WO2023190855A1 - Rotor and method for manufacturing rotor - Google Patents

Rotor and method for manufacturing rotor Download PDF

Info

Publication number
WO2023190855A1
WO2023190855A1 PCT/JP2023/013151 JP2023013151W WO2023190855A1 WO 2023190855 A1 WO2023190855 A1 WO 2023190855A1 JP 2023013151 W JP2023013151 W JP 2023013151W WO 2023190855 A1 WO2023190855 A1 WO 2023190855A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
prevention member
scattering prevention
permanent magnet
ribbon
Prior art date
Application number
PCT/JP2023/013151
Other languages
French (fr)
Japanese (ja)
Inventor
訓明 松本
崇 平林
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023190855A1 publication Critical patent/WO2023190855A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present disclosure relates to a rotor having permanent magnets and a method for manufacturing the rotor.
  • a rotor of a motor in which a plurality of permanent magnets are arranged on the outer surface of a rotor base as a magnetic pole part.
  • the permanent magnet receives centrifugal force toward the outer diameter, which causes it to float toward the outer diameter and scatter.
  • some permanent magnets are provided with a scattering prevention member that covers part or all of the outer surface of the permanent magnet.
  • a ribbon-like material is used and is attached in a manner that it goes around the rotor (see, for example, Patent Document 1).
  • the ribbon-shaped material is made of glass fiber reinforced resin.
  • the ribbon-like material is wound with such tension that wrinkles do not occur in the ribbon-like material and no displacement occurs during heating or after curing.
  • the rotor includes a rotor base, a plurality of permanent magnets arranged in a circumferential direction on an outer surface of the rotor base, and a rotor that orbits the rotor along the outer surface of the plurality of permanent magnets.
  • a rotor comprising a scattering prevention member attached in a manner such that the scattering prevention member exerts a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs when the rotor is used at maximum rotation. have.
  • the permanent magnet scattering prevention member in the rotor has a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs when the rotor is at its maximum rotation. That is, in the normal use range of the rotor, the clamping force of the scattering prevention member always exceeds the centrifugal force of the permanent magnet. Therefore, in addition to the function of preventing the scattering of the permanent magnet by the scattering prevention member, it is also possible to sufficiently suppress deformation of the scattering prevention member toward the outer diameter side.
  • a method for manufacturing a rotor includes: a rotor base; a plurality of permanent magnets arranged in a circumferential direction on an outer surface of the rotor base; A method for manufacturing a rotor, comprising: a scattering prevention member attached in a manner that the rotor rotates around the rotor, the scattering prevention member including a CFRP material forming a ribbon-like material, and applying high tension to the ribbon-like material. winding the ribbon-like material around the rotor in the attached state; and maintaining a high tension state of the ribbon-like material during heat curing treatment, so that the scattering prevention member is attached to the rotor. It has a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs at the maximum rotation in use.
  • the permanent magnet scattering prevention member in the rotor has a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs when the rotor is at its maximum operating rotation.
  • the function of preventing the scattering of the permanent magnet by the scattering preventing member it is also possible to sufficiently suppress deformation of the scattering preventing member toward the outer diameter side.
  • by applying high tension to a ribbon-shaped CFRP material, winding it, and heat-hardening it it is possible to easily create a scattering prevention member whose clamping force is superior to the centrifugal force of a permanent magnet. It is.
  • FIG. 1 is a configuration diagram of a motor having a rotor in one embodiment
  • FIG. 2 is a perspective view of the rotor in the same embodiment
  • FIG. 3 is an explanatory diagram showing the manufacturing process of the rotor in the same embodiment
  • FIG. 4 is a partially enlarged view of the rotor in the same embodiment.
  • the motor 10 of this embodiment includes a stator 11 and a rotor 12.
  • the stator 11 has a substantially annular shape.
  • the stator 11 has, for example, 24 coil magnetic pole portions (not shown) in the circumferential direction.
  • a rotor 12 is rotatably arranged inside the stator 11.
  • the stator 11 generates a rotating magnetic field for rotationally driving the rotor 12 based on energization of its own coil magnetic pole portion.
  • the motor 10 of this embodiment is intended to be applied to a high-speed rotation motor with a maximum rotation speed of 12,000 [rpm] or more, as an example.
  • the rotor 12 of this embodiment includes a rotor base 21, a permanent magnet 22, and a scattering prevention member 23.
  • the rotor base 21 has a generally cylindrical shape as a whole.
  • the rotor base 21 has a hollow structure in consideration of weight reduction and the like.
  • One axial end side portion of the rotor base 21 is integrally configured as an output shaft portion 21x.
  • twenty permanent magnets 22 are arranged in the circumferential direction on the outer surface 21a of the rotor base 21 at the other end in the axial direction. That is, the rotor 12 has 20 magnetic pole parts in the circumferential direction.
  • the permanent magnet 22 has a substantially rectangular shape.
  • the inner surface 22a of the permanent magnet 22 on the inner diameter side of the rotor 12 is in contact with the outer surface 21a of the rotor base 21.
  • the inner surface 22a and the outer surface 21a each form a circumferential surface or a flat surface.
  • the outer surface 22b of the permanent magnet 22, which is on the outer diameter side of the rotor 12, constitutes a uniform outer circumferential surface of the rotor 12 by all the permanent magnets 22 in the circumferential direction.
  • Side end surfaces 22c on both sides of the permanent magnet 22 in the circumferential direction of the rotor 12 are in contact with side end surfaces 22c of adjacent permanent magnets 22.
  • the permanent magnet 22 is composed of, for example, a Halbach array magnet. Specifically, the permanent magnet 22 is divided into three regions with different magnetization modes in the circumferential direction. Both sides of the permanent magnet 22 in the circumferential direction are magnetized in such a manner that magnetic flux is generated in the radial direction. The circumferential central portion of the permanent magnet 22 is magnetized such that magnetic flux is directed in a direction perpendicular to the radial direction, that is, in the circumferential direction, and magnetic flux is directed toward both sides of the permanent magnet.
  • the anti-scattering member 23 is attached so as to orbit the rotor 12 along the outer surface 22b of the plurality of permanent magnets 22 in the circumferential direction.
  • the scattering prevention member 23 is provided in a cylindrical shape so as to completely cover the permanent magnet 22.
  • a carbon fiber reinforced resin material (referred to as CFRP material) is used for the scattering prevention member 23 of this embodiment.
  • the scattering prevention member 23 made of CFRP material is a composite material including a resin base material 23a such as a thermosetting resin and carbon fibers 23b.
  • a CFRP material having a volume content of carbon fibers 23b of 60 to 70% is used.
  • the scattering prevention member 23 is made of a ribbon-shaped material 23x in this embodiment.
  • the width of the ribbon-like material 23x is set to be smaller than the axial length of the permanent magnet 22.
  • the ribbon-like material 23x is wound several times around the permanent magnet 22 of the rotor 12 so that the permanent magnet 22 is not exposed. Further, in this case, the ribbon-like material 23x is wound in one layer or in multiple layers.
  • the heating temperature for CFRP material is generally 160 to 180 [°C], but in this embodiment, the heating temperature is set to a temperature range of 130 to 140 [°C], where the influence of demagnetization of the permanent magnet 22 is small. There is. In this way, a cylindrical scattering prevention member 23 in which the resin base materials 23a are integrally fused and hardened is produced on the outer diameter side of the permanent magnet 22.
  • the permanent magnets 22 are firmly fixed to the rotor base 21 in a state in which the permanent magnets 22 are in close contact with the outer surface 21a of the rotor base 21, and the side end surfaces 22c of adjacent permanent magnets 22 are also in close contact with each other.
  • the permanent magnet 22 may also be fixed using an adhesive, or the adhesive may be omitted.
  • the outer diameter of the permanent magnet 22 portion of the rotor 12 is, for example, 90 [mm]
  • the thickness of the scattering prevention member 23 is set to about 0.4 [mm].
  • a tension larger than a general tension is used when winding the ribbon-like material 23x.
  • a tension of, for example, about 100 [N] is used, which prevents wrinkles and does not cause displacement during heating and after curing.
  • a tension of, for example, 250 to 500 [N] is used when winding the ribbon-like material 23x.
  • heat curing is performed while maintaining a state in which high tension is applied to the ribbon-shaped material 23x using a jig (not shown) or the like.
  • the scattering prevention member 23 of the permanent magnet 22 in the rotor 12 has a tightening force F2 toward the inner diameter side of the rotor 12 that is greater than the centrifugal force F1 of the permanent magnet 22 that occurs when the rotor 12 rotates at its maximum rotation. That is, in the normal use range of the rotor 12, the clamping force F2 of the anti-scattering member 23 always exceeds the centrifugal force F1 of the permanent magnet 22. Therefore, in addition to the function of preventing the scattering prevention member 23 from scattering the permanent magnet 22, deformation of the scattering prevention member 23 toward the outer diameter side can also be sufficiently suppressed.
  • the gap between the rotor 12 and the stator 11, which is a member disposed on the outer diameter side of the rotor 12 in this embodiment, can be set small.
  • the magnetic transmission efficiency with the stator 11 is improved, and it can also contribute to downsizing of the motor 10.
  • the scattering prevention member 23 can be easily manufactured.
  • the scattering prevention member 23 can be easily produced.
  • a uniform tightening force F2 of the anti-scattering member 23 acts on the entire outer surface 22b of the permanent magnet 22 in the circumferential direction of the rotor 12. Therefore, the permanent magnet 22 can be kept in a more stable fixed state. Furthermore, when a Halbach array magnet in which three magnet materials are coupled in the circumferential direction is used as the permanent magnet 22, for example, each magnet material can be stably fixed.
  • the anti-scattering member 23 is provided so as to cover the entire permanent magnet 22, it may be configured so that a portion of the permanent magnet 22 is exposed.
  • the shape of the permanent magnet 22 is just an example, and may be changed as appropriate. Further, although the permanent magnet 22 is a Halbach array magnet as an example, other magnets such as a polar anisotropic magnet or a radially oriented magnet may be used.
  • the configuration of the rotor 12 may be changed as appropriate.
  • the shape of the rotor base 21 may be changed as appropriate.
  • the present invention has been applied to a radial type in which the rotor 12 and the stator 11 face each other in the radial direction, it may also be applied to an axial type in which the rotor and the stator face each other in the axial direction.
  • a rotor (12) comprising a scattering prevention member (23) attached in a manner; a stator (11) that generates a rotating magnetic field for rotationally driving the rotor;
  • a motor (10) comprising:
  • the scattering prevention member has a tightening force (F2) toward the inner diameter side of the rotor that is greater than or equal to the centrifugal force (F1) of the permanent magnet that occurs when the rotor is used at its maximum rotation. motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This rotor (12) has a rotor base part (21), a plurality of permanent magnets (22) arranged in a circumferential direction on an outer surface (21a) of the rotor base part, and a scattering prevention member (23) mounted along the outer surface of the plurality of permanent magnets so as to go around the rotor. The scattering prevention member has a tightening force (F2) toward the radially inside of the rotor greater than the centrifugal force (F1) of the permanent magnets generated at the time of maximum rotation during operation of the rotor.

Description

ロータ及びロータの製造方法Rotor and rotor manufacturing method 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年3月31日に出願された日本出願番号2022-060568号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2022-060568 filed on March 31, 2022, and the contents thereof are incorporated herein.
 本開示は、永久磁石を有するロータ及びロータの製造方法に関する。 The present disclosure relates to a rotor having permanent magnets and a method for manufacturing the rotor.
 モータのロータにおいて、磁極部としてロータ基部の外側面に複数個の永久磁石を配置して構成されているものが知られている。永久磁石は、ロータの回転時に外径側への遠心力を受け、外径側への浮き上がりから飛散へと繋がる。そのため、永久磁石の外側面を一部又は全部を覆う飛散防止用の部材が設けられているものがある。 A rotor of a motor is known in which a plurality of permanent magnets are arranged on the outer surface of a rotor base as a magnetic pole part. When the rotor rotates, the permanent magnet receives centrifugal force toward the outer diameter, which causes it to float toward the outer diameter and scatter. For this reason, some permanent magnets are provided with a scattering prevention member that covers part or all of the outer surface of the permanent magnet.
 飛散防止用の部材の一例としては、リボン状素材を用いてロータを周回する態様にて装着されている(例えば特許文献1参照)。リボン状素材には、一例としてガラス繊維強化樹脂よりなるものが用いられている。リボン状素材の巻回態様としては、リボン状素材にしわが生じず、加熱中及び硬化後にずれが生じない程度の張力での巻回がなされている。 As an example of a member for preventing scattering, a ribbon-like material is used and is attached in a manner that it goes around the rotor (see, for example, Patent Document 1). For example, the ribbon-shaped material is made of glass fiber reinforced resin. The ribbon-like material is wound with such tension that wrinkles do not occur in the ribbon-like material and no displacement occurs during heating or after curing.
特開2016-100974号公報Japanese Patent Application Publication No. 2016-100974
 永久磁石の飛散防止用の部材としては、永久磁石の単なる飛散防止の機能のみならず、外径側への変形をも抑えたいという要望もある。ロータの回転時における飛散防止用の部材の外径側への変形は、ステータ等の外径側に配置される部材との間の隙間を大きく設定することに繋がる。この隙間の増大は、モータの大型化に繋がり、またステータであれば磁気伝達効率の低下に繋がる。 As a member for preventing scattering of permanent magnets, there is a desire to not only have a function of simply preventing scattering of permanent magnets, but also to suppress deformation toward the outer diameter side. Deformation of the scattering prevention member toward the outer diameter side when the rotor rotates leads to setting a large gap between the scattering prevention member and a member disposed on the outer diameter side such as the stator. An increase in this gap leads to an increase in the size of the motor, and in the case of a stator, a decrease in magnetic transmission efficiency.
 本開示の目的は、永久磁石の飛散防止用の部材の機能を十分に発揮することができるロータ及びロータの製造方法を提供することにある。
 本開示の第一の態様において、ロータは、ロータ基部と、前記ロータ基部の外側面の周方向に配置される複数の永久磁石と、前記複数の永久磁石の外側面に沿ってロータを周回する態様にて装着される飛散防止部材と、を備えるロータであって、前記飛散防止部材は、前記ロータの使用最高回転時に生じる前記永久磁石の遠心力以上の前記ロータの内径側への締付力を有している。
An object of the present disclosure is to provide a rotor and a method for manufacturing the rotor that can fully exhibit the function of a member for preventing scattering of permanent magnets.
In a first aspect of the present disclosure, the rotor includes a rotor base, a plurality of permanent magnets arranged in a circumferential direction on an outer surface of the rotor base, and a rotor that orbits the rotor along the outer surface of the plurality of permanent magnets. A rotor comprising a scattering prevention member attached in a manner such that the scattering prevention member exerts a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs when the rotor is used at maximum rotation. have.
 上記構成によれば、ロータにおける永久磁石の飛散防止部材は、ロータの使用最高回転時に生じる永久磁石の遠心力以上のロータの内径側への締付力を有する。つまり、ロータの通常使用範囲では、永久磁石の遠心力に対して常に飛散防止部材の締付力が勝る状況となる。そのため、飛散防止部材による永久磁石の飛散防止の機能の他、飛散防止部材の外径側への変形についても十分に抑制することが可能である。 According to the above configuration, the permanent magnet scattering prevention member in the rotor has a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs when the rotor is at its maximum rotation. That is, in the normal use range of the rotor, the clamping force of the scattering prevention member always exceeds the centrifugal force of the permanent magnet. Therefore, in addition to the function of preventing the scattering of the permanent magnet by the scattering prevention member, it is also possible to sufficiently suppress deformation of the scattering prevention member toward the outer diameter side.
 本開示の第二の態様において、ロータの製造方法は、ロータ基部と、前記ロータ基部の外側面の周方向に配置される複数の永久磁石と、前記複数の永久磁石の外側面に沿ってロータを周回する態様にて装着される飛散防止部材と、を備えるロータの製造方法であって、前記飛散防止部材は、リボン状素材をなすCFRP材を含んでおり、前記リボン状素材に高張力を付加した状態で前記リボン状素材を前記ロータ周りに巻回することと、加熱硬化処理時に前記リボン状素材の高張力状態を維持することと、を備え、それにより前記飛散防止部材は前記ロータの使用最高回転時に生じる前記永久磁石の遠心力以上の前記ロータの内径側への締付力を有している。 In a second aspect of the present disclosure, a method for manufacturing a rotor includes: a rotor base; a plurality of permanent magnets arranged in a circumferential direction on an outer surface of the rotor base; A method for manufacturing a rotor, comprising: a scattering prevention member attached in a manner that the rotor rotates around the rotor, the scattering prevention member including a CFRP material forming a ribbon-like material, and applying high tension to the ribbon-like material. winding the ribbon-like material around the rotor in the attached state; and maintaining a high tension state of the ribbon-like material during heat curing treatment, so that the scattering prevention member is attached to the rotor. It has a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs at the maximum rotation in use.
 上記方法によれば、ロータにおける永久磁石の飛散防止部材は、ロータの使用最高回転時に生じる永久磁石の遠心力以上のロータの内径側への締付力を有する。上記と同様に、飛散防止部材による永久磁石の飛散防止の機能の他、飛散防止部材の外径側への変形についても十分に抑制することが可能である。また、CFRP材のリボン状素材に高張力を付与して巻回及び加熱硬化処理を経ることで、永久磁石の遠心力に対して締付力が勝る飛散防止部材を容易に作製することが可能である。 According to the above method, the permanent magnet scattering prevention member in the rotor has a tightening force toward the inner diameter side of the rotor that is greater than the centrifugal force of the permanent magnet that occurs when the rotor is at its maximum operating rotation. Similarly to the above, in addition to the function of preventing the scattering of the permanent magnet by the scattering preventing member, it is also possible to sufficiently suppress deformation of the scattering preventing member toward the outer diameter side. In addition, by applying high tension to a ribbon-shaped CFRP material, winding it, and heat-hardening it, it is possible to easily create a scattering prevention member whose clamping force is superior to the centrifugal force of a permanent magnet. It is.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態におけるロータを有するモータの構成図であり、 図2は、同実施形態におけるロータの斜視図であり、 図3は、同実施形態におけるロータの製造過程を示す説明図であり、 図4は、同実施形態におけるロータの一部拡大図である。
The above objects and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a configuration diagram of a motor having a rotor in one embodiment, FIG. 2 is a perspective view of the rotor in the same embodiment, FIG. 3 is an explanatory diagram showing the manufacturing process of the rotor in the same embodiment, FIG. 4 is a partially enlarged view of the rotor in the same embodiment.
 以下、ロータ及びロータの製造方法の一実施形態について説明する。
 (モータ10の構成)
 図1に示すように、本実施形態のモータ10は、ステータ11とロータ12とを備えている。ステータ11は、略円環状に構成されている。ステータ11は、周方向に例えば24極のコイル磁極部(図示略)を有してなる。ステータ11の内側には、ロータ12が回転可能に配置されている。ステータ11は、自身のコイル磁極部への通電に基づき、ロータ12の回転駆動のための回転磁界を発生させる。本実施形態のモータ10は、一例として使用最高回転数が12000[rpm]以上の高速回転仕様のモータへの適用を想定している。
An embodiment of a rotor and a method for manufacturing the rotor will be described below.
(Configuration of motor 10)
As shown in FIG. 1, the motor 10 of this embodiment includes a stator 11 and a rotor 12. The stator 11 has a substantially annular shape. The stator 11 has, for example, 24 coil magnetic pole portions (not shown) in the circumferential direction. A rotor 12 is rotatably arranged inside the stator 11. The stator 11 generates a rotating magnetic field for rotationally driving the rotor 12 based on energization of its own coil magnetic pole portion. The motor 10 of this embodiment is intended to be applied to a high-speed rotation motor with a maximum rotation speed of 12,000 [rpm] or more, as an example.
 (ロータ12の構成)
 図1及び図2に示すように、本実施形態のロータ12は、ロータ基部21と永久磁石22と飛散防止部材23とを備えている。
(Configuration of rotor 12)
As shown in FIGS. 1 and 2, the rotor 12 of this embodiment includes a rotor base 21, a permanent magnet 22, and a scattering prevention member 23.
 ロータ基部21は、全体として略円筒状に構成されている。ロータ基部21は、軽量化等を考慮した中空構造をなしている。ロータ基部21の軸方向一端側部位は、出力軸部21xとして一体的に構成されている。ロータ基部21の軸方向他端側の外側面21aには、周方向に例えば20個の永久磁石22が配置されている。すなわち、ロータ12は、周方向に20極の磁石磁極部を有してなる。 The rotor base 21 has a generally cylindrical shape as a whole. The rotor base 21 has a hollow structure in consideration of weight reduction and the like. One axial end side portion of the rotor base 21 is integrally configured as an output shaft portion 21x. For example, twenty permanent magnets 22 are arranged in the circumferential direction on the outer surface 21a of the rotor base 21 at the other end in the axial direction. That is, the rotor 12 has 20 magnetic pole parts in the circumferential direction.
 永久磁石22は、略四角形状をなしている。ロータ12の内径側となる永久磁石22の内側面22aは、ロータ基部21の外側面21aに当接している。内側面22a及び外側面21aは、互いに円周面若しくは平坦面をなしている。ロータ12の外径側となる永久磁石22の外側面22bは、周方向全部の永久磁石22によってロータ12の一様の外周面を構成している。ロータ12の周方向における永久磁石22の両側の側端面22cは、隣接の永久磁石22の側端面22cと当接している。 The permanent magnet 22 has a substantially rectangular shape. The inner surface 22a of the permanent magnet 22 on the inner diameter side of the rotor 12 is in contact with the outer surface 21a of the rotor base 21. The inner surface 22a and the outer surface 21a each form a circumferential surface or a flat surface. The outer surface 22b of the permanent magnet 22, which is on the outer diameter side of the rotor 12, constitutes a uniform outer circumferential surface of the rotor 12 by all the permanent magnets 22 in the circumferential direction. Side end surfaces 22c on both sides of the permanent magnet 22 in the circumferential direction of the rotor 12 are in contact with side end surfaces 22c of adjacent permanent magnets 22.
 永久磁石22は、一例としてハルバッハ配列磁石にて構成されている。具体的には、永久磁石22は、周方向において着磁態様の異なる3つの部位に分けられる。永久磁石22の周方向両側部は、径方向に向く磁束が生じる着磁態様である。永久磁石22の周方向中央部は、径方向と直交する方向、すなわち周方向に向く磁束であり、自身の両側部に向く磁束が生じる着磁態様となっている。 The permanent magnet 22 is composed of, for example, a Halbach array magnet. Specifically, the permanent magnet 22 is divided into three regions with different magnetization modes in the circumferential direction. Both sides of the permanent magnet 22 in the circumferential direction are magnetized in such a manner that magnetic flux is generated in the radial direction. The circumferential central portion of the permanent magnet 22 is magnetized such that magnetic flux is directed in a direction perpendicular to the radial direction, that is, in the circumferential direction, and magnetic flux is directed toward both sides of the permanent magnet.
 飛散防止部材23は、周方向の複数の永久磁石22の外側面22bに沿ってロータ12を周回する態様にて装着されている。飛散防止部材23は、永久磁石22を完全に覆うように円筒状をなして設けられている。本実施形態の飛散防止部材23には、炭素繊維強化樹脂材(CFRP材という)が用いられている。 The anti-scattering member 23 is attached so as to orbit the rotor 12 along the outer surface 22b of the plurality of permanent magnets 22 in the circumferential direction. The scattering prevention member 23 is provided in a cylindrical shape so as to completely cover the permanent magnet 22. A carbon fiber reinforced resin material (referred to as CFRP material) is used for the scattering prevention member 23 of this embodiment.
 (飛散防止部材23の構成及び装着方法)
 図3に示すように、CFRP材よりなる飛散防止部材23は、熱硬化性樹脂等の樹脂基材23aと炭素繊維23bとを含む複合材である。本実施形態では、炭素繊維23bの体積含有率が60~70[%]のCFRP材が用いられている。また、飛散防止部材23は、本実施形態ではリボン状素材23xから作製されている。リボン状素材23xは、自身の幅が永久磁石22の軸方向長さよりも小さい設定である。リボン状素材23xは、永久磁石22が露出しないようにロータ12の永久磁石22周りを数周巻回されている。またこの場合、リボン状素材23xは、一層若しくは多層に巻回されている。
(Configuration and mounting method of scattering prevention member 23)
As shown in FIG. 3, the scattering prevention member 23 made of CFRP material is a composite material including a resin base material 23a such as a thermosetting resin and carbon fibers 23b. In this embodiment, a CFRP material having a volume content of carbon fibers 23b of 60 to 70% is used. Further, the scattering prevention member 23 is made of a ribbon-shaped material 23x in this embodiment. The width of the ribbon-like material 23x is set to be smaller than the axial length of the permanent magnet 22. The ribbon-like material 23x is wound several times around the permanent magnet 22 of the rotor 12 so that the permanent magnet 22 is not exposed. Further, in this case, the ribbon-like material 23x is wound in one layer or in multiple layers.
 そして、リボン状素材23xの所定の巻回後、加熱されて樹脂基材23aの溶融及び硬化が行われる。加熱温度については、CFRP材は一般的に160~180[℃]であるのに対し、本実施形態では永久磁石22の減磁の影響の小さい130~140[℃]の温度範囲に設定されている。こうして、樹脂基材23aが一体的に融合して硬化した円筒状の飛散防止部材23が永久磁石22の外径側に作製されるようになっている。飛散防止部材23の作製により、永久磁石22はロータ基部21の外側面21aと密着、また隣接の永久磁石22の側端面22c同士も密着した状態でロータ基部21に対して強固に固定される。またこの場合、永久磁石22は接着剤による固定方法を併用してもよく、また接着剤を省略することもできる。ちなみに、ロータ12の永久磁石22部分の外径が例えば90[mm]に対し、飛散防止部材23の厚さは0.4[mm]程度に設定されている。 After the ribbon-like material 23x is wound in a predetermined manner, it is heated to melt and harden the resin base material 23a. The heating temperature for CFRP material is generally 160 to 180 [°C], but in this embodiment, the heating temperature is set to a temperature range of 130 to 140 [°C], where the influence of demagnetization of the permanent magnet 22 is small. There is. In this way, a cylindrical scattering prevention member 23 in which the resin base materials 23a are integrally fused and hardened is produced on the outer diameter side of the permanent magnet 22. By producing the scattering prevention member 23, the permanent magnets 22 are firmly fixed to the rotor base 21 in a state in which the permanent magnets 22 are in close contact with the outer surface 21a of the rotor base 21, and the side end surfaces 22c of adjacent permanent magnets 22 are also in close contact with each other. In this case, the permanent magnet 22 may also be fixed using an adhesive, or the adhesive may be omitted. Incidentally, while the outer diameter of the permanent magnet 22 portion of the rotor 12 is, for example, 90 [mm], the thickness of the scattering prevention member 23 is set to about 0.4 [mm].
 また本実施形態では、リボン状素材23xの巻回時に一般的な張力よりも大きな張力が用いられる。一般的には、リボン状素材23xの巻回の際、しわのできない且つ加熱中及び硬化後にずれの生じない、例えば100[N]程度の張力が用いられる。これに対し本実施形態では、リボン状素材23xの巻回時に例えば250~500[N]の張力が用いられている。また本実施形態では、リボン状素材23xに高張力が付加された状態を治具(図示略)等で維持されたまま、加熱硬化が行われている。 Furthermore, in this embodiment, a tension larger than a general tension is used when winding the ribbon-like material 23x. Generally, when winding the ribbon-like material 23x, a tension of, for example, about 100 [N] is used, which prevents wrinkles and does not cause displacement during heating and after curing. In contrast, in this embodiment, a tension of, for example, 250 to 500 [N] is used when winding the ribbon-like material 23x. Further, in the present embodiment, heat curing is performed while maintaining a state in which high tension is applied to the ribbon-shaped material 23x using a jig (not shown) or the like.
 (本実施形態の作用)
 本実施形態の作用について説明する。
 リボン状素材23xに高張力を付加した状態で飛散防止部材23が作製されることで、図4に示すように、ロータ12の使用最高回転時に生じる永久磁石22の遠心力F1以上のロータ12の内径側への締付力F2を有する飛散防止部材23が形成される。つまり、ロータ12の通常使用範囲では、永久磁石22の遠心力F1に対して常に飛散防止部材23の締付力F2が勝る状況となる。そのため、飛散防止部材23による永久磁石22の飛散防止の機能の他、飛散防止部材23の外径側への変形についても十分に抑制することが可能である。また、ロータ12の周方向において、飛散防止部材23は永久磁石22の外側面22b全体に一様な締付力F2を作用させることも可能である。
(Action of this embodiment)
The operation of this embodiment will be explained.
By producing the scattering prevention member 23 with high tension applied to the ribbon-like material 23x, as shown in FIG. A scattering prevention member 23 having a tightening force F2 toward the inner diameter side is formed. That is, in the normal use range of the rotor 12, the clamping force F2 of the anti-scattering member 23 always exceeds the centrifugal force F1 of the permanent magnet 22. Therefore, in addition to the function of preventing the scattering prevention member 23 from scattering the permanent magnet 22, it is possible to sufficiently suppress the deformation of the scattering prevention member 23 toward the outer diameter side. Further, in the circumferential direction of the rotor 12, the scattering prevention member 23 can also apply a uniform clamping force F2 to the entire outer surface 22b of the permanent magnet 22.
 (本実施形態の効果)
 本実施形態の効果について説明する。
 (1)ロータ12における永久磁石22の飛散防止部材23は、ロータ12の使用最高回転時に生じる永久磁石22の遠心力F1以上のロータ12の内径側への締付力F2を有している。つまり、ロータ12の通常使用範囲では、永久磁石22の遠心力F1に対して常に飛散防止部材23の締付力F2が勝る状況である。そのため、飛散防止部材23による永久磁石22の飛散防止の機能の他、飛散防止部材23の外径側への変形についても十分に抑制することができる。結果として、ロータ12の外径側に配置される部材、本実施形態ではステータ11との間の隙間を小さく設定することができる。ステータ11との間の磁気伝達効率が高められ、またモータ10の小型化にも貢献できる。
(Effects of this embodiment)
The effects of this embodiment will be explained.
(1) The scattering prevention member 23 of the permanent magnet 22 in the rotor 12 has a tightening force F2 toward the inner diameter side of the rotor 12 that is greater than the centrifugal force F1 of the permanent magnet 22 that occurs when the rotor 12 rotates at its maximum rotation. That is, in the normal use range of the rotor 12, the clamping force F2 of the anti-scattering member 23 always exceeds the centrifugal force F1 of the permanent magnet 22. Therefore, in addition to the function of preventing the scattering prevention member 23 from scattering the permanent magnet 22, deformation of the scattering prevention member 23 toward the outer diameter side can also be sufficiently suppressed. As a result, the gap between the rotor 12 and the stator 11, which is a member disposed on the outer diameter side of the rotor 12 in this embodiment, can be set small. The magnetic transmission efficiency with the stator 11 is improved, and it can also contribute to downsizing of the motor 10.
 (2)CFRP材のリボン状素材23xを用いることで、飛散防止部材23を容易に作製することができる。また、CFRP材のリボン状素材23xに高張力を付与して巻回及び加熱硬化処理を経ることで、永久磁石22の遠心力F1に対して締付力F2が勝る本実施形態のような飛散防止部材23を容易に作製することができる。 (2) By using the ribbon-shaped material 23x of CFRP material, the scattering prevention member 23 can be easily manufactured. In addition, by applying high tension to the ribbon-shaped material 23x of CFRP material and passing through the winding and heat hardening treatment, scattering as in this embodiment where the clamping force F2 exceeds the centrifugal force F1 of the permanent magnet 22 can be avoided. The prevention member 23 can be easily produced.
 (3)ロータ12の周方向における永久磁石22の外側面22b全体に一様な飛散防止部材23の締付力F2が作用する。そのため、永久磁石22をより安定した固定状態とすることが図れる。また、永久磁石22として例えば3つの磁石材を周方向に結合するようなハルバッハ配列磁石を用いる場合等に、各磁石材をそれぞれ安定した固定状態とすることが図れる。 (3) A uniform tightening force F2 of the anti-scattering member 23 acts on the entire outer surface 22b of the permanent magnet 22 in the circumferential direction of the rotor 12. Therefore, the permanent magnet 22 can be kept in a more stable fixed state. Furthermore, when a Halbach array magnet in which three magnet materials are coupled in the circumferential direction is used as the permanent magnet 22, for example, each magnet material can be stably fixed.
 (変更例)
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Example of change)
This embodiment can be modified and implemented as follows. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記した各種数値は一例であり、適宜変更してもよい。
 ・飛散防止部材23を永久磁石22の全体を覆うように設けたが、永久磁石22が一部露出する態様であってもよい。
- The various numerical values described above are just examples, and may be changed as appropriate.
- Although the anti-scattering member 23 is provided so as to cover the entire permanent magnet 22, it may be configured so that a portion of the permanent magnet 22 is exposed.
 ・永久磁石22の形状は一例であり、適宜変更してもよい。また、永久磁石22を一例としてハルバッハ配列磁石としたが、極異方性磁石、ラジアル配向磁石等、他の磁石を用いてもよい。 - The shape of the permanent magnet 22 is just an example, and may be changed as appropriate. Further, although the permanent magnet 22 is a Halbach array magnet as an example, other magnets such as a polar anisotropic magnet or a radially oriented magnet may be used.
 ・その他、ロータ12の構成を適宜変更してもよい。ロータ基部21の形状を適宜変更してもよい。
 ・ロータ12とステータ11とが径方向に対向するラジアル型のものに適用したが、ロータとステータとが軸方向に対向するアキシャル型のものに適用してもよい。
- In addition, the configuration of the rotor 12 may be changed as appropriate. The shape of the rotor base 21 may be changed as appropriate.
- Although the present invention has been applied to a radial type in which the rotor 12 and the stator 11 face each other in the radial direction, it may also be applied to an axial type in which the rotor and the stator face each other in the axial direction.
 ・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 - Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.
 (付記)
 上記実施形態及び変更例から把握できる技術的思想について記載する。
 (A)ロータ基部(21)と、前記ロータ基部の外側面(21a)の周方向に配置される複数の永久磁石(22)と、前記複数の永久磁石の外側面に沿ってロータを周回する態様にて装着される飛散防止部材(23)と、を備えるロータ(12)と、
 前記ロータの回転駆動のための回転磁界を発生させるステータ(11)と、
を備えるモータ(10)であって、
 前記飛散防止部材は、前記ロータの使用最高回転時に生じる前記永久磁石の遠心力(F1)以上の前記ロータの内径側への締付力(F2)を有している、
 モータ。
(Additional note)
The technical ideas that can be understood from the above embodiment and modification examples will be described.
(A) A rotor base (21), a plurality of permanent magnets (22) arranged in the circumferential direction of the outer surface (21a) of the rotor base, and a rotor that orbits along the outer surface of the plurality of permanent magnets. a rotor (12) comprising a scattering prevention member (23) attached in a manner;
a stator (11) that generates a rotating magnetic field for rotationally driving the rotor;
A motor (10) comprising:
The scattering prevention member has a tightening force (F2) toward the inner diameter side of the rotor that is greater than or equal to the centrifugal force (F1) of the permanent magnet that occurs when the rotor is used at its maximum rotation.
motor.

Claims (4)

  1.  ロータ基部(21)と、
     前記ロータ基部の外側面(21a)の周方向に配置される複数の永久磁石(22)と、
     前記複数の永久磁石の外側面(22b)に沿ってロータを周回する態様にて装着される飛散防止部材(23)と、
    を備えるロータ(12)であって、
     前記飛散防止部材は、前記ロータの使用最高回転時に生じる前記永久磁石の遠心力(F1)以上の前記ロータの内径側への締付力(F2)を有している、
     ロータ。
    a rotor base (21);
    a plurality of permanent magnets (22) arranged in the circumferential direction of the outer surface (21a) of the rotor base;
    a scattering prevention member (23) attached so as to orbit the rotor along the outer surface (22b) of the plurality of permanent magnets;
    A rotor (12) comprising:
    The scattering prevention member has a tightening force (F2) toward the inner diameter side of the rotor that is greater than or equal to the centrifugal force (F1) of the permanent magnet that occurs when the rotor is used at its maximum rotation.
    Rotor.
  2.  前記飛散防止部材は炭素繊維強化樹脂材(CFRP材という)を含んでおり、前記CFRP材はリボン状素材(23x)をなしており、前記リボン状素材は前記ロータ周りを巻回されている、
     請求項1に記載のロータ。
    The scattering prevention member includes a carbon fiber reinforced resin material (referred to as a CFRP material), the CFRP material is a ribbon-shaped material (23x), and the ribbon-shaped material is wound around the rotor.
    A rotor according to claim 1.
  3.  前記飛散防止部材は、前記ロータの周方向における前記永久磁石の外側面全体に一様な前記締付力が作用するように構成されている、
     請求項1に記載のロータ。
    The scattering prevention member is configured so that the tightening force is applied uniformly to the entire outer surface of the permanent magnet in the circumferential direction of the rotor.
    A rotor according to claim 1.
  4.  ロータ基部(21)と、
     前記ロータ基部の外側面(21a)の周方向に配置される複数の永久磁石(22)と、
     前記複数の永久磁石の外側面(22b)に沿ってロータを周回する態様にて装着される飛散防止部材(23)と、
    を備えるロータ(12)の製造方法であって、
     前記飛散防止部材は、リボン状素材(23x)をなすCFRP材を含んでおり、
     前記リボン状素材に高張力を付加した状態で前記リボン状素材を前記ロータ周りに巻回することと、
     加熱硬化処理時に前記リボン状素材の高張力状態を維持することと、を備え、それにより前記飛散防止部材は前記ロータの使用最高回転時に生じる前記永久磁石の遠心力(F1)以上の前記ロータの内径側への締付力(F2)を有している、
     ロータの製造方法。
    a rotor base (21);
    a plurality of permanent magnets (22) arranged in the circumferential direction of the outer surface (21a) of the rotor base;
    a scattering prevention member (23) attached so as to orbit the rotor along the outer surface (22b) of the plurality of permanent magnets;
    A method of manufacturing a rotor (12) comprising:
    The scattering prevention member includes a CFRP material forming a ribbon-like material (23x),
    Wrapping the ribbon-shaped material around the rotor while applying high tension to the ribbon-shaped material;
    and maintaining a high tension state of the ribbon-like material during heat curing treatment, so that the scattering prevention member is capable of absorbing the centrifugal force (F1) of the permanent magnet of the rotor that is generated at the maximum rotation of the rotor. Has a tightening force (F2) towards the inner diameter side,
    Rotor manufacturing method.
PCT/JP2023/013151 2022-03-31 2023-03-30 Rotor and method for manufacturing rotor WO2023190855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060568 2022-03-31
JP2022060568A JP2023151124A (en) 2022-03-31 2022-03-31 Rotor and rotor manufacturing method

Publications (1)

Publication Number Publication Date
WO2023190855A1 true WO2023190855A1 (en) 2023-10-05

Family

ID=88202854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013151 WO2023190855A1 (en) 2022-03-31 2023-03-30 Rotor and method for manufacturing rotor

Country Status (2)

Country Link
JP (1) JP2023151124A (en)
WO (1) WO2023190855A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189142A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Permanent magnet type synchronous electric motor, its manufacture and centrifugal compressor provided with the permanent magnet type synchronous electric motor
JP2021044877A (en) * 2019-09-09 2021-03-18 トヨタ紡織株式会社 Rotor and rotor manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189142A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Permanent magnet type synchronous electric motor, its manufacture and centrifugal compressor provided with the permanent magnet type synchronous electric motor
JP2021044877A (en) * 2019-09-09 2021-03-18 トヨタ紡織株式会社 Rotor and rotor manufacturing method

Also Published As

Publication number Publication date
JP2023151124A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
KR100909197B1 (en) Rotor and its manufacturing method
JP5108236B2 (en) Rotor for motor
US10312758B2 (en) Holding member, rotor of a rotating electrical machine comprising the same, and a rotating electrical machine comprising the rotor
JP2011091906A (en) Rotor for motor and motor
JP2008131683A (en) Axial air gap type motor
WO2014208110A1 (en) Axial type rotating electrical machine
CN103999330A (en) Electrical machines and electrical machine rotors
JP4678321B2 (en) Rotor manufacturing method and electric power steering motor
WO2023190855A1 (en) Rotor and method for manufacturing rotor
JPWO2018138914A1 (en) Axial gap type electric rotating machine
WO2023190854A1 (en) Rotor and rotor manufacturing method
JPH1189143A (en) Permanent magnet type rotor
WO2023199963A1 (en) Rotor
JP2001025191A (en) Rotor of motor and manufacture thereof
JP2023151123A (en) Rotor and rotor manufacturing method
CN109802502B (en) Rotor and motor
JP2006230093A (en) Magnet motor
WO2023199962A1 (en) Rotor and rotor manufacturing method
JP7476968B2 (en) ROTOR, MOTOR, AND METHOD FOR MANUFACTURING ROTOR
JP2016010293A (en) Switched reluctance motor
JPH11252839A (en) Magnet positioning for rotor
JP7168724B1 (en) Manufacturing method of permanent magnet rotor
WO2023007888A1 (en) Rotor and dynamo-electric machine
WO2023176199A1 (en) Rotor and electric motor
JP2009095086A (en) Axial gap motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780863

Country of ref document: EP

Kind code of ref document: A1