WO2023193636A1 - Method for highly orienting platinum on basis of vertical heteroepitaxy of single crystal tungsten diselenide - Google Patents

Method for highly orienting platinum on basis of vertical heteroepitaxy of single crystal tungsten diselenide Download PDF

Info

Publication number
WO2023193636A1
WO2023193636A1 PCT/CN2023/084393 CN2023084393W WO2023193636A1 WO 2023193636 A1 WO2023193636 A1 WO 2023193636A1 CN 2023084393 W CN2023084393 W CN 2023084393W WO 2023193636 A1 WO2023193636 A1 WO 2023193636A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten diselenide
platinum
single crystal
metal
substrate
Prior art date
Application number
PCT/CN2023/084393
Other languages
French (fr)
Chinese (zh)
Inventor
吴燕庆
王欣
刘视远
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2023193636A1 publication Critical patent/WO2023193636A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method for highly orienting platinum on the basis of vertical heteroepitaxy of single crystal tungsten diselenide, comprising: using single crystal tungsten diselenide as an epitaxial substrate; depositing a polycrystalline platinum thin film on the epitaxy of the epitaxial substrate; and then, longitudinally inducing, by means of oxygen annealing, platinum to form a highly oriented platinum thin film along tungsten diselenide, wherein a gap between the platinum and the tungsten diselenide is smaller than the Van der Waals distance, so that a better two-dimensional material is formed to contact a metal, thereby reducing the Schottky barrier height for a metal-semiconductor contact. According to the method, the problem that a highly oriented metal thin film is difficult to prepare, limited in size and high in costs is solved. A tungsten diselenide field effect transistor is a PMOS, and achieves high-quality contact between a tungsten diselenide semiconductor and a metal by means of the method, thereby reducing contact resistance, being complementary to an NMOS field effect transistor, and improving the performance of a nanosheet CMOS device.

Description

基于单晶二硒化钨的垂直异质外延高定向金属铂的方法Method for vertical heteroepitaxial highly oriented metal platinum based on single crystal tungsten diselenide 技术领域Technical field
本发明涉及外延金属薄膜的方法,具体涉及一种基于p型二维材料诱导外延高定向金属铂薄膜,形成高质量接触的方法。The invention relates to a method for epitaxial metal thin films, and specifically relates to a method for inducing the epitaxial growth of highly oriented metal platinum thin films based on p-type two-dimensional materials to form high-quality contacts.
背景技术Background technique
随着硅基工艺尺寸逐渐缩小,短沟道效应越来越明显地影响晶体管器件的性能显示,为在进一步实现互补逻辑电路尺寸的缩小同时保证器件的性能,需要高迁移率、高开关比的原子层厚度的二维半导体沟道材料。其中n型二维材料(硫化钼)晶体管已经具有优异的性能,CMOS器件进一步发展的阻碍之一在于p型二维材料的迁移率较低、接触电阻较大。因此有必要发展一种以p型的二维材料诱导金属形成高定向的外延接触的方法,用以实现较低电阻、较高迁移率的p型晶体管器件。As the size of silicon-based processes gradually shrinks, the short channel effect increasingly affects the performance of transistor devices. In order to further reduce the size of complementary logic circuits while ensuring device performance, high mobility and high switching ratios are needed. Atomic layer-thick two-dimensional semiconductor channel material. Among them, n-type two-dimensional material (molybdenum sulfide) transistors already have excellent performance. One of the obstacles to the further development of CMOS devices is that the p-type two-dimensional material has low mobility and large contact resistance. Therefore, it is necessary to develop a method of using p-type two-dimensional materials to induce metal to form highly oriented epitaxial contacts to achieve p-type transistor devices with lower resistance and higher mobility.
目前金属薄膜的制备方法主要为沉积法或溅射法,沉积得到的多晶金属薄膜存在大量晶界,会极大地降低金属薄膜的性质,增大接触电阻。近年利用单晶二维材料作为衬底外延单晶金属材料,提供了一种简单实惠的方法制备单晶金属材料。At present, the preparation methods of metal thin films are mainly deposition methods or sputtering methods. The deposited polycrystalline metal thin films have a large number of grain boundaries, which will greatly reduce the properties of the metal thin films and increase the contact resistance. In recent years, single crystal two-dimensional materials have been used as substrates for epitaxial single crystal metal materials, providing a simple and affordable method to prepare single crystal metal materials.
发明内容Contents of the invention
针对目前高定向金属薄膜制备困难、薄膜尺寸受限制、成本高的问题,本发明的目的在于提供一种基于单晶二维材料二硒化钨的无损伤的垂直异质诱导外延贵金属铂薄膜的方法,从而提供一种简单的方法制备高性能的p型晶体管。其中通过对金属铂与二硒化钨的接触进行改进,利用金属铂与二硒化钨的垂直异质外延沉积优化接触,形成小于范德华间距的异质结,实现比现有p型器件更小的接触电阻。In view of the current problems of difficulty in preparing highly oriented metal films, limited film size, and high cost, the purpose of the present invention is to provide a damage-free vertical heterogeneous induced epitaxial noble metal platinum film based on the single crystal two-dimensional material tungsten diselenide. method, thereby providing a simple method to prepare high-performance p-type transistors. Among them, by improving the contact between metal platinum and tungsten diselenide, the vertical heteroepitaxial deposition of metal platinum and tungsten diselenide is used to optimize the contact, forming a heterojunction smaller than the van der Waals distance, achieving a smaller size than the existing p-type device contact resistance.
为实现上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
一种垂直异质外延高定向金属铂薄膜的方法,其特征在于,以单晶二硒化钨作为外延基底,在其上外延沉积金属铂,获得多晶金属铂薄膜,然后通过氧气退火诱导金属铂沿二硒化钨形成高定向的金属铂薄膜,金属铂-二硒化钨异质结的间距小于范德华间距,形成了更好的p型欧姆接触。A method for vertical heteroepitaxy of highly oriented metal platinum films, which is characterized by using single crystal tungsten diselenide as an epitaxial substrate, epitaxially depositing metal platinum on it to obtain a polycrystalline metal platinum film, and then inducing metal through oxygen annealing Platinum forms a highly oriented metal platinum film along tungsten diselenide. The spacing of the metal platinum-tungsten diselenide heterojunction is smaller than the van der Waals spacing, forming a better p-type ohmic contact.
本发明基于单晶二硒化钨诱导外延得到高定向金属铂薄膜,所述金属铂薄膜的厚度优选为5-20纳米。二硒化钨位于底层,金属铂位于上层,二者垂直堆叠,通过采用氧气退火形成高定向金属铂外延,从而降低了异质结的接触电阻。优选地,所述单晶二硒化钨为单层到十层,通过化学气相沉积生长在任意衬底(无定形衬底、单晶衬底皆可)表面,可以是无定型的氧化硅、氮化硅衬底,也可以是单晶蓝宝石衬底,衬底本身不会对诱导金属结晶形成高定向薄膜产生影响。The present invention obtains a highly oriented metal platinum film based on induced epitaxy of single crystal tungsten diselenide. The thickness of the metal platinum film is preferably 5-20 nanometers. Tungsten diselenide is located on the bottom layer and metal platinum is located on the upper layer. The two are stacked vertically. Oxygen annealing is used to form highly oriented metal platinum epitaxy, thereby reducing the contact resistance of the heterojunction. Preferably, the single crystal tungsten diselenide has a single layer to ten layers and is grown on the surface of any substrate (either an amorphous substrate or a single crystal substrate) through chemical vapor deposition. It can be amorphous silicon oxide, The silicon nitride substrate can also be a single crystal sapphire substrate. The substrate itself will not affect the induction of metal crystallization to form a highly oriented film.
优选地,所述垂直异质外延高定向金属薄膜的方法包括如下步骤:Preferably, the method for vertical heteroepitaxial highly oriented metal thin films includes the following steps:
第一步,采用化学气相沉积方法在衬底上生长单晶二硒化钨;In the first step, a chemical vapor deposition method is used to grow single crystal tungsten diselenide on the substrate;
第二步,以得到的单晶二硒化钨为基底在其上外延生长多晶金属铂薄膜;In the second step, a polycrystalline metal platinum film is epitaxially grown on the obtained single crystal tungsten diselenide as a substrate;
第三步,在氧气中退火二硒化钨-多晶金属铂薄膜,以二硒化钨诱导多晶铂形成高定向的铂薄膜,得到间距小于范德华间距的异质结,形成更好的p型欧姆接触。The third step is to anneal the tungsten diselenide-polycrystalline metal platinum film in oxygen, and use tungsten diselenide to induce the polycrystalline platinum to form a highly oriented platinum film, obtaining a heterojunction with a spacing smaller than the van der Waals spacing, and forming a better p type ohmic contact.
优选地,在上述方法中,第一步中生长二硒化钨的方法为化学气相沉积法。在本发明的一个实施例中,将衬底放入化学气相沉积系统,加热二氧化钨和硒源,通入100标准毫升每分钟的氩气和10标准毫升每分钟的氢气,将反应气压保持在1000到2000帕之间,在衬底表面890摄氏度生长10-15分钟。生长结束后,关闭加热电源,以惰性气体为保护气体,自然冷却至室温,在衬底表面生长出高质量大尺寸的单晶二硒化钨。Preferably, in the above method, the method of growing tungsten diselenide in the first step is chemical vapor deposition. In one embodiment of the present invention, the substrate is placed into a chemical vapor deposition system, the tungsten dioxide and selenium sources are heated, 100 standard milliliters per minute of argon gas and 10 standard milliliters per minute of hydrogen gas are introduced, and the reaction gas pressure is maintained Grow at 890 degrees Celsius on the substrate surface for 10-15 minutes between 1000 and 2000 Pa. After the growth is completed, the heating power is turned off, inert gas is used as the protective gas, and the process is naturally cooled to room temperature, and high-quality and large-sized single crystal tungsten diselenide is grown on the surface of the substrate.
优选地,在上述方法中,第二步中外延多晶金属铂薄膜的方法为电子束蒸镀,蒸镀速率可以是0.04纳米每秒。金属铂薄膜的厚度优选为5-20纳米。Preferably, in the above method, the method for epitaxially growing the polycrystalline metal platinum film in the second step is electron beam evaporation, and the evaporation rate can be 0.04 nanometers per second. The thickness of the metallic platinum film is preferably 5-20 nanometers.
优选地,在上述方法中,第三步中诱导形成高定向的金属铂薄膜的方法为氧气退火,退火温度为200摄氏度~300摄氏度,退火时间为1小时~6小时。氧气退火时以氩气为载气,混合氧气,退火时通入氩气和氧气的混合气,氩气流量为100~1000 sccm,氧气流量为10~100 sccm,压强为19~760 torr。在本发明的一个实施例中,将沉积金属铂的衬底放置在石英舟内,放入管式炉内,通入流量为100标准毫升每分钟的氩气,然后开始升温,升至300摄氏度时通入氧气,流量为10标准毫升每分钟,维持300摄氏度2小时,退火结束后,冷却至室温,即得到二硒化钨上的高定向金属铂薄膜,而在无二硒化钨的衬底表面的金属铂仍为多晶薄膜。二硒化钨与高定向金属铂的间距小于范德华间距。用上述方法制备的p型二硒化钨晶体管接触更好。Preferably, in the above method, the method for inducing the formation of a highly oriented metal platinum film in the third step is oxygen annealing, the annealing temperature is 200 degrees Celsius to 300 degrees Celsius, and the annealing time is 1 hour to 6 hours. During oxygen annealing, argon gas is used as the carrier gas and oxygen is mixed. During annealing, a mixture of argon and oxygen is introduced. The argon gas flow rate is 100~1000 sccm, the oxygen flow rate is 10~100 sccm, and the pressure is 19~760 torr. In one embodiment of the present invention, the substrate on which platinum metal is deposited is placed in a quartz boat and placed in a tube furnace. Argon gas is introduced with a flow rate of 100 standard milliliters per minute, and then the temperature begins to rise to 300 degrees Celsius. When oxygen is introduced, the flow rate is 10 standard milliliters per minute, and the temperature is maintained at 300 degrees Celsius for 2 hours. After the annealing is completed, it is cooled to room temperature to obtain a highly oriented metal platinum film on tungsten diselenide. On the lining without tungsten diselenide, The metallic platinum on the bottom surface is still a polycrystalline film. The distance between tungsten diselenide and the highly oriented metal platinum is smaller than the van der Waals distance. The p-type tungsten diselenide transistor prepared by the above method has better contact.
本发明的有益效果:Beneficial effects of the present invention:
(1)本发明首次提出在单晶二维材料表面沉积得到高定向的金属铂薄膜。(1) This invention proposes for the first time to deposit a highly oriented metal platinum film on the surface of a single crystal two-dimensional material.
(2)本发明可以选用成熟的氧化硅/p型硅晶圆衬底,利用化学气相沉积法在非晶氧化硅上生长单晶二硒化钨,获得二硒化钨的成本低、工艺简单。(2) The present invention can use a mature silicon oxide/p-type silicon wafer substrate and use chemical vapor deposition to grow single crystal tungsten diselenide on amorphous silicon oxide. The cost of obtaining tungsten diselenide is low and the process is simple. .
(3)本发明使用常见的电子束蒸镀法沉积多晶金属铂薄膜在二硒化钨上,通过简单的管式炉内高温氧气退火即可得到高定向的金属铂薄膜。(3) The present invention uses a common electron beam evaporation method to deposit a polycrystalline metal platinum film on tungsten diselenide, and a highly oriented metal platinum film can be obtained through simple high-temperature oxygen annealing in a tube furnace.
(4)本发明方法可以提高金属铂和二硒化钨的接触质量,降低接触电阻,实现高性能的p型晶体管器件。(4) The method of the present invention can improve the contact quality between metal platinum and tungsten diselenide, reduce contact resistance, and realize high-performance p-type transistor devices.
附图说明Description of drawings
图1为实施例制备的金属铂-二硒化钨的垂直异质外延接触的p型晶体管结构示意图,其中,1为硅衬底,2为二氧化硅层,3为二硒化钨层,4为金属铂薄膜。Figure 1 is a schematic structural diagram of a p-type transistor with a vertical heteroepitaxial contact of metal platinum and tungsten diselenide prepared in the embodiment, where 1 is a silicon substrate, 2 is a silicon dioxide layer, and 3 is a tungsten diselenide layer. 4 is a metal platinum film.
图2为实施例制备金属铂-二硒化钨的垂直异质外延接触的p型晶体管的工艺流程图,其中,第1步用标准RCA清洗工艺清洗硅片,并快速退火去除有机物残留;第2步采用化学气相沉积工艺生长WSe 2;第3步通过微纳加工工艺或shutter mask蒸镀工艺制备金属铂电极;第4步采用管式炉氧气退火得到高定向的金属铂薄膜。 Figure 2 is a process flow chart for preparing a p-type transistor with a vertical heteroepitaxial contact of metal platinum-tungsten diselenide according to an embodiment. In the first step, the silicon wafer is cleaned using a standard RCA cleaning process and rapidly annealed to remove organic residues; The second step is to grow WSe 2 using chemical vapor deposition process; the third step is to prepare the metal platinum electrode through micro-nano processing or shutter mask evaporation process; the fourth step is to use tube furnace oxygen annealing to obtain a highly oriented metal platinum film.
图3为实施例制备的高定向金属铂的扫描电子显微镜剖面图。Figure 3 is a scanning electron microscope cross-section of the highly oriented metal platinum prepared in the Example.
具体实施方式Detailed ways
为了使本发明所述的内容更加便于理解,下面通过具体实施例对本发明所述的技术方案做进一步的说明,但下述的实例仅仅是本发明中的例子而已,并不代表本发明所限定的权利保护范围,本发明的权利保护范围以权利要求书为准。In order to make the content of the present invention easier to understand, the technical solutions of the present invention will be further described below through specific examples. However, the following examples are only examples of the present invention and do not mean that the present invention is limited. The scope of rights protection of the present invention shall be determined by the claims.
基于三层二硒化钨的垂直异质外延单晶金属铂薄膜的方法,参见图2,包括如下步骤:The method of vertical heteroepitaxial single crystal metal platinum film based on three layers of tungsten diselenide, see Figure 2, includes the following steps:
第一步:使用SiO 2/Si(111)衬底,采用标准的RCA清洗工艺清洗衬底上的颗粒、有机物、氧化物等,清洗完后高纯氮气吹干待用。 Step 1: Use a SiO 2 /Si (111) substrate and use the standard RCA cleaning process to clean particles, organic matter, oxides, etc. on the substrate. After cleaning, blow dry with high-purity nitrogen for use.
第二步:化学气相沉积生长三层二硒化钨材料在二氧化硅层上。Step 2: Chemical vapor deposition grows three layers of tungsten diselenide material on the silicon dioxide layer.
第三步:包括旋涂光刻胶、烘烤、光刻、显影、金属蒸镀及剥离等工艺步骤制备金属铂电极:(1)旋涂PMMA,旋涂参数为 3000 rpm,60 s, 旋涂后180℃烘烤90 s;(2)电子束曝光,使剥离金属的光刻胶图案化;(3)显影:显影液为MIBK:IPA=1:3,显影 45 s,去离子水清洗干净,N 2吹干;(4)蒸镀20 nm厚的 Pt;(5)剥离金属:在 NMP 中120℃ 加热30 min,异丙醇清洗,氮气吹干。 The third step: Preparation of metal platinum electrode including spin coating of photoresist, baking, photolithography, development, metal evaporation and stripping: (1) Spin coating of PMMA, spin coating parameters are 3000 rpm, 60 s, spin Bake at 180°C for 90 s after coating; (2) Electron beam exposure to pattern the photoresist that peels off the metal; (3) Development: The developer solution is MIBK:IPA=1:3, develop for 45 s, and rinse with deionized water Clean and blow dry with N 2 ; (4) Evaporate 20 nm thick Pt; (5) Strip the metal: heat in NMP at 120°C for 30 minutes, clean with isopropyl alcohol, and blow dry with nitrogen.
第四步:在管式炉内压强为19 torr,气体为10 sccm氧气/100 sccm氩气,退火温度为300℃,时间为120 min进行退火,退火后自然降温到常温取出。Step 4: The pressure in the tube furnace is 19 torr, the gas is 10 sccm oxygen/100 sccm argon, the annealing temperature is 300°C, and the time is 120 minutes for annealing. After annealing, it is naturally cooled to normal temperature and taken out.
第五步:对样品进行扫描电子显微镜的剖面表征,结果如图3所示,为高定向(111)的铂。Step 5: Conduct cross-sectional characterization of the sample using a scanning electron microscope. The result is shown in Figure 3, which is highly oriented (111) platinum.

Claims (9)

  1. 一种垂直异质外延高定向金属铂薄膜的方法,其特征在于,以单晶二硒化钨作为外延基底,在其上外延沉积金属铂,获得多晶金属铂薄膜,然后通过氧气退火诱导金属铂沿二硒化钨形成高定向的金属铂薄膜。A method for vertical heteroepitaxy of highly oriented metal platinum films, which is characterized by using single crystal tungsten diselenide as an epitaxial substrate, epitaxially depositing metal platinum on it to obtain a polycrystalline metal platinum film, and then inducing metal through oxygen annealing Platinum forms a highly oriented metallic platinum film along tungsten diselenide.
  2. 如权利要求1所述的方法,其特征在于,所述金属铂薄膜的厚度为5-20纳米。The method of claim 1, wherein the thickness of the platinum metal film is 5-20 nanometers.
  3. 如权利要求1所述的方法,其特征在于,所述单晶二硒化钨为单层到十层的二维材料。The method of claim 1, wherein the single crystal tungsten diselenide is a two-dimensional material with a single layer to ten layers.
  4. 如权利要求1所述的方法,其特征在于,包括以下步骤:The method of claim 1, comprising the following steps:
    1)采用化学气相沉积方法在衬底上生长单晶二硒化钨;1) Use chemical vapor deposition method to grow single crystal tungsten diselenide on the substrate;
    2)以单晶二硒化钨为基底在其上外延生长多晶金属铂薄膜;2) Use single crystal tungsten diselenide as a substrate and epitaxially grow a polycrystalline metal platinum film on it;
    3)在氧气中退火二硒化钨-多晶金属铂薄膜,以二硒化钨诱导多晶铂形成高定向的铂薄膜,得到间距小于范德华间距的异质结,形成良好的p型欧姆接触。3) Anneal the tungsten diselenide-polycrystalline metal platinum film in oxygen, and use tungsten diselenide to induce the polycrystalline platinum to form a highly oriented platinum film, obtaining a heterojunction with a spacing smaller than the van der Waals spacing, and forming a good p-type ohmic contact. .
  5. 如权利要求4所述的方法,其特征在于,步骤1)中所述衬底为无定形衬底或单晶衬底。The method of claim 4, wherein the substrate in step 1) is an amorphous substrate or a single crystal substrate.
  6. 如权利要求4所述的方法,其特征在于,步骤1)采用二氧化钨和硒源在化学气相沉积系统中生长单晶二硒化钨。The method of claim 4, wherein step 1) uses tungsten dioxide and selenium sources to grow single crystal tungsten diselenide in a chemical vapor deposition system.
  7. 如权利要求4所述的方法,其特征在于,步骤2)采用电子束蒸镀的方法外延多晶金属铂薄膜。The method of claim 4, wherein step 2) uses electron beam evaporation to epitaxially extend the polycrystalline metal platinum film.
  8. 如权利要求4所述的方法,其特征在于,步骤3)在氧气中退火的温度为200~300℃,退火时间为1小时~6小时。The method of claim 4, wherein the temperature of step 3) annealing in oxygen is 200~300°C, and the annealing time is 1 hour~6 hours.
  9.        如权利要求4所述的方法,其特征在于,步骤3)在管式炉中进行,退火时通入氩气和氧气的混合气,氩气流量为100~1000 sccm,氧气流量为10~100 sccm,压强为19~760 torr。The method according to claim 4, characterized in that step 3) is carried out in a tube furnace. During annealing, a mixture of argon and oxygen is introduced, the argon flow rate is 100~1000 sccm, and the oxygen flow rate is 10~100 sccm. sccm, pressure is 19~760 torr.
PCT/CN2023/084393 2022-04-07 2023-03-28 Method for highly orienting platinum on basis of vertical heteroepitaxy of single crystal tungsten diselenide WO2023193636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210359112.0A CN116926672A (en) 2022-04-07 2022-04-07 Method for vertical heteroepitaxy high-orientation metal platinum based on monocrystal tungsten diselenide
CN202210359112.0 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193636A1 true WO2023193636A1 (en) 2023-10-12

Family

ID=88244017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084393 WO2023193636A1 (en) 2022-04-07 2023-03-28 Method for highly orienting platinum on basis of vertical heteroepitaxy of single crystal tungsten diselenide

Country Status (2)

Country Link
CN (1) CN116926672A (en)
WO (1) WO2023193636A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498097B1 (en) * 1997-05-06 2002-12-24 Tong Yang Cement Corporation Apparatus and method of forming preferred orientation-controlled platinum film using oxygen
CN108118395A (en) * 2017-12-15 2018-06-05 北京科技大学 A kind of method that chemical vapor deposition prepares two tungsten selenide monocrystal thin films
CN108845017A (en) * 2018-05-31 2018-11-20 清华大学 A kind of flexible ion transducer based on two tungsten selenides
CN109297622A (en) * 2018-11-08 2019-02-01 清华大学 A kind of miniature piezoresistive strain gauge based on two tungsten selenides
CN109477237A (en) * 2016-07-12 2019-03-15 基础科学研究院 Single-crystal metal foil and its manufacturing method
CN110616454A (en) * 2019-03-07 2019-12-27 北京大学 Method for vertical heteroepitaxy monocrystal metal film based on monocrystal two-dimensional material/monocrystal copper
CN110616458A (en) * 2019-03-07 2019-12-27 北京大学 Method for vertical heteroepitaxy monocrystal metal film based on monocrystal copper
CN111424309A (en) * 2020-05-15 2020-07-17 中国科学院重庆绿色智能技术研究院 Single crystal metal foil and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498097B1 (en) * 1997-05-06 2002-12-24 Tong Yang Cement Corporation Apparatus and method of forming preferred orientation-controlled platinum film using oxygen
CN109477237A (en) * 2016-07-12 2019-03-15 基础科学研究院 Single-crystal metal foil and its manufacturing method
CN108118395A (en) * 2017-12-15 2018-06-05 北京科技大学 A kind of method that chemical vapor deposition prepares two tungsten selenide monocrystal thin films
CN108845017A (en) * 2018-05-31 2018-11-20 清华大学 A kind of flexible ion transducer based on two tungsten selenides
CN109297622A (en) * 2018-11-08 2019-02-01 清华大学 A kind of miniature piezoresistive strain gauge based on two tungsten selenides
CN110616454A (en) * 2019-03-07 2019-12-27 北京大学 Method for vertical heteroepitaxy monocrystal metal film based on monocrystal two-dimensional material/monocrystal copper
CN110616458A (en) * 2019-03-07 2019-12-27 北京大学 Method for vertical heteroepitaxy monocrystal metal film based on monocrystal copper
CN111424309A (en) * 2020-05-15 2020-07-17 中国科学院重庆绿色智能技术研究院 Single crystal metal foil and preparation method thereof

Also Published As

Publication number Publication date
CN116926672A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
CN101866834B (en) Method for preparing SiGe material of high-Ge content
TWI584378B (en) Method for forming group iii/v conformal layers on silicon substrates
JPH06507274A (en) Metastable oxides and nitrides of group 15 alloys, nitrides of group 15 elements, and semiconductor devices formed from them
JP2012231165A (en) Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates
JP2000223419A (en) Method of forming single crystal silicon layer, and semiconductor device and manufacture thereof
JP2007511892A (en) Epitaxial growth of relaxed silicon germanium layers.
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
JP3914064B2 (en) Method and apparatus for growing mixed crystal film
WO2023193636A1 (en) Method for highly orienting platinum on basis of vertical heteroepitaxy of single crystal tungsten diselenide
CN107195534B (en) Ge composite substrate, substrate epitaxial structure and preparation method thereof
TW202230462A (en) Method for manufacturing epitaxial wafer
US7202142B2 (en) Method for producing low defect density strained -Si channel MOSFETS
JPS60152018A (en) Manufacture of semiconductor thin film crystal layer
CN114023633A (en) Preparation method of gate oxide layer of silicon carbide device and silicon carbide device
JP3157280B2 (en) Method for manufacturing semiconductor device
JP2000286420A (en) Manufacturing method of insulated-gate type transistor and the insulated-gate type transistor
CN112735943B (en) Preparation method for growing nitrogen polar III nitride semiconductor film on silicon substrate
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
WO2023037838A1 (en) Method for manufacturing nitride semiconductor substrate
CN108417488B (en) Composite insulation structure, transistor and manufacturing method of composite insulation structure and transistor
WO2022205462A1 (en) Nucleation layers for growth of gallium-and-nitrogen-containing regions
JPS58200525A (en) Preparation of substrate for semiconductor device
CN117305979A (en) Silicon-based monocrystalline two-dimensional material epitaxial wafer based on alumina buffer layer and preparation method thereof
JP3541332B2 (en) Method for manufacturing semiconductor device
JPH04286335A (en) Manufacture of thin film semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784200

Country of ref document: EP

Kind code of ref document: A1