target current signal affects the communication cycle. This may cause problems. Therefore, the control device of the first inverter 220 and the control device of the second inverter 240 of the present disclosure can stably operate the system by transmitting and receiving the target current signal in the d-q coordinate system.
  • a three-phase target current signal ( , , and ) is the target current signal ( and ) can be derived from
  • the control device 700 controls the three-phase current of the second inverter ( , , ) can be performed (920).
  • the control device 700 uses the sensor included in the second inverter 240 to control the flow from point A2 to point A. obtains and flows from point B2 to point B. obtains and flows from point C2 to point C. can be obtained.
  • the control device 700 of the second inverter 240 may perform step 930 of measuring the three-phase zero phase current of the second inverter.
  • the control device 700 controls the three-phase current of the second inverter measured in step 920 ( , , ) based on the three-phase zero-phase current ( ) can be obtained.
  • the control device 700 measures the measured current of phase A of the second inverter ( ), the measured current of phase B of the second inverter ( ), and the measured current of phase C of the second inverter ( ) is the average of the three-phase zero phase current of the second inverter ( ), you can perform the acquisition steps. More specifically, the control device 700 controls the three-phase zero phase current ( ) can be obtained.
  • the control device 700 of the second inverter 240 controls the three-phase zero phase current of the second inverter ( ) and the target current signal in the dq coordinate system ( and ) Based on the three-phase estimated current of the first inverter ( ) can be performed (940).
  • the control device 700 of the second inverter 240 controls the three-phase zero phase current of the second inverter ( ) and three-phase target current signal ( , , and ) Based on the three-phase estimated current of the first inverter ( ) can be performed (940).
  • the control device 700 of the second inverter 240 controls the three-phase estimated current of the first inverter ( ), you can perform the following process to obtain:
  • the control device 700 receives a three-phase target current signal ( , , and ), the three-phase zero phase current of the second inverter 240 ( ) is subtracted to obtain the three-phase estimated current of the first inverter ( ) can be performed.
  • the control device 700 controls the A-phase target current signal ( ), the three-phase zero phase current of the second inverter 240 ( ) is subtracted to obtain the estimated current of phase A of the first inverter ( ) can be performed.
  • control device 700 provides a B-phase target current signal ( ), the three-phase zero phase current of the second inverter 240 ( ) is subtracted to obtain the estimated phase B current of the first inverter ( ) can be performed.
  • control device 700 provides a C-phase target current signal ( ), the three-phase zero phase current of the second inverter 240 ( ) is subtracted to obtain the estimated C phase current of the first inverter ( ) can be performed.
  • the control device 700 controls the three-phase zero phase current ( ) to the three-phase target current signal ( , , and ) is subtracted to obtain the three-phase estimated current of the first inverter ( ) can also be performed.
  • the three-phase zero current of the second inverter 240 ( ) is estimated to also flow to the first inverter 240. This is because the three-phase zero phase current of the second inverter 240 ( ) is assumed to be a circulating current flowing in the first inverter 220 and the second inverter 240.
  • the first inverter 220 and the second inverter 240 provide a three-phase target current signal ( , , and ) must be provided to the load 250, but the three-phase zero phase current ( ) is measured, so the three-phase zero phase current ( It can be assumed that a current subtracted by ) is flowing. Because the three-phase zero current ( ) is a circular current, so it will flow from point A2 to A and then to A1.
  • the three-phase zero phase current measured in the second inverter ( ) is the three-phase target current signal of the second inverter 240 ( , , and ) is added to the three-phase target current signal of the first inverter 220 ( , , and ) can be deducted. Based on this estimate, the control device 700 calculates the three-phase estimated current of the first inverter ( ) can be obtained.
  • the control device 700 of the second inverter controls the three-phase estimated current of the first inverter ( ), so there is no need to receive three-phase current from the control device of the first inverter. Accordingly, data transmission and reception between the control device 700 of the second inverter and the control device of the first inverter can be minimized. Additionally, the control signal for the second inverter 240 may not have an error due to communication delay, and the control device 700 of the second inverter can quickly generate the control signal for the second inverter 240. .
  • the control device 700 of the second inverter 240 controls the three-phase estimated current of the first inverter ( ) and the three-phase current of the second inverter ( , , ) based on the three-phase error current for the second inverter ( , , ) can be performed (950). More specifically, the control device 700 may perform the following steps to perform the step 950 of acquiring the three-phase error current for the second inverter. The control device 700 controls the three-phase current of the second inverter ( , , ), the three-phase estimated current of the first inverter 220 ( ) is subtracted to obtain the three-phase error current for the second inverter ( , , ) can be performed.
  • control device 700 calculates the three-phase estimated current of the first inverter 220 ( ), the three-phase current of the second inverter ( , , ) is subtracted to obtain the three-phase error current for the second inverter ( , , ) can also be performed.
  • steps 910 to 950 of FIG. 9 are summarized in an equation, the three-phase error current for the second inverter ( , , ) can be expressed as follows.
  • Equation 7 is the d-axis current command of the inverter.
  • is the inverter’s q-axis current command is the zero phase current of the second inverter 240.
  • Equation 7 may be the same as Equation 6.
  • the control device 700 of the second inverter 240 does not require separate reception of the output current of the first inverter 220, and the burden of communication can be reduced.
  • the control device 700 uses a three-phase compensation voltage ( , , ), the following steps can be further performed for the step 960 of obtaining.
  • each phase can be expressed as a PI controller as shown in Equation 8. That is, step 960 can be performed according to Equation 8 below.
  • the three-phase compensation voltage is a predetermined proportional gain, is a predetermined integral gain, is the command current for the three-phase error current for the second inverter, s is the Laplace operator, may be a three-phase error current for the second inverter. 1/s may refer to the integrator.
  • Command current for the three-phase error current for the second inverter ( ) may be a command current for the three-phase error current for the first inverter. Additionally, the command current for the three-phase error current for the second inverter may be 0. This is because the target current can be reached only when the 3-phase error current is reduced to 0.
  • Equation 8 can be as follows.
  • the control device 700 of the second inverter 240 receives the three-phase command voltage ( , ,and ), there is no need to receive any other signals. Therefore, the amount of data transmitted and received between the first inverter 220 and the second inverter 240 may not be large. Therefore, delay due to communication can be minimized. Additionally, by estimating the current of the first inverter, the zero phase current can be dramatically reduced and heat generation can be reduced.
  • FIG. 10 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
  • FIG. 10A shows current distortion and zero-phase current occurring in the second inverter 240 due to nonlinearity between the first inverter 220 and the second inverter 240.
  • (A) of Figure 10 is the A-phase current included in the three-phase current of the second inverter, is the B-phase current included in the three-phase current of the second inverter, represents the C-phase current included in the three-phase current of the second inverter. represents the three-phase zero phase current of the second inverter.
  • Figure 10 (A) is the A-phase current included in the three-phase current of the first inverter, is the B-phase current included in the three-phase current of the first inverter, represents the C-phase current included in the three-phase current of the first inverter. represents the three-phase zero phase current of the first inverter.
  • Figure 10 (A) Is It can be confirmed that it is the reverse image of .
  • the three-phase zero phase current of the first inverter ( ) and the three-phase zero phase current of the second inverter ( ) it can be confirmed that there is distortion in the three-phase current of the first inverter and the three-phase current of the second inverter.
  • Figure 10(B) shows removal of the zero-sequence current using the prior art.
  • the prior art removes the zero-sequence current circulating in parallel inverters, but the zero-sequence current in the second inverter 240 is removed. It does not eliminate current distortion.
  • FIG. 10C shows the results of the control device 700 of the present disclosure suppressing zero phase current and current distortion of the second inverter 240 according to FIGS. 2, 8, and 9.
  • FIG. 11 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
  • Figure 11 (A) shows the case where there is no compensation voltage. Referring to (A) of FIG. 11, it can be seen that there is a difference between the rising time and falling time of the inverter output voltage due to the difference in nonlinearity.
  • Figure 11 (B) shows a case of using a zero-phase current controller according to the prior art. Referring to (B) in FIG. 11, it can be seen that the difference in the inverter output voltage increases at rising time and falling time because the compensation voltage is added to all phases rather than calculating the compensation voltage for each phase. .
  • Figure 11 (C) shows a case of using the compensation voltage according to the present disclosure.
  • the control device 700 of the present disclosure calculates and adds the compensation voltage for each phase, the difference between the inverter output voltage at rising time and falling time is (A) of FIG. 11 and FIG. It can be seen that there is an improvement compared to 11(B).
  • Figure 12 is a waveform diagram showing the effect of the control device according to an embodiment of the present disclosure.
  • Figure 12 (B) shows a waveform according to the control device 700 of the present disclosure.
  • a three-phase compensation voltage ( , , ) can be seen to be different for each phase.
  • 3-phase compensation voltage ( , , ) is determined separately for each phase by equation (8). According to the control device 700 of the present disclosure, it can be confirmed that the distortion of the inverter output current is reduced and there is no difference between the inverter output currents.
  • the above-described embodiments of the present invention can be written as a program that can be executed on a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording media includes storage media such as magnetic storage media (eg, ROM, floppy disk, hard disk, etc.) and optical read media (eg, CD-ROM, DVD, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The present disclosure relates to a method for controlling a second inverter, the method comprising the steps of: receiving a three-phase command voltage of a first inverter, which is generated by a control device; acquiring a three-phase compensation voltage on the basis of a three-phase zero-phase current of the second inverter; acquiring a three-phase command voltage of the second inverter on the basis of the three-phase command voltage of the first inverter and the three-phase compensation voltage; and operating the second inverter on the basis of the three-phase command voltage of the second inverter.

Description

병렬 3상 2-레벨 인버터의 전류 왜곡 및 순환전류 억제 장치 및 장치의 동작 방법Current distortion and circulating current suppression device and method of operation of parallel 3-phase 2-level inverter
본 개시는 병렬로 연결된 3상 2-레벨 인버터의 전류 왜곡 및 순환전류를 억제하기 위한 장치에 대한 것이다. 보다 구체적으로 제 1 인버터의 제어 신호를 최소로 수신하여 제 2 인버터를 제어하는 장치에 관련된 것이다.The present disclosure relates to a device for suppressing current distortion and circulating current of a three-phase, two-level inverter connected in parallel. More specifically, it relates to a device that controls a second inverter by receiving a minimum control signal from the first inverter.
태양광 및 풍력 에너지의 용량이 증대함에 따라, 단일의 인버터 모듈을 사용할 경우보다 복수의 인버터를 병렬로 연결하여 대용량의 전력을 전달할 수 있도록 사용하고 있다. 인버터의 병렬 운전 방법에서 가장 큰 문제점은 각각의 인버터가 만드는 출력전압의 차이로 인해 병렬의 인버터에 순환하는 전류가 발생하는 것이다. 이는 각각의 전류 및 전압센서로 인한 센싱 오차, 필터 공차(Filter parameter tolerance), 캐리어의 비동기화(Asynchronization, 참고특허[1]) 등으로 인해 PWM 신호가 서로 다를 경우 병렬의 인버터 모듈 간 인버터 출력전압의 차이가 발생하게 되며, 이로 인해 병렬의 인버터 모듈 간 순환하는 순환전류가 발생하게 된다. 순환전류가 발생하는 것을 억제하기 위해, 물리적인 차단을 하기 위해 병렬의 인버터 모듈에 절연을 시켜 순환하는 전류를 차단하는 방법이 있다. 또한 결합 인덕터를 사용하여, 순환하는 전류의 크기를 감소하는 방법이 소개된 바도 있지만, 앞선 두 방법 모두 하드웨어를 추가하는 방법이기에 시스템 비용이 증가하는 부담이 발생하게 된다. 따라서 소프트웨어적인 방법을 통해 해결하는 방법들이 있다. 그 중 병렬의 인버터 모듈의 인버터 출력전압을 일치시키기 위해, 마스터 인버터 모듈에서 만든 PWM 신호를 슬레이브 인버터 모듈에 공유하는 마스터-슬레이브 방법이 개시된 바 있다. 하지만 인버터 모듈의 각 상(Phase)의 턴-온, 턴-오프, 그리고 기생 캐패시터에 의한 인버터의 비선형성으로 인해, 병렬의 인버터 모듈이 만드는 인버터의 출력전압은 서로 차이를 가지게 된다. 이로 인해 병렬의 인버터 모듈 사이에 순환하는 순환전류가 발생하게 되며, PWM 신호를 받은 슬레이브 모듈 인버터에는 인버터 출력 전류의 왜곡이 발생하게 된다. 이를 해결하기 위해서 종래의 인버터 병렬 운전 방법에서는, 슬레이브 모듈에 영상분 제어기를 사용하여 순환전류를 저감하거나, 모든 인버터의 출력 전류를 측정 후 제어기를 구성하여 해결하려는 방법이 개시된 바 있다. 그러나 영상분 제어기를 구성할 경우, 영상분 순환전류를 저감할 수 있지만, 인버터 비선형성 차이에 의한 슬레이브의 인버터 출력 전류 왜곡은 해결할 수 없다. 모든 인버터 출력 전류를 센싱하여 전류 제어기를 구현할 경우, 모든 인버터의 출력 전류를 알아야하기 때문에 마스터-슬레이브 간 통신을 해야하는 데이터가 증가하게 된다. 따라서, 순환전류와 인버터 간의 출력전류 왜곡을 방지하여 계통에 전달되는 에너지 변환 효율을 증가시키며, 통신의 부담을 줄여줄 수 있는 보정 방법이 필요하다.As the capacity of solar and wind energy increases, multiple inverters are connected in parallel to deliver large amounts of power, rather than using a single inverter module. The biggest problem with the parallel operation method of inverters is that a circulating current is generated in the parallel inverters due to the difference in output voltage produced by each inverter. If the PWM signals are different due to sensing errors caused by each current and voltage sensor, filter parameter tolerance, and carrier asynchronization (reference patent [1]), the inverter output voltage between parallel inverter modules may vary. A difference occurs, which causes a circulating current to circulate between parallel inverter modules. To suppress circulating current, there is a method of physically blocking the circulating current by insulating parallel inverter modules. In addition, a method of reducing the size of the circulating current using a coupling inductor has been introduced, but both of the previous methods involve adding hardware, which increases the system cost. Therefore, there are ways to solve the problem through software methods. Among them, a master-slave method has been disclosed in which the PWM signal generated by the master inverter module is shared with the slave inverter modules in order to match the inverter output voltages of parallel inverter modules. However, due to the turn-on, turn-off of each phase of the inverter module, and the nonlinearity of the inverter due to parasitic capacitors, the inverter output voltages produced by parallel inverter modules have differences. This causes a circulating current to circulate between parallel inverter modules, and distortion of the inverter output current occurs in the slave module inverter that receives the PWM signal. To solve this problem, in the conventional inverter parallel operation method, a method has been disclosed to reduce the circulating current by using a zero-phase controller in the slave module, or to solve the problem by measuring the output current of all inverters and configuring a controller. However, when configuring a zero-phase controller, the zero-phase circulating current can be reduced, but the distortion of the slave's inverter output current due to the difference in inverter nonlinearity cannot be resolved. If a current controller is implemented by sensing the output current of all inverters, the data required to communicate between master and slave increases because the output current of all inverters must be known. Therefore, a correction method is needed that can prevent distortion of output current between circulating current and inverter, increase energy conversion efficiency delivered to the system, and reduce communication burden.
본 개시의 일 실시예에 따른 제 1 인버터에 대하여 병렬 연결된 제 2 인버터의 순환전류를 억제하기 위한 제 2 인버터의 제어 방법은 제 1 인버터의 제어 장치에 의하여 생성된 제 1 인버터의 3상 지령 전압을 수신하는 단계, 제 2 인버터의 3상 영상 전류에 기초하여 3상 보상전압을 획득하는 단계, 제 1 인버터의 3상 지령 전압 및 3상 보상전압에 기초하여 제 2 인버터의 3상 지령 전압을 획득하는 단계, 및 제 2 인버터의 3상 지령 전압에 기초하여 제 2 인버터를 동작시키는 단계를 포함한다.The control method of the second inverter for suppressing the circulating current of the second inverter connected in parallel with the first inverter according to an embodiment of the present disclosure includes the three-phase command voltage of the first inverter generated by the control device of the first inverter. receiving, obtaining a three-phase compensation voltage based on the three-phase zero phase current of the second inverter, and obtaining a three-phase command voltage of the second inverter based on the three-phase command voltage and the three-phase compensation voltage of the first inverter. It includes the step of obtaining, and the step of operating the second inverter based on the three-phase command voltage of the second inverter.
본 개시의 일 실시예에 따른 제어 방법의 3상 보상전압을 획득하는 단계는 3상 목적 전류 신호를 획득하는 단계, 제 2 인버터의 3상 전류를 측정하는 단계, 제 2 인버터의 3상 전류에 기초하여 제 2 인버터의 3상 영상 전류를 획득하는 단계, 제 2 인버터의 3상 영상 전류 및 3상 목적 전류 신호에 기초하여 제 1 인버터의 3상 추정 전류를 획득하는 단계, 제 1 인버터의 3상 추정 전류 및 제 2 인버터의 3상 전류에 기초하여 제 2 인버터에 대한 3상 오차 전류를 획득하는 단계, 및 제 2 인버터에 대한 3상 오차 전류에 기초하여 3상 보상전압을 획득하는 단계를 포함한다.The step of acquiring the three-phase compensation voltage of the control method according to an embodiment of the present disclosure includes obtaining a three-phase target current signal, measuring the three-phase current of the second inverter, and measuring the three-phase current of the second inverter. Obtaining a three-phase zero-phase current of the second inverter based on the three-phase zero-phase current of the second inverter, obtaining a three-phase estimated current of the first inverter based on the three-phase zero-phase current of the second inverter and the three-phase target current signal, Obtaining a three-phase error current for the second inverter based on the phase estimate current and the three-phase current of the second inverter, and obtaining a three-phase compensation voltage based on the three-phase error current for the second inverter. Includes.
본 개시의 일 실시예에 따른 제어 방법의 제 1 인버터의 3상 추정 전류를 획득하는 단계는 3상 목적 전류 신호에서 제 2 인버터의 3상 영상 전류를 차감하여 제 1 인버터의 3상 추정 전류를 획득하는 단계를 포함한다.The step of acquiring the 3-phase estimated current of the first inverter in the control method according to an embodiment of the present disclosure is to subtract the 3-phase zero phase current of the second inverter from the 3-phase target current signal to obtain the 3-phase estimated current of the first inverter. Includes acquisition steps.
본 개시의 일 실시예에 따른 제어 방법의 제 2 인버터에 대한 3상 오차 전류를 획득하는 단계는 제 2 인버터의 3상 전류에서 제 1 인버터의 3상 추정 전류를 차감하여 제 2 인버터에 대한 3상 오차 전류를 획득하는 단계를 포함한다.The step of acquiring the 3-phase error current for the second inverter in the control method according to an embodiment of the present disclosure is to subtract the 3-phase estimated current of the first inverter from the 3-phase current of the second inverter to obtain 3-phase error current for the second inverter. and obtaining phase error current.
본 개시의 일 실시예에 따른 제어 방법의 3상 보상전압을 획득하는 단계는 아래의 식에 의하여 수행되며,The step of acquiring the three-phase compensation voltage of the control method according to an embodiment of the present disclosure is performed according to the equation below,
Figure PCTKR2022020039-appb-img-000001
Figure PCTKR2022020039-appb-img-000001
Figure PCTKR2022020039-appb-img-000002
는 3상 보상전압이며,
Figure PCTKR2022020039-appb-img-000003
는 비례이득이며,
Figure PCTKR2022020039-appb-img-000004
는 적분이득이며,
Figure PCTKR2022020039-appb-img-000005
는 제 2 인버터에 대한 3상 오차 전류에 대한 지령 전류이며, s는 라플라스 연산자이며 1/s는 적분기를 의미하며,
Figure PCTKR2022020039-appb-img-000006
는 제 2 인버터에 대한 3상 오차 전류이다.
Figure PCTKR2022020039-appb-img-000002
is the three-phase compensation voltage,
Figure PCTKR2022020039-appb-img-000003
is the proportional gain,
Figure PCTKR2022020039-appb-img-000004
is the integral gain,
Figure PCTKR2022020039-appb-img-000005
is the command current for the three-phase error current for the second inverter, s is the Laplace operator and 1/s means the integrator,
Figure PCTKR2022020039-appb-img-000006
is the three-phase error current for the second inverter.
본 개시의 일 실시예에 따른 제어 방법의 제 2 인버터의 3상 지령 전압을 획득하는 단계는 3상 보상전압에 제 1 인버터의 3상 지령 전압을 더하여 제 2 인버터의 3상 지령 전압을 획득하는 단계를 포함한다.The step of acquiring the three-phase command voltage of the second inverter in the control method according to an embodiment of the present disclosure includes obtaining the three-phase command voltage of the second inverter by adding the three-phase command voltage of the first inverter to the three-phase compensation voltage. Includes steps.
본 개시의 일 실시예에 따른 제어 방법의 제 2 인버터의 3상 영상 전류를 획득하는 단계는 측정된 제 2 인버터의 A상의 전류, 측정된 제 2 인버터의 B상의 전류, 및 측정된 제 2 인버터의 C상의 전류의 평균을 제 2 인버터의 3상 영상 전류로써 획득하는 단계를 포함한다.The step of acquiring the three-phase zero phase current of the second inverter in the control method according to an embodiment of the present disclosure includes the measured current of phase A of the second inverter, the measured current of phase B of the second inverter, and the measured current of phase B of the second inverter. It includes obtaining the average of the currents of phase C as the three-phase zero phase current of the second inverter.
본 개시의 일 실시예에 따른 제어 방법의 제 1 인버터의 3상 추정 전류를 획득하는 단계는 제 2 인버터에 포함된 센서를 이용하여 3상 영상 전류를 측정하는 단계를 포함한다.The step of acquiring the three-phase estimated current of the first inverter in the control method according to an embodiment of the present disclosure includes measuring the three-phase zero phase current using a sensor included in the second inverter.
본 개시의 일 실시예에 따른 제어 방법의 제 1 인버터의 3상 추정 전류를 획득하는 단계는 미리 정해진 3상 영상 전류를 획득하는 단계를 포함하고, 3상 영상 전류의 크기는 0보다 크거나 같다.The step of acquiring the three-phase estimated current of the first inverter in the control method according to an embodiment of the present disclosure includes the step of obtaining a predetermined three-phase zero phase current, and the magnitude of the three-phase zero phase current is greater than or equal to zero. .
본 개시의 일 실시예에 따른 제 1 인버터에 대하여 병렬 연결된 제 2 인버터의 순환전류를 억제하기 위한 제 2 인버터의 제어 장치는. 제 2 인버터의 제어 장치는 프로세서 및 메모리를 포함하고, 프로세서는 메모리에 저장된 명령어에 기초하여, 제 1 인버터의 제어 장치에 의하여 생성된 제 1 인버터의 3상 지령 전압을 수신하고, 제 2 인버터의 3상 영상 전류에 기초하여 3상 보상전압을 획득하고, 제 1 인버터의 3상 지령 전압 및 3상 보상전압에 기초하여 제 2 인버터의 3상 지령 전압을 획득하고, 제 2 인버터의 3상 지령 전압에 기초하여 제 2 인버터를 동작시킨다.A control device for the second inverter for suppressing the circulating current of the second inverter connected in parallel with the first inverter according to an embodiment of the present disclosure. The control device of the second inverter includes a processor and a memory, and the processor receives the three-phase command voltage of the first inverter generated by the control device of the first inverter based on instructions stored in the memory, and Obtain a three-phase compensation voltage based on the three-phase zero-phase current, obtain a three-phase command voltage of the second inverter based on the three-phase command voltage and three-phase compensation voltage of the first inverter, and obtain a three-phase command of the second inverter. The second inverter is operated based on the voltage.
본 개시의 일 실시예에 따른 제 2 인버터의 제어 장치는 프로세서는 메모리에 저장된 명령어에 기초하여, 3상 목적 전류 신호를 획득하고, 제 2 인버터의 3상 전류를 측정하고, 제 2 인버터의 3상 전류에 기초하여 제 2 인버터의 3상 영상 전류를 획득하고, 제 2 인버터의 3상 영상 전류 및 3상 목적 전류 신호에 기초하여 제 1 인버터의 3상 추정 전류를 획득하고, 제 1 인버터의 3상 추정 전류 및 제 2 인버터의 3상 전류에 기초하여 제 2 인버터에 대한 3상 오차 전류를 획득하고, 제 2 인버터에 대한 3상 오차 전류에 기초하여 3상 보상전압을 획득한다.The control device of the second inverter according to an embodiment of the present disclosure includes a processor acquiring a three-phase target current signal based on an instruction stored in a memory, measuring the three-phase current of the second inverter, and controlling the three-phase current of the second inverter. Obtain the three-phase zero phase current of the second inverter based on the phase current, obtain the three-phase estimated current of the first inverter based on the three-phase zero phase current of the second inverter and the three-phase target current signal, and obtain the three-phase estimated current of the first inverter. A three-phase error current for the second inverter is obtained based on the three-phase estimated current and the three-phase current of the second inverter, and a three-phase compensation voltage is obtained based on the three-phase error current for the second inverter.
본 개시의 일 실시예에 따른 제 1 인버터에 대하여 병렬 연결된 제 2 인버터의 순환전류를 억제하기 위한 제 2 인버터의 제어 방법 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체에 있어서, 제 1 인버터의 제어 장치에 의하여 생성된 제 1 인버터의 3상 지령 전압을 수신하는 단계, 제 2 인버터의 3상 영상 전류에 기초하여 3상 보상전압을 획득하는 단계, 제 1 인버터의 3상 지령 전압 및 3상 보상전압에 기초하여 제 2 인버터의 3상 지령 전압을 획득하는 단계, 및 제 2 인버터의 3상 지령 전압에 기초하여 제 2 인버터를 동작시키는 단계를 포함한다.A computer-readable recording medium on which a control method program of a second inverter for suppressing circulating current of a second inverter connected in parallel with the first inverter according to an embodiment of the present disclosure is recorded, comprising: a control device for the first inverter; Receiving the three-phase command voltage of the first inverter generated by, obtaining a three-phase compensation voltage based on the three-phase zero phase current of the second inverter, the three-phase command voltage and the three-phase compensation voltage of the first inverter It includes obtaining a three-phase command voltage of the second inverter based on and operating the second inverter based on the three-phase command voltage of the second inverter.
본 발명의 3상 2-레벨 인버터 병렬 운전 시스템의 전류 왜곡 및 순환전류 억제하는 방법은, 인버터의 비선형적인 턴-온, 턴-오프, 기생 캐패시턴스의 차이에 의한 지연으로 인해 발생하는 물리적인 차이를 보정하는 효과가 있다.The method for suppressing current distortion and circulating current in a three-phase, two-level inverter parallel operation system of the present invention is to eliminate physical differences caused by delays caused by differences in the nonlinear turn-on, turn-off, and parasitic capacitance of the inverter. It has a corrective effect.
마스터-슬레이브 간 전류 정보에 대해 별도의 통신을 하지 않고 인버터의 비선형적인 차이를 보정함에 따라 통신의 부담을 줄여주는 효과가 있다.This has the effect of reducing the communication burden by correcting the non-linear difference in the inverter without separate communication for current information between master and slave.
병렬 인버터 모듈 사이의 순환전류가 감소함에 따라 병렬 운전 시스템 전체의 효율을 증가시킬 수 있다.As the circulating current between parallel inverter modules decreases, the efficiency of the entire parallel operation system can be increased.
인버터 모듈의 비선형성 차이로 인해 발생하는 슬레이브 인버터 모듈의 전류 왜곡을 억제하여 각각의 인버터 모듈의 효율적인 운전을 제공할 수 있다.It is possible to provide efficient operation of each inverter module by suppressing current distortion of the slave inverter module that occurs due to differences in nonlinearity of the inverter modules.
별도의 하드웨어를 추가하지 않고 비선형적인 차이를 보정함에 따라 계통 연계 인버터, 신재생 에너지 발전, 대용량 모터 드라이브 등 인버터의 병렬 운전을 요구하는 산업분야에 활용될 수 있다.By correcting nonlinear differences without adding additional hardware, it can be used in industrial fields that require parallel operation of inverters, such as grid-connected inverters, renewable energy generation, and large-capacity motor drives.
도 1은 종래의 병렬로 연결된 인버터 제어 방법을 나타낸 도면이다.1 is a diagram showing a conventional method of controlling inverters connected in parallel.
도 2는 본 개시의 일 실시예에 제어 장치의 회로도를 나타낸다.Figure 2 shows a circuit diagram of a control device in one embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따라 마스터 인버터 및 슬레이브 인버터에 순환전류가 생기는 이유를 설명하기 위한 도면이다.FIG. 3 is a diagram for explaining why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따라 마스터 인버터 및 슬레이브 인버터에 순환전류가 생기는 이유를 설명하기 위한 도면이다.FIG. 4 is a diagram for explaining why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따라 마스터 인버터 및 슬레이브 인버터에 순환전류가 생기는 이유를 설명하기 위한 도면이다.FIG. 5 is a diagram to explain why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
도 6은
Figure PCTKR2022020039-appb-img-000007
를 유도하는 과정을 나타낸 도면이다.
Figure 6
Figure PCTKR2022020039-appb-img-000007
This is a diagram showing the process of deriving .
도 7은 본 개시의 일 실시예에 따른 제어 장치의 하드웨어적 구성을 개시한다.Figure 7 discloses the hardware configuration of a control device according to an embodiment of the present disclosure.
도 8은 본 개시의 일 실시예에 따른 제어 장치의 동작을 나타낸 흐름도이다. Figure 8 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
도 9는 본 개시의 일 실시예에 따른 제어 장치의 동작을 나타낸 흐름도이다.Figure 9 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
도 10은 본 개시의 일 실시예에 따른 제어 장치의 효과를 보여주는 파형 도면이다.Figure 10 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
도 11은 본 개시의 일 실시예에 따른 제어 장치의 효과를 보여주는 파형 도면이다.11 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시예에 따른 제어 장치의 효과를 보여주는 파형 도면이다.Figure 12 is a waveform diagram showing the effect of the control device according to an embodiment of the present disclosure.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.Advantages and features of the disclosed embodiments and methods for achieving them will become clear by referring to the embodiments described below in conjunction with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are merely provided to ensure that the present disclosure is complete and to those skilled in the art to which the present disclosure pertains. It is only provided to fully inform the user of the scope of the invention.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다. Terms used in this specification will be briefly described, and the disclosed embodiments will be described in detail.
본 명세서에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다. The terms used in this specification are general terms that are currently widely used as much as possible while considering the function in the present disclosure, but this may vary depending on the intention or precedent of a technician working in the related field, the emergence of new technology, etc. In addition, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the relevant invention. Therefore, the terms used in this disclosure should be defined based on the meaning of the term and the overall content of this disclosure, rather than simply the name of the term.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다. 또한 복수의 표현은 문맥상 명백하게 복수인 것으로 특정하지 않는 한, 단수의 표현을 포함한다.In this specification, singular expressions include plural expressions, unless the context clearly specifies the singular. Additionally, plural expressions include singular expressions, unless the context clearly specifies plural expressions.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. When it is said that a part "includes" a certain element throughout the specification, this means that, unless specifically stated to the contrary, it does not exclude other elements but may further include other elements.
또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어 또는 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.Additionally, the term “unit” used in the specification refers to a software or hardware component, and the “unit” performs certain roles. However, “wealth” is not limited to software or hardware. The “copy” may be configured to reside on an addressable storage medium and may be configured to run on one or more processors. Thus, as an example, “part” refers to software components, such as object-oriented software components, class components, and task components, processes, functions, properties, procedures, Includes subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. The functionality provided within the components and “parts” may be combined into smaller numbers of components and “parts” or may be further separated into additional components and “parts”.
본 개시의 일 실시예에 따르면 "부"는 프로세서 및 메모리로 구현될 수 있다. 용어 "프로세서" 는 범용 프로세서, 중앙 처리 장치 (CPU), 마이크로프로세서, 디지털 신호 프로세서 (DSP), 제어기, 마이크로제어기, 상태 머신 등을 포함하도록 넓게 해석되어야 한다. 몇몇 환경에서는, "프로세서" 는 주문형 반도체 (ASIC), 프로그램가능 로직 디바이스 (PLD), 필드 프로그램가능 게이트 어레이 (FPGA) 등을 지칭할 수도 있다. 용어 "프로세서" 는, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들의 조합, DSP 코어와 결합한 하나 이상의 마이크로프로세서들의 조합, 또는 임의의 다른 그러한 구성들의 조합과 같은 처리 디바이스들의 조합을 지칭할 수도 있다.According to one embodiment of the present disclosure, “unit” may be implemented with a processor and memory. The term “processor” should be interpreted broadly to include general purpose processors, central processing units (CPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, etc. In some contexts, “processor” may refer to an application-specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. The term “processor” refers to a combination of processing devices, for example, a combination of a DSP and a microprocessor, a combination of a plurality of microprocessors, a combination of one or more microprocessors in combination with a DSP core, or any other such combination of configurations. It may also refer to
용어 "메모리" 는 전자 정보를 저장 가능한 임의의 전자 컴포넌트를 포함하도록 넓게 해석되어야 한다. 용어 메모리는 임의 액세스 메모리 (RAM), 판독-전용 메모리 (ROM), 비-휘발성 임의 액세스 메모리 (NVRAM), 프로그램가능 판독-전용 메모리 (PROM), 소거-프로그램가능 판독 전용 메모리 (EPROM), 전기적으로 소거가능 PROM (EEPROM), 플래쉬 메모리, 자기 또는 광학 데이터 저장장치, 레지스터들 등과 같은 프로세서-판독가능 매체의 다양한 유형들을 지칭할 수도 있다. 프로세서가 메모리로부터 정보를 판독하고/하거나 메모리에 정보를 기록할 수 있다면 메모리는 프로세서와 전자 통신 상태에 있다고 불린다. 프로세서에 집적된 메모리는 프로세서와 전자 통신 상태에 있다.The term “memory” should be interpreted broadly to include any electronic component capable of storing electronic information. The terms memory include random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), erasable-programmable read-only memory (EPROM), electrical may refer to various types of processor-readable media, such as erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, etc. A memory is said to be in electronic communication with a processor if the processor can read information from and/or write information to the memory. The memory integrated into the processor is in electronic communication with the processor.
아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 개시를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.Below, with reference to the attached drawings, embodiments will be described in detail so that those skilled in the art can easily implement them. In order to clearly explain the present disclosure in the drawings, parts unrelated to the description are omitted.
도 1은 종래의 병렬로 연결된 인버터 제어 방법을 나타낸 도면이다.1 is a diagram showing a conventional method of controlling inverters connected in parallel.
종래 기술에 따르면 모든 상별로 전류를 측정하여, dq축 좌표변환 이후, 전류의 합과, 전류의 차이에 대해 제어기를 구성하여 각각의 PWM 신호를 만들었다. 도 1에서 Inverter #1은 제 1 인버터 또는 마스터 인버터를 나타낸다. 또한 Inverter #2는 제 2 인버터 또는 슬레이브 인버터를 나타낸다. 도 1의 경우 마스터 인버터의 출력 전류에 대한 정보를 알아야 슬레이브 인버터를 제어할 수 있었다. 즉, 슬레이브 인버터와 마스터 인버터 사이에 통신 데이터의 크기가 크며, 마스터 인버터와 슬레이브 인버터 사이에 거리가 멀어 통신 지연이 생기는 경우, 신호의 변화에 따른 즉각적인 대응이 어려워, 슬레이브 인버터의 제어가 어려워 지는 경우가 있었다. 본 개시에 따른 슬레이브 인버터의 제어 방법은 마스터 인버터와 슬레이브 인버터의 제어 장치 사이의 통신 데이터의 량을 대폭 축소하면서 슬레이브 인버터가 정상적으로 제어되게 하는데에 그 목적이 있다. 보다 구체적으로 본 개시는 통신 데이터의 양을 줄이면서도 슬레이브 인버터의 제어에 의하여 마스터 인버터와 슬레이브 인버터 사이에 순환 전류가 생기지 않도록 하기 위한 제어 방법에 대하여 설명한다.According to the prior art, the current was measured for each phase, and after dq-axis coordinate transformation, a controller was configured for the sum of the currents and the difference between the currents to create each PWM signal. In FIG. 1, Inverter #1 represents the first inverter or master inverter. Additionally, Inverter #2 represents the second inverter or slave inverter. In the case of Figure 1, the slave inverter could be controlled only by knowing information about the output current of the master inverter. In other words, when the size of communication data between the slave inverter and the master inverter is large, when there is a communication delay due to the distance between the master inverter and the slave inverter, and when it is difficult to immediately respond to signal changes and control of the slave inverter becomes difficult. There was. The purpose of the slave inverter control method according to the present disclosure is to allow the slave inverter to be controlled normally while significantly reducing the amount of communication data between the master inverter and the slave inverter control device. More specifically, the present disclosure describes a control method for preventing circulating current from occurring between the master inverter and the slave inverter by controlling the slave inverter while reducing the amount of communication data.
이하에서는 본 개시의 일 실시예에 따른 회로의 구성에 대하여 설명하며, 동일 소자로 동일하게 구현된 마스터 인버터 및 슬레이브 인버터 사이에 순환 전류가 생기는 이유에 대하여 설명한다. 또한, 본 개시의 일 실시예에 따른 제어 방법이 마스터 인버터의 제어부와 슬레이브 인버터 사이의 통신 데이터량을 줄이면서도 순환 전류를 방지하는 과정을 설명한다.Hereinafter, the configuration of a circuit according to an embodiment of the present disclosure will be described, and the reason why circulating current occurs between the master inverter and the slave inverter that are identically implemented with the same device will be explained. Additionally, a process in which the control method according to an embodiment of the present disclosure prevents circulating current while reducing the amount of communication data between the control unit of the master inverter and the slave inverter will be described.
도 2는 본 개시의 일 실시예에 제어 장치의 회로도를 나타낸다.Figure 2 shows a circuit diagram of a control device in one embodiment of the present disclosure.
도 3 내지 도 5는 본 개시의 일 실시예에 따라 마스터 인버터 및 슬레이브 인버터에 순환전류가 생기는 이유를 설명하기 위한 도면이다.3 to 5 are diagrams to explain why circulating current occurs in the master inverter and slave inverter according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 3상 2-레벨 인버터의 병렬 운전 시스템을 나타낸다. 본 개시에서 마스터 인버터는 제 1 인버터(220)와 동일하다. 또한 본 개시에서 슬레이브 인버터는 제 2 인버터(240)와 동일하다. 또한 도 2에서 Inverter #1은 제 1 인버터 또는 마스터 인버터를 나타낸다. 또한 도 2에서 Inverter #2는 제 2 인버터 또는 슬레이브 인버터를 나타낸다.Figure 2 shows a parallel operation system of a three-phase, two-level inverter according to an embodiment of the present disclosure. In the present disclosure, the master inverter is the same as the first inverter 220. Additionally, in the present disclosure, the slave inverter is the same as the second inverter 240. Additionally, Inverter #1 in FIG. 2 represents the first inverter or master inverter. Additionally, Inverter #2 in FIG. 2 represents a second inverter or slave inverter.
제 1 인버터(220) 및 제 2 인버터(240)에 포함된 스위칭 소자인 IGBT(Insulated Gate Bipolar Transistor)가 이상적일 경우에는 병렬 인버터 모듈 내에 순환하는 전류나, 전류의 왜곡이 발생하지 않는다. 하지만 각 인버터의 상(phase)마다 턴-온, 턴-오프, 기생 캐패시터에 의한 시간 지연의 차이로 인해 병렬 운전 시스템에 문제가 발생하게 된다.If the IGBT (Insulated Gate Bipolar Transistor), which is a switching element included in the first inverter 220 and the second inverter 240, is ideal, no current circulating or current distortion occurs within the parallel inverter module. However, problems occur in the parallel operation system due to differences in time delay due to turn-on, turn-off, and parasitic capacitors for each inverter phase.
A상을 예시로 들 경우, 한 스위칭 주기(
Figure PCTKR2022020039-appb-img-000008
)에서 이상적인 PWM 신호를 만들면 도 3과 같이 나타낼 수 있다.
Taking phase A as an example, one switching cycle (
Figure PCTKR2022020039-appb-img-000008
), an ideal PWM signal can be created as shown in Figure 3.
도 3에서
Figure PCTKR2022020039-appb-img-000009
Figure PCTKR2022020039-appb-img-000010
에 의해 만들어진 PWM 신호일 수 있다.
Figure PCTKR2022020039-appb-img-000011
는 도 2의 블록(210)에 의하여 도출된 제 1 인버터(220)의 A상 지령 전압일 수 있다. 제 1 인버터(220)의 A상 지령 전압은 제 1 인버터의 3상 지령 전압에 포함될 수 있다. 제 1 인버터의 제어 장치는
Figure PCTKR2022020039-appb-img-000012
를 삼각파와 비교하여
Figure PCTKR2022020039-appb-img-000013
와 같은 신호를 획득할 수 있다.
Figure PCTKR2022020039-appb-img-000014
는 A상의 양극 스위치(221)의 PWM신호라면
Figure PCTKR2022020039-appb-img-000015
는 A상의 음극 스위치(222)의 PWM신호일 수 있다.
Figure PCTKR2022020039-appb-img-000016
Figure PCTKR2022020039-appb-img-000017
와 상보적일 수 있다. 양극 스위치와 음극 스위치는 IGBT일 수 있다.
In Figure 3
Figure PCTKR2022020039-appb-img-000009
Is
Figure PCTKR2022020039-appb-img-000010
It may be a PWM signal created by .
Figure PCTKR2022020039-appb-img-000011
may be the A-phase command voltage of the first inverter 220 derived by block 210 of FIG. 2. The A-phase command voltage of the first inverter 220 may be included in the three-phase command voltage of the first inverter. The control device of the first inverter is
Figure PCTKR2022020039-appb-img-000012
Compare to triangle wave
Figure PCTKR2022020039-appb-img-000013
A signal like this can be obtained.
Figure PCTKR2022020039-appb-img-000014
If is the PWM signal of the positive switch 221 of phase A,
Figure PCTKR2022020039-appb-img-000015
may be a PWM signal of the A-phase cathode switch 222.
Figure PCTKR2022020039-appb-img-000016
Is
Figure PCTKR2022020039-appb-img-000017
It may be complementary to The positive and negative switches can be IGBTs.
도 3에서
Figure PCTKR2022020039-appb-img-000018
Figure PCTKR2022020039-appb-img-000019
가 모두 'ON'인 경우 DC 전원부(230)의 쇼트의 가능성이 있기 때문에 제 1 인버터(220)의 제어 장치는
Figure PCTKR2022020039-appb-img-000020
Figure PCTKR2022020039-appb-img-000021
에 데드타임(dead-time,
Figure PCTKR2022020039-appb-img-000022
)을 적용할 수 있다. 데드타임이 적용된 제 1 인버터의 PWM 신호는
Figure PCTKR2022020039-appb-img-000023
Figure PCTKR2022020039-appb-img-000024
일 수 있다. 하드웨어 특성 및 동작 조건에 따라 데드타임 구간 내 스위치 신호는
Figure PCTKR2022020039-appb-img-000025
Figure PCTKR2022020039-appb-img-000026
에 의도된 신호 변화에서 달라질 수 있다.
In Figure 3
Figure PCTKR2022020039-appb-img-000018
and
Figure PCTKR2022020039-appb-img-000019
If all are 'ON', there is a possibility of a short circuit in the DC power supply unit 230, so the control device of the first inverter 220 is
Figure PCTKR2022020039-appb-img-000020
and
Figure PCTKR2022020039-appb-img-000021
In dead-time,
Figure PCTKR2022020039-appb-img-000022
) can be applied. The PWM signal of the first inverter with dead time applied is
Figure PCTKR2022020039-appb-img-000023
and
Figure PCTKR2022020039-appb-img-000024
It can be. Depending on hardware characteristics and operating conditions, the switch signal within the dead time section is
Figure PCTKR2022020039-appb-img-000025
and
Figure PCTKR2022020039-appb-img-000026
may vary from the intended signal change.
도 4는 제 1 인버터가 이상적이라고 가정하고, 제 2 인버터에 비선형적인 요소가 있는 경우, 인버터 주변의 전압을 나타낸다. 이러한 비선형적인 요소가 생기는 경우, 제 1 인버터의 하나의 상 및 제 2 인버터의 하나의 상에 전압차이가 생기며 전압차이에 의하여 순환 전류가 생길 수 있다.Figure 4 shows the voltage around the inverter when the first inverter is assumed to be ideal and there is a non-linear element in the second inverter. When such a non-linear element occurs, a voltage difference occurs between one phase of the first inverter and one phase of the second inverter, and a circulating current may occur due to the voltage difference.
도 4의 (A)는 제 1 인버터의 스위치에 흐르는 전류의 방향이 양일 경우를 나타낸다. 제 1 인버터의 스위치에 흐르는 전류의 방향이 양일 때, 제 2 인버터의 스위치에 흐르는 전류의 방향도 양일 수 있다. 도 4의 (B)는 제 1 인버터의 스위치에 흐르는 전류의 방향이 음일 경우를 나타낸다. 제 1 인버터의 스위치에 흐르는 전류의 방향이 음일 때, 제 2 인버터의 스위치에 흐르는 전류의 방향도 음일 수 있다.Figure 4(A) shows a case where the direction of the current flowing through the switch of the first inverter is positive. When the direction of the current flowing through the switch of the first inverter is positive, the direction of the current flowing through the switch of the second inverter may also be positive. Figure 4(B) shows a case where the direction of the current flowing through the switch of the first inverter is negative. When the direction of the current flowing through the switch of the first inverter is negative, the direction of the current flowing through the switch of the second inverter may also be negative.
도 4에서
Figure PCTKR2022020039-appb-img-000027
는 제 1 인버터(220)의 출력전압을 나타낸다. 제 1 인버터(220)는 이상적이라 가정하였으므로,
Figure PCTKR2022020039-appb-img-000028
는 완전한 사각파를 가질 수 있다. 제 1 인버터(220)의 출력전압은 도 2에서 A1 지점 및 N 지점 사이의 전압을 의미할 수 있다.
In Figure 4
Figure PCTKR2022020039-appb-img-000027
represents the output voltage of the first inverter 220. Since the first inverter 220 was assumed to be ideal,
Figure PCTKR2022020039-appb-img-000028
can have a perfect square wave. The output voltage of the first inverter 220 may refer to the voltage between point A1 and point N in FIG. 2.
Figure PCTKR2022020039-appb-img-000029
는 제 2 인버터(240)의 출력전압을 나타낸다. 제 2 인버터(240)의 출력전압은 도 2에서 A2 지점 및 N 지점 사이의 전압을 의미할 수 있다. 제 2 인버터(240)의 출력전압은 이상적이지 않으므로 지연이 발생할 수 있다.
Figure PCTKR2022020039-appb-img-000029
represents the output voltage of the second inverter 240. The output voltage of the second inverter 240 may refer to the voltage between point A2 and point N in FIG. 2. Since the output voltage of the second inverter 240 is not ideal, a delay may occur.
Figure PCTKR2022020039-appb-img-000030
는 제 2 인버터(240)의 A상 양극 스위치(241)의 턴-온 딜레이를 의미한다.
Figure PCTKR2022020039-appb-img-000031
은 제 2 인버터(240)의 A상 음극 스위치(242)의 턴-온 딜레이를 의미한다.
Figure PCTKR2022020039-appb-img-000032
는 제 2 인버터(240)의 A상 양극 스위치(241)의 턴-오프 딜레이를 의미한다.
Figure PCTKR2022020039-appb-img-000033
는 제 2 인버터(240)의 A상 음극 스위치(242)의 턴-오프 딜레이를 의미한다.
Figure PCTKR2022020039-appb-img-000034
는 제 2 인버터(240)의 A상 스위치(241, 242)의 기생 캐패시터에 의한 딜레이를 의미한다.
Figure PCTKR2022020039-appb-img-000030
means the turn-on delay of the A-phase positive switch 241 of the second inverter 240.
Figure PCTKR2022020039-appb-img-000031
means the turn-on delay of the A-phase cathode switch 242 of the second inverter 240.
Figure PCTKR2022020039-appb-img-000032
means the turn-off delay of the A-phase positive switch 241 of the second inverter 240.
Figure PCTKR2022020039-appb-img-000033
means the turn-off delay of the A-phase cathode switch 242 of the second inverter 240.
Figure PCTKR2022020039-appb-img-000034
means the delay caused by the parasitic capacitor of the A-phase switches 241 and 242 of the second inverter 240.
도 4의 (A)에서 본 개시의 일 실시예에 따르면, 제 2 인버터(240)의 출력전압은 파형(411)과 같을 수 있다. 또한 도 4의 (A)에서 본 개시의 다른 실시예에 따르면, 제 2 인버터(240)의 출력전압은 파형(421)과 같을 수 있다.According to an embodiment of the present disclosure in (A) of FIG. 4, the output voltage of the second inverter 240 may be the same as the waveform 411. In addition, according to another embodiment of the present disclosure in (A) of FIG. 4, the output voltage of the second inverter 240 may be the same as the waveform 421.
도 4의 (A)에서 본 개시의 일 실시예에 따라, 제 2 인버터(240)의 출력전압이 파형(411)과 같은 경우, 제 1 인버터(220)의 출력전압과 제 2 인버터(240)의 출력전압의 차이(
Figure PCTKR2022020039-appb-img-000035
)는 파형(412)과 같을 수 있다. 또한, 도 4의 (A)에서 본 개시의 다른 실시예에 따라, 제 2 인버터(240)의 출력전압이 파형(421)과 같은 경우, 제 1 인버터(220)의 출력전압과 제 2 인버터(240)의 출력전압의 차이(
Figure PCTKR2022020039-appb-img-000036
)는 파형(422)과 같을 수 있다. 이와 같은 제 1 인버터(220)의 출력전압과 제 2 인버터(240)의 출력전압의 차이(
Figure PCTKR2022020039-appb-img-000037
)에 의하여 제 1 인버터(220) 및 제 2 인버터(240)의 사이에 순환 전류가 발생할 수 있다.
According to an embodiment of the present disclosure in (A) of FIG. 4, when the output voltage of the second inverter 240 is the same as the waveform 411, the output voltage of the first inverter 220 and the second inverter 240 The difference in output voltage (
Figure PCTKR2022020039-appb-img-000035
) may be the same as waveform 412. In addition, according to another embodiment of the present disclosure in Figure 4 (A), when the output voltage of the second inverter 240 is the same as the waveform 421, the output voltage of the first inverter 220 and the second inverter ( 240) difference in output voltage (
Figure PCTKR2022020039-appb-img-000036
) may be the same as waveform 422. The difference between the output voltage of the first inverter 220 and the output voltage of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000037
), a circulating current may be generated between the first inverter 220 and the second inverter 240.
마찬가지로, 도 4의 (B)에서 본 개시의 일 실시예에 따라, 제 2 인버터(240)의 출력전압이 파형(431)과 같은 경우, 제 1 인버터(220)의 출력전압과 제 2 인버터(240)의 출력전압의 차이(
Figure PCTKR2022020039-appb-img-000038
)는 파형(432)과 같을 수 있다. 또한, 도 4의 (B)에서 본 개시의 다른 실시예에 따라, 제 2 인버터(240)의 출력전압이 파형(441)과 같은 경우, 제 1 인버터(220)의 출력전압과 제 2 인버터(240)의 출력전압의 차이(
Figure PCTKR2022020039-appb-img-000039
)는 파형(442)과 같을 수 있다. 이와 같은 제 1 인버터(220)의 출력전압과 제 2 인버터(240)의 출력전압의 차이(
Figure PCTKR2022020039-appb-img-000040
)에 의하여 제 1 인버터(220) 및 제 2 인버터(240)의 사이에 순환 전류가 발생할 수 있다.
Likewise, according to an embodiment of the present disclosure in Figure 4 (B), when the output voltage of the second inverter 240 is the same as the waveform 431, the output voltage of the first inverter 220 and the second inverter ( 240) difference in output voltage (
Figure PCTKR2022020039-appb-img-000038
) may be the same as waveform 432. In addition, according to another embodiment of the present disclosure in Figure 4 (B), when the output voltage of the second inverter 240 is the same as the waveform 441, the output voltage of the first inverter 220 and the second inverter ( 240) difference in output voltage (
Figure PCTKR2022020039-appb-img-000039
) may be the same as waveform 442. The difference between the output voltage of the first inverter 220 and the output voltage of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000040
), a circulating current may be generated between the first inverter 220 and the second inverter 240.
도 4는 A상을 중심으로 설명하였으나, B상 및 C상에 대해서도 동일한 설명이 적용될 수 있으므로 중복되는 설명은 생략한다. 도 4에서 설명한 바와 같이, 만약 제 1 인버터가 이상적이라고 가정하고, 제 2 인버터가 비선형적인 요소들을 포함한다고 할 때, 제 1 인버터와 제 2 인버터의 인버터 출력 전압은 도 4의 (A)와 도 4의 (B)와 같이 나타날 수 있다. 인버터의 비선형적인 요소로 인해 스위칭 주기마다 제 2 인버터의 전류 방향에 의해 인버터 출력전압에는 차이가 발생하게 되며, 이는 도 5의 식1 및 식2와 같이 나타낼 수 있다. 도 5를 참조하면, 제 1 인버터(220)의 출력 전압은 다음과 같은 식으로 나타낼 수 있다.Figure 4 focuses on phase A, but since the same description can be applied to phases B and C, overlapping descriptions will be omitted. As explained in FIG. 4, if it is assumed that the first inverter is ideal and the second inverter includes non-linear elements, the inverter output voltages of the first inverter and the second inverter are (A) in FIG. It may appear as in (B) in 4. Due to the non-linear elements of the inverter, a difference occurs in the inverter output voltage depending on the current direction of the second inverter every switching cycle, and this can be expressed as Equations 1 and 2 in FIG. 5. Referring to FIG. 5, the output voltage of the first inverter 220 can be expressed as follows.
Figure PCTKR2022020039-appb-img-000041
(식1)
Figure PCTKR2022020039-appb-img-000041
(Equation 1)
또한, 도 5를 참조하면, 제 2 인버터(240)의 출력 전압은 다음과 같은 식으로 나타낼 수 있다.Additionally, referring to FIG. 5, the output voltage of the second inverter 240 can be expressed as follows.
Figure PCTKR2022020039-appb-img-000042
(식2)
Figure PCTKR2022020039-appb-img-000042
(Equation 2)
식2에서
Figure PCTKR2022020039-appb-img-000043
는 제 2 인버터(240)의 A상 인버터 출력 전류의 방향에 따른 스위치의 비선형성 딜레이에 의한 전압이며, 이는
Figure PCTKR2022020039-appb-img-000044
,
Figure PCTKR2022020039-appb-img-000045
,
Figure PCTKR2022020039-appb-img-000046
,
Figure PCTKR2022020039-appb-img-000047
,
Figure PCTKR2022020039-appb-img-000048
에 의한 딜레이를 모두 포함할 수 있다.
In Equation 2
Figure PCTKR2022020039-appb-img-000043
is the voltage caused by the nonlinearity delay of the switch according to the direction of the output current of the A-phase inverter of the second inverter 240, which is
Figure PCTKR2022020039-appb-img-000044
,
Figure PCTKR2022020039-appb-img-000045
,
Figure PCTKR2022020039-appb-img-000046
,
Figure PCTKR2022020039-appb-img-000047
,
Figure PCTKR2022020039-appb-img-000048
All delays caused by can be included.
도 6은 식2에서
Figure PCTKR2022020039-appb-img-000049
를 유도하는 과정을 나타낸 도면이다.
Figure PCTKR2022020039-appb-img-000050
는 도 6의 식(610)과 같이 나타날 수 있다. 도 6은 A상을 중심으로 설명하였으나, B상 및 C상에 대해서도 동일한 설명이 적용될 수 있으므로 중복되는 설명은 생략한다.
Figure 6 shows that in Equation 2
Figure PCTKR2022020039-appb-img-000049
This is a diagram showing the process of deriving .
Figure PCTKR2022020039-appb-img-000050
can be expressed as equation (610) in FIG. 6. Figure 6 is explained focusing on phase A, but since the same description can be applied to phases B and C, overlapping descriptions will be omitted.
도 2의 제 1 인버터(220)의 (A1, B1, 또는 C1) 지점에서 (A, B, 또는 C) 지점을 통하여 (A2, B2, 또는 C2) 지점으로 향하는 순환 전류가 생기는 원인 전압인
Figure PCTKR2022020039-appb-img-000051
를 식으로 나타내면 아래와 같을 수 있다.
The voltage that causes a circulating current from point (A1, B1, or C1) of the first inverter 220 in FIG. 2 to point (A2, B2, or C2) through point (A, B, or C) is generated.
Figure PCTKR2022020039-appb-img-000051
If expressed as an equation, it can be as follows.
Figure PCTKR2022020039-appb-img-000052
(식3)
Figure PCTKR2022020039-appb-img-000052
(Equation 3)
식 3에서
Figure PCTKR2022020039-appb-img-000053
(단, x= a, b, 또는 c)는
Figure PCTKR2022020039-appb-img-000054
(단, x= a, b, 또는 c)와 같을 수 있다.
In equation 3
Figure PCTKR2022020039-appb-img-000053
(where x= a, b, or c)
Figure PCTKR2022020039-appb-img-000054
(However, x= a, b, or c).
본 개시의 다른 실시예에 따라, 를
Figure PCTKR2022020039-appb-img-000055
식으로 나타내면 아래와 같을 수 있다.
According to another embodiment of the present disclosure,
Figure PCTKR2022020039-appb-img-000055
Expressed as a formula, it can be as follows.
Figure PCTKR2022020039-appb-img-000056
(식3-1)
Figure PCTKR2022020039-appb-img-000056
(Equation 3-1)
이미 설명한 바와 같이 제 1 인버터(220)가 이상적인 것으로 가정하였으나, 실제 제 1 인버터(220)는 비선형성을 가지고 있으므로 이를 반영하기 위하여, 식3은 식3-1과 같이 변형될 수 있다. 식3-1에서
Figure PCTKR2022020039-appb-img-000057
(단, x= a, b, 또는 c)는 제 1 인버터(220)의 인버터 출력 전류의 방향에 따른 스위치의 비선형성 딜레이에 의한 전압일 수 있다.
Figure PCTKR2022020039-appb-img-000058
(단, x= a, b, 또는 c)는
Figure PCTKR2022020039-appb-img-000059
(단, x= a, b, 또는 c)와 동일하게 도 6에 의하여 결정될 수 있다.
As already explained, the first inverter 220 is assumed to be ideal, but in reality, the first inverter 220 has nonlinearity, so Equation 3 can be modified as Equation 3-1 to reflect this. In Equation 3-1
Figure PCTKR2022020039-appb-img-000057
(where x = a, b, or c) may be a voltage caused by a non-linear delay of the switch according to the direction of the inverter output current of the first inverter 220.
Figure PCTKR2022020039-appb-img-000058
(where x= a, b, or c)
Figure PCTKR2022020039-appb-img-000059
(However, x = a, b, or c) can be determined in the same way as in FIG. 6.
본 개시의 제 2 인버터의 제어 장치는
Figure PCTKR2022020039-appb-img-000060
(단, x= a, b, 또는 c, y=1 또는 2)의 차이를 없애기 위한 제어 방법을 포함할 수 있다. 즉 본 개시의 제 2 인버터의 제어 장치는 순환 잔류를 제거하기 위한 제어 방법을 포함할 수 있다. 그 제어 방법에 대하여 이하에서 설명한다.
The control device of the second inverter of the present disclosure is
Figure PCTKR2022020039-appb-img-000060
(However, x=a, b, or c, y=1 or 2) may include a control method to eliminate the difference. That is, the control device of the second inverter of the present disclosure may include a control method for removing residual circulation. The control method is explained below.
도 7은 본 개시의 일 실시예에 따른 제어 장치의 하드웨어적 구성을 개시한다.Figure 7 discloses the hardware configuration of a control device according to an embodiment of the present disclosure.
제어 장치(700)는 프로세서(710) 및 메모리(720)를 포함할 수 있다. 프로세서(710)는 메모리(720)에 저장된 명령어들을 수행할 수 있다. 제어 장치(700)는 메모리(720)에 저장되어 있는 명령어에 기초하여, 제 2 인버터(240)를 제어할 수 있다. 제어 장치(700)는 하드웨어 또는 소프트웨어로 구현될 수 있다. 제어 장치(700)는 해당 기능을 수행하기 위한 하드웨어만으로 구현될 수 있다. 하지만 이에 한정되는 것은 아니며, 제어 장치(700)는 범용 프로세서(710)로 구현되고, 제어 장치(700)의 범용 프로세서(710)가 메모리(720)에 저장된 프로그램을 수행하도록 구현될 수 있다. 제 1 인버터의 제어 장치는 제 2 인버터의 제어 장치(700)와 동일한 구성을 포함할 수 있다. 제 1 인버터의 제어 장치 및 제 2 인버터의 제어 장치(700)는 통신부를 포함할 수 있다. 제 1 인버터의 제어 장치 및 제 2 인버터의 제어 장치(700)는 유무선으로 통신을 할 수 있다. 예를 들어 제 2 인버터의 제어 장치(700)는 제 1 인버터의 제어 장치로부터 제 1 인버터(220)의 3상 지령 전압을 수신할 수 있다. 하지만 이에 한정되는 것은 아니고, 하나의 제어 장치가 제 1 인버터 및 제 2 인버터를 모두 제어할 수 있다. 본 개시에서 제어 장치(700)라고만 기재하는 것은 제 2 인버터의 제어 장치를 의미할 수 있다.The control device 700 may include a processor 710 and a memory 720. The processor 710 may execute instructions stored in the memory 720. The control device 700 may control the second inverter 240 based on commands stored in the memory 720. The control device 700 may be implemented as hardware or software. The control device 700 may be implemented with only hardware to perform the corresponding function. However, it is not limited to this, and the control device 700 may be implemented with a general-purpose processor 710, and the general-purpose processor 710 of the control device 700 may be implemented to execute a program stored in the memory 720. The control device of the first inverter may include the same configuration as the control device 700 of the second inverter. The control device 700 of the first inverter and the second inverter may include a communication unit. The control device of the first inverter and the control device 700 of the second inverter can communicate wired or wirelessly. For example, the control device 700 of the second inverter may receive the three-phase command voltage of the first inverter 220 from the control device of the first inverter. However, it is not limited to this, and one control device can control both the first inverter and the second inverter. In this disclosure, simply referring to the control device 700 may refer to the control device of the second inverter.
도 8은 본 개시의 일 실시예에 따른 제어 장치의 동작을 나타낸 흐름도이다. Figure 8 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
도 2를 참조하면, 제 2 인버터(240)는 제 1 인버터(220)에 대하여 병렬로 연결될 수 있다. 예를 들어 제 1 인버터(220)는 마스터 인버터일 수 있으며, 제 2 인버터(240)는 슬레이브 인버터일 수 있다. 마스터 인버터 및 슬레이브 인버터는 관리자에 의하여 결정될 수 있다. 마스터 인버터는 슬레이브 인버터의 제어 신호를 수신하지 않고 독자적으로 제어될 수 있다. 슬레이브 인버터는 마스터 인버터의 제어 신호를 수신하여 제어될 수 있다. 제 2 인버터(240)의 제어 장치(700)는 제 2 인버터(240)와 제 1 인버터(220) 사이의 순환전류를 억제하기 위하여 다음과 같은 제어 방법을 수행할 수 있다.Referring to FIG. 2, the second inverter 240 may be connected in parallel with the first inverter 220. For example, the first inverter 220 may be a master inverter, and the second inverter 240 may be a slave inverter. Master inverter and slave inverter can be determined by the administrator. The master inverter can be controlled independently without receiving control signals from the slave inverter. The slave inverter can be controlled by receiving a control signal from the master inverter. The control device 700 of the second inverter 240 may perform the following control method to suppress circulating current between the second inverter 240 and the first inverter 220.
도 2, 도 7 및 도 8을 함께 참조하면, 제 2 인버터(240)의 제어 장치(700)는 제 1 인버터(220)의 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000061
)을 수신하는 단계(810)를 수행할 수 있다. 보다 구체적으로, 제 2 인버터(240)의 제어 장치(700)는 제어 블록(210)에 의하여 생성된 제 1 인버터(220)의 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000062
)을 수신하는 단계(810)를 수행할 수 있다. 제 1 인버터(220)의 제어 장치는 3상 지령 전압을 생성할 수 있다. 예를 들어, 제 1 인버터(220)의 3상 지령 전압은 블록(210)에 의하여 생성될 수 있다. 제 1 인버터(220)의 3상 지령 전압은
Figure PCTKR2022020039-appb-img-000063
,
Figure PCTKR2022020039-appb-img-000064
,및
Figure PCTKR2022020039-appb-img-000065
을 포함할 수 있다.
Figure PCTKR2022020039-appb-img-000066
는 A상의 지령 전압이고,
Figure PCTKR2022020039-appb-img-000067
는 B상의 지령 전압이고,
Figure PCTKR2022020039-appb-img-000068
은 C상의 지령 전압일 수 있다. 제 1 인버터(220)의 제어 장치는 제 1 인버터(220)의 3상 지령 전압을 삼각파와 비교하여 펄스파를 생성할 수 있으며, 펄스파를 제 1 인버터(220)의 스위치(IGBT; Insulated Gate Bipolar Transistor)에 입력할 수 있다. 또한 제 1 인버터(220)의 제어 장치는 제 1 인버터(220)의 3상 지령 전압을 제 2 인버터(240)의 제어 장치(700)로 송신할 수 있다. 제 2 인버터(240)의 제어 장치(700)는 제 1 인버터(220)의 3상 지령 전압을 수신할 수 있다.
Referring to FIGS. 2, 7, and 8 together, the control device 700 of the second inverter 240 controls the three-phase command voltage (
Figure PCTKR2022020039-appb-img-000061
) may be performed (step 810). More specifically, the control device 700 of the second inverter 240 controls the three-phase command voltage of the first inverter 220 generated by the control block 210 (
Figure PCTKR2022020039-appb-img-000062
) may be performed (step 810). The control device of the first inverter 220 can generate a three-phase command voltage. For example, the three-phase command voltage of the first inverter 220 may be generated by the block 210. The three-phase command voltage of the first inverter 220 is
Figure PCTKR2022020039-appb-img-000063
,
Figure PCTKR2022020039-appb-img-000064
,and
Figure PCTKR2022020039-appb-img-000065
may include.
Figure PCTKR2022020039-appb-img-000066
is the command voltage of phase A,
Figure PCTKR2022020039-appb-img-000067
is the command voltage of phase B,
Figure PCTKR2022020039-appb-img-000068
may be the command voltage of phase C. The control device of the first inverter 220 may generate a pulse wave by comparing the three-phase command voltage of the first inverter 220 with a triangle wave, and transmit the pulse wave to the switch (IGBT; Insulated Gate) of the first inverter 220. Bipolar Transistor). Additionally, the control device of the first inverter 220 may transmit the three-phase command voltage of the first inverter 220 to the control device 700 of the second inverter 240. The control device 700 of the second inverter 240 may receive the three-phase command voltage of the first inverter 220.
제어 장치(700)는 제 2 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000069
)에 기초하여 3상 보상전압을 획득하는 단계(820)를 수행할 수 있다. 제어 장치(700)는 제 2 인버터의 3상 영상 전류를 획득하기 위하여 다음과 같은 단계를 수행할 수 있다. 제어 장치(700)는 측정된 제 2 인버터의 A상의 전류, 측정된 제 2 인버터의 B상의 전류, 및 측정된 제 2 인버터의 C상의 전류의 평균을 제 2 인버터의 3상 영상 전류로써 획득하는 단계를 수행할 수 있다. 보다 구체적으로, 제 2 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000070
)는 다음과 같은 식에 의하여 구해질 수 있다.
The control device 700 controls the three-phase zero phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000069
) A step 820 of acquiring a three-phase compensation voltage can be performed. The control device 700 may perform the following steps to obtain the three-phase zero phase current of the second inverter. The control device 700 obtains the average of the measured current in phase A of the second inverter, the measured current in phase B of the second inverter, and the measured current in phase C of the second inverter as the three-phase zero phase current of the second inverter. You can follow the steps. More specifically, the three-phase zero phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000070
) can be obtained by the following equation.
Figure PCTKR2022020039-appb-img-000071
(식4)
Figure PCTKR2022020039-appb-img-000071
(Equation 4)
식4에서
Figure PCTKR2022020039-appb-img-000072
는 A2지점에서 A지점으로 흐르는 전류일 수 있다.
Figure PCTKR2022020039-appb-img-000073
는 B2지점에서 B지점으로 흐르는 전류일 수 있다.
Figure PCTKR2022020039-appb-img-000074
는 C2지점에서 C지점으로 흐르는 전류일 수 있다. 제 2 인버터의 제어 장치(700)는 제 1 인버터의 제어 장치와 통신할 필요 없이 제 2 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000075
)를 획득할 수 있다. 제어 장치(700)는 제 2 인버터(240)에 포함된 센서를 이용하여 전류를 측정하여 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000076
)를 획득할 수 있다. 또한, 제어 장치(700)는 메모리에 미리 저장되어 있는 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000077
)를 획득할 수 있다. 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000078
)는 사용자에 의하여 설정된 값을 가질 수 있다. 제 1 인버터의 제어 장치 또는 제 2 인버터의 제어 장치(700)는 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000079
)를 사용자로부터 입력받을 수 있다. 미리 저장된 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000080
)의 크기는 0보다 크거나 같은 값을 가질 수 있다. 미리 저장된 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000081
)의 크기는 d-q 좌표계의 목적 전류 신호 또는 3상 목적 전류 신호보다 작을 수 있다. 따라서 제 1 인버터(220) 내지 제 2 인버터(240)의 통신 데이터의 크기는 줄어들 수 있고, 통신 딜레이로 인한 제 2 인버터(240)의 제어 오류가 감소할 수 있다. 단계(820)에 대해서는 도 9와 함께 자세히 설명한다.
In Equation 4
Figure PCTKR2022020039-appb-img-000072
may be the current flowing from point A2 to point A.
Figure PCTKR2022020039-appb-img-000073
may be the current flowing from point B2 to point B.
Figure PCTKR2022020039-appb-img-000074
may be the current flowing from point C2 to point C. The control device 700 of the second inverter controls the three-phase zero phase current (700) of the second inverter without the need for communication with the control device of the first inverter.
Figure PCTKR2022020039-appb-img-000075
) can be obtained. The control device 700 measures the current using a sensor included in the second inverter 240 and determines the three-phase zero phase current (
Figure PCTKR2022020039-appb-img-000076
) can be obtained. In addition, the control device 700 controls the three-phase zero phase current (
Figure PCTKR2022020039-appb-img-000077
) can be obtained. 3-phase zero current (
Figure PCTKR2022020039-appb-img-000078
) may have a value set by the user. The control device of the first inverter or the control device 700 of the second inverter controls three-phase zero phase current (
Figure PCTKR2022020039-appb-img-000079
) can be input from the user. Pre-stored three-phase zero current (
Figure PCTKR2022020039-appb-img-000080
) can have a value greater than or equal to 0. Pre-stored three-phase zero current (
Figure PCTKR2022020039-appb-img-000081
) may be smaller than the target current signal or the three-phase target current signal in the dq coordinate system. Accordingly, the size of communication data of the first inverter 220 to the second inverter 240 can be reduced, and control errors of the second inverter 240 due to communication delay can be reduced. Step 820 will be described in detail with reference to FIG. 9.
3상 보상전압은 제 1 인버터(220)의 3상 지령 전압을 보상하여 제 2 인버터(240)의 3상 지령 전압을 획득하기 위한 구성일 수 있다.The three-phase compensation voltage may be configured to obtain the three-phase command voltage of the second inverter 240 by compensating for the three-phase command voltage of the first inverter 220.
제어 장치(700)는 제 1 인버터의 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000082
,
Figure PCTKR2022020039-appb-img-000083
,및
Figure PCTKR2022020039-appb-img-000084
) 및 3상 보상전압(
Figure PCTKR2022020039-appb-img-000085
,
Figure PCTKR2022020039-appb-img-000086
,
Figure PCTKR2022020039-appb-img-000087
)에 기초하여 제 2 인버터의 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000088
,
Figure PCTKR2022020039-appb-img-000089
,및
Figure PCTKR2022020039-appb-img-000090
)을 획득하는 단계(830)를 수행할 수 있다. 제어 장치(700)는 제 2 인버터의 3상 지령 전압을 획득하는 단계(830)를 수행하기 위하여 다음과 같은 단계를 더 수행할 수 있다. 제어 장치(700)는 3상 보상전압(
Figure PCTKR2022020039-appb-img-000091
,
Figure PCTKR2022020039-appb-img-000092
,
Figure PCTKR2022020039-appb-img-000093
)에 제 1 인버터의 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000094
,
Figure PCTKR2022020039-appb-img-000095
,및
Figure PCTKR2022020039-appb-img-000096
)을 더하여 제 2 인버터의 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000097
,
Figure PCTKR2022020039-appb-img-000098
,및
Figure PCTKR2022020039-appb-img-000099
)을 획득하는 단계를 수행할 수 있다.
The control device 700 controls the three-phase command voltage of the first inverter (
Figure PCTKR2022020039-appb-img-000082
,
Figure PCTKR2022020039-appb-img-000083
,and
Figure PCTKR2022020039-appb-img-000084
) and three-phase compensation voltage (
Figure PCTKR2022020039-appb-img-000085
,
Figure PCTKR2022020039-appb-img-000086
,
Figure PCTKR2022020039-appb-img-000087
) Based on the three-phase command voltage of the second inverter (
Figure PCTKR2022020039-appb-img-000088
,
Figure PCTKR2022020039-appb-img-000089
,and
Figure PCTKR2022020039-appb-img-000090
) can be performed (step 830). The control device 700 may further perform the following steps to perform the step 830 of acquiring the three-phase command voltage of the second inverter. The control device 700 uses a three-phase compensation voltage (
Figure PCTKR2022020039-appb-img-000091
,
Figure PCTKR2022020039-appb-img-000092
,
Figure PCTKR2022020039-appb-img-000093
) to the three-phase command voltage of the first inverter (
Figure PCTKR2022020039-appb-img-000094
,
Figure PCTKR2022020039-appb-img-000095
,and
Figure PCTKR2022020039-appb-img-000096
) is added to obtain the three-phase command voltage of the second inverter (
Figure PCTKR2022020039-appb-img-000097
,
Figure PCTKR2022020039-appb-img-000098
,and
Figure PCTKR2022020039-appb-img-000099
) can be performed.
또한, 제 2 인버터의 3상 지령 전압에 기초하여 제 2 인버터를 동작시키는 단계(840)를 수행할 수 있다. 보다 구체적으로 제 2 인버터(240)의 제어 장치(700)는 제 2 인버터(240) 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000100
,
Figure PCTKR2022020039-appb-img-000101
,및
Figure PCTKR2022020039-appb-img-000102
)을 삼각파와 비교하여 펄스인 PWM신호를 생성할 수 있으며, PWM신호를 제 2 인버터(240)에 포함된 양극 스위치 및 음극 스위치에 입력할 수 있다.
Additionally, step 840 of operating the second inverter based on the three-phase command voltage of the second inverter may be performed. More specifically, the control device 700 of the second inverter 240 controls the three-phase command voltage of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000100
,
Figure PCTKR2022020039-appb-img-000101
,and
Figure PCTKR2022020039-appb-img-000102
) can be compared with a triangle wave to generate a pulse PWM signal, and the PWM signal can be input to the positive and negative switches included in the second inverter 240.
도 9는 본 개시의 일 실시예에 따른 제어 장치의 동작을 나타낸 흐름도이다.Figure 9 is a flowchart showing the operation of a control device according to an embodiment of the present disclosure.
보다 구체적으로 도 9는 도 8의 단계(820)를 구체화한 흐름도이다. 3상 보상전압을 획득하는 단계(820)는 다음과 같은 과정을 더 포함할 수 있다.More specifically, FIG. 9 is a flowchart specifying step 820 of FIG. 8. The step 820 of acquiring a three-phase compensation voltage may further include the following processes.
제어 장치(700)는 3상 목적 전류 신호를 획득하는 단계(910)를 수행할 수 있다. 3상 목적 전류 신호는 제 1 인버터(220) 또는 제 2 인버터(240)가 로드(250)에 공급하는 전류를 의미할 수 있다. 예를 들어 제 2 인버터(240)의 제어 장치(700)가 획득하는 3상 목적 전류 신호는
Figure PCTKR2022020039-appb-img-000103
,
Figure PCTKR2022020039-appb-img-000104
, 및
Figure PCTKR2022020039-appb-img-000105
를 포함할 수 있다. 3상 목적 전류 신호는 미리 정해진 값일 수 있다. 3상 목적 전류 신호는 제어 장치(700)의 관리자에 의하여 설정될 수 있다.
The control device 700 may perform step 910 of acquiring a three-phase target current signal. The three-phase target current signal may refer to the current supplied to the load 250 by the first inverter 220 or the second inverter 240. For example, the three-phase target current signal obtained by the control device 700 of the second inverter 240 is
Figure PCTKR2022020039-appb-img-000103
,
Figure PCTKR2022020039-appb-img-000104
, and
Figure PCTKR2022020039-appb-img-000105
may include. The three-phase target current signal may be a predetermined value. The three-phase target current signal can be set by the manager of the control device 700.
제 2 인버터(240)의 제어 장치(700)는 d-q 좌표계를 이용하여 제어를 수행할 수도 있다. 즉, 미리 정해진 d-q 좌표계의 목적 전류 신호는
Figure PCTKR2022020039-appb-img-000106
Figure PCTKR2022020039-appb-img-000107
와 같을 수 있다.
Figure PCTKR2022020039-appb-img-000108
는 목적 전류 신호의 d축 성분일 수 있다. 또한,
Figure PCTKR2022020039-appb-img-000109
는 목적 전류 신호의 q축 성분일 수 있다. 제 2 인버터(240)의 제어 장치(700)는 d-q 좌표계의 목적 전류 신호를 3상 목적 전류 신호로 변환할 수 있다.
The control device 700 of the second inverter 240 may perform control using the dq coordinate system. That is, the target current signal in the predetermined dq coordinate system is
Figure PCTKR2022020039-appb-img-000106
and
Figure PCTKR2022020039-appb-img-000107
It may be the same as
Figure PCTKR2022020039-appb-img-000108
may be the d-axis component of the target current signal. also,
Figure PCTKR2022020039-appb-img-000109
may be the q-axis component of the target current signal. The control device 700 of the second inverter 240 may convert the target current signal in the dq coordinate system into a three-phase target current signal.
제 1 인버터(220)의 제어 장치 및 제 2 인버터(240)의 제어 장치는 d-q 좌표계의 목적 전류 신호를 공유할 수 있다. 제 1 인버터(220)의 제어 장치 및 제 2 인버터(240)의 제어 장치는 d-q 좌표계의 목적 전류 신호를 이용하여 통신할 수 있다. 제 1 인버터(220)의 제어 장치 및 제 2 인버터(240)의 제어 장치는 d-q 좌표계의 목적 전류 신호를 송수신할 수 있다. 또한 제 1 인버터(220)의 제어 장치 및 제 2 인버터(240)의 제어 장치는 d-q 좌표계의 목적 전류 신호를 3상 목적 전류 신호로 변환하여, 3상 목적 전류 신호를 획득하는 단계(910)를 수행할 수 있다. d-q 좌표계의 목적 전류 신호는 d축과 q축성분이 DC성분으로 표현될 수 있다. 따라서 d-q 좌표계의 목적 전류 신호를 이용하여 통신하는 경우, 제 1 인버터(220)의 제어 장치 및 제 2 인버터(240)의 제어 장치는 통신 주기와 관계없이 일정한 값을 송수신하면 될 수 있다. 하지만, 3상은 변화하는 교류 성분이므로, 제 1 인버터(220)의 제어 장치 및 제 2 인버터(240)의 제어 장치가 3상 목적 전류 신호를 주고 받을 경우, 3상 목적 전류 신호가 통신 주기에 영향을 받게 되어 문제가 발생할 수 있다. 따라서 본 개시의 제 1 인버터(220)의 제어 장치 및 제 2 인버터(240)의 제어 장치는 d-q 좌표계의 목적 전류 신호를 송수신함으로써, 안정적으로 시스템을 운영할 수 있다.The control device of the first inverter 220 and the control device of the second inverter 240 may share the target current signal in the d-q coordinate system. The control device of the first inverter 220 and the control device of the second inverter 240 may communicate using a target current signal in the d-q coordinate system. The control device of the first inverter 220 and the control device of the second inverter 240 may transmit and receive a target current signal in the d-q coordinate system. In addition, the control device of the first inverter 220 and the control device of the second inverter 240 perform a step 910 of converting the target current signal in the d-q coordinate system into a three-phase target current signal to obtain the three-phase target current signal. It can be done. For the target current signal in the d-q coordinate system, the d-axis and q-axis components can be expressed as DC components. Therefore, when communicating using a target current signal in the d-q coordinate system, the control device of the first inverter 220 and the control device of the second inverter 240 can transmit and receive a constant value regardless of the communication period. However, since three phases are changing alternating current components, when the control device of the first inverter 220 and the control device of the second inverter 240 exchange a three-phase target current signal, the three-phase target current signal affects the communication cycle. This may cause problems. Therefore, the control device of the first inverter 220 and the control device of the second inverter 240 of the present disclosure can stably operate the system by transmitting and receiving the target current signal in the d-q coordinate system.
예를 들어, 3상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000110
,
Figure PCTKR2022020039-appb-img-000111
, 및
Figure PCTKR2022020039-appb-img-000112
)는 아래의 식에 의하여 d-q 좌표계의 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000113
Figure PCTKR2022020039-appb-img-000114
)로부터 도출될 수 있다.
For example, a three-phase target current signal (
Figure PCTKR2022020039-appb-img-000110
,
Figure PCTKR2022020039-appb-img-000111
, and
Figure PCTKR2022020039-appb-img-000112
) is the target current signal (
Figure PCTKR2022020039-appb-img-000113
and
Figure PCTKR2022020039-appb-img-000114
) can be derived from
Figure PCTKR2022020039-appb-img-000115
(식5)
Figure PCTKR2022020039-appb-img-000115
(Equation 5)
여기서
Figure PCTKR2022020039-appb-img-000116
는 다음과 같을 수 있다.
here
Figure PCTKR2022020039-appb-img-000116
can be as follows:
Figure PCTKR2022020039-appb-img-000117
(식6)
Figure PCTKR2022020039-appb-img-000117
(Equation 6)
여기서
Figure PCTKR2022020039-appb-img-000118
는 계통의 선간 전압을 PLL(Phase-Locked Loop)을 통해 얻는 계통 전압의 위상일 수 있다.
here
Figure PCTKR2022020039-appb-img-000118
May be the phase of the grid voltage obtained through a PLL (Phase-Locked Loop).
제어 장치(700)는 제 2 인버터의 3상 전류(
Figure PCTKR2022020039-appb-img-000119
,
Figure PCTKR2022020039-appb-img-000120
,
Figure PCTKR2022020039-appb-img-000121
)를 측정하는 단계(920)를 수행할 수 있다. 제어 장치(700)는 제 2 인버터(240)에 포함된 센서를 이용하여 A2지점에서 A지점으로 흐르는
Figure PCTKR2022020039-appb-img-000122
를 획득하고, B2지점에서 B지점으로 흐르는
Figure PCTKR2022020039-appb-img-000123
를 획득하고, C2지점에서 C지점으로 흐르는
Figure PCTKR2022020039-appb-img-000124
를 획득할 수 있다.
The control device 700 controls the three-phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000119
,
Figure PCTKR2022020039-appb-img-000120
,
Figure PCTKR2022020039-appb-img-000121
) can be performed (920). The control device 700 uses the sensor included in the second inverter 240 to control the flow from point A2 to point A.
Figure PCTKR2022020039-appb-img-000122
obtains and flows from point B2 to point B.
Figure PCTKR2022020039-appb-img-000123
obtains and flows from point C2 to point C.
Figure PCTKR2022020039-appb-img-000124
can be obtained.
제 2 인버터(240)의 제어 장치(700)는 제 2 인버터의 3상 영상 전류를 측정하는 단계(930)를 수행할 수 있다. 제어 장치(700)는 단계(920)에서 측정된 제 2 인버터의 3상 전류(
Figure PCTKR2022020039-appb-img-000125
,
Figure PCTKR2022020039-appb-img-000126
,
Figure PCTKR2022020039-appb-img-000127
)에 기초하여 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000128
)를 획득할 수 있다. 제어 장치(700)는 측정된 제 2 인버터의 A상의 전류(
Figure PCTKR2022020039-appb-img-000129
), 측정된 제 2 인버터의 B상의 전류(
Figure PCTKR2022020039-appb-img-000130
), 및 측정된 제 2 인버터의 C상의 전류(
Figure PCTKR2022020039-appb-img-000131
)의 평균을 제 2 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000132
)로써 획득하는 단계를 수행할 수 있다. 보다 구체적으로 제어 장치(700)는 식4에 기초하여 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000133
)를 획득할 수 있다.
The control device 700 of the second inverter 240 may perform step 930 of measuring the three-phase zero phase current of the second inverter. The control device 700 controls the three-phase current of the second inverter measured in step 920 (
Figure PCTKR2022020039-appb-img-000125
,
Figure PCTKR2022020039-appb-img-000126
,
Figure PCTKR2022020039-appb-img-000127
) based on the three-phase zero-phase current (
Figure PCTKR2022020039-appb-img-000128
) can be obtained. The control device 700 measures the measured current of phase A of the second inverter (
Figure PCTKR2022020039-appb-img-000129
), the measured current of phase B of the second inverter (
Figure PCTKR2022020039-appb-img-000130
), and the measured current of phase C of the second inverter (
Figure PCTKR2022020039-appb-img-000131
) is the average of the three-phase zero phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000132
), you can perform the acquisition steps. More specifically, the control device 700 controls the three-phase zero phase current (
Figure PCTKR2022020039-appb-img-000133
) can be obtained.
제 2 인버터(240)의 제어 장치(700)는 제 2 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000134
) 및 d-q좌표계의의 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000135
Figure PCTKR2022020039-appb-img-000136
)에 기초하여 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000137
)를 획득하는 단계(940)를 수행할 수 있다. 또한, 제 2 인버터(240)의 제어 장치(700)는 제 2 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000138
) 및 3상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000139
,
Figure PCTKR2022020039-appb-img-000140
, 및
Figure PCTKR2022020039-appb-img-000141
)에 기초하여 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000142
)를 획득하는 단계(940)를 수행할 수 있다. 보다 구체적으로 제 2 인버터(240)의 제어 장치(700)는 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000143
)를 획득하기 위하여 다음과 같은 과정을 수행할 수 있다. 제어 장치(700)는 3상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000144
,
Figure PCTKR2022020039-appb-img-000145
, 및
Figure PCTKR2022020039-appb-img-000146
)에서 제 2 인버터(240)의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000147
)를 차감하여 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000148
)를 획득하는 단계를 수행할 수 있다. 보다 구체적으로, 제어 장치(700)는 A상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000149
)에서 제 2 인버터(240)의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000150
)를 차감하여 제 1 인버터의 A상 추정 전류(
Figure PCTKR2022020039-appb-img-000151
)를 획득하는 단계를 수행할 수 있다. 또한, 제어 장치(700)는 B상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000152
)에서 제 2 인버터(240)의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000153
)를 차감하여 제 1 인버터의 B상 추정 전류(
Figure PCTKR2022020039-appb-img-000154
)를 획득하는 단계를 수행할 수 있다. 또한, 제어 장치(700)는 C상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000155
)에서 제 2 인버터(240)의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000156
)를 차감하여 제 1 인버터의 C상 추정 전류(
Figure PCTKR2022020039-appb-img-000157
)를 획득하는 단계를 수행할 수 있다. 하지만 이에 한정되는 것은 아니며, 제어 장치(700)는 제 2 인버터(240)의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000158
)에서 3상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000159
,
Figure PCTKR2022020039-appb-img-000160
, 및
Figure PCTKR2022020039-appb-img-000161
)를 차감하여 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000162
)를 획득하는 단계를 수행할 수도 있다.
The control device 700 of the second inverter 240 controls the three-phase zero phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000134
) and the target current signal in the dq coordinate system (
Figure PCTKR2022020039-appb-img-000135
and
Figure PCTKR2022020039-appb-img-000136
) Based on the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000137
) can be performed (940). In addition, the control device 700 of the second inverter 240 controls the three-phase zero phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000138
) and three-phase target current signal (
Figure PCTKR2022020039-appb-img-000139
,
Figure PCTKR2022020039-appb-img-000140
, and
Figure PCTKR2022020039-appb-img-000141
) Based on the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000142
) can be performed (940). More specifically, the control device 700 of the second inverter 240 controls the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000143
), you can perform the following process to obtain: The control device 700 receives a three-phase target current signal (
Figure PCTKR2022020039-appb-img-000144
,
Figure PCTKR2022020039-appb-img-000145
, and
Figure PCTKR2022020039-appb-img-000146
), the three-phase zero phase current of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000147
) is subtracted to obtain the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000148
) can be performed. More specifically, the control device 700 controls the A-phase target current signal (
Figure PCTKR2022020039-appb-img-000149
), the three-phase zero phase current of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000150
) is subtracted to obtain the estimated current of phase A of the first inverter (
Figure PCTKR2022020039-appb-img-000151
) can be performed. In addition, the control device 700 provides a B-phase target current signal (
Figure PCTKR2022020039-appb-img-000152
), the three-phase zero phase current of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000153
) is subtracted to obtain the estimated phase B current of the first inverter (
Figure PCTKR2022020039-appb-img-000154
) can be performed. In addition, the control device 700 provides a C-phase target current signal (
Figure PCTKR2022020039-appb-img-000155
), the three-phase zero phase current of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000156
) is subtracted to obtain the estimated C phase current of the first inverter (
Figure PCTKR2022020039-appb-img-000157
) can be performed. However, it is not limited to this, and the control device 700 controls the three-phase zero phase current (
Figure PCTKR2022020039-appb-img-000158
) to the three-phase target current signal (
Figure PCTKR2022020039-appb-img-000159
,
Figure PCTKR2022020039-appb-img-000160
, and
Figure PCTKR2022020039-appb-img-000161
) is subtracted to obtain the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000162
) can also be performed.
제 2 인버터(240)의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000163
)는 제 1 인버터(240)에도 흐를 것으로 추정된다. 왜냐하면, 제 2 인버터(240)의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000164
)는 제 1 인버터(220) 및 제 2 인버터(240)에 흐르는 순환 전류인 것으로 가정하기 때문이다. 제 1 인버터(220) 및 제 2 인버터(240)는 3상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000165
,
Figure PCTKR2022020039-appb-img-000166
, 및
Figure PCTKR2022020039-appb-img-000167
)를 로드(250)로 제공해야 하지만, 제 2 인버터(240)에 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000168
)가 측정되므로, 제 1 인버터(220)에서 로드(250)로 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000169
)만큼 차감된 전류가 흐르고 있다고 추정할 수 있다. 왜냐하면, 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000170
)는 순환 전류이므로 A2 지점에서 A로 흐른 후 A1으로 흐를 것이기 때문이다. 즉, 제 2 인버터에서 측정된 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000171
)는 제 2 인버터(240)의 3상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000172
,
Figure PCTKR2022020039-appb-img-000173
, 및
Figure PCTKR2022020039-appb-img-000174
)에 대해 더해지며, 제 1 인버터(220)의 3상 목적 전류 신호(
Figure PCTKR2022020039-appb-img-000175
,
Figure PCTKR2022020039-appb-img-000176
, 및
Figure PCTKR2022020039-appb-img-000177
)에 대해 차감될 수 있다. 이러한 추정에 기초하여 제어 장치(700)는 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000178
)를 획득할 수 있다.
The three-phase zero current of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000163
) is estimated to also flow to the first inverter 240. This is because the three-phase zero phase current of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000164
) is assumed to be a circulating current flowing in the first inverter 220 and the second inverter 240. The first inverter 220 and the second inverter 240 provide a three-phase target current signal (
Figure PCTKR2022020039-appb-img-000165
,
Figure PCTKR2022020039-appb-img-000166
, and
Figure PCTKR2022020039-appb-img-000167
) must be provided to the load 250, but the three-phase zero phase current (
Figure PCTKR2022020039-appb-img-000168
) is measured, so the three-phase zero phase current (
Figure PCTKR2022020039-appb-img-000169
It can be assumed that a current subtracted by ) is flowing. Because the three-phase zero current (
Figure PCTKR2022020039-appb-img-000170
) is a circular current, so it will flow from point A2 to A and then to A1. That is, the three-phase zero phase current measured in the second inverter (
Figure PCTKR2022020039-appb-img-000171
) is the three-phase target current signal of the second inverter 240 (
Figure PCTKR2022020039-appb-img-000172
,
Figure PCTKR2022020039-appb-img-000173
, and
Figure PCTKR2022020039-appb-img-000174
) is added to the three-phase target current signal of the first inverter 220 (
Figure PCTKR2022020039-appb-img-000175
,
Figure PCTKR2022020039-appb-img-000176
, and
Figure PCTKR2022020039-appb-img-000177
) can be deducted. Based on this estimate, the control device 700 calculates the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000178
) can be obtained.
단계(940)에서 확인할 수 있는 바와 같이 본 개시에 따르면, 제 2 인버터의 제어 장치(700)는 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000179
)를 이용하므로 제 1 인버터의 제어 장치로부터 3상 전류를 수신할 필요가 없다. 따라서 제 2 인버터의 제어 장치(700)와 제 1 인버터의 제어 장치 사이의 데이터 송수신이 최소화될 수 있다. 또한, 제 2 인버터(240)에 대한 제어 신호에 통신 지연에 의한 오차가 없을 수 있으며, 제 2 인버터의 제어 장치(700)는 제 2 인버터(240)에 대한 제어 신호를 신속하게 생성할 수 있다.
According to the present disclosure, as can be seen in step 940, the control device 700 of the second inverter controls the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000179
), so there is no need to receive three-phase current from the control device of the first inverter. Accordingly, data transmission and reception between the control device 700 of the second inverter and the control device of the first inverter can be minimized. Additionally, the control signal for the second inverter 240 may not have an error due to communication delay, and the control device 700 of the second inverter can quickly generate the control signal for the second inverter 240. .
제 2 인버터(240)의 제어 장치(700)는 제 1 인버터의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000180
) 및 제 2 인버터의 3상 전류(
Figure PCTKR2022020039-appb-img-000181
,
Figure PCTKR2022020039-appb-img-000182
,
Figure PCTKR2022020039-appb-img-000183
)에 기초하여 제 2 인버터에 대한 3상 오차 전류(
Figure PCTKR2022020039-appb-img-000184
,
Figure PCTKR2022020039-appb-img-000185
,
Figure PCTKR2022020039-appb-img-000186
)를 획득하는 단계(950)를 수행할 수 있다. 보다 구체적으로 제어 장치(700)는 제 2 인버터에 대한 3상 오차 전류를 획득하는 단계(950)를 수행하기 위하여 다음과 같은 단계를 수행할 수 있다. 제어 장치(700)는 제 2 인버터의 3상 전류(
Figure PCTKR2022020039-appb-img-000187
,
Figure PCTKR2022020039-appb-img-000188
,
Figure PCTKR2022020039-appb-img-000189
)에서 제 1 인버터(220)의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000190
)를 차감하여 제 2 인버터에 대한 3상 오차 전류(
Figure PCTKR2022020039-appb-img-000191
,
Figure PCTKR2022020039-appb-img-000192
,
Figure PCTKR2022020039-appb-img-000193
)를 획득하는 단계를 수행할 수 있다. 하지만 이에 한정되는 것은 아니며, 제어 장치(700)는 제 1 인버터(220)의 3상 추정 전류(
Figure PCTKR2022020039-appb-img-000194
)에서 제 2 인버터의 3상 전류(
Figure PCTKR2022020039-appb-img-000195
,
Figure PCTKR2022020039-appb-img-000196
,
Figure PCTKR2022020039-appb-img-000197
)를 차감하여 제 2 인버터에 대한 3상 오차 전류(
Figure PCTKR2022020039-appb-img-000198
,
Figure PCTKR2022020039-appb-img-000199
,
Figure PCTKR2022020039-appb-img-000200
)를 획득하는 단계를 수행할 수도 있다.
The control device 700 of the second inverter 240 controls the three-phase estimated current of the first inverter (
Figure PCTKR2022020039-appb-img-000180
) and the three-phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000181
,
Figure PCTKR2022020039-appb-img-000182
,
Figure PCTKR2022020039-appb-img-000183
) based on the three-phase error current for the second inverter (
Figure PCTKR2022020039-appb-img-000184
,
Figure PCTKR2022020039-appb-img-000185
,
Figure PCTKR2022020039-appb-img-000186
) can be performed (950). More specifically, the control device 700 may perform the following steps to perform the step 950 of acquiring the three-phase error current for the second inverter. The control device 700 controls the three-phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000187
,
Figure PCTKR2022020039-appb-img-000188
,
Figure PCTKR2022020039-appb-img-000189
), the three-phase estimated current of the first inverter 220 (
Figure PCTKR2022020039-appb-img-000190
) is subtracted to obtain the three-phase error current for the second inverter (
Figure PCTKR2022020039-appb-img-000191
,
Figure PCTKR2022020039-appb-img-000192
,
Figure PCTKR2022020039-appb-img-000193
) can be performed. However, it is not limited to this, and the control device 700 calculates the three-phase estimated current of the first inverter 220 (
Figure PCTKR2022020039-appb-img-000194
), the three-phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000195
,
Figure PCTKR2022020039-appb-img-000196
,
Figure PCTKR2022020039-appb-img-000197
) is subtracted to obtain the three-phase error current for the second inverter (
Figure PCTKR2022020039-appb-img-000198
,
Figure PCTKR2022020039-appb-img-000199
,
Figure PCTKR2022020039-appb-img-000200
) can also be performed.
도 9의 단계(910) 내지 단계(950)를 식으로 정리하면, 제 2 인버터에 대한 3상 오차 전류(
Figure PCTKR2022020039-appb-img-000201
,
Figure PCTKR2022020039-appb-img-000202
,
Figure PCTKR2022020039-appb-img-000203
)를 이하와 같이 나타낼 수 있다.
If steps 910 to 950 of FIG. 9 are summarized in an equation, the three-phase error current for the second inverter (
Figure PCTKR2022020039-appb-img-000201
,
Figure PCTKR2022020039-appb-img-000202
,
Figure PCTKR2022020039-appb-img-000203
) can be expressed as follows.
Figure PCTKR2022020039-appb-img-000204
(식7)
Figure PCTKR2022020039-appb-img-000204
(Equation 7)
Figure PCTKR2022020039-appb-img-000205
는 인버터의 d축 전류 지령이며
Figure PCTKR2022020039-appb-img-000206
는 인버터의 q축 전류 지령이며,
Figure PCTKR2022020039-appb-img-000207
는 제 2 인버터(240)의 영상 전류이다. 여기서
Figure PCTKR2022020039-appb-img-000208
는 식6과 같을 수 있다. 식7에 따르면, 제 2 인버터(240)의 제어 장치(700)는 제 1 인버터(220)의 출력 전류에 대한 별도의 수신을 필요로 하지 않게 되며, 통신의 부담을 줄일 수 있다.
Figure PCTKR2022020039-appb-img-000205
is the d-axis current command of the inverter.
Figure PCTKR2022020039-appb-img-000206
is the inverter’s q-axis current command,
Figure PCTKR2022020039-appb-img-000207
is the zero phase current of the second inverter 240. here
Figure PCTKR2022020039-appb-img-000208
may be the same as Equation 6. According to Equation 7, the control device 700 of the second inverter 240 does not require separate reception of the output current of the first inverter 220, and the burden of communication can be reduced.
제어 장치(700)는 제 2 인버터(240)에 대한 3상 오차 전류(
Figure PCTKR2022020039-appb-img-000209
,
Figure PCTKR2022020039-appb-img-000210
,
Figure PCTKR2022020039-appb-img-000211
)에 기초하여 3상 보상전압(
Figure PCTKR2022020039-appb-img-000212
(단, x= a, b, 또는 c))을 획득하는 단계(960)를 수행할 수 있다. 제어 장치(700)는 3상 보상전압(
Figure PCTKR2022020039-appb-img-000213
,
Figure PCTKR2022020039-appb-img-000214
,
Figure PCTKR2022020039-appb-img-000215
)을 획득하는 단계(960)를 위하여 다음과 같은 단계를 더 수행할 수 있다. 식3에 대해 delta current controller를 만들 경우, 각 상에 대해 PI제어기로 나타내면 식8과 같이 나타낼 수 있다. 즉, 단계(960)는 아래의 식8에 의하여 수행될 수 있다.
The control device 700 controls the three-phase error current for the second inverter 240 (
Figure PCTKR2022020039-appb-img-000209
,
Figure PCTKR2022020039-appb-img-000210
,
Figure PCTKR2022020039-appb-img-000211
) Based on the three-phase compensation voltage (
Figure PCTKR2022020039-appb-img-000212
(however, x=a, b, or c)) may be performed in step 960. The control device 700 uses a three-phase compensation voltage (
Figure PCTKR2022020039-appb-img-000213
,
Figure PCTKR2022020039-appb-img-000214
,
Figure PCTKR2022020039-appb-img-000215
), the following steps can be further performed for the step 960 of obtaining. When creating a delta current controller for Equation 3, each phase can be expressed as a PI controller as shown in Equation 8. That is, step 960 can be performed according to Equation 8 below.
Figure PCTKR2022020039-appb-img-000216
(식8)
Figure PCTKR2022020039-appb-img-000216
(Equation 8)
여기서
Figure PCTKR2022020039-appb-img-000217
는 3상 보상전압이며,
Figure PCTKR2022020039-appb-img-000218
는 미리 정해진 비례이득이며,
Figure PCTKR2022020039-appb-img-000219
는 미리 정해진 적분이득이며,
Figure PCTKR2022020039-appb-img-000220
는 제 2 인버터에 대한 3상 오차 전류에 대한 지령 전류이며, s는 라플라스 연산자이며,
Figure PCTKR2022020039-appb-img-000221
는 제 2 인버터에 대한 3상 오차 전류일 수 있다. 1/s는 적분기를 의미할 수 있다.
here
Figure PCTKR2022020039-appb-img-000217
is the three-phase compensation voltage,
Figure PCTKR2022020039-appb-img-000218
is a predetermined proportional gain,
Figure PCTKR2022020039-appb-img-000219
is a predetermined integral gain,
Figure PCTKR2022020039-appb-img-000220
is the command current for the three-phase error current for the second inverter, s is the Laplace operator,
Figure PCTKR2022020039-appb-img-000221
may be a three-phase error current for the second inverter. 1/s may refer to the integrator.
제 2 인버터에 대한 3상 오차 전류에 대한 지령 전류(
Figure PCTKR2022020039-appb-img-000222
)는 제 1 인버터에 대한 3상 오차 전류에 대한 지령 전류일 수도 있다. 또한, 제 2 인버터에 대한 3상 오차 전류에 대한 지령 전류는 0일 수 있다. 왜냐하면 3상 오차 전류를 0으로 만들어야 목적 전류에 도달할 수 있기 때문이다.
Command current for the three-phase error current for the second inverter (
Figure PCTKR2022020039-appb-img-000222
) may be a command current for the three-phase error current for the first inverter. Additionally, the command current for the three-phase error current for the second inverter may be 0. This is because the target current can be reached only when the 3-phase error current is reduced to 0.
즉, 식8은 아래와 같을 수 있다.In other words, Equation 8 can be as follows.
Figure PCTKR2022020039-appb-img-000223
Figure PCTKR2022020039-appb-img-000223
이상에서 설명한 바와 같이 제 2 인버터(240)의 제어 장치(700)는 제 1 인버터(220)의 제어 장치로부터 제 1 인버터의 3상 지령 전압(
Figure PCTKR2022020039-appb-img-000224
,
Figure PCTKR2022020039-appb-img-000225
,및
Figure PCTKR2022020039-appb-img-000226
)을 수신할 뿐, 다른 신호를 수신할 필요가 없다. 따라서 제 1 인버터(220)와 제 2 인버터(240) 사이에 송수신 되는 데이터량이 크지 않을 수 있다. 따라서 통신에 따른 지연을 최소화할 수 있다. 또한 제 1 인버터의 전류를 추정함으로써, 영상 전류를 획기적으로 줄일 수 있으며, 발열을 줄일 수 있다.
As described above, the control device 700 of the second inverter 240 receives the three-phase command voltage (
Figure PCTKR2022020039-appb-img-000224
,
Figure PCTKR2022020039-appb-img-000225
,and
Figure PCTKR2022020039-appb-img-000226
), there is no need to receive any other signals. Therefore, the amount of data transmitted and received between the first inverter 220 and the second inverter 240 may not be large. Therefore, delay due to communication can be minimized. Additionally, by estimating the current of the first inverter, the zero phase current can be dramatically reduced and heat generation can be reduced.
도 10은 본 개시의 일 실시예에 따른 제어 장치의 효과를 보여주는 파형 도면이다.10 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
도 10의 (A)는 제 1 인버터(220)와 제 2 인버터(240)의 비선형성으로 인해 발생하는 제 2 인버터(240)에 발생하는 전류 왜곡과 영상분 전류를 나타낸다. 도 10의 (A)에서
Figure PCTKR2022020039-appb-img-000227
는 제 2 인버터의 3상 전류에 포함된 A상 전류,
Figure PCTKR2022020039-appb-img-000228
는 제 2 인버터의 3상 전류에 포함된 B상 전류,
Figure PCTKR2022020039-appb-img-000229
는 제 2 인버터의 3상 전류에 포함된 C상 전류를 나타낸다.
Figure PCTKR2022020039-appb-img-000230
는 제 2 인버터의 3상 영상 전류를 나타낸다. 또한, 도 10의 (A)에서
Figure PCTKR2022020039-appb-img-000231
는 제 1 인버터의 3상 전류에 포함된 A상 전류,
Figure PCTKR2022020039-appb-img-000232
는 제 1 인버터의 3상 전류에 포함된 B상 전류,
Figure PCTKR2022020039-appb-img-000233
는 제 1 인버터의 3상 전류에 포함된 C상 전류를 나타낸다.
Figure PCTKR2022020039-appb-img-000234
는 제 1 인버터의 3상 영상 전류를 나타낸다. 도 10의 (A)를 참조하면
Figure PCTKR2022020039-appb-img-000235
Figure PCTKR2022020039-appb-img-000236
의 역상임을 확인할 수 있다. 또한 제 1 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000237
) 및 제 2 인버터의 3상 영상 전류(
Figure PCTKR2022020039-appb-img-000238
)에 의하여 제 1 인버터의 3상 전류 및 제 2 인버터의 3상 전류에 왜곡이 있음을 확인할 수 있다.
FIG. 10A shows current distortion and zero-phase current occurring in the second inverter 240 due to nonlinearity between the first inverter 220 and the second inverter 240. In (A) of Figure 10
Figure PCTKR2022020039-appb-img-000227
is the A-phase current included in the three-phase current of the second inverter,
Figure PCTKR2022020039-appb-img-000228
is the B-phase current included in the three-phase current of the second inverter,
Figure PCTKR2022020039-appb-img-000229
represents the C-phase current included in the three-phase current of the second inverter.
Figure PCTKR2022020039-appb-img-000230
represents the three-phase zero phase current of the second inverter. Additionally, in Figure 10 (A)
Figure PCTKR2022020039-appb-img-000231
is the A-phase current included in the three-phase current of the first inverter,
Figure PCTKR2022020039-appb-img-000232
is the B-phase current included in the three-phase current of the first inverter,
Figure PCTKR2022020039-appb-img-000233
represents the C-phase current included in the three-phase current of the first inverter.
Figure PCTKR2022020039-appb-img-000234
represents the three-phase zero phase current of the first inverter. Referring to Figure 10 (A)
Figure PCTKR2022020039-appb-img-000235
Is
Figure PCTKR2022020039-appb-img-000236
It can be confirmed that it is the reverse image of . Additionally, the three-phase zero phase current of the first inverter (
Figure PCTKR2022020039-appb-img-000237
) and the three-phase zero phase current of the second inverter (
Figure PCTKR2022020039-appb-img-000238
), it can be confirmed that there is distortion in the three-phase current of the first inverter and the three-phase current of the second inverter.
도 10의 (B)는 종래 기술에 의하여 영상 전류를 제거한 것을 나타낸다.도 10의 (b)에 따르면, 종래 기술은 병렬의 인버터를 순환하는 영상 전류를 제거하지만, 제 2 인버터(240)에서의 전류 왜곡을 제거하지 못한다. Figure 10(B) shows removal of the zero-sequence current using the prior art. According to Figure 10(b), the prior art removes the zero-sequence current circulating in parallel inverters, but the zero-sequence current in the second inverter 240 is removed. It does not eliminate current distortion.
도 10 의 (C)는 도 2, 도 8 및 도 9에 따라 본 개시의 제어 장치(700)가 영상 전류와 제 2 인버터(240)의 전류 왜곡을 억제한 결과를 보여준다.FIG. 10C shows the results of the control device 700 of the present disclosure suppressing zero phase current and current distortion of the second inverter 240 according to FIGS. 2, 8, and 9.
도 11은 본 개시의 일 실시예에 따른 제어 장치의 효과를 보여주는 파형 도면이다.11 is a waveform diagram showing the effect of a control device according to an embodiment of the present disclosure.
도 11의 (A)는 보상전압이 없을 경우를 나타낸다. 도 11의 (A)를 참조하면, 비선형성 차이로 인해 인버터 출력 전압의 rising time과 falling time이 차이가 발생하는 것을 확인할 수 있다.Figure 11 (A) shows the case where there is no compensation voltage. Referring to (A) of FIG. 11, it can be seen that there is a difference between the rising time and falling time of the inverter output voltage due to the difference in nonlinearity.
도 11의 (B)는 종래 기술에 의한 영상분 전류 제어기를 사용하는 경우를 나타낸다. 도 11의 (B)를 참조하면 각 상마다 보상 전압을 계산하는 것이 아닌, 영상분 전압을 모든 상에 더해주기 때문에, rising time과 falling time에서 인버터 출력 전압의 차이가 더 발생하는 것을 확인할 수 있다.Figure 11 (B) shows a case of using a zero-phase current controller according to the prior art. Referring to (B) in FIG. 11, it can be seen that the difference in the inverter output voltage increases at rising time and falling time because the compensation voltage is added to all phases rather than calculating the compensation voltage for each phase. .
도 11의 (C)는 본 개시에 따른 보상전압을 사용할 경우를 나타낸다. 도 11의 (C)참조하면, 본 개시의 제어 장치(700)는 각 상마다 보상 전압을 계산하여 더해주기 때문에, rising time과 falling time에서 인버터 출력 전압의 차이가 도 11의 (A)와 도 11(B)에 비해 개선됨을 확인할 수 있다.Figure 11 (C) shows a case of using the compensation voltage according to the present disclosure. Referring to (C) of FIG. 11, since the control device 700 of the present disclosure calculates and adds the compensation voltage for each phase, the difference between the inverter output voltage at rising time and falling time is (A) of FIG. 11 and FIG. It can be seen that there is an improvement compared to 11(B).
도 12는 본 개시의 일 실시예에 따른 제어 장치의 효과를 보여주는 파형 도면이다.Figure 12 is a waveform diagram showing the effect of the control device according to an embodiment of the present disclosure.
도 12의 (A)와 같이 보상전압이 없을 경우에는, 제 1 인버터(220) 및 제 2 인버터(240) 출력 전류의 방향에 따라 전류가 왜곡되는 정도가 다르게 나타나는 것을 확인할 수 있다.When there is no compensation voltage as shown in (A) of FIG. 12, it can be seen that the degree of distortion of the current varies depending on the direction of the output current of the first inverter 220 and the second inverter 240.
도 12의 (B)는 본 개시의 제어 장치(700)에 따른 파형을 나타낸다. 본 개시의 제어 장치(700)에 따르면 3상 보상전압(
Figure PCTKR2022020039-appb-img-000239
,
Figure PCTKR2022020039-appb-img-000240
,
Figure PCTKR2022020039-appb-img-000241
)이 각 상마다 다른 것을 알 수 있다. 3상 보상전압(
Figure PCTKR2022020039-appb-img-000242
,
Figure PCTKR2022020039-appb-img-000243
,
Figure PCTKR2022020039-appb-img-000244
)은 식 (8)에 의해 상마다 따로 결정되기 때문이다. 본 개시의 제어 장치(700)에 따르면 인버터 출력 전류의 왜곡이 감소하여 인버터 출력 전류간의 차이가 발생하지 않는 것을 확인할 수 있다.
Figure 12 (B) shows a waveform according to the control device 700 of the present disclosure. According to the control device 700 of the present disclosure, a three-phase compensation voltage (
Figure PCTKR2022020039-appb-img-000239
,
Figure PCTKR2022020039-appb-img-000240
,
Figure PCTKR2022020039-appb-img-000241
) can be seen to be different for each phase. 3-phase compensation voltage (
Figure PCTKR2022020039-appb-img-000242
,
Figure PCTKR2022020039-appb-img-000243
,
Figure PCTKR2022020039-appb-img-000244
) is determined separately for each phase by equation (8). According to the control device 700 of the present disclosure, it can be confirmed that the distortion of the inverter output current is reduced and there is no difference between the inverter output currents.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, we have looked at various embodiments. Those skilled in the art to which this disclosure pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.Meanwhile, the above-described embodiments of the present invention can be written as a program that can be executed on a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium. The computer-readable recording media includes storage media such as magnetic storage media (eg, ROM, floppy disk, hard disk, etc.) and optical read media (eg, CD-ROM, DVD, etc.).

Claims (12)

  1. 제 1 인버터에 대하여 병렬 연결된 제 2 인버터의 순환전류를 억제하기 위한 상기 제 2 인버터의 제어 방법에 있어서,In the control method of the second inverter for suppressing the circulating current of the second inverter connected in parallel with the first inverter,
    상기 제 1 인버터의 제어 장치에 의하여 생성된 상기 제 1 인버터의 3상 지령 전압을 수신하는 단계;Receiving a three-phase command voltage of the first inverter generated by a control device of the first inverter;
    제 2 인버터의 3상 영상 전류에 기초하여 3상 보상전압을 획득하는 단계;Obtaining a three-phase compensation voltage based on the three-phase zero phase current of the second inverter;
    상기 제 1 인버터의 3상 지령 전압 및 상기 3상 보상전압에 기초하여 상기 제 2 인버터의 3상 지령 전압을 획득하는 단계; 및Obtaining a three-phase command voltage of the second inverter based on the three-phase command voltage of the first inverter and the three-phase compensation voltage; and
    상기 제 2 인버터의 3상 지령 전압에 기초하여 상기 제 2 인버터를 동작시키는 단계를 포함하는 제 2 인버터의 제어 방법.A control method of a second inverter comprising operating the second inverter based on a three-phase command voltage of the second inverter.
  2. 제 1 항에 있어서,According to claim 1,
    상기 3상 보상전압을 획득하는 단계는,The step of obtaining the three-phase compensation voltage is,
    3상 목적 전류 신호를 획득하는 단계;Obtaining a three-phase target current signal;
    상기 제 2 인버터의 3상 전류를 측정하는 단계;measuring three-phase current of the second inverter;
    상기 제 2 인버터의 3상 전류에 기초하여 상기 제 2 인버터의 3상 영상 전류를 획득하는 단계;Obtaining a three-phase zero phase current of the second inverter based on the three-phase current of the second inverter;
    상기 제 2 인버터의 상기 3상 영상 전류 및 상기 3상 목적 전류 신호에 기초하여 상기 제 1 인버터의 3상 추정 전류를 획득하는 단계;Obtaining a three-phase estimated current of the first inverter based on the three-phase zero phase current and the three-phase target current signal of the second inverter;
    상기 제 1 인버터의 3상 추정 전류 및 상기 제 2 인버터의 3상 전류에 기초하여 상기 제 2 인버터에 대한 3상 오차 전류를 획득하는 단계; 및Obtaining a three-phase error current for the second inverter based on the estimated three-phase current of the first inverter and the three-phase current of the second inverter; and
    상기 제 2 인버터에 대한 상기 3상 오차 전류에 기초하여 3상 보상전압을 획득하는 단계를 포함하는 제어 방법.A control method comprising obtaining a three-phase compensation voltage based on the three-phase error current for the second inverter.
  3. 제 2 항에 있어서,According to claim 2,
    상기 제 1 인버터의 상기 3상 추정 전류를 획득하는 단계는,The step of acquiring the three-phase estimated current of the first inverter is:
    상기 3상 목적 전류 신호에서 상기 제 2 인버터의 상기 3상 영상 전류를 차감하여 상기 제 1 인버터의 3상 추정 전류를 획득하는 단계를 포함하는 제어 방법.A control method comprising obtaining a three-phase estimated current of the first inverter by subtracting the three-phase zero phase current of the second inverter from the three-phase target current signal.
  4. 제 2 항에 있어서,According to claim 2,
    상기 제 2 인버터에 대한 3상 오차 전류를 획득하는 단계는,The step of acquiring the three-phase error current for the second inverter is:
    상기 제 2 인버터의 3상 전류에서 상기 제 1 인버터의 3상 추정 전류를 차감하여 상기 제 2 인버터에 대한 상기 3상 오차 전류를 획득하는 단계를 포함하는 제어 방법.A control method comprising obtaining the three-phase error current for the second inverter by subtracting the estimated three-phase current of the first inverter from the three-phase current of the second inverter.
  5. 제 2 항에 있어서,According to claim 2,
    상기 3상 보상전압을 획득하는 단계는, The step of obtaining the three-phase compensation voltage is,
    아래의 식에 의하여 수행되며,It is performed according to the formula below,
    Figure PCTKR2022020039-appb-img-000245
    Figure PCTKR2022020039-appb-img-000245
    Figure PCTKR2022020039-appb-img-000246
    는 상기 3상 보상전압이며,
    Figure PCTKR2022020039-appb-img-000247
    는 비례이득이며,
    Figure PCTKR2022020039-appb-img-000248
    는 적분이득이며,
    Figure PCTKR2022020039-appb-img-000249
    는 상기 제 2 인버터에 대한 상기 3상 오차 전류에 대한 지령 전류이며, s는 라플라스 연산자이며 1/s는 적분기를 의미하며,
    Figure PCTKR2022020039-appb-img-000250
    상기 제 2 인버터에 대한 상기 3상 오차 전류인 제어 방법.
    Figure PCTKR2022020039-appb-img-000246
    is the three-phase compensation voltage,
    Figure PCTKR2022020039-appb-img-000247
    is the proportional gain,
    Figure PCTKR2022020039-appb-img-000248
    is the integral gain,
    Figure PCTKR2022020039-appb-img-000249
    is the command current for the three-phase error current for the second inverter, s is the Laplace operator, and 1/s means the integrator,
    Figure PCTKR2022020039-appb-img-000250
    A method of controlling the three-phase error current for the second inverter.
  6. 제 1 항에 있어서,According to claim 1,
    상기 제 2 인버터의 3상 지령 전압을 획득하는 단계는,The step of acquiring the three-phase command voltage of the second inverter is:
    상기 3상 보상전압에 상기 제 1 인버터의 3상 지령 전압을 더하여 상기 제 2 인버터의 3상 지령 전압을 획득하는 단계를 포함하는 제어 방법.A control method comprising adding a three-phase command voltage of the first inverter to the three-phase compensation voltage to obtain a three-phase command voltage of the second inverter.
  7. 제 1 항에 있어서,According to claim 1,
    상기 제 2 인버터의 3상 영상 전류를 획득하는 단계는,The step of acquiring the three-phase zero phase current of the second inverter is:
    측정된 상기 제 2 인버터의 A상의 전류, 측정된 상기 제 2 인버터의 B상의 전류, 및 측정된 상기 제 2 인버터의 C상의 전류의 평균을 상기 제 2 인버터의 3상 영상 전류로써 획득하는 단계를 포함하는 제어 방법.Obtaining the average of the measured current of phase A of the second inverter, the measured current of phase B of the second inverter, and the measured current of phase C of the second inverter as the three-phase zero phase current of the second inverter. Control methods including:
  8. 제 3 항에 있어서,According to claim 3,
    상기 제 1 인버터의 3상 추정 전류를 획득하는 단계는,The step of acquiring the three-phase estimated current of the first inverter is,
    상기 제 2 인버터에 포함된 센서를 이용하여 상기 3상 영상 전류를 측정하는 단계를 포함하는 제어 방법.A control method comprising measuring the three-phase zero phase current using a sensor included in the second inverter.
  9. 제 3 항에 있어서,According to claim 3,
    상기 제 1 인버터의 3상 추정 전류를 획득하는 단계는,The step of acquiring the three-phase estimated current of the first inverter is,
    미리 정해진 상기 3상 영상 전류를 획득하는 단계를 포함하고,Comprising the step of obtaining the predetermined three-phase zero phase current,
    상기 3상 영상 전류의 크기는 0보다 크거나 같은 제어 방법.A control method in which the magnitude of the three-phase zero phase current is greater than or equal to 0.
  10. 제 1 인버터에 대하여 병렬 연결된 제 2 인버터의 순환전류를 억제하기 위한 상기 제 2 인버터의 제어 장치에 있어서,In the control device of the second inverter for suppressing the circulating current of the second inverter connected in parallel with the first inverter,
    상기 제 2 인버터의 제어 장치는 프로세서 및 메모리를 포함하고,The control device of the second inverter includes a processor and memory,
    상기 프로세서는 상기 메모리에 저장된 명령어에 기초하여,Based on the instructions stored in the memory, the processor
    상기 제 1 인버터의 제어 장치에 의하여 생성된 상기 제 1 인버터의 3상 지령 전압을 수신하고,Receiving a three-phase command voltage of the first inverter generated by a control device of the first inverter,
    제 2 인버터의 3상 영상 전류에 기초하여 3상 보상전압을 획득하고,Obtaining a three-phase compensation voltage based on the three-phase zero phase current of the second inverter,
    상기 제 1 인버터의 3상 지령 전압 및 상기 3상 보상전압에 기초하여 상기 제 2 인버터의 3상 지령 전압을 획득하고,Obtaining a three-phase command voltage of the second inverter based on the three-phase command voltage of the first inverter and the three-phase compensation voltage,
    상기 제 2 인버터의 3상 지령 전압에 기초하여 상기 제 2 인버터를 동작시키는 제 2 인버터의 제어 장치.A control device for a second inverter that operates the second inverter based on a three-phase command voltage of the second inverter.
  11. 제 10 항에 있어서,According to claim 10,
    상기 프로세서는 상기 메모리에 저장된 명령어에 기초하여,Based on the instructions stored in the memory, the processor
    3상 목적 전류 신호를 획득하고,Obtain a three-phase target current signal,
    상기 제 2 인버터의 3상 전류를 측정하고,Measure the three-phase current of the second inverter,
    상기 제 2 인버터의 3상 전류에 기초하여 상기 제 2 인버터의 3상 영상 전류를 획득하고,Obtaining a three-phase zero phase current of the second inverter based on the three-phase current of the second inverter,
    상기 제 2 인버터의 상기 3상 영상 전류 및 상기 3상 목적 전류 신호에 기초하여 상기 제 1 인버터의 3상 추정 전류를 획득하고,Obtaining a three-phase estimated current of the first inverter based on the three-phase zero phase current and the three-phase target current signal of the second inverter,
    상기 제 1 인버터의 3상 추정 전류 및 상기 제 2 인버터의 3상 전류에 기초하여 상기 제 2 인버터에 대한 3상 오차 전류를 획득하고,Obtaining a three-phase error current for the second inverter based on the estimated three-phase current of the first inverter and the three-phase current of the second inverter,
    상기 제 2 인버터에 대한 상기 3상 오차 전류에 기초하여 3상 보상전압을 획득하는 제 2 인버터의 제어 장치.A control device for a second inverter that obtains a three-phase compensation voltage based on the three-phase error current for the second inverter.
  12. 제 1 인버터에 대하여 병렬 연결된 제 2 인버터의 순환전류를 억제하기 위한 상기 제 2 인버터의 제어 방법 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체에 있어서,A computer-readable recording medium on which a control method program of the second inverter for suppressing circulating current of the second inverter connected in parallel with the first inverter is recorded,
    상기 제 1 인버터의 제어 장치에 의하여 생성된 상기 제 1 인버터의 3상 지령 전압을 수신하는 단계;Receiving a three-phase command voltage of the first inverter generated by a control device of the first inverter;
    제 2 인버터의 3상 영상 전류에 기초하여 3상 보상전압을 획득하는 단계;Obtaining a three-phase compensation voltage based on the three-phase zero phase current of the second inverter;
    상기 제 1 인버터의 3상 지령 전압 및 상기 3상 보상전압에 기초하여 상기 제 2 인버터의 3상 지령 전압을 획득하는 단계; 및Obtaining a three-phase command voltage of the second inverter based on the three-phase command voltage of the first inverter and the three-phase compensation voltage; and
    상기 제 2 인버터의 3상 지령 전압에 기초하여 상기 제 2 인버터를 동작시키는 단계를 포함하는 제어 방법 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체.A computer-readable recording medium recording a control method program comprising operating the second inverter based on a three-phase command voltage of the second inverter.
PCT/KR2022/020039 2022-04-04 2022-12-09 Apparatus for suppressing current distortion and circulation current of parallel three-phase two-level inverter and operating method of apparatus WO2023195598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0041727 2022-04-04
KR1020220041727A KR20230142990A (en) 2022-04-04 2022-04-04 Apparatus for suppressing current distortion and circulating current in parallel three-phase two-level inverter and operating method thereof

Publications (1)

Publication Number Publication Date
WO2023195598A1 true WO2023195598A1 (en) 2023-10-12

Family

ID=88242983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020039 WO2023195598A1 (en) 2022-04-04 2022-12-09 Apparatus for suppressing current distortion and circulation current of parallel three-phase two-level inverter and operating method of apparatus

Country Status (2)

Country Link
KR (1) KR20230142990A (en)
WO (1) WO2023195598A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088162A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Inverter device
EP2879287A1 (en) * 2013-11-14 2015-06-03 ABB Oy Method and apparatus for minimising a circulating current or a common-mode voltage of an inverter
KR20160121314A (en) * 2015-04-10 2016-10-19 삼성중공업 주식회사 Limited current apparatus for 3phase load
US20160373044A1 (en) * 2015-06-18 2016-12-22 Delta Electronics, Inc. Circulating current and oscillating current suppressing method and parallel inverter driver system
JP2017028763A (en) * 2015-07-16 2017-02-02 株式会社デンソー Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088162A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Inverter device
EP2879287A1 (en) * 2013-11-14 2015-06-03 ABB Oy Method and apparatus for minimising a circulating current or a common-mode voltage of an inverter
KR20160121314A (en) * 2015-04-10 2016-10-19 삼성중공업 주식회사 Limited current apparatus for 3phase load
US20160373044A1 (en) * 2015-06-18 2016-12-22 Delta Electronics, Inc. Circulating current and oscillating current suppressing method and parallel inverter driver system
JP2017028763A (en) * 2015-07-16 2017-02-02 株式会社デンソー Power converter

Also Published As

Publication number Publication date
KR20230142990A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2017171521A1 (en) Method and equipment for transmitting synchronization signal and psbch in v2x communication
Benchaib et al. Real-time sliding-mode observer and control of an induction motor
WO2013042936A1 (en) Method and apparatus for soft buffer processing
WO2011139002A1 (en) Digital pre-distortion device and method for a broadband power amplifier
US6057664A (en) Motor driving control unit and motor driving control method
WO2017043750A1 (en) Inverter device for microgrid, and method for controlling same
Bai et al. Robust predictive control for linear permanent magnet synchronous motor drives based on an augmented internal model disturbance observer
WO2023195598A1 (en) Apparatus for suppressing current distortion and circulation current of parallel three-phase two-level inverter and operating method of apparatus
WO2022191448A1 (en) Control system for flexible joint robot
WO2020218769A1 (en) Reluctance force compensation for loudspeaker control
WO2019059648A1 (en) Motor control apparatus
Yin et al. Observer-based adaptive threshold diagnosis method for open-switch faults of voltage source inverters
KR101580020B1 (en) Controlling system for multilevel inverter and controlling method for the same
WO2018124467A1 (en) Motor control device and control method for motor control device
Yoo et al. A polar coordinate-oriented method of identifying rotor flux and speed of induction motors without rotational transducers
CN206283441U (en) A kind of multiaxis AC Servo Motor Control device
WO2023229116A1 (en) Method for calculating time-history wind loads in considertion of correlation
WO2019139216A1 (en) Pwm control method and apparatus for keeping direct current-side current constant in three-level converter
WO2022119092A2 (en) Method for estimating bit error probability using error rate ratio of frame synchronization word
CN103474995A (en) Active electric filter and compound control circuit and method of active electric filter
WO2020105838A1 (en) Inverter control device
CN110932587B (en) High-efficiency low-harmonic control method for high-switching-frequency silicon carbide inverter
WO2020246864A1 (en) Boost amplifier
WO2022164095A1 (en) Method and apparatus for signal processing
WO2020009293A1 (en) Schedule generation apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936651

Country of ref document: EP

Kind code of ref document: A1