WO2023193130A1 - 隔膜的检测方法、装置及设备 - Google Patents

隔膜的检测方法、装置及设备 Download PDF

Info

Publication number
WO2023193130A1
WO2023193130A1 PCT/CN2022/085253 CN2022085253W WO2023193130A1 WO 2023193130 A1 WO2023193130 A1 WO 2023193130A1 CN 2022085253 W CN2022085253 W CN 2022085253W WO 2023193130 A1 WO2023193130 A1 WO 2023193130A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
area
pole piece
detected
target image
Prior art date
Application number
PCT/CN2022/085253
Other languages
English (en)
French (fr)
Inventor
段彭飞
倪大军
胡军
冯仕平
吴卿
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2023552363A priority Critical patent/JP2024520973A/ja
Priority to PCT/CN2022/085253 priority patent/WO2023193130A1/zh
Priority to CN202280035384.3A priority patent/CN117355723A/zh
Priority to KR1020237029310A priority patent/KR20230145094A/ko
Priority to EP22927581.3A priority patent/EP4303532A4/en
Priority to US18/467,430 priority patent/US20240005474A1/en
Publication of WO2023193130A1 publication Critical patent/WO2023193130A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N2021/8909Scan signal processing specially adapted for inspection of running sheets
    • G01N2021/891Edge discrimination, e.g. by signal filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and specifically to a separator detection method, device and equipment.
  • the separators overlapped on both sides of the anode plate are prone to misalignment, which may lead to a reduction in battery performance.
  • the pole pieces to be inspected that do not meet the requirements due to misalignment after superposition are rejected.
  • this application provides a method, device and equipment for detecting diaphragms.
  • this application provides a method for detecting diaphragms, including:
  • Obtain a target image of the pole piece to be detected which includes an anode pole piece and diaphragms respectively stacked on both sides of the anode pole piece;
  • the diaphragm in the pole piece to be detected is detected for misalignment.
  • the target image of the pole piece to be detected is obtained, the target image is image processed, the target image area corresponding to the diaphragm in the target image is determined, and based on the target image area, the diaphragm in the pole piece to be detected is dislocated. detection.
  • the image area corresponding to the diaphragm in the image of the pole piece to be detected can be used to detect whether the diaphragm in the pole piece to be detected is misaligned. Compared with determining the misalignment of the diaphragm through human experience, it can not only improve the accuracy of detection, but also It can improve detection efficiency.
  • diaphragm misalignment detection is performed on the pole piece to be detected, including:
  • the diaphragm misalignment result of the pole piece to be detected is determined, and the diaphragm misalignment result is used to indicate whether the diaphragm of the pole piece to be detected is misaligned.
  • obtaining the number of diaphragm image sub-regions in the target image region includes:
  • N is a positive integer
  • N is the number of diaphragm image sub-regions in the target image.
  • the process of determining the number of diaphragm image sub-regions in the target image is performed by performing grayscale image segmentation processing on the target image area and determining the number of diaphragm image sub-regions according to different grayscales in the target image area.
  • the process is simpler and more accurate.
  • the separator misalignment result of the pole piece to be detected is determined based on the number of separator image sub-regions in the target image area, including:
  • the diaphragm misalignment result of the pole piece to be detected is determined as the first sub-result, and the first sub-result is used to indicate that the diaphragm of the pole piece to be detected is not dislocation;
  • the diaphragm misalignment result of the pole piece to be detected is determined to be the second sub-result, wherein the second preset number is different from the first preset number.
  • the second sub-result is used to indicate the diaphragm misalignment of the pole piece to be detected.
  • the first values respectively used to indicate whether the diaphragm of the pole piece to be detected are misaligned can be obtained.
  • the sub-result and the second sub-result make it simpler and faster to determine whether the diaphragm of the pole piece to be detected is misaligned.
  • it also includes:
  • the third preset number When the number of diaphragm image sub-regions in the target image is the third preset number, a fault prompt message is output, and the third preset number is different from the first preset number and the second preset number.
  • the lamination equipment can output fault prompt information to remind timely troubleshooting and reduce the defective rate of battery pole pieces.
  • the method further includes:
  • the amount of misalignment of the diaphragm in the pole piece to be detected is determined based on the target image area.
  • the stacking equipment can determine the misalignment of the diaphragm in the pole piece to be detected based on the target image area, so that the misalignment amount can intuitively reflect the pole piece to be detected. Check the diaphragm misalignment of the film and provide reference for subsequent production.
  • the amount of misalignment of the separator in the pole piece to be detected is determined based on the target image area, including:
  • the distance between the edge of the first region and the edge of the second region is determined as the misalignment amount of the diaphragm in the pole piece to be detected.
  • the corresponding first and second region edges in the single-layer diaphragm region and the double-layer diaphragm region of the target image are obtained, and the first The distance between the edge of the region and the edge of the second region is determined as the misalignment amount of the pole piece to be detected, thereby making the determined misalignment amount of the diaphragm more accurate.
  • it also includes:
  • the edge of the third region which is the edge of the image region corresponding to the anode pole piece or the cathode pole piece in the target image; the edge of the third region corresponds to the edge of the second region;
  • the lamination device can also obtain the third area edge of the image area corresponding to the anode pole piece or the cathode pole piece, and determine the distance between the third area edge and the second area edge, thereby determining the double edge in the target image.
  • the distance between the edge of the separator and the edge of the anode or cathode plate is used to control the production of the battery pole through this distance.
  • this application also provides a diaphragm detection device, including:
  • the image acquisition module is used to acquire the target image of the pole piece to be detected.
  • the pole piece to be detected includes an anode pole piece and diaphragms respectively stacked on both sides of the anode pole piece;
  • an image area determination module used to perform image processing on the target image and determine the target image area in the target image, where the target image area includes the image area corresponding to the diaphragm;
  • a misalignment detection module configured to detect diaphragm misalignment of the pole piece to be detected based on the target image area.
  • the target image of the pole piece to be detected is obtained, the target image is image processed, the target image area corresponding to the diaphragm in the target image is determined, and based on the target image area, the diaphragm in the pole piece to be detected is dislocated. detection.
  • the image area corresponding to the diaphragm in the image of the pole piece to be detected can be used to detect whether the diaphragm in the pole piece to be detected is misaligned. Compared with determining the misalignment of the diaphragm through human experience, it can not only improve the accuracy of detection, but also It can improve detection efficiency.
  • the misalignment detection module includes:
  • a region number acquisition unit used to acquire the number of diaphragm image sub-regions in the target image region
  • a misalignment result determination unit configured to determine a diaphragm misalignment result of the pole piece to be detected based on the number of diaphragm image sub-regions in the target image area, where the diaphragm misalignment result is used to indicate the diaphragm of the pole piece to be detected. Is it misaligned?
  • the area quantity acquisition unit is specifically used for:
  • N is a positive integer
  • N is the number of diaphragm image sub-regions in the target image.
  • the process of determining the number of diaphragm image sub-regions in the target image is performed by performing grayscale image segmentation processing on the target image area and determining the number of diaphragm image sub-regions according to different grayscales in the target image area.
  • the process is simpler and more accurate.
  • the misalignment result determination unit includes:
  • a first sub-result determination sub-unit configured to determine the diaphragm dislocation result of the pole piece to be detected as the first sub-result when the number of diaphragm image sub-regions in the target image is a first preset number, The first sub-result is used to indicate that the diaphragm of the pole piece to be detected is not misaligned;
  • the second sub-result determination sub-unit is used to determine the diaphragm dislocation result of the pole piece to be detected as the second sub-result when the number of diaphragm image sub-regions in the target image is a second preset number, wherein, the second preset number is different from the first preset number, and the second sub-result is used to indicate the diaphragm misalignment of the pole piece to be detected.
  • the first values respectively used to indicate whether the diaphragm of the pole piece to be detected are misaligned can be obtained.
  • the sub-result and the second sub-result make it simpler and faster to determine whether the diaphragm of the pole piece to be detected is misaligned.
  • it also includes:
  • a prompt information output module configured to output fault prompt information when the number of diaphragm image sub-regions in the target image is a third preset number, and the third preset number is the same as the first preset number and the third preset number.
  • the two preset quantities are different.
  • the lamination equipment can output fault prompt information to remind timely troubleshooting and reduce the defective rate of battery pole pieces.
  • it also includes:
  • a misalignment amount determination module configured to determine the misalignment amount of the separator in the pole piece to be detected based on the target image area when a misalignment of the diaphragm of the pole piece to be detected is detected.
  • the stacking equipment can determine the misalignment of the diaphragm in the pole piece to be detected based on the target image area, so that the misalignment amount can intuitively reflect the pole piece to be detected. Check the diaphragm misalignment of the film and provide reference for subsequent production.
  • the misalignment amount determination module includes:
  • a diaphragm area determination unit configured to determine the single-layer diaphragm area and the double-layer diaphragm area in the diaphragm image sub-region of the target image when a diaphragm dislocation indicating the pole piece to be detected is detected;
  • An edge detection unit is used to perform edge detection on the single-layer diaphragm area and the double-layer diaphragm area respectively to obtain the first area edge of the single-layer diaphragm area and the second area edge of the double-layer diaphragm area, The second area edge corresponds to the first area edge;
  • a misalignment amount determination unit is used to determine that the distance between the edge of the first region and the edge of the second region is the misalignment amount of the diaphragm in the pole piece to be detected.
  • the corresponding first and second region edges in the single-layer diaphragm region and the double-layer diaphragm region of the target image are obtained, and the first The distance between the edge of the region and the edge of the second region is determined as the misalignment amount of the pole piece to be detected, thereby making the determined misalignment amount of the diaphragm more accurate.
  • it also includes:
  • An edge acquisition module configured to acquire a third area edge, where the third area edge is an edge of an image area corresponding to the anode pole piece or the cathode pole piece in the target image; the third area edge is consistent with the third area edge.
  • the edges of the two regions correspond;
  • a distance determination module configured to determine the distance between the edge of the third area and the edge of the second area.
  • the lamination device can also obtain the third area edge of the image area corresponding to the anode pole piece or the cathode pole piece, and determine the distance between the third area edge and the second area edge, so that the double edge in the target image can be determined.
  • the distance between the edge of the separator and the edge of the anode or cathode plate is used to control the production of the battery pole through this distance.
  • the present application also provides a stacking device, including a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • a stacking device including a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • the program or instruction is executed by the processor, the implementation of the first aspect is implemented. Diaphragm detection method steps.
  • the present application also provides a readable storage medium in which a program or instructions are stored. When the program or instructions are executed by a processor, the steps of the separator detection method of the first aspect are implemented.
  • Figure 1 is a schematic structural diagram of the lamination equipment provided by this application.
  • Figure 2 is a schematic flow chart of an embodiment of a separator detection method provided by the present application.
  • Figure 3 is a schematic structural diagram of a photographing device in an embodiment of a diaphragm detection method provided by this application;
  • Figure 4 is a schematic diagram of a target image in an embodiment of the separator detection method provided by this application.
  • Figure 5 is a schematic structural diagram of an embodiment of a diaphragm detection device provided by this application.
  • Figure 6 is a schematic diagram of the hardware structure of an embodiment of the lamination equipment provided by this application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the lamination equipment first assembles the anode pole piece 10, the first separator (also called the “upper separator") 20 and the The second diaphragm (also referred to as the "lower diaphragm”) 30 is transported to position A, and the anode plate 10, the first diaphragm 20 and the second diaphragm 30 are overlapped at the position A to form a laminate; then, the laminates,
  • the first cathode plate (also called the “upper cathode plate”) 40 and the second cathode plate (also called the “lower cathode plate”) 50 are transported to position B, and the first cathode plate is transported to position B.
  • the pole piece 40, the second cathode pole piece 50 and the laminate are stacked to form a battery pole piece.
  • the first separator 20 and the second separator 30 stacked on both sides of the anode pole piece 10 are prone to misalignment, which may lead to reduced battery performance. . Therefore, in order to ensure the quality of the battery, it is necessary to perform misalignment detection on the first separator 20 and the second separator 30 to eliminate the battery pole pieces that do not meet the requirements due to misalignment after stacking.
  • the misalignment detection of the first diaphragm 20 and the second diaphragm 30 is currently usually determined by manual experience, and manual experience is prone to errors, resulting in low detection accuracy.
  • this application provides a diaphragm detection method, device and equipment.
  • FIG. 2 is a schematic flow chart of an embodiment of a diaphragm detection method provided by this application.
  • the diaphragm detection method is applied to the above-mentioned lamination equipment.
  • the detection method of the diaphragm includes the following steps 201 to 203:
  • Step 201 Obtain a target image of the pole piece to be detected.
  • the pole piece to be detected includes an anode pole piece and diaphragms respectively stacked on both sides of the anode pole piece;
  • Step 202 Perform image processing on the target image to determine the target image area in the target image;
  • Step 203 Based on the target image area, perform misalignment detection on the diaphragm in the pole piece to be detected.
  • the target image of the pole piece to be detected is obtained, the target image is image processed, the target image area corresponding to the diaphragm in the target image is determined, and based on the target image area, the diaphragm in the pole piece to be detected is dislocated. detection.
  • the image area corresponding to the diaphragm in the image of the pole piece to be detected can be used to detect whether the diaphragm in the pole piece to be detected is misaligned. Compared with determining the misalignment of the diaphragm through human experience, it can not only improve the accuracy of detection, but also It can improve detection efficiency.
  • the lamination equipment can obtain the target image of the produced pole pieces to be detected.
  • the above-mentioned pole piece to be detected includes an anode pole piece and separators respectively stacked on both sides of the anode pole piece.
  • the electrode piece to be detected may be a laminate formed by superposing the anode electrode piece 10, the first diaphragm 20 and the second diaphragm 30 at position A; or, the electrode piece to be detected may also be a laminate formed by the above lamination and The first cathode pole piece 40 and the second cathode pole piece 50 are stacked at position B to form a battery pole piece.
  • the above-mentioned acquisition of the target image of the pole piece to be detected may be provided with a photographing device in the stacking equipment, and the image of the pole piece to be detected is captured in real time by the photographing device as the target image.
  • the photographing device provided in the above-mentioned lamination equipment can be arranged at any position where the above-mentioned target image can be photographed.
  • the photographing device can be located at any transmission position after superimposing the position where the above-mentioned pole piece to be detected is formed.
  • the above-mentioned photographing device may be installed at any transfer position between position A and position B in the above-mentioned lamination equipment, so that the image of the above-mentioned lamination can be photographed as the above-mentioned target image; or, the above-mentioned lamination device may be installed
  • the above-mentioned photographing device is installed at any transmission position after position B in the film equipment, so that the image of the above-mentioned battery pole piece can be photographed as the above-mentioned target image.
  • the photographing device may be arranged at position C as shown in FIG. 1 .
  • the above-mentioned lamination equipment is provided with a photographing device, and the photographing angle of the photographing device may be at any angle capable of photographing the above-mentioned target image.
  • the above-mentioned photographing device 31 can be provided on either side of the pole piece to be detected, and the photographing direction of the photographing device 31 is perpendicular to the transmission direction X of the pole piece to be detected; or, it can also be set
  • the shooting direction of the shooting device 31 is set at a preset angle with the pole piece to be detected, and the preset focal length can be 30° to 90°, etc.
  • the above-mentioned lamination device may perform image processing on the target image and determine the target image area in the target image (which may also be referred to as the "image area of interest").
  • the target image area may be an image area corresponding to the separator attached to both sides of the anode plate.
  • the above-mentioned target image area may include a diaphragm image sub-region of the anode plate and the diaphragm on one side (also referred to as a "single-layer diaphragm region"), and may also include a diaphragm image sub-region of the anode plate and the diaphragm on both sides. (also called "double membrane area”), etc.
  • the image of the battery pole piece (i.e., the target image) may be as shown in FIG. 4 , and the image may include a double-layer separator region 41 and a single-layer separator region 42 , the double-layer diaphragm area 41 includes the image sub-area where the anode electrode piece 10, the first diaphragm 20 and the second diaphragm 30 overlap; the diaphragm image area 42 includes the anode electrode piece 10 and the first diaphragm 20 or the second diaphragm 30. Image subregion under overlap.
  • the above-mentioned image processing of the target image to determine the target image area in the target image can be performed by grayscale of the target image through a preconfigured image processing algorithm, and the grayscaled image is converted into grayscale according to each image in the image.
  • the grayscale of the area is different.
  • the grayscaled image is segmented into image areas to obtain the above target image area.
  • the above-mentioned grayscale conversion of the target image may be performed on the entire image area of the target image; or, it may also be performed by first locating the diaphragm image area, which is an image area containing at least one layer of diaphragm, and then The diaphragm image area is then grayscaled, and finally the grayscaled diaphragm image area is segmented.
  • the lamination device may perform misalignment detection of the separator in the electrode piece to be detected based on the target image area.
  • the above-mentioned misalignment detection of the diaphragm in the pole piece to be detected based on the target image area can be done by first using a pre-configured image recognition algorithm to identify whether there is a single-layer diaphragm area in the target image area, and after identifying the single-layer diaphragm area. In this case, it is determined that the diaphragm in the pole piece to be detected is misaligned; in the case where it is recognized that there is no single-layer diaphragm area, it is determined that the diaphragm in the pole piece to be detected is not misaligned.
  • the lamination device can divide the image area of interest according to the grayscale in the image to obtain at least one image sub-region.
  • the lamination device determines whether there is a single-layer diaphragm region with a gray-scale value close to or equal to a preset gray-scale value based on the gray-scale value of each image sub-region, and the pre-set gray-scale value is used for Indicates that the image sub-area is an image area of a single-layer diaphragm.
  • the diaphragm dislocation of the pole piece to be detected is determined; if there is no grayscale value close to or equal to The preset gray value of the single-layer diaphragm area confirms that the diaphragm of the pole piece to be detected is not misaligned.
  • performing diaphragm misalignment detection on the pole piece to be detected includes:
  • the diaphragm misalignment result of the pole piece to be detected is determined, and the diaphragm misalignment result is used to indicate whether the diaphragm of the pole piece to be detected is misaligned.
  • the above-mentioned acquisition of the number of diaphragm image sub-regions in the target image area may be through an image processing algorithm, detecting the contours of different image sub-regions in the above-mentioned target image area, and determining the number of image sub-regions with different contours as the above-mentioned target.
  • the number of diaphragm image subregions in the image area may be through an image processing algorithm, detecting the contours of different image sub-regions in the above-mentioned target image area, and determining the number of image sub-regions with different contours as the above-mentioned target.
  • obtaining the number of diaphragm image sub-regions in the target image region includes:
  • N is a positive integer.
  • N may be the number of diaphragm image sub-regions in the target image.
  • the process of determining the number of diaphragm image sub-regions in the target image is performed by performing grayscale image segmentation processing on the target image area and determining the number of diaphragm image sub-regions according to different grayscales in the target image area.
  • the process is simpler and more accurate.
  • the separator misalignment result of the pole piece to be detected is determined based on the number of separator image sub-regions in the target image area, including:
  • the diaphragm misalignment result of the pole piece to be detected is determined as the first sub-result, and the first sub-result is used to indicate that the diaphragm of the pole piece to be detected is not dislocation;
  • the diaphragm misalignment result of the pole piece to be detected is determined to be the second sub-result, wherein the second preset number is different from the first preset number.
  • the second sub-result is used to indicate the diaphragm misalignment of the pole piece to be detected.
  • the first values respectively used to indicate whether the diaphragm of the pole piece to be detected are misaligned can be obtained.
  • the sub-result and the second sub-result make it simpler and faster to determine whether the diaphragm of the pole piece to be detected is misaligned.
  • the above-mentioned first preset number and the above-mentioned second preset number may be different preset numbers, and when the number of diaphragm image sub-regions is the first preset number, the diaphragm of the pole piece to be detected is not misplaced, that is, the diaphragm to be detected is not misplaced.
  • the diaphragms that overlap the two sides of the anode electrode piece in the detection pole piece are aligned relative to the anode pole piece; and when the number of diaphragm image sub-regions is the second preset number, the diaphragm of the pole piece to be detected is misaligned, that is, the diaphragm of the pole piece to be detected is misaligned, that is, the diaphragm of the pole piece to be detected is Detect that the diaphragms that overlap the two sides of the anode pole piece are not aligned relative to the anode pole piece.
  • the image area corresponding to the diaphragm only includes
  • the above-mentioned first preset number can be set to 1. Then, if the lamination equipment determines that the number of diaphragm image sub-regions in the above-mentioned target image is 1, then the polarity to be detected is determined.
  • the diaphragms of the film are not misaligned; and when the first diaphragm 20 and the second diaphragm 30 are aligned relative to the anode plate 10, in the image captured by the shooting device, the image area corresponding to the diaphragm may include a double-layer diaphragm. Area 41 and single-layer diaphragm area 42, that is, the above-mentioned first preset number can be set to 2. Then, if the lamination equipment determines that the number of diaphragm image sub-regions in the above-mentioned target image is 2, then the diaphragm of the pole piece to be detected is determined. dislocation.
  • it also includes:
  • the fault prompt information is output, and the third preset number is different from the first preset number and the second preset number.
  • the lamination equipment can output fault prompt information to remind timely troubleshooting and reduce the defective rate of battery pole pieces.
  • the above-mentioned output of the fault prompt information may be realized by at least one of warning lights, display information, voice broadcast, etc.
  • the above-mentioned third preset number is a number different from the first preset number and the second preset number, and when the number of diaphragm image sub-regions is the third preset number, the stacking device can determine the pole piece to be detected There is no diaphragm.
  • the stacking equipment can display the "NG" logo in its display interface to prompt the operator to stop.
  • the method further includes:
  • the amount of misalignment of the diaphragm in the pole piece to be detected is determined based on the target image area.
  • the stacking equipment can determine the misalignment of the diaphragm in the pole piece to be detected based on the target image area, so that the misalignment amount can intuitively reflect the pole piece to be detected. Check the diaphragm misalignment of the film and provide reference for subsequent production.
  • the amount of misalignment of the diaphragm in the pole piece to be detected can be determined based on the number of diaphragm image sub-regions in the target image area.
  • the target image area determines the misalignment amount of the diaphragm in the pole piece to be detected.
  • the above is based on the diaphragm image sub-region in the target image to determine the misalignment of the diaphragm in the pole piece to be detected.
  • the stacking device can obtain the single-layer diaphragm area including the anode pole piece and the diaphragm on one side, and then determine the single-layer diaphragm area.
  • the number of pixel points in the above-mentioned width direction, and the misalignment amount of the diaphragm in the pole piece to be detected is determined based on the number of pixel points.
  • the misalignment amount of the diaphragm may be a width value in a width direction perpendicular to the transmission direction of the pole piece to be detected, and the misalignment amount is used to reflect the size of the misalignment of the diaphragms on both sides of the pole piece to be detected.
  • the amount of misalignment of the separator in the pole piece to be detected is determined based on the target image area, including:
  • the distance between the edge of the first region and the edge of the second region is determined as the misalignment amount of the diaphragm in the pole piece to be detected.
  • the corresponding first and second region edges in the single-layer diaphragm region and the double-layer diaphragm region of the target image are obtained, and the first The distance between the edge of the region and the edge of the second region is determined as the misalignment amount of the pole piece to be detected, thereby making the determined misalignment amount of the diaphragm more accurate.
  • the above-mentioned determination of the single-layer diaphragm area and the double-layer diaphragm area in the diaphragm image sub-region of the target image can be done by performing grayscale processing on the target image area, and then determining the single-layer diaphragm according to the grayscale of each diaphragm image sub-region in the target image area. area and double diaphragm area. Since a single-layer diaphragm has higher light transmittance than a double-layer diaphragm, the grayscale of the single-layer diaphragm area is usually lower than the grayscale of the double-layer diaphragm area.
  • the second area edge corresponds to the first area edge, and may be two area edges connected to the single-layer membrane area in the width direction.
  • the lamination equipment can detect the edge 411 (ie, the second edge area) of the double-layer membrane area 41, and , the edge 421 (ie, the first edge area) of the single-layer diaphragm area 42 is detected, and the distance between the edge 411 and the edge 421 is determined as the misalignment amount of the diaphragm.
  • the above method further includes:
  • the edge of the third region which is the edge of the image region corresponding to the anode pole piece or the cathode pole piece in the target image; the edge of the third region corresponds to the edge of the second region;
  • the lamination device can also obtain the third area edge of the image area corresponding to the anode pole piece or the cathode pole piece, and determine the distance between the third area edge and the second area edge, so that the double edge in the target image can be determined.
  • the distance between the edge of the separator and the edge of the anode or cathode plate is used to control the production of the battery pole through this distance.
  • the above-mentioned acquisition of the edge of the third area may be performed when the lamination equipment determines that there is a misalignment of the pole piece to be detected; or, it may also be performed when the lamination equipment determines that there is no misalignment of the pole piece to be detected, which is not the case here. Not limited.
  • the lamination device can also obtain the edge 431 of the image area 43 corresponding to the anode plate (ie, the third area edge), and determine the distance between edge 431 and edge 421. Finally, the distance between edge 431 and edge 421, and the distance between edge 421 and edge 411 are uploaded to the processor of the stacking device to control the battery poles through the two obtained distances. Film production.
  • FIG. 5 is a schematic structural diagram of an embodiment of a diaphragm detection device provided by this application.
  • the diaphragm detection device 500 includes:
  • the image acquisition module 501 is used to acquire the target image of the pole piece to be detected.
  • the pole piece to be detected includes an anode pole piece and diaphragms respectively stacked on both sides of the anode pole piece;
  • the image area determination module 502 is used to perform image processing on the target image and determine the target image area in the target image, where the target image area includes the image area corresponding to the diaphragm;
  • the misalignment detection module 503 is configured to perform diaphragm misalignment detection on the pole piece to be detected based on the target image area.
  • the target image of the pole piece to be detected is obtained, the target image is image processed, the target image area corresponding to the diaphragm in the target image is determined, and based on the target image area, the diaphragm in the pole piece to be detected is dislocated. detection.
  • the image area corresponding to the diaphragm in the image of the pole piece to be detected can be used to detect whether the diaphragm in the pole piece to be detected is misaligned. Compared with determining the misalignment of the diaphragm through human experience, it can not only improve the accuracy of detection, but also It can improve detection efficiency.
  • the misalignment detection module 503 includes:
  • the area number acquisition module is used to obtain the number of diaphragm image sub-areas in the target image area
  • the misalignment result determination module is used to determine the diaphragm misalignment result of the pole piece to be detected based on the number of diaphragm image sub-regions in the target image area, and the diaphragm misalignment result is used to indicate whether the diaphragm of the pole piece to be detected is misaligned.
  • the area quantity acquisition unit is specifically used for:
  • N is a positive integer
  • N is the number of diaphragm image sub-regions in the target image.
  • the process of determining the number of diaphragm image sub-regions in the target image is performed by performing grayscale image segmentation processing on the target image area and determining the number of diaphragm image sub-regions according to different grayscales in the target image area.
  • the process is simpler and more accurate.
  • the misalignment result determination unit includes:
  • a first sub-result determination sub-unit configured to determine the diaphragm dislocation result of the pole piece to be detected as the first sub-result when the number of diaphragm image sub-regions in the target image is a first preset number, The first sub-result is used to indicate that the diaphragm of the pole piece to be detected is not misaligned;
  • the second sub-result determination sub-unit is used to determine the diaphragm dislocation result of the pole piece to be detected as the second sub-result when the number of diaphragm image sub-regions in the target image is a second preset number, wherein, the second preset number is different from the first preset number, and the second sub-result is used to indicate the diaphragm misalignment of the pole piece to be detected.
  • the first values respectively used to indicate whether the diaphragm of the pole piece to be detected are misaligned can be obtained.
  • the sub-result and the second sub-result make it simpler and faster to determine whether the diaphragm of the pole piece to be detected is misaligned.
  • it also includes:
  • a prompt information output module configured to output fault prompt information when the number of diaphragm image sub-regions in the target image is a third preset number, and the third preset number is the same as the first preset number and the third preset number.
  • the two preset quantities are different.
  • the lamination equipment can output fault prompt information to remind timely troubleshooting and reduce the defective rate of battery pole pieces.
  • it also includes:
  • a misalignment amount determination module configured to determine the misalignment amount of the separator in the pole piece to be detected based on the target image area when a misalignment of the diaphragm of the pole piece to be detected is detected.
  • the stacking equipment can determine the misalignment of the diaphragm in the pole piece to be detected based on the target image area, so that the misalignment amount can intuitively reflect the pole piece to be detected. Check the diaphragm misalignment of the film and provide reference for subsequent production.
  • the misalignment amount determination module includes:
  • a diaphragm area determination unit configured to determine the single-layer diaphragm area and the double-layer diaphragm area in the diaphragm image sub-area of the target image when a diaphragm misalignment indicating the pole piece to be detected is detected;
  • An edge detection unit is used to perform edge detection on the single-layer diaphragm area and the double-layer diaphragm area respectively to obtain the first area edge of the single-layer diaphragm area and the second area edge of the double-layer diaphragm area, The second area edge corresponds to the first area edge;
  • a misalignment amount determination unit is used to determine that the distance between the edge of the first region and the edge of the second region is the misalignment amount of the diaphragm in the pole piece to be detected.
  • the corresponding first and second region edges in the single-layer diaphragm region and the double-layer diaphragm region of the target image are obtained, and the first The distance between the edge of the region and the edge of the second region is determined as the misalignment amount of the pole piece to be detected, thereby making the determined misalignment amount of the diaphragm more accurate.
  • it also includes:
  • An edge acquisition module configured to acquire a third area edge, where the third area edge is an edge of an image area corresponding to the anode pole piece or the cathode pole piece in the target image; the third area edge is consistent with the third area edge.
  • the edges of the two regions correspond;
  • a distance determination module configured to determine the distance between the edge of the third area and the edge of the second area.
  • the lamination device can also obtain the third area edge of the image area corresponding to the anode pole piece or the cathode pole piece, and determine the distance between the third area edge and the second area edge, so that the double edge in the target image can be determined.
  • the distance between the edge of the separator and the edge of the anode or cathode plate is used to control the production of the battery pole through this distance.
  • FIG. 6 is a schematic diagram of the hardware structure of an embodiment of the stacking device provided by this application.
  • the laminating device may include a processor 601 and a memory 602 storing computer program instructions.
  • the above-mentioned processor 601 may include a central processing unit (Central Processing Unit, CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application. .
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • Memory 602 may include bulk storage for data or instructions.
  • memory 602 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above.
  • memory 602 may include removable or non-removable (or fixed) media, or memory 602 may be non-volatile solid-state memory.
  • memory 602 may be internal or external to the battery device.
  • memory 602 may be read-only memory (Read Only Memory, ROM).
  • ROM Read Only Memory
  • the ROM may be a mask-programmed ROM, a programmable ROM (PROM), an erasable PROM (EPROM), an electrically erasable PROM (EEPROM), an electrically rewritable ROM (EAROM), or flash memory, or both.
  • PROM programmable ROM
  • EPROM erasable PROM
  • EEPROM electrically erasable PROM
  • EAROM electrically rewritable ROM
  • Memory 602 may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices e.g., magnetic disks
  • optical storage media devices e.g., magnetic disks
  • flash memory devices e.g., electrical, optical, or other physical/tangible memory storage devices.
  • memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or multiple processors) operable to perform the operations described with reference to a method according to an aspect of the present disclosure.
  • the processor 601 reads and executes the computer program instructions stored in the memory 602 to implement the method in the embodiment shown in Figure 2 and achieve the corresponding technical effects achieved by executing the method/steps in the example shown in Figure 2. For the purpose of concise description I won’t go into details here.
  • the lamination device may also include a communication interface 603 and a bus 604. Among them, as shown in Figure 6, the processor 601, the memory 602, and the communication interface 603 are connected through the bus 604 and complete communication with each other.
  • the communication interface 603 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application.
  • Bus 604 includes hardware, software, or both, coupling the components of the online data traffic metering device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), Ultra Transmission (Hyper Transport, HT) interconnect, Industry Standard Architecture (ISA) bus, infinite bandwidth interconnect, low pin count (LPC) bus, memory bus, Micro Channel Architecture (MCA) bus, peripheral component interconnect (PCI) bus, PCI-Express (PCI-X) bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or two or more of these combination.
  • bus 604 may include one or more buses.
  • the lamination equipment can perform the separator detection method in the embodiment of the present application, thereby realizing the separator detection method and its device described in conjunction with FIG. 2 .
  • embodiments of the present application can provide a computer storage medium for implementation.
  • the computer storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any battery and its control method in the above embodiments are implemented.
  • the functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it may be, for example, an electronic circuit, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), appropriate firmware, plug-ins, function cards, etc.
  • elements of the application are programs or code segments that are used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (Radio Frequency, RF) links, etc. wait.
  • Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit. It will also be understood that each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware that performs the specified functions or actions, or can be implemented by special purpose hardware and A combination of computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Quality & Reliability (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

一种隔膜的检测方法、装置及设备,涉及电池技术领域。方法包括:获取待检测极片的目标图像(201),待检测极片包括阳极极片以及分别叠设于阳极极片的两侧面的隔膜;对目标图像进行图像处理,确定目标图像中的目标图像区域(202);基于目标图像区域,对待检测极片进行隔膜错位检测(203)。

Description

隔膜的检测方法、装置及设备 技术领域
本申请涉及电池技术领域,具体涉及一种隔膜的检测方法、装置及设备。
背景技术
随着电池技术的飞速发展,电池(如锂电池等)的应用越来越普及。待检测极片作为电池的基础组件之一,其制作质量对于电池的性能影响较大,例如,对电池能量密度、容量以及使用寿命等均存在影响。待检测极片的叠片工艺中,通常在阳极极片的两侧面分别叠合隔膜,以通过隔膜实现阳极极片与阴极极片之间的绝缘。
其中,叠合于阳极极片的两侧面的隔膜容易出现错位,可能导致电池的性能降低,为保证电池的质量,需要对叠合于阳极极片的两侧面的隔膜的进行错位检测,以将叠合后因错位而不满足要求的待检测极片剔除。
发明内容
鉴于上述问题,本申请提供一种隔膜的检测方法、装置及设备。
第一方面,本申请提供了一种隔膜的检测方法,包括:
获取待检测极片的目标图像,待检测极片包括阳极极片以及分别叠设于阳极极片的两侧面的隔膜;
对目标图像进行图像处理,确定目标图像中的目标图像区域;
基于目标图像区域,对待检测极片中的隔膜进行错位检测。
本申请实施例中,通过获取待检测极片的目标图像,对目标图像进行图像处理,确定目标图像中与隔膜对应的目标图像区域,并基于目标图像区域,对待检测极片中的隔膜进行错位检测。如此,可以通过待检测极片的图像中与隔膜对应的图像区域,实现检测待检测极片中的隔膜是否错位,相比于通过人为经验确定隔膜的错位,不仅可以提升检测的准确率,还可以提升检测效率。
在一些实施方式中,基于所述目标图像区域,对所述待检测极片进行 隔膜错位检测,包括:
获取目标图像区域中的隔膜图像子区域的数量;
基于目标图像区域中的隔膜图像子区域的数量,确定待检测极片的隔膜错位结果,隔膜错位结果用于指示待检测极片的隔膜是否错位。
本实施方式中,通过获取目标图像区域中的隔膜图像子区域的数量,并根据目标图像区域中的隔膜图像子区域的数量隔膜错位结果,从而在检测待检测极片的隔膜是否错位的过程中,可以使得检测过程更简单,节省计算资源且提升检测速度。
在一些实施方式中,获取目标图像区域中的隔膜图像子区域的数量,包括:
对目标图像区域进行灰度图像分割处理,得到具有不同灰度的N个隔膜图像子区域,N为正整数,
其中,N为目标图像中的隔膜图像子区域的数量。
本实施方式中,通过对目标图像区域进行灰度图像分割处理,并根据目标图像区域中的不同灰度确定隔膜图像子区域的数量,从而使得确定目标图像中的隔膜图像子区域的数量的处理过程更简单且准确。
在一些实施方式中,基于目标图像区域中的隔膜图像子区域的数量,确定待检测极片的隔膜错位结果,包括:
在目标图像中的隔膜图像子区域的数量为第一预设数量的情况下,确定待检测极片的隔膜错位结果为第一子结果,第一子结果用于指示待检测极片的隔膜未错位;
在目标图像中的隔膜图像子区域的数量为第二预设数量的情况下,确定待检测极片的隔膜错位结果为第二子结果,其中,第二预设数量与第一预设数量不同,第二子结果用于指示待检测极片的隔膜错位。
本实施方式中,通过将目标图像中的隔膜图像子区域的数量分别与第一预设数量、第二预设数量比较,可以分别得到分别用于指示待检测极片的隔膜是否错位的第一子结果和第二子结果,从而使得确定上述待检测极片的隔膜是否错位更简单且快速。
在一些实施方式中,还包括:
在目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,输 出故障提示信息,第三预设数量与第一预设数量、第二预设数量不同。
本实施方式中,在目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,叠片设备可以输出故障提示信息,以提醒及时排除故障,降低电池极片的不良率。
在一些实施方式中,在基于目标图像区域,对待检测极片进行隔膜错位检测之后,还包括:
在检测到待检测极片的隔膜错位的情况下,基于目标图像区域,确定待检测极片中的隔膜的错位量。
本实施方式中,在检测到待检测极片的隔膜错位的情况下,叠片设备可以基于目标图像区域,确定待检测极片中的隔膜的错位量,从而可以通过错位量直观反映待检测极片的隔膜错位情况,并为后续生产提供参考。
在一些实施方式中,在检测到所述待检测极片的隔膜错位的情况下,基于所述目标图像区域,确定所述待检测极片中的隔膜的错位量,包括:
在检测到待检测极片的隔膜错位的情况下,确定目标图像的隔膜图像子区域中的单层隔膜区域和双层隔膜区域;
对单层隔膜区域和双层隔膜区域分别进行边缘检测,得到单层隔膜区域的第一区域边缘和双层隔膜区域的第二区域边缘,第二区域边缘与第一区域边缘相对应;
确定第一区域边缘和第二区域边缘的间距为待检测极片中的隔膜的错位量。
本实施方式中,在上述待检测极片的隔膜错位的情况下,通过获取目标图像的单层隔膜区域和双层隔膜区域中相对应的第一区域边缘、第二区域边缘,并将第一区域边缘和第二区域边缘的间距确定为待检测极片的错位量,从而使得确定的隔膜的错位量更准确。
在一些实施方式中,还包括:
获取第三区域边缘,第三区域边缘为目标图像中,与阳极极片或者阴极极片对应的图像区域的边缘;第三区域边缘与第二区域边缘相对应;
确定第三区域边缘与第二区域边缘的间距。
本实施方式中,叠片设备还可以获取与阳极极片或者阴极极片对应的图像区域的第三区域边缘,并确定第三区域边缘与第二区域边缘的间距, 从而可以确定目标图像中双层隔膜的边缘与阳极极片或者阴极极片的边缘的间距,以通过该间距对电池极片的生产进行控制。
第二方面,本申请还提供一种隔膜的检测装置,包括:
图像获取模块,用于获取待检测极片的目标图像,待检测极片包括阳极极片以及分别叠设于阳极极片的两侧面的隔膜;
图像区域确定模块,用于对目标图像进行图像处理,确定目标图像中的目标图像区域,目标图像区域包括与隔膜对应的图像区域;
错位检测模块,用于基于所述目标图像区域,对所述待检测极片进行隔膜错位检测。
本申请实施例中,通过获取待检测极片的目标图像,对目标图像进行图像处理,确定目标图像中与隔膜对应的目标图像区域,并基于目标图像区域,对待检测极片中的隔膜进行错位检测。如此,可以通过待检测极片的图像中与隔膜对应的图像区域,实现检测待检测极片中的隔膜是否错位,相比于通过人为经验确定隔膜的错位,不仅可以提升检测的准确率,还可以提升检测效率。
在一些实施方式中,所述错位检测模块,包括:
区域数量获取单元,用于获取所述目标图像区域中的隔膜图像子区域的数量;
错位结果确定单元,用于基于所述目标图像区域中的隔膜图像子区域的数量,确定所述待检测极片的隔膜错位结果,所述隔膜错位结果用于指示所述待检测极片的隔膜是否错位。
本实施方式中,通过获取目标图像区域中的隔膜图像子区域的数量,并根据目标图像区域中的隔膜图像子区域的数量隔膜错位结果,从而在检测待检测极片的隔膜是否错位的过程中,可以使得检测过程更简单,节省计算资源且提升检测速度。
在一些实施方式中,所述区域数量获取单元,具体用于:
对所述目标图像区域进行灰度图像分割处理,得到具有不同灰度的N个隔膜图像子区域,所述N为正整数,
其中,所述N为目标图像中的隔膜图像子区域的数量。
本实施方式中,通过对目标图像区域进行灰度图像分割处理,并根据 目标图像区域中的不同灰度确定隔膜图像子区域的数量,从而使得确定目标图像中的隔膜图像子区域的数量的处理过程更简单且准确。
在一些实施方式中,所述错位结果确定单元,包括:
第一子结果确定子单元,用于在所述目标图像中的隔膜图像子区域的数量为第一预设数量的情况下,确定所述待检测极片的隔膜错位结果为第一子结果,所述第一子结果用于指示所述待检测极片的隔膜未错位;
第二子结果确定子单元,用于在所述目标图像中的隔膜图像子区域的数量为第二预设数量的情况下,确定所述待检测极片的隔膜错位结果为第二子结果,其中,所述第二预设数量与所述第一预设数量不同,所述第二子结果用于指示所述待检测极片的隔膜错位。
本实施方式中,通过将目标图像中的隔膜图像子区域的数量分别与第一预设数量、第二预设数量比较,可以分别得到分别用于指示待检测极片的隔膜是否错位的第一子结果和第二子结果,从而使得确定上述待检测极片的隔膜是否错位更简单且快速。
在一些实施方式中,还包括:
提示信息输出模块,用于在所述目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,输出故障提示信息,所述第三预设数量与第一预设数量、第二预设数量不同。
本实施方式中,在目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,叠片设备可以输出故障提示信息,以提醒及时排除故障,降低电池极片的不良率。
在一些实施方式中,还包括:
错位量确定模块,用于在检测到所述待检测极片的隔膜错位的情况下,基于所述目标图像区域,确定所述待检测极片中的隔膜的错位量。
本实施方式中,在检测到待检测极片的隔膜错位的情况下,叠片设备可以基于目标图像区域,确定待检测极片中的隔膜的错位量,从而可以通过错位量直观反映待检测极片的隔膜错位情况,并为后续生产提供参考。
在一些实施方式中,所述错位量确定模块,包括:
隔膜区域确定单元,用于在检测到指示所述待检测极片的隔膜错位的情况下,确定所述目标图像的隔膜图像子区域中的单层隔膜区域和双层隔 膜区域;
边缘检测单元,用于对所述单层隔膜区域和所述双层隔膜区域分别进行边缘检测,得到所述单层隔膜区域的第一区域边缘和所述双层隔膜区域的第二区域边缘,所述第二区域边缘与所述第一区域边缘相对应;
错位量确定单元,用于确定所述第一区域边缘和所述第二区域边缘的间距为所述待检测极片中的隔膜的错位量。
本实施方式中,在上述待检测极片的隔膜错位的情况下,通过获取目标图像的单层隔膜区域和双层隔膜区域中相对应的第一区域边缘、第二区域边缘,并将第一区域边缘和第二区域边缘的间距确定为待检测极片的错位量,从而使得确定的隔膜的错位量更准确。
在一些实施方式中,还包括:
边缘获取模块,用于获取第三区域边缘,所述第三区域边缘为所述目标图像中,与所述阳极极片或者阴极极片对应的图像区域的边缘;所述第三区域边缘与第二区域边缘相对应;
间距确定模块,用于确定所述第三区域边缘与所述第二区域边缘的间距。
本实施方式中,叠片设备还可以获取与阳极极片或者阴极极片对应的图像区域的第三区域边缘,并确定第三区域边缘与第二区域边缘的间距,从而可以确定目标图像中双层隔膜的边缘与阳极极片或者阴极极片的边缘的间距,以通过该间距对电池极片的生产进行控制。
第三方面,本申请还提供一种叠片设备,包括处理器,存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如第一方面的隔膜的检测方法的步骤。
第四方面,本申请还提供一种可读存储介质,可读存储介质上存储程序或指令,程序或指令被处理器执行时实现如第一方面的隔膜的检测方法的步骤。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请提供的叠片设备的结构示意图;
图2是本申请提供的隔膜的检测方法的实施例的流程示意图;
图3是本申请提供的隔膜的检测方法的实施例中拍摄装置的结构示意图;
图4是本申请提供的隔膜的检测方法的实施例中目标图像的示意图;
图5是本申请提供的隔膜的检测装置的实施例的结构示意图;
图6是本申请提供的叠片设备的实施例的硬件结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描 述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在电池极片的生产过程中,通常是通过叠片设备实现,如图1所示,该叠片设备先将阳极极片10、第一隔膜(也可以称为“上隔膜”)20以及第二隔膜(也可以称为“下隔膜”)30传输至位置A,并在位置A将阳极极片10、第一隔膜20以及第二隔膜30叠合,形成叠片;然后,将叠片、第一阴极极片(也可以称为“上阴极极片”)40以及第二阴极极片(也可以称为“下阴极极片”)50传输至位置B,并在位置B将第一阴极极片40、第二阴极极片50以及叠片叠合,形成电池极片。
目前,在上述叠片设备生产对叠合形成上述电池极片的过程中,叠合于阳极极片10的两侧面的第一隔膜20和第二隔膜30容易出现错位,可能 导致电池的性能降低。因此,为保证电池的质量,需要对第一隔膜20和第二隔膜30进行错位检测,以将叠合后因错位而不满足要求的电池极片剔除。但是,对第一隔膜20和第二隔膜30进行错位检测,目前通常是依靠人工经验确定,而人工经验容易出错,从而导致检测准确率较低。
针对目前对第一隔膜20和第二隔膜30的错位检测中,存在检测准确率低的问题,本申请提供一种隔膜的检测方法、装置及设备。
请参见图2,是本申请提供的隔膜的检测方法的实施例的流程示意图,该隔膜的检测方法应用于上述叠片设备。如图2所示,该隔膜的检测方法包括如下步骤201至步骤203:
步骤201、获取待检测极片的目标图像,待检测极片包括阳极极片以及分别叠设于阳极极片的两侧面的隔膜;
步骤202、对目标图像进行图像处理,确定目标图像中的目标图像区域;
步骤203、基于目标图像区域,对待检测极片中的隔膜进行错位检测。
本申请实施例中,通过获取待检测极片的目标图像,对目标图像进行图像处理,确定目标图像中与隔膜对应的目标图像区域,并基于目标图像区域,对待检测极片中的隔膜进行错位检测。如此,可以通过待检测极片的图像中与隔膜对应的图像区域,实现检测待检测极片中的隔膜是否错位,相比于通过人为经验确定隔膜的错位,不仅可以提升检测的准确率,还可以提升检测效率。
在上述步骤201中,在待检测极片的生产过程中,叠片设备可以获取生产的待检测极片的目标图像。
上述待检测极片包括阳极极片以及分别叠设于阳极极片的两侧面的隔膜。例如,上述待检测极片可以是由上述阳极极片10、第一隔膜20和第二隔膜30在位置A叠合形成的叠片;或者,上述待检测极片也可以是由上述叠片以及第一阴极极片40、第二阴极极片50在位置B叠合形成的电池极片。
上述获取待检测极片的目标图像,可以是在叠片设备中设置有拍摄装置,通过拍摄装置实时拍摄上述待检测极片的图像作为上述目标图像。
上述叠片设备中设置拍摄装置,可以是将拍摄装置设置于任何能够拍 摄到上述目标图像的位置,该拍摄装置可以位于叠合形成上述待检测极片的位置之后的任意传输位置。
例如,可以是在上述叠片设备中的位置A至位置B之间的任一传输位置设置上述拍摄装置,从而可以拍摄得到上述叠片的图像作为上述目标图像;或者,也可以是在上述叠片设备中的位置B之后的任一传输位置设置上述拍摄装置,从而可以拍摄得到上述电池极片的图像作为上述目标图像。具体地,可以是将拍摄装置设置于如图1所示的位置C。
上述叠片设备中设置拍摄装置,可以是该拍摄装置的拍摄角度处于能够拍摄到上述目标图像的任意角度。例如,如图3所示,可以是在待检测极片的任一侧设置上述拍摄装置31,且该拍摄装置31的拍摄方向与待检测极片的传输方向X垂直;或者,也可以是设置拍摄装置31的拍摄方向与待检测极片呈预设夹角设置,该预设焦距可以是30°至90°,等等。
在上述步骤步骤202中,在获取到上述目标图像之后,上述叠片设备可以对目标图像进行图像处理,确定目标图像中的目标图像区域(也可以称为“感兴趣图像区域”)。
上述目标图像区域可以是与贴合于上述阳极极片的两侧面的隔膜对应的图像区域。具体地,上述目标图像区域可以包括阳极极片与一侧面的隔膜的隔膜图像子区域(也称为“单层隔膜区域”),还可以包括阳极极片与两侧面的隔膜的隔膜图像子区域(也称为“双层隔膜区域”),等等。
例如,在上述待检测极片为电池极片的情况下,该电池极片的图像(即目标图像)可以是如图4所示,该图像可以包括双层隔膜区域41和单层隔膜区域42,双层隔膜区域41包括阳极极片10、第一隔膜20和第二隔膜30相叠合下的图像子区域;隔膜图像区域42包括阳极极片10与第一隔膜20或者第二隔膜30相叠合下的图像子区域。
上述对目标图像进行图像处理,确定目标图像中的目标图像区域,可以是通过预先配置的图像处理算法,对目标图像进行图像灰度化,并将灰度化后的图像,根据图像中各图像区域的灰度不同,对灰度化后的图像进行图像区域的分割,得到上述目标图像区域。
上述对目标图像进行图像灰度化,可以是对目标图像的全部图像区域进行灰度化;或者,也可以是先定位隔膜图像区域,该隔膜图像区域为包 含至少一层隔膜的图像区域,然后再对隔膜图像区域进行灰度化,最后将灰度化后的隔膜图像区域进行分割。
在上述步骤203中,在确定上述目标图像中的目标图像区域之后,叠片设备可以基于该目标图像区域,对待检测极片中的隔膜进行错位检测。
上述基于目标图像区域,对待检测极片中的隔膜进行错位检测,可以是先通过预先配置的图像识别算法,识别目标图像区域中是否存在单层隔膜区域,并在识别到存在单层隔膜区域的情况下,确定待检测极片中的隔膜错位;在识别到不存在单层隔膜区域的情况下,确定待检测极片中的隔膜未错位。
例如,在叠片设备确定待检测极片的感兴趣图像区域之后,叠片设备可以根据图像中的灰度对感兴趣图像区域进行划分,得到至少一个图像子区域。叠片设备在该至少一个图像子区域中,根据各图像子区域的灰度值,确定是否存在灰度值接近或者等于预设灰度值的单层隔膜区域,该预设灰度值用于指示图像子区域为单层隔膜的图像区域,若存在灰度值接近或者等于预设灰度值的单层隔膜区域,则确定待检测极片的隔膜错位;若不存在灰度值接近或者等于预设灰度值的单层隔膜区域,则确定待检测极片的隔膜未错位。
在一些实施方式中,基于所述目标图像区域,对所述待检测极片进行隔膜错位检测,包括:
获取目标图像区域中的隔膜图像子区域的数量;
基于目标图像区域中的隔膜图像子区域的数量,确定待检测极片的隔膜错位结果,隔膜错位结果用于指示待检测极片的隔膜是否错位。
本实施方式中,通过获取目标图像区域中的隔膜图像子区域的数量,并根据目标图像区域中的隔膜图像子区域的数量隔膜错位结果,从而在检测待检测极片的隔膜是否错位的过程中,可以使得检测过程更简单,节省计算资源且提升检测速度。
上述获取目标图像区域中的隔膜图像子区域的数量,可以是通过图像处理算法,检测上述目标图像区域中不同图像子区域的轮廓,并将具有不同轮廓的图像子区域的数量,确定为上述目标图像区域中隔膜图像子区域的数量。
在一些实施方式中,获取目标图像区域中的隔膜图像子区域的数量,包括:
对目标图像区域进行灰度图像分割处理,得到具有不同灰度的N个隔膜图像子区域,N为正整数。
其中,N可以为目标图像中的隔膜图像子区域的数量。
本实施方式中,通过对目标图像区域进行灰度图像分割处理,并根据目标图像区域中的不同灰度确定隔膜图像子区域的数量,从而使得确定目标图像中的隔膜图像子区域的数量的处理过程更简单且准确。
在一些实施方式中,基于目标图像区域中的隔膜图像子区域的数量,确定待检测极片的隔膜错位结果,包括:
在目标图像中的隔膜图像子区域的数量为第一预设数量的情况下,确定待检测极片的隔膜错位结果为第一子结果,第一子结果用于指示待检测极片的隔膜未错位;
在目标图像中的隔膜图像子区域的数量为第二预设数量的情况下,确定待检测极片的隔膜错位结果为第二子结果,其中,第二预设数量与第一预设数量不同,第二子结果用于指示待检测极片的隔膜错位。
本实施方式中,通过将目标图像中的隔膜图像子区域的数量分别与第一预设数量、第二预设数量比较,可以分别得到分别用于指示待检测极片的隔膜是否错位的第一子结果和第二子结果,从而使得确定上述待检测极片的隔膜是否错位更简单且快速。
上述第一预设数量和上述第二预设数量可以是预先设置的不同数量,且在隔膜图像子区域的数量为第一预设数量的情况下,待检测极片的隔膜未错位,即待检测极片中叠合于阳极极片的两侧面的隔膜相对于阳极极片对齐;而在隔膜图像子区域的数量为第二预设数量的情况下,待检测极片的隔膜错位,即待检测极片中叠合于阳极极片的两侧面的隔膜相对于阳极极片未对齐。
例如,由于在上述第一隔膜20和第二隔膜30相对于上述阳极极片10对齐的情况,通过如图3所示的拍摄装置31拍摄得到的图像中,与隔膜对应的图像区域中仅包括如图4所示的双层隔膜区域41,即可以设置上述第一预设数量为1,那么,若叠片设备确定上述目标图像中的隔膜图像子区 域的数量为1,则确定待检测极片的隔膜未错位;而在上述第一隔膜20和第二隔膜30相对于上述阳极极片10对齐的情况,通过拍摄装置拍摄得到的图像中,与隔膜对应的图像区域中可以包括双层隔膜区域41和单层隔膜区域42,即可以设置上述第一预设数量为2,那么,若叠片设备确定上述目标图像中的隔膜图像子区域的数量为2,则确定待检测极片的隔膜错位。
需要说明的是,由于在电池极片生产过程中可能出现待检测极片中不存在隔膜,例如,在向位置A传输第一隔膜10和第二隔膜20的隔膜卷耗完而未及时更换。
在一些实施方式中,还包括:
在目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,输出故障提示信息,第三预设数量与第一预设数量、第二预设数量不同。
本实施方式中,在目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,叠片设备可以输出故障提示信息,以提醒及时排除故障,降低电池极片的不良率。
上述输出故障提示信息,可以是通过警示灯、显示信息和语音播报等方式中的至少一项实现。
上述第三预设数量为与第一预设数量、第二预设数量不同的数量,且在隔膜图像子区域的数量为第三预设数量的情况下,叠片设备可以确定待检测极片中不存在隔膜。
例如,由于在出现待检测极片中不存在隔膜的情况下,目标图像中并不存在与隔膜对应的隔膜图像子区域,即第三预设数量为0,那么,若目标图像中的隔膜图像子区域的数量为0,叠片设备可以在其显示界面中显示“NG”标识,以提示操作人员停机。
在一些实施方式中,在基于目标图像区域,对待检测极片进行隔膜错位检测之后,还包括:
在检测到待检测极片的隔膜错位的情况下,基于目标图像区域,确定待检测极片中的隔膜的错位量。
本实施方式中,在检测到待检测极片的隔膜错位的情况下,叠片设备可以基于目标图像区域,确定待检测极片中的隔膜的错位量,从而可以通过错位量直观反映待检测极片的隔膜错位情况,并为后续生产提供参考。
上述在检测到待检测极片的隔膜错位的情况下,基于目标图像区域,确定待检测极片中的隔膜的错位量,可以是在基于目标图像区域中的隔膜图像子区域的数量,确定待检测极片的隔膜错位的情况下,目标图像区域,确定待检测极片中的隔膜的错位量。
上述基于目标图像中的隔膜图像子区域,确定待检测极片中的隔膜的错位量,可以是叠片设备获取包括阳极极片与一侧面的隔膜的单层隔膜区域,然后确定单层隔膜区域在上述宽度方向上的像素点的数量,并根据像素点的数量确定待检测极片中的隔膜的错位量。
上述隔膜的错位量可以是在垂直于待检测极片的传输方向的宽度方向上的宽度值,且该错位量用于反映上述待检测极片的两侧面的隔膜发生发生错位的尺寸。
在一些实施方式中,在检测到待检测极片的隔膜错位的情况下,基于目标图像区域,确定待检测极片中的隔膜的错位量,包括:
在检测到待检测极片的隔膜错位的情况下,确定目标图像的隔膜图像子区域中的单层隔膜区域和双层隔膜区域;
对单层隔膜区域和双层隔膜区域分别进行边缘检测,得到单层隔膜区域的第一区域边缘和双层隔膜区域的第二区域边缘,第二区域边缘与第一区域边缘相对应;
确定第一区域边缘和第二区域边缘的间距为待检测极片中的隔膜的错位量。
本实施方式中,在上述待检测极片的隔膜错位的情况下,通过获取目标图像的单层隔膜区域和双层隔膜区域中相对应的第一区域边缘、第二区域边缘,并将第一区域边缘和第二区域边缘的间距确定为待检测极片的错位量,从而使得确定的隔膜的错位量更准确。
上述确定目标图像的隔膜图像子区域中的单层隔膜区域和双层隔膜区域,可以在对目标图像区域进行灰度处理之后,根据目标图像区域中各隔膜图像子区域的灰度确定单层隔膜区域和双层隔膜区域。由于单层隔膜相比双层隔膜具有高的透光性,故单层隔膜区域的灰度通常要低于双层隔膜区域的灰度。
上述第二区域边缘与上述第一区域边缘相对应,可以是在上述宽度方 向上,分别与上述单层隔膜区域相连接的两条区域边缘。
例如,如图4所示,在叠片设备确定上述双层隔膜区域41和单层隔膜区域42之后,叠片设备可以检测到双层隔膜区域41的边缘411(即第二边缘区域),以及,检测到单层隔膜区域42的边缘421(即第一边缘区域),并将边缘411和边缘421的间距确定为隔膜的错位量。
在一些实施方式中,上述方法还包括:
获取第三区域边缘,第三区域边缘为目标图像中,与阳极极片或者阴极极片对应的图像区域的边缘;第三区域边缘与第二区域边缘相对应;
确定第三区域边缘与第二区域边缘的间距。
本实施方式中,叠片设备还可以获取与阳极极片或者阴极极片对应的图像区域的第三区域边缘,并确定第三区域边缘与第二区域边缘的间距,从而可以确定目标图像中双层隔膜的边缘与阳极极片或者阴极极片的边缘的间距,以通过该间距对电池极片的生产进行控制。
上述获取第三区域边缘,可以是在叠片设备确定待检测极片存在错位的情况下进行;或者,也可以是在叠片设备确定待检测极片不存在错位的情况下进行,在此并不进行限定。
例如,如图4所示,在上述目标图像包括双层隔膜区域41和单层隔膜区域42的情况下,叠片设备还可以获取与阳极极片对应的图像区域43的边缘431(即第三区域边缘),并确定边缘431与边缘421的间距,最后将边缘431与边缘421的间距、边缘421与边缘411的间距上传至叠片设备的处理器,以通过得到的两个间距控制电池极片的生产。
请参见图5,是本申请提供的隔膜的检测装置的实施例的结构示意图。如图5所示,该隔膜的检测装置500包括:
图像获取模块501,用于获取待检测极片的目标图像,待检测极片包括阳极极片以及分别叠设于阳极极片的两侧面的隔膜;
图像区域确定模块502,用于对目标图像进行图像处理,确定目标图像中的目标图像区域,目标图像区域包括与隔膜对应的图像区域;
错位检测模块503,用于基于所述目标图像区域,对所述待检测极片进行隔膜错位检测。
本申请实施例中,通过获取待检测极片的目标图像,对目标图像进行 图像处理,确定目标图像中与隔膜对应的目标图像区域,并基于目标图像区域,对待检测极片中的隔膜进行错位检测。如此,可以通过待检测极片的图像中与隔膜对应的图像区域,实现检测待检测极片中的隔膜是否错位,相比于通过人为经验确定隔膜的错位,不仅可以提升检测的准确率,还可以提升检测效率。
在一些实施方式中,所述错位检测模块503,包括:
区域数量获取模块,用于获取目标图像区域中的隔膜图像子区域的数量;
错位结果确定模块,用于基于目标图像区域中的隔膜图像子区域的数量,确定待检测极片的隔膜错位结果,隔膜错位结果用于指示待检测极片的隔膜是否错位。
本实施方式中,通过获取目标图像区域中的隔膜图像子区域的数量,并根据目标图像区域中的隔膜图像子区域的数量隔膜错位结果,从而在检测待检测极片的隔膜是否错位的过程中,可以使得检测过程更简单,节省计算资源且提升检测速度。
在一些实施方式中,所述区域数量获取单元,具体用于:
对所述目标图像区域进行灰度图像分割处理,得到具有不同灰度的N个隔膜图像子区域,所述N为正整数,
其中,所述N为目标图像中的隔膜图像子区域的数量。
本实施方式中,通过对目标图像区域进行灰度图像分割处理,并根据目标图像区域中的不同灰度确定隔膜图像子区域的数量,从而使得确定目标图像中的隔膜图像子区域的数量的处理过程更简单且准确。
在一些实施方式中,所述错位结果确定单元,包括:
第一子结果确定子单元,用于在所述目标图像中的隔膜图像子区域的数量为第一预设数量的情况下,确定所述待检测极片的隔膜错位结果为第一子结果,所述第一子结果用于指示所述待检测极片的隔膜未错位;
第二子结果确定子单元,用于在所述目标图像中的隔膜图像子区域的数量为第二预设数量的情况下,确定所述待检测极片的隔膜错位结果为第二子结果,其中,所述第二预设数量与所述第一预设数量不同,所述第二子结果用于指示所述待检测极片的隔膜错位。
本实施方式中,通过将目标图像中的隔膜图像子区域的数量分别与第一预设数量、第二预设数量比较,可以分别得到分别用于指示待检测极片的隔膜是否错位的第一子结果和第二子结果,从而使得确定上述待检测极片的隔膜是否错位更简单且快速。
在一些实施方式中,还包括:
提示信息输出模块,用于在所述目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,输出故障提示信息,所述第三预设数量与第一预设数量、第二预设数量不同。
本实施方式中,在目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,叠片设备可以输出故障提示信息,以提醒及时排除故障,降低电池极片的不良率。
在一些实施方式中,还包括:
错位量确定模块,用于在检测到所述待检测极片的隔膜错位的情况下,基于所述目标图像区域,确定所述待检测极片中的隔膜的错位量。
本实施方式中,在检测到待检测极片的隔膜错位的情况下,叠片设备可以基于目标图像区域,确定待检测极片中的隔膜的错位量,从而可以通过错位量直观反映待检测极片的隔膜错位情况,并为后续生产提供参考。
在一些实施方式中,所述错位量确定模块,包括:
隔膜区域确定单元,用于在检测到指示所述待检测极片的隔膜错位的情况下,确定所述目标图像的隔膜图像子区域中的单层隔膜区域和双层隔膜区域;
边缘检测单元,用于对所述单层隔膜区域和所述双层隔膜区域分别进行边缘检测,得到所述单层隔膜区域的第一区域边缘和所述双层隔膜区域的第二区域边缘,所述第二区域边缘与所述第一区域边缘相对应;
错位量确定单元,用于确定所述第一区域边缘和所述第二区域边缘的间距为所述待检测极片中的隔膜的错位量。
本实施方式中,在上述待检测极片的隔膜错位的情况下,通过获取目标图像的单层隔膜区域和双层隔膜区域中相对应的第一区域边缘、第二区域边缘,并将第一区域边缘和第二区域边缘的间距确定为待检测极片的错位量,从而使得确定的隔膜的错位量更准确。
在一些实施方式中,还包括:
边缘获取模块,用于获取第三区域边缘,所述第三区域边缘为所述目标图像中,与所述阳极极片或者阴极极片对应的图像区域的边缘;所述第三区域边缘与第二区域边缘相对应;
间距确定模块,用于确定所述第三区域边缘与所述第二区域边缘的间距。
本实施方式中,叠片设备还可以获取与阳极极片或者阴极极片对应的图像区域的第三区域边缘,并确定第三区域边缘与第二区域边缘的间距,从而可以确定目标图像中双层隔膜的边缘与阳极极片或者阴极极片的边缘的间距,以通过该间距对电池极片的生产进行控制。
根据本申请实施例的隔膜的检测装置的其他细节,与以上结合图2所示实施例描述的隔膜的检测方法类似,并能达到其相应的技术效果,为简洁描述,在此不再赘述。
请参见图6,是本申请提供的叠片设备的实施例的硬件结构示意图。
叠片设备可以包括处理器601以及存储有计算机程序指令的存储器602。
具体地,上述处理器601可以包括中央处理器(Central Processing Unit,CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器602可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器602可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在一些实例中,存储器602可以包括可移除或不可移除(或固定)的介质,或者存储器602是非易失性固态存储器。在一些实施例中,存储器602可在电池装置的内部或外部。
在一些实例中,存储器602可以是只读存储器(Read Only Memory,ROM)。在一个实例中,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
存储器602可以包括只读存储器(ROM),随机存取存储器(RAM), 磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器601通过读取并执行存储器602中存储的计算机程序指令,以实现图2所示实施例中的方法,并达到图2所示实例执行其方法/步骤达到的相应技术效果,为简洁描述在此不再赘述。
在一个示例中,叠片设备还可包括通信接口603和总线604。其中,如图6所示,处理器601、存储器602、通信接口603通过总线604连接并完成相互间的通信。
通信接口603,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线604包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Extended Industry Standard Architecture,EISA)总线、前端总线(Front Side Bus,FSB)、超传输(Hyper Transport,HT)互连、工业标准架构(Industry Standard Architecture,ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线604可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该叠片设备可以执行本申请实施例中的隔膜的检测方法,从而实现结合图2描述的隔膜的检测方法及其装置。
另外,结合上述实施例中的隔膜的检测方法及其装置,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种电池及其控制方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(Application Specific Integrated Circuit,ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(Radio Frequency,RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置、设备及和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种隔膜的检测方法,包括:
    获取待检测极片的目标图像,所述待检测极片包括阳极极片以及分别叠设于所述阳极极片的两侧面的隔膜;
    对所述目标图像进行图像处理,确定所述目标图像中的目标图像区域;
    基于所述目标图像区域,对所述待检测极片进行隔膜错位检测。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述目标图像区域,对所述待检测极片进行隔膜错位检测,包括:
    获取所述目标图像区域中的隔膜图像子区域的数量;
    基于所述目标图像区域中的隔膜图像子区域的数量,确定所述待检测极片的隔膜错位结果,所述隔膜错位结果用于指示所述待检测极片的隔膜是否错位。
  3. 根据权利要求2所述的方法,其中,所述获取所述目标图像区域中的隔膜图像子区域的数量,包括:
    对所述目标图像区域进行灰度图像分割处理,得到具有不同灰度的N个隔膜图像子区域,所述N为正整数,
    其中,所述N为所述目标图像中的隔膜图像子区域的数量。
  4. 根据权利要求2所述的方法,其中,所述基于所述目标图像区域中的隔膜图像子区域的数量,确定所述待检测极片的隔膜错位结果,包括:
    在所述目标图像中的隔膜图像子区域的数量为第一预设数量的情况下,确定所述待检测极片的隔膜错位结果为第一子结果,所述第一子结果用于指示所述待检测极片的隔膜未错位;
    在所述目标图像中的隔膜图像子区域的数量为第二预设数量的情况下,确定所述待检测极片的隔膜错位结果为第二子结果,其中,所述第二预设数量与所述第一预设数量不同,所述第二子结果用于指示所述待检测极片的隔膜错位。
  5. 根据权利要求2所述的方法,还包括:
    在所述目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,输出故障提示信息,所述第三预设数量与第一预设数量、第二预设数 量不同。
  6. 根据权利要求1所述的方法,在所述基于所述目标图像区域,对所述待检测极片进行隔膜错位检测之后,还包括:
    在检测到所述待检测极片的隔膜错位的情况下,基于所述目标图像区域,确定所述待检测极片中的隔膜的错位量。
  7. 根据权利要求6所述的方法,其中,所述在检测到所述待检测极片的隔膜错位的情况下,基于所述目标图像区域,确定所述待检测极片中的隔膜的错位量,包括:
    在检测到所述待检测极片的隔膜错位的情况下,确定所述目标图像的隔膜图像子区域中的单层隔膜区域和双层隔膜区域;
    对所述单层隔膜区域和所述双层隔膜区域分别进行边缘检测,得到所述单层隔膜区域的第一区域边缘和所述双层隔膜区域的第二区域边缘,所述第二区域边缘与所述第一区域边缘相对应;
    确定所述第一区域边缘和所述第二区域边缘的间距为所述待检测极片中的隔膜的错位量。
  8. 根据权利要求7所述的方法,还包括:
    获取第三区域边缘,所述第三区域边缘为所述目标图像中,与所述阳极极片或者阴极极片对应的图像区域的边缘;所述第三区域边缘与第二区域边缘相对应;
    确定所述第三区域边缘与所述第二区域边缘的间距。
  9. 一种隔膜的检测装置,包括:
    图像获取模块,用于获取待检测极片的目标图像,所述待检测极片包括阳极极片以及分别叠设于所述阳极极片的两侧面的隔膜;
    图像区域确定模块,用于对所述目标图像进行图像处理,确定所述目标图像中的目标图像区域;
    错位检测模块,用于基于所述目标图像区域,对所述待检测极片进行隔膜错位检测。
  10. 根据权利要求9所述的装置,所述错位检测模块,包括:
    区域数量获取单元,用于获取所述目标图像区域中的隔膜图像子区域的数量;
    错位结果确定单元,用于基于所述目标图像区域中的隔膜图像子区域的数量,确定所述待检测极片的隔膜错位结果,所述隔膜错位结果用于指示所述待检测极片的隔膜是否错位。
  11. 根据权利要求10所述的装置,其中,所述区域数量获取单元,具体用于:
    对所述目标图像区域进行灰度图像分割处理,得到具有不同灰度的N个隔膜图像子区域,所述N为正整数,
    其中,所述N为所述目标图像中的隔膜图像子区域的数量。
  12. 根据权利要求10所述的装置,其中,所述错位结果确定单元,包括:
    第一子结果确定子单元,用于在所述目标图像中的隔膜图像子区域的数量为第一预设数量的情况下,确定所述待检测极片的隔膜错位结果为第一子结果,所述第一子结果用于指示所述待检测极片的隔膜未错位;
    第二子结果确定子单元,用于在所述目标图像中的隔膜图像子区域的数量为第二预设数量的情况下,确定所述待检测极片的隔膜错位结果为第二子结果,其中,所述第二预设数量与所述第一预设数量不同,所述第二子结果用于指示所述待检测极片的隔膜错位。
  13. 根据权利要求10所述的装置,还包括:
    提示信息输出模块,用于在所述目标图像中的隔膜图像子区域的数量为第三预设数量的情况下,输出故障提示信息,所述第三预设数量与第一预设数量、第二预设数量不同。
  14. 根据权利要求13所述的装置,还包括:
    错位量确定模块,用于在检测到所述待检测极片的隔膜错位的情况下,基于所述目标图像区域,确定所述待检测极片中的隔膜的错位量。
  15. 根据权利要求14所述的装置,其中,所述错位量确定模块,包括:
    隔膜区域确定单元,用于在检测到指示所述待检测极片的隔膜错位的情况下,确定所述目标图像的隔膜图像子区域中的单层隔膜区域和双层隔膜区域;
    边缘检测单元,用于对所述单层隔膜区域和所述双层隔膜区域分别进行边缘检测,得到所述单层隔膜区域的第一区域边缘和所述双层隔膜区域 的第二区域边缘,所述第二区域边缘与所述第一区域边缘相对应;
    错位量确定单元,用于确定所述第一区域边缘和所述第二区域边缘的间距为所述待检测极片中的隔膜的错位量。
  16. 根据权利要求15所述的装置,还包括:
    边缘获取模块,用于获取第三区域边缘,所述第三区域边缘为所述目标图像中,与所述阳极极片或者阴极极片对应的图像区域的边缘;所述第三区域边缘与第二区域边缘相对应;
    间距确定模块,用于确定所述第三区域边缘与所述第二区域边缘的间距。
  17. 一种叠片设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-8任一项所述的隔膜的检测方法的步骤。
  18. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-8任一项所述的隔膜的检测方法的步骤。
PCT/CN2022/085253 2022-04-06 2022-04-06 隔膜的检测方法、装置及设备 WO2023193130A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023552363A JP2024520973A (ja) 2022-04-06 2022-04-06 セパレータの検出方法、装置及び機器
PCT/CN2022/085253 WO2023193130A1 (zh) 2022-04-06 2022-04-06 隔膜的检测方法、装置及设备
CN202280035384.3A CN117355723A (zh) 2022-04-06 2022-04-06 隔膜的检测方法、装置及设备
KR1020237029310A KR20230145094A (ko) 2022-04-06 2022-04-06 세퍼레이터 검출 방법, 장치 및 장비
EP22927581.3A EP4303532A4 (en) 2022-04-06 2022-04-06 METHOD, APPARATUS AND DEVICE FOR TESTING SEPARATOR MEMBRANE
US18/467,430 US20240005474A1 (en) 2022-04-06 2023-09-14 Diaphragm detection method, device and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085253 WO2023193130A1 (zh) 2022-04-06 2022-04-06 隔膜的检测方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,430 Continuation US20240005474A1 (en) 2022-04-06 2023-09-14 Diaphragm detection method, device and apparatus

Publications (1)

Publication Number Publication Date
WO2023193130A1 true WO2023193130A1 (zh) 2023-10-12

Family

ID=88243721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085253 WO2023193130A1 (zh) 2022-04-06 2022-04-06 隔膜的检测方法、装置及设备

Country Status (6)

Country Link
US (1) US20240005474A1 (zh)
EP (1) EP4303532A4 (zh)
JP (1) JP2024520973A (zh)
KR (1) KR20230145094A (zh)
CN (1) CN117355723A (zh)
WO (1) WO2023193130A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005332A (ja) * 2013-06-19 2015-01-08 パナソニック株式会社 積層型電池
CN110866920A (zh) * 2020-01-20 2020-03-06 长沙琢冶信息技术有限公司 镀铜焊丝的缺陷检测方法、装置、设备及存储介质
CN112053326A (zh) * 2020-08-13 2020-12-08 无锡先导智能装备股份有限公司 电芯对齐度检测方法、系统、装置和设备
CN112330623A (zh) * 2020-10-30 2021-02-05 蜂巢能源科技有限公司 电芯极组极片对齐度检测方法和检测装置
CN112508838A (zh) * 2019-08-30 2021-03-16 广东利元亨智能装备股份有限公司 一种电池极片对齐度检测方法
CN113203745A (zh) * 2021-07-05 2021-08-03 中航锂电科技有限公司 一种叠片装置及极片翻折的检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629119B1 (ko) * 2018-05-02 2024-01-26 에스케이온 주식회사 전극판 정렬 상태 검사 시스템 및 방법
CN110542361A (zh) * 2019-09-29 2019-12-06 广东利元亨智能装备股份有限公司 检测装置
CN112577421A (zh) * 2019-12-11 2021-03-30 广东利元亨智能装备股份有限公司 一种电芯检测方法、装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005332A (ja) * 2013-06-19 2015-01-08 パナソニック株式会社 積層型電池
CN112508838A (zh) * 2019-08-30 2021-03-16 广东利元亨智能装备股份有限公司 一种电池极片对齐度检测方法
CN110866920A (zh) * 2020-01-20 2020-03-06 长沙琢冶信息技术有限公司 镀铜焊丝的缺陷检测方法、装置、设备及存储介质
CN112053326A (zh) * 2020-08-13 2020-12-08 无锡先导智能装备股份有限公司 电芯对齐度检测方法、系统、装置和设备
CN112330623A (zh) * 2020-10-30 2021-02-05 蜂巢能源科技有限公司 电芯极组极片对齐度检测方法和检测装置
CN113203745A (zh) * 2021-07-05 2021-08-03 中航锂电科技有限公司 一种叠片装置及极片翻折的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4303532A4 *

Also Published As

Publication number Publication date
KR20230145094A (ko) 2023-10-17
EP4303532A1 (en) 2024-01-10
JP2024520973A (ja) 2024-05-28
CN117355723A (zh) 2024-01-05
EP4303532A4 (en) 2024-08-07
US20240005474A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
CN113376177A (zh) 极耳检测方法、装置及电子设备
CN109636717B (zh) 锂电池涂布检测分析方法、系统、设备及存储介质
CN113378743A (zh) 极耳检测方法、装置及电子设备
EP4350621A1 (en) Bare cell appearance inspection method and apparatus, computer device, and storage medium
WO2024011984A1 (zh) 极耳检测方法及检测设备
US20240077432A1 (en) Cell detection method, apparatus, and system, computer device, and storage medium
WO2023193213A1 (zh) 电池极片绝缘涂层缺陷的检测方法、装置和计算机设备
CN114581446B (zh) 一种叠片电池的电芯异常检测方法及系统
US20240062381A1 (en) Cell detection method and apparatus, device, readable storage medium, and program product
CN117541592B (zh) 相机安装偏差的确定方法和视觉检测补偿方法
CN113820333B (zh) 电池极片异常检测方法、装置、上位机及检测系统
CN115330757B (zh) 一种电路板焊点缺陷检测方法及系统
US20240153141A1 (en) Ccd camera calibration system, method, computing device and storage medium
WO2023193130A1 (zh) 隔膜的检测方法、装置及设备
CN116982185A (zh) 极片的叠片方法、装置和叠片机
CN117740792B (zh) 裸电芯检测系统及裸电芯检测系统的点检方法
CN108180826B (zh) 一种锂电池卷绕层边界的检测设备及检测方法
US20230411583A1 (en) Control method, apparatus and device for defect rejection of battery electrode plates
KR102278801B1 (ko) 고속 양극 노칭기용 이차전지 전극필름의 스패터 검사방법
WO2024055267A1 (zh) 卷绕电芯的检测方法和检测装置
WO2023133690A1 (zh) 极片卷绕间隙的检测方法、其检测装置及其检测系统
WO2023197127A1 (zh) 电池极片对齐度检测方法、装置、设备、介质及产品
CN118351111B (zh) 芯片表面缺陷的检测方法、装置、设备和存储介质
CN116609493B (zh) 压痕检测方法、叠片电芯制造方法、装置和电子设备
WO2023193150A1 (zh) 电池复合面的尺寸检测方法、装置及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237029310

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023552363

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022927581

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022927581

Country of ref document: EP

Effective date: 20231006

WWE Wipo information: entry into national phase

Ref document number: 202280035384.3

Country of ref document: CN