JP2022085602A - Plating material and electronic component - Google Patents

Plating material and electronic component Download PDF

Info

Publication number
JP2022085602A
JP2022085602A JP2020197367A JP2020197367A JP2022085602A JP 2022085602 A JP2022085602 A JP 2022085602A JP 2020197367 A JP2020197367 A JP 2020197367A JP 2020197367 A JP2020197367 A JP 2020197367A JP 2022085602 A JP2022085602 A JP 2022085602A
Authority
JP
Japan
Prior art keywords
plating
plating layer
layer
noble metal
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020197367A
Other languages
Japanese (ja)
Inventor
康則 佐々木
Yasunori Sasaki
高広 川村
Takahiro Kawamura
豊 高橋
Yutaka Takahashi
良聡 小林
Yoshiaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020197367A priority Critical patent/JP2022085602A/en
Publication of JP2022085602A publication Critical patent/JP2022085602A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a plating material and an electronic component that have excellent solder wettability and resin adhesion.SOLUTION: A plating material forming a resin on a surface or sealing a surface with a resin has a conductive substrate, a roughened plating layer arranged on the conductive substrate, and a noble metal plating layer arranged on the roughened plating layer. If an area indicated by a hue larger than 30% of the maximum detection intensity of the outermost surface layer component of the noble metal plating layer when mapping analysis is conducted by EPMA with an observation magnification of 50000x from the side of the noble metal plating layer is defined as a coated area with the outermost surface layer component, the coverage of the outermost surface layer component for the surface of the plating material is at least 70% of the observation visual field area.SELECTED DRAWING: Figure 1

Description

本発明は、めっき材料及び電子部品に関する。 The present invention relates to plating materials and electronic components.

近年、金属材料と樹脂との複合体において、これらの密着性の改善要望が増加している。特に、車載向けについては過酷なエンジンルーム周りでの電子化が進むことで、より一層の密着性向上が求められている。 In recent years, there has been an increasing demand for improving the adhesion of a composite of a metal material and a resin. In particular, for in-vehicle use, further improvement in adhesion is required due to the progress of digitization around the harsh engine room.

このような背景から、樹脂封止型半導体装置におけるリードフレームとモールド樹脂との密着性を高めるために、リードフレームのめっき表面を粗化する技術が提案されている(特許文献1、特許文献2、特許文献3)。 Against this background, in order to improve the adhesion between the lead frame and the mold resin in the resin-sealed semiconductor device, a technique for roughening the plated surface of the lead frame has been proposed (Patent Documents 1 and 2). , Patent Document 3).

これら従来技術を適用することにより、JEDEC-LEVEL1等の高温高湿試験において樹脂密着性が改善している。しかしながら、半導体チップを搭載する箇所においては、チップを半田接合やダイボンディングによる接合を行う必要があるところ、半田濡れ性を粗化めっきが阻害してしまう現象が知られている。そこで、例えば、特許文献4では、アウターリード部などの半田接合性が必要な箇所は、粗化しないような構成が提案されている。 By applying these conventional techniques, the resin adhesion is improved in the high temperature and high humidity test of JEDEC-LEVEL1 and the like. However, in a place where a semiconductor chip is mounted, it is necessary to bond the chips by solder bonding or die bonding, and it is known that rough plating hinders solder wettability. Therefore, for example, Patent Document 4 proposes a configuration in which a portion such as an outer lead portion that requires solder bondability is not roughened.

また、半田濡れ性を改善する手法として、特許文献5には、粗化めっきの表面に、パラジウムめっきや金めっきを形成する技術が開示されている。 Further, as a method for improving the solder wettability, Patent Document 5 discloses a technique for forming palladium plating or gold plating on the surface of roughened plating.

特開平6-29439号公報Japanese Unexamined Patent Publication No. 6-29439 特開平10-27873号公報Japanese Unexamined Patent Publication No. 10-27873 特開2006-93559号公報Japanese Unexamined Patent Publication No. 2006-93559 特開2008-103455号公報Japanese Unexamined Patent Publication No. 2008-103455 特開平4-115558号公報Japanese Unexamined Patent Publication No. 4-115558

特に電子部品のチップ搭載部においては、チップの汚染を防止する目的でフラックス残渣を低減するニーズが高まっており、低残渣フラックスもしくはフラックスフリーでの実装性について検討が進められている。その改善方法として、例えば、導電性基材の表面をパラジウムめっきや金めっきなどの貴金属めっきで被覆する方法がある。 In particular, in the chip mounting portion of electronic components, there is an increasing need to reduce flux residue for the purpose of preventing chip contamination, and studies are being conducted on low-residue flux or flux-free mountability. As an improvement method, for example, there is a method of coating the surface of the conductive base material with noble metal plating such as palladium plating or gold plating.

しかしながら、貴金属めっきは、厚さが薄くなる傾向にある。そのため、導電性基材に粗化めっき層を設けたとき、当該粗化めっき層上に薄い貴金属めっきを施すと、粗化めっきの凹凸の凸部に電流が集中し、凹部に貴金属めっきが形成されず、粗化めっき層の露出が生じる。そして、本発明者らは、このように粗化めっき層の露出部が酸化することで、半田濡れ性が悪くなることを突き止めた。また、低残渣フラックス含有の半田を使用しためっき材料の半田濡れ性が、上述の状況において特に悪化することが分かった。 However, precious metal plating tends to be thinner. Therefore, when a roughened plating layer is provided on a conductive substrate, if a thin noble metal plating is applied on the roughened plating layer, a current concentrates on the convex portions of the unevenness of the roughened plating, and the noble metal plating is formed on the concave portions. However, the roughened plating layer is exposed. Then, the present inventors have found that the solder wettability deteriorates due to the oxidation of the exposed portion of the roughened plating layer in this way. It was also found that the solder wettability of the plating material using the solder containing a low residual flux was particularly deteriorated in the above situation.

これらの課題を解決する手段として、上述の特許文献4に開示される技術のように、半田接合が必要な箇所に粗化処理をしない、換言すれば、金属材料の樹脂によって被覆される部分にのみ粗化処理を施すことも考えられる。しかしながら、局所的な粗化処理では粗度が低くなってしまい、樹脂密着性を確保することが難しくなり得る。 As a means for solving these problems, unlike the technique disclosed in Patent Document 4 described above, the portion where solder bonding is required is not roughened, in other words, the portion of the metal material covered with the resin is used. It is also conceivable to perform roughening treatment only. However, in the local roughening treatment, the roughness becomes low, and it may be difficult to secure the resin adhesion.

本発明は上記の課題を解決するためになされたものであり、半田濡れ性および樹脂密着性が良好な、めっき材料及び電子部品を提供することを課題とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a plating material and an electronic component having good solder wettability and resin adhesion.

本発明者らは、鋭意検討の結果、導電性基材上に粗化めっき層と貴金属めっき層とを形成し、貴金属めっき層のめっき材料の表面に対する所定の被覆率を制御することで、上記課題を解決することができることを見出した。 As a result of diligent studies, the present inventors have formed a roughened plating layer and a noble metal plating layer on a conductive substrate, and controlled the predetermined coverage of the noble metal plating layer on the surface of the plating material. We found that we could solve the problem.

以上の知見を基礎として完成した本発明の実施形態は一側面において、表面に樹脂を成型する、または、表面を樹脂で封止するめっき材料であって、導電性基材と、前記導電性基材上に設けられた粗化めっき層と、前記粗化めっき層上に設けられた貴金属めっき層と、を有するめっき材料であり、前記貴金属めっき層側から観察倍率50000倍のEPMAによるマッピング分析を実施したときの、前記貴金属めっき層の最表層成分の最大検出強度の30%以上の色調で示される箇所を前記最表層成分による被覆箇所と定義した場合に、前記めっき材料の表面に対する前記最表層成分の被覆率が、観察視野面積の70%以上である、めっき材料である。 An embodiment of the present invention completed based on the above findings is a plating material on which a resin is molded on the surface or the surface is sealed with a resin on one side, and is a conductive base material and the conductive group. It is a plating material having a roughened plating layer provided on the material and a noble metal plating layer provided on the roughened plating layer, and mapping analysis by EPMA with an observation magnification of 50,000 times from the noble metal plating layer side is performed. When the portion indicated by the color tone of 30% or more of the maximum detection intensity of the outermost surface layer component of the noble metal plating layer at the time of implementation is defined as the coating portion by the outermost surface layer component, the outermost surface layer with respect to the surface of the plating material is defined. A plating material having a component coverage of 70% or more of the observation field area.

本発明のめっき材料は一実施形態において、前記貴金属めっき層側から測定した算術平均粗さSaが0.1~0.3μmである。 In one embodiment, the plating material of the present invention has an arithmetic mean roughness Sa measured from the noble metal plating layer side of 0.1 to 0.3 μm.

本発明のめっき材料は別の一実施形態において、前記貴金属めっき層の平均厚さが、0.006~0.1μmである。 In another embodiment, the plating material of the present invention has an average thickness of the precious metal plating layer of 0.006 to 0.1 μm.

本発明のめっき材料は更に別の一実施形態において、前記貴金属めっき層が、パラジウムめっき及び金めっきからなる。 In still another embodiment of the plating material of the present invention, the noble metal plating layer comprises palladium plating and gold plating.

本発明のめっき材料は更に別の一実施形態において、前記貴金属めっき層が、前記粗化めっき層上に設けられた、平均厚さ0.005~0.05μmのパラジウムめっき層、及び、前記パラジウムめっき層上に設けられた、平均厚さ0.001~0.05μmの金めっき層からなる。 In still another embodiment, the plating material of the present invention comprises a palladium plating layer having an average thickness of 0.005 to 0.05 μm, wherein the noble metal plating layer is provided on the roughened plating layer, and the palladium. It is composed of a gold plating layer having an average thickness of 0.001 to 0.05 μm provided on the plating layer.

本発明のめっき材料は更に別の一実施形態において、前記貴金属めっき層の表面に、チオール化合物を含む。 In yet another embodiment, the plating material of the present invention contains a thiol compound on the surface of the noble metal plating layer.

本発明の実施形態は別の一側面において、本発明の実施形態に係るめっき材料を備えた電子部品である。 In another aspect, an embodiment of the present invention is an electronic component provided with a plating material according to the embodiment of the present invention.

本発明の実施形態によれば、半田濡れ性および樹脂密着性が良好な、めっき材料及び電子部品を提供することができる。 According to the embodiment of the present invention, it is possible to provide a plating material and an electronic component having good solder wettability and resin adhesion.

(A)は、本発明の実施形態に係るめっき材料の断面模式図である。(B)は、(A)で示す点線枠で囲まれた箇所の拡大模式図である。(A) is a schematic cross-sectional view of a plating material according to an embodiment of the present invention. (B) is an enlarged schematic view of a portion surrounded by a dotted line frame shown in (A).

以下、本発明のめっき材料及び電子部品の実施形態について説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the plating material and electronic parts of the present invention will be described, but the present invention is not construed as being limited thereto, and is based on the knowledge of those skilled in the art as long as it does not deviate from the scope of the present invention. Therefore, various changes, corrections, and improvements can be made.

<めっき材料の構成>
図1(A)に、本発明の実施形態に係るめっき材料の断面模式図を示す。また、図1(B)に、図1(A)で示す点線枠で囲まれた箇所の拡大模式図を示す。本発明の実施形態に係るめっき材料は、表面に樹脂を成型する、または、表面を樹脂で封止するめっき材料であって、導電性基材と、導電性基材上に設けられた粗化めっき層と、粗化めっき層上に設けられた貴金属めっき層とを有する。
<Composition of plating material>
FIG. 1A shows a schematic cross-sectional view of the plating material according to the embodiment of the present invention. Further, FIG. 1B shows an enlarged schematic view of the portion surrounded by the dotted line frame shown in FIG. 1A. The plating material according to the embodiment of the present invention is a plating material for molding a resin on the surface or sealing the surface with a resin, and is a conductive base material and a roughening provided on the conductive base material. It has a plating layer and a noble metal plating layer provided on the roughened plating layer.

(導電性基材)
導電性基材としては、特に限定されないが、例えば、銅、銅合金、鉄、鉄合金、ステンレス、42アロイなどが好適に用いられ、中でも導電率や強度の観点から、銅、銅合金が好ましく、さらにリン青銅、黄銅、コルソン銅、無酸素銅、タフピッチ銅などがより好ましい。具体的な銅合金の一例として銅開発協会(CDA)に規定される、C11000、C10200、C19400、C70250、C26000、C52100を導電性基材として用いることができる。また、金属基材に樹脂層を複合させたものであっても良い。金属基材に樹脂層を複合させたものとは、例としてFPCまたはFFC基材上の電極部分などがある。
(Conductive base material)
The conductive base material is not particularly limited, but for example, copper, copper alloy, iron, iron alloy, stainless steel, 42 alloy and the like are preferably used, and among them, copper and copper alloy are preferable from the viewpoint of conductivity and strength. Further, phosphorus bronze, brass, Corson copper, oxygen-free copper, tough pitch copper and the like are more preferable. As an example of a specific copper alloy, C11000, C10200, C19400, C70250, C26000, and C52100 specified by the Copper Development Association (CDA) can be used as the conductive substrate. Further, it may be a metal base material in which a resin layer is composited. Examples of the composite of the resin layer on the metal base material include an electrode portion on an FPC or FFC base material.

(粗化めっき層)
粗化めっき層は、樹脂と密着する箇所に設けられるとその効果を発揮し、アンカー効果により導電性基材と樹脂との密着状態を長期間に亘って保つことができる。粗化めっき層は、樹脂と密着する箇所のみでなく、良好な半田付け性が求められる箇所にも設けられてもよい。従来技術では、半田付け性を確保する箇所においては、粗化めっきは濡れ性が悪く好適ではないとされているが、本発明においてはその点を改善し、半田濡れ性を阻害することのないめっき材料が得られる。
(Roughened plating layer)
The roughened plating layer exerts its effect when it is provided at a position where it comes into close contact with the resin, and the anchor effect makes it possible to maintain the close contact state between the conductive base material and the resin for a long period of time. The roughened plating layer may be provided not only at a portion in close contact with the resin but also at a location where good solderability is required. In the prior art, rough plating is not suitable for ensuring solderability due to its poor wettability, but the present invention improves this point and does not impair solder wettability. A plating material is obtained.

粗化めっき層の種類としては、貴金属めっき層の下地層として効果を発揮するためニッケル、ニッケル合金、銅、銅合金が好ましく、特にニッケルおよびニッケル合金が好ましい。粗化めっき層の平均厚さについては特に制限するものではないが、例えば0.2~2μmで形成されていることが好ましい。粗化めっき層の平均厚さが0.2μm未満であると、樹脂密着性が低く長期信頼性に乏しくなる一方、2μm超であると生産性や後述の貴金属めっき被覆の割合が低くなりやすい。また、生産性や効果の観点から、粗化めっき層の平均厚さは、0.3~1.5μmであるのがより好ましく、0.5~1μmであるのが更により好ましい。 As the type of the roughened plating layer, nickel, nickel alloy, copper, and copper alloy are preferable, and nickel and nickel alloy are particularly preferable, because they are effective as a base layer of the noble metal plating layer. The average thickness of the roughened plating layer is not particularly limited, but it is preferably formed to be, for example, 0.2 to 2 μm. If the average thickness of the roughened plating layer is less than 0.2 μm, the resin adhesion is low and the long-term reliability is poor, while if it is more than 2 μm, the productivity and the ratio of the precious metal plating coating described later tend to be low. Further, from the viewpoint of productivity and effect, the average thickness of the roughened plating layer is more preferably 0.3 to 1.5 μm, and even more preferably 0.5 to 1 μm.

(貴金属めっき層)
貴金属めっき層は、主に半田濡れ性を改善するために形成される層であり、例えばパラジウム、パラジウム合金、金、金合金から形成され、特に耐熱性や半田濡れ性の観点から、粗化めっき層側から、パラジウムめっき、金めっきの順に構成されるのが好ましい。貴金属めっき層の平均厚さについては、特に制限するものではないが、コストや生産性、さらに半田濡れ性改善効果の観点から、薄く形成されることが好ましく、0.006~0.1μmで形成することができる。特に、耐熱性や省貴金属化の観点から、貴金属めっき層は、粗化めっき層上に設けられた、平均厚さ0.005~0.05μmのパラジウムめっき層、及び、パラジウムめっき層上に設けられた、平均厚さ0.001~0.05μmの金めっき層からなるのが好ましい。また、パラジウムめっき層の平均厚さは、0.01~0.03μmであるのがより好ましく、0.015~0.02μmであるのが更により好ましい。また、金めっき層の平均厚さは、0.003~0.03μmであるのがより好ましく、0.005~0.02μmであるのが更により好ましい。
(Precious metal plating layer)
The noble metal plating layer is a layer formed mainly for improving solder wettability, and is formed of, for example, palladium, palladium alloy, gold, or a gold alloy, and is roughened plating particularly from the viewpoint of heat resistance and solder wettability. From the layer side, it is preferable that the palladium plating and the gold plating are configured in this order. The average thickness of the noble metal plating layer is not particularly limited, but is preferably formed thin from the viewpoint of cost, productivity, and the effect of improving solder wettability, and is formed at 0.006 to 0.1 μm. can do. In particular, from the viewpoint of heat resistance and precious metal saving, the noble metal plating layer is provided on the palladium plating layer having an average thickness of 0.005 to 0.05 μm and the palladium plating layer provided on the roughened plating layer. It is preferably composed of a gold-plated layer having an average thickness of 0.001 to 0.05 μm. The average thickness of the palladium-plated layer is more preferably 0.01 to 0.03 μm, and even more preferably 0.015 to 0.02 μm. The average thickness of the gold-plated layer is more preferably 0.003 to 0.03 μm, and even more preferably 0.005 to 0.02 μm.

本発明の実施形態に係るめっき材料は、貴金属めっき層側から観察倍率50000倍のEPMA(電子プローブマイクロアナライザー:Electron Probe Micro Analyzer)によるマッピング分析を実施したときの、貴金属めっき層の最表層成分の最大検出強度の30%以上の色調で示される箇所を最表層成分による被覆箇所と定義した場合に、めっき材料の表面に対する最表層成分の被覆率が、観察視野面積の70%以上である。このような構成によれば、粗化めっき層の露出が抑制されることで、樹脂密着性は確保しながらも、良好な半田濡れ性を得ることができる。また、フラックス残渣の少ない、もしくはフラックスフリーの半田で実装を行っても、半田濡れ性および樹脂密着性が良好な、めっき材料が得られる。本発明の実施形態に係るめっき材料は、上述の最表層成分の被覆率が、観察視野面積の75%以上であるのが好ましく、80%以上であるのがより好ましい。 The plating material according to the embodiment of the present invention is a component of the outermost surface layer of the noble metal plating layer when mapping analysis is performed by EPMA (Electron Probe Micro Analyzer) with an observation magnification of 50,000 times from the noble metal plating layer side. When the portion indicated by the color tone of 30% or more of the maximum detection intensity is defined as the coating portion by the outermost layer component, the coverage ratio of the outermost layer component on the surface of the plating material is 70% or more of the observation field area. According to such a configuration, the exposure of the roughened plating layer is suppressed, so that good solder wettability can be obtained while ensuring resin adhesion. Further, even if mounting is performed with a solder having a small amount of flux residue or flux-free, a plating material having good solder wettability and resin adhesion can be obtained. In the plating material according to the embodiment of the present invention, the coverage of the above-mentioned outermost layer component is preferably 75% or more, and more preferably 80% or more of the observation field area.

上述の「めっき材料の表面に対する最表層成分の被覆率」については、貴金属めっき層が1種類の成分(例えば、パラジウムまたは金)で形成されている場合、当該1種類の成分の、めっき材料の表面に対する被覆率を示す。一方、貴金属めっき層が、下層にパラジウムめっき層、上層に金めっき層を有する場合、最表層成分は金となるため、当該金の、めっき材料の表面に対する被覆率を示す。 Regarding the above-mentioned "coating ratio of the outermost layer component on the surface of the plating material", when the noble metal plating layer is formed of one kind of component (for example, palladium or gold), the plating material of the one kind of component Shows the coverage on the surface. On the other hand, when the noble metal plating layer has a palladium plating layer as a lower layer and a gold plating layer as an upper layer, the outermost layer component is gold, and therefore, the coverage of the gold on the surface of the plating material is shown.

上述のめっき材料の表面に対する最表層成分の被覆率の測定方法の例としては、まず、めっき材料の貴金属めっき層側からEPMAによって観察倍率50000倍で観察する。なお、本発明者らが鋭意検討した結果、50000倍未満の倍率であると、粗化された凹部における検出強度を十分に検出できず、また50000倍を超える倍率となると、粗化凹凸の局所的な拡大部指標になってしまうことから、当該観察倍率を定めている。次に、最表層における貴金属成分をマッピングし、その色調において最大検出強度の30%以上の色調で示される箇所を「被覆箇所」として抽出し、その面積比を算出して、これを上述の「被覆率」と定義する。当該被覆率が低いと、その被覆されていない箇所が大気暴露の際に酸化し、その結果半田濡れ性を阻害する。また、上述の被覆率の測定は、めっき材料の貴金属めっき層側の表面において、任意の3箇所を選んで測定し、その平均値を算出する。 As an example of the above-mentioned method for measuring the coverage of the outermost layer component on the surface of the plating material, first, observation is performed by EPMA from the noble metal plating layer side of the plating material at an observation magnification of 50,000 times. As a result of diligent studies by the present inventors, if the magnification is less than 50,000 times, the detection intensity in the roughened concave portion cannot be sufficiently detected, and if the magnification exceeds 50,000 times, the roughened unevenness is locally present. Since it becomes a standard magnifying part index, the observation magnification is set. Next, the noble metal component in the outermost layer is mapped, the portion indicated by the color tone of 30% or more of the maximum detection intensity in the color tone is extracted as the "covered portion", the area ratio is calculated, and this is calculated as the above-mentioned "". It is defined as "coverage". If the coverage is low, the uncovered areas will oxidize when exposed to the atmosphere, resulting in impaired solder wettability. Further, in the above-mentioned measurement of the coverage rate, any three points are selected and measured on the surface of the plating material on the noble metal plating layer side, and the average value thereof is calculated.

本発明の実施形態に係るめっき材料は、貴金属めっき層側から測定した算術平均粗さSaが0.1~0.3μmであるのが好ましい。貴金属めっき層側から測定した算術平均粗さSaが0.1μm以上であると、アンカー効果が高まり、樹脂との密着性が向上し、0.3μm以下であると、粗化表面の凹部(谷部)への貴金属めっきの被覆率を向上させ、その結果、半田濡れ性を改善できる。加えて、算術平均粗さSaが0.2μm以下であると、先端部分の破損を抑制することができる。本発明の実施形態に係るめっき材料は、貴金属めっき層側から測定した算術平均粗さSaが0.15~0.18μmであるのがより好ましく、0.16~0.17μmであるのが更により好ましい。 The plating material according to the embodiment of the present invention preferably has an arithmetic mean roughness Sa measured from the noble metal plating layer side of 0.1 to 0.3 μm. When the arithmetic mean roughness Sa measured from the noble metal plating layer side is 0.1 μm or more, the anchor effect is enhanced and the adhesion with the resin is improved, and when it is 0.3 μm or less, the recesses (valleys) on the roughened surface are enhanced. The coverage of the noble metal plating on the part) can be improved, and as a result, the solder wettability can be improved. In addition, when the arithmetic mean roughness Sa is 0.2 μm or less, damage to the tip portion can be suppressed. In the plating material according to the embodiment of the present invention, the arithmetic mean roughness Sa measured from the noble metal plating layer side is more preferably 0.15 to 0.18 μm, further preferably 0.16 to 0.17 μm. More preferred.

<めっき材料の製造方法>
本発明の実施形態に係るめっき材料の製造方法としては、まず、導電性基材上に、粗化めっき層を形成し、さらに、貴金属めっき層を形成する。当該めっきとしては、湿式(電気、無電解)めっきを用いて行う。
<Manufacturing method of plating material>
As a method for producing a plating material according to an embodiment of the present invention, first, a roughened plating layer is formed on a conductive substrate, and then a precious metal plating layer is formed. Wet (electric, electrolyzed) plating is used as the plating.

粗化めっき層を形成するための、粗化めっき条件を以下に示す。
・液組成:ニッケル、ニッケル合金、銅、銅合金などを含有する所望のめっき液組成
・めっき温度:40~60℃
・電流密度:5~15A/dm2
The roughened plating conditions for forming the roughened plating layer are shown below.
-Liquid composition: Desirable plating solution composition containing nickel, nickel alloy, copper, copper alloy, etc.-Plating temperature: 40-60 ° C
-Current density: 5 to 15 A / dm 2

貴金属めっき層を形成するための、貴金属めっき条件を以下に示す。
・液組成:パラジウム、金などを含有する所望のめっき液組成
・めっき温度:40~60℃
・電流密度:0.05~2A/dm2
・撹拌速度:800~1200rpm
・超音波撹拌:28kHz、200~600W
なお、超音波撹拌は、無くてもよいが、実施するほうが好ましい。
The noble metal plating conditions for forming the noble metal plating layer are shown below.
-Liquid composition: Desirable plating solution composition containing palladium, gold, etc.-Plating temperature: 40-60 ° C
-Current density: 0.05 to 2 A / dm 2
・ Stirring speed: 800-1200 rpm
-Ultrasonic stirring: 28 kHz, 200-600 W
Although ultrasonic stirring may not be necessary, it is preferable to carry out ultrasonic stirring.

上述のように、貴金属めっき条件において、撹拌速度を大きく、電流密度を低く、且つ、超音波を使用しながらめっき液を撹拌することで、粗化めっき層の凹部への電析が促進され、当該凹部における貴金属めっきを極薄で均一に形成することができる。これによって、貴金属めっき層の被覆率が向上する。 As described above, under the noble metal plating conditions, by stirring the plating solution at a high stirring speed, a low current density, and using ultrasonic waves, electrodeposition of the roughened plating layer into the recesses is promoted. The noble metal plating in the recess can be formed very thinly and uniformly. This improves the coverage of the noble metal plating layer.

(封孔処理)
貴金属めっき層を形成後、すぐにそのまま半田接合などの実装を行うことが好ましいが、長期保管や周辺環境が劣悪な箇所に晒される可能性があるときは、封孔処理を施すことが好ましい。封孔処理によって、長期にわたって半田濡れ性や樹脂密着性を確保することができる。特に封孔処理の成分に、還元性作用のある物質を適用することがより好ましく、例えばメルカプト基を保有する封孔処理剤を使用・実施することで、僅かに被覆している粗化めっき箇所の酸化を防止し、また還元作用により半田濡れ性を大きく改善することができる。
(Seal processing)
It is preferable to perform solder bonding or the like as it is immediately after forming the noble metal plating layer, but it is preferable to perform a sealing treatment when there is a possibility of long-term storage or exposure to a place where the surrounding environment is poor. By the sealing treatment, solder wettability and resin adhesion can be ensured for a long period of time. In particular, it is more preferable to apply a substance having a reducing action to the components of the sealing treatment. For example, by using and implementing a sealing treatment agent having a mercapto group, the roughened plated portion slightly covered. It is possible to prevent the oxidation of the solder and greatly improve the solder wettability by the reducing action.

なお、封孔処理の種類や皮膜厚によっては、樹脂密着性を低下させる恐れがあるため、封孔処理時間を60秒以下、好ましくは30秒以下で処理し、被膜厚を適宜制御することが好ましい。 Depending on the type of sealing treatment and the film thickness, the resin adhesion may be deteriorated. Therefore, the sealing treatment time may be 60 seconds or less, preferably 30 seconds or less, and the film thickness may be appropriately controlled. preferable.

また、封孔処理を実施することで、例えば高温高湿試験(85℃-85%-8時間)後の半田濡れ性の低下を大幅に抑制することができる。 Further, by carrying out the sealing treatment, for example, it is possible to significantly suppress the deterioration of the solder wettability after the high temperature and high humidity test (85 ° C. −85% −8 hours).

本発明の実施形態に係るめっき材料の封孔処理は公知の封孔処理剤及び処理方法を用いることができる。当該封孔処理としては、例えば、チオール化合物を有する被膜を形成してもよい。 A known sealing agent and treatment method can be used for the sealing treatment of the plating material according to the embodiment of the present invention. As the sealing treatment, for example, a film having a thiol compound may be formed.

<めっき材料の用途>
本発明の実施形態に係るめっき材料の用途は特に限定しないが、樹脂との良好な密着性が必要な電子部品の材料として用いることができ、特に、衝撃、温度、湿度等の要因から守るために表面を樹脂で固める樹脂成型、樹脂封止、または、モールド成型等を施す電子部品の材料として用いることができる。当該電子部品としては例えば、リードフレーム、バズバーモジュール等のような金属製の電子部品が挙げられる。本発明の実施形態に係るめっき材料は、このような表面に樹脂成型、樹脂封止、または、モールド成型が施された成型品としても、導電性材料の表面と樹脂との密着性が非常に良好であるため、例えば車載向けのエンジンルーム周りという過酷な環境下で使用される電子部品の材料として用いた場合でも、良好な耐久性が期待できる。
<Use of plating material>
The use of the plating material according to the embodiment of the present invention is not particularly limited, but it can be used as a material for electronic parts that require good adhesion to a resin, and in particular, to protect it from factors such as impact, temperature, and humidity. It can be used as a material for electronic parts to be subjected to resin molding, resin encapsulation, mold molding, etc., in which the surface is hardened with a resin. Examples of the electronic component include metal electronic components such as lead frames and buzz bar modules. The plating material according to the embodiment of the present invention has very good adhesion between the surface of the conductive material and the resin even as a molded product in which the surface is resin-molded, resin-sealed, or molded. Since it is good, good durability can be expected even when it is used as a material for electronic parts used in a harsh environment such as around an in-vehicle engine room.

以下、本発明の実施例と比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 Hereinafter, both examples and comparative examples of the present invention will be shown, but these are provided for a better understanding of the present invention, and are not intended to limit the present invention.

<試験例1>
(導電性基材の作製)
実施例1~7及び比較例1として、導電性基材(C11000:99.9%Cu)に対し、水酸化ナトリウムが50g/Lのアルカリ脱脂浴にてカソード電解脱脂を5A/dm2で60秒実施後、10%硫酸およびフッ化アンモニウム50g/Lの酸洗溶液にて30秒酸洗浄した。
<Test Example 1>
(Preparation of conductive substrate)
As Examples 1 to 7 and Comparative Example 1, cathode electrolytic degreasing was performed at 5 A / dm 2 in an alkaline degreasing bath containing 50 g / L of sodium hydroxide with respect to a conductive substrate (C11000: 99.9% Cu). After the second operation, it was pickled with a pickling solution of 10% sulfuric acid and 50 g / L of ammonium fluoride for 30 seconds.

(粗化めっき処理)
次に、電気めっきにて、めっき浴の組成、めっき液の温度、電流密度及びめっき時間を調整することで、粗化めっき処理を行い、導電性基材の表面に粗化めっき層を形成した。実施例1~7及び比較例1の粗化めっき浴成分は、いずれも同じであり、Niメタル分130g/L、ホウ酸25g/LでpH3.3であった。ここで、Niメタル分は、Ni塩としてスルファミン酸ニッケル四水和物及び塩化Niで構成されている。より具体的には、スルファミン酸ニッケル四水和物:Ni(NH2SO32・4H2O=294g/L(約300g/L)、Ni量で53.5g/L、塩化ニッケル六水和物:NiCl2・6H2O=約310g/L、Ni量で76.5g/Lである。実施例1~7及び比較例1のめっき液の温度は45℃、電流密度は10A/dm2とした。
(Roughened plating process)
Next, in electroplating, the rough plating treatment was performed by adjusting the composition of the plating bath, the temperature of the plating solution, the current density, and the plating time, and a roughened plating layer was formed on the surface of the conductive base material. .. The roughened plating bath components of Examples 1 to 7 and Comparative Example 1 were the same, and the pH was 3.3 with a Ni metal content of 130 g / L and boric acid of 25 g / L. Here, the Ni metal component is composed of nickel sulfamate tetrahydrate and Ni chloride as Ni salts. More specifically, nickel sulfamate tetrahydrate: Ni (NH 2 SO 3 ) 2.4H 2 O = 294 g / L (about 300 g / L), Ni amount 53.5 g / L, nickel chloride hexahydrate Japanese product: NiCl2.6H 2 O = about 310 g / L, and the amount of Ni is 76.5 g / L. The temperature of the plating solutions of Examples 1 to 7 and Comparative Example 1 was 45 ° C., and the current density was 10 A / dm 2 .

(パラジウムめっき処理)
次に、電気めっきにて、めっき浴の組成、めっき液の温度、電流密度、撹拌速度、超音波撹拌の使用及びめっき時間を調整することで、パラジウムめっき処理を行い、粗化めっき層の表面にパラジウムめっき層を形成した。実施例1~7及び比較例1のめっき浴成分は、いずれも同じであり、パラブライトSST-L(製品名、日本高純度化学社製)であった。
表1に各パラジウムめっき処理条件を示す。また、超音波撹拌の条件は、28kHz、200Wとした。
(Palladium plating)
Next, in electroplating, palladium plating is performed by adjusting the composition of the plating bath, the temperature of the plating solution, the current density, the stirring speed, the use of ultrasonic stirring, and the plating time, and the surface of the roughened plating layer is subjected to the palladium plating treatment. A palladium plating layer was formed on the surface. The plating bath components of Examples 1 to 7 and Comparative Example 1 were the same, and were Parabright SST-L (product name, manufactured by Japan High Purity Chemical Industry Co., Ltd.).
Table 1 shows the conditions for each palladium plating treatment. The conditions for ultrasonic stirring were 28 kHz and 200 W.

Figure 2022085602000002
Figure 2022085602000002

(金めっき処理)
次に、電気めっきにて、めっき浴の組成、めっき液の温度、電流密度、撹拌速度、超音波撹拌の使用及びめっき時間を調整することで、金めっき処理を行い、パラジウムめっき層の表面に金めっき層を形成した。実施例1~7及び比較例1のめっき浴成分は、いずれも同じであり、アフタープレート(製品名、日本高純度化学社製)であった。
表2に各金めっき処理条件を示す。また、超音波撹拌の条件は、28kHz、200Wとした。
(Gold plating)
Next, in electroplating, gold plating is performed by adjusting the composition of the plating bath, the temperature of the plating solution, the current density, the stirring speed, the use of ultrasonic stirring, and the plating time, and the surface of the palladium plating layer is subjected to gold plating. A gold-plated layer was formed. The plating bath components of Examples 1 to 7 and Comparative Example 1 were the same, and were after plates (product name, manufactured by Japan High Purity Chemical Industry Co., Ltd.).
Table 2 shows the conditions for each gold plating process. The conditions for ultrasonic stirring were 28 kHz and 200 W.

Figure 2022085602000003
Figure 2022085602000003

(評価)
・めっきの平均厚さ
各めっきの平均厚さの確認については、任意の5点について蛍光X線膜厚計(日立ハイテク社製 SFT9500)を使用し、コリメータ径0.2mm、各膜厚測定時間30秒での平均値について算出した。
(evaluation)
-Average thickness of plating To check the average thickness of each plating, use a fluorescent X-ray film thickness meter (SFT9500 manufactured by Hitachi High-Tech) for any 5 points, collimator diameter 0.2 mm, and measurement time for each film thickness. The average value at 30 seconds was calculated.

・めっき材料の表面に対する最表層成分の被覆率
めっき材料の表面に対する最表層成分の被覆率を測定した。具体的には、めっき材料について、貴金属めっき層側からEPMAによって観察倍率50000倍で観察した。次に、最表層における貴金属成分(実施例1~7及び比較例1についてはAu成分)をマッピングし、その色調において最大検出強度の30%以上の色調で示される箇所を「被覆箇所」として抽出し、その面積比を算出して、これを「被覆率」と定義した。また、当該被覆率の測定は、めっき材料の貴金属めっき層側の表面において、任意の3箇所を選んで測定し、その平均値とした。
以下に、当該EPMAの測定条件を示す。
・スキャンタイプ:ビームスキャン
・加速電圧:15.0kV
・照射電流:5.390e-8
・測定時間:25.00ミリ秒
・測定点数:256×256
-Coverage of the outermost layer component on the surface of the plating material The coverage of the outermost layer component on the surface of the plating material was measured. Specifically, the plating material was observed from the noble metal plating layer side by EPMA at an observation magnification of 50,000 times. Next, the noble metal component (Au component for Examples 1 to 7 and Comparative Example 1) in the outermost layer is mapped, and the portion indicated by the color tone of 30% or more of the maximum detection intensity in the color tone is extracted as the "covered portion". Then, the area ratio was calculated and defined as "coverage". In addition, the coverage was measured by selecting any three points on the surface of the plating material on the noble metal plating layer side and using the average value.
The measurement conditions of the EPMA are shown below.
・ Scan type: Beam scan ・ Acceleration voltage: 15.0kV
・ Irradiation current: 5.390e -8 A
・ Measurement time: 25.00 milliseconds ・ Measurement points: 256 × 256

・算術平均粗さSa
めっき材料の、貴金属めっき層側から算術平均粗さSaを測定した。具体的には、キーエンス社製レーザー顕微鏡(VK-X150)を使用し、観察倍率1000倍、スポット径φ0.8mm、測定面積100μm×100μmで測定した。5回の測定(N5)の平均値を算出し、めっき材料の試験片の表面のSaの値とした。
・ Arithmetic mean roughness Sa
The arithmetic mean roughness Sa of the plating material was measured from the noble metal plating layer side. Specifically, a laser microscope (VK-X150) manufactured by KEYENCE was used for measurement at an observation magnification of 1000 times, a spot diameter of φ0.8 mm, and a measurement area of 100 μm × 100 μm. The average value of 5 measurements (N5) was calculated and used as the value of Sa on the surface of the test piece of the plating material.

・シェア強度
めっき材料の試験片の表面に樹脂成型したものをサンプルとして、プリンカップモールド試験にてシェア強度を測定した。試験条件は、樹脂:日立化成社製GE-7470LA樹脂、プリンカップ底面の面積:10mm2、樹脂成型時間:120秒、モールドキュア:175℃で8時間とし、10回のせん断力測定(N10)の平均値を算出し、シェア強度とした。シェアはデイジ社製 ボンドテスター(Series4000)にて、シェア速度100μm/秒にて測定した。
-Share strength The shear strength was measured by a pudding cup mold test using a resin-molded sample on the surface of the test piece of the plating material. The test conditions were resin: GE-7470LA resin manufactured by Hitachi Kasei Co., Ltd., area of the bottom of the pudding cup: 10 mm 2 , resin molding time: 120 seconds, mold cure: 175 ° C. for 8 hours, and 10 shear force measurements (N10). The average value of was calculated and used as the share strength. The share was measured with a bond tester (Series 4000) manufactured by Daige Co., Ltd. at a share speed of 100 μm / sec.

・半田濡れ面積
試験片サイズを10mm×50mmに切断後、浸漬深さ15mm、浸漬時間10秒、Sn-3.0Ag-0.5Cu半田、浴温245℃、浸漬速度10mm/秒の条件で浸漬し、150mm2を100%としてその濡れ面積の割合を算出した。
-Solder wet area After cutting the test piece size to 10 mm x 50 mm, dipping under the conditions of immersion depth 15 mm, immersion time 10 seconds, Sn-3.0Ag-0.5Cu solder, bath temperature 245 ° C, and immersion speed 10 mm / sec. Then, the ratio of the wet area was calculated with 150 mm 2 as 100%.

上述の実施例1~7及び比較例1に係る試験条件及び試験結果を表3に示す。 Table 3 shows the test conditions and test results according to Examples 1 to 7 and Comparative Example 1 described above.

Figure 2022085602000004
Figure 2022085602000004

(評価結果)
表3に示すように、実施例1~7によれば、シェア強度を維持しつつも半田濡れ性に優れた粗化めっき材料を提供できることが分かる。特に粗化めっき厚が厚く、粗度が高い状態でも良好な半田濡れ性を示しており、比較例1と比べても優れた半田濡れ性を保持できていることが分かる。これは、上述で規格化された被覆率が70%以上を示していることにより、粗化めっき層の露出が抑制されることで、樹脂密着性は確保しながらも、良好な半田濡れ性を得るためである。
なお、実施例2、4~7の最表層成分の被覆率については、それぞれ「70以上」、「84以上」と記載しているが、これらは実際の測定値ではなく推測値である。実施例2の最表層成分の被覆率については、実施例1及び比較例1の最表層成分の被覆率と半田濡れ面積との関係を線形と仮定した場合の、実施例2の半田濡れ面積から逆算して推測した最表層成分の被覆率である。また、実施例4~7の最表層成分の被覆率については、実施例1を基準としてみたときに、Auめっき厚増、Pdめっき厚増(それによる粗化めっきの表面粗度減)、強攪拌、超音波を行なっているため、実施例1の最表層成分の被覆率以上になる蓋然性が高いと考えられる。また、実施例5のシェア強度は、測定していない。
(Evaluation results)
As shown in Table 3, it can be seen that according to Examples 1 to 7, it is possible to provide a roughened plating material having excellent solder wettability while maintaining the share strength. In particular, it shows good solder wettability even in a state where the roughened plating thickness is thick and the roughness is high, and it can be seen that excellent solder wettability can be maintained as compared with Comparative Example 1. This is because the coverage ratio standardized above is 70% or more, which suppresses the exposure of the roughened plating layer, thereby ensuring good solder wettability while ensuring resin adhesion. To get.
The coverage of the outermost layer components of Examples 2 and 4 to 7 is described as "70 or more" and "84 or more", respectively, but these are not actual measured values but estimated values. The coverage of the outermost layer component of Example 2 is based on the solder wet area of Example 2 when the relationship between the coverage of the outermost surface layer component of Example 1 and Comparative Example 1 and the solder wet area is assumed to be linear. It is the coverage of the outermost layer component estimated by back calculation. Regarding the coverage of the outermost layer components of Examples 4 to 7, when the example 1 is used as a reference, the Au plating thickness is increased, the Pd plating thickness is increased (the surface roughness of the roughened plating is decreased due to this), and the strength is increased. Since stirring and ultrasonic waves are performed, it is highly probable that the coverage of the outermost layer component of Example 1 will be higher. Moreover, the share strength of Example 5 was not measured.

<試験例2>
実施例8~11として、実施例1で作製しためっき材料の表面に対し、それぞれ封孔処理剤を浸漬して塗布もしくは電解で塗布し、さらに温風により乾燥した。表4に、封孔処理条件を示す。
<Test Example 2>
As Examples 8 to 11, the sealing agent was immersed in the surface of the plating material produced in Example 1 and applied or electrolyzed, and further dried by warm air. Table 4 shows the sealing treatment conditions.

Figure 2022085602000005
Figure 2022085602000005

実施例8~11の各めっき材料に対し、実施例1と同様の手順にて、シェア強度を測定した。また、各めっき材量を85℃85RT%の高温高湿環境下に8時間放置した後に試験例1と同様の手順にて半田濡れ面積を評価した。評価結果を表5に示す。 For each of the plating materials of Examples 8 to 11, the share strength was measured by the same procedure as in Example 1. Further, after each plating material amount was left in a high temperature and high humidity environment of 85 ° C. and 85 RT% for 8 hours, the solder wet area was evaluated by the same procedure as in Test Example 1. The evaluation results are shown in Table 5.

Figure 2022085602000006
Figure 2022085602000006

(評価結果)
表5に示すように、封孔処理の有無により高温高湿試験後の半田濡れ性に顕著に差異が表れている。実施例1においては、比較例1よりも半田濡れ性は確保されているものの低下している傾向がみられる。一方、封孔処理を施した実施例8~11においては、環境試験後でも半田濡れ性が十分に確保されており、このことにより、長期信頼性に優れためっき材料を提供できるものである。
(Evaluation results)
As shown in Table 5, there is a remarkable difference in the solder wettability after the high temperature and high humidity test depending on the presence or absence of the sealing treatment. In Example 1, the solder wettability is secured but tends to be lower than that of Comparative Example 1. On the other hand, in Examples 8 to 11 which have been subjected to the hole sealing treatment, the solder wettability is sufficiently ensured even after the environmental test, which makes it possible to provide a plating material having excellent long-term reliability.

Claims (7)

表面に樹脂を成型する、または、表面を樹脂で封止するめっき材料であって、
導電性基材と、
前記導電性基材上に設けられた粗化めっき層と、
前記粗化めっき層上に設けられた貴金属めっき層と、
を有するめっき材料であり、
前記貴金属めっき層側から観察倍率50000倍のEPMAによるマッピング分析を実施したときの、前記貴金属めっき層の最表層成分の最大検出強度の30%以上の色調で示される箇所を前記最表層成分による被覆箇所と定義した場合に、前記めっき材料の表面に対する前記最表層成分の被覆率が、観察視野面積の70%以上である、めっき材料。
A plating material that molds resin on the surface or seals the surface with resin.
With a conductive substrate,
The roughened plating layer provided on the conductive substrate and
The precious metal plating layer provided on the roughened plating layer and
Is a plating material with
When the mapping analysis by EPMA with an observation magnification of 50,000 times is performed from the noble metal plating layer side, the portion indicated by the color tone of 30% or more of the maximum detection intensity of the outermost surface layer component of the noble metal plating layer is covered with the outermost surface layer component. A plating material in which the coverage of the outermost layer component on the surface of the plating material is 70% or more of the observation viewing area when defined as a location.
前記貴金属めっき層側から測定した算術平均粗さSaが0.1~0.3μmである、請求項1に記載のめっき材料。 The plating material according to claim 1, wherein the arithmetic mean roughness Sa measured from the noble metal plating layer side is 0.1 to 0.3 μm. 前記貴金属めっき層の平均厚さが、0.006~0.1μmである、請求項1または2に記載のめっき材料。 The plating material according to claim 1 or 2, wherein the noble metal plating layer has an average thickness of 0.006 to 0.1 μm. 前記貴金属めっき層が、パラジウムめっき及び金めっきからなる、請求項1~3のいずれか一項に記載のめっき材料。 The plating material according to any one of claims 1 to 3, wherein the noble metal plating layer comprises palladium plating and gold plating. 前記貴金属めっき層が、
前記粗化めっき層上に設けられた、平均厚さ0.005~0.05μmのパラジウムめっき層、及び、
前記パラジウムめっき層上に設けられた、平均厚さ0.001~0.05μmの金めっき層
からなる、請求項4に記載のめっき材料。
The precious metal plating layer
A palladium plating layer having an average thickness of 0.005 to 0.05 μm provided on the roughened plating layer, and
The plating material according to claim 4, which comprises a gold plating layer having an average thickness of 0.001 to 0.05 μm provided on the palladium plating layer.
前記貴金属めっき層の表面に、チオール化合物を含む、請求項1~5のいずれか一項に記載のめっき材料。 The plating material according to any one of claims 1 to 5, wherein the surface of the noble metal plating layer contains a thiol compound. 請求項1~6のいずれか一項に記載のめっき材料を備えた電子部品。 An electronic component comprising the plating material according to any one of claims 1 to 6.
JP2020197367A 2020-11-27 2020-11-27 Plating material and electronic component Pending JP2022085602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020197367A JP2022085602A (en) 2020-11-27 2020-11-27 Plating material and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020197367A JP2022085602A (en) 2020-11-27 2020-11-27 Plating material and electronic component

Publications (1)

Publication Number Publication Date
JP2022085602A true JP2022085602A (en) 2022-06-08

Family

ID=81892382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020197367A Pending JP2022085602A (en) 2020-11-27 2020-11-27 Plating material and electronic component

Country Status (1)

Country Link
JP (1) JP2022085602A (en)

Similar Documents

Publication Publication Date Title
JP3417395B2 (en) Lead frame for semiconductor device, method of manufacturing the same, and semiconductor device using the same
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
US20050121330A1 (en) Chromium-free antitarnish adhesion promoting treatment composition
CN108026657B (en) Lead frame material and method for producing same
US6677056B2 (en) Method for producing tin-silver alloy plating film, the tin-silver alloy plating film and lead frame for electronic parts having the plating film
US3999955A (en) Strip for lead frames
WO2017179447A1 (en) Lead frame material and method for producing same
JPH09148508A (en) Lead frame for semiconductor device and plastic molded type semiconductor device using the same
KR20190096964A (en) Lead frame material, manufacturing method thereof and semiconductor package
JP3395772B2 (en) Method for producing tin-silver alloy plating film, tin-silver alloy plating film, and lead frame for electronic component provided with the same
JP2010166044A (en) Lead frame for optical semiconductor device, and method for manufacturing the same
JPH10284667A (en) Material for electric electronic device component having superior corrosion resistance and oxidation resistance
JP2022085602A (en) Plating material and electronic component
JP2019512880A (en) Lead frame structure, lead frame, surface mount electronic component, and manufacturing method thereof
EP0132596A2 (en) Solderable nickel-iron alloy article and method for making same
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
JP3836257B2 (en) Manufacturing method of component materials for electrical and electronic equipment with excellent corrosion resistance
JPS59231844A (en) Lead frame for semiconductor device
JP7366480B1 (en) Lead frame material and its manufacturing method, and semiconductor package using lead frame material
KR102497060B1 (en) Conductive materials, molded articles and electronic components
KR102565186B1 (en) Conductive materials, molded articles and electronic components
JP6827150B1 (en) Lead frame material and its manufacturing method, lead frame and electrical and electronic parts
JP2022148743A (en) Conductive material, molded article and electronic component
JPH09223771A (en) Electronic component lead member and its manufacture
JPH0987899A (en) Production of copper alloy material for electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240318