WO2023193447A1 - 用于调节送风角度的方法及装置、空调器、存储介质 - Google Patents

用于调节送风角度的方法及装置、空调器、存储介质 Download PDF

Info

Publication number
WO2023193447A1
WO2023193447A1 PCT/CN2022/133676 CN2022133676W WO2023193447A1 WO 2023193447 A1 WO2023193447 A1 WO 2023193447A1 CN 2022133676 W CN2022133676 W CN 2022133676W WO 2023193447 A1 WO2023193447 A1 WO 2023193447A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
air
angle
supply angle
temperature
Prior art date
Application number
PCT/CN2022/133676
Other languages
English (en)
French (fr)
Inventor
程惠鹏
王祯祯
张蕾
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023193447A1 publication Critical patent/WO2023193447A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of smart home appliances, for example, to a method and device for adjusting the air supply angle, an air conditioner, and a storage medium.
  • the air supply angle of the air guide plate is controlled according to the angle set by the program in the system, and will not adjust itself according to the switching of the air-conditioning mode.
  • the swing angle of the air guide plate of the current air conditioner is consistent in different states, and the swing angle range will not be adjusted according to changes in the outlet air temperature. Therefore, it may happen that when the outlet air temperature rises, a large amount of hot air will rise to the upper space of the room, making the upper part of the room hot and the lower part of the room cold, resulting in a large amount of ineffective heating.
  • the air conditioner is preset with a smart wind control mode.
  • the execution of the smart wind control mode includes the following steps: obtaining an instruction to turn on the smart wind mode; obtaining the outlet air temperature and indoor temperature; and based on the outlet air temperature and indoor temperature.
  • the indoor temperature increases the angle of the air deflector or decreases the speed of the internal fan.
  • the main purpose of the above method is to reduce the noise of the air conditioner and correspondingly reduce the energy consumption of the air conditioner.
  • the above method cannot adjust the air outlet angle of the air deflector in time according to the actual situation of the indoor environment.
  • Embodiments of the present disclosure provide a method and device for adjusting the air supply angle, an air conditioner, and a storage medium, so as to timely adjust the air outlet angle of the air guide plate according to the actual conditions of the indoor environment.
  • the above method includes: obtaining the first air outlet temperature and the ambient temperature; determining whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature; and obtaining the air supply angle if the air supply angle needs to be corrected. Wind speed; correct the air supply angle according to the first air outlet temperature, ambient temperature and air supply speed.
  • judging whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature includes: calculating the absolute value of the temperature difference between the first air outlet temperature and the ambient temperature; when the absolute value of the temperature difference is greater than or equal to the temperature difference threshold , determine that the air supply angle currently needs to be corrected.
  • correcting the air supply angle according to the first air outlet temperature, ambient temperature and air supply speed includes: determining the air supply resistance according to the first air outlet temperature and the ambient temperature; correcting the air supply angle according to the air supply resistance and air supply speed. Air supply angle.
  • correcting the air supply angle according to the air supply resistance and air supply speed includes: determining the wind pressure at the air outlet according to the air supply speed; correcting the air supply angle according to the air supply resistance and wind pressure.
  • correcting the air supply angle based on the air supply resistance and wind pressure includes: determining the theoretical air supply angle based on the air supply resistance and wind pressure; determining the corresponding theoretical compensation angle based on the theoretical air supply angle; Compensate the angle and correct the air supply angle.
  • correct the air supply angle according to the theoretical compensation value including: obtaining the actual air supply angle and the rated compensation angle; setting the sum of the actual air supply angle, the theoretical compensation angle and the rated compensation angle as the target air supply angle; The wind angle is adjusted to the target air supply angle.
  • the method further includes: obtaining a second outlet air temperature; and obtaining a third air outlet temperature when the operating duration at the target air supply angle is greater than or equal to the set duration threshold.
  • Three outlet air temperatures; the air conditioner corrects the air supply angle based on the second outlet air temperature and the third outlet air temperature.
  • the above-mentioned device includes: a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for adjusting the air supply angle when running the program instructions.
  • the above-mentioned air conditioner includes: the above-mentioned device for adjusting the air supply angle.
  • the above-mentioned storage medium stores program instructions, and when the program instructions are run, the above-mentioned method for adjusting the air supply angle is executed.
  • the method and device, air conditioner, and storage medium for adjusting the air supply angle provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the air outlet angle of the air deflector can be adjusted in time according to the actual conditions of the indoor environment.
  • Figure 1 is a schematic diagram of a method for adjusting the air supply angle provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of another method for adjusting the air supply angle provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of another method for adjusting the air supply angle provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of another method for adjusting the air supply angle provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of another method for adjusting the air supply angle provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of another method for adjusting the air supply angle provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of another method for adjusting the air supply angle provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of a device for adjusting the air supply angle provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • correspondence can refer to an association relationship or a binding relationship.
  • correspondence between A and B refers to an association relationship or a binding relationship between A and B.
  • smart home appliances refer to home appliances that are formed by introducing processors, sensor technology, and network communication technology into home appliances. They have the characteristics of intelligent control, smart perception, and smart applications.
  • the operation process of smart home appliances often relies on
  • smart home appliances can be connected to electronic devices to enable users to remotely control and manage smart home appliances.
  • the mobile device refers to an electronic device with a wireless connection function.
  • the terminal device can communicate with the above smart home appliances by connecting to the Internet, or can also directly connect via Bluetooth, Wi-Fi (Wireless Fidelity, Wireless Fidelity). ) and other methods to communicate with the above smart home appliances.
  • Mobile devices may include, for example, mobile phones, smart home devices, wearable devices, smart mobile devices, virtual reality devices, etc., or any combination thereof.
  • Wearable devices may include, for example, smart watches, smart bracelets, pedometers, etc.
  • an embodiment of the present disclosure provides a method for adjusting an air supply angle, including:
  • the air conditioner obtains the first air outlet temperature and ambient temperature.
  • the air conditioner determines whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature.
  • the air conditioner obtains the air supply speed.
  • the air conditioner corrects the air supply angle based on the first air outlet temperature, ambient temperature and air supply speed.
  • the first air outlet temperature of the current air conditioner and the ambient temperature of the current location of the air conditioner can be obtained when the air conditioner is running stably. Based on the first air outlet temperature and the ambient temperature, it is determined whether the angle of the air guide plate is appropriate under the current temperature adjustment capability. When the air supply angle of the air conditioner is inappropriate, obtain the air supply speed of the air conditioner. According to the first air outlet temperature, ambient temperature and air supply speed, the air supply angle is corrected to meet the current user needs. Therefore, the air outlet angle of the air deflector can be adjusted in time according to the actual conditions of the indoor environment.
  • an embodiment of the present disclosure provides another method for adjusting the air supply angle, including:
  • the air conditioner obtains the first air outlet temperature and ambient temperature.
  • the air conditioner calculates the absolute value of the temperature difference between the first air outlet temperature and the ambient temperature.
  • the air conditioner determines that the air supply angle currently needs to be corrected.
  • the air conditioner obtains the air supply speed.
  • the air conditioner corrects the air supply angle based on the first air outlet temperature, ambient temperature and air supply speed.
  • the air outlet angle of the air deflector can be adjusted in time according to the actual conditions of the indoor environment.
  • an embodiment of the present disclosure provides another method for adjusting the air supply angle, including:
  • the air conditioner obtains the first air outlet temperature and ambient temperature.
  • the air conditioner determines whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature.
  • the air conditioner obtains the air supply speed.
  • the air conditioner determines the air supply resistance based on the first air outlet temperature and the ambient temperature.
  • the air conditioner corrects the air supply angle based on the air supply resistance and air supply speed.
  • the air outlet angle of the air guide plate can be adjusted in a timely and accurate manner based on the actual stress conditions at the air guide plate.
  • the air supply angle is corrected to meet the current user needs. Therefore, the air outlet angle of the air guide plate can be adjusted promptly and accurately based on the actual stress situation at the air guide plate.
  • an embodiment of the present disclosure provides another method for adjusting the air supply angle, including:
  • the air conditioner obtains the first air outlet temperature and ambient temperature.
  • the air conditioner determines whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature.
  • the air conditioner obtains the air supply speed.
  • the air conditioner determines the air supply resistance based on the first air outlet temperature and the ambient temperature.
  • the air conditioner determines the wind pressure at the air outlet based on the air supply speed.
  • the air conditioner corrects the air supply angle based on the air supply resistance and wind pressure.
  • the air outlet angle of the air guide plate can be adjusted in a timely and accurate manner based on the actual stress conditions at the air guide plate. Specifically, obtain the air supply speed v 1 and calculate the wind pressure Through the air supply resistance F 1 and the wind pressure h 1 , the actual stress at the wind deflector is calculated. Therefore, the air outlet angle of the air guide plate can be adjusted promptly and accurately based on the actual stress situation at the air guide plate.
  • an embodiment of the present disclosure provides another method for adjusting the air supply angle, including:
  • the air conditioner obtains the first air outlet temperature and ambient temperature.
  • the air conditioner determines whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature.
  • the air conditioner obtains the air supply speed.
  • the air conditioner determines the air supply resistance based on the first air outlet temperature and the ambient temperature.
  • the air conditioner determines the wind pressure at the air outlet based on the air supply speed.
  • the air conditioner determines the theoretical air supply angle based on the air supply resistance and wind pressure.
  • the air conditioner determines the corresponding theoretical compensation angle based on the theoretical air supply angle.
  • the air conditioner corrects the air supply angle according to the theoretical compensation angle.
  • the air outlet angle of the air guide plate can be adjusted in a timely and accurate manner based on the actual stress conditions at the air guide plate. Specifically, calculate the vertical component of the wind pressure h 1 at the current wind deflector angle. Among them, A is the air supply angle set by the system. pass Calculate the actual air supply angle A 1 . The current air supply angle is corrected based on the difference between the actual air supply angle A 1 and the set angle A, that is, the theoretical compensation angle ⁇ A. Wherein, when the first outlet air temperature is greater than the ambient temperature, the theoretical compensation angle ⁇ A is a positive value. When the first outlet air temperature is lower than the ambient temperature, the theoretical compensation angle ⁇ A is negative.
  • an embodiment of the present disclosure provides another method for adjusting the air supply angle, including:
  • the air conditioner obtains the first air outlet temperature and ambient temperature.
  • the air conditioner determines whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature.
  • the air conditioner obtains the air supply speed.
  • the air conditioner determines the air supply resistance based on the first air outlet temperature and the ambient temperature.
  • the air conditioner determines the wind pressure at the air outlet based on the air supply speed.
  • the air conditioner determines the theoretical air supply angle based on the air supply resistance and wind pressure.
  • the air conditioner determines the corresponding theoretical compensation angle based on the theoretical air supply angle.
  • the air conditioner obtains the actual air supply angle and rated compensation angle.
  • the air conditioner sets the sum of the actual air supply angle, the theoretical compensation angle and the rated compensation angle as the target air supply angle.
  • the air conditioner adjusts the air supply angle to the target air supply angle.
  • the rated compensation angle B When the first outlet air temperature is greater than the ambient temperature, the rated compensation angle B is a negative value. When the first outlet air temperature is lower than the ambient temperature, the rated compensation angle B is a positive value.
  • the current air supply angle is a swing angle
  • the swing angle includes a starting angle and an ending angle.
  • the theoretical compensation angles of the starting angle and the ending angle are calculated respectively through the above method, and the corresponding rated compensation angles are obtained respectively.
  • the target air supply angles of the starting angle and the ending angle are calculated respectively, and the corresponding air supply range is set according to the adjusted starting target air supply angle and the ending target air supply angle. Users can set the starting angle and ending angle to be corrected by the same compensation angle value according to their own needs.
  • the start angle/end angle is corrected and exceeds the adjustable range of the air deflector, the extreme angle of the adjustment range is used as the corrected air supply angle.
  • an embodiment of the present disclosure provides another method for adjusting the air supply angle, including:
  • the air conditioner obtains the first air outlet temperature and ambient temperature.
  • the air conditioner determines whether the air supply angle needs to be corrected based on the first air outlet temperature and the ambient temperature.
  • the air conditioner obtains the air supply speed.
  • the air conditioner determines the air supply resistance based on the first air outlet temperature and the ambient temperature.
  • the air conditioner determines the wind pressure at the air outlet based on the air supply speed.
  • the air conditioner determines the theoretical air supply angle based on the air supply resistance and wind pressure.
  • the air conditioner determines the corresponding theoretical compensation angle based on the theoretical air supply angle.
  • the air conditioner obtains the actual air supply angle and rated compensation angle.
  • the air conditioner sets the sum of the actual air supply angle, the theoretical compensation angle and the rated compensation angle as the target air supply angle.
  • the air conditioner adjusts the air supply angle to the target air supply angle.
  • the air conditioner obtains the second outlet air temperature.
  • the air conditioner corrects the air supply angle based on the second air outlet temperature and the third air outlet temperature.
  • the rationality of the air supply angle can be ensured.
  • the air conditioner After the air deflector angle is accurately adjusted based on the stress on the air deflector, the actual air outlet angle will change again due to temperature changes at the location of the indoor unit. Therefore, the second air outlet temperature after adjusting the air supply angle to the target air supply angle is obtained.
  • the air conditioner obtains the third outlet air temperature. According to the second air outlet temperature and the third air outlet temperature, the temperature regulation capability of the air conditioner within the set time period is determined. Based on the temperature regulation capability of the air conditioner, determine whether the current air supply angle of the air conditioner is appropriate.
  • the air supply angle of the air conditioner When the air supply angle of the air conditioner is inappropriate, the air supply angle can be quickly corrected through the preset correspondence to match the current operating status of the air conditioner. In this way, the air outlet angle of the air deflector can be adjusted in a timely and efficient manner according to the actual conditions of the indoor environment.
  • an embodiment of the present disclosure provides a device for adjusting an air supply angle, including a processor 100 and a memory 101 .
  • the device may also include a communication interface (Communication Interface) 102 and a bus 103.
  • Communication interface 102 may be used for information transmission.
  • the processor 100 can call logical instructions in the memory 101 to execute the method for adjusting the air supply angle in the above embodiment.
  • the above-mentioned logical instructions in the memory 101 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs, computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to implement the method for adjusting the air supply angle in the above embodiment.
  • the memory 101 may include a stored program area and a stored data area, wherein the stored program area may store an operating system and at least one application program required for a function; the stored data area may store data created according to the use of the terminal device, etc.
  • the memory 101 may include a high-speed random access memory and may also include a non-volatile memory.
  • an embodiment of the present disclosure provides an air conditioner 10 including the above-mentioned device 80 for adjusting the air supply angle.
  • the air conditioner 10 in the embodiment of the present disclosure also includes: an air conditioner main body, and the above-mentioned device 80 for adjusting the air supply angle.
  • the device 80 for adjusting the air supply angle is installed on the air conditioner main body.
  • the installation relationship described here is not limited to placement inside the air conditioner, but also includes installation connections with other components of the air conditioner, including but not limited to physical connections, electrical connections, or signal transmission connections.
  • the device 80 for adjusting the air supply angle can be adapted to a feasible air conditioner body, thereby realizing other feasible embodiments.
  • An embodiment of the present disclosure provides a computer program that, when executed by a computer, causes the computer to implement the above method for adjusting the air supply angle.
  • Embodiments of the present disclosure provide a computer program product.
  • the computer program product includes computer instructions stored on a computer-readable storage medium.
  • the program instructions When executed by a computer, the computer implements the above-mentioned method for adjusting the sending process. Wind angle method.
  • An embodiment of the present disclosure provides a storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above method for adjusting the air supply angle.
  • the above-mentioned storage medium may be a transient storage medium or a non-transitory storage medium.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage media can be non-transitory storage media, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the term “and/or” as used in this application is meant to encompass any and all possible combinations of one or more of the associated listed items.
  • the term “comprise” and its variations “comprises” and/or “comprising” etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method or apparatus including the stated element.
  • each embodiment may focus on its differences from other embodiments, and the same and similar parts among various embodiments may be referred to each other.
  • the relevant parts can be referred to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may be included in the block.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智能家电技术领域,公开一种用于调节送风角度的方法,包括:获取第一出风温度与环境温度;根据第一出风温度与环境温度,判断是否需要修正送风角度;在需要修正送风角度的情况下,获取送风速度;根据第一出风温度、环境温度与送风速度,修正送风角度。在空调器运行稳定的情况下,获取当前空调器的第一出风温度与当前空调器所在位置的环境温度。根据第一出风温度与环境温度,在判定空调器的送风角度不合适的情况下,获取空调器的送风速度。根据第一出风温度、环境温度与送风速度,修正送风角度以满足用户的使用需求。从而根据室内环境的实际情况,及时调节导风板的出风角度。本申请还公开一种用于调节送风角度的装置及空调器、存储介质。

Description

用于调节送风角度的方法及装置、空调器、存储介质
本申请基于申请号为202210360297.7、申请日为2022年4月7日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于调节送风角度的方法及装置、空调器、存储介质。
背景技术
目前,空调室内机运行送风时,导风板的送风角度是按照系统内程序设定好的角度进行控制,不会根据空调模式的切换而自行调节。以空调器运行制热为例,由于空调室内机吹出的是热风,而热空气密度较低,因此室内会出现热空气上升而冷空气下降的情形,导致室内制热不均匀。而当前空调器的导风板在不同状态下的摆动角度都是一致的,不会根据出风温度的变化调节摆动的角度范围。因此可能出现当出风温度升高时,热风大量上扬至房间上部空间,使得房间上热下冷,产生大量的无效制热。
相关技术给出一种空调器控制方法,空调器预设智能风控制模式,智能风控制模式执行时包括如下步骤:获得智能风模式开启指令;获取出风温度与室内温度;根据出风温度与室内温度增大导风板角度或减小内风机转速。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
上述方法的主要目的在于降低空调器的噪声,并相应的降低空调器的能耗。但是上述方法并不能根据室内环境的实际情况,及时调节导风板的出风角度。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于调节送风角度的方法及装置、空调器、存储介质,以根据室内环境的实际情况,及时调节导风板的出风角度。
在一些实施例中,上述方法包括:获取第一出风温度与环境温度;根据第一出风温度 与环境温度,判断是否需要修正送风角度;在需要修正送风角度的情况下,获取送风速度;根据第一出风温度、环境温度与送风速度,修正送风角度。
可选地,根据第一出风温度与环境温度,判断是否需要修正送风角度,包括:计算第一出风温度与环境温度的温差绝对值;在温差绝对值大于或等于温差阈值的情况下,判定当前需要修正送风角度。
可选地,根据第一出风温度、环境温度与送风速度,修正送风角度,包括:根据第一出风温度与环境温度,确定送风阻力;根据送风阻力与送风速度,修正送风角度。
可选地,根据送风阻力与送风速度,修正送风角度,包括:根据送风速度,确定出风口处的风动压力;根据送风阻力与风动压力,修正送风角度。
可选地,根据送风阻力与风动压力,修正送风角度,包括:根据送风阻力与风动压力,确定理论送风角度;根据理论送风角度,确定相应的理论补偿角度;根据理论补偿角度,修正送风角度。
可选地,根据理论补偿值,修正送风角度,包括:获取实际送风角度和额定补偿角度;将实际送风角度、理论补偿角度和额定补偿角度的和设置为目标送风角度;将送风角度调整至目标送风角度。
可选地,在将送风角度调整至目标送风角度之后,还包括:获取第二出风温度;在以目标送风角度运行的运行时长大于或等于设定时长阈值的情况下,获取第三出风温度;空调器根据第二出风温度与第三出风温度,修正送风角度。
在一些实施例中,上述装置包括:处理器和存储有程序指令的存储器,处理器被配置为在运行程序指令时,执行上述用于调节送风角度的方法。
在一些实施例中,上述空调器包括:上述用于调节送风角度的装置。
在一些实施例中,上述存储介质,存储有程序指令,程序指令在运行时,执行上述用于调节送风角度的方法。
本公开实施例提供的用于调节送风角度的方法及装置、空调器、存储介质,可以实现以下技术效果:
在空调器运行稳定的情况下,获取当前空调器的第一出风温度与当前空调器所在位置的环境温度。根据第一出风温度与环境温度,判断当前调温能力下导风板的角度是否合适。在空调器的送风角度不合适的情况下,获取空调器的送风速度。根据第一出风温度、环境温度与送风速度,修正送风角度使其满足当前用户的使用需求。从而可以根据室内环境的实际情况,及时调节导风板的出风角度。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于调节送风角度的方法的示意图;
图2是本公开实施例提供的另一个用于调节送风角度的方法的示意图;
图3是本公开实施例提供的另一个用于调节送风角度的方法的示意图;
图4是本公开实施例提供的另一个用于调节送风角度的方法的示意图;
图5是本公开实施例提供的另一个用于调节送风角度的方法的示意图;
图6是本公开实施例提供的另一个用于调节送风角度的方法的示意图;
图7是本公开实施例提供的另一个用于调节送风角度的方法的示意图;
图8是本公开实施例提供的一个用于调节送风角度的装置的示意图;
图9是本公开实施例提供的一个空调器的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
本公开实施例中,智能家电设备是指将处理器、传感器技术、网络通信技术引入家电设备后形成的家电产品,具有智能控制、智能感知及智能应用的特征,智能家电设备的运作过程往往依赖于物联网、互联网以及电子芯片等现代技术的应用和处理,例如智能家电设备可以通过连接电子设备,实现用户对智能家电设备的远程控制和管理。
公开实施例中,移动设备是指具有无线连接功能的电子设备,终端设备可以通过连接互联网,与如上的智能家电设备进行通信连接,也可以直接通过蓝牙、Wi-Fi(Wireless Fidelity,无线保真)等方式与如上的智能家电设备进行通信连接。移动设备例如可以包括手机、智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备等,或其任意组合,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
结合图1所示,本公开实施例提供一种用于调节送风角度的方法,包括:
S01,空调器获取第一出风温度与环境温度。
S02,空调器根据第一出风温度与环境温度,判断是否需要修正送风角度。
S03,在需要修正送风角度的情况下,空调器获取送风速度。
S04,空调器根据第一出风温度、环境温度与送风速度,修正送风角度。
采用本公开实施例提供的用于调节送风角度的方法,能在空调器运行稳定的情况下,获取当前空调器的第一出风温度与当前空调器所在位置的环境温度。根据第一出风温度与环境温度,判断当前调温能力下导风板的角度是否合适。在空调器的送风角度不合适的情况下,获取空调器的送风速度。根据第一出风温度、环境温度与送风速度,修正送风角度使其满足当前用户的使用需求。从而可以根据室内环境的实际情况,及时调节导风板的出风角度。
结合图2所示,本公开实施例提供另一种用于调节送风角度的方法,包括:
S01,空调器获取第一出风温度与环境温度。
S021,空调器计算第一出风温度与环境温度的温差绝对值。
S022,在温差绝对值大于或等于温差阈值的情况下,空调器判定当前需要修正送风角度。
S03,在需要修正送风角度的情况下,空调器获取送风速度。
S04,空调器根据第一出风温度、环境温度与送风速度,修正送风角度。
采用本公开实施例提供的用于调节送风角度的方法,能准确判断当前的送风角度是否合适。根据第一出风温度与环境温度的差值的绝对值,判断当前调温能力下导风板的角度是否合适。在温差绝对值较大的情况下,由于导风板上下的温度不同,因此会导致导风板的角度发生变化。此时,通过第一出风温度、环境温度与送风速度,修正送风角度使其满 足当前用户的使用需求。从而可以根据室内环境的实际情况,及时调节导风板的出风角度。
结合图3所示,本公开实施例提供另一种用于调节送风角度的方法,包括:
S01,空调器获取第一出风温度与环境温度。
S02,空调器根据第一出风温度与环境温度,判断是否需要修正送风角度。
S03,在需要修正送风角度的情况下,空调器获取送风速度。
S041,空调器根据第一出风温度与环境温度,确定送风阻力。
S042,空调器根据送风阻力与送风速度,修正送风角度。
采用本公开实施例提供的用于调节送风角度的方法,能通过导风板处的实际受力情况,及时而准确的调节导风板的出风角度。具体为,空调器获取第一出风温度T 1与环境温度T 2,空调器吹出的空气压力为P 1,空气密度为
Figure PCTCN2022133676-appb-000001
其中,P为标准大气压力,空气密度ρ=1.293Kg/m 3。室内机所在位置的大气压力为P 2,空气密度为
Figure PCTCN2022133676-appb-000002
从而可以得到送风阻力F 1=(δ 12)·g·V,其中,g=9.8N/kg,空气体积V=1m 3。而后,通过送风阻力与送风速度,修正送风角度使其满足当前用户的使用需求。从而可以通过导风板处的实际受力情况,及时而准确的调节导风板的出风角度。
结合图4所示,本公开实施例提供另一种用于调节送风角度的方法,包括:
S01,空调器获取第一出风温度与环境温度。
S02,空调器根据第一出风温度与环境温度,判断是否需要修正送风角度。
S03,在需要修正送风角度的情况下,空调器获取送风速度。
S041,空调器根据第一出风温度与环境温度,确定送风阻力。
S043,空调器根据送风速度,确定出风口处的风动压力。
S044,空调器根据送风阻力与风动压力,修正送风角度。
采用本公开实施例提供的用于调节送风角度的方法,能通过导风板处的实际受力情况,及时而准确的调节导风板的出风角度。具体为,获取送风速度v 1,计算风动压力
Figure PCTCN2022133676-appb-000003
通过送风阻力F 1与风动压力h 1,计算导风板处的实际受力情况。从而可以通过导风板处的实际受力情况,及时而准确的调节导风板的出风角度。
结合图5所示,本公开实施例提供另一种用于调节送风角度的方法,包括:
S01,空调器获取第一出风温度与环境温度。
S02,空调器根据第一出风温度与环境温度,判断是否需要修正送风角度。
S03,在需要修正送风角度的情况下,空调器获取送风速度。
S041,空调器根据第一出风温度与环境温度,确定送风阻力。
S043,空调器根据送风速度,确定出风口处的风动压力。
S045,空调器根据送风阻力与风动压力,确定理论送风角度。
S046,空调器根据理论送风角度,确定相应的理论补偿角度。
S047,空调器根据理论补偿角度,修正送风角度。
采用本公开实施例提供的用于调节送风角度的方法,能通过导风板处的实际受力情况,及时而准确的调节导风板的出风角度。具体为,计算当前导风板角度下的风动压力h 1竖直方向的分力
Figure PCTCN2022133676-appb-000004
其中,A为系统设定的送风角度。通过
Figure PCTCN2022133676-appb-000005
计算实际送风角度A 1。根据实际的送风角度A 1与设定角度A的差值即理论补偿角度ΔA,修正当前的送风角度。其中,在第一出风温度大于环境温度的情况下,理论补偿角度ΔA为正值。在第一出风温度小于环境温度的情况下,理论补偿角度ΔA为负值。
结合图6所示,本公开实施例提供另一种用于调节送风角度的方法,包括:
S01,空调器获取第一出风温度与环境温度。
S02,空调器根据第一出风温度与环境温度,判断是否需要修正送风角度。
S03,在需要修正送风角度的情况下,空调器获取送风速度。
S041,空调器根据第一出风温度与环境温度,确定送风阻力。
S043,空调器根据送风速度,确定出风口处的风动压力。
S045,空调器根据送风阻力与风动压力,确定理论送风角度。
S046,空调器根据理论送风角度,确定相应的理论补偿角度。
S048,空调器获取实际送风角度和额定补偿角度。
S049,空调器将实际送风角度、理论补偿角度和额定补偿角度的和设置为目标送风角度。
S050,空调器将送风角度调整至目标送风角度。
采用本公开实施例提供的用于调节送风角度的方法,能准确的调节导风板的出风角度。由于调节导风板的过程中,会存在一定的误差值。因此,根据设备的特征设定不同的额定补偿角度,以修正调节导风板时所存在的误差值。具体为,在当前送风角度为固定角度的情况下,目标送风角度A 3=A-ΔA+B。其中,A为当前的设定角度,ΔA为理论补偿角度,B为额定补偿角度,额定补偿角度B的取值范围为[0,10]°中的任意值,具体根据产品型号的不同选取不同值。在第一出风温度大于环境温度的情况下,额定补偿角度B为负值。在第一出风温度小于环境温度的情况下,额定补偿角度B为正值。在当前送风角度为摆动角度的情况下,摆动角度包括起始角度和终止角度。通过上述方法分别计算起始角度和终 止角度的理论补偿角度,并分别获取相应的额定补偿角度。从而分别计算起始角度和终止角度的目标送风角度,并根据调整后的起始目标送风角度和终止目标送风角度设置相应的送风范围。用户可以根据自己的需求,设定起始角度和终止角度通过同一个补偿角度值进行修正。此外,在起始角度/终止角度经修正后超出导风板可调节范围的情况下,以调节范围的极限角度作为修正后的送风角度。
结合图7所示,本公开实施例提供另一种用于调节送风角度的方法,包括:
S01,空调器获取第一出风温度与环境温度。
S02,空调器根据第一出风温度与环境温度,判断是否需要修正送风角度。
S03,在需要修正送风角度的情况下,空调器获取送风速度。
S041,空调器根据第一出风温度与环境温度,确定送风阻力。
S043,空调器根据送风速度,确定出风口处的风动压力。
S045,空调器根据送风阻力与风动压力,确定理论送风角度。
S046,空调器根据理论送风角度,确定相应的理论补偿角度。
S048,空调器获取实际送风角度和额定补偿角度。
S049,空调器将实际送风角度、理论补偿角度和额定补偿角度的和设置为目标送风角度。
S050,空调器将送风角度调整至目标送风角度。
S06,空调器获取第二出风温度。
S07,在以目标送风角度运行的运行时长大于或等于设定时长阈值的情况下,空调器获取第三出风温度。
S08,空调器根据第二出风温度与第三出风温度,修正送风角度。
采用本公开实施例提供的用于调节送风角度的方法,能保证送风角度的合理性。在通过导风板处的受力情况精确调节导风板角度后,会由于室内机所在位置的温度变化,导致实际的出风角度再次发生变化。因此,通过获取将送风角度调整至目标送风角度后的第二出风温度。且在以目标送风角度运行的运行时长大于或等于设定时长阈值的情况下,空调器获取第三出风温度。根据第二出风温度与第三出风温度,确定设定时长内空调器的调温能力。根据空调器的调温能力,判断当前空调器的送风角度是否合适。在空调器的送风角度不合适的情况下,通过预设的对应关系快速修正送风角度使其匹配当前的空调器运行状态。从而可以根据室内环境的实际情况,及时高效的调节导风板的出风角度。
结合图8所示,本公开实施例提供一种用于调节送风角度的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口 (Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于调节送风角度的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于调节送风角度的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
结合图9所示,本公开实施例提供了一种空调器10,包含上述的用于调节送风角度的装置80。
本公开实施例的空调器10,还包括:空调主体,以及上述的用于调节送风角度的装置80,用于调节送风角度的装置80被安装于空调主体。这里所表述的安装关系,并不仅限于在空调内部放置,还包括了与空调的其他元器件的安装连接,包括但不限于物理连接、电性连接或者信号传输连接等。本领域技术人员可以理解的是,用于调节送风角度的装置80可以适配于可行的空调主体,进而实现其他可行的实施例。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于调节送风角度的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现上述用于调节送风角度的方法。
本公开实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于调节送风角度的方法。
上述的存储介质可以是暂态存储介质,也可以是非暂态存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、 随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单 元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (12)

  1. 一种用于调节送风角度的方法,其特征在于,包括:
    获取第一出风温度与环境温度;
    根据所述第一出风温度与所述环境温度,判断是否需要修正送风角度;
    在需要修正送风角度的情况下,获取送风速度;
    根据所述第一出风温度、所述环境温度与所述送风速度,修正送风角度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一出风温度与所述环境温度,判断是否需要修正送风角度,包括:
    计算所述第一出风温度与所述环境温度的温差绝对值;
    在所述温差绝对值大于或等于温差阈值的情况下,判定当前需要修正送风角度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一出风温度、所述环境温度与所述送风速度,修正送风角度,包括:
    根据所述第一出风温度与所述环境温度,确定送风阻力;
    根据所述送风阻力与所述送风速度,修正送风角度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述送风阻力与所述送风速度,修正送风角度,包括:
    根据所述送风速度,确定出风口处的风动压力;
    根据所述送风阻力与所述风动压力,修正送风角度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述送风阻力与所述风动压力,修正送风角度,包括:
    根据所述送风阻力与所述风动压力,确定理论送风角度;
    根据所述理论送风角度,确定相应的理论补偿角度;
    根据所述理论补偿角度,修正送风角度。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述理论补偿值,修正送风角度,包括:
    获取实际送风角度和额定补偿角度;
    将所述实际送风角度、所述理论补偿角度和所述额定补偿角度的和设置为目标送风角度;
    将送风角度调整至所述目标送风角度。
  7. 根据权利要求6所述的方法,其特征在于,在所述将送风角度调整至所述目标送风角度之后,还包括:
    获取第二出风温度;
    在以所述目标送风角度运行的运行时长大于或等于设定时长阈值的情况下,获取第三出风温度;
    空调器根据所述第二出风温度与所述第三出风温度,修正送风角度。
  8. 一种用于调节送风角度的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求1至7任一项所述的用于调节送风角度的方法。
  9. 一种空调器,其特征在于,包括空调主体,以及被安装于空调主体的如权利要求8所述的用于调节送风角度的装置。
  10. 一种存储介质,存储有程序指令,其特征在于,所述程序指令在运行时,执行如权利要求1至7任一项所述的用于调节送风角度的方法。
  11. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于调节送风角度的方法。
  12. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求1至7任一项所述的用于调节送风角度的方法。
PCT/CN2022/133676 2022-04-07 2022-11-23 用于调节送风角度的方法及装置、空调器、存储介质 WO2023193447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210360297.7A CN114719424A (zh) 2022-04-07 2022-04-07 用于调节送风角度的方法及装置、空调器、存储介质
CN202210360297.7 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193447A1 true WO2023193447A1 (zh) 2023-10-12

Family

ID=82241148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133676 WO2023193447A1 (zh) 2022-04-07 2022-11-23 用于调节送风角度的方法及装置、空调器、存储介质

Country Status (2)

Country Link
CN (1) CN114719424A (zh)
WO (1) WO2023193447A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719424A (zh) * 2022-04-07 2022-07-08 青岛海尔空调器有限总公司 用于调节送风角度的方法及装置、空调器、存储介质
CN115507511A (zh) * 2022-09-22 2022-12-23 珠海格力电器股份有限公司 一种空调控制方法、装置、可读存储介质及空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108276A (ja) * 1999-10-01 2001-04-20 Hitachi Ltd 空気調和機
CN107525213A (zh) * 2017-07-20 2017-12-29 广东美的暖通设备有限公司 送风角度控制方法、送风角度控制装置和空调器
CN108105959A (zh) * 2017-12-14 2018-06-01 广东美的制冷设备有限公司 空调器控制方法和空调器
CN108469104A (zh) * 2018-03-09 2018-08-31 广东美的制冷设备有限公司 空调器控制方法、装置、空调器和可读存储介质
CN112254278A (zh) * 2020-10-10 2021-01-22 珠海格力电器股份有限公司 空调器及其送风控制方法、装置、计算机可读介质
CN113701303A (zh) * 2021-07-26 2021-11-26 宁波奥克斯电气股份有限公司 提高制热舒适性的控制方法、装置及空调器
CN114719424A (zh) * 2022-04-07 2022-07-08 青岛海尔空调器有限总公司 用于调节送风角度的方法及装置、空调器、存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108276A (ja) * 1999-10-01 2001-04-20 Hitachi Ltd 空気調和機
CN107525213A (zh) * 2017-07-20 2017-12-29 广东美的暖通设备有限公司 送风角度控制方法、送风角度控制装置和空调器
CN108105959A (zh) * 2017-12-14 2018-06-01 广东美的制冷设备有限公司 空调器控制方法和空调器
CN108469104A (zh) * 2018-03-09 2018-08-31 广东美的制冷设备有限公司 空调器控制方法、装置、空调器和可读存储介质
CN112254278A (zh) * 2020-10-10 2021-01-22 珠海格力电器股份有限公司 空调器及其送风控制方法、装置、计算机可读介质
CN113701303A (zh) * 2021-07-26 2021-11-26 宁波奥克斯电气股份有限公司 提高制热舒适性的控制方法、装置及空调器
CN114719424A (zh) * 2022-04-07 2022-07-08 青岛海尔空调器有限总公司 用于调节送风角度的方法及装置、空调器、存储介质

Also Published As

Publication number Publication date
CN114719424A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023193447A1 (zh) 用于调节送风角度的方法及装置、空调器、存储介质
CN108489042B (zh) 空气调节器控制方法、空气调节器、服务器及存储介质
US10914481B2 (en) Duct-type air conditioning system, and control method and device for indoor ventilator thereof
CN109373527B (zh) 一种电子膨胀阀的调控方法、装置及设备
CN109520083B (zh) 空调器的控制方法、空调器及计算机可读存储介质
CN108562022A (zh) 空调器出风温度的控制方法以及空调器
US20180328615A1 (en) Compensational control system for indoor air conditioning apparatuses and compensational control method for the same
CN110986290B (zh) 空调器及其控制方法、控制终端、服务器和存储介质
CN109373536B (zh) 空调器的控制装置、空调器及其控制方法和可读存储介质
WO2023024648A1 (zh) 用于控制空调的方法及装置、空调
CN110873463A (zh) 热水器的控制方法、控制装置及计算机可读存储介质
WO2023273333A1 (zh) 用于双蒸发器空调控制的方法、装置和双蒸发器空调
WO2022257504A1 (zh) 用于移动空调的控制方法及控制装置、移动空调
CN113485134A (zh) 设备控制方法和装置、存储介质及电子设备
WO2023138095A1 (zh) 用于控制空调横摆叶的方法及装置、空调、存储介质
CN105091187A (zh) 空调器运行参数调节方法和系统
WO2021128645A1 (zh) 用于膨胀阀控制的方法及装置、空调器
CN113310182B (zh) 温度调节设备的控制方法及电子设备
WO2023207162A1 (zh) 用于空调器清洁控制的方法及装置、空调器、存储介质
WO2023185397A1 (zh) 用于控制空调的方法、装置、电子设备及存储介质
WO2024021670A1 (zh) 用于控制膨胀阀开度的方法及装置、空调、存储介质
WO2023197605A1 (zh) 用于空调器控制的方法及装置、空调器、存储介质
WO2019196492A1 (zh) 一种空调及其控制方法、装置、存储介质和服务器
WO2023087692A1 (zh) 用于空调器的控制方法及装置、空调器、存储介质
WO2024040997A1 (zh) 用于控制家电设备的方法及装置、网关空调、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936373

Country of ref document: EP

Kind code of ref document: A1