WO2023199963A1 - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
WO2023199963A1
WO2023199963A1 PCT/JP2023/014947 JP2023014947W WO2023199963A1 WO 2023199963 A1 WO2023199963 A1 WO 2023199963A1 JP 2023014947 W JP2023014947 W JP 2023014947W WO 2023199963 A1 WO2023199963 A1 WO 2023199963A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
axis
axis magnet
circumferential direction
Prior art date
Application number
PCT/JP2023/014947
Other languages
French (fr)
Japanese (ja)
Inventor
一憲 島田
訓明 松本
崇 平林
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023199963A1 publication Critical patent/WO2023199963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2783Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays

Definitions

  • the present disclosure relates to a rotor with permanent magnets.
  • a rotor of a motor in which a plurality of permanent magnets are arranged on the side surface of a rotor base as a magnetic pole part.
  • the permanent magnet is, for example, a Halbach array magnet (see, for example, Patent Document 1). By using Halbach array magnets, motor performance can be expected to improve.
  • a Halbach array magnet is a magnet formed by alternately arranging d-axis magnet portions whose magnetic flux is mainly oriented in the radial direction and q-axis magnet portions whose magnetic flux is mainly oriented in the circumferential direction. Furthermore, the d-axis magnet sections on both sides of the q-axis magnet section have different polarities. Due to the structure of such a magnet, the magnetic flux emitted from the d-axis magnet section on one side in the circumferential direction of the q-axis magnet section passes through the stator core on the stator side, etc., and returns to the d-axis magnet section on the other side in the circumferential direction. A small loop-shaped magnetic path is formed between the permanent magnets of the rotor, which are made of Halbach array magnets, and the stator, straddling each other.
  • the magnetic flux directed in the circumferential direction on the stator side is opposite to the magnetic flux directed in the circumferential direction of the q-axis magnet portion on the rotor side. Since the q-axis magnet section that constitutes the Halbach array magnet is arranged close to the stator side, magnetic flux generated in the opposite direction on the stator side is one of the factors that demagnetizes the q-axis magnet section.
  • An object of the present disclosure is to provide a rotor that can improve the demagnetization resistance of Halbach array magnets.
  • the rotor includes a rotor base and a plurality of permanent magnets arranged along the circumferential direction on a side surface of the rotor base, and the permanent magnets are configured of Halbach array magnets.
  • the Halbach array magnet includes a d-axis magnet section and a q-axis magnet section alternately arranged in the circumferential direction, and the d-axis magnet section has magnetic flux mainly oriented in the radial direction, and the The magnetic flux of the q-axis magnet section is mainly directed in the circumferential direction, and the q-axis magnet section of the permanent magnet has a coercive force set higher than that of the d-axis magnet section at least at a surface side portion thereof.
  • the permanent magnets employing the Halbach array magnets are set to have a higher coercive force at the surface side portion of the q-axis magnet portion, that is, the portion closer to the stator side than the d-axis magnet portion.
  • the d-axis magnet part is set to have a generally assumed coercive force
  • the q-axis magnet part has a higher coercive force. Therefore, even if the q-axis magnet section receives magnetic flux in the opposite direction from the stator side, which is a cause of concern as a cause of demagnetization of the q-axis magnet section, the q-axis magnet section, which has a high coercive force, can exhibit the desired magnetic performance. In other words, the anti-demagnetization performance of the permanent magnet can be improved, and the permanent magnet as a whole can contribute to exhibiting desired magnetic performance.
  • FIG. 1 is a configuration diagram of a motor having a rotor in one embodiment
  • FIG. 2 is a perspective view of the rotor in the same embodiment
  • FIG. 3 is a partially enlarged view of the rotor in the same embodiment
  • FIG. 4 is an explanatory diagram for explaining the configuration of the permanent magnet in the same embodiment
  • FIG. 5 is an explanatory diagram for explaining the configuration of a permanent magnet in a modified example
  • FIG. 6 is an explanatory diagram for explaining the configuration of a permanent magnet in another modification.
  • the motor 10 of this embodiment includes a stator 11 and a rotor 12.
  • the stator 11 has a substantially annular shape.
  • the stator 11 has, for example, 24 coil magnetic pole portions (not shown) in the circumferential direction.
  • a rotor 12 is rotatably arranged inside the stator 11.
  • the stator 11 generates a rotating magnetic field for rotationally driving the rotor 12 based on energization of its own coil magnetic pole portion.
  • the motor 10 of this embodiment is intended to be applied to a high-speed rotation motor with a maximum rotation speed of 12,000 [rpm] or more, as an example.
  • the rotor 12 of this embodiment includes a rotor base 21, a permanent magnet 22, and a scattering prevention member 23.
  • the rotor base 21 has a generally cylindrical shape as a whole.
  • the rotor base 21 has a hollow structure in consideration of weight reduction and the like.
  • An axial end portion of the rotor base portion 21 is integrally configured as an output shaft portion 21x.
  • twenty permanent magnets 22 are arranged in the circumferential direction on the outer surface 21a of the axially central portion of the rotor base 21.
  • the outer surface 21a of the rotor base 21 of this embodiment has 20 flat surfaces corresponding to each permanent magnet 22 (see FIG. 3).
  • the rotor 12 has 20 magnetic pole parts in the circumferential direction.
  • the permanent magnet 22 has a substantially rectangular shape.
  • the inner surface 22a of the permanent magnet 22 on the inner diameter side of the rotor 12 is in contact with the outer surface 21a of the rotor base 21.
  • the inner surface 22a of the permanent magnet 22 is a flat surface, and the flat surfaces are in contact with the outer surface 21a of the rotor base 21.
  • the outer surface 22b of the permanent magnet 22, which is on the outer diameter side of the rotor 12, constitutes a uniform outer circumferential surface of the rotor 12 by all the permanent magnets 22 in the circumferential direction.
  • Side end surfaces 22c on both sides of the permanent magnet 22 in the circumferential direction of the rotor 12 form flat surfaces along the radial direction of the rotor 12.
  • the permanent magnet 22 In order to bring the inner surface 22a of the permanent magnet 22 into contact with the rotor base 21, the permanent magnet 22 has a gap at each side end surface 22c on both sides with respect to the permanent magnet 22 on both sides in the circumferential direction, or has a gap between only one side end surface 22c. It is in contact. In each figure, the permanent magnets 22 are drawn in contact with each other.
  • the permanent magnet 22 is constructed of a Halbach array magnet in this embodiment. Specifically, the permanent magnet 22 is divided into three regions with different magnetization modes in the circumferential direction. Both sides of the permanent magnet 22 in the circumferential direction are d-axis magnet parts 22dn and 22ds in which the magnetic flux is mainly oriented in the radial direction. The circumferential central portion of the permanent magnet 22 is a q-axis magnet portion 22q in which the magnetic flux is mainly directed in the circumferential direction and directed toward the d-axis magnet portions 22dn and 22ds on both sides thereof. In the permanent magnet 22, the d-axis magnet parts 22dn, 22ds and the q-axis magnet part 22q are integrally formed as one magnet material.
  • an N pole appears on the outer surface 22b of the permanent magnet 22.
  • an S pole appears on the outer surface 22b of the permanent magnet 22.
  • the arrangement of the permanent magnets 22 in the rotor 12 in the circumferential direction is such that the d-axis magnet portions 22dn of the same polarity of the permanent magnets 22 adjacent to each other in the circumferential direction are arranged in a row.
  • the d-axis magnet parts 22dn of the same polarity cooperate with each other to form a magnet pole part of the same polarity.
  • each permanent magnet 22 is attached to the outer surface 21a of the rotor base 21, for example, after attaching the permanent magnets 22 to every other part of the circumference or part of the circumference, the permanent magnets 22 are attached between the previously attached permanent magnets 22.
  • a post-installed permanent magnet 22 is inserted from the radial direction.
  • the attachment of each permanent magnet 22 is repeated over the entire circumference of the rotor 12.
  • the radially inner portion 22e of each permanent magnet 22 has sloped surfaces 22f at both corners in the circumferential direction, and has a tapered shape that can be easily inserted between the previously attached permanent magnets 22.
  • each inclined surface 22f is located at the corner of each d-axis magnet section 22dn, 22ds of the permanent magnet 22, but each d-axis magnet section 22dn, 22ds is inclined so that its own internal magnetic flux follows each inclined surface 22f. Since the permanent magnet 22 is magnetized in a manner that
  • the q-axis magnet portion 22q of each permanent magnet 22 of this embodiment is configured to have a high coercive force Hc.
  • the q-axis magnet section 22q has a higher coercive force Hc than the d-axis magnet sections 22dn and 22ds.
  • the d-axis magnet sections 22dn and 22ds have a relatively low coercive force Hc with respect to the q-axis magnet section 22q, but in this embodiment, the coercive force Hc is generally assumed.
  • the q-axis magnet section 22q of this embodiment is configured so that the entire body has a uniformly high coercive force Hc.
  • the anti-scattering member 23 is attached so as to revolve around the rotor 12 along the outer surface 22b of the plurality of permanent magnets 22 in the circumferential direction.
  • the scattering prevention member 23 is provided, for example, in a cylindrical shape so as to completely cover the permanent magnet 22.
  • CFRP material a carbon fiber reinforced resin material
  • a ribbon-shaped material of CFRP material (not shown) is wound several times around the permanent magnet 22 of the rotor 12, and is wound in one layer or in multiple layers. Then, heat curing is performed to produce a cylindrical anti-scattering member 23 that fixes the permanent magnet 22 and prevents it from scattering.
  • the permanent magnets 22 are configured as Halbach array magnets. As shown in FIG. 4, the magnetic flux emitted from the d-axis magnet section 22dn on one side in the circumferential direction of the q-axis magnet section 22q passes through the stator core (not shown) on the stator 11 side, etc., and reaches the d-axis magnet section on the other side in the circumferential direction. Return to section 22ds. A small loop-shaped magnetic path is formed between the permanent magnets 22 of the rotor 12 and the stator 11 so as to straddle each other.
  • the magnetic flux ⁇ 2 directed in the circumferential direction on the stator 11 side is opposite to the magnetic flux ⁇ 1 directed in the circumferential direction of the q-axis magnet portion 22q on the rotor 12 side. Since the q-axis magnet portion 22q forming the Halbach array magnet is arranged close to the stator 11 side, the magnetic flux ⁇ 2 generated in the opposite direction on the stator 11 side becomes one of the factors that demagnetize the q-axis magnet portion 22q. It is something.
  • the permanent magnet 22 of the present embodiment is configured such that the q-axis magnet portion 22q has a high coercive force Hc to improve demagnetization resistance. Therefore, even when receiving the magnetic flux ⁇ 2 in the opposite direction generated by the stator 11, the q-axis magnet portion 22q can exhibit the desired magnetic performance, and by extension, the entire permanent magnet 22 can exhibit the desired magnetic performance.
  • the coercive force Hc of the q-axis magnet portion 22q is set higher than that of the d-axis magnet portions 22dn and 22ds.
  • the coercive force Hc is uniformly applied to the entire q-axis magnet part 22q so as to include the surface side part of the q-axis magnet part 22q, that is, the part near the outer surface 22b which is a part close to the stator 11 side. is high.
  • the q-axis magnet section 22q has a higher coercive force Hc. Therefore, even when receiving magnetic flux ⁇ 2 in the opposite direction from the stator 11 side, which is a concern as a cause of demagnetization of the q-axis magnet part 22q, the q-axis magnet part 22q, which has a high coercive force Hc, can exhibit the desired magnetic performance. I can do it. In other words, the anti-demagnetization performance of the permanent magnet 22 can be improved, and the permanent magnet 22 as a whole can contribute to exhibiting desired magnetic performance.
  • the q-axis magnet part 22q of the permanent magnet 22 is configured to uniformly increase the coercive force Hc not only in the part near the outer surface 22b, which is the part close to the stator 11 side, but also in the whole itself. Easy to manufacture with one magnet material.
  • the permanent magnet 22 is integrally constructed as a single magnet material with the q-axis magnet section 22q located at the center in the circumferential direction and the d-axis magnet sections 22dn and 22ds located at both sides in the circumferential direction. used. In other words, by appropriately combining the permanent magnets 22 into one magnet material, it is expected that the permanent magnets 22 can be easily attached to the rotor 12.
  • the various numerical values described above are just examples, and may be changed as appropriate.
  • the q-axis magnet part 22q of the above-mentioned permanent magnet 22 has a structure in which the coercive force Hc is uniformly increased not only in the part near the outer surface 22b which is the surface side part but also in the whole itself, but it is not limited to this. .
  • the q-axis magnet part 22q1 shown in FIG. 5 has two parts: a front side part A1 and a back side part A2.
  • the front side portion A1 and the back side portion A2 are made of different magnetic materials and are combined with each other.
  • the coercive force Hc of the front side portion A1 is set higher than that of the back side portion A2 and higher than that of the d-axis magnet portions 22dn and 22ds.
  • the back side portion A2 has a relatively lower coercive force Hc than the front side portion A1, but is set to a commonly assumed coercive force Hc, for example.
  • the surface side portion A1 of the q-axis magnet portion 22q1 forming the outer surface 22b which is a portion close to the stator 11 side, has a partially high coercive force Hc.
  • Hc This is an example of effectively utilizing a magnetic material having a high coercive force Hc.
  • the coercive force Hc is set to be higher from the center portion B1 toward the peripheral portion B2.
  • the coercive force Hc of the peripheral portion B2 is set higher than that of the d-axis magnet portions 22dn and 22ds.
  • the peripheral edge B2 of the q-axis magnet portion 22q2 forming the outer surface 22b, which is a portion close to the stator 11 side, has a partially high coercive force Hc.
  • the coercive force Hc of the peripheral portion B2 tends to become higher than that of the central portion B1.
  • this phenomenon occurs significantly depending on the size of the magnet material, etc., and this is an example of a case where it is difficult to make the coercive force Hc uniform throughout the magnet material.
  • the shape of the permanent magnet 22 is just an example, and may be changed as appropriate.
  • the permanent magnet 22 does not need to be provided with the inclined surface 22f.
  • the inner surface 22a of the permanent magnet 22 may be a circumferential surface.
  • the shape of the outer surface 21a of the rotor base 21 is also changed.
  • the anti-scattering member 23 is provided so as to cover the entire permanent magnet 22, it may be configured so that a portion of the permanent magnet 22 is exposed. Moreover, the scattering prevention member 23 may be omitted. - In addition, the configuration of the rotor 12 may be changed as appropriate.
  • the Halbach array magnet includes a d-axis magnet section (22dn, 22ds) and a q-axis magnet section (22q, 22q1, 22q2) arranged alternately in the circumferential direction, and the d-axis magnet section has magnetic flux mainly directed in the radial direction.
  • the magnetic flux of the q-axis magnet section is mainly directed in the circumferential direction,
  • the q-axis magnet portion of the permanent magnet has a coercive force (Hc) of at least its surface side portion (22b) set higher than that of the d-axis magnet portion; motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This rotor (12) comprises a rotor base portion (21), and a plurality of permanent magnets (22) arranged along the circumferential direction on a side surface (21a) of the rotor base portion. The permanent magnets are configured from Halbach array magnets. The permanent magnets include d-axis magnet portions (22dn, 22ds) and q-axis magnet portions (22q, 22q1, 22q2) alternately arranged in the circumferential direction. The magnetic flux of the d-axis magnet portions is mainly oriented in the radial direction. The magnetic flux of the q-axis magnet portions is mainly oriented in the circumferential direction. In the q-axis magnet portions of the permanent magnets, a coercive force (Hc) of at least a surface-side section (22b) thereof is set higher than that of the d-axis magnet portions.

Description

ロータrotor 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年4月13日に出願された日本出願番号2022-066302号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2022-066302 filed on April 13, 2022, and the content thereof is hereby incorporated.
 本開示は、永久磁石を有するロータに関する。 The present disclosure relates to a rotor with permanent magnets.
 モータのロータにおいて、磁極部としてロータ基部の側面に複数個の永久磁石を配置して構成されているものが知られている。永久磁石は、一例としてハルバッハ配列磁石にて構成されている(例えば特許文献1参照)。ハルバッハ配列磁石を用いることで、モータの性能向上が見込める。 A rotor of a motor is known in which a plurality of permanent magnets are arranged on the side surface of a rotor base as a magnetic pole part. The permanent magnet is, for example, a Halbach array magnet (see, for example, Patent Document 1). By using Halbach array magnets, motor performance can be expected to improve.
特開2020-137387号公報Japanese Patent Application Publication No. 2020-137387
 ハルバッハ配列磁石は、主として磁束が径方向を向くd軸磁石部と、主として磁束が周方向を向くq軸磁石部とを周方向に交互に配列してなる磁石である。また、q軸磁石部の両側のd軸磁石部は互いに極性が異なる。このような磁石の構成上、q軸磁石部の周方向一方側のd軸磁石部から出た磁束は、ステータ側のステータコア等を通って周方向他方側のd軸磁石部に戻る。ハルバッハ配列磁石よりなるロータの永久磁石とステータとの間には、互いに跨がって小さいループ状の磁路が形成される。 A Halbach array magnet is a magnet formed by alternately arranging d-axis magnet portions whose magnetic flux is mainly oriented in the radial direction and q-axis magnet portions whose magnetic flux is mainly oriented in the circumferential direction. Furthermore, the d-axis magnet sections on both sides of the q-axis magnet section have different polarities. Due to the structure of such a magnet, the magnetic flux emitted from the d-axis magnet section on one side in the circumferential direction of the q-axis magnet section passes through the stator core on the stator side, etc., and returns to the d-axis magnet section on the other side in the circumferential direction. A small loop-shaped magnetic path is formed between the permanent magnets of the rotor, which are made of Halbach array magnets, and the stator, straddling each other.
 しかしながらこの場合、ステータ側の周方向に向かう磁束は、ロータ側のq軸磁石部の周方向に向かう磁束と逆向きである。ハルバッハ配列磁石を構成するq軸磁石部はステータ側に近接した配置となることから、ステータ側にて逆向きに生じる磁束はq軸磁石部を減磁させる要因の一つとなっている。 However, in this case, the magnetic flux directed in the circumferential direction on the stator side is opposite to the magnetic flux directed in the circumferential direction of the q-axis magnet portion on the rotor side. Since the q-axis magnet section that constitutes the Halbach array magnet is arranged close to the stator side, magnetic flux generated in the opposite direction on the stator side is one of the factors that demagnetizes the q-axis magnet section.
 本開示の目的は、ハルバッハ配列磁石の耐減磁性能を向上し得るロータを提供することにある。
 本開示の第一の態様において、ロータは、ロータ基部と、前記ロータ基部の側面に周方向に沿って配置される複数の永久磁石とを備え、前記永久磁石はハルバッハ配列磁石にて構成されてなるロータであって、前記ハルバッハ配列磁石は、周方向に交互に配列されたd軸磁石部とq軸磁石部とを含み、前記d軸磁石部は主として磁束が径方向を向いており、前記q軸磁石部は主として磁束が周方向を向いており、前記永久磁石の前記q軸磁石部は、自身の少なくとも表面側部位の保磁力が前記d軸磁石部よりも高く設定されている。
An object of the present disclosure is to provide a rotor that can improve the demagnetization resistance of Halbach array magnets.
In a first aspect of the present disclosure, the rotor includes a rotor base and a plurality of permanent magnets arranged along the circumferential direction on a side surface of the rotor base, and the permanent magnets are configured of Halbach array magnets. The Halbach array magnet includes a d-axis magnet section and a q-axis magnet section alternately arranged in the circumferential direction, and the d-axis magnet section has magnetic flux mainly oriented in the radial direction, and the The magnetic flux of the q-axis magnet section is mainly directed in the circumferential direction, and the q-axis magnet section of the permanent magnet has a coercive force set higher than that of the d-axis magnet section at least at a surface side portion thereof.
 上記ロータによれば、ハルバッハ配列磁石を採用する永久磁石は、q軸磁石部の表面側部位、すなわちステータ側との近接部位の保磁力がd軸磁石部よりも高い設定とされている。d軸磁石部が例えば一般的に想定される保磁力に設定されれば、q軸磁石部はそれよりも高い保磁力である。そのため、q軸磁石部の減磁の要因として懸念されるステータ側の逆向きの磁束を受けても、高い保磁力を有するq軸磁石部は所望の磁石性能を発揮することが可能である。つまり、永久磁石における耐減磁性能を向上でき、永久磁石全体が所望の磁石性能を発揮することに貢献できる。 According to the rotor, the permanent magnets employing the Halbach array magnets are set to have a higher coercive force at the surface side portion of the q-axis magnet portion, that is, the portion closer to the stator side than the d-axis magnet portion. For example, if the d-axis magnet part is set to have a generally assumed coercive force, the q-axis magnet part has a higher coercive force. Therefore, even if the q-axis magnet section receives magnetic flux in the opposite direction from the stator side, which is a cause of concern as a cause of demagnetization of the q-axis magnet section, the q-axis magnet section, which has a high coercive force, can exhibit the desired magnetic performance. In other words, the anti-demagnetization performance of the permanent magnet can be improved, and the permanent magnet as a whole can contribute to exhibiting desired magnetic performance.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態におけるロータを有するモータの構成図であり、 図2は、同実施形態におけるロータの斜視図であり、 図3は、同実施形態におけるロータの一部拡大図であり、 図4は、同実施形態における永久磁石の構成を説明するための説明図であり、 図5は、変形例における永久磁石の構成を説明するための説明図であり、 図6は、別の変形例における永久磁石の構成を説明するための説明図である。
The above objects and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a configuration diagram of a motor having a rotor in one embodiment, FIG. 2 is a perspective view of the rotor in the same embodiment, FIG. 3 is a partially enlarged view of the rotor in the same embodiment, FIG. 4 is an explanatory diagram for explaining the configuration of the permanent magnet in the same embodiment, FIG. 5 is an explanatory diagram for explaining the configuration of a permanent magnet in a modified example, FIG. 6 is an explanatory diagram for explaining the configuration of a permanent magnet in another modification.
 以下、ロータの一実施形態について説明する。
 (モータ10の構成)
 図1に示すように、本実施形態のモータ10は、ステータ11とロータ12とを備えている。ステータ11は、略円環状に構成されている。ステータ11は、周方向に例えば24極のコイル磁極部(図示略)を有してなる。ステータ11の内側には、ロータ12が回転可能に配置されている。ステータ11は、自身のコイル磁極部への通電に基づき、ロータ12の回転駆動のための回転磁界を発生させる。本実施形態のモータ10は、一例として使用最高回転数が12000[rpm]以上の高速回転仕様のモータへの適用を想定している。
An embodiment of the rotor will be described below.
(Configuration of motor 10)
As shown in FIG. 1, the motor 10 of this embodiment includes a stator 11 and a rotor 12. The stator 11 has a substantially annular shape. The stator 11 has, for example, 24 coil magnetic pole portions (not shown) in the circumferential direction. A rotor 12 is rotatably arranged inside the stator 11. The stator 11 generates a rotating magnetic field for rotationally driving the rotor 12 based on energization of its own coil magnetic pole portion. The motor 10 of this embodiment is intended to be applied to a high-speed rotation motor with a maximum rotation speed of 12,000 [rpm] or more, as an example.
 (ロータ12の構成)
 図1及び図2に示すように、本実施形態のロータ12は、ロータ基部21と永久磁石22と飛散防止部材23とを備えている。
(Configuration of rotor 12)
As shown in FIGS. 1 and 2, the rotor 12 of this embodiment includes a rotor base 21, a permanent magnet 22, and a scattering prevention member 23.
 ロータ基部21は、全体として略円筒状に構成されている。ロータ基部21は、軽量化等を考慮した中空構造をなしている。ロータ基部21の軸方向端部は、出力軸部21xとして一体的に構成されている。ロータ基部21の軸方向中央部の外側面21aには、周方向に例えば20個の永久磁石22が配置されている。本実施形態のロータ基部21の外側面21aは、各永久磁石22に合わせて20個の平坦面を有する(図3参照)。ロータ12としては、周方向に20極の磁石磁極部を有してなる。 The rotor base 21 has a generally cylindrical shape as a whole. The rotor base 21 has a hollow structure in consideration of weight reduction and the like. An axial end portion of the rotor base portion 21 is integrally configured as an output shaft portion 21x. For example, twenty permanent magnets 22 are arranged in the circumferential direction on the outer surface 21a of the axially central portion of the rotor base 21. The outer surface 21a of the rotor base 21 of this embodiment has 20 flat surfaces corresponding to each permanent magnet 22 (see FIG. 3). The rotor 12 has 20 magnetic pole parts in the circumferential direction.
 永久磁石22は、略四角形状をなしている。ロータ12の内径側となる永久磁石22の内側面22aは、ロータ基部21の外側面21aに当接している。永久磁石22の内側面22aは平坦面をなし、ロータ基部21の外側面21aと平坦面同士で当接している。ロータ12の外径側となる永久磁石22の外側面22bは、周方向全部の永久磁石22によってロータ12の一様の外周面を構成している。ロータ12の周方向における永久磁石22の両側の側端面22cは、ロータ12の径方向に沿った平坦面をなしている。永久磁石22は、自身の内側面22aをロータ基部21に当接させるため、周方向両側の永久磁石22に対して両側の側端面22cそれぞれで隙間を有するか、若しくは片側の側端面22cのみの当接となっている。なお各図において、各永久磁石22間は当接して描いてある。 The permanent magnet 22 has a substantially rectangular shape. The inner surface 22a of the permanent magnet 22 on the inner diameter side of the rotor 12 is in contact with the outer surface 21a of the rotor base 21. The inner surface 22a of the permanent magnet 22 is a flat surface, and the flat surfaces are in contact with the outer surface 21a of the rotor base 21. The outer surface 22b of the permanent magnet 22, which is on the outer diameter side of the rotor 12, constitutes a uniform outer circumferential surface of the rotor 12 by all the permanent magnets 22 in the circumferential direction. Side end surfaces 22c on both sides of the permanent magnet 22 in the circumferential direction of the rotor 12 form flat surfaces along the radial direction of the rotor 12. In order to bring the inner surface 22a of the permanent magnet 22 into contact with the rotor base 21, the permanent magnet 22 has a gap at each side end surface 22c on both sides with respect to the permanent magnet 22 on both sides in the circumferential direction, or has a gap between only one side end surface 22c. It is in contact. In each figure, the permanent magnets 22 are drawn in contact with each other.
 図3に示すように、永久磁石22は、本実施形態ではハルバッハ配列磁石にて構成されている。具体的には、永久磁石22は、周方向において着磁態様の異なる3つの部位に分けられる。永久磁石22の周方向両側部は、主として磁束が径方向に向くd軸磁石部22dn,22dsである。永久磁石22の周方向中央部は、主として磁束が周方向に向き、自身の両側部のd軸磁石部22dn,22dsに向くq軸磁石部22qとなっている。永久磁石22は、d軸磁石部22dn,22dsとq軸磁石部22qとが1個の磁石材として一体的に構成されている。 As shown in FIG. 3, the permanent magnet 22 is constructed of a Halbach array magnet in this embodiment. Specifically, the permanent magnet 22 is divided into three regions with different magnetization modes in the circumferential direction. Both sides of the permanent magnet 22 in the circumferential direction are d-axis magnet parts 22dn and 22ds in which the magnetic flux is mainly oriented in the radial direction. The circumferential central portion of the permanent magnet 22 is a q-axis magnet portion 22q in which the magnetic flux is mainly directed in the circumferential direction and directed toward the d-axis magnet portions 22dn and 22ds on both sides thereof. In the permanent magnet 22, the d-axis magnet parts 22dn, 22ds and the q-axis magnet part 22q are integrally formed as one magnet material.
 周方向一方側のd軸磁石部22dnは、永久磁石22の外側面22bにN極が現れる。周方向他方側のd軸磁石部22dsは、永久磁石22の外側面22bにS極が現れる。ロータ12における各永久磁石22の周方向の配置態様としては、周方向に隣接する各永久磁石22の同極のd軸磁石部22dn同士が連続して並ぶ配置であり、隣接の各永久磁石22の同極のd軸磁石部22dn同士で協働して同一極の磁石磁極部を構成している。 In the d-axis magnet portion 22dn on one side in the circumferential direction, an N pole appears on the outer surface 22b of the permanent magnet 22. In the d-axis magnet section 22ds on the other side in the circumferential direction, an S pole appears on the outer surface 22b of the permanent magnet 22. The arrangement of the permanent magnets 22 in the rotor 12 in the circumferential direction is such that the d-axis magnet portions 22dn of the same polarity of the permanent magnets 22 adjacent to each other in the circumferential direction are arranged in a row. The d-axis magnet parts 22dn of the same polarity cooperate with each other to form a magnet pole part of the same polarity.
 ちなみに、ロータ基部21の外側面21aに対する各永久磁石22の取付態様について、例えば永久磁石22を全周若しくは周方向の一部に1つ置きに取り付けた後、先に取り付けた永久磁石22間に後取り付けの永久磁石22が径方向から挿入される。各永久磁石22の取り付けは、ロータ12の全周に亘って繰り返し行われる。また、各永久磁石22の径方向内側部22eは、周方向両角部が傾斜面22fとされ、先取り付けの永久磁石22間への挿入の容易な先細形状とされている。また、各傾斜面22fは永久磁石22の各d軸磁石部22dn,22dsの角部に位置するが、各d軸磁石部22dn,22dsは自身の内部磁束が各傾斜面22fに沿うように傾斜する着磁がなされているため、永久磁石22の性能への影響は小さい。 Incidentally, regarding the manner in which the permanent magnets 22 are attached to the outer surface 21a of the rotor base 21, for example, after attaching the permanent magnets 22 to every other part of the circumference or part of the circumference, the permanent magnets 22 are attached between the previously attached permanent magnets 22. A post-installed permanent magnet 22 is inserted from the radial direction. The attachment of each permanent magnet 22 is repeated over the entire circumference of the rotor 12. Further, the radially inner portion 22e of each permanent magnet 22 has sloped surfaces 22f at both corners in the circumferential direction, and has a tapered shape that can be easily inserted between the previously attached permanent magnets 22. Further, each inclined surface 22f is located at the corner of each d-axis magnet section 22dn, 22ds of the permanent magnet 22, but each d-axis magnet section 22dn, 22ds is inclined so that its own internal magnetic flux follows each inclined surface 22f. Since the permanent magnet 22 is magnetized in a manner that
 また図4に示すように、本実施形態の各永久磁石22のq軸磁石部22qは、保磁力Hcが高く構成されている。この場合、q軸磁石部22qは、d軸磁石部22dn,22dsよりも高い保磁力Hcとなっている。換言すると、d軸磁石部22dn,22dsは、q軸磁石部22qに対して相対的に低い保磁力Hcということになるが、本実施形態では一般的に想定される保磁力Hcである。また、本実施形態のq軸磁石部22qは、自身全体で一様に高い保磁力Hcとなるように構成されている。 Further, as shown in FIG. 4, the q-axis magnet portion 22q of each permanent magnet 22 of this embodiment is configured to have a high coercive force Hc. In this case, the q-axis magnet section 22q has a higher coercive force Hc than the d-axis magnet sections 22dn and 22ds. In other words, the d-axis magnet sections 22dn and 22ds have a relatively low coercive force Hc with respect to the q-axis magnet section 22q, but in this embodiment, the coercive force Hc is generally assumed. Further, the q-axis magnet section 22q of this embodiment is configured so that the entire body has a uniformly high coercive force Hc.
 図2に示すように、飛散防止部材23は、周方向の複数の永久磁石22の外側面22bに沿ってロータ12を周回する態様にて装着されている。飛散防止部材23は、例えば永久磁石22を完全に覆うように円筒状をなして設けられている。飛散防止部材23には、例えば炭素繊維強化樹脂材(CFRP材という)が用いられる。CFRP材のリボン状素材(図示略)はロータ12の永久磁石22周りを数周巻回され、一層若しくは多層に巻回される。そして、加熱硬化がなされて、永久磁石22の固定及び飛散防止を図る筒状の飛散防止部材23が作製されている。 As shown in FIG. 2, the anti-scattering member 23 is attached so as to revolve around the rotor 12 along the outer surface 22b of the plurality of permanent magnets 22 in the circumferential direction. The scattering prevention member 23 is provided, for example, in a cylindrical shape so as to completely cover the permanent magnet 22. For example, a carbon fiber reinforced resin material (referred to as CFRP material) is used for the scattering prevention member 23. A ribbon-shaped material of CFRP material (not shown) is wound several times around the permanent magnet 22 of the rotor 12, and is wound in one layer or in multiple layers. Then, heat curing is performed to produce a cylindrical anti-scattering member 23 that fixes the permanent magnet 22 and prevents it from scattering.
 (本実施形態の作用)
 本実施形態の作用について説明する。
 本実施形態のロータ12において、永久磁石22はハルバッハ配列磁石として構成されるものである。図4に示すように、q軸磁石部22qの周方向一方側のd軸磁石部22dnから出た磁束は、ステータ11側のステータコア(図示略)等を通って周方向他方側のd軸磁石部22dsに戻る。ロータ12の永久磁石22とステータ11との間には、互いに跨がって小さいループ状の磁路が形成される。このとき、ステータ11側の周方向に向かう磁束φ2は、ロータ12側のq軸磁石部22qの周方向に向かう磁束φ1と逆向きである。ハルバッハ配列磁石を構成するq軸磁石部22qはステータ11側に近接した配置となることから、ステータ11側にて逆向きに生じる磁束φ2はq軸磁石部22qを減磁させる要因の一つとなるものである。
(Action of this embodiment)
The operation of this embodiment will be explained.
In the rotor 12 of this embodiment, the permanent magnets 22 are configured as Halbach array magnets. As shown in FIG. 4, the magnetic flux emitted from the d-axis magnet section 22dn on one side in the circumferential direction of the q-axis magnet section 22q passes through the stator core (not shown) on the stator 11 side, etc., and reaches the d-axis magnet section on the other side in the circumferential direction. Return to section 22ds. A small loop-shaped magnetic path is formed between the permanent magnets 22 of the rotor 12 and the stator 11 so as to straddle each other. At this time, the magnetic flux φ2 directed in the circumferential direction on the stator 11 side is opposite to the magnetic flux φ1 directed in the circumferential direction of the q-axis magnet portion 22q on the rotor 12 side. Since the q-axis magnet portion 22q forming the Halbach array magnet is arranged close to the stator 11 side, the magnetic flux φ2 generated in the opposite direction on the stator 11 side becomes one of the factors that demagnetize the q-axis magnet portion 22q. It is something.
 このような懸念事項を考慮し、本実施形態の永久磁石22では、q軸磁石部22qが高い保磁力Hcとされ、耐減磁性能が向上するように構成されている。そのため、ステータ11で生じる逆向きの磁束φ2を受けても、q軸磁石部22qが所望の磁石性能を発揮、ひいては永久磁石22全体が所望の磁石性能を発揮できるものとなっている。 In consideration of such concerns, the permanent magnet 22 of the present embodiment is configured such that the q-axis magnet portion 22q has a high coercive force Hc to improve demagnetization resistance. Therefore, even when receiving the magnetic flux φ2 in the opposite direction generated by the stator 11, the q-axis magnet portion 22q can exhibit the desired magnetic performance, and by extension, the entire permanent magnet 22 can exhibit the desired magnetic performance.
 (本実施形態の効果)
 本実施形態の効果について説明する。
 (1)ハルバッハ配列磁石を採用する本実施形態のロータ12の永久磁石22は、q軸磁石部22qの保磁力Hcがd軸磁石部22dn,22dsよりも高い設定とされている。本実施形態では、q軸磁石部22qの表面側部位、すなわちステータ11側との近接部位である外側面22b寄りの部位を含むように、q軸磁石部22qの全体で一様に保磁力Hcが高くされている。d軸磁石部22dn,22dsが例えば一般的に想定される保磁力Hcに設定されれば、q軸磁石部22qはそれよりも高い保磁力Hcである。そのため、q軸磁石部22qの減磁の要因として懸念されるステータ11側の逆向きの磁束φ2を受けても、高い保磁力Hcを有するq軸磁石部22qは所望の磁石性能を発揮することができる。つまり、永久磁石22における耐減磁性能を向上でき、永久磁石22全体が所望の磁石性能を発揮することに貢献できる。
(Effects of this embodiment)
The effects of this embodiment will be explained.
(1) In the permanent magnets 22 of the rotor 12 of this embodiment that employs Halbach array magnets, the coercive force Hc of the q-axis magnet portion 22q is set higher than that of the d-axis magnet portions 22dn and 22ds. In this embodiment, the coercive force Hc is uniformly applied to the entire q-axis magnet part 22q so as to include the surface side part of the q-axis magnet part 22q, that is, the part near the outer surface 22b which is a part close to the stator 11 side. is high. If the d-axis magnet sections 22dn and 22ds are set to, for example, a commonly assumed coercive force Hc, the q-axis magnet section 22q has a higher coercive force Hc. Therefore, even when receiving magnetic flux φ2 in the opposite direction from the stator 11 side, which is a concern as a cause of demagnetization of the q-axis magnet part 22q, the q-axis magnet part 22q, which has a high coercive force Hc, can exhibit the desired magnetic performance. I can do it. In other words, the anti-demagnetization performance of the permanent magnet 22 can be improved, and the permanent magnet 22 as a whole can contribute to exhibiting desired magnetic performance.
 (2)永久磁石22のq軸磁石部22qは、ステータ11側との近接部位である外側面22b寄りの部位のみならず、自身全体で一様に保磁力Hcを高くする構成であるため、1個の磁石材で作製し易い。 (2) The q-axis magnet part 22q of the permanent magnet 22 is configured to uniformly increase the coercive force Hc not only in the part near the outer surface 22b, which is the part close to the stator 11 side, but also in the whole itself. Easy to manufacture with one magnet material.
 (3)永久磁石22には、q軸磁石部22qが周方向中央部に、d軸磁石部22dn,22dsが周方向両側部にそれぞれ位置する1個の磁石材として一体的に構成したものが用いられる。つまり、永久磁石22を適宜まとめた1つの磁石材とすることで、ロータ12に対する永久磁石22の取り付けの容易化が見込める。 (3) The permanent magnet 22 is integrally constructed as a single magnet material with the q-axis magnet section 22q located at the center in the circumferential direction and the d-axis magnet sections 22dn and 22ds located at both sides in the circumferential direction. used. In other words, by appropriately combining the permanent magnets 22 into one magnet material, it is expected that the permanent magnets 22 can be easily attached to the rotor 12.
 (変更例)
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Example of change)
This embodiment can be modified and implemented as follows. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記した各種数値は一例であり、適宜変更してもよい。
 ・上記した永久磁石22のq軸磁石部22qは、表面側部位である外側面22b寄りの部位のみならず、自身全体で一様に保磁力Hcを高くする構成としていたが、これに限らない。
- The various numerical values described above are just examples, and may be changed as appropriate.
- The q-axis magnet part 22q of the above-mentioned permanent magnet 22 has a structure in which the coercive force Hc is uniformly increased not only in the part near the outer surface 22b which is the surface side part but also in the whole itself, but it is not limited to this. .
 例えば図5に示すq軸磁石部22q1は、表面側部位A1と背面側部位A2との2つの部位を有する。表面側部位A1と背面側部位A2とは互いに別の磁石材よりなり、互いに組み合わされる。そして、表面側部位A1の保磁力Hcは、背面側部位A2よりも高く、またd軸磁石部22dn,22dsよりも高く設定される。換言すると、背面側部位A2は、表面側部位A1に対して相対的に低い保磁力Hcということになるが、例えば一般的に想定される保磁力Hcに設定される。本態様の永久磁石22は、ステータ11側との近接部位である外側面22bを構成するq軸磁石部22q1の表面側部位A1を部分的に高い保磁力Hcとするものである。高い保磁力Hcを有する磁石材を効果的に利用する例である。 For example, the q-axis magnet part 22q1 shown in FIG. 5 has two parts: a front side part A1 and a back side part A2. The front side portion A1 and the back side portion A2 are made of different magnetic materials and are combined with each other. The coercive force Hc of the front side portion A1 is set higher than that of the back side portion A2 and higher than that of the d-axis magnet portions 22dn and 22ds. In other words, the back side portion A2 has a relatively lower coercive force Hc than the front side portion A1, but is set to a commonly assumed coercive force Hc, for example. In the permanent magnet 22 of this embodiment, the surface side portion A1 of the q-axis magnet portion 22q1 forming the outer surface 22b, which is a portion close to the stator 11 side, has a partially high coercive force Hc. This is an example of effectively utilizing a magnetic material having a high coercive force Hc.
 また図6に示すq軸磁石部22q2は、自身の中心部B1から周縁部B2に向かうほど保磁力Hcが高く設定される。周縁部B2の保磁力Hcは、d軸磁石部22dn,22dsよりも高く設定される。本態様の永久磁石22は、ステータ11側との近接部位である外側面22bを構成するq軸磁石部22q2の周縁部B2を部分的に高い保磁力Hcとするものである。磁石材は、自身の保磁力を高める例えば重希土類のジスプロシウム(Dy)の添加を含む作製過程で、中心部B1よりも周縁部B2の保磁力Hcが高くなり易い。特に磁石材の大きさ等によってはこの事象が顕著に生じ、磁石材全体で一様な保磁力Hcとすることが難しい場合の例である。 Furthermore, in the q-axis magnet portion 22q2 shown in FIG. 6, the coercive force Hc is set to be higher from the center portion B1 toward the peripheral portion B2. The coercive force Hc of the peripheral portion B2 is set higher than that of the d-axis magnet portions 22dn and 22ds. In the permanent magnet 22 of this embodiment, the peripheral edge B2 of the q-axis magnet portion 22q2 forming the outer surface 22b, which is a portion close to the stator 11 side, has a partially high coercive force Hc. During the manufacturing process of the magnetic material, which includes adding, for example, dysprosium (Dy), a heavy rare earth element, to increase its own coercive force, the coercive force Hc of the peripheral portion B2 tends to become higher than that of the central portion B1. In particular, this phenomenon occurs significantly depending on the size of the magnet material, etc., and this is an example of a case where it is difficult to make the coercive force Hc uniform throughout the magnet material.
 ・永久磁石22の形状は一例であり、適宜変更してもよい。例えば、永久磁石22に傾斜面22fを設けていなくてもよい。また、永久磁石22の内側面22aは円周面であってもよい。この場合、ロータ基部21の外側面21aの形状も合わせて変更する。 - The shape of the permanent magnet 22 is just an example, and may be changed as appropriate. For example, the permanent magnet 22 does not need to be provided with the inclined surface 22f. Furthermore, the inner surface 22a of the permanent magnet 22 may be a circumferential surface. In this case, the shape of the outer surface 21a of the rotor base 21 is also changed.
 ・飛散防止部材23を永久磁石22の全体を覆うように設けたが、永久磁石22が一部露出する態様であってもよい。また、飛散防止部材23を省略してもよい。
 ・その他、ロータ12の構成を適宜変更してもよい。
- Although the anti-scattering member 23 is provided so as to cover the entire permanent magnet 22, it may be configured so that a portion of the permanent magnet 22 is exposed. Moreover, the scattering prevention member 23 may be omitted.
- In addition, the configuration of the rotor 12 may be changed as appropriate.
 ・ロータ12がステータ11の径方向内側に位置するインナロータ型に適用したが、ロータ12がステータ11の径方向外側に位置するアウタロータ型に適用してもよい。
 ・ロータ12とステータ11とが径方向に対向するラジアル型のものに適用したが、ロータとステータとが軸方向に対向するアキシャル型のものに適用してもよい。
- Although applied to an inner rotor type in which the rotor 12 is located radially inside the stator 11, it may also be applied to an outer rotor type in which the rotor 12 is located radially outside the stator 11.
- Although the present invention has been applied to a radial type in which the rotor 12 and the stator 11 face each other in the radial direction, it may also be applied to an axial type in which the rotor and the stator face each other in the axial direction.
 ・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 - Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.
 (付記)
 上記実施形態及び変更例から把握できる技術的思想について記載する。
 (A)ロータ基部(21)と、前記ロータ基部の側面(21a)に周方向に沿って配置される複数の永久磁石(22)とを備え、前記永久磁石はハルバッハ配列磁石にて構成されてなるロータ(12)と、
 前記ロータの回転駆動のための回転磁界を発生させるステータ(11)と
を備えるモータ(10)であって、
 前記ハルバッハ配列磁石は、周方向に交互に配列されたd軸磁石部(22dn,22ds)とq軸磁石部(22q,22q1,22q2)とを含み、前記d軸磁石部は主として磁束が径方向を向いており、前記q軸磁石部は主として磁束が周方向を向いており、
 前記永久磁石の前記q軸磁石部は、自身の少なくとも表面側部位(22b)の保磁力(Hc)が前記d軸磁石部よりも高く設定されている、
 モータ。
(Additional note)
The technical ideas that can be understood from the above embodiment and modification examples will be described.
(A) A rotor base (21) and a plurality of permanent magnets (22) disposed along the circumferential direction on a side surface (21a) of the rotor base, the permanent magnets being constituted by Halbach array magnets. a rotor (12),
A motor (10) comprising a stator (11) that generates a rotating magnetic field for rotationally driving the rotor,
The Halbach array magnet includes a d-axis magnet section (22dn, 22ds) and a q-axis magnet section (22q, 22q1, 22q2) arranged alternately in the circumferential direction, and the d-axis magnet section has magnetic flux mainly directed in the radial direction. The magnetic flux of the q-axis magnet section is mainly directed in the circumferential direction,
The q-axis magnet portion of the permanent magnet has a coercive force (Hc) of at least its surface side portion (22b) set higher than that of the d-axis magnet portion;
motor.

Claims (5)

  1.  ロータ基部(21)と、
     前記ロータ基部の側面(21a)に周方向に沿って配置される複数の永久磁石(22)と
    を備え、
     前記永久磁石はハルバッハ配列磁石にて構成されてなるロータ(12)であって、
     前記ハルバッハ配列磁石は、周方向に交互に配列されたd軸磁石部(22dn,22ds)とq軸磁石部(22q,22q1,22q2)とを含み、前記d軸磁石部は主として磁束が径方向を向いており、前記q軸磁石部は主として磁束が周方向を向いており、
     前記永久磁石の前記q軸磁石部は、自身の少なくとも表面側部位(22b)の保磁力(Hc)が前記d軸磁石部よりも高く設定されている、
     ロータ。
    a rotor base (21);
    A plurality of permanent magnets (22) arranged along the circumferential direction on the side surface (21a) of the rotor base,
    The permanent magnet is a rotor (12) composed of a Halbach array magnet,
    The Halbach array magnet includes a d-axis magnet section (22dn, 22ds) and a q-axis magnet section (22q, 22q1, 22q2) arranged alternately in the circumferential direction, and the d-axis magnet section has magnetic flux mainly directed in the radial direction. The magnetic flux of the q-axis magnet section is mainly directed in the circumferential direction,
    The q-axis magnet portion of the permanent magnet has a coercive force (Hc) of at least its surface side portion (22b) set higher than that of the d-axis magnet portion;
    Rotor.
  2.  前記永久磁石の前記q軸磁石部(22q)は、自身全体で一様に保磁力が高くなるように構成されている、
     請求項1に記載のロータ。
    The q-axis magnet portion (22q) of the permanent magnet is configured such that the coercive force is uniformly high throughout itself;
    A rotor according to claim 1.
  3.  前記永久磁石の前記q軸磁石部(22q1)は、表面側部位(A1)と背面側部位(A2)との2つの部位を有し、前記表面側部位の保磁力が前記背面側部位よりも高く設定されている、
     請求項1に記載のロータ。
    The q-axis magnet part (22q1) of the permanent magnet has two parts, a front side part (A1) and a back side part (A2), and the coercive force of the front side part is higher than that of the back side part. is set high,
    A rotor according to claim 1.
  4.  前記永久磁石の前記q軸磁石部(22q2)は、自身の中心部(B1)から周縁部(B2)に向かうほど保磁力が高くなるように構成されている、
     請求項1に記載のロータ。
    The q-axis magnet part (22q2) of the permanent magnet is configured such that the coercive force increases from the center part (B1) to the peripheral part (B2) of the permanent magnet.
    A rotor according to claim 1.
  5.  前記永久磁石は、前記q軸磁石部が周方向中央部に、前記d軸磁石部が周方向両側部にそれぞれ位置する1個の磁石材として一体的に構成されている、
     請求項1に記載のロータ。
    The permanent magnet is integrally constructed as a single magnet material, with the q-axis magnet section located at the center in the circumferential direction and the d-axis magnet sections located at both sides in the circumferential direction.
    A rotor according to claim 1.
PCT/JP2023/014947 2022-04-13 2023-04-13 Rotor WO2023199963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-066302 2022-04-13
JP2022066302A JP2023156760A (en) 2022-04-13 2022-04-13 rotor

Publications (1)

Publication Number Publication Date
WO2023199963A1 true WO2023199963A1 (en) 2023-10-19

Family

ID=88329897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014947 WO2023199963A1 (en) 2022-04-13 2023-04-13 Rotor

Country Status (2)

Country Link
JP (1) JP2023156760A (en)
WO (1) WO2023199963A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104278A (en) * 2006-10-18 2008-05-01 Honda Motor Co Ltd Motor
JP2010130818A (en) * 2008-11-28 2010-06-10 Daikin Ind Ltd Method for manufacturing field element
JP2016029880A (en) * 2014-07-18 2016-03-03 日立金属株式会社 Magnet unit and method of manufacturing magnet unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104278A (en) * 2006-10-18 2008-05-01 Honda Motor Co Ltd Motor
JP2010130818A (en) * 2008-11-28 2010-06-10 Daikin Ind Ltd Method for manufacturing field element
JP2016029880A (en) * 2014-07-18 2016-03-03 日立金属株式会社 Magnet unit and method of manufacturing magnet unit

Also Published As

Publication number Publication date
JP2023156760A (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US5298827A (en) Permanent magnet type dynamoelectric machine rotor
JP5849890B2 (en) Double stator type motor
WO2015093074A1 (en) Motor
JP3280896B2 (en) Permanent magnet type reluctance type rotating electric machine
JP5347588B2 (en) Embedded magnet motor
US9912204B2 (en) Permanent magnet type rotating electric machine
JP2008271640A (en) Axial gap motor
JP5332171B2 (en) Permanent magnet motor
JP2009044866A (en) Axial air-gap electric motor
JP4678321B2 (en) Rotor manufacturing method and electric power steering motor
JP6112970B2 (en) Permanent magnet rotating electric machine
WO2023199963A1 (en) Rotor
JP5041415B2 (en) Axial gap type motor
JP6079132B2 (en) Embedded magnet rotor
JP5852418B2 (en) Rotor and motor
JP6316350B2 (en) Permanent magnet motor
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor
WO2023199962A1 (en) Rotor and rotor manufacturing method
JP2017046386A (en) Permanent magnet electric motor
JP2010279184A (en) Rotor for axial gap type rotary electric machine
JP2006304562A (en) Rotor structure of axial gap rotating electric machine
JP2020036518A (en) Variable magnetic flux dynamo-electric machine
JP3983693B2 (en) Rotor and brushless motor
JP4296839B2 (en) Eddy current reducer
JP2014220879A (en) Permanent magnet rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788381

Country of ref document: EP

Kind code of ref document: A1