WO2023195369A1 - 固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法 - Google Patents

固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法 Download PDF

Info

Publication number
WO2023195369A1
WO2023195369A1 PCT/JP2023/012143 JP2023012143W WO2023195369A1 WO 2023195369 A1 WO2023195369 A1 WO 2023195369A1 JP 2023012143 W JP2023012143 W JP 2023012143W WO 2023195369 A1 WO2023195369 A1 WO 2023195369A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier layer
electrolyte
solid oxide
oxide fuel
fuel cell
Prior art date
Application number
PCT/JP2023/012143
Other languages
English (en)
French (fr)
Inventor
裕亮 山田
誠司 藤田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023195369A1 publication Critical patent/WO2023195369A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte substrate for a solid oxide fuel cell, a single cell for a solid oxide fuel cell, a solid oxide fuel cell stack, and a method for manufacturing an electrolyte substrate for a solid oxide fuel cell.
  • a solid oxide fuel cell is a device that extracts electrical energy through the reaction of fuel electrode: H 2 + O 2 ⁇ ⁇ H 2 O+2e ⁇ and air electrode: (1/2) O 2 +2e ⁇ ⁇ O 2 ⁇ . It is.
  • Solid oxide fuel cells are used in a stacked structure in which multiple single cells for solid oxide fuel cells are stacked on top of each other, each having a fuel electrode and an air electrode on an electrolyte substrate for solid oxide fuel cells. Ru.
  • Patent Document 1 discloses that in a solid oxide fuel cell equipped with an air electrode provided through a fuel electrode and an electrolyte membrane, there is a structure between the electrolyte membrane made of scandia-stabilized zirconia and the air electrode made of La(Ni)FeO 3 .
  • a solid oxide fuel cell is disclosed in which an intermediate layer of Ce(X)O 2 (where X is any one of Sm, Gd, and Y) is provided.
  • a fuel electrode is formed on one side of an electrolyte membrane of scandia-stabilized zirconia, and a fuel electrode is formed on the other side with Ce(X)O 2 (where X is one of Sm, Gd, and Y).
  • a method for manufacturing a solid oxide fuel cell characterized in that an air electrode of La(Ni)FeO 3 is provided; After forming and sintering an electrolyte membrane of scandia-stabilized zirconia, a slurry of Ce(X)O 2 (where X is Sm, Gd, or Y) is applied onto the electrolyte membrane and sintered.
  • a method for producing a solid oxide fuel cell is disclosed, which is characterized in that after forming an intermediate layer, an air electrode of La(Ni)FeO 3 is provided.
  • Patent Document 1 by forming an intermediate layer such as Ce(Sm)O 2 between an air electrode of La(Ni)FeO 3 and a zirconia-based electrolyte, the air electrode of La( It is said that it is possible to suppress the reaction between Ni)FeO 3 and zirconia in the electrolyte, thereby improving cell performance.
  • an intermediate layer such as Ce(Sm)O 2 between an air electrode of La(Ni)FeO 3 and a zirconia-based electrolyte
  • a barrier layer As described in Patent Document 1, when co-sintering an electrolyte layer and a barrier layer, or adding a barrier layer to a sintered electrolyte layer, the electrolyte layer and/or the barrier layer may crack due to differential thermal expansion or firing contraction between the materials. When cracks occur, the strength of the electrolyte layer decreases, the long-term reliability (durability) of the cell after electrode formation decreases, and the power generation characteristics decrease due to a decrease in the ability to separate the oxidizing gas and fuel gas. The problem arises.
  • the present invention was made in order to solve the above problems, and provides a solid oxide that can reduce the difference in thermal expansion or difference in firing contraction between an electrolyte layer and a barrier layer, and can suppress the occurrence of cracks.
  • the purpose of the present invention is to provide an electrolyte substrate for a shaped fuel cell.
  • the present invention also provides a single cell for a solid oxide fuel cell comprising the electrolyte substrate, a solid oxide fuel cell stack in which a plurality of the single cells are stacked, and a method for manufacturing the electrolyte substrate.
  • the purpose is to
  • the electrolyte substrate for a solid oxide fuel cell includes an electrolyte layer containing a sintered body of scandia-stabilized zirconia or yttria-stabilized zirconia, and is provided on at least one main surface of the electrolyte layer, and comprises Ce( X) a barrier layer containing a sintered body of O 2 (where X is any one of Sm, Gd, and Y), and when looking at a cross section along the thickness direction of the barrier layer, the barrier layer Inside, there are pores with an area ratio of 24% or more and 72% or less.
  • a single cell for a solid oxide fuel cell according to the present invention includes an air electrode, a fuel electrode, and an electrolyte substrate according to the invention provided between the air electrode and the fuel electrode, A barrier layer of the electrolyte substrate is disposed between the electrolyte layer of the electrolyte substrate and the air electrode.
  • a solid oxide fuel cell stack according to the present invention includes a single cell according to the present invention, a first interconnector disposed on the air electrode side of the single cell, and a first interconnector disposed on the fuel electrode side of the single cell.
  • a plurality of cells including a second interconnector are stacked.
  • the method for producing an electrolyte substrate for a solid oxide fuel cell according to the present invention is directed to at least one main surface of an unsintered electrolyte layer containing scandia-stabilized zirconia or yttria-stabilized zirconia powder, or scandia-stabilized zirconia.
  • At least one main surface of an electrolyte layer containing a sintered body of zirconia or yttria-stabilized zirconia contains powder of Ce(X)O 2 (where X is any one of Sm, Gd, and Y) and burnt-out material.
  • the method includes the steps of producing an unsintered substrate provided with an unsintered barrier layer, and firing the unsintered substrate at a temperature equal to or higher than the temperature at which the unsintered material is burned out.
  • an electrolyte substrate for a solid oxide fuel cell in which the difference in thermal expansion or the difference in firing contraction between an electrolyte layer and a barrier layer is alleviated, and the occurrence of cracks can be suppressed.
  • the present invention also provides a single cell for a solid oxide fuel cell comprising the electrolyte substrate, a solid oxide fuel cell stack in which a plurality of the single cells are stacked, and a method for manufacturing the electrolyte substrate. can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electrolyte substrate for a solid oxide fuel cell according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing another example of the electrolyte substrate for a solid oxide fuel cell according to the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of the process of producing a green sheet for an electrolyte layer.
  • FIG. 4 is a cross-sectional view schematically showing an example of the process of producing a green sheet for a barrier layer.
  • FIG. 5 is a cross-sectional view schematically showing an example of the process of producing an unsintered substrate.
  • FIG. 6 is a cross-sectional view schematically showing another example of the process of producing an unsintered substrate.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electrolyte substrate for a solid oxide fuel cell according to the present invention.
  • FIG. 3 is a cross-sectional view schematically showing
  • FIG. 7 is a cross-sectional view schematically showing an example of the process of firing an unsintered substrate.
  • FIG. 8 is a cross-sectional view schematically showing another example of the process of firing the unsintered substrate.
  • FIG. 9 is a cross-sectional view schematically showing an example of a single cell for a solid oxide fuel cell according to the present invention.
  • FIG. 10 is a cross-sectional view schematically showing another example of a single cell for a solid oxide fuel cell according to the present invention.
  • FIG. 11 is an exploded perspective view schematically showing an example of a solid oxide fuel cell stack according to the present invention.
  • an electrolyte substrate for a solid oxide fuel cell a single cell for a solid oxide fuel cell, a solid oxide fuel cell stack, and an electrolyte substrate for a solid oxide fuel cell according to the present invention will be described. explain. Note that the present invention is not limited to the following configuration, and can be applied with appropriate modifications within the scope of the gist of the present invention. Moreover, the present invention also includes a combination of two or more of the individual desirable configurations of the present invention described below.
  • the electrolyte substrate for a solid oxide fuel cell includes an electrolyte layer containing a sintered body of scandia-stabilized zirconia or yttria-stabilized zirconia, and is provided on at least one main surface of the electrolyte layer, and comprises Ce( X) a barrier layer containing a sintered body of O 2 (where X is any one of Sm, Gd, and Y), and when looking at a cross section along the thickness direction of the barrier layer, the barrier layer Inside, there are pores with an area ratio of 24% or more and 72% or less.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electrolyte substrate for a solid oxide fuel cell according to the present invention.
  • the electrolyte substrate 10 for a solid oxide fuel cell shown in FIG. 1 includes an electrolyte layer 20 and a barrier layer 30 provided on both main surfaces of the electrolyte layer 20.
  • FIG. 2 is a cross-sectional view schematically showing another example of the electrolyte substrate for a solid oxide fuel cell according to the present invention.
  • An electrolyte substrate 10A for a solid oxide fuel cell shown in FIG. 2 includes an electrolyte layer 20 and a barrier layer 30 provided on one main surface of the electrolyte layer 20.
  • the electrolyte layer 20 includes a sintered body of scandia-stabilized zirconia or yttria-stabilized zirconia.
  • Examples of scandia-stabilized zirconia include Zr(Sc)O 2 or Zr(Sc,M)O 2 (where M is any one of Al 2 O 3 , CeO 2 and Y 2 O 3 ). .
  • Examples of yttria-stabilized zirconia include Zr(Y)O 2 and the like.
  • the barrier layer 30 includes a sintered body of Ce(X)O 2 (where X is one of Sm, Gd, and Y).
  • the barrier layer 30 provided on each main surface of the electrolyte layer 20 may have two or more layers, but is preferably one layer.
  • the barrier layer 30, like the intermediate layer described in Patent Document 1, has a function of suppressing the reaction between the electrolyte layer 20 and the air electrode 50 (see FIGS. 9 and 10 described later).
  • pores 40 exist inside the barrier layer 30.
  • the pores 40 inside the barrier layer 30 By forming the pores 40 inside the barrier layer 30, the difference in thermal expansion or the difference in firing contraction between the electrolyte layer 20 and the barrier layer 30 is alleviated, and the occurrence of cracks can be suppressed.
  • the shrinkage of the electrolyte layer 20 is larger than the shrinkage of the barrier layer 30, it is effective to form pores 40 inside the barrier layer 30.
  • the barrier layer 30 will easily detach from the electrolyte layer 20. This is considered to be caused by a decrease in the strength of the barrier layer 30 itself in addition to a decrease in the bonding area between the electrolyte layer 20 and the barrier layer 30.
  • the pores 40 exist in the barrier layer 30 with an area ratio of 24% or more and 72% or less. In other words, it is desirable that the pore area ratio in the barrier layer 30 is 24% or more and 72% or less.
  • the thickness of the barrier layer 30 is not particularly limited, and may be the same as the thickness of the electrolyte layer 20, may be greater than the thickness of the electrolyte layer 20, or may be smaller than the thickness of the electrolyte layer 20, but may be different from the thickness of the electrolyte layer 20.
  • the ratio of the thickness of the barrier layer 30 to the thickness of the electrolyte layer 20 increases, the power generation characteristics tend to deteriorate. Therefore, from the viewpoint of ensuring power generation characteristics, the ratio of the thickness of the barrier layer 30 to the thickness of the electrolyte layer 20 is preferably 20% or less.
  • the ratio of the thickness of the barrier layer 30 to the thickness of the electrolyte layer 20 is as follows. For example, it may be 1% or more, preferably 5% or more, and more preferably 10% or more.
  • the thickness of the barrier layer 30 is preferably 20 ⁇ m or less.
  • the thickness of the barrier layer 30 may be 1 ⁇ m or more, preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the thickness of the electrolyte layer 20 is preferably 80 ⁇ m or more and 120 ⁇ m or less.
  • the ratio of the thickness of the barrier layer 30 to the thickness of the electrolyte layer 20 is preferably within the above range.
  • the thickness of the barrier layer 30 means the thickness of the barrier layer 30 provided on each main surface of the electrolyte layer 20 (the thickness of one layer).
  • the shape, size, etc. of the holes 40 are not particularly limited.
  • the shapes of the holes 40 may be the same or different.
  • the sizes of the holes 40 may be the same or different.
  • the pores 40 may be connected to each other, but when the pores 40 are connected to each other and penetrate the barrier layer 30, the electrolyte layer 20 and the air electrode 50 (see FIGS. 9 and 10 described later) are connected to each other. There is a risk of reaction, and furthermore, when a crack occurs, it becomes difficult to obtain a sufficient effect of stopping the propagation of the crack with the pores 40. Therefore, it is preferable that the pores 40 do not communicate with each other from one main surface facing the barrier layer 30 in the thickness direction to the other main surface.
  • the pores 40 are uniformly dispersed inside the barrier layer 30. That is, it is preferable that the pores 40 are not unevenly distributed inside the barrier layer 30.
  • barrier layers 30 are provided on both main surfaces of the electrolyte layer 20, it is preferable that the thickness, pore area ratio, etc. of the barrier layers 30 are the same.
  • the "same” here does not necessarily have to be exactly the same, but may be within a range of about 3%.
  • the shape, size, thickness, etc. of the electrolyte substrates 10 and 10A are not particularly limited.
  • the method for producing an electrolyte substrate for a solid oxide fuel cell is directed to at least one main surface of an unsintered electrolyte layer containing scandia-stabilized zirconia or yttria-stabilized zirconia powder, or scandia-stabilized zirconia. At least one main surface of an electrolyte layer containing a sintered body of zirconia or yttria-stabilized zirconia contains powder of Ce(X)O 2 (where X is any one of Sm, Gd, and Y) and burnt-out material.
  • the method includes the steps of producing an unsintered substrate provided with an unsintered barrier layer, and firing the unsintered substrate at a temperature equal to or higher than the temperature at which the unsintered material is burned out.
  • An unsintered substrate may be prepared in which an unsintered barrier layer including a powder and a burnt-out material (which is either Y or Y) and an unsintered barrier layer is provided.
  • the barrier layer is formed by co-sintering with the electrolyte layer.
  • Examples of methods for forming an unsintered electrolyte layer include a method of producing a green sheet for an electrolyte layer, a method of applying an electrolyte layer paste, and the like.
  • Examples of methods for forming an unsintered barrier layer include a method of producing a green sheet for a barrier layer, a method of applying a paste for a barrier layer, and the like.
  • the step of producing an unsintered substrate includes the step of producing an unsintered green sheet for an electrolyte layer containing scandia-stabilized zirconia or yttria-stabilized zirconia powder, and a step of producing an unsintered green sheet for an electrolyte layer containing powder of scandia-stabilized zirconia or yttria-stabilized zirconia. , Gd, and Y) and a burnt-out material; a step of laminating the electrolyte layer green sheet and the barrier layer green sheet; Equipped with
  • an unsintered substrate in the step of producing an unsintered substrate, Ce(X)O 2 (where X is Sm, Gd
  • An unsintered substrate may be prepared in which an unsintered barrier layer including a powder and a burnt-out material (which is either Y or Y) and an unsintered barrier layer is provided.
  • a barrier layer is formed on the sintered electrolyte layer by post-baking.
  • pores are intentionally formed inside the barrier layer.
  • the pores are formed by including a burn-out material (a material that burns out during firing) in the barrier layer green sheet or barrier layer paste in advance.
  • burned-out materials examples include resin beads, carbon, binders, and other organic substances.
  • the number of burnt materials may be one type or two or more types. Among these, it is preferable that the burned-out material is a resin bead. By using resin beads as the burnout material, the shape of the pores can be easily adjusted.
  • FIG. 3 is a cross-sectional view schematically showing an example of the process of producing a green sheet for an electrolyte layer.
  • an unfired green sheet 2s for an electrolyte layer is produced by molding a ceramic slurry for an electrolyte layer.
  • the electrolyte layer green sheet 2s includes scandia-stabilized zirconia or yttria-stabilized zirconia powder 5.
  • the ceramic slurry for the electrolyte layer can be prepared, for example, by blending scandia-stabilized zirconia or yttria-stabilized zirconia powder, a binder, a dispersant, an organic solvent, and the like.
  • FIG. 4 is a cross-sectional view schematically showing an example of the process of producing a green sheet for a barrier layer.
  • an unfired green sheet 3s for a barrier layer is produced by molding a ceramic slurry for a barrier layer.
  • the barrier layer green sheet 3s includes a powder 6 of Ce(X)O 2 (where X is any one of Sm, Gd, and Y) and a burnt-out material 4.
  • the ceramic slurry for the barrier layer is prepared, for example, by blending Ce(X)O 2 (X is any one of Sm, Gd, and Y) powder, burnout material, binder, dispersant, organic solvent, etc. can do.
  • FIG. 5 is a cross-sectional view schematically showing an example of the process of producing an unsintered substrate.
  • an unsintered substrate 1 is produced by laminating an electrolyte layer green sheet 2s and a barrier layer green sheet 3s.
  • unsintered barrier layers 3 are provided on both main surfaces of the unsintered electrolyte layer 2 .
  • the unsintered substrate 1 is laminated in the following order: one green sheet 3s for the barrier layer, three green sheets 2s for the electrolyte layer, and one green sheet 3s for the barrier layer. It has been made.
  • the number of electrolyte layer green sheets 2s included in the unsintered electrolyte layer 2 is not particularly limited, and may be one or two or more.
  • the number of barrier layer green sheets 3s included in the unsintered barrier layer 3 provided on one main surface of the unsintered electrolyte layer 2 is not particularly limited, and may be one or two or more. good.
  • the number of barrier layer green sheets 3s included in the unsintered barrier layer 3 provided on one main surface of the unsintered electrolyte layer 2 is the number of green sheets for an electrolyte layer included in the unsintered electrolyte layer 2.
  • the number of sheets may be the same as that of 2s, or may be larger or smaller.
  • the number of barrier layer green sheets 3s included in the unsintered barrier layer 3 provided on the other main surface of the unsintered electrolyte layer 2 is not particularly limited, and may be one, or two or more. But that's fine.
  • the number of barrier layer green sheets 3s included in the unsintered barrier layer 3 provided on the other main surface of the unsintered electrolyte layer 2 is the number of green sheets for an electrolyte layer included in the unsintered electrolyte layer 2.
  • the number of sheets may be the same as that of 2s, or may be larger or smaller.
  • the number of barrier layer green sheets 3s included in the unsintered barrier layer 3 provided on the other main surface of the unsintered electrolyte layer 2 is The number may be the same as the number of barrier layer green sheets 3s included in the unsintered barrier layer 3 provided, the number may be greater, or the number may be less.
  • FIG. 6 is a cross-sectional view schematically showing another example of the process of producing an unsintered substrate.
  • an unsintered substrate 1A may be produced by laminating an electrolyte layer green sheet 2s and a barrier layer green sheet 3s.
  • an unsintered barrier layer 3 is provided on one main surface of an unsintered electrolyte layer 2.
  • an unsintered substrate 1A is produced by laminating one barrier layer green sheet 3s and three electrolyte layer green sheets 2s in this order.
  • the number of electrolyte layer green sheets 2s included in the unsintered electrolyte layer 2 is not particularly limited, and may be one or two or more.
  • the number of barrier layer green sheets 3s included in the unsintered barrier layer 3 provided on one main surface of the unsintered electrolyte layer 2 is not particularly limited, and may be one or two or more. good.
  • the thickness of the unsintered electrolyte layer 2 can be easily controlled by laminating a plurality of electrolyte layer green sheets 2s.
  • the thickness of the unsintered barrier layer 3 can be easily controlled by laminating a plurality of barrier layer green sheets 3s.
  • the electrolyte layer green sheet 2s and the barrier layer green sheet 3s may be laminated and then pressure bonded.
  • FIG. 7 is a cross-sectional view schematically showing an example of the process of firing the unsintered substrate.
  • FIG. 8 is a cross-sectional view schematically showing another example of the step of firing the unsintered substrate.
  • the unsintered substrate 1A shown in FIG. 6 By firing the unsintered substrate 1A shown in FIG. 6 at a temperature higher than the temperature at which the burnt material 4 is burned out, the unsintered substrate 1A is sintered to form the electrolyte layer 20 and the barrier layer 30, and the burnt material 4 is burned out and voids 40 are formed inside the barrier layer 30. As a result, an electrolyte substrate 10A shown in FIG. 8 is manufactured.
  • a single cell for a solid oxide fuel cell according to the present invention includes an air electrode, a fuel electrode, and an electrolyte substrate according to the invention provided between the air electrode and the fuel electrode.
  • a barrier layer of the electrolyte substrate is disposed between the electrolyte layer of the electrolyte substrate and the air electrode. Therefore, the reaction between the electrolyte layer and the air electrode can be suppressed by the barrier layer.
  • FIG. 9 is a cross-sectional view schematically showing an example of a single cell for a solid oxide fuel cell according to the present invention.
  • a single cell 100 for a solid oxide fuel cell shown in FIG. 9 includes an air electrode 50, a fuel electrode 60, and an electrolyte substrate 10 (see FIG. 1) provided between the air electrode 50 and the fuel electrode 60. , is provided.
  • the electrolyte substrate 10 includes an electrolyte layer 20 and a barrier layer 30 provided on both main surfaces of the electrolyte layer 20. Holes 40 exist inside the barrier layer 30 .
  • FIG. 10 is a cross-sectional view schematically showing another example of a single cell for a solid oxide fuel cell according to the present invention.
  • a single cell 100A for a solid oxide fuel cell shown in FIG. 10 includes an air electrode 50, a fuel electrode 60, and an electrolyte substrate 10A (see FIG. 2) provided between the air electrode 50 and the fuel electrode 60. , is provided.
  • the electrolyte substrate 10A includes the electrolyte layer 20 and the barrier layer 30 provided on one main surface of the electrolyte layer 20. Holes 40 exist inside the barrier layer 30 .
  • the barrier layer 30 of the electrolyte substrate 10 is arranged between the electrolyte layer 20 of the electrolyte substrate 10 and the air electrode 50.
  • the air electrode 50 a known air electrode for solid oxide fuel cells is used.
  • the material for the air electrode 50 include La(Ni)FeO 3 , (La,Sr)CoO 3 , (La,Sr)FeO 3 , and (La,Sr)(Co,Fe)O 3 .
  • the barrier layer 30 is not provided between the electrolyte layer 20 and the air electrode 50, the air electrode 50 reacts with the electrolyte layer 20 when heat-treated at high temperature, and the insulating layer of SrZrO 3 , La 2 Zr 2 O 7 , etc. generated.
  • the air electrode 50 may be provided on the entire main surface of one of the electrolyte substrates 10 or 10A, or may be provided on a portion thereof.
  • the fuel electrode 60 a known fuel electrode for solid oxide fuel cells is used.
  • the material of the fuel electrode 60 include Ni, Ni/ScSZ (scandia stabilized zirconia) cermet, Ni/YSZ (yttria stabilized zirconia) cermet, Ni/CeO 2 cermet, and the like.
  • the fuel electrode 60 may be provided on the entire other main surface of the electrolyte substrate 10 or 10A, or may be provided on a portion thereof.
  • a single cell for a solid oxide fuel cell according to the present invention has an air electrode formed on one main surface of the electrolyte substrate for a solid oxide fuel cell according to the present invention, and a fuel electrode on the other main surface. It can be manufactured by forming.
  • a binder and a solvent are added to the powder of the material constituting the air electrode, and if necessary, a dispersant and the like are added to prepare a slurry for the air electrode. Further, a binder and a solvent are added to the powder of the material constituting the fuel electrode, and if necessary, a dispersant and the like are added to prepare a slurry for the fuel electrode.
  • the slurry for the air electrode is applied to one main surface of the electrolyte substrate, and the slurry for the fuel electrode is applied to the other main surface of the electrolyte substrate to a predetermined thickness, and the coating film is dried. and forming a green layer for the fuel electrode.
  • the air electrode and the fuel electrode are formed by firing the green layers for the air electrode and the fuel electrode. Firing conditions such as firing temperature may be appropriately determined depending on the types of materials of the air electrode and the fuel electrode.
  • a fuel gas flow path for supplying fuel gas such as gas or hydrocarbon gas to the fuel electrode is required.
  • a solid oxide fuel cell stack in which a plurality of cells in which a single cell according to the present invention is provided with an oxidizing gas flow path and a fuel gas flow path and further provided with a conductive path is also one of the present invention. It is.
  • a solid oxide fuel cell stack according to the present invention includes a single cell according to the present invention, a first interconnector disposed on the air electrode side of the single cell, and a first interconnector disposed on the fuel electrode side of the single cell.
  • a plurality of cells including a second interconnector are stacked.
  • each of the plurality of single cells has a structure in which they are sandwiched between a pair of interconnectors.
  • the interconnector has the function of electrically connecting a plurality of single cells and supplying gas to each pole.
  • FIG. 11 is an exploded perspective view schematically showing an example of a solid oxide fuel cell stack according to the present invention.
  • a solid oxide fuel cell stack 200 shown in FIG. 11 includes a single cell 100 (see FIG. 9), a first interconnector 210 disposed on the air electrode 50 side of the single cell 100, and a The cells 110 including the second interconnector 220 disposed on the pole 60 side are stacked in two stages in the Z direction.
  • the number of stacked cells 110 is not particularly limited. In the solid oxide fuel cell stack 200, only the single cells 100 shown in FIG. 9 may be stacked, or only the single cells 100A shown in FIG. 10 may be stacked, or the single cells 100 shown in FIG. Both of the single cells 100A shown in FIG. 10 may be stacked.
  • the solid oxide fuel cell stack 200 is provided with an oxidant gas manifold 230 and a fuel gas manifold 240, which are through holes.
  • Oxidizing gas manifold 230 extends in the X direction
  • fuel gas manifold 240 extends in the Y direction.
  • Oxidizing gas flow path 250 is provided on the main surface of the first interconnector 210 facing the air electrode 50. Oxidizing gas flow path 250 extends in the Y direction.
  • a fuel gas flow path 260 is provided on the main surface of the second interconnector 220 facing the fuel electrode 60.
  • the fuel gas flow path 260 extends in the X direction.
  • the constituent material of the first interconnector 210 and the second interconnector 220 may be an insulating material such as a ceramic material, or a conductive material such as a metal material.
  • the constituent materials of the first interconnector 210 and the second interconnector 220 may be the same or different.
  • the constituent material of the first interconnector 210 and the second interconnector 220 is an insulating material
  • the first interconnector 210 and the second interconnector 220 may be, for example, a sintered body of partially stabilized zirconia, etc. can be mentioned.
  • the first interconnector 210 When the constituent material of the first interconnector 210 is an insulating material, the first interconnector 210 is penetrated in the thickness direction and connected to the air electrode 50 while being exposed on the main surface on the opposite side to the air electrode 50.
  • at least one through conductor is provided.
  • the air electrode 50 can be led out of the first interconnector 210 via the through conductor.
  • the second interconnector 220 When the constituent material of the second interconnector 220 is an insulating material, the second interconnector 220 is penetrated in the thickness direction and connected to the fuel electrode 60 while being exposed on the main surface on the opposite side to the fuel electrode 60.
  • at least one through conductor is provided.
  • the fuel electrode 60 can be led out of the second interconnector 220 via the through conductor.
  • the constituent material of the through conductors provided in the first interconnector 210 and the second interconnector 220 is preferably an alloy of silver and palladium, or platinum.
  • the constituent material of the through conductor provided in the first interconnector 210 and the constituent material of the through conductor provided in the second interconnector 220 may be the same or different.
  • Ce(Sm)O 2 (hereinafter referred to as SDC) powder and resin beads for forming pores (burnt material) are mixed in a predetermined ratio, and a dispersant, a polyvinyl butyral binder, a plasticizer, and toluene/ethanol are mixed. After adding and mixing the system solvent to prepare a slurry, the viscosity was adjusted by defoaming under reduced pressure. A green sheet for the barrier layer was prepared by applying the slurry onto a carrier film using a doctor blade method and drying it.
  • the thicknesses of the electrolyte layer (ScSZ layer) and barrier layer (SDC layer) were measured using the image scale. The results are shown in Tables 1 and 2. Note that the thickness of the barrier layer shown in Table 2 is the thickness of one barrier layer provided on one main surface of the electrolyte layer.
  • 3PL/(2bh 2 )
  • three-point bending strength
  • P maximum load
  • L distance between supporting points
  • b sample width
  • h sample thickness.
  • the number of measurements was 10, and the average value of the three-point bending strength was determined.
  • Tables 1 and 2 show the evaluation results for each sample. Regarding the three-point bending strength, sample No. Table 2 shows the relative values when the three-point bending strength of No. 2 is set to 1.00.
  • the appropriate range of pore area ratio in the barrier layer is 24% or more and 72% or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

固体酸化物形燃料電池用の電解質基板10は、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層20と、電解質層20の少なくとも一方の主面に設けられ、Ce(X)O2(ただしXはSm、Gd及びYのいずれかである)の焼結体を含むバリア層30と、を備え、バリア層30の厚み方向に沿った断面を見たとき、バリア層30の内部には、面積率で24%以上、72%以下の空孔40が存在する。

Description

固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法
 本発明は、固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法に関する。
 固体酸化物形燃料電池(SOFC)は、燃料極:H+O2-→HO+2e、空気極:(1/2)O+2e→O2-の反応により、電気エネルギーを取り出す装置である。固体酸化物形燃料電池は、固体酸化物形燃料電池用の電解質基板上に燃料極及び空気極が設けられた固体酸化物形燃料電池用の単セルを複数積み重ねて、積層構造にして使用される。
 特許文献1には、燃料極と電解質膜を介して設けられる空気極を備えた固体酸化物形燃料電池において、スカンジア安定化ジルコニアの上記電解質膜とLa(Ni)FeOの上記空気極の間にCe(X)O(ただしXはSm、Gd、Yのいずれかである)の中間層を設けることを特徴とする固体酸化物形燃料電池が開示されている。
 さらに、特許文献1には、スカンジア安定化ジルコニアの電解質膜の一方の面に燃料極を形成し、他方の面にCe(X)O(ただしXはSm、Gd、Yのいずれかである)のスラリーを塗布し、焼結して中間層を形成した後、La(Ni)FeOの空気極を設けたことを特徴とする固体酸化物形燃料電池の製造方法、及び、燃料極にスカンジア安定化ジルコニアの電解質膜を形成し、焼結したのち、上記電解質膜上にCe(X)O(ただしXはSm、Gd、Yのいずれかである)のスラリーを塗布し焼結して中間層を形成した後、La(Ni)FeOの空気極を設けたことを特徴とする固体酸化物形燃料電池の製造方法が開示されている。
特許第3789380号公報
 特許文献1によれば、La(Ni)FeOの空気極とジルコニア系の電解質の間にCe(Sm)O等の中間層を形成することにより、電極焼結時に空気極であるLa(Ni)FeOと電解質中のジルコニアとの反応を抑制し、セル性能の改善が可能となるとされている。
 しかし、特許文献1に記載されているような中間層(以下、バリア層と記載する)を形成するために、電解質層とバリア層を共焼結する際、あるいは焼結済みの電解質層にバリア層を後から焼き付ける際に、各材料間の熱膨張差又は焼成収縮差によって、電解質層もしくはバリア層又はその両方にクラックが生じるおそれがある。そして、当該クラックが発生した場合には、電解質層の強度低下、電極形成後のセルとしての長期信頼性(耐久性)の低下、酸化剤ガス及び燃料ガスのセパレート機能低下による発電特性の低下等の問題が生じる。
 本発明は、上記の問題を解決するためになされたものであり、電解質層とバリア層との間の熱膨張差又は焼成収縮差が緩和され、クラックの発生を抑えることが可能な固体酸化物形燃料電池用の電解質基板を提供することを目的とする。また、本発明は、上記電解質基板を備える固体酸化物形燃料電池用の単セル、上記単セルが複数積み重ねられている固体酸化物形燃料電池スタック、及び、上記電解質基板の製造方法を提供することを目的とする。
 本発明に係る固体酸化物形燃料電池用の電解質基板は、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層と、上記電解質層の少なくとも一方の主面に設けられ、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の焼結体を含むバリア層と、を備え、上記バリア層の厚み方向に沿った断面を見たとき、上記バリア層の内部には、面積率で24%以上、72%以下の空孔が存在する。
 本発明に係る固体酸化物形燃料電池用の単セルは、空気極と、燃料極と、上記空気極と上記燃料極との間に設けられた本発明に係る電解質基板と、を備え、上記電解質基板の電解質層と上記空気極との間に上記電解質基板のバリア層が配置されている。
 本発明に係る固体酸化物形燃料電池スタックは、本発明に係る単セルと、上記単セルの空気極側に配設された第1のインターコネクタと、上記単セルの燃料極側に配設された第2のインターコネクタと、を備えるセルが複数積み重ねられている。
 本発明に係る固体酸化物形燃料電池用の電解質基板の製造方法は、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末を含む未焼結の電解質層の少なくとも一方の主面、あるいは、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層の少なくとも一方の主面に、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末及び焼失材を含む未焼結のバリア層が設けられている、未焼結基板を作製する工程と、上記焼失材が焼失する温度以上で上記未焼結基板を焼成する工程と、を備える。
 本発明によれば、電解質層とバリア層との間の熱膨張差又は焼成収縮差が緩和され、クラックの発生を抑えることが可能な固体酸化物形燃料電池用の電解質基板を提供することができる。また、本発明によれば、上記電解質基板を備える固体酸化物形燃料電池用の単セル、上記単セルが複数積み重ねられている固体酸化物形燃料電池スタック、及び、上記電解質基板の製造方法を提供することができる。
図1は、本発明に係る固体酸化物形燃料電池用の電解質基板の一例を模式的に示す断面図である。 図2は、本発明に係る固体酸化物形燃料電池用の電解質基板の別の一例を模式的に示す断面図である。 図3は、電解質層用グリーンシートを作製する工程の一例を模式的に示す断面図である。 図4は、バリア層用グリーンシートを作製する工程の一例を模式的に示す断面図である。 図5は、未焼結基板を作製する工程の一例を模式的に示す断面図である。 図6は、未焼結基板を作製する工程の別の一例を模式的に示す断面図である。 図7は、未焼結基板を焼成する工程の一例を模式的に示す断面図である。 図8は、未焼結基板を焼成する工程の別の一例を模式的に示す断面図である。 図9は、本発明に係る固体酸化物形燃料電池用の単セルの一例を模式的に示す断面図である。 図10は、本発明に係る固体酸化物形燃料電池用の単セルの別の一例を模式的に示す断面図である。 図11は、本発明に係る固体酸化物形燃料電池スタックの一例を模式的に示す分解斜視図である。
 以下、本発明に係る固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法について説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。また、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
 以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。
[固体酸化物形燃料電池用の電解質基板]
 本発明に係る固体酸化物形燃料電池用の電解質基板は、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層と、上記電解質層の少なくとも一方の主面に設けられ、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の焼結体を含むバリア層と、を備え、上記バリア層の厚み方向に沿った断面を見たとき、上記バリア層の内部には、面積率で24%以上、72%以下の空孔が存在する。
 図1は、本発明に係る固体酸化物形燃料電池用の電解質基板の一例を模式的に示す断面図である。
 図1に示す固体酸化物形燃料電池用の電解質基板10は、電解質層20と、電解質層20の両方の主面に設けられたバリア層30と、を備える。
 図2は、本発明に係る固体酸化物形燃料電池用の電解質基板の別の一例を模式的に示す断面図である。
 図2に示す固体酸化物形燃料電池用の電解質基板10Aは、電解質層20と、電解質層20の一方の主面に設けられたバリア層30と、を備える。
 電解質層20は、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む。
 スカンジア安定化ジルコニアとしては、例えば、Zr(Sc)O又はZr(Sc,M)O(ただしMはAl、CeO及びYのいずれかである)等が挙げられる。
 イットリア安定化ジルコニアとしては、例えば、Zr(Y)O等が挙げられる。
 バリア層30は、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の焼結体を含む。電解質層20の各主面に設けられているバリア層30は、2層以上でもよいが、1層であることが好ましい。
 バリア層30は、特許文献1に記載されている中間層と同様に、電解質層20と空気極50(後述の図9及び図10参照)との反応を抑制する機能を有する。
 図1及び図2に示すように、バリア層30の内部には空孔40が存在する。
 バリア層30の内部に空孔40を形成することにより、電解質層20とバリア層30との間の熱膨張差又は焼成収縮差が緩和され、クラックの発生を抑えることができる。
 これに対し、電解質層20の内部に空孔を形成する場合には、空孔同士が繋がって電解質層20を貫通すると、酸化剤ガス及び燃料ガスのセパレート機能が喪失することによって発電特性の低下が生じてしまう。そのため、バリア層30の内部に空孔40を形成することが望ましい。
 焼成収縮差の緩和に関して、電解質層20の収縮がバリア層30の収縮よりも大きい場合には、バリア層30の内部に空孔40を形成することが有効である。
 熱膨張差の緩和に関して、電解質層20の熱膨張係数がバリア層30の熱膨張係数よりも小さい場合には、バリア層30の内部に空孔40を形成することが有効である。
 さらに、後述の実施例に示すように、バリア層30の内部に空孔40が多くなるほど基板強度が向上することが判明した。これは、焼成時における熱膨張差緩和による残留応力(すなわち、バリア層30の表面にかかる引っ張り応力)が減少する効果、及び、クラックが発生した場合でも空孔40でクラックの進展を止める効果によるものと推定される。
 その一方で、バリア層30の内部に空孔40が多くなりすぎると、バリア層30が電解質層20から脱離しやすくなる。これは、電解質層20とバリア層30との接合面積の低下に加えて、バリア層30自体の強度の低下が原因と考えられる。
 以上の理由から、バリア層30の厚み方向に沿った断面を見たとき、バリア層30の内部には、面積率で24%以上、72%以下の空孔40が存在することが望ましい。言い換えると、バリア層30内の空孔面積率が24%以上、72%以下であることが望ましい。
 バリア層30の厚みは特に限定されず、電解質層20の厚みと同じでもよく、電解質層20の厚みより大きくてもよく、電解質層20の厚みより小さくてもよいが、電解質層20の厚みに対するバリア層30の厚みの比率が高くなるほどクラックが発生しやすくなるため、空孔40による効果が発揮される。一方で、電解質層20の厚みに対するバリア層30の厚みの比率が高くなるほど発電特性が低下しやすくなる。そのため、発電特性を確保する観点からは、電解質層20の厚みに対するバリア層30の厚みの比率は、20%以下であることが好ましい。一方、バリア層30自体の強度、バリア層30と電解質層20との密着性、及び、バリア層30の機能を発揮させる観点からは、電解質層20の厚みに対するバリア層30の厚みの比率は、例えば1%以上でもよいが、5%以上であることが好ましく、10%以上であることがより好ましい。
 例えば、バリア層30の厚みは、20μm以下であることが好ましい。一方、バリア層30の厚みは、1μm以上でもよいが、5μm以上であることが好ましく、10μm以上であることがより好ましい。バリア層30の厚みが上記の範囲である場合、電解質層20の厚みは、80μm以上、120μm以下であることが好ましい。また、バリア層30の厚みが上記の範囲である場合、電解質層20の厚みに対するバリア層30の厚みの比率は、上記の範囲であることが好ましい。
 なお、図1に示すように、電解質層20の両方の主面にバリア層30が設けられている場合、及び、図2に示すように、電解質層20の一方の主面にバリア層30が設けられている場合、いずれの場合においても、バリア層30の厚みとは、電解質層20の各主面に設けられているバリア層30の厚み(1層分の厚み)を意味する。
 その他、空孔40の形状、大きさ等は特に限定されない。空孔40の形状は、それぞれ同じでもよく、異なっていてもよい。同様に、空孔40の大きさは、それぞれ同じでもよく、異なっていてもよい。
 例えば、一部の空孔40同士は繋がっていてもよいが、空孔40同士が繋がってバリア層30を貫通すると、電解質層20と空気極50(後述の図9及び図10参照)とが反応するおそれがあり、また、クラックが発生した場合に空孔40でクラックの進展を止める効果が充分に得られにくくなる。そのため、空孔40同士は、バリア層30の厚み方向に相対する一方の主面から他方の主面に連通していないことが好ましい。
 空孔40は、バリア層30の内部で均一に分散していることが好ましい。すなわち、空孔40は、バリア層30の内部で偏在していないことが好ましい。
 図1に示すように、電解質層20の両方の主面にバリア層30が設けられている場合、バリア層30の厚み、空孔面積率等は同じであることが好ましい。ここでいう「同じ」とは、厳密に同じでなくてもよく、約3%以内の範囲内に収まっていればよい。電解質層20に対して対称にバリア層30を設けることにより、焼結時における反り等を抑えることができる。
 その他、電解質基板10及び10Aの形状、大きさ、厚み等は特に限定されない。
[固体酸化物形燃料電池用の電解質基板の製造方法]
 本発明に係る固体酸化物形燃料電池用の電解質基板の製造方法は、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末を含む未焼結の電解質層の少なくとも一方の主面、あるいは、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層の少なくとも一方の主面に、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末及び焼失材を含む未焼結のバリア層が設けられている、未焼結基板を作製する工程と、上記焼失材が焼失する温度以上で上記未焼結基板を焼成する工程と、を備える。
 未焼結基板を作製する工程では、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末を含む未焼結の電解質層の少なくとも一方の主面に、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末及び焼失材を含む未焼結のバリア層が設けられている未焼結基板を作製してもよい。この場合、電解質層との共焼結によってバリア層が形成される。
 未焼結の電解質層を形成する方法としては、例えば、電解質層用グリーンシートを作製する方法、電解質層用ペーストを塗布する方法等が挙げられる。未焼結のバリア層を形成する方法としては、例えば、バリア層用グリーンシートを作製する方法、バリア層用ペーストを塗布する方法等が挙げられる。
 例えば、未焼結基板を作製する工程は、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末を含む未焼成の電解質層用グリーンシートを作製する工程と、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末及び焼失材を含む未焼成のバリア層用グリーンシートを作製する工程と、上記電解質層用グリーンシート及び上記バリア層用グリーンシートを積層する工程と、を備える。
 あるいは、未焼結基板を作製する工程では、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層の少なくとも一方の主面に、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末及び焼失材を含む未焼結のバリア層が設けられている未焼結基板を作製してもよい。この場合、焼結済みの電解質層に後焼き付けによってバリア層が形成される。
 本発明に係る電解質基板の製造方法では、バリア層の内部に意図的に空孔を形成する。具体的には、焼失材(焼成時に焼失する材料)を予めバリア層用グリーンシート又はバリア層用ペーストに含有させることによって空孔を形成する。
 焼失材としては、例えば、樹脂ビーズ、カーボン、バインダー、その他の有機物等が挙げられる。焼失材は、1種のみでもよく、2種以上でもよい。中でも、焼失材は、樹脂ビーズであることが好ましい。焼失材として樹脂ビーズを用いることで、空孔の形状を容易に調整することができる。
 以下、図1に示す電解質基板10又は図2に示す電解質基板10Aの製造方法の一例について、図面を参照しながら工程ごとに説明する。
 図3は、電解質層用グリーンシートを作製する工程の一例を模式的に示す断面図である。
 例えば、電解質層用セラミックスラリーを成形することにより、未焼成の電解質層用グリーンシート2sを作製する。電解質層用グリーンシート2sは、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末5を含む。
 電解質層用セラミックスラリーは、例えば、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末、バインダー、分散剤、有機溶媒等を調合することにより調製することができる。
 図4は、バリア層用グリーンシートを作製する工程の一例を模式的に示す断面図である。
 例えば、バリア層用セラミックスラリーを成形することにより、未焼成のバリア層用グリーンシート3sを作製する。バリア層用グリーンシート3sは、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末6及び焼失材4を含む。
 バリア層用セラミックスラリーは、例えば、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末、焼失材、バインダー、分散剤、有機溶媒等を調合することにより調製することができる。
 図5は、未焼結基板を作製する工程の一例を模式的に示す断面図である。
 図5に示すように、電解質層用グリーンシート2s及びバリア層用グリーンシート3sを積層することにより、未焼結基板1を作製する。図5に示す未焼結基板1では、未焼結の電解質層2の両方の主面に未焼結のバリア層3が設けられている。
 図5に示す例では、バリア層用グリーンシート3sを1枚、電解質層用グリーンシート2sを3枚、バリア層用グリーンシート3sを1枚、という順に積層することにより、未焼結基板1が作製されている。未焼結の電解質層2に含まれる電解質層用グリーンシート2sの枚数は特に限定されず、1枚でもよく、2枚以上でもよい。また、未焼結の電解質層2の一方の主面に設けられる未焼結のバリア層3に含まれるバリア層用グリーンシート3sの枚数は特に限定されず、1枚でもよく、2枚以上でもよい。未焼結の電解質層2の一方の主面に設けられる未焼結のバリア層3に含まれるバリア層用グリーンシート3sの枚数は、未焼結の電解質層2に含まれる電解質層用グリーンシート2sの枚数と同じでもよく、多くてもよく、少なくてもよい。同様に、未焼結の電解質層2の他方の主面に設けられる未焼結のバリア層3に含まれるバリア層用グリーンシート3sの枚数は特に限定されず、1枚でもよく、2枚以上でもよい。未焼結の電解質層2の他方の主面に設けられる未焼結のバリア層3に含まれるバリア層用グリーンシート3sの枚数は、未焼結の電解質層2に含まれる電解質層用グリーンシート2sの枚数と同じでもよく、多くてもよく、少なくてもよい。また、未焼結の電解質層2の他方の主面に設けられる未焼結のバリア層3に含まれるバリア層用グリーンシート3sの枚数は、未焼結の電解質層2の一方の主面に設けられる未焼結のバリア層3に含まれるバリア層用グリーンシート3sの枚数と同じでもよく、多くてもよく、少なくてもよい。
 図6は、未焼結基板を作製する工程の別の一例を模式的に示す断面図である。
 図6に示すように、電解質層用グリーンシート2s及びバリア層用グリーンシート3sを積層することにより、未焼結基板1Aを作製してもよい。図6に示す未焼結基板1Aでは、未焼結の電解質層2の一方の主面に未焼結のバリア層3が設けられている。
 図6に示す例では、バリア層用グリーンシート3sを1枚、電解質層用グリーンシート2sを3枚、という順に積層することにより、未焼結基板1Aが作製されている。未焼結の電解質層2に含まれる電解質層用グリーンシート2sの枚数は特に限定されず、1枚でもよく、2枚以上でもよい。また、未焼結の電解質層2の一方の主面に設けられる未焼結のバリア層3に含まれるバリア層用グリーンシート3sの枚数は特に限定されず、1枚でもよく、2枚以上でもよい。
 未焼結の電解質層2を形成する際、複数の電解質層用グリーンシート2sを積層することにより、未焼結の電解質層2の厚みを容易に制御することができる。同様に、未焼結のバリア層3を形成する際、複数のバリア層用グリーンシート3sを積層することにより、未焼結のバリア層3の厚みを容易に制御することができる。
 未焼結基板1又は1Aを作製する際、電解質層用グリーンシート2s及びバリア層用グリーンシート3sを積層した後、圧着してもよい。
 図7は、未焼結基板を焼成する工程の一例を模式的に示す断面図である。
 図5に示す未焼結基板1を焼失材4が焼失する温度以上で焼成することにより、未焼結基板1が焼結して電解質層20及びバリア層30が形成されるとともに、焼失材4が焼失して空孔40がバリア層30の内部に形成される。その結果、図7に示す電解質基板10が製造される。
 図8は、未焼結基板を焼成する工程の別の一例を模式的に示す断面図である。
 図6に示す未焼結基板1Aを焼失材4が焼失する温度以上で焼成することにより、未焼結基板1Aが焼結して電解質層20及びバリア層30が形成されるとともに、焼失材4が焼失して空孔40がバリア層30の内部に形成される。その結果、図8に示す電解質基板10Aが製造される。
[固体酸化物形燃料電池用の単セル]
 本発明に係る固体酸化物形燃料電池用の単セルは、空気極と、燃料極と、上記空気極と上記燃料極との間に設けられた本発明に係る電解質基板と、を備える。
 本発明に係る固体酸化物形燃料電池用の単セルでは、上記電解質基板の電解質層と上記空気極との間に上記電解質基板のバリア層が配置されている。そのため、バリア層によって電解質層と空気極との反応を抑制することができる。
 図9は、本発明に係る固体酸化物形燃料電池用の単セルの一例を模式的に示す断面図である。
 図9に示す固体酸化物形燃料電池用の単セル100は、空気極50と、燃料極60と、空気極50と燃料極60との間に設けられた電解質基板10(図1参照)と、を備える。
 電解質基板10は、図1において説明したとおり、電解質層20と、電解質層20の両方の主面に設けられたバリア層30と、を備える。バリア層30の内部には空孔40が存在する。
 図10は、本発明に係る固体酸化物形燃料電池用の単セルの別の一例を模式的に示す断面図である。
 図10に示す固体酸化物形燃料電池用の単セル100Aは、空気極50と、燃料極60と、空気極50と燃料極60との間に設けられた電解質基板10A(図2参照)と、を備える。
 電解質基板10Aは、図2において説明したとおり、電解質層20と、電解質層20の一方の主面に設けられたバリア層30と、を備える。バリア層30の内部には空孔40が存在する。
 図9及び図10に示すように、電解質基板10の電解質層20と空気極50との間には電解質基板10のバリア層30が配置されている。
 空気極50としては、公知の固体酸化物形燃料電池用の空気極が用いられる。空気極50の材料としては、例えば、La(Ni)FeO、(La,Sr)CoO、(La,Sr)FeO、(La,Sr)(Co,Fe)O等が挙げられる。電解質層20と空気極50との間にバリア層30が設けられていない場合、高温で熱処理すると空気極50が電解質層20と反応してSrZrO、LaZr等の絶縁層が生成される。
 空気極50は、電解質基板10又は10Aの一方の主面の全体に設けられていてもよく、一部に設けられていてもよい。
 燃料極60としては、公知の固体酸化物形燃料電池用の燃料極が用いられる。燃料極60の材料としては、例えば、Ni、Ni/ScSZ(スカンジア安定化ジルコニア)サーメット、Ni/YSZ(イットリア安定化ジルコニア)サーメット、Ni/CeOサーメット等が挙げられる。
 燃料極60は、電解質基板10又は10Aの他方の主面の全体に設けられていてもよく、一部に設けられていてもよい。
 本発明に係る固体酸化物形燃料電池用の単セルは、本発明に係る固体酸化物形燃料電池用の電解質基板の一方の主面に空気極を形成し、他方の主面に燃料極を形成することによって製造することができる。
 まず、空気極を構成する材料の粉体に、バインダー及び溶媒を添加し、さらに必要に応じて分散剤等を添加して空気極用のスラリーを調製する。また、燃料極を構成する材料の粉体に、バインダー及び溶媒を添加し、さらに必要に応じて分散剤等を添加して燃料極用のスラリーを調製する。空気極用のスラリーを電解質基板の一方の主面に、燃料極用のスラリーを電解質基板の他方の主面に、各々所定の厚みで塗布し、その塗膜を乾燥させることによって、空気極用及び燃料極用のグリーン層を形成する。空気極用及び燃料極用のグリーン層を焼成することによって、空気極及び燃料極を形成する。焼成温度等の焼成条件については、空気極及び燃料極の材料の種類等に応じて適宜決定すればよい。
 本発明に係る単セルが固体酸化物形燃料電池に組み込まれる際には、空気又は酸素ガス等の酸化剤ガスを空気極に供給するための酸化剤ガス流路と、水素ガス、一酸化炭素ガス又は炭化水素ガス等の燃料ガスを燃料極に供給するための燃料ガス流路とが必要になる。このような、本発明に係る単セルに酸化剤ガス流路及び燃料ガス流路を設け、さらに導電パスを設けたセルが複数積み重ねられた固体酸化物形燃料電池スタックも、本発明の1つである。
[固体酸化物形燃料電池スタック]
 本発明に係る固体酸化物形燃料電池スタックは、本発明に係る単セルと、上記単セルの空気極側に配設された第1のインターコネクタと、上記単セルの燃料極側に配設された第2のインターコネクタと、を備えるセルが複数積み重ねられている。
 本発明に係る固体酸化物形燃料電池スタックでは、複数の単セルがインターコネクタ(セパレータとも呼ばれる)を介して積層されている。つまり、複数の単セルは、各々、一対のインターコネクタにより挟まれた構造を有している。インターコネクタは、複数の単セルを電気的に接続するとともに、各極にガスを供給する機能を有している。
 図11は、本発明に係る固体酸化物形燃料電池スタックの一例を模式的に示す分解斜視図である。
 図11に示す固体酸化物形燃料電池スタック200では、単セル100(図9参照)と、単セル100の空気極50側に配設された第1のインターコネクタ210と、単セル100の燃料極60側に配設された第2のインターコネクタ220と、を備えるセル110がZ方向に2段積み重ねられている。積み重ねられるセル110の数は特に限定されない。固体酸化物形燃料電池スタック200では、図9に示す単セル100のみが積み重ねられていてもよく、図10に示す単セル100Aのみが積み重ねられていてもよく、図9に示す単セル100及び図10に示す単セル100Aの両方が積み重ねられていてもよい。
 固体酸化物形燃料電池スタック200には、貫通孔である酸化剤ガスマニホールド230及び燃料ガスマニホールド240が設けられている。酸化剤ガスマニホールド230はX方向に延びており、燃料ガスマニホールド240はY方向に延びている。
 空気極50と対向する第1のインターコネクタ210の主面には、酸化剤ガス流路250が設けられている。酸化剤ガス流路250はY方向に延びている。
 燃料極60と対向する第2のインターコネクタ220の主面には、燃料ガス流路260が設けられている。燃料ガス流路260はX方向に延びている。
 第1のインターコネクタ210及び第2のインターコネクタ220の構成材料は、セラミック材料等の絶縁材料であってもよいし、金属材料等の導電材料であってもよい。
 第1のインターコネクタ210及び第2のインターコネクタ220の構成材料は、互いに同じであってもよいし、互いに異なっていてもよい。
 第1のインターコネクタ210及び第2のインターコネクタ220の構成材料が絶縁材料である場合、第1のインターコネクタ210及び第2のインターコネクタ220としては、例えば、部分安定化ジルコニアの焼結体等が挙げられる。
 第1のインターコネクタ210の構成材料が絶縁材料である場合、第1のインターコネクタ210には、厚み方向に貫通して、空気極50に接続しつつ空気極50と反対側の主面に露出した少なくとも1つの貫通導体が設けられていることが好ましい。この場合、空気極50が、貫通導体を介して第1のインターコネクタ210の外部に導出可能となる。
 第2のインターコネクタ220の構成材料が絶縁材料である場合、第2のインターコネクタ220には、厚み方向に貫通して、燃料極60に接続しつつ燃料極60と反対側の主面に露出した少なくとも1つの貫通導体が設けられていることが好ましい。この場合、燃料極60が、貫通導体を介して第2のインターコネクタ220の外部に導出可能となる。
 第1のインターコネクタ210及び第2のインターコネクタ220に設けられる貫通導体の構成材料は、銀及びパラジウムの合金、又は、白金であることが好ましい。
 第1のインターコネクタ210に設けられる貫通導体の構成材料と、第2のインターコネクタ220に設けられる貫通導体の構成材料とは、互いに同じであってもよいし、互いに異なっていてもよい。
 以下、本発明に係る固体酸化物形燃料電池用の電解質基板をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
[電解質層用グリーンシートの作製]
 スカンジア安定化ジルコニアであるZr(Sc)O(以下、ScSZと記載する)の粉末、分散剤、ポリビニルブチラール系バインダー、可塑剤、トルエン/エタノール系溶媒を混合してスラリーを作製した後、減圧脱泡で粘度を調整した。ドクターブレード方式でキャリアフィルム上にスラリーを塗工し、乾燥することで、電解質層用グリーンシートを作製した。
[バリア層用グリーンシートの作製]
 Ce(Sm)O(以下、SDCと記載する)の粉末及び空孔形成用の樹脂ビーズ(焼失材)を所定の比率で混合し、分散剤、ポリビニルブチラール系バインダー、可塑剤、トルエン/エタノール系溶媒を添加、混合してスラリーを作製した後、減圧脱泡で粘度を調整した。ドクターブレード方式でキャリアフィルム上にスラリーを塗工し、乾燥することで、バリア層用グリーンシートを作製した。
[電解質基板の作製]
 SDC/ScSZ/SDCの順にグリーンシートを積層した後、100MPaで静水圧プレスを行い、所定のサイズにカットすることでグリーンシートの圧着体(未焼結基板)を得た。その後、バッチ式焼成炉を用いて、有機成分を焼失させた後、トップ温度1350℃で焼結させ、50mm×40mmサイズの電解質基板を得た。
[電解質基板の断面観察]
 得られた50mm×40mmサイズの電解質基板をグラインダーで5mm角サイズの個片にカットした後、熱硬化樹脂で固めて研磨用試料を作製した。研磨用試料を最終的に3μmのダイヤモンドスラリーで研磨し、平滑な基板断面を露出させた。走査型電子顕微鏡(SEM)にて倍率2000倍で、バリア層(SDC層)の厚み方向における全面と電解質層(ScSZ層)との界面が見える位置をランダムに5視野選び、クラックの有無を確認するとともに、反射電子像を撮影した。
 電解質層(ScSZ層)及びバリア層(SDC層)のそれぞれで、観察視野内に1箇所でもクラックが確認できた場合は「クラック有り」と判定した。
 また、画像の縮尺スケールにより、電解質層(ScSZ層)及びバリア層(SDC層)の厚みを測定した。結果を表1及び表2に示す。なお、表2に示すバリア層の厚みは、電解質層の一方の主面に設けられた1層分のバリア層の厚みである。
[空孔面積率の測定]
 前出の反射電子像を画像解析ソフト(WinROOF2018)に取り込んで解析を実施した。その手順を以下に示す。
 (1)カラー画像をグレー画像に変換する。
 (2)空孔とそれ以外の部分を区別できるようにグレー画像の濃淡検出閾値を決め、設定閾値以下(以上)の箇所を検出する。
 (3)空孔面積の合計とバリア層全面積から以下の式に従って空孔面積率を算出する。
    空孔面積率(%)=100×空孔面積の合計/バリア層全面積
[3点曲げ強度の測定]
 オートグラフ(AGS-5KNX)を用いて、電解質基板の3点曲げ試験を実施した。試験条件を以下に示す。
 支点間距離:20mm
 試験速度:5mm/min
 電解質基板が破壊されるまでの最大荷重を測定し、以下の計算式に従って3点曲げ強度を算出した。
  σ=3PL/(2bh
 ここで、σ:3点曲げ強度、P:最大荷重、L:支点間距離、b:試料幅、h:試料厚である。測定数は10とし、その3点曲げ強度の平均値を求めた。
 表1及び表2に各サンプルの評価結果を示す。なお、3点曲げ強度については、サンプルNo.2の3点曲げ強度を1.00とした場合の相対値を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2において、*を付したサンプルは、本発明の範囲外の比較例である。
 表1より、バリア層内の空孔面積率が同じである場合、バリア層の厚みが大きい方がクラックの発生が起こりやすいことが確認された。これは、バリア層の厚みが大きくなるほど、焼成時に発生する電解質層とバリア層との間の熱膨張差又は収縮差の影響がより大きくなるためであると考えられる。
 表2より、バリア層内の空孔面積率が24%以上である場合には、電解質層及びバリア層の両方にクラックの発生は認められなかった。一方、バリア層内の空孔面積率が24%未満である場合は、焼成時に発生する電解質層とバリア層との間の熱膨張差又は収縮差の緩和が不十分であると考えられる。
 表2より、バリア層の厚みが同じである場合、バリア層内の空孔面積率が高くなるに従って3点曲げ強度が向上することが確認された。これは、焼成時における熱膨張差緩和による残留応力(すなわち、バリア層の表面にかかる引っ張り応力)が減少する効果、及び、クラックが発生した場合でも空孔でクラックの進展を止める効果によるものと考えられる。
 表2より、バリア層内の空孔面積率が77%である場合、通常の取り扱いで生じる基板同士の摩擦等により、バリア層が電解質層から脱離して、粉化することが確認された。これは、バリア層と電解質層との接合面積の低下に加えて、バリア層自体の強度の低下が原因と考えられる。もし空気極を形成する前に同事象が発生した場合、空気極と電解質層との反応を抑制する効果が低減してしまう。また、空気極を形成した後に同事象が発生した場合、反応場が減少するため、電池特性が低下してしまう。
 以上の結果から、バリア層内の空孔面積率は24%以上、72%以下の範囲が適正であると考えられる。
 1、1A 未焼結基板
 2 未焼結の電解質層
 2s 電解質層用グリーンシート
 3 未焼結のバリア層
 3s バリア層用グリーンシート
 4 焼失材
 5 スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末
 6 Ce(X)Oの粉末
 10、10A 固体酸化物形燃料電池用の電解質基板
 20 電解質層
 30 バリア層
 40 空孔
 50 空気極
 60 燃料極
 100、100A 固体酸化物形燃料電池用の単セル
 110 セル
 200 固体酸化物形燃料電池スタック
 210 第1のインターコネクタ
 220 第2のインターコネクタ
 230 酸化剤ガスマニホールド
 240 燃料ガスマニホールド
 250 酸化剤ガス流路
 260 燃料ガス流路

Claims (8)

  1.  スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層と、
     前記電解質層の少なくとも一方の主面に設けられ、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の焼結体を含むバリア層と、を備え、
     前記バリア層の厚み方向に沿った断面を見たとき、前記バリア層の内部には、面積率で24%以上、72%以下の空孔が存在する、固体酸化物形燃料電池用の電解質基板。
  2.  前記電解質層の厚みに対する前記バリア層の厚みの比率は、20%以下である、請求項1に記載の電解質基板。
  3.  前記バリア層の厚みは、20μm以下である、請求項1又は2に記載の電解質基板。
  4.  空気極と、
     燃料極と、
     前記空気極と前記燃料極との間に設けられた請求項1~3のいずれか1項に記載の電解質基板と、を備え、
     前記電解質基板の電解質層と前記空気極との間に前記電解質基板のバリア層が配置されている、固体酸化物形燃料電池用の単セル。
  5.  請求項4に記載の単セルと、前記単セルの空気極側に配設された第1のインターコネクタと、前記単セルの燃料極側に配設された第2のインターコネクタと、を備えるセルが複数積み重ねられている、固体酸化物形燃料電池スタック。
  6.  スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末を含む未焼結の電解質層の少なくとも一方の主面、あるいは、スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの焼結体を含む電解質層の少なくとも一方の主面に、Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末及び焼失材を含む未焼結のバリア層が設けられている、未焼結基板を作製する工程と、
     前記焼失材が焼失する温度以上で前記未焼結基板を焼成する工程と、を備える、固体酸化物形燃料電池用の電解質基板の製造方法。
  7.  前記未焼結基板を作製する工程は、
     スカンジア安定化ジルコニア又はイットリア安定化ジルコニアの粉末を含む未焼成の電解質層用グリーンシートを作製する工程と、
     Ce(X)O(ただしXはSm、Gd及びYのいずれかである)の粉末及び焼失材を含む未焼成のバリア層用グリーンシートを作製する工程と、
     前記電解質層用グリーンシート及び前記バリア層用グリーンシートを積層する工程と、を備える、請求項6に記載の電解質基板の製造方法。
  8.  前記焼失材は、樹脂ビーズである、請求項6又は7に記載の電解質基板の製造方法。
PCT/JP2023/012143 2022-04-04 2023-03-27 固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法 WO2023195369A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022062453 2022-04-04
JP2022-062453 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023195369A1 true WO2023195369A1 (ja) 2023-10-12

Family

ID=88242846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012143 WO2023195369A1 (ja) 2022-04-04 2023-03-27 固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法

Country Status (1)

Country Link
WO (1) WO2023195369A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003478A (ja) * 2008-06-19 2010-01-07 Nissan Motor Co Ltd 固体酸化物形燃料電池及びその製造方法
JP2011113840A (ja) * 2009-11-27 2011-06-09 Kyocera Corp 燃料電池セルならびにそれを備えるセルスタック装置、燃料電池モジュールおよび燃料電池装置
JP4773588B1 (ja) * 2010-06-15 2011-09-14 日本碍子株式会社 燃料電池セル
JP2018174116A (ja) * 2017-03-31 2018-11-08 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP2022022700A (ja) * 2020-07-02 2022-02-07 東芝エネルギーシステムズ株式会社 電気化学セルおよび電気化学セルスタック

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003478A (ja) * 2008-06-19 2010-01-07 Nissan Motor Co Ltd 固体酸化物形燃料電池及びその製造方法
JP2011113840A (ja) * 2009-11-27 2011-06-09 Kyocera Corp 燃料電池セルならびにそれを備えるセルスタック装置、燃料電池モジュールおよび燃料電池装置
JP4773588B1 (ja) * 2010-06-15 2011-09-14 日本碍子株式会社 燃料電池セル
JP2018174116A (ja) * 2017-03-31 2018-11-08 大阪瓦斯株式会社 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP2022022700A (ja) * 2020-07-02 2022-02-07 東芝エネルギーシステムズ株式会社 電気化学セルおよび電気化学セルスタック

Similar Documents

Publication Publication Date Title
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
JP5791552B2 (ja) 燃料電池および積層焼結体の製造方法
AU2008279577A1 (en) High temperature electrochemical device with interlocking structure
JP4018378B2 (ja) 固体電解質型燃料電池及びその製造方法
WO2006050071A2 (en) Ceramic laminate structures
CN107710488B (zh) 燃料电池堆
JP2002175814A (ja) 固体電解質型燃料電池用燃料極の製造方法並びに固体電解質型燃料電池及びその製造方法
CN111193034B (zh) 结构体和固体氧化物型燃料电池堆
JP7261562B2 (ja) 燃料電池、燃料電池スタック、およびそれらの製造方法
JPWO2009001739A1 (ja) 高温構造材料と固体電解質形燃料電池用セパレータ
JP2011142042A (ja) 固体酸化物形燃料電池用発電セル及びその製造方法
JP4559068B2 (ja) 固体電解質形燃料電池の製造方法
JP5051741B2 (ja) 平板型固体酸化物形燃料電池の作製方法
US9722259B2 (en) Ceramic substrate for electrochemical element, manufacturing method therefore, fuel cell, and fuel cell stack
WO2023195369A1 (ja) 固体酸化物形燃料電池用の電解質基板、固体酸化物形燃料電池用の単セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池用の電解質基板の製造方法
JP6382037B2 (ja) 燃料電池用アノードおよび燃料電池単セル
KR102674321B1 (ko) 접촉층을 포함하는 금속지지체형 고체산화물 연료전지
JP6060224B1 (ja) 集電部材及び燃料電池
JP7330689B2 (ja) 燃料電池および燃料電池スタック
EP2764570B1 (en) Method of forming a solid oxide fuel cell
JP6780287B2 (ja) 固体電解質膜およびその製造方法ならびに燃料電池
JP4232216B2 (ja) 固体電解質型燃料電池用セルの燃料極の製造方法
WO2015037727A1 (ja) 燃料電池単セル
TW201332206A (zh) 燃料電池用電解質、固態氧化物燃料電池及其製造方法
JP7505649B2 (ja) 電気化学セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784659

Country of ref document: EP

Kind code of ref document: A1