WO2023191231A1 - Heat dissipation sheet having high thermal conductivity and high tensile strength, and production method for same - Google Patents

Heat dissipation sheet having high thermal conductivity and high tensile strength, and production method for same Download PDF

Info

Publication number
WO2023191231A1
WO2023191231A1 PCT/KR2022/018165 KR2022018165W WO2023191231A1 WO 2023191231 A1 WO2023191231 A1 WO 2023191231A1 KR 2022018165 W KR2022018165 W KR 2022018165W WO 2023191231 A1 WO2023191231 A1 WO 2023191231A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
particles
dissipation sheet
thermal conductivity
tensile strength
Prior art date
Application number
PCT/KR2022/018165
Other languages
French (fr)
Korean (ko)
Inventor
최현석
박정현
한상효
Original Assignee
주식회사 에스엠티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엠티 filed Critical 주식회사 에스엠티
Publication of WO2023191231A1 publication Critical patent/WO2023191231A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a high thermal conductivity heat dissipation sheet having high tensile strength and a method of manufacturing the same. More specifically, the heat dissipation sheet has high thermal conductivity and excellent tensile strength by controlling the size and content of inorganic particles to a specific range. It relates to a high thermal conductivity heat dissipation sheet having a and a method of manufacturing the same.
  • a plasma processing device having a loading table for installing the wafer inside a vacuum chamber is used.
  • the diameter of semiconductor wafers has become larger and the processing precision has been refined, and in order to uniformly perform plasma processing on the wafer, it is necessary to apply a uniform temperature distribution. Therefore, a heater is installed on the outer periphery of the loading table, and a focus ring is installed on it through a heat conductive sheet to heat it.
  • a heat dissipation sheet with excellent heat dissipation properties has been developed in which a resin composition containing polyorganosiloxane and an inorganic filler is cured on the member.
  • the amount of inorganic filler charged is As the concentration increases above 80 vol%, the tensile strength of the heat dissipation sheet decreases, causing problems with workability when using the heat dissipation sheet. Therefore, there is a need for research and development on heat dissipation sheets that have high thermal conductivity properties and high tensile properties.
  • the present invention implements a thermal conductivity of 10 W/mK or more and provides workability and adhesion for mechanical processing such as punching, trimming, and routing work for applying heat dissipation sheets to components and modules.
  • the purpose is to provide a high thermal conductivity heat dissipation sheet that allows for ease of attachment/detachment work and rework after use, and has a high tensile strength that improves the tensile strength of the heat dissipation sheet by 0.2 MPa to 1.0 MPa, and a method of manufacturing the same.
  • the high thermal conductivity heat dissipation sheet having high tensile strength includes AlN particles having a particle size of 40 ⁇ m to 100 ⁇ m, Al 2 O 3 particles having a particle size of 2 ⁇ m to 10 ⁇ m, and 0.1 ⁇ m to 1 ⁇ m. It contains Al 2 O 3 particles with a particle size of .
  • the component amount of AlN particles having a particle size of 40 ⁇ m to 100 ⁇ m is If the component amount of Al 2 O 3 particles having is defined as Z parts by weight, the following relational equation (1) is satisfied.
  • the component amount of AlN particles having a particle size of 40 ⁇ m to 100 ⁇ m is If the component amount of Al 2 O 3 particles having is defined as Z parts by weight, the following relational equation (2) is satisfied.
  • the heat dissipation sheet has high tensile strength, characterized by a thermal conductivity of 10 W/mK or more.
  • the heat dissipation sheet having a tensile strength of 0.2 MPa or more is used.
  • the heat dissipation sheet is used that does not tear during press processing.
  • a method of manufacturing a high thermal conductivity heat dissipation sheet with high tensile strength which is an embodiment of the present invention, includes a first step of premixing AlN particles, inorganic particles containing Al 2 O 3 particles, a polymer binder, a surface treatment agent, and a catalyst; a second step of mixing with the polymer matrix; It includes a third step of manufacturing a thermally conductive sheet.
  • the inorganic particles contain AlN particles with a particle size of 40 ⁇ m to 100 ⁇ m, Al 2 O 3 particles with a particle size of 2 ⁇ m to 10 ⁇ m, and Al 2 O 3 particles with a particle size of 0.1 ⁇ m to 1 ⁇ m. .
  • the inorganic particles are used in an amount of 1500 to 1800 parts by weight, the polymer binder is used in an amount of 50 to 100 parts by weight, the catalyst is used in an amount of 0.1 to 3 parts by weight, and the surface treatment agent is used in an amount of 1 to 10 parts by weight.
  • the use of aluminum nitride compound and aluminum oxide as specific components of the inorganic pillar has the effect of having high thermal conductivity, high tensile strength, and high tear strength. Furthermore, it has the effect of having workability for mechanical processing, ease of work when attaching and detaching to an adherend, and reworkability after use of the heat conductive sheet.
  • the method for manufacturing a high thermal conductivity heat dissipation sheet with high tensile strength of the present invention is to premix a mixture containing an inorganic filler, a polymer binder, a surface treatment agent, and a catalyst, mix the premixed mixture with a polymer matrix, and then heat conductivity. It includes manufacturing a sheet.
  • the inorganic filler used in the high thermal conductivity heat dissipation sheet of the present invention preferably contains AlN particles and Al 2 O 3 particles and has high tensile strength and high tear strength while maintaining high thermal conductivity.
  • Tensile strength is a parameter that indicates the degree to which the high thermal conductivity heat dissipation sheet can withstand without breaking when pulled from both sides
  • tear strength is the force required to tear the high thermal conductivity heat dissipation sheet. It can be used to measure the performance of the seat.
  • a method of coating a surface treatment agent on an inorganic filler such as a wet method, a dry method, or an integral blend method, a method of mixing a surface-treated inorganic filler into a polymer matrix such as a continuous polymerization process or a batch polymerization process, and a thermally conductive sheet composition.
  • the mechanical properties of the high thermal conductivity heat dissipation sheet may vary depending on various process conditions, such as coating and curing methods on the substrate.
  • the AlN particles under condition i) have a size of 40 ⁇ m to 100 ⁇ m and contain 800 to 1100 parts by weight.
  • the AlN particles have a size of 40 ⁇ m to 100 ⁇ m and contain 900 to 1100 parts by weight in terms of thermal conductivity and tensile strength.
  • condition ii) the content of Al 2 O 3 particles with a size of 2 ⁇ m to 10 ⁇ m is preferably 450 to 550 parts by weight, and the content of Al 2 O 3 particles with a size of 2 ⁇ m to 10 ⁇ m is preferably 450 parts by weight. It is more preferable to contain from 500 parts by weight to 500 parts by weight.
  • condition iii) it is preferable that the Al 2 O 3 particles with a size of 0.1 ⁇ m to 1 ⁇ m contain 200 to 350 parts by weight, and the Al 2 O 3 particles with a size of 0.1 ⁇ m to 1 ⁇ m contain 200 parts by weight. Containing from 300 parts by weight to 300 parts by weight is good in terms of thermal conductivity and tensile strength.
  • the thermally conductive sheet of the present invention is composed of Defined as Z parts by weight of Al 2 O 3 particles having a particle size of , it is preferable to satisfy the following relational equation (1).
  • the thermally conductive sheet of the present invention is composed of Defined as Al 2 O 3 particles having a particle size of Z parts by weight, it is preferable to satisfy the following relational equation (2).
  • the thermal conductivity of the heat dissipation sheet can be obtained at least 10 W/mK, more preferably at least 14 W/mK, and most preferably at least 20 W/mK. You can.
  • the tensile strength of the heat dissipation sheet can be obtained at 0.2 MPa or more and 1.0 MPa or less, more preferably 0.3 MPa or more, and most preferably 0.5 MPa or more. If the tensile strength is less than the above range, there is a problem with workability, and if it exceeds the above range, the hardness or thermal resistance of the heat dissipation sheet is reduced.
  • Particles with a small diameter of the inorganic filler are filled between the large-diameter inorganic filler particles of the present invention, and the filling can be performed in a state close to close packing, thereby achieving high thermal conductivity. Therefore, when the inorganic filler is used, the mixture has high thermal conductivity, excellent electrical insulation, and is suitable for use as a raw material for a thermally conductive composition sheet.
  • the shape of the inorganic filler can be spherical, flat, polyhedral, etc. there is.
  • the inorganic filler of the present invention can be used in an amount of 80 vol% or more, more preferably 85 vol% or more, and most preferably 90 vol% or more, with respect to the thermal conductive composition sheet, to obtain a highly filled, high thermal conductive sheet.
  • the method for manufacturing a highly thermally conductive heat dissipation sheet of the present invention includes a first step of premixing AlN particles, inorganic particles containing Al 2 O 3 particles, a polymer binder, a surface treatment agent, and a catalyst; a second step of mixing with the polymer matrix; A third step of manufacturing a thermally conductive sheet may be included.
  • the surface treatment agent is preferably a silane compound or a partial hydrolyzate thereof.
  • silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and octyltrimethoxysilane.
  • Treating the surface of an inorganic filler by surface treatment includes physical adsorption in addition to chemical bonding such as covalent bonding.
  • premixing may be performed by further including a solvent.
  • the solvent is water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylenephosphonium triamide, acetonitrile, benzonitrile, etc.
  • Polar solvents represented by; Phenols represented by cresol, phenol, xylenol, etc.; Alcohols represented by methanol, ethanol, propanol, butanol, etc.; Ketones represented by acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.; Acetic acid Esters represented by ethyl, propyl acetate, butyl acetate, etc.; Hydrocarbons represented by hexane, heptane, benzene, toluene, xylene, etc.; Carboxylic acids represented by formic acid, acetic acid, etc.; Carbonates represented by ethylene carbonate, propylene carbonate, etc.
  • Ether compounds represented by dioxane, diethyl ether, etc. Chain ethers represented by ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.; 3-methyl Heterocyclic compounds represented by -2-oxazolidinone, etc.; Nitrile compounds represented by acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, etc. can be suitably exemplified.
  • the type of solvent can be appropriately mixed and used. If a solvent with a low boiling point is used, the process temperature can be lowered during compounding in the post-process, and the process time can be reduced. can be shortened to increase productivity.
  • the catalyst is intended to promote curing during high temperature and vacuum compounding.
  • catalysts include platinum black, chloroplatinic acid, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, and a complex of chloroplatinic acid and olefins or vinylsiloxane.
  • platinum-based catalysts such as platinum biacetoacetate, palladium-based catalysts, and rhodium-based catalysts can be used.
  • the content of the catalyst may be any amount necessary for curing, and can be adjusted appropriately depending on the desired curing speed, etc.
  • the surface of the inorganic filler can be treated using a dry method, an integral blend method, or a semi-wet method, and after surface treatment of the inorganic filler, mixing with the polymer matrix is a continuous polymerization process (continuous compounding). It can be carried out by a polymerization process, and it can be carried out by a batch polymerization process, which is batch compounding.
  • the polymer matrix may contain silicone polymer.
  • silicone polymer organopolysiloxane containing a silicon atom bonded to an alkenyl group can be used. Additionally, an organopolysiloxane having 2 to 8 carbon atoms, such as a vinyl group or an allyl group, may be used in combination with the silicone polymer.
  • the molecular structure of the silicone polymer may be linear, cyclic, branched, or three-dimensional network, and the viscosity of the polymer matrix mixture can be adjusted by appropriately selecting the substituents or molecular structure.
  • the polymer matrix can be used as a mixture of an inorganic filler and an adhesive polymer to strengthen the bond between the polymer matrix, if necessary.
  • the thermally conductive sheet of the present invention Describing the process of manufacturing the thermally conductive sheet of the present invention, it can be obtained by coating a mixture from which the remaining solvent has been removed on a support, curing it through drying and heat treatment, and then peeling the cured material on the support.
  • the support can be a polyethylene terephthalate (PET) film, polyphenylene sulfide film, polyimide film, etc., and if necessary, the surface of the support is subjected to surface treatment with silicone, silane coupling agent, aluminum chelating agent, etc.
  • the adhesion and peelability of the thermally conductive sheet and the support can be improved.
  • methods of applying the mixture from which the residual solvent has been removed on the support include rotational application using a spinner, spray application, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, and roll coater.
  • comma roll coater, gravure coater, screen coater, slit die coater, etc. can be appropriately selected considering application thickness and productivity.
  • ovens, hot plates, infrared rays, etc. can be used for drying and curing after application.
  • PDMS vinyl polydimethylsiloxane
  • B hydrogen polydimethylsiloxane
  • a platinum catalyst was used as the catalyst, and as a surface treatment agent.
  • Methyltrimethoxysilane (MTMS) was used.
  • the inorganic filler was mixed with AlN granule 80 ⁇ m, AlN granule 50 ⁇ m, Al 2 O 3 granule 5 ⁇ m, Al 2 O 3 granule 3 ⁇ m, and Al 2 O 3 granule 0.5 ⁇ m in the ratio shown in Table 1 to make a thermally conductive sheet.
  • Manufactured Thermal conductivity and tensile strength were measured, and workability was judged.
  • the component ratio represents parts by weight (g).
  • Example 1 As shown in Table 1, in Examples 1 to 4, AlN and Al 2 O 3 had excellent thermal conductivity, tensile strength, and tear strength within the above range, and did not have tearing properties during press processing. In particular, it was confirmed that Example 1 showed the best effect. However, in Comparative Examples 1 to 4, it was confirmed that the thermal conductivity was low and the tensile strength and tear strength were also low, resulting in tearing properties during press processing.
  • Example 1 Comparative Example 1 Comparative example 2 polymer bookbinder Silicone polymer (A) 50 50 52.5 52.5 silicon Polymer (B) 50 50 52.5 52.5 catalyst Platinum catalyst (g) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 surface treatment agent Silane (g) 5 5 0 0 weapon filler AIN filler 80 ⁇ m 980 500 980 500 AIN filler 50 ⁇ m 480 480 Al 2 O 3 filler 5 ⁇ m 450 450 450 450 Al 2 O 3 filler 3 ⁇ m Al 2 O 3 filler 0.5 ⁇ m 300 300 300 300 300 300 thermal conductivity W/mK 14.1 12.5 7.2 6.5 tensile strength MPa 0.35 0.32 0.05 0.03 Tear strength kgf/cm 0.11 0.09 0.01 0.01 Workability Press When processing tearing (PASS/NG) PASS PASS NG NG NG
  • Examples 1 and 2 had excellent thermal conductivity, tensile strength, and tear strength, and did not tear during press processing. However, in Comparative Examples 5 and 6, it was confirmed that the thermal conductivity was low and the tensile strength and tear strength were also low, resulting in tearing properties during press processing.
  • the thermal conductivity of the present invention was measured using Siemens Mentor Graphics DynTIM S (ASTM D5470), the tensile strength was measured using Instron 3367 (ASTM D412), and the tear strength was measured using Instron 3367 (ASTM D1004).
  • the present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Abstract

The present invention relates to a heat dissipation sheet having high thermal conductivity and high tensile strength, and a production method for same, and more specifically relates to a heat dissipation sheet having high thermal conductivity and high tensile strength in which the size and amount of inorganic particles included have been adjusted to a specific range, thus the heat dissipation sheet has high thermal conductivity and excellent tensile strength, and a production method for same.

Description

고인장강도를 갖는 고열전도성 방열시트 및 이의 제조방법High thermal conductivity heat dissipation sheet with high tensile strength and manufacturing method thereof
본 발명은 고인장강도를 갖는 고열전도성 방열시트 및 이의 제조방법에 관한 것이며, 보다 상세하게는 무기 입자의 크기 및 함량을 특정 범위로 조절하여 방열시트의 열도도가 높고 인장강도가 우수한 고인장강도를 갖는 고열전도성 방열시트 및 이의 제조방법에 관한 것이다. The present invention relates to a high thermal conductivity heat dissipation sheet having high tensile strength and a method of manufacturing the same. More specifically, the heat dissipation sheet has high thermal conductivity and excellent tensile strength by controlling the size and content of inorganic particles to a specific range. It relates to a high thermal conductivity heat dissipation sheet having a and a method of manufacturing the same.
반도체 제조 공정에 있어서, 반도체 웨이퍼에 플라스마 처리를 실시하기 위해서, 진공 챔버의 내부에 웨이퍼를 설치하는 적재대를 갖는 플라스마 처리 장치가 사용되고 있다. 최근, 반도체 웨이퍼의 대직경화와 가공 정밀도의 미세화가 진행되고 있으며, 웨이퍼에 대하여 균일하게 플라스마 처리를 행하기 위해서, 온도 분포를 균일하게 적용할 필요가 있다. 그래서, 적재대의 외주부에 히터를 설치하고, 그 위에 열전도성 시트를 통해 포커스 링을 설치하여 가열하여 사용되고 있다. In a semiconductor manufacturing process, in order to perform plasma processing on a semiconductor wafer, a plasma processing device having a loading table for installing the wafer inside a vacuum chamber is used. Recently, the diameter of semiconductor wafers has become larger and the processing precision has been refined, and in order to uniformly perform plasma processing on the wafer, it is necessary to apply a uniform temperature distribution. Therefore, a heater is installed on the outer periphery of the loading table, and a focus ring is installed on it through a heat conductive sheet to heat it.
최근 파워 반도체 등의 반도체 모듈로부터 발생한 열을 히트 싱크에 전열하여 효율적으로 방열하기 위해서, 반도체 모듈과 히트 싱크 사이에 접촉 열저항을 저감시키는 열전도성 시트를 설치하는 기술이 개발되고 있다. Recently, in order to efficiently dissipate heat by transferring heat generated from semiconductor modules such as power semiconductors to a heat sink, a technology has been developed to install a thermally conductive sheet that reduces contact thermal resistance between the semiconductor module and the heat sink.
한편, 전기 전자 제품의 소형화 및 고전력화로 인해 소비전력이 크게 증가하였으며 이에 수반된 부품들의 방열 문제가 이슈화 되고 있다. Meanwhile, due to the miniaturization and high power of electrical and electronic products, power consumption has increased significantly, and the heat dissipation problem of the accompanying components has become an issue.
이러한 방열 문제를 개선하기 위하여 방열성이 우수한 열전도성 시트로서, 폴리오르가노실록산, 무기 충전재를 함유하는 수지 조성물을 부재 상에서 경화시킨 방열 시트가 개발되고 있으나, 방열 시트의 열전도도를 높이기 위해 무기 필러 충전량을 80 vol% 이상으로 증가시킴에 따라 방열시트의 인장강도가 낮아지고 이로 인한 방열시트 사용 시 작업성에 문제가 발생하고 있다. 따라서, 고열전도 특성을 갖고 있으면서 고인장특성을 갖는 방열 시트에 관한 연구개발이 필요한 실정이다.In order to improve this heat dissipation problem, a heat dissipation sheet with excellent heat dissipation properties has been developed in which a resin composition containing polyorganosiloxane and an inorganic filler is cured on the member. However, in order to increase the thermal conductivity of the heat dissipation sheet, the amount of inorganic filler charged is As the concentration increases above 80 vol%, the tensile strength of the heat dissipation sheet decreases, causing problems with workability when using the heat dissipation sheet. Therefore, there is a need for research and development on heat dissipation sheets that have high thermal conductivity properties and high tensile properties.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 열전도도를 10 W/mK 이상을 구현하고, 방열시트를 부품 및 모듈에 적용하기 위한 타발, 트리밍, 라우팅 작업 등과 같은 기계적 가공을 위한 작업성과 피착제로의 부착/탈착 작업용이성, 사용 후 재작업성이 가능하며, 방열 시트의 인장강도를 0.2 MPa~1.0 MPa 개선한 고인장강도를 갖는 고열전도성 방열시트 및 이의 제조방법을 제공하는 것을 목적으로 한다. In order to solve the above problems, the present invention implements a thermal conductivity of 10 W/mK or more and provides workability and adhesion for mechanical processing such as punching, trimming, and routing work for applying heat dissipation sheets to components and modules. The purpose is to provide a high thermal conductivity heat dissipation sheet that allows for ease of attachment/detachment work and rework after use, and has a high tensile strength that improves the tensile strength of the heat dissipation sheet by 0.2 MPa to 1.0 MPa, and a method of manufacturing the same.
본 발명의 일 실시형태인 고인장강도를 갖는 고열전도성 방열시트는 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자를 함유한다. The high thermal conductivity heat dissipation sheet having high tensile strength according to an embodiment of the present invention includes AlN particles having a particle size of 40㎛ to 100㎛, Al 2 O 3 particles having a particle size of 2㎛ to 10㎛, and 0.1㎛ to 1㎛. It contains Al 2 O 3 particles with a particle size of .
상기 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자 800 중량부 내지 1100중량부, 상기 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자 450 중량부 내지 550 중량부, 상기 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자 200 중량부 내지 350 중량부를 함유한다. 800 to 1,100 parts by weight of AlN particles having a particle size of 40 ㎛ to 100 ㎛, 450 to 550 parts by weight of Al 2 O 3 particles having a particle size of 2 ㎛ to 10 ㎛, and 0.1 ㎛ to 1 ㎛ It contains 200 to 350 parts by weight of Al 2 O 3 particles having a particle size of .
또한, 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자의 성분량을 X 중량부, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Y 중량부, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Z 중량부라고 정의하면, 하기 관계식 (1)을 만족한다. In addition, the component amount of AlN particles having a particle size of 40㎛ to 100㎛ is If the component amount of Al 2 O 3 particles having is defined as Z parts by weight, the following relational equation (1) is satisfied.
0.4 ≤ Y/X ≤ 0.7 (관계식 1) 0.4 ≤ Y/X ≤ 0.7 (Relation 1)
또한, 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자의 성분량을 X 중량부, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Y 중량부, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Z 중량부라고 정의하면, 하기 관계식 (2)을 만족한다. In addition, the component amount of AlN particles having a particle size of 40㎛ to 100㎛ is If the component amount of Al 2 O 3 particles having is defined as Z parts by weight, the following relational equation (2) is satisfied.
0.2 ≤ Z/X ≤ 0.4 (관계식 2) 0.2 ≤ Z/X ≤ 0.4 (Relation 2)
상기 방열시트의 열전도도가 10 W/mK 이상인 것을 특징으로 하는 고인장강도를 갖는다. The heat dissipation sheet has high tensile strength, characterized by a thermal conductivity of 10 W/mK or more.
상기 방열시트의 인장강도가 0.2 MPa 이상인 것을 사용한다. The heat dissipation sheet having a tensile strength of 0.2 MPa or more is used.
상기 방열시트의 인열강도가 0.03 kgf/cm 이상인 것을 사용한다. Use the heat dissipation sheet with a tear strength of 0.03 kgf/cm or more.
상기 방열시트는 프레스 가공시 찢김성을 갖지 않는 것을 사용한다.The heat dissipation sheet is used that does not tear during press processing.
본 발명의 일 실시형태인 고인장강도를 갖는 고열전도성 방열시트의 제조방법은 AlN 입자, Al2O3 입자를 함유하는 무기입자, 고분자 바인더, 표면처리제, 촉매를 프리믹스하는 제1 단계; 고분자 매트릭스와 혼합하는 제2 단계; 열정도성 시트를 제조하는 제3 단계;를 포함한다. A method of manufacturing a high thermal conductivity heat dissipation sheet with high tensile strength, which is an embodiment of the present invention, includes a first step of premixing AlN particles, inorganic particles containing Al 2 O 3 particles, a polymer binder, a surface treatment agent, and a catalyst; a second step of mixing with the polymer matrix; It includes a third step of manufacturing a thermally conductive sheet.
상기 무기 입자는 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자를 함유한다. The inorganic particles contain AlN particles with a particle size of 40 μm to 100 μm, Al 2 O 3 particles with a particle size of 2 μm to 10 μm, and Al 2 O 3 particles with a particle size of 0.1 μm to 1 μm. .
상기 무기입자는 1500 내지 1800 중량부, 고분자 바인더는 50 내지 100 중량부, 촉매는 0.1 내지 3중량부, 표면 처리제는 1 내지 10 중량부를 사용한다. The inorganic particles are used in an amount of 1500 to 1800 parts by weight, the polymer binder is used in an amount of 50 to 100 parts by weight, the catalyst is used in an amount of 0.1 to 3 parts by weight, and the surface treatment agent is used in an amount of 1 to 10 parts by weight.
본 발명의 고인장강도를 갖는 고열전도성 방열시트 및 이의 제조방법에 의하면, 무기 필럼의 특정 성분으로 질화알루미늄 화합물과 산화알루미늄을 사용하여 고열전도도와 고인장강도 및 고인열강도를 갖는 효과가 있다. 나아가, 기계적 가공을 위한 작업성과 피착제로의 부착과 탈착을 진행할 때 작업의 용이성을 갖고, 열전도성 시트의 사용 후에 재작업성이 가능한 효과가 있다. According to the high thermal conductive heat dissipation sheet having high tensile strength and the manufacturing method thereof of the present invention, the use of aluminum nitride compound and aluminum oxide as specific components of the inorganic pillar has the effect of having high thermal conductivity, high tensile strength, and high tear strength. Furthermore, it has the effect of having workability for mechanical processing, ease of work when attaching and detaching to an adherend, and reworkability after use of the heat conductive sheet.
이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예로부터 다양한 변형이 가능하다. 이하에서, 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. The embodiments described below are merely illustrative, and various modifications are possible from these embodiments. Hereinafter, terms are used solely for the purpose of distinguishing one component from another. Singular expressions include plural expressions unless the context clearly dictates otherwise. Additionally, when a part is said to "include" a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.
본 발명의 고인장강도를 갖는 고열전도성 방열시트의 제조방법은 무기 필러, 고분자 바인더, 표면처리제, 촉매를를 함유하는 혼합물을 프리 믹스하고, 프리 믹스된 혼합물을 고분자 매트릭스에 혼합하고, 그 후 열정도성 시트를 제조하는 단계를 포함한다. The method for manufacturing a high thermal conductivity heat dissipation sheet with high tensile strength of the present invention is to premix a mixture containing an inorganic filler, a polymer binder, a surface treatment agent, and a catalyst, mix the premixed mixture with a polymer matrix, and then heat conductivity. It includes manufacturing a sheet.
본 발명의 고열전도성 방열시트에 사용되는 무기 필러는 AlN 입자 및 Al2O3 입자를 바람직하게 함유하여 고열전도도를 유지하면서 고인장강도 및 고인열강도를 갖는다. The inorganic filler used in the high thermal conductivity heat dissipation sheet of the present invention preferably contains AlN particles and Al 2 O 3 particles and has high tensile strength and high tear strength while maintaining high thermal conductivity.
인장강도(tensile strength)는 고열전도성 방열시트를 양측에서 잡아당겼을때 끊어지지 않고 견디는 정도를 나타내는 파라미터이며, 인열강도(tear strength)는 고열전도성 방열시트를 찢는데 필요한 힘이며, 고열전도성 방열시트의 성능병화를 측정하는데 사용될 수 있다. Tensile strength is a parameter that indicates the degree to which the high thermal conductivity heat dissipation sheet can withstand without breaking when pulled from both sides, and tear strength is the force required to tear the high thermal conductivity heat dissipation sheet. It can be used to measure the performance of the seat.
고열전도성 방열시트의 인장강도와 인열강도와 같은 기계적 특성을 결정하는 중요한 요소로서 방열시트를 구성하고 있는 고분자 매트릭스의 종류 및 함량, 무기 필러의 종류 및 함량, 무기 필러의 표면처리제 등에 영향을 받는다. 또한, 고열전도성 방열시트의 기계적 특성을 결정하는 다른 중요한 요소로서 방열시트를 가공 방법에 의하여도 의존할 수 있다. 예를 들어 습식법, 건식법, 인테그럴 블렌드법과 같은 무기 필러에 표면처리제를 코팅하는 방법, 연속식 중합 공정, 회분식 중합 공정과 같은 표면처리된 무기 필러를 고분자 매트릭스에 혼합하는 방법, 열전도성 시트 조성물을 기재에 코팅하고 경화시키는 방법 등 다양한 공정 조건에 의하여 고열전도성 방열시트의 기계적 특성은 달라질 수 있다. It is an important factor in determining the mechanical properties such as tensile strength and tear strength of a high thermal conductivity heat dissipation sheet, and is affected by the type and content of the polymer matrix constituting the heat dissipation sheet, the type and content of the inorganic filler, and the surface treatment agent for the inorganic filler. In addition, as another important factor that determines the mechanical properties of the high thermal conductivity heat dissipation sheet, it may also depend on the heat dissipation sheet processing method. For example, a method of coating a surface treatment agent on an inorganic filler such as a wet method, a dry method, or an integral blend method, a method of mixing a surface-treated inorganic filler into a polymer matrix such as a continuous polymerization process or a batch polymerization process, and a thermally conductive sheet composition. The mechanical properties of the high thermal conductivity heat dissipation sheet may vary depending on various process conditions, such as coating and curing methods on the substrate.
본 발명에서는 고열전도성 방열시트에서 인장강도와 인열강도를 만족할 수 있는 하기 i) 내지 iii)의 AlN 입자, Al2O3 입자의 특정 파라미터를 정의한다.In the present invention, specific parameters of the AlN particles and Al 2 O 3 particles of i) to iii) that can satisfy the tensile strength and tear strength in a high thermal conductivity heat dissipation sheet are defined.
i) AlN 입자의 크기 40㎛ 내지 100㎛ i) AlN particle size 40㎛ to 100㎛
ii) Al2O3 입자의 크기 2㎛ 내지 10㎛ ii) Al 2 O 3 particle size 2㎛ to 10㎛
iii) Al2O3 입자의 크기 0.1㎛ 내지 1㎛ iii) Al 2 O 3 particle size 0.1㎛ to 1㎛
여기서, i) 조건인 AlN 입자는 크기 40㎛ 내지 100㎛ 의 함량은 800 중량부 내지 1100중량부를 함유하는 것이 바람직하다. 또한, AlN 입자는 크기 40㎛ 내지 100㎛ 의 함량은 900 중량부 내지 1100중량부를 함유하는 것이 열전도도와 인장강도의 측면에서 더욱 바람직하다. Here, it is preferable that the AlN particles under condition i) have a size of 40㎛ to 100㎛ and contain 800 to 1100 parts by weight. In addition, it is more preferable that the AlN particles have a size of 40㎛ to 100㎛ and contain 900 to 1100 parts by weight in terms of thermal conductivity and tensile strength.
또한, ii) 조건인 Al2O3 입자의 크기 2㎛ 내지 10㎛ 의 함량은 450 중량부 내지 550 중량부를 함유하는 것이 바람직하고, Al2O3 입자는 크기 2㎛ 내지 10㎛ 의 함량은 450 중량부 내지 500 중량부를 함유하는 것이 더욱 바람직하다. In addition, condition ii), the content of Al 2 O 3 particles with a size of 2 ㎛ to 10 ㎛ is preferably 450 to 550 parts by weight, and the content of Al 2 O 3 particles with a size of 2 ㎛ to 10 ㎛ is preferably 450 parts by weight. It is more preferable to contain from 500 parts by weight to 500 parts by weight.
또한, iii) 조건인 Al2O3 입자의 크기 0.1㎛ 내지 1㎛ 의 함량은 200 중량부 내지 350 중량부를 함유하는 것이 바람직하고, Al2O3 입자는 크기 0.1㎛ 내지 1㎛ 의 함량은 200 중량부 내지 300 중량부를 함유하는 것이 열전도도와 인장강도의 측면에서 좋다. In addition, condition iii), it is preferable that the Al 2 O 3 particles with a size of 0.1 ㎛ to 1 ㎛ contain 200 to 350 parts by weight, and the Al 2 O 3 particles with a size of 0.1 ㎛ to 1 ㎛ contain 200 parts by weight. Containing from 300 parts by weight to 300 parts by weight is good in terms of thermal conductivity and tensile strength.
한편, 본 발명의 열전도성 시트는, 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자 X 중량부, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자의 Y 중량부, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자의 Z 중량부라고 정의하면, 하기 관계식 (1)을 만족하는 것이 바람직하다. On the other hand, the thermally conductive sheet of the present invention is composed of Defined as Z parts by weight of Al 2 O 3 particles having a particle size of , it is preferable to satisfy the following relational equation (1).
0.4 ≤ Y/X ≤ 0.7 (관계식 1) 0.4 ≤ Y/X ≤ 0.7 (Relation 1)
또한, 본 발명의 열전도성 시트는, 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자 X 중량부, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자의 Y 중량부, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자 Z 중량부라고 정의하면, 하기 관계식 (2)을 만족하는 것이 바람직하다. In addition, the thermally conductive sheet of the present invention is composed of Defined as Al 2 O 3 particles having a particle size of Z parts by weight, it is preferable to satisfy the following relational equation (2).
0.2 ≤ Z/X ≤ 0.4 (관계식 2) 0.2 ≤ Z/X ≤ 0.4 (Relation 2)
상기 관계식 1 및 2를 만족하게 되면 방열시트의 프레스 가공시 찢김성을 방지할 수 있다. If the above relations 1 and 2 are satisfied, tearing during press processing of the heat dissipation sheet can be prevented.
본 발명의 무기 필러를 사용함으로서 상기 방열시트의 열전도도가 10 W/mK 이상을 얻을 수 있고, 더욱 바람직하게는 14 W/mK 이상을 얻을 수 있고, 가장 바람직하게는 20 W/mK 이상을 얻을 수 있다. By using the inorganic filler of the present invention, the thermal conductivity of the heat dissipation sheet can be obtained at least 10 W/mK, more preferably at least 14 W/mK, and most preferably at least 20 W/mK. You can.
또한, 이러한 무기 필러를 사용함으로서 상기 방열시트의 인장강도가 0.2 MPa 이상 1.0 MPa 이하를 얻을 수 있고, 더욱 바람직하게는 0.3 MPa 이상을 얻을 수 있고, 가장 바람직하게는 0.5 MPa 이상을 얻을 수 있다. 인장강도가 상기 범위보다 작은 경우 작업성에 문제가 있고, 상기 범위를 초과하는 경우 방열 시트의 경도나 열저항은 저하되는 문제가 있다. In addition, by using this inorganic filler, the tensile strength of the heat dissipation sheet can be obtained at 0.2 MPa or more and 1.0 MPa or less, more preferably 0.3 MPa or more, and most preferably 0.5 MPa or more. If the tensile strength is less than the above range, there is a problem with workability, and if it exceeds the above range, the hardness or thermal resistance of the heat dissipation sheet is reduced.
본 발명의 무기 필러의 직경이 큰 입자 사이에 무기 필러의 직경이 작은 입자가 채워지고, 최밀 충전에 가까운 상태로 충전할 수 있어, 고열전도성을 얻을 수 있다. 따라서, 상기 무기 필러를 사용하게 되면, 혼합물 열전도성이 높고, 전기 절연성이 우수하고, 열전도성 조성물 시트의 원료로서 사용하기에 적합하다.무기 필러의 형상은 구형, 편형, 다면체형 등을 사용할 수 있다. 본 발명의 무기 필러는 열전도성 조성물 시트에 대하여, 80vol% 이상, 더욱 바람직하게는 85vol% 이상, 가장 바람직하게는 90vol% 이상을 사용하여 고충전된 고열전도 시트를 얻을 수 있다. Particles with a small diameter of the inorganic filler are filled between the large-diameter inorganic filler particles of the present invention, and the filling can be performed in a state close to close packing, thereby achieving high thermal conductivity. Therefore, when the inorganic filler is used, the mixture has high thermal conductivity, excellent electrical insulation, and is suitable for use as a raw material for a thermally conductive composition sheet. The shape of the inorganic filler can be spherical, flat, polyhedral, etc. there is. The inorganic filler of the present invention can be used in an amount of 80 vol% or more, more preferably 85 vol% or more, and most preferably 90 vol% or more, with respect to the thermal conductive composition sheet, to obtain a highly filled, high thermal conductive sheet.
본 발명의 고열전도성 방열시트의 제조 방법은, AlN 입자, Al2O3 입자를 함유하는 무기입자, 고분자 바인더, 표면처리제, 촉매를 프리믹스하는 제1 단계; 고분자 매트릭스와 혼합하는 제2 단계; 열전도성 시트를 제조하는 제3 단계;를 포함할 수 있다. The method for manufacturing a highly thermally conductive heat dissipation sheet of the present invention includes a first step of premixing AlN particles, inorganic particles containing Al 2 O 3 particles, a polymer binder, a surface treatment agent, and a catalyst; a second step of mixing with the polymer matrix; A third step of manufacturing a thermally conductive sheet may be included.
상기 표면처리제는 실란 화합물, 혹은 그 부분 가수분해물을 사용하는 것이 바람직하다. 실란 화합물의 예로서, 메틸트리메톡시실란, 에틸트리메톡시실란, 프로필트리메톡시실란, 부틸트리메톡시실란, 펜틸트리메톡시실란, 헥실트리메톡시실란, 헥실트리에톡시실란, 옥틸트리메톡시실란, 옥틸트리에톡시실란, 데실트리메톡시실란, 데실트리에톡시실란, 도데실트리메톡시실란, 도데실트리에톡시실란, 헥사데실트리메톡시실란, 헥사데실트리에톡시실란, 옥타데실트리메톡시실란, 옥타데실트리에톡시실란에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다. 표면처리에 의하여 무기 필러의 표면을 처리하는 것은 공유결합 등과 같은 화학적 결합외에 물리적 흡착도 포함한다. The surface treatment agent is preferably a silane compound or a partial hydrolyzate thereof. Examples of silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and octyltrimethoxysilane. Limethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, It may include one type or a mixture of two or more types selected from octadecyltrimethoxysilane and octadecyltriethoxysilane. Treating the surface of an inorganic filler by surface treatment includes physical adsorption in addition to chemical bonding such as covalent bonding.
상기 제1 단계에서 추가로 용매를 더욱 포함하여 프리믹스할 수 있다. 여기서, 상기 용매는 물, N-메틸-2-피롤리돈, N, N-디메틸폼아미드, N, N-디메틸아세트아미드, 디메틸술폭시드, 헥사메틸렌포스포늄트리아미드, 아세토니트릴, 벤조니트릴 등으로 대표되는 극성 용매; 크레졸, 페놀, 자일레놀 등으로 대표되는 페놀류; 메탄올, 에탄올, 프로판올, 부탄올 등으로 대표되는 알코올류; 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등으로 대표되는 케톤류; 초산에틸, 초산프로필, 초산부틸 등으로 대표되는 에스터류; 헥산, 헵탄, 벤젠, 톨루엔, 자일렌 등으로 대표되는 탄화수소류; 폼산, 초산 등으로 대표되는 카복실산; 에틸렌카보네이트, 프로필렌카보네이트 등으로 대표되는 카보네이트 화합물; 디옥산, 디에틸에테르 등으로 대표되는 에테르 화합물; 에틸렌글리콜디알킬에테르, 프로필렌글리콜디알킬에테르, 폴리에틸렌글리콜디알킬에테르, 폴리프로필렌글리콜디알킬에테르 등으로 대표되는 쇄상 에테르류; 3-메틸-2-옥사졸리디논 등으로 대표되는 복소환 화합물; 아세토니트릴, 글루타로디니트릴, 메톡시아세토니트릴, 프로피오니트릴, 벤조니트릴 등으로 대표되는 니트릴 화합물 등을 적합하게 예시할 수 있다. 무기 필러의 표면에 표면처리제가 코팅되기 쉬운 관점에서 용매의 종류를 적절하게 혼합하여 사용할 수 있고, 비점이 낮은 용매를 사용하게 되면 후공정의 컴파운딩 시에 공정 온도를 낮게 할 수 있고, 공정 시간을 단축할 수 있어 생산성을 높일 수 있다. In the first step, premixing may be performed by further including a solvent. Here, the solvent is water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylenephosphonium triamide, acetonitrile, benzonitrile, etc. Polar solvents represented by; Phenols represented by cresol, phenol, xylenol, etc.; Alcohols represented by methanol, ethanol, propanol, butanol, etc.; Ketones represented by acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.; Acetic acid Esters represented by ethyl, propyl acetate, butyl acetate, etc.; Hydrocarbons represented by hexane, heptane, benzene, toluene, xylene, etc.; Carboxylic acids represented by formic acid, acetic acid, etc.; Carbonates represented by ethylene carbonate, propylene carbonate, etc. Compounds; Ether compounds represented by dioxane, diethyl ether, etc.; Chain ethers represented by ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.; 3-methyl Heterocyclic compounds represented by -2-oxazolidinone, etc.; Nitrile compounds represented by acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, etc. can be suitably exemplified. In view of the surface treatment agent being easily coated on the surface of the inorganic filler, the type of solvent can be appropriately mixed and used. If a solvent with a low boiling point is used, the process temperature can be lowered during compounding in the post-process, and the process time can be reduced. can be shortened to increase productivity.
상기 촉매는 고온 및 진공 컴파운딩할 때 경화를 촉진하기 위한 것이며, 촉매의 예로서, 백금흑, 염화 제2 백금산, 염화 백금산, 염화 백금산과 1가 알코올의 반응물, 염화 백금산과 올레핀류나 비닐실록산의 착체, 백금 비스아세토아세테이트 등의 백금계 촉매, 팔라듐계 촉매, 로듐계 촉매 등의 백금족계 금속촉매를 사용할 수 있다. 촉매의 함량은 경화에 필요한 양이면 되고, 원하는 경화 속도 등에 따라 적절하게 조정할 수 있다.The catalyst is intended to promote curing during high temperature and vacuum compounding. Examples of catalysts include platinum black, chloroplatinic acid, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, and a complex of chloroplatinic acid and olefins or vinylsiloxane. , platinum-based catalysts such as platinum biacetoacetate, palladium-based catalysts, and rhodium-based catalysts can be used. The content of the catalyst may be any amount necessary for curing, and can be adjusted appropriately depending on the desired curing speed, etc.
프리 믹스된 혼합물에서 상기 무기 필러의 표면을 처리는 건식법, 인테그럴 블렌드법, 반습식법 등을 사용할 수 있고, 무기 필러의 표면 처리 후 고분자 매트릭스와 혼합은 연속식 컴파운딩인 연속식 중합 공정(continuous polymerization process) 에 의하여 진행될 수 있고, 회분식 컴파운딩인 회분식 중합 공정(batch polymerization process)에 의하여 진행될 수 있다. In the premixed mixture, the surface of the inorganic filler can be treated using a dry method, an integral blend method, or a semi-wet method, and after surface treatment of the inorganic filler, mixing with the polymer matrix is a continuous polymerization process (continuous compounding). It can be carried out by a polymerization process, and it can be carried out by a batch polymerization process, which is batch compounding.
상기 고분자 매트릭스는 실리콘 폴리머를 함유할 수 있다. 실리콘 폴리머의 예로서 알케닐기가 결합한 규소원자를 함유하는 오르가노폴리실록산을 사용할 수 있다. 또한, 실리콘 폴리머에 비닐기, 알릴기 등의 탄소 원자수 2~8를 갖는 오르가노폴리실록산을 병용하여도 된다. 실리콘 폴리머의 분자 구조는 직쇄형, 환형, 분지형, 3차원 망형의 어느 분자구조를 사용해도 되고, 치환기나 분자 구조를 적절하게 선택하여 고분자 매트릭스 혼합물의 점도를 조절할 수 있다. 여기서, 상기 고분자 매트릭스는 필요에 따라서 무기 필러와 고분자 매트릭스의 결합을 강화하기 위한 접착성 폴리머를 혼합하여 사용할 수 있다. The polymer matrix may contain silicone polymer. As an example of a silicone polymer, organopolysiloxane containing a silicon atom bonded to an alkenyl group can be used. Additionally, an organopolysiloxane having 2 to 8 carbon atoms, such as a vinyl group or an allyl group, may be used in combination with the silicone polymer. The molecular structure of the silicone polymer may be linear, cyclic, branched, or three-dimensional network, and the viscosity of the polymer matrix mixture can be adjusted by appropriately selecting the substituents or molecular structure. Here, the polymer matrix can be used as a mixture of an inorganic filler and an adhesive polymer to strengthen the bond between the polymer matrix, if necessary.
본 발명의 열전도성 시트를 제조하는 공정에 대하여 설명하면, 지지체 상에 잔여 용매가 제거된 혼합물을 코팅하고 건조, 가열 처리를 통하여 경화시킨 후, 지지체 상에 경화물을 박리하여 얻어질 수 있다. 지지체는 폴리에틸렌테레프탈레이트(PET) 필름, 폴리페닐렌술피드 필름, 폴리이미드 필름 등을 사용할 수 있고, 필요에 따라 지지체의 표면에 실리콘, 실란 커플링제, 알루미늄 킬레이트제 등에 의해 표면 처리를 실시하게 되면, 열전도성 시트와 지지체의 밀착성 및 박리성을 향상시킬 수 있다. 또한, 지지체 상에 잔여 용매가 제거된 혼합물을 도포하는 방법은 스피너를 사용한 회전 도포, 스프레이 도포, 롤 코팅, 스크린 인쇄, 블레이드 코터, 다이 코터, 캘린더 코터, 메니스커스 코터, 바 코터, 롤 코터, 콤마 롤 코터, 그라비아 코터, 스크린 코터, 슬릿 다이 코터 등에서 도포 두께나 생산성 등을 고려하여 적절하게 선택할 수 있다. 도포 후의 건조 및 경화는 오븐, 핫 플레이트, 적외선 등을 사용가능하다. Describing the process of manufacturing the thermally conductive sheet of the present invention, it can be obtained by coating a mixture from which the remaining solvent has been removed on a support, curing it through drying and heat treatment, and then peeling the cured material on the support. The support can be a polyethylene terephthalate (PET) film, polyphenylene sulfide film, polyimide film, etc., and if necessary, the surface of the support is subjected to surface treatment with silicone, silane coupling agent, aluminum chelating agent, etc. The adhesion and peelability of the thermally conductive sheet and the support can be improved. In addition, methods of applying the mixture from which the residual solvent has been removed on the support include rotational application using a spinner, spray application, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, and roll coater. , comma roll coater, gravure coater, screen coater, slit die coater, etc. can be appropriately selected considering application thickness and productivity. For drying and curing after application, ovens, hot plates, infrared rays, etc. can be used.
(실시예)(Example)
하기 표 1과 같이, 실시예 1 내지 4에서 고분자 바인더로서 비닐기 폴리디메틸실록산 (PDMS) (A), 수소기 폴리디메틸실록산 (B)를 사용하고, 촉매는 백금 촉매를 사용하고, 표면처리제로서 메틸트리메톡시실란 (MTMS)을 사용하였다. 그리고, 무기 필러를 AlN granule 80㎛, AlN granule 50㎛, Al2O3 granule 5㎛, Al2O3 granule 3㎛, Al2O3 granule 0.5㎛를 표 1의 비율로 혼합하여 열전도성 시트를 제조하였다. 열전도도와 인장강도를 측정하였고, 작업성을 판단하였다. 여기서, 성분비는 중량부(g)을 나타낸다. As shown in Table 1 below, in Examples 1 to 4, vinyl polydimethylsiloxane (PDMS) (A) and hydrogen polydimethylsiloxane (B) were used as the polymer binder, a platinum catalyst was used as the catalyst, and as a surface treatment agent. Methyltrimethoxysilane (MTMS) was used. Then, the inorganic filler was mixed with AlN granule 80㎛, AlN granule 50㎛, Al 2 O 3 granule 5㎛, Al 2 O 3 granule 3㎛, and Al 2 O 3 granule 0.5㎛ in the ratio shown in Table 1 to make a thermally conductive sheet. Manufactured. Thermal conductivity and tensile strength were measured, and workability was judged. Here, the component ratio represents parts by weight (g).
본 발명의 열전도성 시트의 물성을 나타내기 위한 파라미터로서, 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자 X 중량부, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자의 Y 중량부, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자의 Z 중량부로 정의하였다. As parameters for expressing the physical properties of the thermally conductive sheet of the present invention, It was defined as the Z weight part of Al 2 O 3 particles having a particle size of 0.1㎛ to 1㎛.
성분ingredient 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 비교예1Comparative Example 1 비교예2Comparative example 2 비교예3Comparative Example 3 비교예4Comparative Example 4

고분자
바인더

polymer
bookbinder
실리콘 폴리머
(A)
silicone polymer
(A)

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50
실리콘
폴리머
(B)
silicon
polymer
(B)

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50
촉매catalyst 백금촉매(g)Platinum catalyst (g) 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
표면
처리제
surface
treatment agent
실란(g)Silane (g) 55 55 55 55 55 55 55 55





무기
필러





weapon
filler
AIN 필러
80㎛
AIN filler
80㎛
980980 500500 980980 600600 750750 12301230 620620 600600
AIN 필러
50㎛
AIN filler
50㎛
480480 380380 610610 600600
Al2O3
필러
5㎛
Al 2 O 3
filler
5㎛

450

450

450

450

600

600

400

400

400

400

350

350
Al2O3
필러
3㎛
Al 2 O 3
filler
3㎛


550

550

440

440
Al2O3
필러
0.5㎛
Al 2 O 3
filler
0.5㎛

300

300

300

300

200

200

310

310

380

380

100

100

100

100

180

180
Y/XY/X 0.460.46 0.460.46 0.560.56 0.450.45 0.800.80 0.330.33 0.330.33 0.290.29
Z/XZ/X 0.310.31 0.310.31 0.200.20 0.320.32 0.510.51 0.080.08 0.080.08 0.150.15
열전도도thermal conductivity W/mKW/mK 14.114.1 12.512.5 13.213.2 12.412.4 9.59.5 9.29.2 8.58.5 8.38.3
인장
강도
Seal
robbery
MPaMPa 0.350.35 0.320.32 0.30.3 0.310.31 0.120.12 0.090.09 0.110.11 0.100.10
인열
강도
tear
robbery
kgf/cmkgf/cm 0.110.11 0.090.09 0.120.12 0.120.12 0.020.02 0.020.02 0.020.02 0.010.01


작업성


Workability
프레스 가공 시
찢김성
(PASS/NG)
During press processing
tearing
(PASS/NG)


PASS


PASS


PASS


PASS


PASS


PASS


PASS


PASS


NG


NG


NG


NG


NG


NG


NG


NG
표 1에 나타난 것처럼, 실시예 1 내지 4에서는 AlN 과 Al2O3 가 상기 범위 내에서 우수한 열전도도와 인장강도, 인열강도를 갖고 있으며, 프레스 가공시 찢김성을 갖지 않았다. 특히, 실시예 1에서 가장 우수한 효과를 나타내는 것을 확인하였다. 그러나, 비교예 1 내지 4에서는 열전도도가 낮고, 인장강도, 인열강도도 낮아 프레스 가공시 찢김성을 갖는 것을 확인하였다. As shown in Table 1, in Examples 1 to 4, AlN and Al 2 O 3 had excellent thermal conductivity, tensile strength, and tear strength within the above range, and did not have tearing properties during press processing. In particular, it was confirmed that Example 1 showed the best effect. However, in Comparative Examples 1 to 4, it was confirmed that the thermal conductivity was low and the tensile strength and tear strength were also low, resulting in tearing properties during press processing.
또한, 표면 처리제의 효과를 확인하기 위하여 하기 표 2과 같이, 실시예 1 및 2에서 표면처리제를 사용하고, 비교예 5 및 6에서 표면 처리제를 사용하지 않았다. 여기서, 성분비는 중량부(g)을 나타낸다. Additionally, in order to confirm the effect of the surface treatment agent, as shown in Table 2 below, a surface treatment agent was used in Examples 1 and 2, and no surface treatment agent was used in Comparative Examples 5 and 6. Here, the component ratio represents parts by weight (g).
성분ingredient 실시예1Example 1 실시예2Example 2 비교예1Comparative Example 1 비교예2Comparative example 2

고분자
바인더

polymer
bookbinder
실리콘 폴리머(A)Silicone polymer (A) 5050 5050 52.552.5 52.552.5
실리콘
폴리머(B)
silicon
Polymer (B)
5050 5050 52.552.5 52.552.5
촉매catalyst 백금촉매(g)Platinum catalyst (g) 0.50.5 0.50.5 0.50.5 0.50.5
표면 처리제surface treatment agent 실란(g)Silane (g) 55 55 00 00



무기
필러



weapon
filler
AIN 필러
80㎛
AIN filler
80㎛
980980 500500 980980 500500
AIN 필러
50㎛
AIN filler
50㎛
480480 480480
Al2O3 필러
5㎛
Al 2 O 3 filler
5㎛
450450 450450 450450 450450
Al2O3 필러
3㎛
Al 2 O 3 filler
3㎛
Al2O3 필러
0.5㎛
Al 2 O 3 filler
0.5㎛
300300 300300 300300 300300
열전도도thermal conductivity W/mKW/mK 14.114.1 12.512.5 7.27.2 6.56.5
인장강도tensile strength MPaMPa 0.350.35 0.320.32 0.050.05 0.030.03
인열강도Tear strength kgf/cmkgf/cm 0.110.11 0.090.09 0.010.01 0.010.01

작업성

Workability
프레스
가공 시
찢김성
(PASS/NG)
Press
When processing
tearing
(PASS/NG)

PASS

PASS

PASS

PASS

NG

NG

NG

NG
표 2에 나타난 것처럼, 실시예 1 및 2에서는 우수한 열전도도와 인장강도, 인열강도를 갖고 있으며, 프레스 가공시 찢김성을 갖지 않았다. 그러나, 비교예 5 및 6에서는 열전도도가 낮고, 인장강도, 인열강도도 낮아 프레스 가공시 찢김성을 갖는 것을 확인하였다. As shown in Table 2, Examples 1 and 2 had excellent thermal conductivity, tensile strength, and tear strength, and did not tear during press processing. However, in Comparative Examples 5 and 6, it was confirmed that the thermal conductivity was low and the tensile strength and tear strength were also low, resulting in tearing properties during press processing.
본 발명의 열전도도는 Siemens Mentor Graphics DynTIM S (ASTM D5470)을 사용하였고, 인장강도는 Instron 3367 (ASTM D412)을 사용하였고, 인열강도는 Instron 3367 (ASTM D1004)를 사용하여 측정하였다. The thermal conductivity of the present invention was measured using Siemens Mentor Graphics DynTIM S (ASTM D5470), the tensile strength was measured using Instron 3367 (ASTM D412), and the tear strength was measured using Instron 3367 (ASTM D1004).
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Claims (11)

  1. 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자를 함유하는 고인장강도를 갖는 고열전도성 방열시트. High tensile strength containing AlN particles with a particle size of 40 μm to 100 μm, Al 2 O 3 particles with a particle size of 2 μm to 10 μm, and Al 2 O 3 particles with a particle size of 0.1 μm to 1 μm. A heat dissipation sheet with high thermal conductivity.
  2. 청구항 1에 있어서, In claim 1,
    상기 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자 800 중량부 내지 1100중량부, 상기 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자 450 중량부 내지 550 중량부, 상기 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자 200 중량부 내지 350 중량부를 함유하는 것을 특징으로 하는 고인장강도를 갖는 고열전도성 방열시트.800 to 1,100 parts by weight of AlN particles having a particle size of 40 ㎛ to 100 ㎛, 450 to 550 parts by weight of Al 2 O 3 particles having a particle size of 2 ㎛ to 10 ㎛, and 0.1 ㎛ to 1 ㎛ A high thermal conductivity heat dissipation sheet with high tensile strength, characterized in that it contains 200 to 350 parts by weight of Al 2 O 3 particles having a particle size of .
  3. 청구항 1에 있어서, In claim 1,
    40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자의 성분량을 X 중량부, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Y 중량부, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Z 중량부라고 정의하면, 하기 관계식 (1)을 만족하는 것을 특징으로 하는 고인장강도를 갖는 고열전도성 방열시트.The component amount of AlN particles having a particle size of 40㎛ to 100㎛ is X parts by weight, the component amount of Al2O3 particles having a particle size of 2㎛ to 10㎛ is Y parts by weight, If the component amount of Al 2 O 3 particles is defined as Z parts by weight, a high thermal conductive heat dissipation sheet with high tensile strength, characterized in that it satisfies the following relational equation (1).
    0.4 ≤ Y/X ≤ 0.7 (관계식 1) 0.4 ≤ Y/X ≤ 0.7 (Relation 1)
  4. 청구항 1에 있어서, In claim 1,
    40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자의 성분량을 X 중량부, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Y 중량부, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자의 성분량을 Z 중량부라고 정의하면, 하기 관계식 (2)을 만족하는 것을 특징으로 하는 고인장강도를 갖는 고열전도성 방열시트.The component amount of AlN particles having a particle size of 40㎛ to 100㎛ is X parts by weight, the component amount of Al2O3 particles having a particle size of 2㎛ to 10㎛ is Y parts by weight, If the component amount of Al 2 O 3 particles is defined as Z parts by weight, a high thermal conductive heat dissipation sheet with high tensile strength, characterized in that it satisfies the following relational equation (2).
    0.2 ≤ Z/X ≤ 0.4 (관계식 2) 0.2 ≤ Z/X ≤ 0.4 (Relation 2)
  5. 청구항 1 내지 4의 어느 한 항에 있어서, The method of any one of claims 1 to 4,
    상기 방열시트의 열전도도가 10 W/mK 이상인 것을 특징으로 하는 고인장강도를 갖는 고열전도성 방열시트. A high thermal conductivity heat dissipation sheet with high tensile strength, characterized in that the heat dissipation sheet has a thermal conductivity of 10 W/mK or more.
  6. 청구항 1 내지 4의 어느 한 항에 있어서, The method of any one of claims 1 to 4,
    상기 방열시트의 인장강도가 0.2 MPa 이상인 것을 특징으로 하는 고인장강도를 갖는 고열전도성 방열시트. A high thermal conductivity heat dissipation sheet with high tensile strength, characterized in that the tensile strength of the heat dissipation sheet is 0.2 MPa or more.
  7. 청구항 1 내지 4의 어느 한 항에 있어서, The method of any one of claims 1 to 4,
    상기 방열시트의 인열강도가 0.03 kgf/cm 이상인 것을 특징으로 하는 고인장강도를 갖는 고열전도성 방열시트. A high thermal conductivity heat dissipation sheet with high tensile strength, characterized in that the tear strength of the heat dissipation sheet is 0.03 kgf/cm or more.
  8. 청구항 1 내지 4의 어느 한 항에 있어서, The method of any one of claims 1 to 4,
    상기 방열시트는 프레스 가공시 찢김성을 갖지 않는 것을 특징으로 하는 고인장강도를 갖는 고열전도성 방열시트. A high thermal conductivity heat dissipation sheet with high tensile strength, characterized in that the heat dissipation sheet does not tear during press processing.
  9. AlN 입자, Al2O3 입자를 함유하는 무기입자, 고분자 바인더, 표면처리제, 촉매를 프리믹스하는 제1 단계;A first step of premixing AlN particles, inorganic particles containing Al 2 O 3 particles, a polymer binder, a surface treatment agent, and a catalyst;
    고분자 매트릭스와 혼합하는 제2 단계;a second step of mixing with the polymer matrix;
    열정도성 시트를 제조하는 제3 단계;를 포함하는 고열전도성 방열시트의 제조방법.A method of manufacturing a highly thermally conductive heat dissipation sheet comprising a third step of manufacturing a thermally conductive sheet.
  10. 청구항 9에 있어서, In claim 9,
    상기 무기 입자는 40㎛ 내지 100㎛ 입자 크기를 갖는 AlN 입자, 2㎛ 내지 10㎛ 의 입자 크기를 갖는 Al2O3 입자, 0.1㎛ 내지 1㎛ 의 입자 크기를 갖는 Al2O3 입자를 함유하는 것을 특징으로 하는 고열전도성 방열시트의 제조방법.The inorganic particles contain AlN particles having a particle size of 40 μm to 100 μm, Al 2 O 3 particles having a particle size of 2 μm to 10 μm, and Al 2 O 3 particles having a particle size of 0.1 μm to 1 μm. A method of manufacturing a high thermal conductivity heat dissipation sheet, characterized in that.
  11. 청구항 10에 있어서,In claim 10,
    상기 무기입자는 1500 내지 1800 중량부, 고분자 바인더는 50 내지 100 중량부, 촉매는 0.1 내지 3중량부, 표면 처리제는 1 내지 10 중량부를 사용하는 것을 특징으로 하는 고열전도성 방열시트의 제조방법.A method of manufacturing a highly thermally conductive heat dissipation sheet, characterized in that 1500 to 1800 parts by weight of the inorganic particles, 50 to 100 parts by weight of the polymer binder, 0.1 to 3 parts by weight of the catalyst, and 1 to 10 parts by weight of the surface treatment agent are used.
PCT/KR2022/018165 2022-03-29 2022-11-17 Heat dissipation sheet having high thermal conductivity and high tensile strength, and production method for same WO2023191231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220038867A KR20230140132A (en) 2022-03-29 2022-03-29 High thermal conductive heat radiation sheet having high tensile strength and making method for the same
KR10-2022-0038867 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023191231A1 true WO2023191231A1 (en) 2023-10-05

Family

ID=88203091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018165 WO2023191231A1 (en) 2022-03-29 2022-11-17 Heat dissipation sheet having high thermal conductivity and high tensile strength, and production method for same

Country Status (2)

Country Link
KR (1) KR20230140132A (en)
WO (1) WO2023191231A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090074772A (en) * 2006-11-01 2009-07-07 히다치 가세고교 가부시끼가이샤 Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
KR101271965B1 (en) * 2011-07-13 2013-06-07 주식회사 노루코일코팅 Resin composition for surface treatment and steel sheet coated by the same
KR101436468B1 (en) * 2012-11-30 2014-09-01 한국과학기술원 High strength Aluminum Nitride ceramics and the method of low temperature sintering thereof
KR20150120765A (en) * 2014-04-18 2015-10-28 주식회사 네원 Thermal radiation sheet of thin layer type
KR101828515B1 (en) * 2016-04-27 2018-02-12 주식회사 영우 Heat-discharging Film and Thermal-Conductive Composite Sheets comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060080690A (en) 2005-01-06 2006-07-11 주식회사 엠피코 A thermal conductive sheet and manufacturing method using by metal fiber
WO2009136508A1 (en) 2008-05-08 2009-11-12 富士高分子工業株式会社 Heat conductive resin composition
JP5854363B2 (en) 2013-12-11 2016-02-09 富士高分子工業株式会社 Thermal storage composition
KR102176129B1 (en) 2019-04-03 2020-11-09 (주)이녹스첨단소재 Heat radiation sheet and EMI shielding-Heat radiation composite sheet comprising the same
KR102660031B1 (en) 2019-12-18 2024-04-22 후지고분시고오교오가부시끼가이샤 Thermal conductive composition and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090074772A (en) * 2006-11-01 2009-07-07 히다치 가세고교 가부시끼가이샤 Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
KR101271965B1 (en) * 2011-07-13 2013-06-07 주식회사 노루코일코팅 Resin composition for surface treatment and steel sheet coated by the same
KR101436468B1 (en) * 2012-11-30 2014-09-01 한국과학기술원 High strength Aluminum Nitride ceramics and the method of low temperature sintering thereof
KR20150120765A (en) * 2014-04-18 2015-10-28 주식회사 네원 Thermal radiation sheet of thin layer type
KR101828515B1 (en) * 2016-04-27 2018-02-12 주식회사 영우 Heat-discharging Film and Thermal-Conductive Composite Sheets comprising the same

Also Published As

Publication number Publication date
KR20230140132A (en) 2023-10-06

Similar Documents

Publication Publication Date Title
EP1066942B1 (en) Heat-resistant thermally conductive silicone rubber composite sheet, method of producing the same and its use
US6846852B2 (en) Siloxane-containing compositions curable by radiation to silicone elastomers
EP2121866B1 (en) Silicone-based pressure-sensitive adhesive composition and adhesive tape
KR101661941B1 (en) Curable organopolysiloxane composition and Sheet-form article having a cured layer obtained therefrom
JP4379387B2 (en) Epoxy resin inorganic composite sheet and molded product
KR20050021485A (en) Silicone-based adhesive sheet, method of bonding a semiconductor chip to a chip attachment component, and a semiconductor device
JP2009060146A (en) Epoxy resin inorganic composite sheet for sealing semiconductor, and molded product
KR20090101364A (en) Peroxide-curable silicone-based pressure-sensitive adhesive composition and adhesive tape
KR20120053467A (en) Silicone rubber sheet for thermocompression bonding
CN110072697A (en) Layered product and electronic assembly manufacturing method
US6760214B2 (en) Electrostatic chuck for ion injector
WO2014119930A1 (en) Silicone rubber composition for adhering semiconductor chip
CN108299830B (en) Silicone rubber-based flexible graphene heating film, preparation method thereof, heating device and application
US10743412B2 (en) Substrate and semiconductor apparatus
CN113652193A (en) High-strength flowing silica gel and preparation method and application thereof
WO2023191231A1 (en) Heat dissipation sheet having high thermal conductivity and high tensile strength, and production method for same
CN111117481B (en) Addition type organic silicon liquid coating material and preparation method and application thereof
WO2021095990A1 (en) Ultralight release film
WO2023106676A1 (en) Method for manufacturing high thermal conductive sheet containing inorganic filler surface-treated by semi-wet process, and high thermal conductive sheet manufactured thereby
TW202106808A (en) Curable organopolysiloxane composition, and optical substrate consisting of the cured body thereof.
KR20100125134A (en) Composition comprising an organic-inorganic hybrid compound, adhesive film and organic light emitting display
CN115627005A (en) High-temperature-resistant composite release film and preparation method thereof
WO2019031890A1 (en) Composition for coating silicone
JP3010982B2 (en) Insulation heat dissipation sheet
TW202132488A (en) Curable organopolysiloxane composition, release coating consisting it, and laminated body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935905

Country of ref document: EP

Kind code of ref document: A1