WO2023193777A1 - 一种多内芯压力成型钢管混凝土叠合构件及其制作方法 - Google Patents

一种多内芯压力成型钢管混凝土叠合构件及其制作方法 Download PDF

Info

Publication number
WO2023193777A1
WO2023193777A1 PCT/CN2023/086758 CN2023086758W WO2023193777A1 WO 2023193777 A1 WO2023193777 A1 WO 2023193777A1 CN 2023086758 W CN2023086758 W CN 2023086758W WO 2023193777 A1 WO2023193777 A1 WO 2023193777A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
concrete
steel tube
filled steel
formed concrete
Prior art date
Application number
PCT/CN2023/086758
Other languages
English (en)
French (fr)
Inventor
张琨
王开强
李迪
孙庆
杨辉
林琦
叶智武
黄雷
Original Assignee
中建三局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建三局集团有限公司 filed Critical 中建三局集团有限公司
Publication of WO2023193777A1 publication Critical patent/WO2023193777A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/36Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials

Definitions

  • the invention belongs to the technical field of steel tube concrete, and specifically relates to a multi-core pressure-formed steel tube concrete composite component and a manufacturing method thereof.
  • Concrete-filled steel tubes make full use of the respective advantages of steel and concrete materials. They have the characteristics of high bearing capacity, good plasticity and toughness, and convenient production and construction. They are widely used in industrial plants, high-rise and long-span buildings, bridges and underground structures.
  • FIG. 1 Chinese patent CN203905298 discloses an FRP pipe reinforced concrete-steel concrete composite member, which includes a steel pipe and stirrups.
  • the steel pipe is filled with concrete, and the steel pipe is wrapped with reinforced concrete.
  • a number of steel bars are provided in the reinforced concrete, and the stirrups are tied in Outside the steel bars, the steel bars include a number of longitudinally arranged steel bars and a number of transversely arranged steel bars.
  • FRP pipes are arranged outside the reinforced concrete. This component has longitudinal steel bars and transverse steel bars in the reinforced concrete, which can enhance the load-bearing capacity of the steel tube concrete composite member.
  • FRP (fiber reinforced plastic) pipes are set outside the reinforced concrete to prevent the steel bars and steel pipes from being exposed to the air.
  • FRP pipes can also enhance the seismic resistance of concrete-filled steel tube composite components, simplify the construction and installation process, reduce construction land and shorten the construction period.
  • this structure still has the following shortcomings: 1) The FRP pipe has poor fire resistance and is easily damaged when placed outside the component, affecting the overall performance of the component; 2) The FRP tube must be broken at the node location where the superimposed component meets other components. Open to facilitate the passage of steel bars, thereby weakening the force at the node location It does not conform to the design concept of strong nodes and weak components.
  • the technical problem to be solved by the present invention is to provide a multi-core pressure-formed steel tube concrete composite member with strong bearing capacity, good molding quality, good fire resistance and low construction difficulty in view of the shortcomings of the above-mentioned existing technology and its production. method.
  • a multi-core pressure-formed concrete-filled steel tube composite member including at least two pressure-formed concrete-filled steel tube core columns, stirrups and peripheral concrete;
  • the pressure-formed concrete-filled steel tube core column includes a steel pipe, pressure-formed concrete poured inside the steel pipe, The fiber composite material wrapped outside the steel pipe, the pressure-formed concrete exerts pressure on the concrete during the concrete curing process;
  • the stirrups are tied to the periphery of the at least two pressure-formed steel tube concrete core columns;
  • the peripheral concrete is poured Wrap the bundled pressure-formed concrete-filled steel tube core column on the outside.
  • the stirrups include two oppositely arranged U-shaped arc stirrups and two directly connected steel bar sleeves.
  • the joint positions of the two U-shaped arc stirrups are connected through the directly connected steel bar sleeves. fixed.
  • the bending radius of the U-shaped arc stirrups is adapted to the radius of the steel pipe.
  • Each pair of U-shaped arc stirrups forms a closed stirrup ring after docking, and a number of pressure-formed steel pipes can be restrained in the ring. Concrete core columns, the number is equal to or less than the number of pressure-formed steel tube concrete core columns.
  • the multi-core pressure-formed concrete-filled steel tube composite member also includes anti-cracking longitudinal bars arranged in the gaps between the pressure-formed concrete-filled steel tube core columns.
  • the anti-cracking longitudinal bars are along the multi-core pressure-formed concrete-filled steel tube stack. Peripheral arrangement of composite components.
  • the longitudinal bars of other members pass through the gaps between the multiple pressure-formed concrete-filled steel tube core columns and cannot pass through the gaps.
  • the longitudinal bars are connected to the pressure-formed concrete-filled steel tube core columns through steel lap plates.
  • the present invention also proposes a method for manufacturing the above-mentioned multi-core pressure-formed concrete-filled steel tube composite member, which includes the following steps:
  • step S1 the pressure-formed concrete is pressurized and cured through a pressurizing device before it is initially set and hardened.
  • the curing pressure is selected according to the following formula:
  • P is the curing pressure
  • D is the outer diameter of the steel pipe
  • t is the wall thickness of the steel pipe
  • f y is the yield strength of the steel
  • crack-resistant longitudinal bars are set in the gaps between the pressure-formed concrete-filled steel tube core columns along the periphery of the superimposed member as needed, and then the peripheral stirrups are tied.
  • the load-bearing capacity of the member is mainly provided by a number of internal concrete-filled steel tube core columns. Lightweight and high-strength fiber composite materials are applied to the periphery of the core columns, which has strong Carrying capacity. At the same time, a certain amount of pressure is exerted on the concrete of the core column during the forming process, making the concrete more dense, thus further improving the bearing capacity of the superimposed components. Therefore, the bearing capacity of the present invention is relatively strong.
  • the concrete-filled steel tube core column is pressurized during the forming process, causing the steel tube to expand and deform.
  • the steel tube still maintains a close fit with the concrete.
  • Reasonable control of the pressure level can keep the concrete in a state of multi-directional compression after it is formed, thereby enhancing the synergistic effect between steel pipes and concrete.
  • the concrete-filled steel tube core column that plays the main load-bearing role can be prefabricated in the factory. Only the peripheral concrete needs to be poured on site, and the molding quality of the overall specimen is more controllable. Therefore, the molding quality of the present invention is better.
  • non-refractory materials such as FRP and steel are placed inside the member and protected by the surrounding concrete package. It can delay the temperature transfer speed under the action of fire, avoid the instantaneous reduction of the bearing capacity of the overall component, and improve the mechanical properties of the component in high temperature environments. Therefore, the fire resistance of the present invention is better.
  • the concrete-filled steel tube core columns can be dispersedly arranged inside the composite member according to stress requirements, which simplifies the arrangement of horizontal stirrups in the component.
  • the steel bars of other components can reasonably avoid the core column and pass through the superimposed components as much as possible, avoiding the truncation and accumulation of steel bars in the node area and affecting the quality of concrete pouring in the node area. Therefore, the construction difficulty of the present invention is relatively low.
  • Figure 1 is a schematic cross-sectional view of a multi-core pressure-formed concrete-filled steel tube composite member according to the first embodiment of the present invention
  • Figure 2 is a schematic diagram of the stirrups of the multi-core pressure-formed concrete-filled steel tube composite member shown in Figure 1;
  • Figure 3 is a schematic diagram of the node area where the multi-core pressure-formed concrete-filled steel tube composite member shown in Figure 1 intersects with other components;
  • Figure 4 is the data curve when the multi-core pressure-formed concrete-filled steel tube composite member shown in Figure 1 is subjected to axial loading.
  • the comparison curve is the calculation curve of steel-reinforced concrete members with the same size and steel content;
  • Figure 5 is a schematic cross-sectional view of a multi-core pressure-formed concrete-filled steel tube composite member according to the second embodiment of the present invention.
  • Figure 6 is a schematic diagram of the stirrups constraining three core columns of the multi-core pressure-formed concrete-filled steel tube composite member shown in Figure 5.
  • a multi-core pressure-formed concrete-filled steel tube composite member provided in the first embodiment of the present invention includes four pressure-formed concrete-filled steel tube core columns 10, stirrups 20 and peripheral concrete 40.
  • the pressure-formed concrete-filled steel tube core column 10 includes a steel pipe 11, a pressure-formed concrete 12 poured inside the steel pipe 11, and a fiber composite material 13 covering the outer surface of the steel pipe 11.
  • the pressure-formed concrete 12 exerts pressure on the concrete during the concrete curing process. Make the concrete denser, thereby improving the axial bearing capacity of the concrete-filled steel tube core column.
  • the stirrups 20 are tied around the periphery of the four pressure-formed concrete-filled steel tube core columns 10 to play a restraining role.
  • the peripheral concrete 40 is poured outside the bound pressure-formed concrete-filled steel tube core column 10 to wrap it.
  • the multi-core pressure-formed concrete 12 composite member also includes crack-resistant longitudinal bars 30 disposed in gaps between the pressure-formed concrete-filled steel tube core columns 10 .
  • the anti-cracking longitudinal bars 30 are arranged along the periphery of the multi-core pressure-formed concrete-filled steel tube composite member.
  • the stirrups 20 include two oppositely arranged U-shaped arc stirrups 21 and two directly connected steel bar sleeves 22.
  • the joint positions of the two U-shaped arc stirrups 21 are connected by direct connecting steel bars.
  • the sleeve 22 is fixed.
  • the bending radius of each U-shaped arc stirrup 21 is equal to or slightly larger than (depending on the thickness of the fiber composite material 13 and installation accuracy) the radius of the steel pipe 11 .
  • Each pair of U-shaped arc stirrups 21 forms a closed stirrup ring after docking, and four pressure-formed steel tube concrete core columns 10 can be restrained in the ring.
  • Multiple closed stirrup rings form a group of composite stirrups, which are arranged at intervals along the entire length of the superimposed member, while ensuring that the positions of the directly connected steel bar sleeves 22 are staggered in the same axis.
  • the longitudinal bars 200 of other components can reasonably avoid the core columns, pass through the superimposed components as much as possible, and pass through the joints between the multiple pressure-formed concrete-filled steel tube core columns 10.
  • the remaining longitudinal bars that cannot pass through the gap can be connected to the pressure-formed concrete-filled steel tube core column 10 through the steel bar overlap plate, which avoids a large number of steel bars being cut off and accumulated in the node area, affecting the pouring quality and the force transmission effect of the node.
  • the data curve when the multi-core pressure-formed concrete-filled steel tube composite member of the present invention is axially loaded is limited by the test conditions and is only loaded to 10,000t, and the specimen is not damaged.
  • the comparison curve is the calculation curve for steel-reinforced concrete members of the same size and steel content.
  • the composite member of the present invention The bearing capacity and axial stiffness are significantly stronger than traditional steel-reinforced concrete members.
  • multiple pressure-formed concrete-filled steel tube core columns 10 are arranged centrally symmetrically.
  • the material of the steel pipe 11 is preferably Q235, Q355 and Q460 steel.
  • the pressure-formed concrete 12 inside the steel pipe 11 is preferably C60 and above concrete in order to improve the bearing capacity.
  • the outer concrete 40 of the steel pipe 11 is preferably C30-C60 self-compacting concrete in order to improve the pouring quality.
  • the fiber composite material 13 is preferably a carbon fiber, glass fiber or basalt fiber composite material 13.
  • stirrups 20 are preferably HRB400 threaded steel bars with a diameter of 25 and above in order to improve the restraint capacity.
  • the overall structure of a multi-core pressure-formed steel tube concrete composite member provided in the second embodiment of the present invention is basically the same as that of the first embodiment, except that it includes nine pressure-formed steel pipes.
  • the stirrups 20 are designed in two sizes, one is a small-sized stirrup that restrains three of the core columns (see Figure 6), and the other is a stirrup that restrains all the core columns. Large size stirrups. Closed stirrup rings of different specifications and directions form a group of composite stirrups, which are arranged at intervals along the entire length of the superimposed member. At the same time, it is ensured that the positions of the directly connected steel bar sleeves 22 are staggered in the same axis.
  • the present invention also proposes a method for manufacturing the above-mentioned multi-core pressure-formed concrete-filled steel tube composite member, which includes the following steps:
  • P is the curing pressure
  • D is the outer diameter of the steel pipe 11
  • t is the wall thickness of the steel pipe 11
  • f y is the yield strength of the steel;

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

本发明涉及一种多内芯压力成型钢管混凝土叠合构件,包括至少两个压力成型钢管混凝土芯柱、箍筋和外围混凝土;所述压力成型钢管混凝土芯柱包括钢管、浇筑于钢管内部的压力成型混凝土、包覆于钢管外的纤维复合材料,所述压力成型混凝土在混凝土养护过程中对混凝土施加压力;所述箍筋绑扎于所述至少两个压力成型钢管混凝土芯柱的外围;所述外围混凝土浇筑于绑扎后的压力成型钢管混凝土芯柱外部对其进行包裹。本发明的多内芯压力成型钢管混凝土叠合构件承载力较强、成型质量好、耐火性能佳、施工难度低。

Description

一种多内芯压力成型钢管混凝土叠合构件及其制作方法 技术领域
本发明属于钢管混凝土技术领域,具体涉及一种多内芯压力成型钢管混凝土叠合构件及其制作方法。
背景技术
钢管混凝土充分利用了钢和混凝土材料各自的优点,具有承载力高、塑性和韧性好、制作施工方便等特点,广泛应用于工业厂房,高层、大跨建筑,桥梁和地下结构中。
现有的钢管混凝土构件由于养护过程中混凝土的收缩,钢管-混凝土界面常常出现脱空的现象,影响了钢管混凝土构件的受力性能。同时作为不易检测的隐蔽工程,存在较大安全隐患。此外,钢管混凝土组合构件由于钢外壳的存在,节点区域的处理一直是影响其大范围推广的应用痛点。
中国专利CN203905298公开了一种FRP管钢筋混凝土-钢管混凝土叠合构件,包括钢管和箍筋,钢管内填充有混凝土,钢管外包裹有钢筋混凝土,钢筋混凝土内设置有若干钢筋,箍筋箍扎在钢筋外侧,所述钢筋包括若干纵向设置的钢筋和若干横向设置的钢筋,钢筋混凝土外侧设置有FRP管。该构件在钢筋混凝土中设置纵向的钢筋和横向的钢筋,能够增强钢管混凝土叠合构件的承载能力,在钢筋混凝土外侧设置有FRP(纤维增强塑料)管,能够避免钢筋和钢管暴露在空气中,从而增强钢管混凝土叠合构件的抗腐蚀性,同时FRP管还能增强钢管混凝土叠合构件的抗震性,并能简化施工安装工艺、减少施工用地并缩短工期。但是该结构还是存在以下缺点:1)FRP管耐火性能较差,置于构件外部时极易受到损坏,影响构件整体性能;2)在叠合构件与其他构件交汇的节点位置,FRP管必须断开以方便钢筋通过,从而削弱了节点位置的力 学性能,不符合强节点、弱构件的设计理念。
发明内容
本发明要解决的技术问题在于针对上述现有技术存在的不足,提供一种承载力较强、成型质量好、耐火性能佳、施工难度低的多内芯压力成型钢管混凝土叠合构件及其制作方法。
本发明为解决上述提出的技术问题所采用的技术方案为:
一种多内芯压力成型钢管混凝土叠合构件,包括至少两个压力成型钢管混凝土芯柱、箍筋和外围混凝土;所述压力成型钢管混凝土芯柱包括钢管、浇筑于钢管内部的压力成型混凝土、包覆于钢管外的纤维复合材料,所述压力成型混凝土在混凝土养护过程中对混凝土施加压力;所述箍筋绑扎于所述至少两个压力成型钢管混凝土芯柱的外围;所述外围混凝土浇筑于绑扎后的压力成型钢管混凝土芯柱外部对其进行包裹。
上述方案中,多个压力成型钢管混凝土芯柱呈中心对称布置。
上述方案中,所述箍筋包括两个相对设置的U型圆弧箍筋和两个直连接钢筋套筒,两个U型圆弧箍筋对接的接头位置分别通过所述直连接钢筋套筒固定。
上述方案中,所述U型圆弧箍筋的弯曲半径与所述钢管半径适配,每对U型圆弧箍筋对接后形成一个封闭箍筋环,环内可约束若干数量的压力成型钢管混凝土芯柱,所述若干数量为等于或小于压力成型钢管混凝土芯柱的数量。
上述方案中,若干封闭箍筋环形成一组复合箍筋,沿叠合构件全长进行间隔布置,同时确保所述直连接钢筋套筒的位置在同一轴向上交错布置。
上述方案中,所述多内芯压力成型钢管混凝土叠合构件还包括设置于所述压力成型钢管混凝土芯柱间隙的抗裂纵筋,所述抗裂纵筋沿多内芯压力成型钢管混凝土叠合构件的外围布置。
上述方案中,所述多内芯压力成型钢管混凝土叠合构件与其他构件交汇的节点区域,其他构件的纵筋从多个压力成型钢管混凝土芯柱之间的间隙穿过,无法从间隙穿过的纵筋通过钢筋搭接板连接于压力成型钢管混凝土芯柱上。
本发明还提出上述多内芯压力成型钢管混凝土叠合构件的制作方法,包括以下步骤:
S1、先使用纤维复合材料缠绕钢管,然后浇筑钢管内部的压力成型混凝土,形成压力成型钢管混凝土芯柱;压力成型钢管混凝土芯柱在制作时,需要在混凝土养护过程中对混凝土施加压力;
S2、将所需数量的压力成型钢管混凝土芯柱定位安装,垂直于压力成型钢管混凝土芯柱轴线方向绑扎箍筋;
S3、最后浇筑外围混凝土。
上述方法中,步骤S1中,在压力成型混凝土初凝硬化之前通过加压装置对其进行加压养护,养护压力的选取根据下式:
其中,P为养护压力,D为钢管外径,t为钢管壁厚,fy为钢材屈服强度;
压力养护1~7天后拆除加压装置。
上述方法中,在压力成型钢管混凝土芯柱定位安装完成后,沿叠合构件的外围,根据需要在压力成型钢管混凝土芯柱的间隙设置抗裂纵筋,然后再开展外围箍筋的绑扎。
本发明的有益效果在于:
1、本发明一种多内芯压力成型钢管混凝土叠合构件中,构件的承载能力主要由内部若干钢管混凝土芯柱提供,芯柱的外围应用了轻质高强的纤维复合材料,具备较强的承载能力。同时芯柱的混凝土在成型过程中施加了一定的压力,使混凝土更加密实,从而进一步提高了叠合构件的承载力。因此,本发明的承载能力较强。
2、本发明一种多内芯压力成型钢管混凝土叠合构件中,钢管混凝土芯柱在成型过程中加压,使钢管膨胀变形,后期混凝土收缩时钢管仍保持与混凝土紧密贴合状态。合理控制压力水平,可以使混凝土成型后仍处于多向受压状态,增强钢管与混凝土的协同效果。同时,发挥主要承载作用的钢管混凝土芯柱可实现在工厂中预制成型,在现场只需要进行外围混凝土的浇筑,整体试件的成型质量更为可控。因此,本发明的成型质量更好。
3、本发明一种多内芯压力成型钢管混凝土叠合构件中,FRP、钢材等不耐火材料均置于构件内部,受外围混凝土包裹保护。火灾作用下可延缓温度传递速度,避免整体构件承载力瞬间降低,提升了构件在高温环境下的力学性能。因此,本发明的耐火性能更佳。
4、本发明一种多内芯压力成型钢管混凝土叠合构件中,钢管混凝土芯柱在叠合构件内部可以根据受力需要分散布置,简化了构件中水平箍筋的布置方式。同时,在与其他构件交汇的节点区域,其他构件的钢筋可以合理的避让芯柱,尽可能地穿过叠合构件,避免了钢筋在节点区域截断堆积,影响节点区域混凝土浇筑质量。因此,本发明的施工难度较低。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例多内芯压力成型钢管混凝土叠合构件的横截面示意图;
图2是图1所示多内芯压力成型钢管混凝土叠合构件的箍筋的示意图;
图3是图1所示多内芯压力成型钢管混凝土叠合构件与其他构件交汇的节点区域示意图;
图4是图1所示多内芯压力成型钢管混凝土叠合构件进行轴向加载时的数据曲线,对比曲线为同尺寸同含钢率的钢骨混凝土构件计算曲线;
图5是本发明第二实施例多内芯压力成型钢管混凝土叠合构件的横截面示意图;
图6是图5所示多内芯压力成型钢管混凝土叠合构件的约束其中三个芯柱的箍筋示意图。
图中:10、压力成型钢管混凝土芯柱;11、钢管;12、压力成型混凝土;13、纤维复合材料;20、箍筋;21、U型圆弧箍筋;22、直连接钢筋套筒;30、抗裂纵筋;40、外围混凝土;
200、其他构件的纵筋。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,为本发明第一实施例提供的一种多内芯压力成型钢管混凝土叠合构件,包括四个压力成型钢管混凝土芯柱10、箍筋20和外围混凝土40。压力成型钢管混凝土芯柱10包括钢管11、浇筑于钢管11内部的压力成型混凝土12、包覆于钢管11外表面的纤维复合材料13,压力成型混凝土12在混凝土养护过程中对混凝土施加压力,以使混凝土更为密实,从而提高钢管混凝土芯柱的轴向承载力。箍筋20绑扎于四个压力成型钢管混凝土芯柱10的外围,起到约束作用。外围混凝土40浇筑于绑扎后的压力成型钢管混凝土芯柱10外部对其进行包裹。多内芯压力成型混凝土12叠合构件还包括设置于压力成型钢管混凝土芯柱10间隙的抗裂纵筋30,抗裂纵筋30沿多内芯压力成型钢管混凝土叠合构件的外围布置。
如图2所示,箍筋20包括两个相对设置的U型圆弧箍筋21和两个直连接钢筋套筒22,两个U型圆弧箍筋21对接的接头位置分别通过直连接钢筋套筒22固定。每个U型圆弧箍筋21的弯曲半径等于或略大于(取决于纤维复合材料13厚度及安装精度)钢管11半径。每对U型圆弧箍筋21对接后形成一个封闭箍筋环,环内可约束四个压力成型钢管混凝土芯柱10。多个封闭箍筋环形成一组复合箍筋,沿叠合构件全长进行间隔布置,同时确保直连接钢筋套筒22的位置在同一轴向上交错布置。
如图3所示,本发明与其他构件交汇的节点区域,其他构件的纵筋200可以合理避让芯柱,尽可能地穿过叠合构件,从多个压力成型钢管混凝土芯柱10之间的间隙穿过,其余无法从间隙穿过的纵筋可通过钢筋搭接板连接于压力成型钢管混凝土芯柱10上,避免了大量钢筋在节点区域截断堆积,影响浇筑质量和节点的传力效果。
如图4所示,对本发明多内芯压力成型钢管混凝土叠合构件进行轴向加载时的数据曲线,受试验条件所限,只加载至10000t,试件未发生破坏。对比曲线为同尺寸同含钢率的钢骨混凝土构件计算曲线。由图可见,本发明叠合构件 的承载力与轴向刚度都明显强于传统的钢骨混凝土构件。
进一步优化,多个压力成型钢管混凝土芯柱10呈中心对称布置。
进一步优化,钢管11的材料,优选为Q235、Q355及Q460钢。
进一步优化,钢管11内部的压力成型混凝土12,优选为标号C60及以上混凝土,以便提高承载力。
进一步优化,钢管11外围混凝土40,优选为C30~C60自密实混凝土,以便提高浇筑质量。
进一步优化,纤维复合材料13,优选为碳纤维、玻璃纤维或玄武岩纤维复合材料13。
进一步优化,箍筋20,优选为直径25及以上HRB400螺纹钢筋,以便提高约束能力。
如图5所示,为本发明第二实施例提供的一种多内芯压力成型钢管混凝土叠合构件,其整体结构与第一实施例基本相同,不同之处在于:包括九个压力成型钢管混凝土芯柱10,由于芯柱数量较多,箍筋20设计了两种尺寸,一种是约束其中三个芯柱的小尺寸箍筋(参见图6),另一种是约束所有芯柱的大尺寸箍筋。不同规格、方向的封闭箍筋环形成一组复合箍筋,沿叠合构件全长进行间隔布置,同时确保直连接钢筋套筒22的位置在同一轴向上交错布置。
相应的,本发明还提出上述多内芯压力成型钢管混凝土叠合构件的制作方法,包括以下步骤:
S1、先制作所需数量的钢管11,再在钢管11外表面沿全长缠绕纤维复合材料13,然后在钢管11内部灌注压力成型混凝土12,在混凝土初凝硬化之前通过加压装置对其进行加压养护,养护压力的选取根据下式:
其中,P为养护压力,D为钢管11外径,t为钢管11壁厚,fy为钢材屈服强度;
压力养护1~7天后拆除加压装置。
S2、将若干根养护完成的压力成型钢管混凝土芯柱10根据一定的排布形式定位安装。沿叠合构件的外围,根据需要可在压力成型钢管混凝土芯柱10的间隙设置抗裂纵筋30。然后开展外围复合箍筋的安装,制作弯曲半径等同于(或略大于,取决于纤维材料厚度及安装精度)钢管11半径的U型圆弧箍筋21,两根成对的U型圆弧箍筋21利用直连接钢筋套筒22组合形成一个完整的箍筋环,固定在若干根压力成型钢管混凝土芯柱10的外侧,箍筋环与钢管11外壁的纤维复合材料13紧密贴合。
S3、最后根据叠合构件的外形支设外围混凝土40模板,进行外围混凝土40的浇筑与养护。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

  1. 一种多内芯压力成型钢管混凝土叠合构件,其特征在于,包括至少两个压力成型钢管混凝土芯柱、箍筋和外围混凝土;所述压力成型钢管混凝土芯柱包括钢管、浇筑于钢管内部的压力成型混凝土、包覆于钢管外的纤维复合材料,所述压力成型混凝土在混凝土养护过程中对混凝土施加压力;所述箍筋绑扎于所述至少两个压力成型钢管混凝土芯柱的外围;所述外围混凝土浇筑于绑扎后的压力成型钢管混凝土芯柱外部对其进行包裹。
  2. 根据权利要求1所述的多内芯压力成型钢管混凝土叠合构件,其特征在于,多个压力成型钢管混凝土芯柱呈中心对称布置。
  3. 根据权利要求1所述的多内芯压力成型钢管混凝土叠合构件,其特征在于,所述箍筋包括两个相对设置的U型圆弧箍筋和两个直连接钢筋套筒,两个U型圆弧箍筋对接的接头位置分别通过所述直连接钢筋套筒固定。
  4. 根据权利要求3所述的多内芯压力成型钢管混凝土叠合构件,其特征在于,所述U型圆弧箍筋的弯曲半径与所述钢管半径适配,每对U型圆弧箍筋对接后形成一个封闭箍筋环,环内可约束若干数量的压力成型钢管混凝土芯柱,所述若干数量为等于或小于压力成型钢管混凝土芯柱的数量。
  5. 根据权利要求4所述的多内芯压力成型钢管混凝土叠合构件,其特征在于,若干封闭箍筋环形成一组复合箍筋,沿叠合构件全长进行间隔布置,同时确保所述直连接钢筋套筒的位置在同一轴向上交错布置。
  6. 根据权利要求1所述的多内芯压力成型钢管混凝土叠合构件,其特征在于,所述多内芯压力成型钢管混凝土叠合构件还包括设置于所述压力成型钢管混凝土芯柱间隙的抗裂纵筋,所述抗裂纵筋沿多内芯压力成型钢管混凝土叠合构件的外围布置。
  7. 根据权利要求1所述的多内芯压力成型钢管混凝土叠合构件,其特征在于,所述多内芯压力成型钢管混凝土叠合构件与其他构件交汇的节点区域,其他构件的纵筋从多个压力成型钢管混凝土芯柱之间的间隙穿过,无法从间隙穿过的纵筋通过钢筋搭接板连接于压力成型钢管混凝土芯柱上。
  8. 根据权利要求1所述的多内芯压力成型钢管混凝土叠合构件的制作方法, 其特征在于,包括以下步骤:
    S1、先使用纤维复合材料缠绕钢管,然后浇筑钢管内部的压力成型混凝土,形成压力成型钢管混凝土芯柱;压力成型钢管混凝土芯柱在制作时,需要在混凝土养护过程中对混凝土施加压力;
    S2、将所需数量的压力成型钢管混凝土芯柱定位安装,垂直于压力成型钢管混凝土芯柱轴线方向绑扎箍筋;
    S3、最后浇筑外围混凝土。
  9. 根据权利要求8所述的多内芯压力成型钢管混凝土叠合构件的制作方法,其特征在于,步骤S1中,在压力成型混凝土初凝硬化之前通过加压装置对其进行加压养护,养护压力的选取根据下式:
    其中,P为养护压力,D为钢管外径,t为钢管壁厚,fy为钢材屈服强度;
    压力养护1~7天后拆除加压装置。
  10. 根据权利要求8所述的多内芯压力成型钢管混凝土叠合构件的制作方法,其特征在于,在压力成型钢管混凝土芯柱定位安装完成后,沿叠合构件的外围,根据需要在压力成型钢管混凝土芯柱的间隙设置抗裂纵筋,然后再开展外围箍筋的绑扎。
PCT/CN2023/086758 2022-04-07 2023-04-07 一种多内芯压力成型钢管混凝土叠合构件及其制作方法 WO2023193777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210362508.0A CN114809295B (zh) 2022-04-07 2022-04-07 一种多内芯压力成型钢管混凝土叠合构件及其制作方法
CN202210362508.0 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193777A1 true WO2023193777A1 (zh) 2023-10-12

Family

ID=82534714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086758 WO2023193777A1 (zh) 2022-04-07 2023-04-07 一种多内芯压力成型钢管混凝土叠合构件及其制作方法

Country Status (2)

Country Link
CN (1) CN114809295B (zh)
WO (1) WO2023193777A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114809295B (zh) * 2022-04-07 2023-07-21 中建三局集团有限公司 一种多内芯压力成型钢管混凝土叠合构件及其制作方法
CN116163473A (zh) * 2022-12-08 2023-05-26 广州大学 一种内置高强混凝土芯柱的混凝土组合柱及其建造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342711A (ja) * 2000-03-28 2001-12-14 Kumagai Gumi Co Ltd 柱状構造物及びその施工法並びに鋼管の継手構造
CN101324116A (zh) * 2008-07-15 2008-12-17 沈阳建筑大学 异形碳纤维增强塑料钢管混凝土芯柱的制作方法
CN201883545U (zh) * 2010-12-31 2011-06-29 中建一局华中建设有限公司 钢管混凝土叠合柱与钢混梁连接节点
CN102635063A (zh) * 2012-04-28 2012-08-15 西安建筑科技大学 后张法预应力钢管高强混凝土叠合桥墩及其施工方法
CN203782978U (zh) * 2014-03-19 2014-08-20 福州龙榕蜂窝包装材料有限公司 一种高强度轻质混凝土柱
CN203795722U (zh) * 2014-04-24 2014-08-27 安徽城建检测科技有限公司 中空钢管混凝土柱
CN105064613A (zh) * 2015-09-06 2015-11-18 南京工业大学 一种内置frp局部约束混凝土组合构件
CN207988359U (zh) * 2018-02-05 2018-10-19 中建三局集团有限公司 钢管混凝土高压成型装置及钢管混凝土
CN208718221U (zh) * 2018-08-29 2019-04-09 天津多财宝科技有限公司 一种混凝土复合箍筋柱结构
CN212802272U (zh) * 2020-03-05 2021-03-26 南京林业大学 一种套管钢筋混凝土-海水海砂混凝土叠合结构
CN114809295A (zh) * 2022-04-07 2022-07-29 中建三局集团有限公司 一种多内芯压力成型钢管混凝土叠合构件及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601787B2 (ja) * 2009-04-02 2014-10-08 株式会社竹中工務店 柱構造及び柱構造の施工方法
KR101448167B1 (ko) * 2013-04-08 2014-10-07 주식회사 액트파트너 수직철근의 배치 및 이음이 용이한 콘크리트 충전 강관기둥 구조
JP6238078B2 (ja) * 2013-06-28 2017-11-29 清水建設株式会社 柱同士の接合構造及び建築物
KR101833949B1 (ko) * 2015-06-22 2018-03-05 (주)퍼스텍이엔지 단면이 최적화된 복합보
JP7200048B2 (ja) * 2019-06-07 2023-01-06 株式会社安藤・間 杭基礎構造
CN111535454A (zh) * 2020-05-26 2020-08-14 华北理工大学 板柱中节点连接结构、钢管混凝土板柱结构及施工方法
CN215483532U (zh) * 2021-05-21 2022-01-11 武汉和创建筑工程设计有限公司 一种新型钢管混凝土叠合柱与梁柱节点

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342711A (ja) * 2000-03-28 2001-12-14 Kumagai Gumi Co Ltd 柱状構造物及びその施工法並びに鋼管の継手構造
CN101324116A (zh) * 2008-07-15 2008-12-17 沈阳建筑大学 异形碳纤维增强塑料钢管混凝土芯柱的制作方法
CN201883545U (zh) * 2010-12-31 2011-06-29 中建一局华中建设有限公司 钢管混凝土叠合柱与钢混梁连接节点
CN102635063A (zh) * 2012-04-28 2012-08-15 西安建筑科技大学 后张法预应力钢管高强混凝土叠合桥墩及其施工方法
CN203782978U (zh) * 2014-03-19 2014-08-20 福州龙榕蜂窝包装材料有限公司 一种高强度轻质混凝土柱
CN203795722U (zh) * 2014-04-24 2014-08-27 安徽城建检测科技有限公司 中空钢管混凝土柱
CN105064613A (zh) * 2015-09-06 2015-11-18 南京工业大学 一种内置frp局部约束混凝土组合构件
CN207988359U (zh) * 2018-02-05 2018-10-19 中建三局集团有限公司 钢管混凝土高压成型装置及钢管混凝土
CN208718221U (zh) * 2018-08-29 2019-04-09 天津多财宝科技有限公司 一种混凝土复合箍筋柱结构
CN212802272U (zh) * 2020-03-05 2021-03-26 南京林业大学 一种套管钢筋混凝土-海水海砂混凝土叠合结构
CN114809295A (zh) * 2022-04-07 2022-07-29 中建三局集团有限公司 一种多内芯压力成型钢管混凝土叠合构件及其制作方法

Also Published As

Publication number Publication date
CN114809295B (zh) 2023-07-21
CN114809295A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023193777A1 (zh) 一种多内芯压力成型钢管混凝土叠合构件及其制作方法
WO2017185942A1 (zh) 一种钢-纤维复合材料混凝土组合柱及其震后修复方法
Sezen et al. Experimental evaluation of axial behavior of strengthened circular reinforced-concrete columns
Abdelkarim et al. Behavior of hollow FRP–concrete–steel columns under static cyclic axial compressive loading
Guan et al. Seismic performance of precast concrete columns with prefabricated UHPC jackets in plastic hinge zone
Gou et al. Experimental study on seismic performance of precast LSECC/RC composite joints with U-shaped LSECC beam shells
Yang et al. Cyclic flexural tests of hybrid steel–precast concrete beams with simple connection elements
US10227786B2 (en) Elongate member reinforcement with a studded collar
CN102433962A (zh) 方套方中空夹层碳纤维钢骨-钢管混凝土组合柱
CN103669725A (zh) 混杂frp管高强钢筋活性粉末混凝土柱及制备方法
Eshaghi‐Milasi et al. Behavior of RC columns strengthened with UHPFRC jackets through grooving method under eccentric loading: a comparative evaluation of steel and synthetic macro fibers in UHPFRC
CN108360749A (zh) 一种frp-钢夹层复合管混凝土柱及其制备方法
WO2011082605A1 (zh) 内填海沙混凝土的空心钢管混凝土柱及其制作方法
CN113089417A (zh) Ecc-混凝土-钢三明治管状结构及其制备方法
Lin et al. Chord axial compressive behavior of hybrid FRP-concrete-steel double-skin tubular member T-joints
CN113089933A (zh) 带ecc增强保护层及frp约束混凝土芯柱的钢管混凝土柱及其建造方法和应用
AU2020100670A4 (en) Welding construction method suitable for cement-based material of combined concrete structure
CN106351464A (zh) 双向预应力角钢板在线无破损加固矩形截面混凝土柱法
Yan et al. Square concrete-filled steel tube strengthened with carbon fiber-reinforced polymer grid-reinforced engineered cementitious composite under axial loading
CN208815777U (zh) 一种钢管混凝土柱
EHsAni FRP super laminates
JP2002013248A (ja) 連続繊維補強管内蔵コンクリート柱
Hu et al. Experimental investigations of FRP-interlayer-steel confined concrete columns under axial compression
CN111749346A (zh) 一种含预制钢管混凝土芯柱构件的接长节点及施工方法
CN103306431A (zh) 钢筋混凝土管格构柱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784340

Country of ref document: EP

Kind code of ref document: A1