WO2023195267A1 - Lead frame material, method for producing same, and semiconductor package using lead frame material - Google Patents

Lead frame material, method for producing same, and semiconductor package using lead frame material Download PDF

Info

Publication number
WO2023195267A1
WO2023195267A1 PCT/JP2023/007031 JP2023007031W WO2023195267A1 WO 2023195267 A1 WO2023195267 A1 WO 2023195267A1 JP 2023007031 W JP2023007031 W JP 2023007031W WO 2023195267 A1 WO2023195267 A1 WO 2023195267A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead frame
frame material
surface coating
layer
roughness
Prior art date
Application number
PCT/JP2023/007031
Other languages
French (fr)
Japanese (ja)
Inventor
颯己 葛原
真 橋本
一博 大内
Original Assignee
古河電気工業株式会社
古河精密金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河精密金属工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2023534982A priority Critical patent/JP7366480B1/en
Publication of WO2023195267A1 publication Critical patent/WO2023195267A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads

Definitions

  • the present invention relates to a lead frame material, a method for manufacturing the same, and a semiconductor package using the lead frame material.
  • a resin-sealed semiconductor device is a device in which a semiconductor element and a lead frame, which are electrically connected to each other by wires or the like, are sealed with a mold resin.
  • the lead frame is typically coated with an exterior plating of Au, Ag, Sn, etc. in order to provide functions such as bonding properties, heat resistance, and sealing properties.
  • PPF pre-plated lead frames
  • Patent Document 3 by controlling the width of the roughening particles when roughening the plating surface, it is possible to achieve excellent adhesion with the mold resin even in harsher usage environments and high reliability levels that are required in recent years.
  • Lead frame materials have been proposed.
  • the adhesion between the mold resin and the lead frame will be maintained at a high reliability level, for example, after 168 hours in an environment of 85°C and 85% humidity. becomes insufficient.
  • the present invention aims to provide a suitable lead frame material that can improve resin adhesion in high temperature and high humidity environments and prevent powder falling during processing, a manufacturing method thereof, and a semiconductor package using the lead frame material. purpose.
  • the present inventors determined that the ratio of the maximum height roughness Rz of the surface coating to the average length RSm of the roughness curve elements in the direction perpendicular to rolling (x more specifically, the surface of the surface coating is controlled in the direction perpendicular to the rolling direction (x direction), which is orthogonal to the rolling direction of the conductive substrate.
  • the first maximum height roughness Rzx and the average length RSmx of the first roughness curve element are measured along the rolling direction (y direction), which is a direction parallel to the rolling direction of the conductive substrate.
  • the second maximum height roughness Rzy and the average length RSmy of the second roughness curve element are each measured, and the ratio Rzx/RSmx of the maximum height roughness Rzx to the average length RSmx of the first roughness curve element is determined by , when the ratio Rzy/RSmy of the maximum height roughness Rzy to the average length RSmy of the second roughness curve element is Y, the ratio X/Y of X to Y is in the range of 1.20 to 2.00.
  • the gist of the present invention is as follows.
  • a lead frame material having a conductive substrate and a surface coating formed on at least a part of the surface of the conductive substrate, the surface coating including a roughening layer, and the surface of the surface coating , the first maximum height roughness Rzx and the average length RSmx of the first roughness curve element are respectively measured along the rolling direction (x direction), which is a direction perpendicular to the rolling direction of the conductive substrate.
  • the second maximum height roughness Rzy and the average length RSmy of the second roughness curve element are respectively measured along the rolling parallel direction (y direction), which is a direction parallel to the rolling direction of the conductive substrate.
  • the ratio Rzx/RSmx of the first maximum height roughness Rzx to the average length RSmx of the first roughness curve element, the second maximum height roughness to the average length RSmy of the second roughness curve element A lead frame material in which, when the ratio Rzy/RSmy of Rzy is Y, the ratio X/Y of the X to the Y is in the range of 1.20 or more and 2.00 or less.
  • the first maximum height roughness Rzx and the second maximum height roughness Rzy are both in the range of 2.0 ⁇ m or more and 9.0 ⁇ m or less, according to (1) or (2) above.
  • Lead frame material
  • the conductive substrate is made of copper, iron, aluminum, or an alloy containing at least one element selected from the group of copper, iron, and aluminum.
  • the surface coating further includes at least one surface coating layer formed on the surface of the roughened layer.
  • the surface coating layer is a layer made of at least one metal or alloy having a composition different from that of the roughening layer, and includes copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, and iridium. , gold, silver, tin or indium, or an alloy containing at least one element selected from the group consisting of copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, silver, tin and indium. , the lead frame material according to (7) above.
  • a suitable lead frame material that can improve resin adhesion in a high temperature and high humidity environment and prevent powder falling during processing, a method for manufacturing the same, and a semiconductor package using the lead frame material are provided. be able to.
  • FIG. 1 is a schematic cross-sectional view showing a cross section (cross section) when the lead frame material according to the first embodiment is cut along the direction perpendicular to rolling (x direction).
  • FIG. 2 is a schematic sectional view showing a cut surface (longitudinal cross section) when the lead frame material according to the first embodiment is cut along the rolling direction (y direction).
  • FIG. 3 is a schematic sectional view showing a cross section (cross section) when the lead frame material according to the second embodiment is cut along the direction perpendicular to rolling (x direction).
  • FIG. 4 is a schematic sectional view showing a cut surface (longitudinal section) when the lead frame material according to the second embodiment is cut along the rolling direction (y direction).
  • FIG. 5 is a diagram showing a schematic configuration of an electroplating apparatus used when performing the roughening step of the method for manufacturing a lead frame material according to the present invention.
  • FIG. 6 is a perspective view showing a test piece (a piece of molded resin adhered to the surface of a lead frame material) prepared for conducting a shear strength measurement test.
  • FIG. 1 is a schematic sectional view showing a cut surface (cross section) when a lead frame material according to a first embodiment of the present invention is cut in a direction perpendicular to rolling (width direction of lead frame material: x direction).
  • FIG. 2 is a schematic cross-sectional view showing a cut surface (longitudinal cross-section) when the lead frame material according to the first embodiment is cut along the rolling direction (y direction).
  • the lead frame material 10 according to the first embodiment includes a conductive base 11 and a surface coating 14 formed on at least a portion of the surface of the conductive base 11.
  • the material of the conductive substrate 11 is not particularly limited, and may be made of copper, iron, aluminum, or an alloy containing at least one element selected from the group of copper, iron, and aluminum, depending on the application or required properties. It is possible to select materials as appropriate.
  • materials for the conductive substrate 11 include pure copper (such as oxygen-free copper (OFC): C1020 or tough pitch copper (TPC): C1100), as well as C18045 (Cu-0. 3 mass% Cr-0.25 mass% Sn-0.52 mass% Zn), C14415 (Cu-2.3 mass% Fe-0.03 mass% P-0.15 mass% Zn), or Fe-Ni Examples include 42 alloy, which is a series alloy.
  • the surface coating 14 includes a roughened layer 12.
  • the roughened layer 12 is formed by adhering roughening particles to the surface of the conductive substrate 11 .
  • the roughened layer 12 is preferably made of copper, nickel, or an alloy containing at least one element selected from the group of copper and nickel.
  • the roughened layer 12 can be formed by, for example, electroplating, focused ion beam (FIB), or mechanical polishing. Among these, it is particularly preferable that the roughened layer 12 be formed as an electroplated layer by electroplating.
  • the average thickness of the roughened layer 12 is preferably 0.5 to 10.0 ⁇ m, more preferably 0.8 to 7.8 ⁇ m.
  • a method for calculating the average thickness of the roughened layer 12 for example, a cross section of a lead frame material was processed with a microtome and observed at a magnification of 20,000 times using a scanning electron microscope (SEM). Ten roughening particles are randomly selected from the cross-sectional SEM image of the roughening layer, and the average value of the thickness from the boundary line between the conductive substrate 11 and the roughening layer 12 to the top of the roughening particles is calculated. This is the average thickness of the roughened layer 12.
  • the average thickness of the roughened layer 12 was determined using two to three cross-sectional SEM images taken at different locations. .
  • the lead frame material 10 has a first maximum along the rolling direction (the x direction shown in FIG.
  • the height roughness Rzx and the average length RSmx of the first roughness curve element are each measured, and along the rolling parallel direction (the y direction shown in FIG. 1) which is a direction parallel to the rolling direction of the conductive substrate 11. and measure the second maximum height roughness Rzy and the average length RSmy of the second roughness curve element, respectively, and calculate the ratio Rzx of the first maximum height roughness Rzx to the average length RSmx of the first roughness curve element.
  • /RSmx is X
  • the ratio X/Y of X to Y is 1.20 or more 2 It is in the range of .00 or less.
  • the rolling direction of the conductive substrate 11 is also referred to as a rolling direction or Rolling Direction (RD), and refers to the rolling (stretching) direction of the conductive substrate 11 rolled by the rolling rolls.
  • RD rolling direction
  • the rolling direction of the conductive substrate 11 usually corresponds to the longitudinal direction of the metal that is the material, although it depends on the cutting direction and size of the metal that is the material.
  • the direction perpendicular to rolling refers to the width direction of the conductive substrate 11, or also referred to as Transverse Direction (TD), and refers to the direction perpendicular to the rolling direction within the rolling surface of the conductive substrate 11.
  • the direction perpendicular to the rolling direction in the present invention is distinguished from the direction perpendicular to the rolling surface of the conductive substrate 11, that is, the thickness direction of the conductive substrate 11, the direction perpendicular to the rolling surface, or the Normal Direction (ND). It is something that will be done.
  • the spacing between the roughened particles and the height of the roughened particles are influenced by the surface condition of the conductive substrate on which the roughened layer 12 is formed, that is, the spacing and height of the unevenness on the surface of the conductive substrate. receive.
  • the surface condition of the conductive substrate on which the roughened layer 12 is formed that is, the spacing and height of the unevenness on the surface of the conductive substrate. receive.
  • the surface of the conductive substrate becomes smooth in the direction parallel to the rolling, while fine irregularities are formed in the direction perpendicular to the rolling.
  • the intervals between the roughened particles can be easily provided widely, making it difficult for the roughened particles to separate.
  • the average length RSm of the roughness curve element is defined in JIS B0601:2013, and can be measured using a shape analysis laser microscope or the like.
  • the average length RSm of the surface roughness element is a parameter indicating the length of one cycle of the unevenness, and is a parameter that is the sum of the width of the roughening particles and the interval between the roughening particles.
  • the average length RSm of the surface roughness curve element takes a different value depending on the direction in which the surface of the lead frame material 10 is measured. In the measurement direction (x direction) when the average length of the first roughness curve element is the maximum, RSmx, the cross-sectional area of the roughened particles in the roughened layer 12 becomes smaller, as shown in FIG. width dimension becomes smaller. On the other hand, in the measurement direction (y direction) when the average length of the second roughness curve element is the minimum, RSmy, as shown in FIG. The width dimension of the particles increases.
  • the maximum height roughness Rz of the contour curve is defined in JIS B0601:2013, and can be measured using a shape analysis laser microscope or the like.
  • the maximum height roughness Rz can also be expressed as the sum of the maximum value of the peak height Zp of the contour curve and the maximum value of the valley depth Zv of the contour curve.
  • the lead frame material 10 according to the present embodiment has good resin adhesion by taking the ratio of the maximum height roughness Rz measured in the direction perpendicular to rolling and in the direction parallel to rolling and the average length RSm of the roughness curve elements. This is a parameter that indicates the contribution to both bending workability.
  • X is the ratio Rzx/RSmx of the first maximum height roughness Rzx to the average length RSmx of the first roughness curve element measured in the direction perpendicular to the rolling direction, and the second roughness curve element is measured in the direction parallel to the rolling direction.
  • the ratio Rzy/RSmy of the second maximum height roughness Rzy to the average length RSmy of the roughness curve element is Y
  • roughening is achieved by controlling the X/Y ratio to 1.20 or more and 2.00 or less.
  • the particles have a shape that is flat in the direction parallel to rolling, and the distance between the roughened particles in the direction perpendicular to rolling is wide, so that detachment of the roughened layer is suppressed when bending is performed in the direction perpendicular to rolling.
  • the X/Y ratio is less than 1.20, there is a risk that the spacing between the roughening particles will become too wide and the adhesion with the mold resin will decrease, and if the X/Y ratio exceeds 2.00, The spacing between the roughened particles becomes narrower, and when bending is performed, the roughened particles may come into contact with each other and detachment may occur.
  • the average length RSmx of the first roughness curve element is preferably 10.0 to 30.0 ⁇ m, more preferably 12.0 to 20.0 ⁇ m.
  • the average length RSmy of the second roughness curve element is preferably 15.0 to 35.0 ⁇ m, more preferably 18.0 to 28.0 ⁇ m.
  • the roughened particles have a flat shape in the direction parallel to rolling, and in addition to improving the bending workability of the roughened layer 12, Resin adhesion can be improved.
  • the first maximum height roughness Rzx of the surface coating 14 measured in the direction perpendicular to rolling and the second maximum height roughness Rzy measured in the direction parallel to rolling are both 2.0 to 9.0 ⁇ m.
  • Good resin adhesion can be achieved by setting the first maximum height roughness Rzx measured in the direction perpendicular to the rolling direction and the second maximum height roughness Rzy measured in the direction parallel to the rolling direction to both be 2.0 to 9.0 ⁇ m.
  • the thickness is 2.0 ⁇ m or more, the anchor effect is sufficiently exhibited and resin adhesion is improved.
  • the thickness is 9.0 ⁇ m or less, the strength of the base of the roughened particles is improved, and the roughened particles are less likely to break during resin formation, contributing to improved resin adhesion.
  • the above X is 0.10 to 0.50 and the above Y (Rzy/RSmy) is 0.07 to 0.40.
  • FIG. 3 is a schematic cross-sectional view showing a cut section (cross section) when the lead frame material according to the second embodiment of the present invention is cut in the direction perpendicular to rolling (width direction of the lead frame material).
  • FIG. 2 is a schematic cross-sectional view showing a cut surface (longitudinal cross section) when the lead frame material according to the second embodiment is cut along the rolling direction (y direction).
  • the corrosion resistance of the lead frame material 10 can be improved.
  • the surface coating layer 13 is preferably formed as an electroplated layer by electroplating.
  • the surface coating layer 13 is a layer made of at least one metal or alloy having a composition different from that of the roughening layer 12, and includes copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, It is preferable to consist of silver, tin or indium, or an alloy containing at least one element selected from the group of copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, silver, tin and indium. .
  • the surface coating 14 has the roughened layer 12 and the surface coating layer 13, in the measurement direction (x direction) when the average length of the first roughness curve element becomes RSmx, As shown, the cross-sectional area of the roughened particles in the roughened layer 12 becomes smaller, and the width of the roughened particles in the direction perpendicular to rolling becomes narrower.
  • the measurement direction when the average length of the second roughness curve element becomes RSmy in the measurement direction when the average length of the second roughness curve element becomes RSmy, as shown in FIG. The width in the direction is relatively wide.
  • the average length RSm of the surface roughness curve element of the surface coating 14 takes on a different value depending on the measurement direction of the surface of the lead frame material 10, regardless of the presence or absence of the surface coating layer 13.
  • the lead frame material 10 of the present invention can be made into a resin-sealed semiconductor device by sealing at least a portion of the lead frame material 10 with a mold resin 20.
  • the lead frame material 10 is a semiconductor package which is a resin-sealed semiconductor device formed by sealing a semiconductor element (semiconductor chip) and a lead frame electrically connected to each other by wires or the like with a mold resin 20. It can be used for.
  • the lead frame material is suitably used for transistors, capacitors, LEDs, etc.
  • a conductive substrate plate material 111 is prepared by rolling, and the conductive substrate plate material 111 is subjected to a cathode electrolytic degreasing process, a pickling process, and a roughening process in this order. If necessary, a surface coating step may be performed after the roughening step.
  • an aqueous sodium hydroxide solution with a concentration of 60 g/L is put into an electrolytic bath as a degreasing liquid and heated, and the plate material 111 for the conductive substrate is immersed in the degreasing liquid heated to 60°C.
  • the treatment is carried out by connecting the tube to the tube and applying current for 60 seconds at a current density of 2.5 A/dm 2 .
  • the pickling step is carried out by immersing the conductive substrate plate material 111, which has been cathodically degreased, in 10% by mass sulfuric acid at room temperature for 30 seconds.
  • a surface coating 14 including at least one roughened layer 12 is formed by electroplating. Electroplating can be performed using an electroplating apparatus 100 shown in FIG.
  • the electroplating apparatus 100 includes a plating electrolytic cell 101, a circulation pump 102 for circulating the electroplating solution, and an exhaust pipe 103 and an inflow pipe for forming a flow path connecting the plating electrolytic cell 101 and the circulation pump 102. It is mainly composed of a tube 104.
  • Electroplating solution (a) is put into the plating electrolytic bath 101.
  • the conductive substrate plate material 111 is suspended inside the plating electrolytic cell 101 by a hanging member 105 such as a wire.
  • the flow F of the electroplating solution (a) is adjusted using the circulation pump 102 so that the electroplating solution (a) flows at a relative speed of 1 to 10 m/min in the direction parallel to the rolling of the conductive substrate plate material 111. do.
  • conductivity is increased by applying current at a current density of, for example, 10 A/dm 2 to 60 A/dm 2 and in the case of roughened Ni plating, for example, 4 A/dm 2 to 10 A/dm 2 .
  • a roughened layer 12 is formed on the surface of the substrate plate material 111 by electroplating.
  • an electroplating solution (b) having a composition different from the electroplating solution (a) used in the roughening step is used. Then apply electroplating.
  • an aqueous solution containing copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, silver, tin, and indium can be used.
  • the electroplating solution (b) is put into the plating electrolytic bath 101 and energized to form the surface coating layer 13 by electroplating.
  • the surface coating process it is possible to use the same electroplating apparatus 100 as in the roughening process.
  • the surface coating process does not require adjustment of the flow of the electroplating solution (b), so it is also possible to use an electroplating apparatus that is not equipped with the circulation pump 102 or the like.
  • the roughened layer 12 and the surface coating layer 13 may be formed by a wet plating method such as electroplating.
  • a wet plating method such as electroplating.
  • the lead frame material 10 can be manufactured by forming the surface coating 14 on the conductive substrate plate material 111 and then processing it into desired dimensions.
  • an aqueous sodium hydroxide solution with a concentration of 60 g/L is heated as a degreasing liquid in an electrolytic bath, and the conductive substrate is immersed in the degreasing liquid heated to 60°C to form an anode of the electrolytic bath.
  • the treatment was carried out by connecting the battery to a battery and applying current for 60 seconds at a current density of 2.5 A/dm 2 . Further, the pickling step was performed by immersing the conductive substrate in 10% by mass sulfuric acid at room temperature for 30 seconds.
  • a roughening layer shown in Table 1 was formed under the plating conditions detailed below as a roughening step.
  • a surface coating step was further performed to form the surface coating layer shown in Table 1 under the plating conditions detailed below.
  • Comparative Example 1 is an example in which no roughening layer and surface coating layer are formed
  • Comparative Example 2 is an example in which a surface coating layer is formed without forming a roughening layer
  • Comparative Example 3 is an example in which a surface coating layer is formed without forming a roughening layer.
  • a roughening layer is formed at a relative speed of 3.0 m/min in the direction perpendicular to the rolling direction of the conductive substrate, and no surface coating layer is formed.
  • a roughened layer was formed by electroplating under the following plating conditions.
  • the electroplating solution (a) copper sulfate with a metal concentration in the range of 10 g/L to 50 g/L, sulfuric acid in the range of 60 g/L to 180 g/L, and molybdenum (Mo) are used as the electroplating solution (a).
  • 1 L of electroplating solution (a) is put into a cylindrical plating electrolytic cell with an inner diameter of 80 mm, the flow of the solution is adjusted using a pump, and the relative speed is 1 in the direction parallel to the rolling of the conductive substrate.
  • the electroplating solution (a) was allowed to flow at ⁇ 10 m/min.
  • a roughened layer was formed by electroplating at a temperature of 20° C. to 60° C. (bath temperature) and a current density of 10 A/dm 2 to 60 A/dm 2 .
  • nickel (Ni) metal concentration is nickel sulfate with a metal concentration in the range of 10 g/L to 50 g/L, boric acid in the range of 10 g/L to 30 g/L, and 30 g/L.
  • An aqueous solution containing ⁇ 100 g/L of sodium chloride and 10 mL/L to 30 mL/L of 25% by mass aqueous ammonia was prepared.
  • the electroplating solution (a) is poured into a cylindrical plating electrolytic tank with an inner diameter of 80 mm at a relative speed of 1 to 10 m/min in the direction parallel to the rolling direction of the conductive substrate by adjusting the flow of the solution using a pump. I made it flow.
  • a roughened layer was formed by electroplating at a temperature of 50° C. to 70° C. (bath temperature) and a current density of 4 A/dm 2 to 10 A/dm 2 .
  • plating conditions for surface coating process For Examples 9 to 13, at least one surface coating layer was formed by electroplating under the following plating conditions. In addition, when a plurality of metals were listed in the column of type of surface coating layer shown in Table 1, electroplating was performed in order from the metal listed on the left.
  • Ni plating when the type of surface coating layer listed in Table 1 is Ni
  • the electroplating solution (b) As the electroplating solution (b), an aqueous solution containing nickel (Ni) sulfamate having a metal concentration of 500 g/L, 30 g/L nickel chloride, and 30 g/L boric acid was prepared. .
  • a surface coating layer is formed by electroplating by placing 1L of electroplating solution in a cylindrical plating electrolytic bath with an inner diameter of 80mm and applying current at a temperature of 50°C (bath temperature) and a current density of 10A/ dm2 . did.
  • 1L of electroplating solution (b) is placed in a cylindrical plating electrolytic tank with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a temperature of 60°C (bath temperature) and a current density of 5A/ dm2 . formed a layer.
  • the electroplating solution (b) contains gold (Au) potassium cyanide with a metal concentration of 14.6 g/L, 150 g/L citric acid, and 180 g/L potassium citrate.
  • An aqueous solution was prepared. 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic tank with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a temperature of 40°C (bath temperature) and a current density of 1 A/dm 2 . formed a layer.
  • AuCo plating (when the type of surface coating layer listed in Table 1 is AuCo)
  • gold potassium cyanide has a metal concentration of 10 g/L as a gold (Au) metal concentration
  • cobalt carbonate has a metal concentration of 0.1 g/L as a cobalt (Co) metal concentration.
  • 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic tank with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a temperature of 40°C (bath temperature) and a current density of 1 A/dm 2 . formed a layer.
  • Electroplating solution (b) As the electroplating solution (b), an aqueous solution containing silver cyanide having a metal concentration of 93 g/L and potassium cyanide having a metal concentration of 132 g/L was prepared. 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic bath with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a current density of 1 A/dm 2 at a temperature of 20°C (bath temperature). formed a layer.
  • Electroplating solution (b) As the electroplating solution (b), an aqueous solution containing tin sulfate having a tin (Sn) metal concentration of 80 g/L, 50 mL/L sulfuric acid, and 5 mL/L UTB513Y was prepared. 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic bath with an inner diameter of 80 mm, and a current density of 5 A/dm 2 is applied at a temperature of 20°C (bath temperature) to coat the surface by electroplating. formed a layer.
  • the ratio X (Rzx/RSmx) was calculated from the values of the measured first maximum height roughness Rzx and the average length RSmx of the first roughness curve element. Moreover, the ratio Y (Rzy/RSmy) of the measured second height roughness Rzy and the average length RSmy of the second roughness curve element was calculated. Furthermore, the X/Y ratio was calculated from the calculated X and Y. The obtained numerical values are shown in Table 2.
  • ⁇ Measurement of average thickness of roughened layer> A cross section of the lead frame material was processed with a microtome and observed at a magnification of 20,000 times using a scanning electron microscope (SEM) to measure the average thickness ( ⁇ m) of the roughened layer. Randomly select 10 roughening particles from the cross-sectional SEM image of the roughening layer, and roughen the average value of the thickness from the boundary line between the conductive substrate and the roughening layer to the top of the roughening particles. It was taken as the average thickness of the layer. When the vertices of the 10 roughened particles could not be observed from one cross-sectional SEM image, the average thickness of the roughened layer was determined using two to three cross-sectional SEM images taken at different locations. The measured values are shown in Table 2.
  • the thickness of the surface coating layer was measured by a fluorescent X-ray test method based on JIS H8501:1999. Specifically, using a fluorescent X-ray film thickness meter (manufactured by SII Nanotechnology, Inc.; SFT9400), with a collimator diameter of 0.5 mm, measurements were taken at 10 arbitrary locations on each layer, and the average value of these measured values was calculated. By calculating, the thickness ( ⁇ m) of the surface coating layer was obtained. The measured values are shown in Table 2.
  • ⁇ Tape peel test> The lead frame material was cut into 50 mm square pieces, a tape peeling test specified in JIS H 8504 was conducted, and the weight loss before and after the test was measured as the amount of detachment (mg/dm 2 ). Regarding the amount of detachment, when the amount was less than 5 mg/dm 2 , it was evaluated as " ⁇ (Excellent)" as there was little powder falling and the adhesion of the roughened layer to the conductive substrate was excellent. In addition, cases where the amount of detachment was 5 mg/dm2 or more and less than 15 mg/ dm2 were evaluated as "Good", indicating that the adhesion of the roughened layer to the conductive substrate was good, although some powder falling was observed.
  • a lead frame material was cut out to a size of 30 mm x 10 mm, and bent in a direction perpendicular to rolling.
  • the bending conditions were a bending width of 10 mm, a bending angle of 90 degrees, and a bending radius R (of the bending jig) of 0.00 mm, 0.05 mm, 0.10 mm, or 0.20 mm, and the number of prototypes was 3 times. External bending and internal bending were performed respectively.
  • bent 90 degrees with the side on which the surface coating is formed facing outward it is called an outward bend.
  • bent 90 degrees with the side on which the surface coating is formed on the inside it is called an inside bend. shall be.
  • the minimum bending radius R at which no detachment occurs is 0.00 mm or 0. .05mm is considered to have excellent bending workability and is rated " ⁇ (Excellent)", and the minimum bending radius R at which no detachment occurs in at least one of the outer bending and inner bending is larger than 0.05 mm.
  • those with a thickness of 0.10 mm were evaluated as "Good” because they had good bending workability.
  • a sample in which the minimum bending radius R at which no detachment occurred was 0.20 mm was evaluated as "x (unacceptable)" as it was considered undesirable because the roughened layer was likely to detach during bending.
  • shear strength shear strength
  • Measuring device Nordson Advanced Technology; 4000Plus Load cell: 50KG Measuring range: 10kg Test speed: 100 ⁇ m/s Test height: 10 ⁇ m Number of evaluation tests: 4 times
  • Comparative Example 1 and Comparative Example 2 do not have a roughened layer, so the shear strength is "x (unacceptable)” and they do not have excellent adhesion with resin as lead frame materials. Ta.
  • the X/Y ratio is outside the range of the present invention, so the bending test results are "x (impossible)" for both outer bending and inner bending, and the roughened layer is removed during processing. Separation easily occurred and workability was not excellent.
  • Electroplating device 101 Plating electrolytic cell 102 Circulation pump 103 Flow path (or discharge pipe) 104 Channel (or inflow pipe) 105 Hanging member 111 Plate material for conductive substrate

Abstract

The present invention provides: a lead frame material which has improved resin adhesion in a high-temperature high-humidity environment, while being capable of preventing fall-off of particles during processing; and the like. A lead frame material according to the present invention comprises a conductive base material and a surface coating film; and the surface coating film comprises a roughened layer. With respect to the surface of the surface coating film, if a first maximum height of roughness Rzx and an average length RSmx of first roughness curve elements are respectively measured in the transverse direction to the rolling direction, the transverse direction being orthogonal to the rolling direction of the conductive base material, and a second maximum height of roughness Rzy and an average length RSmy of second roughness curve elements are respectively measured in the parallel direction to the rolling direction, the parallel direction being parallel to the rolling direction of the conductive base material, and if X is the ratio Rzx/RSmx of the first maximum height of roughness Rzx to the average length RSmx of the first roughness curve elements, and Y is the ratio Rzy/RSmy of the second maximum height of roughness Rzy to the average length RSmy of the second roughness curve elements, the ratio X/Y is within the range of 1.20 to 2.00.

Description

リードフレーム材およびその製造方法、ならびにリードフレーム材を用いた半導体パッケージLead frame material and its manufacturing method, and semiconductor package using lead frame material
 本発明は、リードフレーム材およびその製造方法、ならびにリードフレーム材を用いた半導体パッケージに関する。 The present invention relates to a lead frame material, a method for manufacturing the same, and a semiconductor package using the lead frame material.
 樹脂封止型半導体装置は、ワイヤなどによって互いに電気的に接続された半導体素子とリードフレームとがモールド樹脂で封止されてなるものである。このような樹脂封止型半導体装置において、リードフレームは接合性、耐熱性、封止性などの機能付与のため、Au、Ag、Snなどの外装めっきが施されることが主流である。 A resin-sealed semiconductor device is a device in which a semiconductor element and a lead frame, which are electrically connected to each other by wires or the like, are sealed with a mold resin. In such resin-sealed semiconductor devices, the lead frame is typically coated with an exterior plating of Au, Ag, Sn, etc. in order to provide functions such as bonding properties, heat resistance, and sealing properties.
 近年では、組み付け工程の簡略化およびコストダウンのために、リードフレームをはんだなどでプリント基板に実装することを考慮して、はんだとの濡れ性を高めるような仕様のめっき(たとえば、Ni(下層)/Pd(中間層)/Au(上層))を施しているリードフレーム(Pre-Plated Leadframe、以下PPFと略記する)が採用され始めている(例えば、特許文献1参照)。 In recent years, in order to simplify the assembly process and reduce costs, consideration has been given to mounting lead frames on printed circuit boards with solder. )/Pd (middle layer)/Au (upper layer)) lead frames (pre-plated lead frames, hereinafter abbreviated as PPF) are beginning to be adopted (for example, see Patent Document 1).
 それ以外には、樹脂封止型半導体装置におけるリードフレームとモールド樹脂との密着性を高めるために、リードフレームのめっき表面を粗化する技術が提案されている(例えば、特許文献2参照)。 In addition, a technique has been proposed in which the plating surface of the lead frame is roughened in order to improve the adhesion between the lead frame and the mold resin in a resin-sealed semiconductor device (see, for example, Patent Document 2).
 これらのめっき表面を粗化する技術は、リードフレームのめっき表面を粗化することによって、(1)リードフレームにおけるモールド樹脂との接着面積が大きくなる効果、および(2)モールド樹脂が粗化されためっき膜の凹凸に食いつきやすくなる効果(つまり、アンカー効果)などを期待するものである。 These techniques for roughening the plating surface have the effect of (1) increasing the adhesive area with the mold resin on the lead frame, and (2) roughening the mold resin by roughening the plating surface of the lead frame. This is expected to have the effect of making it easier to cling to the unevenness of the plating film (that is, the anchor effect).
 これらの効果は、リードフレームのモールド樹脂への密着性を向上させ、リードフレームとモールド樹脂との間の剥離を防止することを可能とし、樹脂封止型半導体装置の信頼性向上に寄与している。 These effects improve the adhesion of the lead frame to the mold resin, making it possible to prevent separation between the lead frame and the mold resin, and contributing to improving the reliability of resin-molded semiconductor devices. There is.
 また、特許文献3では、めっき表面の粗面化において粗化粒子の幅を制御することにより、近年要求されるより過酷な使用環境、高信頼性の水準においてもモールド樹脂との密着性に優れるリードフレーム材が提案されている。 Furthermore, in Patent Document 3, by controlling the width of the roughening particles when roughening the plating surface, it is possible to achieve excellent adhesion with the mold resin even in harsher usage environments and high reliability levels that are required in recent years. Lead frame materials have been proposed.
特許第2543619号公報Patent No. 2543619 特許第3228789号公報Patent No. 3228789 特許第6479265号公報Patent No. 6479265
 これらの形状による粗化めっきは、確かに樹脂密着性を向上させることができた。しかしながら、近年要求される小型低背化において、例えば、リードフレームの曲げ加工を伴うような半導体パッケージの組立て時に、リードフレームに形成した粗化層の一部が脱離する(所謂粉落ちと呼ばれる現象)が発生し、パッケージ内部に脱離した粉が残留したり、モールド樹脂との密着性が低下したりして不良の原因となるケースが散見されることが分かった。これは、より小型なQFN(Quad Flat Non-Leaded Package)タイプ及びSOP(Small Outline Package)タイプなどのパッケージが多く用いられるようになり、粗化層に対する曲げ加工性の要求レベルが高くなってきたためと考えられる。特に導電性基体の圧延方向(リードフレーム材の長手方向)に対し直角方向の曲げ加工において脱離が顕著になる。このように、未だに改善の余地があることが分かった。 Roughening plating with these shapes was certainly able to improve resin adhesion. However, with the recent demand for smaller size and lower height, for example, when assembling a semiconductor package that involves bending the lead frame, a part of the roughened layer formed on the lead frame comes off (so-called powder drop). It has been found that there are cases where detached powder remains inside the package or the adhesion with the mold resin deteriorates, causing defects. This is because smaller packages such as the QFN (Quad Flat Non-Leaded Package) type and the SOP (Small Outline Package) type are increasingly being used, and the level of bending workability required for the roughened layer has become higher. it is conceivable that. Particularly, detachment becomes noticeable during bending in a direction perpendicular to the rolling direction of the conductive substrate (longitudinal direction of the lead frame material). Thus, it was found that there is still room for improvement.
 一方で、曲げ加工性を向上させるため、粗化めっきを省くと、高信頼性の水準、例えば温度85℃、湿度85%の環境下で168時間後において、モールド樹脂とリードフレームとの密着性が不十分となる。 On the other hand, if roughening plating is omitted to improve bending workability, the adhesion between the mold resin and the lead frame will be maintained at a high reliability level, for example, after 168 hours in an environment of 85°C and 85% humidity. becomes insufficient.
 本発明は、高温及び高湿環境における樹脂密着性を改善でき、かつ、加工時に粉落ちを防止できる好適なリードフレーム材およびその製造方法、ならびにリードフレーム材を用いた半導体パッケージを提供することを目的とする。 The present invention aims to provide a suitable lead frame material that can improve resin adhesion in high temperature and high humidity environments and prevent powder falling during processing, a manufacturing method thereof, and a semiconductor package using the lead frame material. purpose.
 上記従来の問題点に対して鋭意研究開発を進めた結果、本発明者らは、表面被膜の最大高さ粗さRzと粗さ曲線要素の平均長さRSmの比を、圧延直角方向(x方向)と圧延平行方向(y方向)とで制御すること、より具体的には、表面被膜の表面について、導電性基体の圧延方向に対して直交する方向である圧延直角方向(x方向)に沿って第1最大高さ粗さRzxと第1粗さ曲線要素の平均長さRSmxをそれぞれ測定するとともに、導電性基体の圧延方向と平行な方向である圧延平行方向(y方向)に沿って第2最大高さ粗さRzyと第2粗さ曲線要素の平均長さRSmyをそれぞれ測定し、第1粗さ曲線要素の平均長さRSmxに対する最大高さ粗さRzxの比Rzx/RSmxをX、第2粗さ曲線要素の平均長さRSmyに対する最大高さ粗さRzyの比Rzy/RSmyをYとするとき、Yに対するXの比X/Yを1.20以上2.00以下の範囲とすることによって、曲げ加工時における粗化層の脱離が抑制されることを確認し、その結果、樹脂密着性が高く、曲げ加工性に優れたリードフレーム材を得ることに成功した。本発明はこの知見に基づいて完成するに至ったものである。 As a result of intensive research and development to address the above-mentioned conventional problems, the present inventors determined that the ratio of the maximum height roughness Rz of the surface coating to the average length RSm of the roughness curve elements in the direction perpendicular to rolling (x more specifically, the surface of the surface coating is controlled in the direction perpendicular to the rolling direction (x direction), which is orthogonal to the rolling direction of the conductive substrate. The first maximum height roughness Rzx and the average length RSmx of the first roughness curve element are measured along the rolling direction (y direction), which is a direction parallel to the rolling direction of the conductive substrate. The second maximum height roughness Rzy and the average length RSmy of the second roughness curve element are each measured, and the ratio Rzx/RSmx of the maximum height roughness Rzx to the average length RSmx of the first roughness curve element is determined by , when the ratio Rzy/RSmy of the maximum height roughness Rzy to the average length RSmy of the second roughness curve element is Y, the ratio X/Y of X to Y is in the range of 1.20 to 2.00. By doing so, we confirmed that the detachment of the roughened layer during bending was suppressed, and as a result, we succeeded in obtaining a lead frame material with high resin adhesion and excellent bending workability. The present invention was completed based on this knowledge.
 すなわち、本発明の要旨構成は、以下のとおりである。
 (1)導電性基体と、前記導電性基体の表面の少なくとも一部に形成される表面被膜と、を有するリードフレーム材であって、前記表面被膜は粗化層を含み、前記表面被膜の表面について、前記導電性基体の圧延方向に対して直交する方向である圧延直角方向(x方向)に沿って第1最大高さ粗さRzxと第1粗さ曲線要素の平均長さRSmxをそれぞれ測定するとともに、前記導電性基体の圧延方向と平行な方向である圧延平行方向(y方向)に沿って第2最大高さ粗さRzyと第2粗さ曲線要素の平均長さRSmyをそれぞれ測定し、前記第1粗さ曲線要素の平均長さRSmxに対する第1最大高さ粗さRzxの比Rzx/RSmxをX、前記第2粗さ曲線要素の平均長さRSmyに対する第2最大高さ粗さRzyの比Rzy/RSmyをYとするとき、前記Yに対する前記Xの比X/Yが1.20以上2.00以下の範囲である、リードフレーム材。
That is, the gist of the present invention is as follows.
(1) A lead frame material having a conductive substrate and a surface coating formed on at least a part of the surface of the conductive substrate, the surface coating including a roughening layer, and the surface of the surface coating , the first maximum height roughness Rzx and the average length RSmx of the first roughness curve element are respectively measured along the rolling direction (x direction), which is a direction perpendicular to the rolling direction of the conductive substrate. At the same time, the second maximum height roughness Rzy and the average length RSmy of the second roughness curve element are respectively measured along the rolling parallel direction (y direction), which is a direction parallel to the rolling direction of the conductive substrate. , the ratio Rzx/RSmx of the first maximum height roughness Rzx to the average length RSmx of the first roughness curve element, the second maximum height roughness to the average length RSmy of the second roughness curve element A lead frame material in which, when the ratio Rzy/RSmy of Rzy is Y, the ratio X/Y of the X to the Y is in the range of 1.20 or more and 2.00 or less.
 (2)前記Xが0.10以上0.50以下であり、かつ、前記Yが0.07以上0.40以下である、上記(1)に記載のリードフレーム材。 (2) The lead frame material according to (1) above, wherein the X is 0.10 or more and 0.50 or less, and the Y is 0.07 or more and 0.40 or less.
 (3)前記第1最大高さ粗さRzxおよび前記第2最大高さ粗さRzyは、いずれも2.0μm以上9.0μm以下の範囲である、上記(1)または(2)に記載のリードフレーム材。 (3) The first maximum height roughness Rzx and the second maximum height roughness Rzy are both in the range of 2.0 μm or more and 9.0 μm or less, according to (1) or (2) above. Lead frame material.
 (4)前記導電性基体は、銅、鉄もしくはアルミニウム、または前記銅、鉄およびアルミニウムの群から選択される少なくとも1種の元素を含む合金からなる、上記(1)~(3)のいずれかに記載のリードフレーム材。 (4) Any one of (1) to (3) above, wherein the conductive substrate is made of copper, iron, aluminum, or an alloy containing at least one element selected from the group of copper, iron, and aluminum. Lead frame materials listed in .
 (5)前記粗化層は、銅もしくはニッケル、または前記銅およびニッケルの群から選択される少なくとも1種の元素を含む合金からなる、上記(1)~(4)のいずれかに記載のリードフレーム材。 (5) The lead according to any one of (1) to (4) above, wherein the roughened layer is made of copper, nickel, or an alloy containing at least one element selected from the group of copper and nickel. frame material.
 (6)前記粗化層が、電気めっき層である、上記(1)~(5)のいずれか1項に記載のリードフレーム材。 (6) The lead frame material according to any one of (1) to (5) above, wherein the roughened layer is an electroplated layer.
 (7)前記表面被膜は、前記粗化層の表面に形成される少なくとも1層の表面被覆層をさらに有する、上記(1)~(6)のいずれかに記載のリードフレーム材。 (7) The lead frame material according to any one of (1) to (6) above, wherein the surface coating further includes at least one surface coating layer formed on the surface of the roughened layer.
 (8)前記表面被覆層は、前記粗化層とは異なる組成を有する、少なくとも1層以上の金属または合金からなる層であって、銅、ニッケル、コバルト、パラジウム、ロジウム、ルテニウム、白金、イリジウム、金、銀、スズもしくはインジウム、または前記銅、ニッケル、コバルト、パラジウム、ロジウム、ルテニウム、白金、イリジウム、金、銀、スズおよびインジウムの群から選択される少なくとも1種の元素を含む合金からなる、上記(7)に記載のリードフレーム材。 (8) The surface coating layer is a layer made of at least one metal or alloy having a composition different from that of the roughening layer, and includes copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, and iridium. , gold, silver, tin or indium, or an alloy containing at least one element selected from the group consisting of copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, silver, tin and indium. , the lead frame material according to (7) above.
 (9)上記(1)~(8)のいずれか1項に記載のリードフレーム材の製造方法であって、電気めっきにより前記粗化層を形成する粗化工程を有する、リードフレーム材の製造方法。 (9) The method for manufacturing a lead frame material according to any one of (1) to (8) above, comprising a roughening step of forming the roughened layer by electroplating. Method.
 (10)上記(1)~(8)のいずれか1項に記載のリードフレーム材を用いて形成したリードフレームを有する、半導体パッケージ。 (10) A semiconductor package having a lead frame formed using the lead frame material according to any one of (1) to (8) above.
 本発明によれば、高温及び高湿環境における樹脂密着性を改善でき、かつ、加工時に粉落ちを防止できる好適なリードフレーム材およびその製造方法、ならびにリードフレーム材を用いた半導体パッケージを提供することができる。 According to the present invention, a suitable lead frame material that can improve resin adhesion in a high temperature and high humidity environment and prevent powder falling during processing, a method for manufacturing the same, and a semiconductor package using the lead frame material are provided. be able to.
図1は、第1の実施形態に係るリードフレーム材を圧延直角方向(x方向)に沿って切断したときの切断面(横断面)を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a cross section (cross section) when the lead frame material according to the first embodiment is cut along the direction perpendicular to rolling (x direction). 図2は、第1の実施形態に係るリードフレーム材を圧延平行方向(y方向)に沿って切断したときの切断面(縦断面)を示す概略断面図である。FIG. 2 is a schematic sectional view showing a cut surface (longitudinal cross section) when the lead frame material according to the first embodiment is cut along the rolling direction (y direction). 図3は、第2の実施形態に係るリードフレーム材を圧延直角方向(x方向)に沿って切断したときの切断面(横断面)を示す概略断面図である。FIG. 3 is a schematic sectional view showing a cross section (cross section) when the lead frame material according to the second embodiment is cut along the direction perpendicular to rolling (x direction). 図4は、第2の実施形態に係るリードフレーム材を圧延平行方向(y方向)に沿って切断したときの切断面(縦断面)を示す概略断面図である。FIG. 4 is a schematic sectional view showing a cut surface (longitudinal section) when the lead frame material according to the second embodiment is cut along the rolling direction (y direction). 図5は、本発明に従うリードフレーム材の製造方法の粗化工程を行う際に用いる電気めっき装置の概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of an electroplating apparatus used when performing the roughening step of the method for manufacturing a lead frame material according to the present invention. 図6は、シェア強度の測定試験を行うために作製した試験片(リードフレーム材の表面にモールド樹脂片を密着させたもの。)を示す斜視図である。FIG. 6 is a perspective view showing a test piece (a piece of molded resin adhered to the surface of a lead frame material) prepared for conducting a shear strength measurement test.
 以下、本発明のリードフレーム材の好ましい実施形態について、詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, preferred embodiments of the lead frame material of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments, and various changes can be made without changing the gist of the present invention.
<第1の実施形態>
〔リードフレーム材〕
 図1は、本発明に従う第1の実施形態に係るリードフレーム材を圧延直角方向(リードフレーム材の幅方向:x方向)で切断したときの切断面(横断面)を示す概略断面図であり、図2は、第1の実施形態に係るリードフレーム材を圧延平行方向(y方向)に沿って切断したときの切断面(縦断面)を示す概略断面図である。第1の実施形態に係るリードフレーム材10は、図1に示すように、導電性基体11と、導電性基体11の表面の少なくとも一部に形成される表面被膜14とを有する。
<First embodiment>
[Lead frame material]
FIG. 1 is a schematic sectional view showing a cut surface (cross section) when a lead frame material according to a first embodiment of the present invention is cut in a direction perpendicular to rolling (width direction of lead frame material: x direction). , FIG. 2 is a schematic cross-sectional view showing a cut surface (longitudinal cross-section) when the lead frame material according to the first embodiment is cut along the rolling direction (y direction). As shown in FIG. 1, the lead frame material 10 according to the first embodiment includes a conductive base 11 and a surface coating 14 formed on at least a portion of the surface of the conductive base 11.
 導電性基体11の材料は、特に限定されず、用途または求められる特性に応じて、銅、鉄もしくはアルミニウム、または銅、鉄およびアルミニウムの群から選択される少なくとも1種の元素を含む合金からなる材料などを適宜選択することが可能である。導電性基体11の材料の例として、純銅(無酸素銅(OFC):C1020またはタフピッチ銅(TPC):C1100など)の他、Cooper Development Association(CDA)掲載合金である、C18045(Cu-0.3質量%Cr-0.25質量%Sn-0.52質量%Zn)、C14415(Cu-2.3質量%Fe-0.03質量%P-0.15質量%Zn)、またはFe-Ni系合金である42アロイなどが挙げられる。 The material of the conductive substrate 11 is not particularly limited, and may be made of copper, iron, aluminum, or an alloy containing at least one element selected from the group of copper, iron, and aluminum, depending on the application or required properties. It is possible to select materials as appropriate. Examples of materials for the conductive substrate 11 include pure copper (such as oxygen-free copper (OFC): C1020 or tough pitch copper (TPC): C1100), as well as C18045 (Cu-0. 3 mass% Cr-0.25 mass% Sn-0.52 mass% Zn), C14415 (Cu-2.3 mass% Fe-0.03 mass% P-0.15 mass% Zn), or Fe-Ni Examples include 42 alloy, which is a series alloy.
 表面被膜14は、粗化層12を含む。粗化層12は、導電性基体11の表面に粗化粒子が付着することによって形成される。粗化層12は、銅もしくはニッケル、または前記銅およびニッケルの群から選択される少なくとも1種の元素を含む合金からなることが好ましい。また粗化層12は、例えば、電気めっき、Focused Ion Beam(FIB)、または機械研磨により形成することができる。この中でも特に、粗化層12は、電気めっきにより、電気めっき層として形成されることが好ましい。 The surface coating 14 includes a roughened layer 12. The roughened layer 12 is formed by adhering roughening particles to the surface of the conductive substrate 11 . The roughened layer 12 is preferably made of copper, nickel, or an alloy containing at least one element selected from the group of copper and nickel. Further, the roughened layer 12 can be formed by, for example, electroplating, focused ion beam (FIB), or mechanical polishing. Among these, it is particularly preferable that the roughened layer 12 be formed as an electroplated layer by electroplating.
 粗化層12の平均厚さは、0.5~10.0μmであることが好ましく、0.8~7.8μmであることがより好ましい。粗化層12の平均厚さを算出する方法の一例としては、例えば、リードフレーム材の断面をミクロトーム加工し、走査型電子顕微鏡(SEM)を用いて20000倍の倍率で観察した。粗化層の断面SEM画像の中から無作為に10個の粗化粒子を選択し、導電性基体11と粗化層12の境界線から、粗化粒子の頂点までの厚さの平均値を粗化層12の平均厚さとした。1つの断面SEM画像から10個の粗化粒子の頂点を観察することができない場合には、撮影箇所の異なる断面SEM画像を2~3枚用いて、粗化層12の平均厚さを求めた。 The average thickness of the roughened layer 12 is preferably 0.5 to 10.0 μm, more preferably 0.8 to 7.8 μm. As an example of a method for calculating the average thickness of the roughened layer 12, for example, a cross section of a lead frame material was processed with a microtome and observed at a magnification of 20,000 times using a scanning electron microscope (SEM). Ten roughening particles are randomly selected from the cross-sectional SEM image of the roughening layer, and the average value of the thickness from the boundary line between the conductive substrate 11 and the roughening layer 12 to the top of the roughening particles is calculated. This is the average thickness of the roughened layer 12. When the vertices of the 10 roughened particles could not be observed from one cross-sectional SEM image, the average thickness of the roughened layer 12 was determined using two to three cross-sectional SEM images taken at different locations. .
 本実施形態に係るリードフレーム材10は、表面被膜14の表面について、導電性基体11の圧延方向に対して直交する方向である圧延直角方向(図1に示すx方向)に沿って第1最大高さ粗さRzxと第1粗さ曲線要素の平均長さRSmxとをそれぞれ測定するとともに、導電性基体11の圧延方向と平行な方向である圧延平行方向(図1に示すy方向)に沿って第2最大高さ粗さRzyと第2粗さ曲線要素の平均長さRSmyとをそれぞれ測定し、第1粗さ曲線要素の平均長さRSmxに対する第1最大高さ粗さRzxの比Rzx/RSmxをX、第2粗さ曲線要素の平均長さRSmyに対する第2最大高さ粗さRzyの比Rzy/RSmyをYとするとき、Yに対するXの比X/Yが1.20以上2.00以下の範囲である。 The lead frame material 10 according to the present embodiment has a first maximum along the rolling direction (the x direction shown in FIG. The height roughness Rzx and the average length RSmx of the first roughness curve element are each measured, and along the rolling parallel direction (the y direction shown in FIG. 1) which is a direction parallel to the rolling direction of the conductive substrate 11. and measure the second maximum height roughness Rzy and the average length RSmy of the second roughness curve element, respectively, and calculate the ratio Rzx of the first maximum height roughness Rzx to the average length RSmx of the first roughness curve element. /RSmx is X, and when the ratio Rzy/RSmy of the second maximum height roughness Rzy to the average length RSmy of the second roughness curve element is Y, the ratio X/Y of X to Y is 1.20 or more 2 It is in the range of .00 or less.
 ここで導電性基体11の圧延方向は、圧延平行方向、またはRolling Direction(RD)とも言い、圧延ロールによって、圧延された導電性基体11の圧延(延伸)方向を指している。なお、導電性基体11の圧延方向は、材料となった金属の切り出し方向や切り出しサイズ等にも依るが、通常は材料となった金属の長手方向に相当する。一方、圧延直角方向とは、導電性基体11の幅方向、またはTransverse Direction(TD)とも言い、導電性基体11の圧延面内における、圧延平行方向に対して直角な方向を指す。なお、本発明でいう圧延直角方向は、導電性基体11の圧延面に対して垂直な方向、すなわち、導電性基体11の厚さ方向、圧延面垂直方向、またはNormal Direction(ND)、と区別されるものである。 Here, the rolling direction of the conductive substrate 11 is also referred to as a rolling direction or Rolling Direction (RD), and refers to the rolling (stretching) direction of the conductive substrate 11 rolled by the rolling rolls. Note that the rolling direction of the conductive substrate 11 usually corresponds to the longitudinal direction of the metal that is the material, although it depends on the cutting direction and size of the metal that is the material. On the other hand, the direction perpendicular to rolling refers to the width direction of the conductive substrate 11, or also referred to as Transverse Direction (TD), and refers to the direction perpendicular to the rolling direction within the rolling surface of the conductive substrate 11. Note that the direction perpendicular to the rolling direction in the present invention is distinguished from the direction perpendicular to the rolling surface of the conductive substrate 11, that is, the thickness direction of the conductive substrate 11, the direction perpendicular to the rolling surface, or the Normal Direction (ND). It is something that will be done.
 これまで、粗化粒子の幅と高さ、あるいはアスペクト比(高さと幅の比)を調整することによって、モールド樹脂との密着性を向上させることが提案されていたが、本発明者らは、曲げ時の粗化層12の脱離抑制には、粗化粒子と粗化粒子の間隔と粗化粒子の高さが重要であると考え、鋭意検討を行った。その結果、粗化粒子同士の配設間隔が狭く、また、粗化粒子の高さが高くなるほど、曲げた際に粗化粒子同士が接触しやすくなって、導電性基体11から粗化粒子が脱離する傾向があることが判明した。さらに、粗化粒子と粗化粒子の間隔と粗化粒子の高さは、粗化層12が形成される導電性基体の表面状態、即ち導電性基体の表面の凹凸の間隔と高さの影響を受ける。本発明では、圧延によって導電性基体の表面は、圧延平行方向には平滑になり、一方、圧延直角方向には細かい凹凸が形成される。その結果、圧延平行方向では、粗化粒子の間隔を広く設けられやすく、粗化粒子が脱離しにくくなることが判明した。 Until now, it has been proposed to improve the adhesion with the mold resin by adjusting the width and height or aspect ratio (ratio of height and width) of the roughening particles, but the present inventors In order to suppress the detachment of the roughened layer 12 during bending, we considered that the distance between the roughened particles and the height of the roughened particles are important, and conducted extensive studies. As a result, the narrower the spacing between the roughening particles and the higher the height of the roughening particles, the more easily the roughening particles come into contact with each other when bent. It was found that there is a tendency to disintegrate. Furthermore, the spacing between the roughened particles and the height of the roughened particles are influenced by the surface condition of the conductive substrate on which the roughened layer 12 is formed, that is, the spacing and height of the unevenness on the surface of the conductive substrate. receive. In the present invention, by rolling, the surface of the conductive substrate becomes smooth in the direction parallel to the rolling, while fine irregularities are formed in the direction perpendicular to the rolling. As a result, it was found that in the direction parallel to rolling, the intervals between the roughened particles can be easily provided widely, making it difficult for the roughened particles to separate.
 粗さ曲線要素の平均長さRSmは、JIS B0601:2013で定義されたものであり、形状解析レーザ顕微鏡などを用いて測定することが可能である。表面の粗さの要素の平均長さRSmは、凹凸の一周期の長さを示すパラメータであり、粗化粒子の幅と、粗化粒子同士の間隔とを足し合わせたパラメータとなる。表面の粗さ曲線要素の平均長さRSmは、リードフレーム材10の表面の測定方向によって異なる数値となる。最大の第1粗さ曲線要素の平均長さRSmxとなるときの測定方向(x方向)では、図1に示すように、粗化層12の粗化粒子の横断面積が小さくなり、粗化粒子の幅寸法が小さくなる。一方、最小の第2粗さ曲線要素の平均長さRSmyとなるときの測定方向(y方向)では、図2に示すように、粗化層12の粗化粒子の縦断面積が大きくなり、粗化粒子の幅寸法が大きくなる。 The average length RSm of the roughness curve element is defined in JIS B0601:2013, and can be measured using a shape analysis laser microscope or the like. The average length RSm of the surface roughness element is a parameter indicating the length of one cycle of the unevenness, and is a parameter that is the sum of the width of the roughening particles and the interval between the roughening particles. The average length RSm of the surface roughness curve element takes a different value depending on the direction in which the surface of the lead frame material 10 is measured. In the measurement direction (x direction) when the average length of the first roughness curve element is the maximum, RSmx, the cross-sectional area of the roughened particles in the roughened layer 12 becomes smaller, as shown in FIG. width dimension becomes smaller. On the other hand, in the measurement direction (y direction) when the average length of the second roughness curve element is the minimum, RSmy, as shown in FIG. The width dimension of the particles increases.
 輪郭曲線の最大高さ粗さRzは、JIS B0601:2013に定義されたものであり、形状解析レーザ顕微鏡などを用いて測定することが可能である。最大高さ粗さRzは、輪郭曲線の山高さZpの最大値と輪郭曲線の谷深さZvの最大値との和でも表すことができる。 The maximum height roughness Rz of the contour curve is defined in JIS B0601:2013, and can be measured using a shape analysis laser microscope or the like. The maximum height roughness Rz can also be expressed as the sum of the maximum value of the peak height Zp of the contour curve and the maximum value of the valley depth Zv of the contour curve.
 本実施形態に係るリードフレーム材10は、圧延直角方向および圧延平行方向において、それぞれ測定した最大高さ粗さRzと粗さ曲線要素の平均長さRSmの比を取ることにより、樹脂密着性と曲げ加工性の双方への寄与を示すパラメータとしたものである。 The lead frame material 10 according to the present embodiment has good resin adhesion by taking the ratio of the maximum height roughness Rz measured in the direction perpendicular to rolling and in the direction parallel to rolling and the average length RSm of the roughness curve elements. This is a parameter that indicates the contribution to both bending workability.
 表面被膜14において、圧延直角方向に測定した、第1粗さ曲線要素の平均長さRSmxに対する第1最大高さ粗さRzxの比Rzx/RSmxをXとし、圧延平行方向に測定した、第2粗さ曲線要素の平均長さRSmyに対する第2最大高さ粗さRzyの比Rzy/RSmyをYとするとき、X/Y比を1.20以上2.00以下に制御することで、粗化粒子が圧延平行方向に扁平な形状かつ、圧延直角方向の粗化粒子同士の間隔が広い形状となり、圧延直角方向に曲げ加工をした際に粗化層の脱離が抑制される。一方で、X/Y比が1.20未満となると粗化粒子同士の間隔が広くなりすぎて、モールド樹脂との密着性が低下する虞があり、X/Y比が2.00を超えると粗化粒子同士の間隔が狭まり、曲げ加工を行った際に、粗化粒子同士が接触し、脱離が発生する虞がある。 In the surface coating 14, X is the ratio Rzx/RSmx of the first maximum height roughness Rzx to the average length RSmx of the first roughness curve element measured in the direction perpendicular to the rolling direction, and the second roughness curve element is measured in the direction parallel to the rolling direction. When the ratio Rzy/RSmy of the second maximum height roughness Rzy to the average length RSmy of the roughness curve element is Y, roughening is achieved by controlling the X/Y ratio to 1.20 or more and 2.00 or less. The particles have a shape that is flat in the direction parallel to rolling, and the distance between the roughened particles in the direction perpendicular to rolling is wide, so that detachment of the roughened layer is suppressed when bending is performed in the direction perpendicular to rolling. On the other hand, if the X/Y ratio is less than 1.20, there is a risk that the spacing between the roughening particles will become too wide and the adhesion with the mold resin will decrease, and if the X/Y ratio exceeds 2.00, The spacing between the roughened particles becomes narrower, and when bending is performed, the roughened particles may come into contact with each other and detachment may occur.
 第1粗さ曲線要素の平均長さRSmxは、10.0~30.0μmであることが好ましく、12.0~20.0μmであることがより好ましい。第1粗さ曲線要素の平均長さRSmxを上記の数値範囲内とすることで、粗化粒子同士の間隔が広くなり、粗化層12の曲げ加工性を向上させることができる。 The average length RSmx of the first roughness curve element is preferably 10.0 to 30.0 μm, more preferably 12.0 to 20.0 μm. By setting the average length RSmx of the first roughness curve element within the above numerical range, the intervals between the roughened particles become wider, and the bending workability of the roughened layer 12 can be improved.
 第2粗さ曲線要素の平均長さRSmyは、15.0~35.0μmであることが好ましく、18.0~28.0μmであることがより好ましい。第2粗さ曲線要素の平均長さRSmyを上記の数値範囲内とすることで、粗化粒子が圧延平行方向に扁平な形状となり、粗化層12の曲げ加工性を向上することに加え、樹脂密着性を向上させることができる。 The average length RSmy of the second roughness curve element is preferably 15.0 to 35.0 μm, more preferably 18.0 to 28.0 μm. By setting the average length RSmy of the second roughness curve element within the above numerical range, the roughened particles have a flat shape in the direction parallel to rolling, and in addition to improving the bending workability of the roughened layer 12, Resin adhesion can be improved.
 表面被膜14の圧延直角方向に測定した第1最大高さ粗さRzxおよび、圧延平行方向に測定した第2最大高さ粗さRzyのいずれも2.0~9.0μmであることが好ましい。圧延直角方向に測定した第1最大高さ粗さRzxおよび圧延平行方向に測定した第2最大高さ粗さRzyをいずれも2.0~9.0μmとすることにより、樹脂密着性が良好となる。2.0μm以上とすることで、アンカー効果が十分に発揮され、樹脂密着性が向上する。一方、9.0μm以下とすることで、粗化粒子の根元の強度が向上し、樹脂形成時に粗化粒子が折れ難く、樹脂密着性の向上に寄与する。 It is preferable that the first maximum height roughness Rzx of the surface coating 14 measured in the direction perpendicular to rolling and the second maximum height roughness Rzy measured in the direction parallel to rolling are both 2.0 to 9.0 μm. Good resin adhesion can be achieved by setting the first maximum height roughness Rzx measured in the direction perpendicular to the rolling direction and the second maximum height roughness Rzy measured in the direction parallel to the rolling direction to both be 2.0 to 9.0 μm. Become. When the thickness is 2.0 μm or more, the anchor effect is sufficiently exhibited and resin adhesion is improved. On the other hand, by setting the thickness to 9.0 μm or less, the strength of the base of the roughened particles is improved, and the roughened particles are less likely to break during resin formation, contributing to improved resin adhesion.
 上記X(Rzx/RSmx)が0.10~0.50であり、かつ、上記Y(Rzy/RSmy)が0.07~0.40であることが好ましい。XおよびYを上記の数値範囲とすることで粗化粒子のアスペクト比と粗化粒子同士の間隔が良好となり、曲げ加工時、特に内曲げにおいて、粗化粒子同士の接触が抑制されることから、粗化層12の脱離が抑制される。 It is preferable that the above X (Rzx/RSmx) is 0.10 to 0.50 and the above Y (Rzy/RSmy) is 0.07 to 0.40. By setting X and Y within the above numerical ranges, the aspect ratio of the roughening particles and the spacing between the roughening particles will be good, and contact between the roughening particles will be suppressed during bending, especially in internal bending. , detachment of the roughened layer 12 is suppressed.
<第2の実施形態>
 図3は、本発明の第2の実施形態に係るリードフレーム材を圧延直角方向(リードフレーム材の幅方向)で切断したときの切断面(横断面)を示す概略断面図であり、図4は、第2の実施形態に係るリードフレーム材を圧延平行方向(y方向)に沿って切断したときの切断面(縦断面)を示す概略断面図である。
<Second embodiment>
FIG. 3 is a schematic cross-sectional view showing a cut section (cross section) when the lead frame material according to the second embodiment of the present invention is cut in the direction perpendicular to rolling (width direction of the lead frame material). FIG. 2 is a schematic cross-sectional view showing a cut surface (longitudinal cross section) when the lead frame material according to the second embodiment is cut along the rolling direction (y direction).
 第2の実施形態のリードフレーム材は、図3に示すように、表面被膜14は、粗化層12に加えて、粗化層12の表面に形成される少なくとも1層の表面被覆層13をさらに有する。表面被覆層13を有することにより、リードフレーム材10の耐食性を向上させることができる。表面被覆層13は、電気めっきにより、電気めっき層として形成されることが好ましい。 In the lead frame material of the second embodiment, as shown in FIG. It also has. By having the surface coating layer 13, the corrosion resistance of the lead frame material 10 can be improved. The surface coating layer 13 is preferably formed as an electroplated layer by electroplating.
 表面被覆層13は、粗化層12とは異なる組成を有する、少なくとも1層以上の金属または合金からなる層であって、銅、ニッケル、コバルト、パラジウム、ロジウム、ルテニウム、白金、イリジウム、金、銀、スズもしくはインジウム、または前記銅、ニッケル、コバルト、パラジウム、ロジウム、ルテニウム、白金、イリジウム、金、銀、スズおよびインジウムの群から選択される少なくとも1種の元素を含む合金からなることが好ましい。 The surface coating layer 13 is a layer made of at least one metal or alloy having a composition different from that of the roughening layer 12, and includes copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, It is preferable to consist of silver, tin or indium, or an alloy containing at least one element selected from the group of copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, silver, tin and indium. .
 なお、表面被膜14が、粗化層12と表面被覆層13とを有する場合であっても、第1粗さ曲線要素の平均長さRSmxとなるときの測定方向(x方向)では、図3で示すように、粗化層12の粗化粒子の横断面積が小さくなり、粗化粒子の圧延直角方向の幅が狭くなる。一方で、第2粗さ曲線要素の平均長さRSmyとなるときの測定方向では、図4に示すように、粗化層12の粗化粒子の縦断面積が大きくなり、粗化粒子の圧延平行方向の幅が比較的広くなる。その結果、表面被膜14の表面の粗さ曲線要素の平均長さRSmは、表面被覆層13の有無に関わらず、リードフレーム材10の表面の測定方向によって異なる数値となる。 Note that even if the surface coating 14 has the roughened layer 12 and the surface coating layer 13, in the measurement direction (x direction) when the average length of the first roughness curve element becomes RSmx, As shown, the cross-sectional area of the roughened particles in the roughened layer 12 becomes smaller, and the width of the roughened particles in the direction perpendicular to rolling becomes narrower. On the other hand, in the measurement direction when the average length of the second roughness curve element becomes RSmy, as shown in FIG. The width in the direction is relatively wide. As a result, the average length RSm of the surface roughness curve element of the surface coating 14 takes on a different value depending on the measurement direction of the surface of the lead frame material 10, regardless of the presence or absence of the surface coating layer 13.
<リードフレーム材の用途>
 本発明のリードフレーム材10は、リードフレーム材10の少なくとも一部をモールド樹脂20で封止することで樹脂封止型半導体装置とすることができる。特にリードフレーム材10は、半導体素子(半導体チップ)とリードフレームとをワイヤなどによって互いに電気的に接続した状態でモールド樹脂20によって封止して形成される樹脂封止型半導体装置である半導体パッケージに使用することができる。実装される半導体素子によって、リードフレーム材はトランジスタやキャパシタ、LEDなどに好適に用いられる。
<Uses of lead frame materials>
The lead frame material 10 of the present invention can be made into a resin-sealed semiconductor device by sealing at least a portion of the lead frame material 10 with a mold resin 20. In particular, the lead frame material 10 is a semiconductor package which is a resin-sealed semiconductor device formed by sealing a semiconductor element (semiconductor chip) and a lead frame electrically connected to each other by wires or the like with a mold resin 20. It can be used for. Depending on the semiconductor element to be mounted, the lead frame material is suitably used for transistors, capacitors, LEDs, etc.
<リードフレーム材の製造方法>
 次に、本発明のリードフレーム材10の製造方法を以下で説明する。なお、本発明は、以下の製造方法に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
<Manufacturing method of lead frame material>
Next, a method for manufacturing the lead frame material 10 of the present invention will be described below. Note that the present invention is not limited to the manufacturing method described below, and various changes can be made without changing the gist of the present invention.
 導電性基体用板材111を圧延加工によって準備し、この導電性基体用板材111に対し、カソード電解脱脂工程、酸洗工程、および粗化工程をこの順に施す。必要に応じて、粗化工程の後に表面被覆工程を施してもよい。 A conductive substrate plate material 111 is prepared by rolling, and the conductive substrate plate material 111 is subjected to a cathode electrolytic degreasing process, a pickling process, and a roughening process in this order. If necessary, a surface coating step may be performed after the roughening step.
 カソード電解脱脂工程として、60g/Lの濃度の水酸化ナトリウム水溶液を脱脂液として電解槽に入れて加熱し、導電性基体用板材111を60℃に加熱した脱脂液に浸漬して電解槽の陽極に接続し、2.5A/dmの電流密度で60秒にわたり通電することで処理を行う。 As a cathode electrolytic degreasing process, an aqueous sodium hydroxide solution with a concentration of 60 g/L is put into an electrolytic bath as a degreasing liquid and heated, and the plate material 111 for the conductive substrate is immersed in the degreasing liquid heated to 60°C. The treatment is carried out by connecting the tube to the tube and applying current for 60 seconds at a current density of 2.5 A/dm 2 .
 酸洗工程として、室温の10質量%の硫酸に、カソード電解脱脂を行った後の導電性基体用板材111を、30秒にわたり浸漬することで行う。 The pickling step is carried out by immersing the conductive substrate plate material 111, which has been cathodically degreased, in 10% by mass sulfuric acid at room temperature for 30 seconds.
 粗化工程として、電気めっきにより、少なくとも1層の粗化層12を含む表面被膜14を形成する。電気めっきは、図5に示す電気めっき装置100を使用して施すことができる。 As a roughening step, a surface coating 14 including at least one roughened layer 12 is formed by electroplating. Electroplating can be performed using an electroplating apparatus 100 shown in FIG.
 電気めっき装置100は、めっき電解槽101と、電気めっき液を循環するための循環ポンプ102と、めっき電解槽101および循環ポンプ102の間を接続する流路を形成するための排出管103および流入管104とによって主に構成されている。 The electroplating apparatus 100 includes a plating electrolytic cell 101, a circulation pump 102 for circulating the electroplating solution, and an exhaust pipe 103 and an inflow pipe for forming a flow path connecting the plating electrolytic cell 101 and the circulation pump 102. It is mainly composed of a tube 104.
 めっき電解槽101に電気めっき液(a)を入れる。電気めっき液(a)としては、銅またはニッケルを含む水溶液を使用できる。導電性基体用板材111を、ワイヤなどの吊部材105によって、めっき電解槽101の内部に吊り下げる。循環ポンプ102を用いて電気めっき液(a)の流れFを調整し、導電性基体用板材111の圧延平行方向に向けて相対速度1~10m/minで電気めっき液(a)が流れるようにする。ここに粗化Cuめっきの場合は、例えば10A/dm~60A/dm、粗化Niめっきの場合は、例えば4A/dm~10A/dmの電流密度で通電することで、導電性基体用板材111の表面に、電気めっきにより粗化層12を形成する。 Electroplating solution (a) is put into the plating electrolytic bath 101. As the electroplating solution (a), an aqueous solution containing copper or nickel can be used. The conductive substrate plate material 111 is suspended inside the plating electrolytic cell 101 by a hanging member 105 such as a wire. The flow F of the electroplating solution (a) is adjusted using the circulation pump 102 so that the electroplating solution (a) flows at a relative speed of 1 to 10 m/min in the direction parallel to the rolling of the conductive substrate plate material 111. do. In the case of roughened Cu plating, conductivity is increased by applying current at a current density of, for example, 10 A/dm 2 to 60 A/dm 2 and in the case of roughened Ni plating, for example, 4 A/dm 2 to 10 A/dm 2 . A roughened layer 12 is formed on the surface of the substrate plate material 111 by electroplating.
 電気めっき液(a)の流れFについては、相対速度が1m/min未満であると、均一に粗化層が形成されるため、圧延平行方向と圧延直角方向の粗化粒子と粗化粒子の間隔と粗化粒子の高さの差が小さくなり、X/Y比が1.20より小さくなり、一方で、相対速度が10m/minを超えると、異方性が強くなり過ぎるため、X/Y比が2.00より大きくなる。 Regarding the flow F of the electroplating solution (a), when the relative speed is less than 1 m/min, a roughened layer is formed uniformly, so that the roughened particles and the roughened particles in the direction parallel to the rolling direction and the direction perpendicular to the rolling direction are The difference between the spacing and the height of the roughening particles becomes smaller, and the X/Y ratio becomes smaller than 1.20. On the other hand, when the relative speed exceeds 10 m/min, the anisotropy becomes too strong, so the X/Y ratio becomes smaller. Y ratio becomes larger than 2.00.
 電流密度については、粗化Cuめっきの場合は、電流密度が10A/dm未満であると圧延並行方向と圧延直角方向のRSmが共に大きくなりすぎ、一方、電流密度が60A/dmを超えると圧延並行方向と圧延直角方向のRSmが共に小さくなりすぎる傾向がある。また、粗化Niめっきの場合は、電流密度が4A/dm未満であると圧延並行方向と圧延直角方向のRSmが共に大きくなりすぎ、一方、電流密度が10A/dmを超えると圧延並行方向と圧延直角方向のRSmが共に小さくなりすぎる傾向がある。 Regarding current density, in the case of roughened Cu plating, if the current density is less than 10 A/ dm2 , the RSm in both the direction parallel to rolling and the direction perpendicular to rolling will become too large, while on the other hand, if the current density exceeds 60 A/ dm2 . RSm in both the direction parallel to rolling and the direction perpendicular to rolling tends to become too small. In addition, in the case of roughened Ni plating, if the current density is less than 4 A/dm 2 RSm in both the direction parallel to rolling and in the direction perpendicular to rolling becomes too large, while if the current density exceeds 10 A/dm 2 RSm is Both the RSm in the rolling direction and the direction perpendicular to the rolling direction tend to become too small.
 粗化工程を複数回繰り返し施すことで、2層以上の粗化層12を形成することが可能である。なお、粗化工程を複数回繰り返しとき、電気めっき液(a)の種類は、連続して同じものを利用してもよく、異なるものを利用してもよい。 By repeating the roughening process multiple times, it is possible to form two or more roughened layers 12. Note that when the roughening step is repeated multiple times, the same type of electroplating solution (a) may be continuously used, or different types may be used.
 粗化工程の後、さらに表面被覆工程を施して、表面被覆層13を形成する場合は、粗化工程で使用した電気めっき液(a)とは異なる組成を有する電気めっき液(b)を使用して電気めっきを施す。電気めっき液(b)として、銅、ニッケル、コバルト、パラジウム、ロジウム、ルテニウム、白金、イリジウム、金、銀、スズ、インジウムを含む水溶液を使用できる。めっき電解槽101に電気めっき液(b)を入れて、通電することで、電気めっきにより表面被覆層13を形成する。 After the roughening step, when a surface coating step is further performed to form the surface coating layer 13, an electroplating solution (b) having a composition different from the electroplating solution (a) used in the roughening step is used. Then apply electroplating. As the electroplating solution (b), an aqueous solution containing copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, silver, tin, and indium can be used. The electroplating solution (b) is put into the plating electrolytic bath 101 and energized to form the surface coating layer 13 by electroplating.
 なお、表面被覆工程では、粗化工程と同じ電気めっき装置100を使用することが可能である。しかし、表面被覆工程は、粗化工程と異なり電気めっき液(b)の流れの調整を必須としないため、循環ポンプ102などを備えていない電気めっき装置を使用することも可能である。 Note that in the surface coating process, it is possible to use the same electroplating apparatus 100 as in the roughening process. However, unlike the roughening process, the surface coating process does not require adjustment of the flow of the electroplating solution (b), so it is also possible to use an electroplating apparatus that is not equipped with the circulation pump 102 or the like.
 表面被覆工程を複数回繰り返し施すことで、2層以上の表面被覆層13を形成することが可能である。なお、粗化工程を複数回繰り返しとき、電気めっき液(b)の種類は、連続して同じものを利用してもよく、異なるものを利用してもよい。 By repeating the surface coating process multiple times, it is possible to form two or more surface coating layers 13. Note that when the roughening step is repeated multiple times, the same type of electroplating solution (b) may be continuously used, or different types may be used.
 上記したように、粗化層12および表面被覆層13を、電気めっき法のような湿式めっき法によって形成することが、生産性の観点から好ましいが、乾式めっき法または他の製造方法で製造してもよく、特に限定はされない。 As described above, it is preferable from the viewpoint of productivity to form the roughened layer 12 and the surface coating layer 13 by a wet plating method such as electroplating. may be used, and there are no particular limitations.
 導電性基体用板材111に表面被膜14を形成した後に、所望の寸法に加工するなどして、リードフレーム材10を製造することができる。 The lead frame material 10 can be manufactured by forming the surface coating 14 on the conductive substrate plate material 111 and then processing it into desired dimensions.
 次に、本発明の効果をさらに明確にするために、実施例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, in order to further clarify the effects of the present invention, Examples will be described, but the present invention is not limited to these Examples.
<実施例1~13および比較例1~6>
 表1に示す組成の導電性基体を予め試験片サイズ40mm×40mmに切断し、カソード電解脱脂工程、酸洗工程の前処理を施した。
<Examples 1 to 13 and Comparative Examples 1 to 6>
A conductive substrate having the composition shown in Table 1 was cut in advance into a test piece having a size of 40 mm x 40 mm, and was subjected to pretreatment for a cathodic electrolytic degreasing process and a pickling process.
 ここで、カソード電解脱脂工程は、60g/Lの濃度の水酸化ナトリウム水溶液を脱脂液として電解槽に入れて加熱し、導電性基体を60℃に加熱した脱脂液に浸漬して電解槽の陽極に接続し、2.5A/dmの電流密度で60秒にわたり通電することで処理を行った。また、酸洗工程は、導電性基体を、室温の10質量%の硫酸に30秒にわたり浸漬することで行った。 Here, in the cathodic electrolytic degreasing step, an aqueous sodium hydroxide solution with a concentration of 60 g/L is heated as a degreasing liquid in an electrolytic bath, and the conductive substrate is immersed in the degreasing liquid heated to 60°C to form an anode of the electrolytic bath. The treatment was carried out by connecting the battery to a battery and applying current for 60 seconds at a current density of 2.5 A/dm 2 . Further, the pickling step was performed by immersing the conductive substrate in 10% by mass sulfuric acid at room temperature for 30 seconds.
 カソード電解脱脂工程および酸洗工程の後に、粗化工程として下記に詳述するめっき条件で表1に示す粗化層を形成した。実施例9~13については、粗化層を形成した後に、さらに表面被覆工程を行うことによって、下記に詳述するめっき条件で表1に示す表面被覆層を形成した。比較例1は、粗化層および表面被膜層を形成していない場合の例、比較例2は、粗化層を形成せずに表面被膜層を形成した場合の例、比較例3は、粗化工程において導電性基体の圧延直角方向に向けた相対速度で3.0m/minとして粗化層を形成し、表面被膜層を形成していない場合の例、比較例4では電気めっき液の流れを、導電性基体用板材の圧延平行方向に向けた相対速度で0.5m/minとして粗化層を形成し、表面被膜層を形成していない場合の例、そして、比較例5、6では相対速度でそれぞれ15.0m/minおよび12.0m/minより大きくなるようにして粗化層を形成し、表面被膜層を形成した場合の例である。 After the cathodic electrolytic degreasing step and the pickling step, a roughening layer shown in Table 1 was formed under the plating conditions detailed below as a roughening step. For Examples 9 to 13, after forming the roughened layer, a surface coating step was further performed to form the surface coating layer shown in Table 1 under the plating conditions detailed below. Comparative Example 1 is an example in which no roughening layer and surface coating layer are formed, Comparative Example 2 is an example in which a surface coating layer is formed without forming a roughening layer, and Comparative Example 3 is an example in which a surface coating layer is formed without forming a roughening layer. In Comparative Example 4, a roughening layer is formed at a relative speed of 3.0 m/min in the direction perpendicular to the rolling direction of the conductive substrate, and no surface coating layer is formed. An example in which a roughened layer was formed at a relative speed of 0.5 m/min in the direction parallel to the rolling direction of the conductive substrate plate material, and a surface coating layer was not formed, and in Comparative Examples 5 and 6. This is an example in which a roughened layer is formed at relative speeds of greater than 15.0 m/min and 12.0 m/min, respectively, and a surface coating layer is formed.
〔粗化工程のめっき条件〕
 以下のめっき条件により、粗化層を電気めっきにより形成した。
[Plating conditions for roughening process]
A roughened layer was formed by electroplating under the following plating conditions.
[粗化Cuめっき(表1に記載される粗化層の種類がCuの場合)]
 電気めっき液(a)として、銅(Cu)金属の濃度として、10g/L~50g/Lの範囲の金属濃度である硫酸銅と、60g/L~180g/Lの硫酸と、モリブデン(Mo)金属の濃度として0.1g/L~5.0g/Lの金属濃度であるモリブデン酸アンモニウムとを含む水溶液を調製した。次いで、内径80mmの筒状のめっき電解槽に、1Lの電気めっき液(a)を入れて、ポンプを用いて液の流れを調整し、導電性基体の圧延平行方向に向けて、相対速度1~10m/minで電気めっき液(a)が流れるようにした。ここに、20℃~60℃の温度(浴温)で、10A/dm~60A/dmの電流密度で通電することで、電気めっきにより粗化層を形成した。
[Roughened Cu plating (when the type of roughened layer listed in Table 1 is Cu)]
As the electroplating solution (a), copper sulfate with a metal concentration in the range of 10 g/L to 50 g/L, sulfuric acid in the range of 60 g/L to 180 g/L, and molybdenum (Mo) are used as the electroplating solution (a). An aqueous solution containing ammonium molybdate having a metal concentration of 0.1 g/L to 5.0 g/L was prepared. Next, 1 L of electroplating solution (a) is put into a cylindrical plating electrolytic cell with an inner diameter of 80 mm, the flow of the solution is adjusted using a pump, and the relative speed is 1 in the direction parallel to the rolling of the conductive substrate. The electroplating solution (a) was allowed to flow at ~10 m/min. Here, a roughened layer was formed by electroplating at a temperature of 20° C. to 60° C. (bath temperature) and a current density of 10 A/dm 2 to 60 A/dm 2 .
[粗化Niめっき(表1に記載される粗化層の種類がNiの場合)]
 電気めっき液(a)として、ニッケル(Ni)金属の濃度として、10g/L~50g/Lの範囲の金属濃度である硫酸ニッケルと、10g/L~30g/Lのホウ酸と、30g/L~100g/Lの塩化ナトリウムと、10mL/L~30mL/Lの25質量%アンモニア水とを含む水溶液を調製した。次いで、内径80mmの筒状のめっき電解槽に、ポンプを用いて液の流れを調整し、導電性基体の圧延平行方向に向けて、相対速度1~10m/minで電気めっき液(a)が流れるようにした。ここに、50℃~70℃の温度(浴温)で、4A/dm~10A/dmの電流密度で通電することで、電気めっきにより粗化層を形成した。
[Roughened Ni plating (when the type of roughened layer listed in Table 1 is Ni)]
As the electroplating solution (a), nickel (Ni) metal concentration is nickel sulfate with a metal concentration in the range of 10 g/L to 50 g/L, boric acid in the range of 10 g/L to 30 g/L, and 30 g/L. An aqueous solution containing ~100 g/L of sodium chloride and 10 mL/L to 30 mL/L of 25% by mass aqueous ammonia was prepared. Next, the electroplating solution (a) is poured into a cylindrical plating electrolytic tank with an inner diameter of 80 mm at a relative speed of 1 to 10 m/min in the direction parallel to the rolling direction of the conductive substrate by adjusting the flow of the solution using a pump. I made it flow. Here, a roughened layer was formed by electroplating at a temperature of 50° C. to 70° C. (bath temperature) and a current density of 4 A/dm 2 to 10 A/dm 2 .
〔表面被覆工程のめっき条件〕
 実施例9~13について、以下のめっき条件により、表面被覆層を電気めっきにより少なくとも1層形成した。なお、表1に示す表面被覆層の種類の欄に、複数の金属が記載されているものは、左に記載されている金属から順に、電気めっきを施した。
[Plating conditions for surface coating process]
For Examples 9 to 13, at least one surface coating layer was formed by electroplating under the following plating conditions. In addition, when a plurality of metals were listed in the column of type of surface coating layer shown in Table 1, electroplating was performed in order from the metal listed on the left.
[Niめっき(表1に記載される表面被覆層の種類がNiの場合)]
 電気めっき液(b)として、ニッケル(Ni)金属の濃度として500g/Lの金属濃度であるスルファミン酸ニッケルと、30g/Lの塩化ニッケルと、30g/Lのホウ酸とを含む水溶液を調製した。内径80mmの筒状のめっき電解槽に1Lの電気めっき液を入れて、50℃の温度(浴温)で、10A/dmの電流密度で通電することで、電気めっきにより表面被覆層を形成した。
[Ni plating (when the type of surface coating layer listed in Table 1 is Ni)]
As the electroplating solution (b), an aqueous solution containing nickel (Ni) sulfamate having a metal concentration of 500 g/L, 30 g/L nickel chloride, and 30 g/L boric acid was prepared. . A surface coating layer is formed by electroplating by placing 1L of electroplating solution in a cylindrical plating electrolytic bath with an inner diameter of 80mm and applying current at a temperature of 50℃ (bath temperature) and a current density of 10A/ dm2 . did.
[Pdめっき(表1に記載される表面被覆層の種類がPdの場合)]
 電気めっき液(b)として、パラジウム(Pd)金属の濃度として45g/Lの金属濃度であるジクロロテトラアンミンパラジウム([Pd(NH]Cl)と、90mL/Lの25質量%アンモニア水と、50g/Lの硫酸アンモニウムと、10g/LのパラシグマLN光沢剤(松田産業株式会社製)とを含む水溶液を調製した。内径80mmの筒状のめっき電解槽に1Lの電気めっき液(b)を入れて、60℃の温度(浴温)で、5A/dmの電流密度で通電することで、電気めっきにより表面被覆層を形成した。
[Pd plating (when the type of surface coating layer listed in Table 1 is Pd)]
As the electroplating solution (b), dichlorotetraamminepalladium ([Pd(NH 3 ) 4 ]Cl 2 ) having a metal concentration of 45 g/L and 90 mL/L of 25% by mass ammonia water were used as the electroplating solution (b). An aqueous solution containing 50 g/L of ammonium sulfate and 10 g/L of ParaSigma LN brightener (manufactured by Matsuda Sangyo Co., Ltd.) was prepared. 1L of electroplating solution (b) is placed in a cylindrical plating electrolytic tank with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a temperature of 60°C (bath temperature) and a current density of 5A/ dm2 . formed a layer.
[Auめっき(表1に記載される表面被覆層の種類がAuの場合)]
 電気めっき液(b)として、金(Au)金属の濃度として14.6g/Lの金属濃度であるシアン化金カリウムと、150g/Lのクエン酸と、180g/Lのクエン酸カリウムとを含む水溶液を調製した。内径80mmの筒状のめっき電解槽に1Lの電気めっき液(b)を入れて、40℃の温度(浴温)で、1A/dmの電流密度で通電することで、電気めっきにより表面被覆層を形成した。
[Au plating (when the type of surface coating layer listed in Table 1 is Au)]
The electroplating solution (b) contains gold (Au) potassium cyanide with a metal concentration of 14.6 g/L, 150 g/L citric acid, and 180 g/L potassium citrate. An aqueous solution was prepared. 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic tank with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a temperature of 40°C (bath temperature) and a current density of 1 A/dm 2 . formed a layer.
[AuCoめっき(表1に記載される表面被覆層の種類がAuCoの場合)]
 電気めっき液(b)として、金(Au)金属の濃度として10g/Lの金属濃度であるシアン化金カリウムと、コバルト(Co)金属の濃度として0.1g/Lの金属濃度である炭酸コバルトと、100g/Lのクエン酸と20g/Lのリン酸水素二カリウムとを含む水溶液を調製した。内径80mmの筒状のめっき電解槽に1Lの電気めっき液(b)を入れて、40℃の温度(浴温)で、1A/dmの電流密度で通電することで、電気めっきにより表面被覆層を形成した。
[AuCo plating (when the type of surface coating layer listed in Table 1 is AuCo)]
As the electroplating solution (b), gold potassium cyanide has a metal concentration of 10 g/L as a gold (Au) metal concentration, and cobalt carbonate has a metal concentration of 0.1 g/L as a cobalt (Co) metal concentration. An aqueous solution containing 100 g/L of citric acid and 20 g/L of dipotassium hydrogen phosphate was prepared. 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic tank with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a temperature of 40°C (bath temperature) and a current density of 1 A/dm 2 . formed a layer.
[Agめっき(表1に記載される表面被覆層の種類がAgの場合)]
 電気めっき液(b)として、銀(Ag)金属の濃度として93g/Lの金属濃度であるシアン化銀と、132g/Lのシアン化カリウムとを含む水溶液を調製した。内径80mmの筒状のめっき電解槽に1Lの電気めっき液(b)を入れて、20℃の温度(浴温)で、1A/dmの電流密度で通電することで、電気めっきにより表面被覆層を形成した。
[Ag plating (when the type of surface coating layer listed in Table 1 is Ag)]
As the electroplating solution (b), an aqueous solution containing silver cyanide having a metal concentration of 93 g/L and potassium cyanide having a metal concentration of 132 g/L was prepared. 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic bath with an inner diameter of 80 mm, and the surface is coated by electroplating by applying current at a current density of 1 A/dm 2 at a temperature of 20°C (bath temperature). formed a layer.
[Snめっき(表1に記載される表面被覆層の種類がSnの場合)]
 電気めっき液(b)として、スズ(Sn)金属の濃度として80g/Lの金属濃度である硫酸スズと、50mL/Lの硫酸と、5mL/LのUTB513Yと、を含む水溶液を調製した。内径80mmの筒状のめっき電解槽に1Lの電気めっき液(b)を入れて、20℃の温度(浴温)で、5A/dmの電流密度で通電することで、電気めっきにより表面被覆層を形成した。
[Sn plating (when the type of surface coating layer listed in Table 1 is Sn)]
As the electroplating solution (b), an aqueous solution containing tin sulfate having a tin (Sn) metal concentration of 80 g/L, 50 mL/L sulfuric acid, and 5 mL/L UTB513Y was prepared. 1 L of electroplating solution (b) is placed in a cylindrical plating electrolytic bath with an inner diameter of 80 mm, and a current density of 5 A/dm 2 is applied at a temperature of 20°C (bath temperature) to coat the surface by electroplating. formed a layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<最大高さ粗さ(Rz)と粗さ曲線要素の平均長さ(RSm)の測定>
 形状解析レーザ顕微鏡(KEYENCE社製;VK-X1000)を用い、得られたリードフレーム材の表面被膜について、測定倍率50倍、測定回数n=5(回)の測定条件により、圧延直角方向および圧延平行方向のJIS B0681-2:2018(ISO 25178)に規定される、圧延直角方向の第1最大高さ粗さRzxと第1粗さ曲線要素の平均長さRSmx、および圧延平行方向の第2最大高さ粗さRzyと第2粗さ曲線要素の平均長さRSmyを測定した。
<Measurement of maximum height roughness (Rz) and average length of roughness curve element (RSm)>
Using a shape analysis laser microscope (manufactured by KEYENCE; VK-X1000), the surface coating of the obtained lead frame material was measured in the direction perpendicular to the rolling direction and under the measurement conditions of a measurement magnification of 50 times and the number of measurements n = 5 (times). The first maximum height roughness Rzx in the direction perpendicular to rolling, the average length RSmx of the first roughness curve element, and the second The maximum height roughness Rzy and the average length RSmy of the second roughness curve element were measured.
 測定した第1最大高さ粗さRzxと第1粗さ曲線要素の平均長さRSmxの値から比X(Rzx/RSmx)を算出した。また、測定した第2高さ粗さRzyと第2粗さ曲線要素の平均長さRSmyの比Y(Rzy/RSmy)を算出した。さらに、算出したXおよびYからX/Y比を算出した。求めた各数値は、表2に示す。 The ratio X (Rzx/RSmx) was calculated from the values of the measured first maximum height roughness Rzx and the average length RSmx of the first roughness curve element. Moreover, the ratio Y (Rzy/RSmy) of the measured second height roughness Rzy and the average length RSmy of the second roughness curve element was calculated. Furthermore, the X/Y ratio was calculated from the calculated X and Y. The obtained numerical values are shown in Table 2.
<粗化層の平均厚さの測定>
 リードフレーム材の断面をミクロトーム加工し、走査型電子顕微鏡(SEM)を用いて20000倍の倍率で観察し、粗化層の平均厚さ(μm)を測定した。粗化層の断面SEM画像の中から無作為に10個の粗化粒子を選択し、導電性基体と粗化層の境界線から、粗化粒子の頂点までの厚さの平均値を粗化層の平均厚さとした。1つの断面SEM画像から10個の粗化粒子の頂点を観察することができない場合には、撮影箇所の異なる断面SEM画像を2~3枚用いて、粗化層の平均厚さを求めた。測定した値は、表2に示す。
<Measurement of average thickness of roughened layer>
A cross section of the lead frame material was processed with a microtome and observed at a magnification of 20,000 times using a scanning electron microscope (SEM) to measure the average thickness (μm) of the roughened layer. Randomly select 10 roughening particles from the cross-sectional SEM image of the roughening layer, and roughen the average value of the thickness from the boundary line between the conductive substrate and the roughening layer to the top of the roughening particles. It was taken as the average thickness of the layer. When the vertices of the 10 roughened particles could not be observed from one cross-sectional SEM image, the average thickness of the roughened layer was determined using two to three cross-sectional SEM images taken at different locations. The measured values are shown in Table 2.
<表面被覆層の厚さの測定>
 表面被覆層の厚さは、JIS H8501:1999に準拠した蛍光X線式試験方法によって測定した。具体的には、蛍光X線膜厚計(エスアイアイ・ナノテクノロジー社製;SFT9400)を用い、コリメータ径0.5mmとして、各層の任意の10箇所を測定し、これらの測定値の平均値を算出することで、表面被覆層の厚さ(μm)を得た。測定した値は、表2に示す。
<Measurement of surface coating layer thickness>
The thickness of the surface coating layer was measured by a fluorescent X-ray test method based on JIS H8501:1999. Specifically, using a fluorescent X-ray film thickness meter (manufactured by SII Nanotechnology, Inc.; SFT9400), with a collimator diameter of 0.5 mm, measurements were taken at 10 arbitrary locations on each layer, and the average value of these measured values was calculated. By calculating, the thickness (μm) of the surface coating layer was obtained. The measured values are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<テープ剥離試験>
 リードフレーム材を50mm角に切り出し、JIS H 8504に規定されるテープ剥離試験を実施し、試験前後の重量減少分を脱離量(mg/dm)として測定した。脱離量について、5mg/dm未満であった場合を粉落ちが少なく、導電性基体に対する粗化層の密着性が優れているとして「◎(優)」と評価した。また、脱離量が5mg/dm以上15mg/dm未満であった場合を、粉落ちが多少認められるものの、導電性基体に対する粗化層の密着性が良好であるとして「〇(良)」と評価した。他方で、脱離量が15mg/dm以上であった場合を、粉落ちが多く、導電性基体に対する粗化層の密着性が劣るとして「×(不可)」と評価した。
<Tape peel test>
The lead frame material was cut into 50 mm square pieces, a tape peeling test specified in JIS H 8504 was conducted, and the weight loss before and after the test was measured as the amount of detachment (mg/dm 2 ). Regarding the amount of detachment, when the amount was less than 5 mg/dm 2 , it was evaluated as "◎ (Excellent)" as there was little powder falling and the adhesion of the roughened layer to the conductive substrate was excellent. In addition, cases where the amount of detachment was 5 mg/dm2 or more and less than 15 mg/ dm2 were evaluated as "Good", indicating that the adhesion of the roughened layer to the conductive substrate was good, although some powder falling was observed. ” On the other hand, when the amount of desorption was 15 mg/dm 2 or more, there was a lot of powder falling off and the adhesion of the roughened layer to the conductive substrate was poor, and it was evaluated as "x (unsatisfactory)".
<曲げ試験>
 リードフレーム材を30mm×10mmに切り出し、圧延直角方向に曲げ加工を実施した。曲げ加工の条件は、曲げ幅10mm、曲げ角度90度で、(曲げ加工治具の)曲げ半径Rを0.00mm、0.05mm、0.10mm、または0.20mmとして、試作回数3回で外曲げと内曲げをそれぞれ実施した。なお、表面被膜が形成されている面を外側になるようにして90度曲げたときを外曲げとし、表面被膜が形成されている面を内側になるようにして90度曲げたときを内曲げとする。加工後の曲げ部の粗化層の脱離状態を目視にて確認を行い、外曲げと内曲げのいずれの場合も、脱離が生じていない最小の曲げ半径Rが0.00mm、または0.05mmであるものを曲げ加工性が優れているとして「◎(優)」、外曲げと内曲げの少なくとも一方が、脱離が生じていない最小の曲げ半径Rが0.05mmよりも大きかったものの、0.10mmであるものを曲げ加工性が良好であるとして「〇(良)」と評価した。他方で、脱離が生じていない最小の曲げ半径Rが0.20mmであるものを曲げ加工時に粗化層の脱離が生じやすい点で望ましくないとして「×(不可)」と評価した。
<Bending test>
A lead frame material was cut out to a size of 30 mm x 10 mm, and bent in a direction perpendicular to rolling. The bending conditions were a bending width of 10 mm, a bending angle of 90 degrees, and a bending radius R (of the bending jig) of 0.00 mm, 0.05 mm, 0.10 mm, or 0.20 mm, and the number of prototypes was 3 times. External bending and internal bending were performed respectively. In addition, when bent 90 degrees with the side on which the surface coating is formed facing outward, it is called an outward bend. When bent 90 degrees with the side on which the surface coating is formed on the inside, it is called an inside bend. shall be. Visually check the detachment state of the roughened layer on the bent part after processing, and in both cases of outward bending and inward bending, the minimum bending radius R at which no detachment occurs is 0.00 mm or 0. .05mm is considered to have excellent bending workability and is rated "◎ (Excellent)", and the minimum bending radius R at which no detachment occurs in at least one of the outer bending and inner bending is larger than 0.05 mm. However, those with a thickness of 0.10 mm were evaluated as "Good" because they had good bending workability. On the other hand, a sample in which the minimum bending radius R at which no detachment occurred was 0.20 mm was evaluated as "x (unacceptable)" as it was considered undesirable because the roughened layer was likely to detach during bending.
<樹脂密着性試験>
 リードフレーム材について、トランスファーモールド試験装置(コータキ精機社製;Model FTS)を用いて、半導体封止用のエポキシ樹脂(スミコンG630L;住友ベークライト社製)を表面被膜に射出成形して、図6に示すように、直径2.6mmの接触面を有する円錐台状のモールド樹脂片20を、リードフレーム材の試験片11aの表面被膜に密着させた。試験片11aの表面被膜に密着させたモールド樹脂片20について、85℃、85%RHで168時間保持する高温高湿試験を行った後、シェア強度(せん断強度)を測定する試験を行い、リードフレーム材の試験片11aとモールド樹脂片20の密着性を評価した。ここで、シェア強度(せん断強度)の測定条件は、以下のとおりである。
<Resin adhesion test>
For the lead frame material, an epoxy resin for semiconductor encapsulation (Sumicon G630L; manufactured by Sumitomo Bakelite Co., Ltd.) was injection molded onto the surface film using a transfer mold test device (manufactured by Kotaki Seiki Co., Ltd.; Model FTS), and the surface film was as shown in Figure 6. As shown, a truncated cone-shaped molded resin piece 20 having a contact surface with a diameter of 2.6 mm was brought into close contact with the surface coating of a test piece 11a of lead frame material. The molded resin piece 20 that was brought into close contact with the surface coating of the test piece 11a was subjected to a high temperature and high humidity test held at 85° C. and 85% RH for 168 hours, and then a test was conducted to measure the shear strength. The adhesion between the frame material test piece 11a and the molded resin piece 20 was evaluated. Here, the measurement conditions for shear strength (shear strength) are as follows.
測定装置:ノードソン・アドバンスト・テクノロジー社製;4000Plus
ロードセル:50KG
測定レンジ:10kg
テストスピード:100μm/s
テスト高さ:10μm
評価試験回数:4回
Measuring device: Nordson Advanced Technology; 4000Plus
Load cell: 50KG
Measuring range: 10kg
Test speed: 100μm/s
Test height: 10μm
Number of evaluation tests: 4 times
 高温高湿試験後のシェア強度について、25MPa以上であった場合を、樹脂との密着性が優れているとして「◎(優)」と評価した。他方で、高温高湿試験後のシェア強度について、20MPa以上25MPa未満であった場合を、樹脂との密着強度が良好であるとして「〇(良)」と評価した。また、高温高湿試験後のシェア強度について、20MPa未満であった場合を、樹脂との密着強度が劣るとして「×(不可)」と評価した。シェア強度の測定結果と評価は、表3に示した。 Regarding the shear strength after the high temperature and high humidity test, cases where the shear strength was 25 MPa or more were evaluated as "◎ (excellent)", indicating that the adhesiveness with the resin was excellent. On the other hand, when the shear strength after the high temperature and high humidity test was 20 MPa or more and less than 25 MPa, the adhesion strength with the resin was evaluated as "Good", indicating that the adhesive strength with the resin was good. Furthermore, when the shear strength after the high temperature and high humidity test was less than 20 MPa, the adhesive strength with the resin was considered to be poor and was evaluated as "x (unsatisfactory)". The measurement results and evaluation of shear strength are shown in Table 3.
<総合評価>
 上記のテープ剥離試験、曲げ試験、および樹脂密着性試験の結果から、総合評価を行なった。総合評価の評価基準は以下に示すとおりである。
<Comprehensive evaluation>
A comprehensive evaluation was performed based on the results of the tape peel test, bending test, and resin adhesion test described above. The evaluation criteria for the comprehensive evaluation are as shown below.
[総合評価の評価基準]
 ◎(優):テープ剥離試験、曲げ試験、および樹脂密着性試験の評価結果がいずれも◎(優)である場合
 〇(良):テープ剥離試験、曲げ試験、および樹脂密着性試験の評価結果の少なくとも1つが〇(良)であり、×(不可)を含まない場合
 ×(不可):テープ剥離試験、曲げ試験、および樹脂密着性試験の評価結果の少なくとも1つが×(不可)である場合
[Evaluation criteria for comprehensive evaluation]
◎ (Excellent): When the evaluation results of the tape peel test, bending test, and resin adhesion test are all ◎ (Excellent). 〇 (Good): Evaluation results of the tape peel test, bending test, and resin adhesion test. When at least one of the evaluation results of the tape peel test, bending test, and resin adhesion test is × (unacceptable).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3の結果から、表面被膜を有し、X/Y比が1.20以上2.00以下である実施例1~13に係るリードフレーム材は、テープ剥離試験、曲げ試験、およびシェア強度の測定のいずれにおいても「◎(優)」または「〇(良)」であり、総合評価も「◎(優)」または「〇(良)」であった。高温及び高湿環境における樹脂密着性を改善でき、かつ、加工時に粉落ちを防止できる好適なリードフレーム材であった。このことから実施例1~12は、半導体パッケージの材料として好適であると考えられる。 From the results in Tables 1 to 3, the lead frame materials according to Examples 1 to 13 having a surface coating and an X/Y ratio of 1.20 to 2.00 were tested in a tape peel test, a bending test, and In all measurements of shear strength, it was ``◎ (excellent)'' or ``〇 (good)'', and the overall evaluation was also ``◎ (excellent)'' or "〇 (good)". It was a suitable lead frame material that could improve resin adhesion in high temperature and high humidity environments and prevent powder from falling off during processing. From this, Examples 1 to 12 are considered to be suitable as materials for semiconductor packages.
 他方で、比較例1および比較例2は、粗化層を有していないため、シェア強度が「×(不可)」であり、リードフレーム材として、樹脂との密着性に優れたものではなかった。また、比較例3~6は、X/Y比が本発明の範囲外であるため、曲げ試験の結果が外曲げおよび内曲げともに「×(不可)」であり、加工時に粗化層の脱離が起こりやすく加工性に優れたものではなかった。 On the other hand, Comparative Example 1 and Comparative Example 2 do not have a roughened layer, so the shear strength is "x (unacceptable)" and they do not have excellent adhesion with resin as lead frame materials. Ta. In addition, in Comparative Examples 3 to 6, the X/Y ratio is outside the range of the present invention, so the bending test results are "x (impossible)" for both outer bending and inner bending, and the roughened layer is removed during processing. Separation easily occurred and workability was not excellent.
 10   リードフレーム材
 11   導電性基体
 12   粗化層
 13   表面被覆層
 14   表面被膜
 20   モールド樹脂片
 100  電気めっき装置
 101  めっき電解槽
 102  循環ポンプ
 103  流路(または排出管)
 104  流路(または流入管)
 105  吊部材
 111  導電性基体用板材
10 Lead frame material 11 Conductive substrate 12 Roughening layer 13 Surface coating layer 14 Surface coating 20 Molded resin piece 100 Electroplating device 101 Plating electrolytic cell 102 Circulation pump 103 Flow path (or discharge pipe)
104 Channel (or inflow pipe)
105 Hanging member 111 Plate material for conductive substrate

Claims (10)

  1.  導電性基体と、前記導電性基体の表面の少なくとも一部に形成される表面被膜と、を有するリードフレーム材であって、
     前記表面被膜は粗化層を含み、
     前記表面被膜の表面について、前記導電性基体の圧延方向に対して直交する方向である圧延直角方向(x方向)に沿って第1最大高さ粗さRzxと第1粗さ曲線要素の平均長さRSmxをそれぞれ測定するとともに、
    前記導電性基体の圧延方向と平行な方向である圧延平行方向(y方向)に沿って第2最大高さ粗さRzyと第2粗さ曲線要素の平均長さRSmyをそれぞれ測定し、
    前記第1粗さ曲線要素の平均長さRSmxに対する第1最大高さ粗さRzxの比Rzx/RSmxをX、前記第2粗さ曲線要素の平均長さRSmyに対する第2最大高さ粗さRzyの比Rzy/RSmyをYとするとき、
     前記Yに対する前記Xの比X/Yが1.20以上2.00以下の範囲である、リードフレーム材。
    A lead frame material comprising an electrically conductive substrate and a surface coating formed on at least a portion of the surface of the electrically conductive substrate,
    The surface coating includes a roughening layer,
    Regarding the surface of the surface coating, a first maximum height roughness Rzx and an average length of the first roughness curve element along the rolling direction (x direction) that is perpendicular to the rolling direction of the conductive substrate. While measuring each RSmx,
    A second maximum height roughness Rzy and an average length RSmy of the second roughness curve element are respectively measured along the rolling parallel direction (y direction) which is a direction parallel to the rolling direction of the conductive substrate,
    The ratio Rzx/RSmx of the first maximum height roughness Rzx to the average length RSmx of the first roughness curve element is X, and the second maximum height roughness Rzy to the average length RSmy of the second roughness curve element When the ratio Rzy/RSmy is Y,
    A lead frame material, wherein the ratio X/Y of the X to the Y is in the range of 1.20 or more and 2.00 or less.
  2.  前記Xが0.10以上0.50以下であり、かつ、前記Yが0.07以上0.40以下である、請求項1に記載のリードフレーム材。 The lead frame material according to claim 1, wherein the X is 0.10 or more and 0.50 or less, and the Y is 0.07 or more and 0.40 or less.
  3.  前記第1最大高さ粗さRzxおよび前記第2最大高さ粗さRzyは、いずれも2.0μm以上9.0μm以下の範囲である、請求項1に記載のリードフレーム材。 The lead frame material according to claim 1, wherein the first maximum height roughness Rzx and the second maximum height roughness Rzy are both in a range of 2.0 μm or more and 9.0 μm or less.
  4.  前記導電性基体は、銅、鉄もしくはアルミニウム、または前記銅、鉄およびアルミニウムの群から選択される少なくとも1種の元素を含む合金からなる、請求項1に記載のリードフレーム材。 The lead frame material according to claim 1, wherein the conductive substrate is made of copper, iron, aluminum, or an alloy containing at least one element selected from the group of copper, iron, and aluminum.
  5.  前記粗化層は、銅もしくはニッケル、または前記銅およびニッケルの群から選択される少なくとも1種の元素を含む合金からなる、請求項1に記載のリードフレーム材。 The lead frame material according to claim 1, wherein the roughened layer is made of copper, nickel, or an alloy containing at least one element selected from the group of copper and nickel.
  6.  前記粗化層が、電気めっき層である、請求項1に記載のリードフレーム材。 The lead frame material according to claim 1, wherein the roughened layer is an electroplated layer.
  7.  前記表面被膜は、前記粗化層の表面に形成される少なくとも1層の表面被覆層をさらに有する、請求項1に記載のリードフレーム材。 The lead frame material according to claim 1, wherein the surface coating further includes at least one surface coating layer formed on the surface of the roughened layer.
  8.  前記表面被覆層は、前記粗化層とは異なる組成を有する、少なくとも1層以上の金属または合金からなる層であって、銅、ニッケル、コバルト、パラジウム、ロジウム、ルテニウム、白金、イリジウム、金、銀、スズもしくはインジウム、または前記銅、ニッケル、コバルト、パラジウム、ロジウム、ルテニウム、白金、イリジウム、金、銀、スズおよびインジウムの群から選択される少なくとも1種の元素を含む合金からなる、請求項7に記載のリードフレーム材。 The surface coating layer is a layer made of at least one metal or alloy having a composition different from that of the roughening layer, and includes copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, Claim consisting of silver, tin or indium, or an alloy containing at least one element selected from the group of copper, nickel, cobalt, palladium, rhodium, ruthenium, platinum, iridium, gold, silver, tin and indium. 7. The lead frame material described in 7.
  9.  請求項1~8のいずれか1項に記載のリードフレーム材の製造方法であって、
     電気めっきにより前記粗化層を形成する粗化工程を有する、リードフレーム材の製造方法。
    A method for manufacturing a lead frame material according to any one of claims 1 to 8, comprising:
    A method for manufacturing a lead frame material, comprising a roughening step of forming the roughened layer by electroplating.
  10.  請求項1~8のいずれか1項に記載のリードフレーム材を用いて形成したリードフレームを有する、半導体パッケージ。 A semiconductor package comprising a lead frame formed using the lead frame material according to any one of claims 1 to 8.
PCT/JP2023/007031 2022-04-04 2023-02-27 Lead frame material, method for producing same, and semiconductor package using lead frame material WO2023195267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023534982A JP7366480B1 (en) 2022-04-04 2023-02-27 Lead frame material and its manufacturing method, and semiconductor package using lead frame material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022062297 2022-04-04
JP2022-062297 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023195267A1 true WO2023195267A1 (en) 2023-10-12

Family

ID=88242895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007031 WO2023195267A1 (en) 2022-04-04 2023-02-27 Lead frame material, method for producing same, and semiconductor package using lead frame material

Country Status (3)

Country Link
JP (1) JP7366480B1 (en)
TW (1) TW202342826A (en)
WO (1) WO2023195267A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
JP2009226435A (en) * 2008-03-21 2009-10-08 Kobe Steel Ltd Copper alloy sheet for electronic part which is small in reflection anisotropy
JP2014189856A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Copper alloy strip for led lead frame
WO2015029211A1 (en) * 2013-08-30 2015-03-05 古河電気工業株式会社 Base body for optical semiconductor device lead frame, method for manufacturing base body for optical semiconductor device lead frame, optical semiconductor device lead frame using base body for optical semiconductor device lead frame, and method for manufacturing optical semiconductor device lead frame, and optical semiconductor device
WO2018012297A1 (en) * 2016-07-12 2018-01-18 古河電気工業株式会社 Rolled copper alloy material, production method therefor and electrical/electronic part
JP2019112707A (en) * 2017-12-26 2019-07-11 古河電気工業株式会社 Aluminum-based plating treatment material and production method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
JP2009226435A (en) * 2008-03-21 2009-10-08 Kobe Steel Ltd Copper alloy sheet for electronic part which is small in reflection anisotropy
JP2014189856A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Copper alloy strip for led lead frame
WO2015029211A1 (en) * 2013-08-30 2015-03-05 古河電気工業株式会社 Base body for optical semiconductor device lead frame, method for manufacturing base body for optical semiconductor device lead frame, optical semiconductor device lead frame using base body for optical semiconductor device lead frame, and method for manufacturing optical semiconductor device lead frame, and optical semiconductor device
WO2018012297A1 (en) * 2016-07-12 2018-01-18 古河電気工業株式会社 Rolled copper alloy material, production method therefor and electrical/electronic part
JP2019112707A (en) * 2017-12-26 2019-07-11 古河電気工業株式会社 Aluminum-based plating treatment material and production method thereof

Also Published As

Publication number Publication date
JPWO2023195267A1 (en) 2023-10-12
TW202342826A (en) 2023-11-01
JP7366480B1 (en) 2023-10-23

Similar Documents

Publication Publication Date Title
TWI699458B (en) Lead frame material and manufacturing method thereof
TWI751150B (en) Lead frame material and manufacturing method thereof
CN104152959B (en) Film-plating method
KR102482396B1 (en) Lead frame material and its manufacturing method and semiconductor package
JP7366480B1 (en) Lead frame material and its manufacturing method, and semiconductor package using lead frame material
JP5766318B2 (en) Lead frame
KR102565186B1 (en) Conductive materials, molded articles and electronic components
JP2014123760A5 (en)
JP7178530B1 (en) Lead frame material, manufacturing method thereof, and semiconductor package
WO2023286697A1 (en) Lead frame material and method for producing same, and semiconductor package
JP6805217B2 (en) Conductive materials, molded products and electronic components
TWI788542B (en) Lead frame material, manufacturing method thereof, and semiconductor package using the lead frame material
JP2022148743A (en) Conductive material, molded article and electronic component
JP5508329B2 (en) Lead frame
JP2022085602A (en) Plating material and electronic component
KR100231825B1 (en) Lead frame for semiconductor
JP2024021122A (en) Lead frame material, lead frame material manufacturing method, and semiconductor package
JPH09291375A (en) Article with coating film on iron substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023534982

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784560

Country of ref document: EP

Kind code of ref document: A1