WO2023190619A1 - Acid-modified polyester resin composition and laminate - Google Patents

Acid-modified polyester resin composition and laminate Download PDF

Info

Publication number
WO2023190619A1
WO2023190619A1 PCT/JP2023/012699 JP2023012699W WO2023190619A1 WO 2023190619 A1 WO2023190619 A1 WO 2023190619A1 JP 2023012699 W JP2023012699 W JP 2023012699W WO 2023190619 A1 WO2023190619 A1 WO 2023190619A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyester resin
modified polyester
layer
resin composition
Prior art date
Application number
PCT/JP2023/012699
Other languages
French (fr)
Japanese (ja)
Inventor
裕輝 竹田
雅彦 谷口
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023190619A1 publication Critical patent/WO2023190619A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/08Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition

Definitions

  • the present invention relates to an acid-modified polyester resin composition, and more specifically, to adhesion between a polyvinyl alcohol resin layer (hereinafter polyvinyl alcohol is referred to as "PVA") and a biodegradable resin layer such as polylactic acid.
  • PVA polyvinyl alcohol
  • the present invention relates to an acid-modified polyester resin composition preferably used for the layer.
  • the present invention also relates to a laminate having a layer containing the acid-modified polyester resin composition.
  • Plastics are widely used as packaging materials because of their excellent moldability, strength, water resistance, transparency, etc.
  • Plastics used in such packaging materials include polyolefin resins such as polyethylene and polypropylene, vinyl resins such as polystyrene and polyvinyl chloride, and aromatic polyester resins such as polyethylene terephthalate.
  • polyolefin resins such as polyethylene and polypropylene
  • vinyl resins such as polystyrene and polyvinyl chloride
  • aromatic polyester resins such as polyethylene terephthalate.
  • these plastics have poor biodegradability, and if they are dumped into nature after use, they may remain for a long time, damaging the landscape or causing environmental destruction.
  • biodegradable resins which are biodegradable or hydrolyzed in soil or water and are useful for preventing environmental pollution.
  • Known examples of such biodegradable resins include aliphatic polyester resins, cellulose acetate, and modified starch.
  • packaging materials polylactic acid, adipic acid/terephthalic acid/1,4-butanediol condensation products, and succinic acid/1,4-butanediol/lactic acid condensation products are used as packaging materials because of their excellent transparency, heat resistance, and strength. Polymers, etc. are used.
  • aliphatic polyester resins such as polylactic acid have insufficient oxygen gas barrier properties, they cannot be used alone as packaging materials for contents that are likely to deteriorate due to oxidation, such as foods and medicines.
  • a laminate has been proposed in which a coating layer made of PVA, which has excellent gas barrier properties and is biodegradable, is formed on at least one side of a polylactic acid film (see, for example, Patent Document 1).
  • biodegradable laminates that can be coextruded and even stretched, using mainly PVA-based resins that have a 1,2-diol structure in their side chains.
  • a biodegradable laminate has been proposed in which both sides of a gas barrier layer as a component are sandwiched between aliphatic polyester layers having a melting point difference of 20°C or less with the gas barrier layer (for example, see Patent Document 2). .
  • Patent Document 1 proposes surface activation treatments such as corona discharge treatment, flame treatment, ozone treatment, etc., and anchor coating treatment for polylactic acid films, but these are still unsatisfactory and there is room for improvement. .
  • Patent Document 2 Although the interlayer adhesion between the polylactic acid resin layer and the PVA resin layer is slightly improved by coextrusion lamination, it is still insufficient for practical use.
  • the adhesive layer used in the laminate containing them is also required to be biodegradable.
  • the biodegradable polyester resin proposed in Patent Document 3 has a low MFR (melt flow rate), which indicates the viscosity of the resin, which may result in poor flowability during multilayer film formation and poor processability. Ta.
  • the present invention has excellent processability and, for example, in a laminate containing a PVA resin layer and a biodegradable resin layer, when used as an adhesive layer between both layers, the present invention has been developed. It is an object of the present invention to provide an acid-modified polyester resin composition that can yield a laminate having excellent processability when forming a film.
  • the present invention relates to the following aspects 1 to 6.
  • Aspect 1 of the present invention is This is an acid-modified polyester resin composition containing an acid-modified polyester resin and an aliphatic compound having a conjugated double bond.
  • Aspect 2 of the present invention is the acid-modified polyester resin composition of aspect 1, which comprises:
  • the acid-modified polyester resin composition described above has at least one structural unit selected from the structural units represented by the following general formulas (1) to (3).
  • l is an integer from 2 to 8.
  • m is an integer from 2 to 10.
  • n is an integer from 2 to 9.
  • Aspect 3 of the present invention is the acid-modified polyester resin composition of aspect 2, comprising: This is an acid-modified polyester resin composition having a total of 50 mol% or more of at least one structural unit selected from the structural units represented by the general formulas (1) to (3).
  • Aspect 4 of the present invention provides the acid-modified polyester resin composition according to any one of aspects 1 to 3,
  • Aspect 5 of the present invention is A laminate having at least one layer containing the acid-modified polyester resin composition according to any one of aspects 1 to 4.
  • Aspect 6 of the present invention is A laminate in which an adhesive layer is provided between a polyvinyl alcohol resin (B) layer and a biodegradable resin (C) layer,
  • the adhesive layer is a laminate containing the acid-modified polyester resin composition according to any one of aspects 1 to 4.
  • the acid-modified polyester resin composition of the present invention when used, for example, as an adhesive layer between both layers in a laminate containing a PVA resin layer and a biodegradable resin layer, the laminate can be easily processed and handled during film formation. You get a body.
  • biodegradable means meeting the conditions specified in JIS K 6953-1:2011 (ISO 14855-1:2005).
  • the acid-modified polyester resin composition (A) of this embodiment is characterized by containing an acid-modified polyester resin (X) and an aliphatic compound having a conjugated double bond.
  • the acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is at least one type selected from the structural units represented by the following general formulas (1) to (3). It is preferable to have a structural unit of
  • l is an integer from 2 to 8.
  • m is an integer from 2 to 10.
  • n is an integer from 2 to 9.
  • l is an integer of 2 to 8, preferably an integer of 3 to 5 from the viewpoint of balance between cost and biodegradability.
  • m is an integer of 2 to 10, preferably an integer of 3 to 5 from the viewpoint of balance between cost and biodegradability.
  • n is an integer of 2 to 9, preferably an integer of 3 to 5 from the viewpoint of balance between cost and biodegradability.
  • the acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is expressed by the above general formulas (1) to (3) from the viewpoint of easy biodegradability. It is more preferable that the structural unit is composed of at least one kind of structural unit selected from the structural units shown in Table 1. good.
  • the total content of at least one type of structural unit selected from the structural units represented by the general formulas (1) to (3) may be 50 mol% or more in the acid-modified polyester resin (X). It is preferably 70 mol% or more, and still more preferably 90 mol% or more.
  • the acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is at least one type selected from the structural units represented by the above general formulas (1) to (3).
  • it has a structural unit, it can be obtained by polycondensing at least one member selected from the group consisting of an aliphatic dicarboxylic acid, an aliphatic diol compound, and other components by a known method, and further acid-modifying it.
  • aliphatic dicarboxylic acids examples include succinic acid, glutaric acid, adipic acid, 1,5-pentanedicarboxylic acid, and 1,6-hexanedicarboxylic acid, with particular emphasis on moldability and flexibility. Succinic acid and adipic acid are preferred.
  • aliphatic diol compounds examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol, with particular emphasis on moldability and flexibility. From this point of view, 1,4-butanediol is preferred.
  • hydroxy acids such as 4-hydroxybutyric acid, 5-hydroxyvaleric acid, and 6-hydroxyhexanoic acid
  • aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
  • dicarboxylic acids having less than 2 alkylene chains such as oxalic acid and malonic acid
  • those derived from hydroxycarboxylic acids having less than 2 alkylene chains such as glycolic acid and lactic acid
  • other polyesters Known copolymerization components of the system resin can be mentioned.
  • the weight average molecular weight of the acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is preferably 5,000 to 500,000, more preferably 100,000. 200,000, more preferably 140,000 to 180,000.
  • the weight average molecular weight is 500,000 or less, the melt viscosity is prevented from becoming too high and melt molding becomes easy.
  • the weight average molecular weight is 5,000 or more, it is possible to suppress the molded product from becoming brittle.
  • the above weight average molecular weight is the weight average molecular weight in terms of the standard polystyrene molecular weight, and the column: TSKgel SuperMultipore HZ-M (exclusion limit molecular weight: 2 x 106, number of theoretical plates: 16,000 plates/piece, filler material: styrene-divinylbenzene copolymer, filler particle size: 4 ⁇ m).
  • the acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment has ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride
  • the acid-modified polyester resin (X) grafted with ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride (hereinafter sometimes referred to as " ⁇ , ⁇ -unsaturated carboxylic acids”) has excellent adhesive properties.
  • the acid-modified polyester resin (X) preferably has ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride grafted onto the raw material polyester resin (X′).
  • ⁇ , ⁇ -unsaturated carboxylic acids examples include ⁇ , ⁇ -unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; maleic acid, fumaric acid, itaconic acid, citrus acid, tetrahydrophthalic acid, and crotonic acid.
  • ⁇ , ⁇ -unsaturated dicarboxylic acids such as isocrotonic acid, or anhydrides thereof, and preferably ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides are used.
  • ⁇ , ⁇ -unsaturated carboxylic acids are not limited to the case where one type is used alone, and two or more types may be used in combination.
  • the method of graft polymerizing ⁇ , ⁇ -unsaturated carboxylic acids to the raw material polyester resin (X') is not particularly limited, and any known method can be used.Although thermal reaction alone is also possible, In order to increase this, it is preferable to use a radical initiator.
  • a reaction method a solution reaction, a reaction as a suspension, a reaction in a molten state without using a solvent or the like (melt method), etc. can be mentioned, and among them, a melt method is preferable.
  • the raw material polyester resin (X') may be obtained by synthesis, or a commercially available one may be used. In the case of synthesis, known methods for producing polyester can be employed. In addition, the polyester resin (X') is not limited to one type, and two or more types of polyester resins (X') with different types of constituent units, constituent unit ratios, manufacturing methods, physical properties, etc. may be used as a blend. can.
  • Examples of the raw material polyester resin (X') include polybutylene adipate terephthalate (hereinafter sometimes referred to as "PBAT”), polybutylene succinate terephthalate (hereinafter sometimes referred to as “PBST”), Polybutylene succinate adipate (hereinafter sometimes referred to as “PBSA”), polybutylene succinate (hereinafter sometimes referred to as “PBS”), polybutylene sebacate terephthalate (hereinafter referred to as “PBSeT”) ), polybutylene succinate adipate terephthalate (hereinafter sometimes referred to as "PBSAT”), polycaprolactone (hereinafter sometimes referred to as "PCL”), and the like.
  • PBAT polybutylene adipate terephthalate
  • PBST polybutylene succinate terephthalate
  • PBSA Polybutylene succinate adipate
  • PBS polybutylene succinate
  • PBSeT poly
  • polyester resins (X') include, for example, "Ecoflex” manufactured by BASF, whose main component is a condensate of adipic acid/terephthalic acid/1,4-butanediol, and succinic acid/1,4-butanediol. , 4-butanediol and "BioPBS” manufactured by Mitsubishi Chemical Co., Ltd., which has a condensation product of succinic acid/adipic acid/1,4-butanediol as its main component. Note that these polyester resins (X') are not limited to the case where one type is used alone, and two or more types may be used in combination.
  • the melting method includes a method in which the raw material polyester resin (X'), ⁇ , ⁇ -unsaturated carboxylic acids, and a radical initiator are mixed in advance and then melted and kneaded in a kneader to react.
  • a method may be used in which ⁇ , ⁇ -unsaturated carboxylic acids and a radical initiator are blended into the polyester resin (X') in a molten state.
  • a mixer used for premixing the raw materials for example, a Henschel mixer, a ribbon blender, etc. can be used, and as a kneader used for melt kneading, for example, a single screw or twin screw extruder, a roll extruder, etc. can be used. , Banbury mixer, kneader, Brabender mixer, etc. can be used.
  • the temperature during melt-kneading may be appropriately set within a temperature range that is equal to or higher than the melting point of the raw material polyester resin (X') and does not cause thermal deterioration.
  • Melt-kneading is preferably carried out at 100 to 250°C, more preferably 160 to 230°C.
  • the blending amount of ⁇ , ⁇ -unsaturated carboxylic acids is preferably 0.0001 to 5 parts by mass, and 0.001 to 1 part by mass based on 100 parts by mass of the raw material polyester resin (X'). More preferably, the range of 0.02 to 0.45 parts by mass is even more preferably used. If the blending amount is 0.0001 parts by mass or more, a sufficient amount of polar groups will be introduced into the polyester resin (A'), and sufficient interlayer adhesion, especially adhesive strength with the PVA resin layer, will be obtained. . In addition, when the blending amount is 5 parts by mass or less, it is possible to suppress residual ⁇ , ⁇ -unsaturated carboxylic acids that have not undergone graft polymerization in the resin, and to suppress appearance defects caused by this.
  • the radical initiator is not particularly limited, and known ones can be used, such as t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-bis(t-butyloxy)hexane, 3,5,5-trimethylhexanoyl peroxide, t-butyl peroxybenzoate, benzoyl peroxide, m-toluoyl peroxide, dichloride Organic or inorganic peroxides such as mil peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene, dibutyl peroxide, methyl ethyl ketone peroxide, potassium peroxide, hydrogen peroxide; 2,2'-azo Azo compounds such as bisisobutyronitrile, 2,2'-azobis(isobutyramide) dihalide, 2,2'-azobis[2-methyl-N-
  • the amount of the radical initiator is preferably 0.00001 to 5.0 parts by mass, more preferably 0.0001 to 1.0 parts by mass, per 100 parts by mass of the raw material polyester resin (X'). , a range of 0.002 to 0.5 parts by mass is more preferably used.
  • the amount of such a radical initiator is 0.00001 parts by mass or more, the graft reaction will proceed sufficiently and the effects of the present invention can be obtained. Further, if the amount of the radical initiator is 5.0 parts by mass or less, it is difficult for the polyester resin to be lowered in molecular weight due to decomposition, and it is possible to suppress insufficient adhesive strength due to insufficient cohesive force.
  • the acid-modified polyester resin composition (A) of the present embodiment contains the acid-modified polyester resin (X) and an aliphatic compound having a conjugated double bond.
  • the melt flow rate (MFR) of the resin composition increases, which leads to a higher melt flow rate (MFR) during film formation. Processing and handling properties are improved.
  • the content of the aliphatic compound having a conjugated double bond in the acid-modified polyester resin composition (A) of the present embodiment is preferably 0.01% by mass or more.
  • the content of the aliphatic compound having a conjugated double bond is 0.01% by mass or more, the increase in resin viscosity in the extruder during the graft reaction is suppressed, and the MFR of the resulting acid-modified polyester resin is increased. improves.
  • the content of the aliphatic compound having a conjugated double bond in the acid-modified polyester resin composition (A) of the present embodiment is preferably 20% by mass or less.
  • the grafting reaction can proceed sufficiently and sufficient adhesive strength can be exhibited.
  • the content of the aliphatic compound having such a conjugated double bond is preferably 0.01 to 20% by mass, more preferably 0.02 to 15% by mass, and even more preferably 0.03 to 10% by mass. % by mass, particularly preferably 0.20 to 5% by mass.
  • aliphatic compounds having a conjugated double bond include compounds such as isoprene, monoterpene, retinol, ⁇ -carotene, ⁇ -carotene, lycopene, lutein, astaxanthin, myrcene, and carboxylic acids such as sorbic acid and muconic acid. Examples include compounds having the above-mentioned properties, as well as esterified products and metal salts thereof. Note that these aliphatic compounds having a conjugated double bond are not limited to the case where one type is used alone, and two or more types may be used in combination.
  • the acid-modified polyester resin composition (A) containing the above aliphatic compound having a conjugated double bond and the acid-modified polyester resin (X) for example, the following (i) to (vii) are required. can be mentioned. (i) After pre-mixing ⁇ , ⁇ -unsaturated carboxylic acids, a radical initiator, and an aliphatic compound having a conjugated double bond into the raw material polyester resin (X'), the mixture is melt-kneaded in a kneader.
  • Reaction method (ii) Mixing ⁇ , ⁇ -unsaturated carboxylic acids, a radical initiator, and an aliphatic compound having a conjugated double bond into the raw material polyester resin (X') in a molten state in a kneader. (iii) Melt-kneading and reacting method (iii) Dissolve ⁇ , ⁇ -unsaturated carboxylic acids, a radical initiator, and an aliphatic compound having a conjugated double bond in a solvent in the raw material polyester resin (X'), and prepare a solution.
  • a laminate containing an acid-modified polyester resin (X) layer and an aliphatic compound layer having a conjugated double bond Methods of pulverizing, melting, and kneading Note that methods (i) to (iv) can be performed by thermal reaction alone, but in order to increase reactivity, it is preferable to use a radical initiator.
  • a reaction method a solution reaction, a reaction as a suspension, a reaction in a molten state without using a solvent or the like (melt method), etc. can be mentioned, and among them, a melt method is preferable.
  • the method (vii) is mainly used when recycling the ends of the laminate. Among these, method (i) or (ii) is preferable from the viewpoint of exhibiting the effects of the present invention and productivity.
  • the acid-modified polyester resin composition (A) of this embodiment has an MFR (210° C., load 2160 g) of 3.5 g/10 min or more.
  • MFR 210° C., load 2160 g
  • the MFR is more preferably 4.5 g/10 min or more, and even more preferably 5.5 g/10 min or more.
  • MFR is preferably 20.0 g/10 min or less, more preferably 10.0 g/10 min or less, and 8.0 g/10 min or less. More preferred. MFR can be measured by method A according to JIS K 7210 (1999).
  • the acid-modified polyester resin composition (A) of this embodiment can be suitably used as an adhesive composition for a laminate.
  • the acid-modified polyester resin composition (A) of the present embodiment is used as an adhesive layer when laminating a PVA resin (B) layer and a biodegradable resin (C) layer having different surface properties.
  • a PVA resin (B) layer and a biodegradable resin (C) layer having different surface properties are used as an adhesive layer when laminating a PVA resin (B) layer and a biodegradable resin (C) layer having different surface properties.
  • the PVA resin (B) layer and the biodegradable resin (C) layer that constitute the laminate will be explained.
  • the PVA resin (B) layer is preferably used as a gas barrier layer of the laminate of the present embodiment, which will be described later, and is particularly preferably responsible for the gas barrier properties of the laminate of the present embodiment.
  • the PVA resin (B) layer is attached to the biodegradable resin (C) layer described below with a layer (adhesive layer) containing the acid-modified polyester resin composition (A) described above on at least one surface thereof. It is preferable that the two layers be laminated together.
  • the PVA resin (B) layer used in this embodiment is a layer containing PVA resin (B) as a main component, and preferably contains 70% by mass or more of PVA resin (B), more preferably It contains 80% by mass or more, more preferably 90% by mass or more. The upper limit is 100% by mass. If this content is 70% by mass or more, gas barrier properties will be sufficient.
  • the PVA resin (B) used in this embodiment is a resin mainly composed of vinyl alcohol structural units, which is obtained by saponifying a polyvinyl ester resin obtained by polymerizing a vinyl ester monomer. It is composed of vinyl alcohol structural units and vinyl ester structural units corresponding to the chemical degree.
  • the above vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl benzoate. , vinyl versatate, etc., but vinyl acetate is preferably used economically.
  • the average degree of polymerization (measured according to JIS K6726:1994) of the PVA resin (B) used in this embodiment is preferably 200 to 1800, more preferably 300 to 1500, and even more preferably 300 to 1000. preferable.
  • the average degree of polymerization is 200 or more, sufficient mechanical strength of the PVA resin (B) layer can be obtained. Further, if the average degree of polymerization is 1800 or less, it is possible to suppress a decrease in fluidity when forming a PVA-based resin (B) layer by hot melt molding, and improve moldability. Further, abnormal occurrence of shear heat generation during molding can be suppressed, and the PVA resin (B) becomes difficult to thermally decompose.
  • the saponification degree (measured according to JIS K6726:1994) of the PVA resin (B) used in this embodiment is preferably 80 to 100 mol%, and 90 to 99.9 mol%. More preferably, 98 to 99.9 mol% is even more preferable. When the degree of saponification is 80 mol% or more, gas barrier properties are improved.
  • the PVA resin (B) may be one obtained by copolymerizing various monomers during the production of polyvinyl ester resin and saponifying this, or one obtained by post-modifying unmodified PVA.
  • Various modified PVA resins into which functional groups have been introduced can be used.
  • Monomers used for copolymerization with vinyl ester monomers include, for example, olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, and 3-buten-1-ol.
  • hydroxy group-containing ⁇ -olefins such as 4-penten-1-ol, 5-hexen-1-ol, 3,4-dihydroxy-1-butene and derivatives such as their acylated products, acrylic acid, methacrylic acid, croton acids, unsaturated acids such as maleic acid, maleic anhydride, itaconic acid, their salts, their monoesters, or their dialkyl esters, nitriles such as acrylonitrile, methacrylonitrile, amides such as diacetone acrylamide, acrylamide, methacrylamide, etc.
  • hydroxy group-containing ⁇ -olefins such as 4-penten-1-ol, 5-hexen-1-ol, 3,4-dihydroxy-1-butene and derivatives such as their acylated products, acrylic acid, methacrylic acid, croton acids, unsaturated acids such as maleic acid, maleic anhydride, itaconic acid, their salts, their monoesters
  • olefin sulfonic acids or their salts such as ethylene sulfonic acid, allyl sulfonic acid, meta-allylsulfonic acid, alkyl vinyl ethers, dimethylallyl vinyl ketone, N-vinylpyrrolidone, vinyl chloride, vinyl ethylene carbonate, 2,2-dialkyl-4 - Vinyl compounds such as vinyl-1,3-dioxolane, glycerin monoallyl ether, 3,4-diacetoxy-1-butene, substituted vinyl acetates such as isopropenyl acetate, 1-methoxyvinyl acetate, vinylidene chloride, 1,4 -diacetoxy-2-butene, vinylene carbonate and the like.
  • modified PVA resins into which functional groups have been introduced through post-modification include those that have acetoacetyl groups through reaction with diketene, those that have polyalkylene oxide groups through reaction with ethylene oxide, and those that have polyalkylene oxide groups through reaction with epoxy compounds, etc.
  • Examples include those having a hydroxyalkyl group according to the above, and those obtained by reacting aldehyde compounds having various functional groups with PVA.
  • modified species in such modified PVA-based resins that is, structural units derived from various monomers in the copolymer, or functional groups introduced by post-reactions, cannot be generalized because the properties vary greatly depending on the modified species. Although it cannot be said, it is preferably 1 to 20 mol%, more preferably 2 to 10 mol%.
  • 1,2-diol structural unit a structural unit having a 1,2-diol structure in the side chain represented by the following general formula (4) (hereinafter, "1,2-diol structural unit") is used. ) is preferably used in the method for producing a laminate of the present embodiment described later, since it facilitates melt molding.
  • R 1 to R 4 in the 1,2-diol structural unit represented by the general formula (4) are each independently a hydrogen atom or a linear or branched alkyl having 1 to 4 carbon atoms. represents a group.
  • alkyl group examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group, and the alkyl group may optionally be a halogen group. , a hydroxyl group, an ester group, a carboxylic acid group, a sulfonic acid group, or other functional groups.
  • X in the 1,2-diol structural unit represented by general formula (4) represents a single bond or a bonded chain.
  • Such bonded chains include linear or branched alkylene groups having 1 to 6 carbon atoms, linear or branched alkenylene groups having 1 to 6 carbon atoms, and linear or branched alkylene groups having 1 to 6 carbon atoms.
  • hydrocarbons such as branched alkynylene groups, phenylene groups, and naphthylene groups (these hydrocarbons may be substituted with halogens such as fluorine, chlorine, and bromine), -O-, -(CH 2 O) t -, -(OCH 2 ) t -, -(CH 2 O) t CH 2 -, -CO-, -COCO-, -CO(CH 2 ) t CO-, -CO(C 6 H 4 ) CO-, -S-, -CS-, -SO-, -SO 2 - , -NR-, -CONR-, -NRCO-, -CSNR-, -NRCS-, -NRNR-, -HPO 4 -, - Si(OR) 2 -, -OSi(OR) 2 -, -OSi(OR) 2 O-, -Ti(OR) 2 -, -OTi(OR) 2
  • R is each independently any substituent, hydrogen atom, linear or branched chain having 1 to 6 carbon atoms
  • t represents an integer of 1 to 5
  • the bonding chain is preferably a linear or branched alkylene group having 1 to 6 carbon atoms, particularly a methylene group, or -CH 2 OCH 2 - from the viewpoint of stability during production or use.
  • X is most preferably a single bond in terms of thermal stability and stability under high temperatures and acidic conditions.
  • Examples of the method for producing a PVA-based resin having a 1,2-diol structural unit in the side chain include the method described in paragraphs [0026] to [0034] of Japanese Patent Application Publication No. 2015-143356.
  • the content of 1,2-diol structural units contained in the PVA resin having 1,2-diol structural units in the side chain is preferably 1 to 20 mol%, more preferably 2 to 10 mol%. , 3 to 8 mol% is more preferably used.
  • the content is 1 mol% or more, the effect of the side chain 1,2-diol structure can be sufficiently obtained, and when the content is 20 mol% or less, the gas barrier properties at high humidity are reduced. can be suppressed.
  • the content of 1,2-diol structural units in the PVA resin is determined from the 1 H-NMR spectrum of the completely saponified PVA resin (solvent: DMSO-d6, internal standard: tetramethylsilane). be able to.
  • the content is specifically calculated from the peak area derived from hydroxyl protons, methine protons, and methylene protons in the 1,2-diol structural unit, methylene protons in the main chain, protons of hydroxyl groups connected to the main chain, etc. do it.
  • the PVA resin (B) used in this embodiment may be one type or a mixture of two or more types.
  • the PVA resin (B) is a mixture of two or more types, the unmodified PVA mentioned above, the unmodified PVA and the PVA resin having the structural unit represented by the general formula (4), the degree of saponification, and the degree of polymerization.
  • the PVA resin (B) layer used in this embodiment also includes a heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, an antistatic agent, a flame retardant, A plasticizer, lubricant, filler, lubricant, and crystal nucleating agent may be blended.
  • the biodegradable resin (C) layer is a layer containing biodegradable resin (C) as a main component, and preferably contains 70% by mass or more of biodegradable resin (C), more preferably 80% by mass. % or more, more preferably 90% by mass or more.
  • the upper limit is 100% by mass.
  • biodegradable resin (C) examples include polylactic acid (C1), a condensation product of adipic acid/terephthalic acid/1,4-butanediol (polybutylene adipate terephthalate (C2)), succinic acid/1, Condensation products of 4-butanediol (polybutylene succinate (C3)), aliphatic polyesters such as polyglycolic acid; modified starches; casein plastics; cellulose, etc., and these may be used singly or in combination of two or more. It can also be used.
  • polylactic acid (C1) and polybutylene adipate terephthalate (C2) are preferred in terms of strength.
  • polybutylene succinate (C3) is preferred from the viewpoint of flexibility and biodegradability.
  • Polybutylene succinate (C3) is an aliphatic polyester resin whose main components are succinic acid/1,4-butanediol.
  • the polybutylene succinate (C3) used in this embodiment is preferably a succinic acid/1,4-butanediol copolymer, but it may be used in an amount that does not impair the properties, for example, 10 mol% or less. For example, it may contain a copolymer component other than succinic acid/1,4-butanediol.
  • Such copolymerization components include, for example, aliphatic hydroxycarboxylic acids such as glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid; caprolactone, etc. Lactones; Aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,4-butanediol; Aliphatic diols such as succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, etc. Basic acids can be mentioned.
  • the weight average molecular weight of the polybutylene succinate (C3) used in this embodiment is preferably 20,000 to 1,000,000, more preferably 30,000 to 300,000, and more preferably 40,000 to 1,000,000. ⁇ 200,000 is more preferable.
  • the weight average molecular weight is 1,000,000 or less, the melt viscosity during hot melt molding is prevented from becoming excessively high, and good film formability can be obtained. Further, if the weight average molecular weight is 20,000 or more, the resulting laminate will have sufficient mechanical strength.
  • the weight average molecular weight is determined by size exclusion as a polystyrene equivalent amount according to the ISO 16014-1:2019 standard and the ISO 16014-3:2019 standard using tetrahydrofuran as an eluent and a column (polystyrene gel) heated to 40°C. It can be measured by chromatography (GPC, gel permeation chromatography).
  • the biodegradable resin (C) layer used in this embodiment also includes a heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, an antistatic agent, and an antistatic agent.
  • a repellent, a plasticizer, a lubricant, a filler, a lubricant, a crystal nucleating agent, etc. may be blended.
  • the laminate of this embodiment includes a layer containing the acid-modified polyester resin composition (A) of this embodiment (hereinafter sometimes referred to as "acid-modified polyester resin composition (A) layer"). It has at least one layer.
  • the acid-modified polyester resin composition (A) layer is a layer containing the acid-modified polyester resin composition (A) as a main component, and contains 70% by mass or more of the acid-modified polyester resin composition (A).
  • the content is preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the upper limit is 100% by mass.
  • the acid-modified polyester resin composition (A) layer used in this embodiment contains, in addition to the acid-modified polyester resin composition (A), a heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, a charging It may contain inhibitors, flame retardants, plasticizers, lubricants, filler lubricants, crystal nucleating agents, and the like.
  • the laminate of this embodiment preferably has a biodegradable resin (C) layer as a layer other than the acid-modified polyester resin composition (A) layer.
  • the laminate of this embodiment preferably uses a PVA resin (B) layer as the gas barrier layer and a biodegradable resin (C) layer as the outer layer.
  • the laminate of this embodiment is a laminate in which an adhesive layer is provided between the PVA resin (B) layer and the biodegradable resin (C) layer, and the adhesive layer is It is preferable to contain the acid-modified polyester resin composition (A).
  • the laminate preferably has a layer structure of 3 to 15 layers, more preferably 3 to 7 layers, particularly preferably 5 to 7 layers.
  • the structure of the laminate of this embodiment is not particularly limited, but the biodegradable resin (C) layer is c, the PVA resin (B) layer is b, and the acid-modified polyester resin composition (A) layer (adhesive layer).
  • a is any combination such as c/a/b, c/a/b/a/c, c/b/a/b/a/b/c, etc., is possible.
  • the plurality of biodegradable resin (C) layers may be the same or different. The same applies when a plurality of PVA resin (B) layers are present in the laminate and when a plurality of acid-modified polyester resin composition (A) layers are present.
  • the parts of the PVA resin (B) layer that come into contact with the outside air or contents containing moisture are usually It is preferable to have a layer structure in which a decomposable resin (C) layer is provided.
  • the thickness of the laminate of this embodiment is preferably 1 to 30,000 ⁇ m, more preferably 3 to 13,000 ⁇ m, and even more preferably 10 to 3,000 ⁇ m.
  • the thickness of the acid-modified polyester resin composition (A) layer is preferably 0.1 to 500 ⁇ m, more preferably 0.15 to 500 ⁇ m. 250 ⁇ m, particularly preferably 0.5 to 50 ⁇ m. If the thickness of this acid-modified polyester resin composition (A) layer is 500 ⁇ m or less, the appearance will be good, and if the thickness of this acid-modified polyester resin composition (A) layer is 1 ⁇ m or more, , it is possible to suppress a decrease in adhesive strength.
  • the thickness of the PVA resin (B) layer is preferably 0.1 to 1,000 ⁇ m, more preferably 0.3 to 500 ⁇ m, particularly preferably 1 to 100 ⁇ m. If the thickness of the PVA resin (B) layer is 1,000 ⁇ m or less, the laminate can be prevented from becoming hard and brittle, and if the PVA resin (B) layer has a thickness of 0.1 ⁇ m or more, If it exists, gas barrier properties will be improved.
  • the thickness of the biodegradable resin (C) layer is preferably 0.4 to 14,000 ⁇ m, more preferably 1 to 6,000 ⁇ m, particularly preferably 4 to 1,400 ⁇ m. If the thickness of the biodegradable resin (C) layer is 14,000 ⁇ m or less, the laminate can be prevented from becoming too hard, and the thickness of the biodegradable resin (C) layer is 0.4 ⁇ m or less. If it is above, it is possible to suppress the laminate from becoming brittle.
  • the ratio of the thickness of the biodegradable resin (C) layer and the PVA resin (B) layer is When there are a plurality of thicknesses, the ratio of their total thicknesses is preferably 1 to 100, more preferably 2.5 to 50. When this ratio is 100 or less, the barrier properties are improved, and when this ratio is 1 or more, the laminate can be prevented from becoming hard and brittle.
  • the ratio of the thickness of the laminate of this embodiment and the acid-modified polyester resin composition (A) layer (adhesive layer) thickness of the acid-modified polyester resin composition (A) layer/laminate of this embodiment
  • the ratio of the total thickness of the acid-modified polyester resin composition (A) is preferably 0.005 to 0.5. , more preferably 0.01 to 0.3. If this ratio is 0.5 or less, the appearance will be improved, and if this ratio is 0.005 or more, the adhesive strength will be improved.
  • the laminate of this embodiment can be manufactured by a conventionally known molding method, and specifically, a melt molding method or a molding method from a solution state can be used.
  • the melt molding method includes a method of melt extrusion laminating the acid-modified polyester resin composition (A) and the PVA resin (B) sequentially or simultaneously on a film or sheet of the biodegradable resin (C); Conversely, a method of melt-extrusion laminating the acid-modified polyester resin composition (A) and the biodegradable resin (C) sequentially or simultaneously on a film or sheet of the PVA resin (B), or (C), an acid-modified polyester resin composition (A), and a method of co-extruding the PVA resin (B).
  • a film or sheet of biodegradable resin (C) is coated with a solution of acid-modified polyester resin composition (A) dissolved in a good solvent, and after drying, Examples include a method of solution coating with an aqueous solution of PVA resin (B).
  • the melt molding method is preferred because it can be produced in one step and a laminate with excellent interlayer adhesion can be obtained, and the coextrusion method is particularly preferably used.
  • a melt molding method it is preferable to use a PVA-based resin having a 1,2-diol structural unit in its side chain as the PVA-based resin (B).
  • the coextrusion method include an inflation method, a T-die method, a multi-manifold die method, a feed block method, and a multi-slot die method.
  • an inflation method a T-die method
  • a multi-manifold die method a feed block method
  • a multi-slot die method As for the shape of the dice, T dice, round dice, etc. can be used.
  • the melt molding temperature during melt extrusion is preferably 140 to 250°C, more preferably 160 to 230°C.
  • the laminate of this embodiment may be further subjected to heat stretching treatment, and such stretching treatment can be expected to improve strength and gas barrier properties.
  • a known stretching method can be adopted.
  • uniaxial stretching and biaxial stretching in which a multilayer structure sheet is widened by gripping both edges; deep drawing, vacuum forming, and pressure forming in which a multilayer structure sheet is stretched using a mold.
  • mold forming methods such as vacuum-pressure forming methods; methods of processing a preformed multilayer structure such as a parison by a tubular drawing method, a stretch-blowing method, and the like.
  • the laminate is uniformly heated in a hot air oven, heater type oven, or a combination of both. It is preferable to stretch the film using a chuck, a plug, a vacuum force, a compressed air force, or the like.
  • a mold forming method in which stretching is performed using a mold such as a molding method, a pressure forming method, a vacuum pressure forming method, or the like.
  • the thus obtained laminate of this embodiment includes, for example, a biodegradable resin (C) layer and an acid-modified polyester resin composition (A) layer, a PVA-based resin (B) layer and an acid-modified polyester resin composition. (A) It has strong adhesion between any of the layers.
  • the acid-modified polyester resin composition (A), the biodegradable resin (C), and the PVA-based resin (B) are all biodegradable, and at least one layer of the acid-modified polyester resin composition (A) is used.
  • the laminate of this embodiment also has excellent biodegradability.
  • the laminate of this embodiment is biodegradable, it can be used as something that can be thrown away into compost as is, such as coffee capsules (coffee bean containers for capsule coffee makers), shrink films, and other containers for food and beverages. Suitably used.
  • the laminate of this embodiment has a PVA resin (B) layer
  • the PVA resin (B) layer can be dissolved in water and removed, and only the remaining water-insoluble resin can be recycled.
  • MFR Melt flow rate
  • the above methanol solution was further diluted with methanol, adjusted to a concentration of 45%, and charged into a kneader. While maintaining the solution temperature at 35°C, a 2% methanol solution of sodium hydroxide was added to the vinyl acetate structural unit in the copolymer. and 3,4-diacetoxy-1-butene structural units at a ratio of 10.5 mmol to 1 mole of the total amount, and saponification was performed. As saponification progresses, the saponified product precipitates, and when it becomes particulate, it is filtered out, thoroughly washed with methanol, and dried in a hot air dryer to obtain R 1 ⁇ represented by the general formula (4').
  • a PVA resin (B) having a 1,2-diol structural unit in the side chain in which R 4 is all hydrogen atoms and X is a single bond was produced.
  • the degree of saponification of the obtained PVA-based resin (B) was analyzed based on the amount of alkali consumed for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene, and was found to be 99.2 mol%. .
  • the average degree of polymerization of the PVA resin (B) was found to be 450 when analyzed according to JIS K 6726:1994.
  • the content of 1,2-diol structural units was calculated from the integral value measured by 1 H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard: tetramethylsilane, 50 ° C.). It was 6 mol%.
  • Example 2 Cylindrical pellets of acid-modified polyester were prepared in the same manner as in Example 1, except that 0.34 parts of maleic anhydride and 0.39 parts of sorbic acid were used as the aliphatic compound having a conjugated double bond. A resin composition (A) was produced, and a laminate was produced.
  • Example 3 In Example 1, 0.29 parts of maleic anhydride, 2,5-dimethyl-2,5-bis(t-butyloxy)hexane ("Trigonox 101-45D-PD" manufactured by Kayaku Nourion Co., Ltd.) as a radical initiator An acid-modified polyester resin composition (A) in the form of cylindrical pellets was prepared in the same manner as in Example 1, except that the aliphatic compound having a conjugated double bond was changed to 0.38 parts and 0.34 parts of sorbic acid. Then, a laminate was produced.
  • Trigonox 101-45D-PD 2,5-dimethyl-2,5-bis(t-butyloxy)hexane
  • Example 4 An acid-modified polyester resin composition (A) in the form of cylindrical pellets was prepared in the same manner as in Example 1, except that 0.55 parts of Na sorbate was used as the aliphatic compound having a conjugated double bond. Then, a laminate was produced.
  • Example 5 Acid-modified polyester-based cylindrical pellets were prepared in the same manner as in Example 1, except that 0.34 parts of maleic anhydride and 0.47 parts of Na sorbate were used as the aliphatic compound having a conjugated double bond. A resin composition (A) was produced, and a laminate was produced.
  • Example 1 an acid-modified polyester resin composition (A) was produced in the same manner as in Example 1 except that an aliphatic compound having a conjugated double bond was not added, and a laminate was produced.
  • the amount of radical initiator in Comparative Example 1 was 0.13 parts because if the amount was adjusted to 0.44 parts, processing would be impossible due to increased viscosity.
  • Example 2 An acid-modified polyester resin composition was prepared in the same manner as in Example 1 except that ethyl cinnamate, which is an aromatic compound having a conjugated double bond, was added instead of the aliphatic compound having a conjugated double bond. A product (A) was produced, and a laminate was produced. Note that the amount of the aliphatic compound having a conjugated double bond added is determined by the number of moles relative to the acid-modified polyester resin composition (A).
  • the acid-modified polyester resin compositions (A) of Examples 1 to 5 had a larger MFR than Comparative Examples 1 and 2, had improved fluidity during film formation, and had excellent processability. In addition, we performed multilayer film formation and confirmed that it has excellent processing and handling properties. On the other hand, the acid-modified polyester resin composition (A) of Comparative Example 1, which did not contain an aliphatic compound having a conjugated double bond, had a small MFR.
  • the acid-modified polyester resin composition (A) of Comparative Example 2 in which ethyl cinnamate, which is an aromatic compound having a conjugated double bond, was used instead of the aliphatic compound having a conjugated double bond, had a MFR of There was a large decrease in the processability, and the processing and handling properties were poor.
  • the acid-modified polyester resin composition (A) of the present invention can be suitably used as an adhesive layer between a PVA resin (B) layer and a biodegradable resin (C) layer.
  • the obtained laminate is biodegradable, so it can be used as something that can be thrown away into the compost as is, such as coffee capsules (coffee bean containers for capsule coffee makers), shrink film, and other containers for food and beverages. It is suitably used for.

Abstract

The present invention provides an acid-modified polyester resin composition that has excellent processability and that makes it possible, when used, e.g., as an adhesive layer for affixing a PVA-based resin layer and a biodegradable resin layer to each other in a laminate that includes the two layers, to obtain a laminate in which the processability during film formation is excellent. This acid-modified polyester resin composition contains an acid-modified polyester resin and an aliphatic compound having a conjugated double bond.

Description

酸変性ポリエステル系樹脂組成物及び積層体Acid-modified polyester resin composition and laminate
 本発明は、酸変性ポリエステル系樹脂組成物に関するものであり、更に詳しくは、ポリビニルアルコール系樹脂層(以下、ポリビニルアルコールを「PVA」という。)とポリ乳酸等の生分解性樹脂層との接着層に好ましく用いられる酸変性ポリエステル系樹脂組成物に関する。また、本発明は、該酸変性ポリエステル系樹脂組成物を含有する層を有する積層体に関する。 The present invention relates to an acid-modified polyester resin composition, and more specifically, to adhesion between a polyvinyl alcohol resin layer (hereinafter polyvinyl alcohol is referred to as "PVA") and a biodegradable resin layer such as polylactic acid. The present invention relates to an acid-modified polyester resin composition preferably used for the layer. The present invention also relates to a laminate having a layer containing the acid-modified polyester resin composition.
 プラスチックは、成形性、強度、耐水性、透明性等に優れることから、包装材料として広く使用されている。かかる包装材料に用いられるプラスチックとしては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン、ポリ塩化ビニル等のビニル系樹脂、ポリエチレンテレフタレート等の芳香族ポリエステル系樹脂が挙げられる。しかしながら、これらのプラスチックは生分解性に乏しく、使用後に自然界に投棄されると、長期間残存して景観を損ねたり、環境破壊の原因となる場合がある。 Plastics are widely used as packaging materials because of their excellent moldability, strength, water resistance, transparency, etc. Plastics used in such packaging materials include polyolefin resins such as polyethylene and polypropylene, vinyl resins such as polystyrene and polyvinyl chloride, and aromatic polyester resins such as polyethylene terephthalate. However, these plastics have poor biodegradability, and if they are dumped into nature after use, they may remain for a long time, damaging the landscape or causing environmental destruction.
 これに対し、近年、土中や水中で生分解、あるいは加水分解され、環境汚染の防止に有用である生分解性樹脂が注目され、実用化が進められている。かかる生分解性樹脂としては、脂肪族ポリエステル系樹脂、酢酸セルロース、変性でんぷん等が知られている。包装材料としては、透明性、耐熱性、強度に優れることから、ポリ乳酸、アジピン酸/テレフタル酸/1,4-ブタンジオールの縮重合物、コハク酸/1,4-ブタンジオール/乳酸の縮重合物等が用いられている。 On the other hand, in recent years, biodegradable resins, which are biodegradable or hydrolyzed in soil or water and are useful for preventing environmental pollution, have attracted attention and are being put into practical use. Known examples of such biodegradable resins include aliphatic polyester resins, cellulose acetate, and modified starch. As packaging materials, polylactic acid, adipic acid/terephthalic acid/1,4-butanediol condensation products, and succinic acid/1,4-butanediol/lactic acid condensation products are used as packaging materials because of their excellent transparency, heat resistance, and strength. Polymers, etc. are used.
 しかしながら、ポリ乳酸等の脂肪族ポリエステル系樹脂は酸素ガスバリア性が不充分であるため、単独では、食品や薬品等の酸化劣化のおそれがある内容物の包装材料として用いることはできない。 However, since aliphatic polyester resins such as polylactic acid have insufficient oxygen gas barrier properties, they cannot be used alone as packaging materials for contents that are likely to deteriorate due to oxidation, such as foods and medicines.
 そこで、ポリ乳酸のフィルムの少なくとも一方の面に、ガスバリア性に優れ、生分解性も備えるPVAによるコーティング層が形成された積層体が提案されている(例えば、特許文献1参照。)。 Therefore, a laminate has been proposed in which a coating layer made of PVA, which has excellent gas barrier properties and is biodegradable, is formed on at least one side of a polylactic acid film (see, for example, Patent Document 1).
 また、溶融成形が可能なPVA系樹脂を用いることで、共押出ラミネート、さらには延伸処理を可能とした生分解性積層体として、側鎖に1,2-ジオール構造を有するPVA系樹脂を主成分とするガスバリア層の両面を、かかるガスバリア層との融点差が20℃以下である脂肪族ポリエステル層で挟持してなる生分解性積層体が提案されている(例えば、特許文献2参照。)。 In addition, by using PVA-based resin that can be melt-molded, we can produce biodegradable laminates that can be coextruded and even stretched, using mainly PVA-based resins that have a 1,2-diol structure in their side chains. A biodegradable laminate has been proposed in which both sides of a gas barrier layer as a component are sandwiched between aliphatic polyester layers having a melting point difference of 20°C or less with the gas barrier layer (for example, see Patent Document 2). .
 しかしながら、ポリ乳酸系樹脂層とPVA系樹脂層は表面特性が大きく異なることから、両層は接着性に乏しく、両層の直接積層によって実用的な層間接着強度を得ることは困難である。例えば、特許文献1では、ポリ乳酸フィルムに対するコロナ放電処理、フレーム処理、オゾン処理等の表面活性化処理や、アンカーコーティング処理が提案されているが、まだまだ満足のいくものではなく改善の余地がある。 However, since the polylactic acid resin layer and the PVA resin layer have significantly different surface properties, both layers have poor adhesive properties, and it is difficult to obtain practical interlayer adhesive strength by directly laminating both layers. For example, Patent Document 1 proposes surface activation treatments such as corona discharge treatment, flame treatment, ozone treatment, etc., and anchor coating treatment for polylactic acid films, but these are still unsatisfactory and there is room for improvement. .
 また、特許文献2では、共押出ラミネートすることでポリ乳酸系樹脂層とPVA系樹脂層の層間接着性は若干改善されるものの、実用的にはまだまだ不充分である。 Furthermore, in Patent Document 2, although the interlayer adhesion between the polylactic acid resin layer and the PVA resin layer is slightly improved by coextrusion lamination, it is still insufficient for practical use.
 従って、ポリ乳酸系樹脂層とPVA系樹脂層の良好な層間接着性を得るには、両層の間に接着層を設ける必要がある。さらに、ポリ乳酸系樹脂とPVA系樹脂の生分解性を活かすには、これらを含む積層体に用いられる接着層も生分解性であることが求められる。 Therefore, in order to obtain good interlayer adhesion between the polylactic acid resin layer and the PVA resin layer, it is necessary to provide an adhesive layer between the two layers. Furthermore, in order to take advantage of the biodegradability of polylactic acid-based resins and PVA-based resins, the adhesive layer used in the laminate containing them is also required to be biodegradable.
 かかる事情より、生分解性ポリエステル系樹脂にα、β-不飽和カルボン酸又はその無水物をグラフト反応して得られる、極性基を有するポリエステル系樹脂を接着層とすることが提案されている(例えば、特許文献3参照。)。 Under these circumstances, it has been proposed to use a polyester resin having a polar group, which is obtained by grafting α, β-unsaturated carboxylic acid or its anhydride onto a biodegradable polyester resin, as an adhesive layer ( For example, see Patent Document 3).
日本国特開2000-177072号公報Japanese Patent Application Publication No. 2000-177072 日本国特開2009-196287号公報Japanese Patent Application Publication No. 2009-196287 日本国特開2013-212682号公報Japanese Patent Application Publication No. 2013-212682
 しかしながら、上記特許文献3で提案された生分解性ポリエステル系樹脂では、樹脂の粘度を表すMFR(メルトフローレート)が低いため多層製膜時の流動性が悪くなり加工取扱性に劣ることがあった。 However, the biodegradable polyester resin proposed in Patent Document 3 has a low MFR (melt flow rate), which indicates the viscosity of the resin, which may result in poor flowability during multilayer film formation and poor processability. Ta.
 そこで、本発明は、このような背景下において、加工取扱性に優れ、例えば、PVA系樹脂層と生分解性樹脂層を含有する積層体において、両層の接着層として用いた場合に、製膜時の加工取扱性に優れる積層体を得ることができる酸変性ポリエステル系樹脂組成物を提供することを目的とする。 Against this background, the present invention has excellent processability and, for example, in a laminate containing a PVA resin layer and a biodegradable resin layer, when used as an adhesive layer between both layers, the present invention has been developed. It is an object of the present invention to provide an acid-modified polyester resin composition that can yield a laminate having excellent processability when forming a film.
 しかるに本発明の発明者らは、鋭意検討した結果、酸変性ポリエステル系樹脂および共役二重結合を有する脂肪族化合物を含有した酸変性ポリエステル系樹脂組成物を用いることで上記の課題を解決できることを見出した。 However, as a result of intensive studies, the inventors of the present invention have found that the above problems can be solved by using an acid-modified polyester resin composition containing an acid-modified polyester resin and an aliphatic compound having a conjugated double bond. I found it.
 すなわち、本発明は、下記態様1~6に関する。 That is, the present invention relates to the following aspects 1 to 6.
 本発明の態様1は、
 酸変性ポリエステル系樹脂及び共役二重結合を有する脂肪族化合物を含有する、酸変性ポリエステル系樹脂組成物である。
Aspect 1 of the present invention is
This is an acid-modified polyester resin composition containing an acid-modified polyester resin and an aliphatic compound having a conjugated double bond.
 本発明の態様2は、態様1の酸変性ポリエステル系樹脂組成物において、
 前記酸変性ポリエステル系樹脂が、下記一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位を有する、記載の酸変性ポリエステル系樹脂組成物である。
Aspect 2 of the present invention is the acid-modified polyester resin composition of aspect 1, which comprises:
The acid-modified polyester resin composition described above has at least one structural unit selected from the structural units represented by the following general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔式(1)中、lは2~8の整数である。〕 [In formula (1), l is an integer from 2 to 8. ]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔式(2)中、mは2~10の整数である。〕 [In formula (2), m is an integer from 2 to 10. ]
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式(3)中、nは2~9の整数である。〕 [In formula (3), n is an integer from 2 to 9. ]
 本発明の態様3は、態様2の酸変性ポリエステル系樹脂組成物において、
 前記一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位を合計で50モル%以上有する、酸変性ポリエステル系樹脂組成物である。
Aspect 3 of the present invention is the acid-modified polyester resin composition of aspect 2, comprising:
This is an acid-modified polyester resin composition having a total of 50 mol% or more of at least one structural unit selected from the structural units represented by the general formulas (1) to (3).
 本発明の態様4は、態様1~3のいずれか1つの酸変性ポリエステル系樹脂組成物において、
 前記酸変性ポリエステル系樹脂は、ポリエステル系樹脂に、α,β-不飽和カルボン酸又はその無水物がグラフトされている酸変性ポリエステル系樹脂である、請求項1に記載の酸変性ポリエステル系樹脂組成物。
Aspect 4 of the present invention provides the acid-modified polyester resin composition according to any one of aspects 1 to 3,
The acid-modified polyester resin composition according to claim 1, wherein the acid-modified polyester resin is an acid-modified polyester resin in which an α,β-unsaturated carboxylic acid or an anhydride thereof is grafted to a polyester resin. thing.
 本発明の態様5は、
 態様1~4のいずれか1つの酸変性ポリエステル系樹脂組成物を含有する層を少なくとも一層有する、積層体である。
Aspect 5 of the present invention is
A laminate having at least one layer containing the acid-modified polyester resin composition according to any one of aspects 1 to 4.
 本発明の態様6は、
 ポリビニルアルコール系樹脂(B)層、生分解性樹脂(C)層との間に接着層を設けた積層体であって、
 前記接着層が、態様1~4のいずれか1つの酸変性ポリエステル系樹脂組成物を含有する、積層体である。
Aspect 6 of the present invention is
A laminate in which an adhesive layer is provided between a polyvinyl alcohol resin (B) layer and a biodegradable resin (C) layer,
The adhesive layer is a laminate containing the acid-modified polyester resin composition according to any one of aspects 1 to 4.
 本発明の酸変性ポリエステル系樹脂組成物を、例えば、PVA系樹脂層と生分解性樹脂層を含有する積層体において、両層の接着層として用いると、製膜時の加工取扱性に優れる積層体が得られる。 When the acid-modified polyester resin composition of the present invention is used, for example, as an adhesive layer between both layers in a laminate containing a PVA resin layer and a biodegradable resin layer, the laminate can be easily processed and handled during film formation. You get a body.
 以下、本発明の構成につき詳細に説明するが、これらは望ましい実施態様の一例を示すものである。
 なお、本明細書において、質量を基準とする部、百分率は、重量を基準とする部、百分率とそれぞれ同義である。
Hereinafter, the structure of the present invention will be explained in detail, but these are examples of desirable embodiments.
In this specification, parts and percentages based on mass have the same meaning as parts and percentages based on weight, respectively.
 また、本明細書において、「生分解性」とは、JIS K 6953―1:2011(ISO 14855―1:2005)で規定された条件を満たすことを意味する。 Furthermore, in this specification, "biodegradable" means meeting the conditions specified in JIS K 6953-1:2011 (ISO 14855-1:2005).
〔酸変性ポリエステル系樹脂組成物(A)〕
 本実施形態の酸変性ポリエステル系樹脂組成物(A)は、酸変性ポリエステル系樹脂(X)及び共役二重結合を有する脂肪族化合物を含有することを特徴とする。
[Acid-modified polyester resin composition (A)]
The acid-modified polyester resin composition (A) of this embodiment is characterized by containing an acid-modified polyester resin (X) and an aliphatic compound having a conjugated double bond.
 本実施形態の酸変性ポリエステル系樹脂組成物(A)を構成する酸変性ポリエステル系樹脂(X)は、下記一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位を有することが好ましい。 The acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is at least one type selected from the structural units represented by the following general formulas (1) to (3). It is preferable to have a structural unit of
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔式(1)中、lは2~8の整数である。〕 [In formula (1), l is an integer from 2 to 8. ]
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
〔式(2)中、mは2~10の整数である。〕 [In formula (2), m is an integer from 2 to 10. ]
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
〔式(3)中、nは2~9の整数である。〕 [In formula (3), n is an integer from 2 to 9. ]
 上記式(1)中、lは2~8の整数であり、コストと生分解性とのバランスの観点から3~5の整数であるのが好ましい。
 また、上記式(2)中、mは2~10の整数であり、コストと生分解性とのバランスの観点から3~5の整数であるのが好ましい。
 また、上記式(3)中、nは2~9の整数であり、コストと生分解性とのバランスの観点から3~5の整数であるのが好ましい。
In the above formula (1), l is an integer of 2 to 8, preferably an integer of 3 to 5 from the viewpoint of balance between cost and biodegradability.
Furthermore, in the above formula (2), m is an integer of 2 to 10, preferably an integer of 3 to 5 from the viewpoint of balance between cost and biodegradability.
Further, in the above formula (3), n is an integer of 2 to 9, preferably an integer of 3 to 5 from the viewpoint of balance between cost and biodegradability.
 本実施形態の酸変性ポリエステル系樹脂組成物(A)を構成する酸変性ポリエステル系樹脂(X)は、生分解性のされやすさの点から、上記一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位から構成されているものがより好ましいが、耐熱性や強度、生分解性の制御等の目的で、他の構造単位を有していてもよい。 The acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is expressed by the above general formulas (1) to (3) from the viewpoint of easy biodegradability. It is more preferable that the structural unit is composed of at least one kind of structural unit selected from the structural units shown in Table 1. good.
 かかる一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位の合計含有量は、酸変性ポリエステル系樹脂(X)中に50モル%以上であることが好ましく、より好ましくは70モル%以上、さらに好ましくは90モル%以上である。 The total content of at least one type of structural unit selected from the structural units represented by the general formulas (1) to (3) may be 50 mol% or more in the acid-modified polyester resin (X). It is preferably 70 mol% or more, and still more preferably 90 mol% or more.
 本実施形態の酸変性ポリエステル系樹脂組成物(A)を構成する酸変性ポリエステル系樹脂(X)は、上記一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位を有する場合、脂肪族ジカルボン酸、脂肪族ジオール化合物及びその他の成分からなる群から選択される少なくとも1種を公知の方法により縮重合し、更に、酸変性することにより得られる。 The acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is at least one type selected from the structural units represented by the above general formulas (1) to (3). When it has a structural unit, it can be obtained by polycondensing at least one member selected from the group consisting of an aliphatic dicarboxylic acid, an aliphatic diol compound, and other components by a known method, and further acid-modifying it.
 脂肪族ジカルボン酸としては、例えば、コハク酸、グルタル酸、アジピン酸、1,5-ペンタンジカルボン酸、1,6-ヘキサンジカルボン酸等を挙げることができ、特には成形性と柔軟性の点からコハク酸、アジピン酸が好ましい。 Examples of aliphatic dicarboxylic acids include succinic acid, glutaric acid, adipic acid, 1,5-pentanedicarboxylic acid, and 1,6-hexanedicarboxylic acid, with particular emphasis on moldability and flexibility. Succinic acid and adipic acid are preferred.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール等を挙げることができ、特には成形性と柔軟性の点から1,4-ブタンジオールが好ましい。 Examples of aliphatic diol compounds include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol, with particular emphasis on moldability and flexibility. From this point of view, 1,4-butanediol is preferred.
 また、その他の成分として、具体的には、例えば、4-ヒドロキシ酪酸、5-ヒドロキシ吉草酸、6-ヒドロキシヘキサン酸等のヒドロキシ酸;テレフタル酸、イソフタル酸等の芳香族ジカルボン酸に由来するもの;シュウ酸、マロン酸等のアルキレン鎖の数が2未満であるジカルボン酸に由来するもの;グリコール酸、乳酸等のアルキレン鎖の数が2未満であるヒドロキシカルボン酸に由来するもの;その他、ポリエステル系樹脂の共重合成分として公知のものを挙げることができる。 In addition, as other components, specifically, for example, those derived from hydroxy acids such as 4-hydroxybutyric acid, 5-hydroxyvaleric acid, and 6-hydroxyhexanoic acid; aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid. ; those derived from dicarboxylic acids having less than 2 alkylene chains such as oxalic acid and malonic acid; those derived from hydroxycarboxylic acids having less than 2 alkylene chains such as glycolic acid and lactic acid; other polyesters Known copolymerization components of the system resin can be mentioned.
 本実施形態の酸変性ポリエステル系樹脂組成物(A)を構成する酸変性ポリエステル系樹脂(X)の重量平均分子量は、5,000~500,000であることが好ましく、より好ましくは100,000~200,000、さらに好ましくは140,000~180,000である。かかる重量平均分子量が500,000以下であれば、溶融粘度が高くなりすぎることを抑制し、溶融成形が容易となる。また、かかる重量平均分子量が5,000以上でれば成形物が脆くなることを抑制できる。 The weight average molecular weight of the acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment is preferably 5,000 to 500,000, more preferably 100,000. 200,000, more preferably 140,000 to 180,000. When the weight average molecular weight is 500,000 or less, the melt viscosity is prevented from becoming too high and melt molding becomes easy. Moreover, if the weight average molecular weight is 5,000 or more, it is possible to suppress the molded product from becoming brittle.
 なお、上記の重量平均分子量は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフィー(東ソー社製、「HLC-8320GPC」)に、カラム:TSKgel SuperMultipore HZ-M(排除限界分子量:2×106、理論段数:16,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:4μm)の2本直列を用いることにより測定されるものである。 The above weight average molecular weight is the weight average molecular weight in terms of the standard polystyrene molecular weight, and the column: TSKgel SuperMultipore HZ-M (exclusion limit molecular weight: 2 x 106, number of theoretical plates: 16,000 plates/piece, filler material: styrene-divinylbenzene copolymer, filler particle size: 4 μm).
 本実施形態の酸変性ポリエステル系樹脂組成物(A)を構成する酸変性ポリエステル系樹脂(X)は、原料のポリエステル系樹脂(X’)にα,β-不飽和カルボン酸又はその無水物(以下、α,β-不飽和カルボン酸又はその無水物を、「α,β-不飽和カルボン酸類」ということがある。)をグラフトした、酸変性ポリエステル系樹脂(X)が接着性の点で良好である。すなわち、酸変性ポリエステル系樹脂(X)は、原料のポリエステル系樹脂(X’)に、α,β-不飽和カルボン酸又はその無水物がグラフトされていることが好ましい。 The acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) of the present embodiment has α,β-unsaturated carboxylic acid or its anhydride ( The acid-modified polyester resin (X) grafted with α,β-unsaturated carboxylic acid or its anhydride (hereinafter sometimes referred to as "α,β-unsaturated carboxylic acids") has excellent adhesive properties. In good condition. That is, the acid-modified polyester resin (X) preferably has α,β-unsaturated carboxylic acid or its anhydride grafted onto the raw material polyester resin (X′).
 α,β-不飽和カルボン酸類としては、具体的にはアクリル酸、メタクリル酸等のα,β-不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸、シトラス酸、テトラヒドロフタル酸、クロトン酸、イソクロトン酸等のα,β-不飽和ジカルボン酸又はその無水物等が挙げられ、好ましくはα,β-不飽和ジカルボン酸の無水物が用いられる。 Examples of α,β-unsaturated carboxylic acids include α,β-unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; maleic acid, fumaric acid, itaconic acid, citrus acid, tetrahydrophthalic acid, and crotonic acid. , α,β-unsaturated dicarboxylic acids such as isocrotonic acid, or anhydrides thereof, and preferably α,β-unsaturated dicarboxylic acid anhydrides are used.
 なお、これらのα,β-不飽和カルボン酸類は、1種を単独で用いる場合に限らず、2種以上を併用してもよい。 Note that these α,β-unsaturated carboxylic acids are not limited to the case where one type is used alone, and two or more types may be used in combination.
 原料のポリエステル系樹脂(X’)にα,β-不飽和カルボン酸類をグラフト重合させる方法としては特に限定されず、公知の方法を用いることができ、熱反応のみでも可能であるが、反応性を高めるためには、ラジカル開始剤を用いることが好ましい。また、反応させる手法としては、溶液反応、懸濁液としての反応、溶媒等を使用しない溶融状態での反応(溶融法)等を挙げることができるが、中でも溶融法で行うことが好ましい。 The method of graft polymerizing α,β-unsaturated carboxylic acids to the raw material polyester resin (X') is not particularly limited, and any known method can be used.Although thermal reaction alone is also possible, In order to increase this, it is preferable to use a radical initiator. In addition, as a reaction method, a solution reaction, a reaction as a suspension, a reaction in a molten state without using a solvent or the like (melt method), etc. can be mentioned, and among them, a melt method is preferable.
 原料のポリエステル系樹脂(X’)は、合成により得てもよいし、市販のものを用いてもよい。合成する場合は、ポリエステルの製造に関する公知の方法が採用できる。また、ポリエステル系樹脂(X’)は1種に限らず、構成単位の種類や構成単位比、製造方法、物性等の異なる2種以上のポリエステル系樹脂(X’)をブレンドして用いることができる。 The raw material polyester resin (X') may be obtained by synthesis, or a commercially available one may be used. In the case of synthesis, known methods for producing polyester can be employed. In addition, the polyester resin (X') is not limited to one type, and two or more types of polyester resins (X') with different types of constituent units, constituent unit ratios, manufacturing methods, physical properties, etc. may be used as a blend. can.
 原料のポリエステル系樹脂(X’)としては、例えば、ポリブチレンアジペートテレフタレート(以下、「PBAT」と称する場合がある。)ポリブチレンサクシネートテレフタレート(以下、「PBST」と称する場合がある。)、ポリブチレンサクシネートアジペート(以下、「PBSA」と称する場合がある。)、ポリブチレンサクシネート(以下、「PBS」と称する場合がある。)、ポリブチレンセバケートテレフタレート(以下、「PBSeT」と称する場合がある。)、ポリブチレンサクシネートアジペートテレフタレート(以下、「PBSAT」と称する場合がある。)、ポリカプロクラクトン(以下、「PCL」と称する場合がある。)等が挙げられる。 Examples of the raw material polyester resin (X') include polybutylene adipate terephthalate (hereinafter sometimes referred to as "PBAT"), polybutylene succinate terephthalate (hereinafter sometimes referred to as "PBST"), Polybutylene succinate adipate (hereinafter sometimes referred to as "PBSA"), polybutylene succinate (hereinafter sometimes referred to as "PBS"), polybutylene sebacate terephthalate (hereinafter referred to as "PBSeT") ), polybutylene succinate adipate terephthalate (hereinafter sometimes referred to as "PBSAT"), polycaprolactone (hereinafter sometimes referred to as "PCL"), and the like.
 原料のポリエステル系樹脂(X’)の市販品としては、例えば、アジピン酸/テレフタル酸/1,4-ブタンジオールの縮重合物を主成分とするBASF社製「エコフレックス」、コハク酸/1,4-ブタンジオールの縮重合物やコハク酸/アジピン酸/1,4-ブタンジオールの縮重合物を主成分とする三菱ケミカル社製「BioPBS」等を挙げることができる。なお、これらのポリエステル系樹脂(X’)は、1種を単独で用いる場合に限らず、2種以上を併用してもよい。 Commercially available raw material polyester resins (X') include, for example, "Ecoflex" manufactured by BASF, whose main component is a condensate of adipic acid/terephthalic acid/1,4-butanediol, and succinic acid/1,4-butanediol. , 4-butanediol and "BioPBS" manufactured by Mitsubishi Chemical Co., Ltd., which has a condensation product of succinic acid/adipic acid/1,4-butanediol as its main component. Note that these polyester resins (X') are not limited to the case where one type is used alone, and two or more types may be used in combination.
 以下、溶融法を詳細に説明する。
 溶融法として、原料のポリエステル系樹脂(X’)、α,β-不飽和カルボン酸類、およびラジカル開始剤を予め混合した後、混練機中で溶融混練して反応させる方法や、混練機中で溶融状態にあるポリエステル系樹脂(X’)に、α,β-不飽和カルボン酸類、およびラジカル開始剤を配合する方法等を用いることができる。
The melting method will be explained in detail below.
The melting method includes a method in which the raw material polyester resin (X'), α,β-unsaturated carboxylic acids, and a radical initiator are mixed in advance and then melted and kneaded in a kneader to react. A method may be used in which α,β-unsaturated carboxylic acids and a radical initiator are blended into the polyester resin (X') in a molten state.
 原料を予め混合する際に用いられる混合機としては、例えば、ヘンシェルミキサー、リボンブレンダー等を使用することができ、溶融混練に用いられる混練機としては、例えば、単軸又は二軸押出機、ロール、バンバリーミキサー、ニーダー、ブラベンダーミキサー等を使用することができる。 As a mixer used for premixing the raw materials, for example, a Henschel mixer, a ribbon blender, etc. can be used, and as a kneader used for melt kneading, for example, a single screw or twin screw extruder, a roll extruder, etc. can be used. , Banbury mixer, kneader, Brabender mixer, etc. can be used.
 溶融混練時の温度設定は、原料のポリエステル系樹脂(X’)の融点以上であって、かつ、熱劣化しない温度範囲で適宜設定すればよい。好ましくは100~250℃、より好ましくは160~230℃で溶融混練される。 The temperature during melt-kneading may be appropriately set within a temperature range that is equal to or higher than the melting point of the raw material polyester resin (X') and does not cause thermal deterioration. Melt-kneading is preferably carried out at 100 to 250°C, more preferably 160 to 230°C.
 α,β-不飽和カルボン酸類の配合量は、原料のポリエステル系樹脂(X’)100質量部に対して、0.0001~5質量部であることが好ましく、0.001~1質量部がより好ましく、0.02~0.45質量部の範囲がさらに好ましく用いられる。かかる配合量が0.0001質量部以上であれば、ポリエステル系樹脂(A’)に十分な量の極性基が導入され、層間接着性、特にPVA系樹脂層との接着力が充分に得られる。また、かかる配合量が5質量部以下であると、グラフト重合しなかったα,β-不飽和カルボン酸類が樹脂中に残存することを抑え、それに起因する外観不良等が生じることを抑制できる。 The blending amount of α,β-unsaturated carboxylic acids is preferably 0.0001 to 5 parts by mass, and 0.001 to 1 part by mass based on 100 parts by mass of the raw material polyester resin (X'). More preferably, the range of 0.02 to 0.45 parts by mass is even more preferably used. If the blending amount is 0.0001 parts by mass or more, a sufficient amount of polar groups will be introduced into the polyester resin (A'), and sufficient interlayer adhesion, especially adhesive strength with the PVA resin layer, will be obtained. . In addition, when the blending amount is 5 parts by mass or less, it is possible to suppress residual α,β-unsaturated carboxylic acids that have not undergone graft polymerization in the resin, and to suppress appearance defects caused by this.
 ラジカル開始剤としては特に限定されず、公知のものを用いることができ、例えば、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルへキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルオキシ)ヘキサン、3,5,5-トリメチルへキサノイルパーオキサイド、t-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、m-トルオイルパーオキサイド、ジクミルパーオキサイド、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、ジブチルパーオキサイド、メチルエチルケトンパーオキサイド、過酸化カリウム、過酸化水素等の有機又は無機の過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(イソブチルアミド)ジハライド、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、アゾジ-t-ブタン等のアゾ化合物;ジクミル等の炭素ラジカル発生剤等が挙げられる。
 これらは、1種を単独で用いてもよく、2種以上のものを併用することも可能である。
The radical initiator is not particularly limited, and known ones can be used, such as t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-bis(t-butyloxy)hexane, 3,5,5-trimethylhexanoyl peroxide, t-butyl peroxybenzoate, benzoyl peroxide, m-toluoyl peroxide, dichloride Organic or inorganic peroxides such as mil peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene, dibutyl peroxide, methyl ethyl ketone peroxide, potassium peroxide, hydrogen peroxide; 2,2'-azo Azo compounds such as bisisobutyronitrile, 2,2'-azobis(isobutyramide) dihalide, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], azodi-t-butane, etc. ; Examples include carbon radical generators such as dicumyl.
These may be used alone or in combination of two or more.
 ラジカル開始剤の配合量は、原料のポリエステル系樹脂(X’)100質量部に対して0.00001~5.0質量部であることが好ましく、0.0001~1.0質量部がより好ましく、0.002~0.5質量部の範囲がさらに好ましく用いられる。 The amount of the radical initiator is preferably 0.00001 to 5.0 parts by mass, more preferably 0.0001 to 1.0 parts by mass, per 100 parts by mass of the raw material polyester resin (X'). , a range of 0.002 to 0.5 parts by mass is more preferably used.
 かかるラジカル開始剤の配合量が0.00001質量部以上であれば、グラフト反応が十分に進行し、本発明の効果が得られる。また、かかるラジカル開始剤の配合量が5.0質量部以下であれば、ポリエステル系樹脂の分解による低分子量化が起こりづらく、凝集力不足による接着力強度不足を抑制できる。 If the amount of such a radical initiator is 0.00001 parts by mass or more, the graft reaction will proceed sufficiently and the effects of the present invention can be obtained. Further, if the amount of the radical initiator is 5.0 parts by mass or less, it is difficult for the polyester resin to be lowered in molecular weight due to decomposition, and it is possible to suppress insufficient adhesive strength due to insufficient cohesive force.
 本実施形態の酸変性ポリエステル系樹脂組成物(A)は、上記酸変性ポリエステル系樹脂(X)と共役二重結合を有する脂肪族化合物を含有する。酸変性ポリエステル系樹脂組成物が、酸変性ポリエステル系樹脂と共役二重結合を有する脂肪族化合物を含有することで、樹脂組成物のメルトフローレート(MFR)が高くなり、これにより製膜時の加工取扱性が向上する。 The acid-modified polyester resin composition (A) of the present embodiment contains the acid-modified polyester resin (X) and an aliphatic compound having a conjugated double bond. When the acid-modified polyester resin composition contains the acid-modified polyester resin and an aliphatic compound having a conjugated double bond, the melt flow rate (MFR) of the resin composition increases, which leads to a higher melt flow rate (MFR) during film formation. Processing and handling properties are improved.
 具体的には、酸変性ポリエステル系樹脂組成物(A)を構成する酸変性ポリエステル系樹脂(X)をグラフト反応によって生成する場合、グラフト反応中に余剰ラジカルが発生する。余剰ラジカルが生じると、酸変性ポリエステル系樹脂(X)が架橋し樹脂粘度の増粘に至ることから、グラフト反応率が低下し、得られる酸変性ポリエステル系樹脂(X)の加工取扱性は低くなる。そこで、本実施形態では、酸変性ポリエステル系樹脂(X)と共役二重結合を有する脂肪族化合物を含有する酸変性ポリエステル系樹脂組成物(A)とすることで、グラフト反応中での余剰ラジカルに対して共役二重結合を有する脂肪族化合物が捕捉するため、本発明の効果が得られると推測される。 Specifically, when the acid-modified polyester resin (X) constituting the acid-modified polyester resin composition (A) is produced by a graft reaction, surplus radicals are generated during the graft reaction. When surplus radicals are generated, the acid-modified polyester resin (X) crosslinks and the resin viscosity increases, resulting in a decrease in the grafting reaction rate and poor processing and handling properties of the resulting acid-modified polyester resin (X). Become. Therefore, in this embodiment, by using an acid-modified polyester resin composition (A) containing an acid-modified polyester resin (X) and an aliphatic compound having a conjugated double bond, excess radicals during the grafting reaction can be removed. It is presumed that the effects of the present invention can be obtained because the aliphatic compound having a conjugated double bond captures the conjugated double bond.
 本実施形態の酸変性ポリエステル系樹脂組成物(A)中の共役二重結合を有する脂肪族化合物の含有量は0.01質量%以上であることが好ましい。共役二重結合を有する脂肪族化合物の含有量が0.01質量%以上であることで、グラフト反応中の押出機内における樹脂粘度の増粘が抑制され、得られる酸変性ポリエステル系樹脂のMFRが向上する。 The content of the aliphatic compound having a conjugated double bond in the acid-modified polyester resin composition (A) of the present embodiment is preferably 0.01% by mass or more. When the content of the aliphatic compound having a conjugated double bond is 0.01% by mass or more, the increase in resin viscosity in the extruder during the graft reaction is suppressed, and the MFR of the resulting acid-modified polyester resin is increased. improves.
 また、本実施形態の酸変性ポリエステル系樹脂組成物(A)中の共役二重結合を有する脂肪族化合物の含有量は20質量%以下が好ましい。共役二重結合を有する脂肪族化合物の含有量が20質量%以下であることで、グラフト反応が十分に進行し十分な接着力を発揮できる。 Furthermore, the content of the aliphatic compound having a conjugated double bond in the acid-modified polyester resin composition (A) of the present embodiment is preferably 20% by mass or less. When the content of the aliphatic compound having a conjugated double bond is 20% by mass or less, the grafting reaction can proceed sufficiently and sufficient adhesive strength can be exhibited.
 かかる共役二重結合を有する脂肪族化合物の含有量は、接着性の観点から、好ましくは0.01~20質量%、より好ましくは0.02~15質量%、さらに好ましくは0.03~10質量%であり、特に好ましくは0.20~5質量%である。 From the viewpoint of adhesiveness, the content of the aliphatic compound having such a conjugated double bond is preferably 0.01 to 20% by mass, more preferably 0.02 to 15% by mass, and even more preferably 0.03 to 10% by mass. % by mass, particularly preferably 0.20 to 5% by mass.
 上記の共役二重結合を有する脂肪族化合物について以下に詳細に説明する。
 共役二重結合を有する脂肪族化合物として具体的にはイソプレン、モノテルペン、レチノール、αカロテン、βカロテン、リコピン、ルテイン、アスタキサンチン、ミルセン等の化合物、また、ソルビン酸、ムコン酸等のカルボン酸を有する化合物ならび、そのエステル化物や金属塩が挙げられる。
 なお、これらの共役二重結合を有する脂肪族化合物は、1種を単独で用いる場合に限らず、2種以上を併用してもよい。
The above aliphatic compound having a conjugated double bond will be explained in detail below.
Specifically, aliphatic compounds having a conjugated double bond include compounds such as isoprene, monoterpene, retinol, α-carotene, β-carotene, lycopene, lutein, astaxanthin, myrcene, and carboxylic acids such as sorbic acid and muconic acid. Examples include compounds having the above-mentioned properties, as well as esterified products and metal salts thereof.
Note that these aliphatic compounds having a conjugated double bond are not limited to the case where one type is used alone, and two or more types may be used in combination.
 上記の共役二重結合を有する脂肪族化合物と酸変性ポリエステル系樹脂(X)を含有する酸変性ポリエステル系樹脂組成物(A)を得るためには、例えば、以下の(i)~(vii)が挙げられる。
(i)原料のポリエステル系樹脂(X’)にα,β-不飽和カルボン酸類、およびラジカル開始剤、共役二重結合を有する脂肪族化合物を予め混合した後、混練機中で溶融混練して反応させる方法
(ii)混練機中で溶融状態にある原料のポリエステル系樹脂(X’)に、α,β-不飽和カルボン酸類、およびラジカル開始剤、共役二重結合を有する脂肪族化合物を配合し溶融混練して反応させる方法
(iii)原料のポリエステル系樹脂(X’)にα,β-不飽和カルボン酸類、およびラジカル開始剤、共役二重結合を有する脂肪族化合物を溶媒に溶かし、溶液状で混合し反応させる方法
(iv)原料のポリエステル系樹脂(X’)にα,β-不飽和カルボン酸類、およびラジカル開始剤、共役二重結合を有する脂肪族化合物を溶媒に溶かし、懸濁状で混合し反応させる方法
(v)酸変性ポリエステル系樹脂(X)及び共役二重結合を有する脂肪族化合物をドライブレンドした後、溶融し、混練する方法
(vi)酸変性ポリエステル系樹脂(X)及び共役二重結合を有する脂肪族化合物を溶媒に溶かし、溶液状で混合する方法
(vii)酸変性ポリエステル系樹脂(X)層及び共役二重結合を有する脂肪族化合物層を含有する積層体を粉砕し、溶融し、混練する方法
 なお、(i)~(iv)の方法に関しては熱反応のみでも可能であるが、反応性を高めるためには、ラジカル開始剤を用いることが好ましい。また、反応させる手法としては、溶液反応、懸濁液としての反応、溶媒等を使用しない溶融状態での反応(溶融法)等を挙げることができるが、中でも溶融法で行うことが好ましい。
 また、(vii)の方法は主に積層体の端部などをリサイクルする際に用いられる。
 中でも、(i)または(ii)の方法が、本発明効果の発揮や生産性の観点から好ましい。
In order to obtain the acid-modified polyester resin composition (A) containing the above aliphatic compound having a conjugated double bond and the acid-modified polyester resin (X), for example, the following (i) to (vii) are required. can be mentioned.
(i) After pre-mixing α,β-unsaturated carboxylic acids, a radical initiator, and an aliphatic compound having a conjugated double bond into the raw material polyester resin (X'), the mixture is melt-kneaded in a kneader. Reaction method (ii) Mixing α,β-unsaturated carboxylic acids, a radical initiator, and an aliphatic compound having a conjugated double bond into the raw material polyester resin (X') in a molten state in a kneader. (iii) Melt-kneading and reacting method (iii) Dissolve α,β-unsaturated carboxylic acids, a radical initiator, and an aliphatic compound having a conjugated double bond in a solvent in the raw material polyester resin (X'), and prepare a solution. (iv) A method of mixing and reacting raw material polyester resin (X') with α,β-unsaturated carboxylic acids, a radical initiator, and an aliphatic compound having a conjugated double bond dissolved in a solvent and suspended. (v) A method of dry blending the acid-modified polyester resin (X) and an aliphatic compound having a conjugated double bond, followed by melting and kneading (vi) A method of dry-blending the acid-modified polyester resin (X) and then melting and kneading the acid-modified polyester resin (X). ) and a method in which an aliphatic compound having a conjugated double bond is dissolved in a solvent and mixed in a solution form (vii) A laminate containing an acid-modified polyester resin (X) layer and an aliphatic compound layer having a conjugated double bond Methods of pulverizing, melting, and kneading Note that methods (i) to (iv) can be performed by thermal reaction alone, but in order to increase reactivity, it is preferable to use a radical initiator. In addition, as a reaction method, a solution reaction, a reaction as a suspension, a reaction in a molten state without using a solvent or the like (melt method), etc. can be mentioned, and among them, a melt method is preferable.
Further, the method (vii) is mainly used when recycling the ends of the laminate.
Among these, method (i) or (ii) is preferable from the viewpoint of exhibiting the effects of the present invention and productivity.
 また、本実施形態の酸変性ポリエステル系樹脂組成物(A)は、MFR(210℃、荷重2160g)が3.5g/10min以上であることが好ましい。MFRが3.5g/10min以上であると、例えば、PVA系樹脂層と生分解性樹脂層との粘度差が小さくなるため、積層体製膜時の加工条件に幅を持たせることができ加工取扱性に優れる。MFRは、4.5g/10min以上であることがより好ましく、5.5g/10min以上であることがさらに好ましい。また、上記同様、加工取扱性の観点から、MFRは、20.0g/10min以下であることが好ましく、10.0g/10min以下であることがより好ましく、8.0g/10min以下であることがさらに好ましい。
 MFRは、JIS K 7210(1999)に従い、A法によりを測定できる。
Moreover, it is preferable that the acid-modified polyester resin composition (A) of this embodiment has an MFR (210° C., load 2160 g) of 3.5 g/10 min or more. When the MFR is 3.5 g/10 min or more, for example, the difference in viscosity between the PVA resin layer and the biodegradable resin layer becomes small, so the processing conditions during laminate film formation can be varied. Excellent handling properties. The MFR is more preferably 4.5 g/10 min or more, and even more preferably 5.5 g/10 min or more. Further, as above, from the viewpoint of processability, MFR is preferably 20.0 g/10 min or less, more preferably 10.0 g/10 min or less, and 8.0 g/10 min or less. More preferred.
MFR can be measured by method A according to JIS K 7210 (1999).
 本実施形態の酸変性ポリエステル系樹脂組成物(A)は、積層体の接着剤組成物として好適に使用できる。例えば、本実施形態の酸変性ポリエステル系樹脂組成物(A)は、表面物性の異なるPVA系樹脂(B)層と生分解性樹脂(C)層を積層する際の接着層に用いられる。
 以下、積層体を構成するPVA系樹脂(B)層と生分解性樹脂(C)層について説明する。
The acid-modified polyester resin composition (A) of this embodiment can be suitably used as an adhesive composition for a laminate. For example, the acid-modified polyester resin composition (A) of the present embodiment is used as an adhesive layer when laminating a PVA resin (B) layer and a biodegradable resin (C) layer having different surface properties.
Hereinafter, the PVA resin (B) layer and the biodegradable resin (C) layer that constitute the laminate will be explained.
〔PVA系樹脂(B)層〕
 PVA系樹脂(B)層は、後述する本実施形態の積層体のガスバリア層に用いられることが好ましく、特に本実施形態の積層体のガスバリア性を担うことが好ましい。
 PVA系樹脂(B)層は、後述する生分解性樹脂(C)層に対し、その少なくとも一方の面に前述の酸変性ポリエステル系樹脂組成物(A)を含有する層(接着層)を介して積層されることが好ましい。
[PVA resin (B) layer]
The PVA resin (B) layer is preferably used as a gas barrier layer of the laminate of the present embodiment, which will be described later, and is particularly preferably responsible for the gas barrier properties of the laminate of the present embodiment.
The PVA resin (B) layer is attached to the biodegradable resin (C) layer described below with a layer (adhesive layer) containing the acid-modified polyester resin composition (A) described above on at least one surface thereof. It is preferable that the two layers be laminated together.
 本実施形態で用いられるPVA系樹脂(B)層は、PVA系樹脂(B)を主成分とする層であり、PVA系樹脂(B)を70質量%以上含有することが好ましく、より好ましくは80質量%以上含有し、さらに好ましくは90質量%以上含有する。上限は100質量%である。かかる含有量が70質量%以上であれば、ガスバリア性が充分となる。 The PVA resin (B) layer used in this embodiment is a layer containing PVA resin (B) as a main component, and preferably contains 70% by mass or more of PVA resin (B), more preferably It contains 80% by mass or more, more preferably 90% by mass or more. The upper limit is 100% by mass. If this content is 70% by mass or more, gas barrier properties will be sufficient.
 本実施形態で用いられるPVA系樹脂(B)は、ビニルエステル系単量体を重合して得られるポリビニルエステル系樹脂をケン化して得られる、ビニルアルコール構造単位を主体とする樹脂であり、ケン化度相当のビニルアルコール構造単位とビニルエステル構造単位から構成される。 The PVA resin (B) used in this embodiment is a resin mainly composed of vinyl alcohol structural units, which is obtained by saponifying a polyvinyl ester resin obtained by polymerizing a vinyl ester monomer. It is composed of vinyl alcohol structural units and vinyl ester structural units corresponding to the chemical degree.
 上記ビニルエステル系単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、経済的に酢酸ビニルが好ましく用いられる。 The above vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl benzoate. , vinyl versatate, etc., but vinyl acetate is preferably used economically.
 本実施形態で用いられるPVA系樹脂(B)の平均重合度(JIS K6726:1994に準拠して測定)は、200~1800であることが好ましく、300~1500がより好ましく、300~1000がさらに好ましい。 The average degree of polymerization (measured according to JIS K6726:1994) of the PVA resin (B) used in this embodiment is preferably 200 to 1800, more preferably 300 to 1500, and even more preferably 300 to 1000. preferable.
 かかる平均重合度が200以上であれば、PVA系樹脂(B)層の機械的強度が充分に得られる。また、かかる平均重合度が1800以下であれば、熱溶融成形によってPVA系樹脂(B)層を形成する場合に流動性が低下することを抑制でき、成形性が向上する。また、成形時におけるせん断発熱の異常発生を抑制でき、PVA系樹脂(B)が熱分解しづらくなる。 If the average degree of polymerization is 200 or more, sufficient mechanical strength of the PVA resin (B) layer can be obtained. Further, if the average degree of polymerization is 1800 or less, it is possible to suppress a decrease in fluidity when forming a PVA-based resin (B) layer by hot melt molding, and improve moldability. Further, abnormal occurrence of shear heat generation during molding can be suppressed, and the PVA resin (B) becomes difficult to thermally decompose.
 また、本実施形態で用いられるPVA系樹脂(B)のケン化度(JIS K6726:1994に準拠して測定)は、80~100モル%であることが好ましく、90~99.9モル%がより好ましく、98~99.9モル%がさらに好ましい。
 かかるケン化度が80モル%以上であると、ガスバリア性が向上する。
Further, the saponification degree (measured according to JIS K6726:1994) of the PVA resin (B) used in this embodiment is preferably 80 to 100 mol%, and 90 to 99.9 mol%. More preferably, 98 to 99.9 mol% is even more preferable.
When the degree of saponification is 80 mol% or more, gas barrier properties are improved.
 また、本実施形態では、PVA系樹脂(B)として、ポリビニルエステル系樹脂の製造時に各種単量体を共重合させ、これをケン化して得られたものや、未変性PVAに後変性によって各種官能基を導入した各種変性PVA系樹脂を用いることができる。 In this embodiment, the PVA resin (B) may be one obtained by copolymerizing various monomers during the production of polyvinyl ester resin and saponifying this, or one obtained by post-modifying unmodified PVA. Various modified PVA resins into which functional groups have been introduced can be used.
 ビニルエステル系単量体との共重合に用いられる単量体としては、例えば、エチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、3,4-ジヒドロキシ-1-ブテン等のヒドロキシ基含有α-オレフィン類およびそのアシル化物等の誘導体、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類、その塩、そのモノエステル、あるいはそのジアルキルエステル、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2-ジアルキル-4-ビニル-1,3-ジオキソラン、グリセリンモノアリルエーテル、3,4-ジアセトキシ-1-ブテン等のビニル化合物、酢酸イソプロペニル、1-メトキシビニルアセテート等の置換酢酸ビニル類、塩化ビニリデン、1,4-ジアセトキシ-2-ブテン、ビニレンカーボネート等が挙げられる。 Monomers used for copolymerization with vinyl ester monomers include, for example, olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, α-octadecene, and 3-buten-1-ol. , hydroxy group-containing α-olefins such as 4-penten-1-ol, 5-hexen-1-ol, 3,4-dihydroxy-1-butene and derivatives such as their acylated products, acrylic acid, methacrylic acid, croton acids, unsaturated acids such as maleic acid, maleic anhydride, itaconic acid, their salts, their monoesters, or their dialkyl esters, nitriles such as acrylonitrile, methacrylonitrile, amides such as diacetone acrylamide, acrylamide, methacrylamide, etc. , olefin sulfonic acids or their salts such as ethylene sulfonic acid, allyl sulfonic acid, meta-allylsulfonic acid, alkyl vinyl ethers, dimethylallyl vinyl ketone, N-vinylpyrrolidone, vinyl chloride, vinyl ethylene carbonate, 2,2-dialkyl-4 - Vinyl compounds such as vinyl-1,3-dioxolane, glycerin monoallyl ether, 3,4-diacetoxy-1-butene, substituted vinyl acetates such as isopropenyl acetate, 1-methoxyvinyl acetate, vinylidene chloride, 1,4 -diacetoxy-2-butene, vinylene carbonate and the like.
 また、後変性によって官能基が導入された変性PVA系樹脂としては、ジケテンとの反応によるアセトアセチル基を有するもの、エチレンオキサイドとの反応によるポリアルキレンオキサイド基を有するもの、エポキシ化合物等との反応によるヒドロキシアルキル基を有するもの、あるいは各種官能基を有するアルデヒド化合物をPVAと反応させて得られたもの等を挙げることができる。 In addition, modified PVA resins into which functional groups have been introduced through post-modification include those that have acetoacetyl groups through reaction with diketene, those that have polyalkylene oxide groups through reaction with ethylene oxide, and those that have polyalkylene oxide groups through reaction with epoxy compounds, etc. Examples include those having a hydroxyalkyl group according to the above, and those obtained by reacting aldehyde compounds having various functional groups with PVA.
 かかる変性PVA系樹脂中の変性種、すなわち共重合体中の各種単量体に由来する構成単位、あるいは後反応によって導入された官能基の含有量は、変性種によって特性が大きく異なるため一概には言えないが、1~20モル%であることが好ましく、2~10モル%の範囲がより好ましく用いられる。 The content of modified species in such modified PVA-based resins, that is, structural units derived from various monomers in the copolymer, or functional groups introduced by post-reactions, cannot be generalized because the properties vary greatly depending on the modified species. Although it cannot be said, it is preferably 1 to 20 mol%, more preferably 2 to 10 mol%.
 これらの各種変性PVA系樹脂の中でも、本実施形態においては、下記一般式(4)で示される側鎖に1,2-ジオール構造を有する構造単位(以下、「1,2-ジオール構造単位」と称することがある。)を有するPVA系樹脂が、後述する本実施形態の積層体の製造法において、溶融成形が容易になる点で好ましく用いられる。 Among these various modified PVA-based resins, in this embodiment, a structural unit having a 1,2-diol structure in the side chain represented by the following general formula (4) (hereinafter, "1,2-diol structural unit") is used. ) is preferably used in the method for producing a laminate of the present embodiment described later, since it facilitates melt molding.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 なお、かかる一般式(4)で表わされる1,2-ジオール構造単位中のR~Rは、それぞれ独立して、水素原子又は炭素数1~4の直鎖状又は分岐鎖状のアルキル基を表す。 Note that R 1 to R 4 in the 1,2-diol structural unit represented by the general formula (4) are each independently a hydrogen atom or a linear or branched alkyl having 1 to 4 carbon atoms. represents a group.
 該アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられ、該アルキル基は、必要に応じて、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の官能基を有していてもよい。 Examples of the alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group, and the alkyl group may optionally be a halogen group. , a hydroxyl group, an ester group, a carboxylic acid group, a sulfonic acid group, or other functional groups.
 また、一般式(4)で表わされる1,2-ジオール構造単位中のXは、単結合又は結合鎖を表す。
 かかる結合鎖としては、炭素数1~6の直鎖状又は分岐鎖状のアルキレン基、炭素数1~6の直鎖状又は分岐鎖状のアルケニレン基、炭素数1~6の直鎖状又は分岐鎖状のアルキニレン基、フェニレン基、ナフチレン基等の炭化水素(これらの炭化水素はフッ素、塩素、臭素等のハロゲン等で置換されていてもよい)の他、-O-、-(CHO)-、-(OCH-、-(CHO)CH-、-CO-、-COCO-、-CO(CHCO-、-CO(C)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR)-、-OSi(OR)-、-OSi(OR)O-、-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等(Rは各々独立して任意の置換基であり、水素原子、炭素数1~6の直鎖状又は分岐鎖状のアルキル基を表し、またtは1~5の整数を表す。)が挙げられる。
 中でも結合鎖は、製造時あるいは使用時の安定性の点で、炭素数1~6の直鎖状又は分岐鎖状のアルキレン基、特にメチレン基、あるいは-CHOCH-が好ましい。
Furthermore, X in the 1,2-diol structural unit represented by general formula (4) represents a single bond or a bonded chain.
Such bonded chains include linear or branched alkylene groups having 1 to 6 carbon atoms, linear or branched alkenylene groups having 1 to 6 carbon atoms, and linear or branched alkylene groups having 1 to 6 carbon atoms. In addition to hydrocarbons such as branched alkynylene groups, phenylene groups, and naphthylene groups (these hydrocarbons may be substituted with halogens such as fluorine, chlorine, and bromine), -O-, -(CH 2 O) t -, -(OCH 2 ) t -, -(CH 2 O) t CH 2 -, -CO-, -COCO-, -CO(CH 2 ) t CO-, -CO(C 6 H 4 ) CO-, -S-, -CS-, -SO-, -SO 2 - , -NR-, -CONR-, -NRCO-, -CSNR-, -NRCS-, -NRNR-, -HPO 4 -, - Si(OR) 2 -, -OSi(OR) 2 -, -OSi(OR) 2 O-, -Ti(OR) 2 -, -OTi(OR) 2 -, -OTi(OR) 2 O-, - Al(OR)-, -OAl(OR)-, -OAl(OR)O-, etc. (R is each independently any substituent, hydrogen atom, linear or branched chain having 1 to 6 carbon atoms) and t represents an integer of 1 to 5).
Among these, the bonding chain is preferably a linear or branched alkylene group having 1 to 6 carbon atoms, particularly a methylene group, or -CH 2 OCH 2 - from the viewpoint of stability during production or use.
 Xは、熱安定性の点や高温下や酸性条件下での安定性の点で単結合が最も好ましい。 X is most preferably a single bond in terms of thermal stability and stability under high temperatures and acidic conditions.
 一般式(4)で表わされる1,2-ジオール構造単位の中でも、R~Rがすべて水素原子であり、Xが単結合である、下記一般式(4’)で表わされる構造単位が最も好ましい。 Among the 1,2-diol structural units represented by general formula (4), the structural unit represented by general formula (4') below, in which R 1 to R 4 are all hydrogen atoms and X is a single bond, is Most preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 かかる側鎖に1,2-ジオール構造単位を有するPVA系樹脂の製造法としては、日本国特開2015-143356号公報の段落〔0026〕~〔0034〕に記載の方法等が挙げられる。 Examples of the method for producing a PVA-based resin having a 1,2-diol structural unit in the side chain include the method described in paragraphs [0026] to [0034] of Japanese Patent Application Publication No. 2015-143356.
 かかる側鎖に1,2-ジオール構造単位を有するPVA系樹脂に含まれる1,2-ジオール構造単位の含有量は、1~20モル%であることが好ましく、2~10モル%がより好ましく、3~8モル%のものがさらに好ましく用いられる。かかる含有量が1モル%以上であると、側鎖1,2-ジオール構造の効果が充分に得られ、また、かかる含有量が20モル%以下であると、高湿度でのガスバリア性の低下を抑制できる。 The content of 1,2-diol structural units contained in the PVA resin having 1,2-diol structural units in the side chain is preferably 1 to 20 mol%, more preferably 2 to 10 mol%. , 3 to 8 mol% is more preferably used. When the content is 1 mol% or more, the effect of the side chain 1,2-diol structure can be sufficiently obtained, and when the content is 20 mol% or less, the gas barrier properties at high humidity are reduced. can be suppressed.
 なお、PVA系樹脂中の1,2-ジオール構造単位の含有率は、PVA系樹脂を完全にケン化したもののH-NMRスペクトル(溶媒:DMSO-d6、内部標準:テトラメチルシラン)から求めることができる。該含有率は、具体的には1,2-ジオール構造単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトン等に由来するピーク面積から算出すればよい。 The content of 1,2-diol structural units in the PVA resin is determined from the 1 H-NMR spectrum of the completely saponified PVA resin (solvent: DMSO-d6, internal standard: tetramethylsilane). be able to. The content is specifically calculated from the peak area derived from hydroxyl protons, methine protons, and methylene protons in the 1,2-diol structural unit, methylene protons in the main chain, protons of hydroxyl groups connected to the main chain, etc. do it.
 また、本実施形態で用いられるPVA系樹脂(B)は、一種類であっても、二種類以上の混合物であってもよい。PVA系樹脂(B)が二種類以上の混合物である場合は、上述の未変性PVA同士、未変性PVAと一般式(4)で示される構造単位を有するPVA系樹脂、ケン化度、重合度、変性度等が異なる一般式(4)で示される構造単位を有するPVA系樹脂同士、未変性PVA、あるいは一般式(4)で示される構造単位を有するPVA系樹脂と他の変性PVA系樹脂等の組み合わせを用いることができる。 Furthermore, the PVA resin (B) used in this embodiment may be one type or a mixture of two or more types. When the PVA resin (B) is a mixture of two or more types, the unmodified PVA mentioned above, the unmodified PVA and the PVA resin having the structural unit represented by the general formula (4), the degree of saponification, and the degree of polymerization. , PVA resins having structural units represented by general formula (4) with different degrees of modification, unmodified PVA, or PVA resins having structural units represented by general formula (4) and other modified PVA resins. A combination of the following can be used.
 また、本実施形態で用いられるPVA系樹脂(B)層には、PVA系樹脂(B)以外にも熱安定剤、酸化防止剤、紫外線吸収剤、結晶核剤、帯電防止剤、難燃剤、可塑剤、滑剤、充填剤、滑剤、結晶核剤が配合されていてもよい。 In addition to the PVA resin (B), the PVA resin (B) layer used in this embodiment also includes a heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, an antistatic agent, a flame retardant, A plasticizer, lubricant, filler, lubricant, and crystal nucleating agent may be blended.
〔生分解性樹脂(C)層〕
 次に後述する本実施形態の積層体の外層に好ましく用いられる生分解性樹脂(C)層について説明する。かかる生分解性樹脂(C)層は、生分解性樹脂(C)を主成分とする層であり、生分解性樹脂(C)を70質量%以上含有することが好ましく、より好ましくは80質量%以上含有し、さらに好ましくは90質量%以上含有する。上限は100質量%である。
[Biodegradable resin (C) layer]
Next, a biodegradable resin (C) layer that is preferably used as the outer layer of the laminate of this embodiment, which will be described later, will be described. The biodegradable resin (C) layer is a layer containing biodegradable resin (C) as a main component, and preferably contains 70% by mass or more of biodegradable resin (C), more preferably 80% by mass. % or more, more preferably 90% by mass or more. The upper limit is 100% by mass.
 生分解性樹脂(C)としては、例えば、ポリ乳酸(C1)、アジピン酸/テレフタル酸/1,4-ブタンジオールの縮重合物(ポリブチレンアジペート・テレフタレート(C2))、コハク酸/1,4-ブタンジオールの縮重合物(ポリブチレンサクシネート(C3))、ポリグリコール酸等の脂肪族ポリエステル;変性でんぷん;カゼインプラスチック;セルロース等が挙げられ、これらは1種又は2種以上混合して用いることもできる。 Examples of the biodegradable resin (C) include polylactic acid (C1), a condensation product of adipic acid/terephthalic acid/1,4-butanediol (polybutylene adipate terephthalate (C2)), succinic acid/1, Condensation products of 4-butanediol (polybutylene succinate (C3)), aliphatic polyesters such as polyglycolic acid; modified starches; casein plastics; cellulose, etc., and these may be used singly or in combination of two or more. It can also be used.
 中でも、強度の点では、ポリ乳酸(C1)やポリブチレンアジペート・テレフタレート(C2)が好ましい。また、柔軟性や生分解性の点からポリブチレンサクシネート(C3)が好ましい。 Among these, polylactic acid (C1) and polybutylene adipate terephthalate (C2) are preferred in terms of strength. Furthermore, polybutylene succinate (C3) is preferred from the viewpoint of flexibility and biodegradability.
 ポリブチレンサクシネート(C3)は、コハク酸/1,4-ブタンジオールを主成分とする脂肪族ポリエステル系樹脂である。 Polybutylene succinate (C3) is an aliphatic polyester resin whose main components are succinic acid/1,4-butanediol.
 本実施形態で用いられるポリブチレンサクシネート(C3)は、これらコハク酸/1,4-ブタンジオール共重合体であることが好ましいが、特性を阻害しない程度の量、例えば10モル%以下であれば、コハク酸/1,4-ブタンジオール以外の共重合成分を含有するものであってもよい。 The polybutylene succinate (C3) used in this embodiment is preferably a succinic acid/1,4-butanediol copolymer, but it may be used in an amount that does not impair the properties, for example, 10 mol% or less. For example, it may contain a copolymer component other than succinic acid/1,4-butanediol.
 かかる共重合成分としては、例えば、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、3-ヒドロキシ吉草酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;カプロラクトン等のラクトン類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,4-ブタンジオール等の脂肪族ジオール類;コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸等の脂肪族二塩基酸を挙げることができる。 Such copolymerization components include, for example, aliphatic hydroxycarboxylic acids such as glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid; caprolactone, etc. Lactones; Aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,4-butanediol; Aliphatic diols such as succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, etc. Basic acids can be mentioned.
 また、本実施形態で用いられるポリブチレンサクシネート(C3)の重量平均分子量は、20,000~1,000,000であることが好ましく、30,000~300,000がより好ましく、40,000~200,000がさらに好ましい。かかる重量平均分子量が1,000,000以下であると、熱溶融成形時の溶融粘度が過剰に高くなることを抑制し、良好な製膜性が得られる。また、かかる重量平均分子量が20,000以上であれば、得られた積層体の機械的強度が充分となる。 Furthermore, the weight average molecular weight of the polybutylene succinate (C3) used in this embodiment is preferably 20,000 to 1,000,000, more preferably 30,000 to 300,000, and more preferably 40,000 to 1,000,000. ˜200,000 is more preferable. When the weight average molecular weight is 1,000,000 or less, the melt viscosity during hot melt molding is prevented from becoming excessively high, and good film formability can be obtained. Further, if the weight average molecular weight is 20,000 or more, the resulting laminate will have sufficient mechanical strength.
 かかる重量平均分子量は、溶離液としてのテトラヒドロフランと、40℃に加熱したカラム(ポリスチレンゲル)を用いて、ISO 16014―1:2019規格及びISO 16014-3:2019規格に従い、ポリスチレン等価量としてサイズ排除クロマトグラフィー(GPC、ゲル浸透クロマトグラフィー)により測定することができる。 The weight average molecular weight is determined by size exclusion as a polystyrene equivalent amount according to the ISO 16014-1:2019 standard and the ISO 16014-3:2019 standard using tetrahydrofuran as an eluent and a column (polystyrene gel) heated to 40°C. It can be measured by chromatography (GPC, gel permeation chromatography).
 かかるポリブチレンサクシネート(C3)の市販品としては、例えば、三菱ケミカル株式会社製「BioPBS」を挙げることができる。 An example of a commercially available product of such polybutylene succinate (C3) is "BioPBS" manufactured by Mitsubishi Chemical Corporation.
 また、本実施形態で用いられる生分解性樹脂(C)層には、生分解性樹脂(C)以外にも熱安定剤、酸化防止剤、紫外線吸収剤、結晶核剤、帯電防止剤、難燃剤、可塑剤、滑剤、充填剤、滑剤、結晶核剤等が配合されていてもよい。 In addition to the biodegradable resin (C), the biodegradable resin (C) layer used in this embodiment also includes a heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, an antistatic agent, and an antistatic agent. A repellent, a plasticizer, a lubricant, a filler, a lubricant, a crystal nucleating agent, etc. may be blended.
〔積層体〕
 本実施形態の積層体は、本実施形態の酸変性ポリエステル系樹脂組成物(A)を含有する層(以下、「酸変性ポリエステル系樹脂組成物(A)層」と称することがある。)を少なくとも一層有する。
[Laminated body]
The laminate of this embodiment includes a layer containing the acid-modified polyester resin composition (A) of this embodiment (hereinafter sometimes referred to as "acid-modified polyester resin composition (A) layer"). It has at least one layer.
 酸変性ポリエステル系樹脂組成物(A)層は、酸変性ポリエステル系樹脂組成物(A)を主成分とする層であり、酸変性ポリエステル系樹脂組成物(A)を70質量%以上含有することが好ましく、より好ましくは80質量%以上含有し、さらに好ましくは90質量%以上含有する。上限は100質量%である。 The acid-modified polyester resin composition (A) layer is a layer containing the acid-modified polyester resin composition (A) as a main component, and contains 70% by mass or more of the acid-modified polyester resin composition (A). The content is preferably 80% by mass or more, and even more preferably 90% by mass or more. The upper limit is 100% by mass.
 本実施形態で用いられる酸変性ポリエステル系樹脂組成物(A)層は、酸変性ポリエステル系樹脂組成物(A)以外にも、熱安定剤、酸化防止剤、紫外線吸収剤、結晶核剤、帯電防止剤、難燃剤、可塑剤、滑剤、充填剤滑剤、結晶核剤等を含有してもよい。 The acid-modified polyester resin composition (A) layer used in this embodiment contains, in addition to the acid-modified polyester resin composition (A), a heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, a charging It may contain inhibitors, flame retardants, plasticizers, lubricants, filler lubricants, crystal nucleating agents, and the like.
 本実施形態の積層体は、酸変性ポリエステル系樹脂組成物(A)層以外の層として、生分解性樹脂(C)層を有することが好ましい。
 中でも、本実施形態の積層体は、ガスバリア層にPVA系樹脂(B)層、外層に生分解性樹脂(C)層を用いたものが好ましい。
The laminate of this embodiment preferably has a biodegradable resin (C) layer as a layer other than the acid-modified polyester resin composition (A) layer.
Among these, the laminate of this embodiment preferably uses a PVA resin (B) layer as the gas barrier layer and a biodegradable resin (C) layer as the outer layer.
 また、本実施形態の積層体は、PVA系樹脂(B)層、及び生分解性樹脂(C)層との間に接着層を設けた積層体であって、上記接着層が、本実施形態の酸変性ポリエステル系樹脂組成物(A)を含有することが好ましい。積層体は、3~15層であることが好ましく、より好ましくは3~7層、特に好ましくは5~7層の層構造を有する。 Further, the laminate of this embodiment is a laminate in which an adhesive layer is provided between the PVA resin (B) layer and the biodegradable resin (C) layer, and the adhesive layer is It is preferable to contain the acid-modified polyester resin composition (A). The laminate preferably has a layer structure of 3 to 15 layers, more preferably 3 to 7 layers, particularly preferably 5 to 7 layers.
 本実施形態の積層体の構成は特に限定されないが、生分解性樹脂(C)層をc、PVA系樹脂(B)層をb、酸変性ポリエステル系樹脂組成物(A)層(接着層)をaとするとき、c/a/b、c/a/b/a/c、c/b/a/b/a/b/c等、任意の組み合わせが可能である。なお、積層体中に生分解性樹脂(C)層が複数存在する場合、複数の生分解性樹脂(C)層は、それぞれ、同一のものでもよく、異なったものでもよい。積層体中にPVA系樹脂(B)層が複数存在する場合及び酸変性ポリエステル系樹脂組成物(A)層が複数存在する場合においても同様である。 The structure of the laminate of this embodiment is not particularly limited, but the biodegradable resin (C) layer is c, the PVA resin (B) layer is b, and the acid-modified polyester resin composition (A) layer (adhesive layer). When a is any combination such as c/a/b, c/a/b/a/c, c/b/a/b/a/b/c, etc., is possible. In addition, when a plurality of biodegradable resin (C) layers exist in the laminate, the plurality of biodegradable resin (C) layers may be the same or different. The same applies when a plurality of PVA resin (B) layers are present in the laminate and when a plurality of acid-modified polyester resin composition (A) layers are present.
 なお、通常は、PVA系樹脂(B)層の吸湿によるガスバリア性能の低下を防止するため、PVA系樹脂(B)層のうち、外気、あるいは水分を含有する内容物に接触する部分には生分解性樹脂(C)層を設ける層構成であることが好ましい。 In addition, in order to prevent the gas barrier performance from deteriorating due to moisture absorption in the PVA resin (B) layer, the parts of the PVA resin (B) layer that come into contact with the outside air or contents containing moisture are usually It is preferable to have a layer structure in which a decomposable resin (C) layer is provided.
 本実施形態の積層体の厚さは、1~30,000μmであることが好ましく、3~13,000μmがより好ましく、10~3,000μmの範囲がさらに好ましく用いられる。 The thickness of the laminate of this embodiment is preferably 1 to 30,000 μm, more preferably 3 to 13,000 μm, and even more preferably 10 to 3,000 μm.
 積層体を構成する各層の厚さとしては、酸変性ポリエステル系樹脂組成物(A)層(接着層)の厚さは、0.1~500μmであることが好ましく、より好ましくは0.15~250μm、特に好ましくは0.5~50μmである。かかる酸変性ポリエステル系樹脂組成物(A)層の厚さが500μm以下であれば、外観が良好となり、また、かかる酸変性ポリエステル系樹脂組成物(A)層の厚さが1μm以上であれば、接着力の低下を抑制できる。 Regarding the thickness of each layer constituting the laminate, the thickness of the acid-modified polyester resin composition (A) layer (adhesive layer) is preferably 0.1 to 500 μm, more preferably 0.15 to 500 μm. 250 μm, particularly preferably 0.5 to 50 μm. If the thickness of this acid-modified polyester resin composition (A) layer is 500 μm or less, the appearance will be good, and if the thickness of this acid-modified polyester resin composition (A) layer is 1 μm or more, , it is possible to suppress a decrease in adhesive strength.
 また、PVA系樹脂(B)層の厚さは、0.1~1,000μmであることが好ましく、より好ましくは0.3~500μm、特に好ましくは1~100μmである。かかるPVA系樹脂(B)層の厚さが1,000μm以下であれば、積層体が硬く脆くなることを抑制でき、また、かかるPVA系樹脂(B)層の厚さが0.1μm以上であれば、ガスバリア性が向上する。 Furthermore, the thickness of the PVA resin (B) layer is preferably 0.1 to 1,000 μm, more preferably 0.3 to 500 μm, particularly preferably 1 to 100 μm. If the thickness of the PVA resin (B) layer is 1,000 μm or less, the laminate can be prevented from becoming hard and brittle, and if the PVA resin (B) layer has a thickness of 0.1 μm or more, If it exists, gas barrier properties will be improved.
 また、生分解性樹脂(C)層の厚さは、0.4~14,000μmであることが好ましく、より好ましくは1~6,000μm、特に好ましくは4~1,400μmである。かかる生分解性樹脂(C)層の厚さが14,000μm以下であれば、積層体が硬くなりすぎることを抑制でき、また、かかる生分解性樹脂(C)層の厚さが0.4μm以上であれば、積層体が脆くなることを抑制できる。 Furthermore, the thickness of the biodegradable resin (C) layer is preferably 0.4 to 14,000 μm, more preferably 1 to 6,000 μm, particularly preferably 4 to 1,400 μm. If the thickness of the biodegradable resin (C) layer is 14,000 μm or less, the laminate can be prevented from becoming too hard, and the thickness of the biodegradable resin (C) layer is 0.4 μm or less. If it is above, it is possible to suppress the laminate from becoming brittle.
 また、生分解性樹脂(C)層とPVA系樹脂(B)層の厚さの比(生分解性樹脂(C)層の厚さ/PVA系樹脂(B)層の厚さ)は、各層が複数ある場合は、その厚さの合計値同士の比で、1~100であることが好ましく、より好ましくは2.5~50である。かかる比が100以下であると、バリア性が向上し、かかる比が1以上であると積層体が硬く脆くなることを抑制できる。 In addition, the ratio of the thickness of the biodegradable resin (C) layer and the PVA resin (B) layer (thickness of the biodegradable resin (C) layer/thickness of the PVA resin (B) layer) is When there are a plurality of thicknesses, the ratio of their total thicknesses is preferably 1 to 100, more preferably 2.5 to 50. When this ratio is 100 or less, the barrier properties are improved, and when this ratio is 1 or more, the laminate can be prevented from becoming hard and brittle.
 また、本実施形態の積層体と酸変性ポリエステル系樹脂組成物(A)層(接着層)の厚さの比(酸変性ポリエステル系樹脂組成物(A)層の厚さ/本実施形態の積層体の厚さ)は、酸変性ポリエステル系樹脂組成物(A)層(接着層)が複数ある場合は、その厚さの合計値の比で、0.005~0.5であることが好ましく、より好ましくは0.01~0.3である。かかる比が0.5以下であれば、外観が向上し、かかる比が0.005以上であると接着力が向上する。 Moreover, the ratio of the thickness of the laminate of this embodiment and the acid-modified polyester resin composition (A) layer (adhesive layer) (thickness of the acid-modified polyester resin composition (A) layer/laminate of this embodiment) When there are multiple acid-modified polyester resin composition (A) layers (adhesive layers), the ratio of the total thickness of the acid-modified polyester resin composition (A) is preferably 0.005 to 0.5. , more preferably 0.01 to 0.3. If this ratio is 0.5 or less, the appearance will be improved, and if this ratio is 0.005 or more, the adhesive strength will be improved.
 本実施形態の積層体は、従来公知の成形方法によって製造することができ、具体的には溶融成形法や溶液状態からの成形法を用いることができる。 The laminate of this embodiment can be manufactured by a conventionally known molding method, and specifically, a melt molding method or a molding method from a solution state can be used.
 例えば、溶融成形法としては、生分解性樹脂(C)のフィルム、あるいはシートに、酸変性ポリエステル系樹脂組成物(A)、PVA系樹脂(B)を順次、あるいは同時に溶融押出ラミネートする方法、逆にPVA系樹脂(B)のフィルム、あるいはシートに、酸変性ポリエステル系樹脂組成物(A)、生分解性樹脂(C)を順次、あるいは同時に溶融押出ラミネートする方法、又は、生分解性樹脂(C)、酸変性ポリエステル系樹脂組成物(A)、PVA系樹脂(B)を共押出する方法が挙げられる。 For example, the melt molding method includes a method of melt extrusion laminating the acid-modified polyester resin composition (A) and the PVA resin (B) sequentially or simultaneously on a film or sheet of the biodegradable resin (C); Conversely, a method of melt-extrusion laminating the acid-modified polyester resin composition (A) and the biodegradable resin (C) sequentially or simultaneously on a film or sheet of the PVA resin (B), or (C), an acid-modified polyester resin composition (A), and a method of co-extruding the PVA resin (B).
 また、溶液状態からの成形法としては、生分解性樹脂(C)のフィルム、あるいはシート等に酸変性ポリエステル系樹脂組成物(A)を良溶媒に溶解した溶液を溶液コートし、乾燥後、PVA系樹脂(B)の水溶液を溶液コートする方法等を挙げることができる。 In addition, as a molding method from a solution state, a film or sheet of biodegradable resin (C) is coated with a solution of acid-modified polyester resin composition (A) dissolved in a good solvent, and after drying, Examples include a method of solution coating with an aqueous solution of PVA resin (B).
 中でも、一工程で製造でき、層間接着性が優れた積層体が得られる点で溶融成形法が好ましく、特に共押出法が好ましく用いられる。そして、かかる溶融成形法を用いる場合には、PVA系樹脂(B)として側鎖に1,2-ジオール構造単位を有するPVA系樹脂を用いることが好ましい。 Among these, the melt molding method is preferred because it can be produced in one step and a laminate with excellent interlayer adhesion can be obtained, and the coextrusion method is particularly preferably used. When such a melt molding method is used, it is preferable to use a PVA-based resin having a 1,2-diol structural unit in its side chain as the PVA-based resin (B).
 上記共押出法においては、例えば具体的にはインフレーション法、Tダイ法、マルチマニーホールドダイ法、フィードブロック法、マルチスロットダイ法が挙げられる。ダイスの形状としてはTダイス、丸ダイス等を使用することができる。
 溶融押出時の溶融成形温度は、140~250℃であることが好ましく、より好ましくは160~230℃の範囲が用いられる。
Specific examples of the coextrusion method include an inflation method, a T-die method, a multi-manifold die method, a feed block method, and a multi-slot die method. As for the shape of the dice, T dice, round dice, etc. can be used.
The melt molding temperature during melt extrusion is preferably 140 to 250°C, more preferably 160 to 230°C.
 本実施形態の積層体は、さらに加熱延伸処理されたものであってもよく、かかる延伸処理により、強度の向上や、ガスバリア性の向上が期待できる。 The laminate of this embodiment may be further subjected to heat stretching treatment, and such stretching treatment can be expected to improve strength and gas barrier properties.
 特に、本実施形態の積層体において、PVA系樹脂(B)として側鎖に1,2-ジオール構造単位を有するPVA系樹脂を用いると、延伸性が良好となる。 Particularly, in the laminate of the present embodiment, when a PVA-based resin having a 1,2-diol structural unit in the side chain is used as the PVA-based resin (B), stretchability is improved.
 なお、上記延伸処理等については、公知の延伸方法を採用することができる。
 例えば具体的には、多層構造体シートの両耳を把んで拡幅する一軸延伸、二軸延伸;多層構造体シートを、金型を用いて延伸加工する深絞成形法、真空成形法、圧空成形法、真空圧空成形法等の金型成形法;パリソン等の予備成形された多層構造体を、チューブラー延伸法、延伸ブロー法等で加工する方法が挙げられる。
Note that for the above-mentioned stretching treatment, etc., a known stretching method can be adopted.
For example, specifically, uniaxial stretching and biaxial stretching in which a multilayer structure sheet is widened by gripping both edges; deep drawing, vacuum forming, and pressure forming in which a multilayer structure sheet is stretched using a mold. and mold forming methods such as vacuum-pressure forming methods; methods of processing a preformed multilayer structure such as a parison by a tubular drawing method, a stretch-blowing method, and the like.
 かかる延伸法として、フィルムやシート状の成形物を目的とする場合、一軸延伸、二軸延伸法を採用することが好ましい。 As such a stretching method, when the purpose is to produce a film or sheet-like molded product, it is preferable to employ uniaxial stretching or biaxial stretching.
 また、深絞成形法、真空成形法、圧空成形法、真空圧空成形法等の金型成形方法の場合は、積層体を、熱風オーブン、加熱ヒーター式オーブン又は両者の併用等により均一に加熱して、チャック、プラグ、真空力、圧空力等により延伸することが好ましい。 In addition, in the case of mold forming methods such as deep drawing, vacuum forming, pressure forming, and vacuum pressure forming, the laminate is uniformly heated in a hot air oven, heater type oven, or a combination of both. It is preferable to stretch the film using a chuck, a plug, a vacuum force, a compressed air force, or the like.
 カップやトレイ等の、絞り比(成形品の深さ(mm)/成形品の最大直径(mm))が通常0.1~3である成形物を目的とする場合、深絞成形法、真空成形法、圧空成形法、真空圧空成形法等の金型を用いて延伸加工する金型成形方法を採用することが好ましい。 When aiming at molded products such as cups and trays whose drawing ratio (depth of molded product (mm)/maximum diameter of molded product (mm)) is usually 0.1 to 3, deep drawing method, vacuum It is preferable to employ a mold forming method in which stretching is performed using a mold such as a molding method, a pressure forming method, a vacuum pressure forming method, or the like.
 かくして得られた本実施形態の積層体は、例えば、生分解性樹脂(C)層と酸変性ポリエステル系樹脂組成物(A)層、PVA系樹脂(B)層と酸変性ポリエステル系樹脂組成物(A)層のいずれの層間でも強い接着力を有する。 The thus obtained laminate of this embodiment includes, for example, a biodegradable resin (C) layer and an acid-modified polyester resin composition (A) layer, a PVA-based resin (B) layer and an acid-modified polyester resin composition. (A) It has strong adhesion between any of the layers.
 また、酸変性ポリエステル系樹脂組成物(A)、生分解性樹脂(C)、PVA系樹脂(B)はいずれも生分解性であり、酸変性ポリエステル系樹脂組成物(A)層を少なくとも一層有する本実施形態の積層体も生分解性に優れる。 In addition, the acid-modified polyester resin composition (A), the biodegradable resin (C), and the PVA-based resin (B) are all biodegradable, and at least one layer of the acid-modified polyester resin composition (A) is used. The laminate of this embodiment also has excellent biodegradability.
 本実施形態の積層体は、生分解するため、コンポストにそのまま捨てることが出来るもの、例えば、コーヒーカプセル(カプセル式コーヒーメーカー用のコーヒー豆容器)、シュリンク用フィルム、その他食料・飲料品の容器に好適に用いられる。 Since the laminate of this embodiment is biodegradable, it can be used as something that can be thrown away into compost as is, such as coffee capsules (coffee bean containers for capsule coffee makers), shrink films, and other containers for food and beverages. Suitably used.
 更に、本実施形態の積層体がPVA系樹脂(B)層を有する場合、PVA系樹脂(B)層を水に溶解させて除き、残った非水溶性樹脂のみをリサイクルすることもできる。 Furthermore, when the laminate of this embodiment has a PVA resin (B) layer, the PVA resin (B) layer can be dissolved in water and removed, and only the remaining water-insoluble resin can be recycled.
 以下に、実施例を挙げて、本発明を具体的に説明するが、本発明はその要旨を超えない限り、実施例の記載に限定されるものではない。
 尚、例中、「部」、「%」とあるのは、質量基準を意味する。
The present invention will be specifically explained below with reference to examples, but the present invention is not limited to the description of the examples unless it exceeds the gist thereof.
In addition, in the examples, "parts" and "%" mean mass standards.
[実施例1]
〔酸変性ポリエステル系樹脂組成物(A)の作製〕
 原料のポリエステル系樹脂(X’)としてコハク酸/アジピン酸/1,4-ブタンジオール縮重合物であるポリブチレンサクシネートアジペート(PBSA)(三菱ケミカル株式会社製「BioPBS FD92PM」)100部、無水マレイン酸0.40部、ラジカル開始剤として2,5-ジメチル-2,5-ビス(t-ブチルオキシ)ヘキサン(化薬ヌーリオン株式会社製「トリゴノックス 101―45D―PD」)0.44部、共役二重結合を有する脂肪族化合物としてソルビン酸0.46部、酸化防止剤として3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオン酸(BASF社製「イルガノックス1010」)0.46部をドライブレンドした後、これを二軸押出機にて下記条件で溶融混練し、ストランド状に押出し、水冷後、ペレタイザーでカットし、円柱形ペレットの酸変性ポリエステル系樹脂組成物(A)を得た。
[Example 1]
[Preparation of acid-modified polyester resin composition (A)]
As the raw material polyester resin (X'), 100 parts of polybutylene succinate adipate (PBSA) ("BioPBS FD92PM" manufactured by Mitsubishi Chemical Corporation), which is a succinic acid/adipic acid/1,4-butanediol condensation product, anhydrous. 0.40 parts of maleic acid, 0.44 parts of 2,5-dimethyl-2,5-bis(t-butyloxy)hexane (“Trigonox 101-45D-PD” manufactured by Kayaku Nourion Co., Ltd.) as a radical initiator, conjugated 0.46 parts of sorbic acid as an aliphatic compound having a double bond, and 3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionic acid ("Irganox" manufactured by BASF) as an antioxidant. After dry-blending 0.46 parts of 1010''), this was melt-kneaded using a twin-screw extruder under the following conditions, extruded into strands, cooled with water, and cut with a pelletizer to form acid-modified polyester resin into cylindrical pellets. A composition (A) was obtained.
 二軸押出機
 スクリュー直径(D):15mm
 L(スクリュー長さ)/D:60
 スクリュー回転数:200rpm
 メッシュ:60/90/60mesh
 加工温度:160℃
Twin screw extruder screw diameter (D): 15mm
L (screw length)/D: 60
Screw rotation speed: 200rpm
Mesh: 60/90/60mesh
Processing temperature: 160℃
〔MFRの測定〕
 JIS K 7210(1999)に従い、A法によりメルトフローレート(MFR)を測定した。測定温度は210℃、荷重は2160gとした。
 結果を表1に示す。
[Measurement of MFR]
Melt flow rate (MFR) was measured by method A according to JIS K 7210 (1999). The measurement temperature was 210°C and the load was 2160g.
The results are shown in Table 1.
〔PVA系樹脂(B)の作製〕
 還流冷却器、滴下漏斗、撹拌機を備えた反応容器に、酢酸ビニル68.0部、メタノール23.8部、3,4-ジアセトキシ-1-ブテン8.2部を仕込み、アゾビスイソブチロニトリルを0.3モル%(対仕込み酢酸ビニル)投入し、撹拌しながら窒素気流下で温度を上昇させ、重合を開始した。酢酸ビニルの重合率が90%となった時点で、m-ジニトロベンゼンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液を得た。
[Preparation of PVA resin (B)]
A reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer was charged with 68.0 parts of vinyl acetate, 23.8 parts of methanol, and 8.2 parts of 3,4-diacetoxy-1-butene. 0.3 mol % of nitrile (based on the charged vinyl acetate) was added, and the temperature was raised under a nitrogen stream while stirring to initiate polymerization. When the polymerization rate of vinyl acetate reaches 90%, m-dinitrobenzene is added to terminate the polymerization, and then unreacted vinyl acetate monomer is removed from the system by blowing methanol vapor to complete the copolymerization. A methanol solution of the combination was obtained.
 ついで、上記メタノール溶液をさらにメタノールで希釈し、濃度45%に調整してニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムの2%メタノール溶液を共重合体中の酢酸ビニル構造単位および3,4-ジアセトキシ-1-ブテン構造単位の合計量1モルに対して10.5ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、一般式(4’)で表されるR~Rがすべて水素原子であり、Xが単結合である側鎖に1,2-ジオール構造単位を有するPVA系樹脂(B)を作製した。 Next, the above methanol solution was further diluted with methanol, adjusted to a concentration of 45%, and charged into a kneader.While maintaining the solution temperature at 35°C, a 2% methanol solution of sodium hydroxide was added to the vinyl acetate structural unit in the copolymer. and 3,4-diacetoxy-1-butene structural units at a ratio of 10.5 mmol to 1 mole of the total amount, and saponification was performed. As saponification progresses, the saponified product precipitates, and when it becomes particulate, it is filtered out, thoroughly washed with methanol, and dried in a hot air dryer to obtain R 1 ~ represented by the general formula (4'). A PVA resin (B) having a 1,2-diol structural unit in the side chain in which R 4 is all hydrogen atoms and X is a single bond was produced.
 得られたPVA系樹脂(B)のケン化度は、残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンの加水分解に要するアルカリ消費量にて分析したところ、99.2モル%であった。 The degree of saponification of the obtained PVA-based resin (B) was analyzed based on the amount of alkali consumed for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene, and was found to be 99.2 mol%. .
 また、PVA系樹脂(B)の平均重合度は、JIS K 6726:1994に準じて分析を行ったところ、450であった。
 また、1,2-ジオール構造単位の含有量は、H-NMR(300MHzプロトンNMR、d6-DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、6モル%であった。
Further, the average degree of polymerization of the PVA resin (B) was found to be 450 when analyzed according to JIS K 6726:1994.
In addition, the content of 1,2-diol structural units was calculated from the integral value measured by 1 H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard: tetramethylsilane, 50 ° C.). It was 6 mol%.
〔積層体の作製〕
 ポリブチレンサクシネート(C3)(三菱ケミカル株式会社製「BioPBS FZ91PM」)、PVA系樹脂(B)、酸変性ポリエステル系樹脂組成物(A)を用い、押出機を5台備えた5種5層多層製膜装置にて、ポリブチレンサクシネート(C3)層/酸変性ポリエステル系樹脂組成物(A)層/PVA系樹脂(B)層/酸変性ポリエステル系樹脂組成物(A)層/ポリブチレンサクシネート(C3)層の3種5層構造の積層体を作製した。得られた積層体の厚さは100μmであり、各層の厚さは、30μm/10μm/20μm/10μm/30μmであった。
 なお、各押出機、および冷却の設定温度は下記の通りであった。
[Preparation of laminate]
Using polybutylene succinate (C3) (“BioPBS FZ91PM” manufactured by Mitsubishi Chemical Corporation), PVA resin (B), and acid-modified polyester resin composition (A), 5 types and 5 layers equipped with 5 extruders. In a multilayer film forming apparatus, polybutylene succinate (C3) layer/acid-modified polyester resin composition (A) layer/PVA resin (B) layer/acid-modified polyester resin composition (A) layer/polybutylene A laminate having a five-layer structure of three types of succinate (C3) layers was produced. The thickness of the obtained laminate was 100 μm, and the thickness of each layer was 30 μm/10 μm/20 μm/10 μm/30 μm.
The temperature settings for each extruder and cooling were as follows.
設定温度
(C1~C3:各シリンダー、H:ヘッド、AD:アダプター、D1~5:ダイスを示す。)
 ポリブチレンサクシネート(C3):C1/C2/H/AD=140/160/160/160℃
 PVA系樹脂(B): C1/C2/C3/H/AD=190/200/210/200/190℃
 酸変性ポリエステル系樹脂組成物(A): C1/C2/C3/H/AD=180/200/210/200/190℃
 ダイス: D1/D2/D3/D4/D5=190/190/190/190/190℃
 冷却温度:7℃
Set temperature (C1 to C3: each cylinder, H: head, AD: adapter, D1 to 5: dice.)
Polybutylene succinate (C3): C1/C2/H/AD=140/160/160/160°C
PVA resin (B): C1/C2/C3/H/AD=190/200/210/200/190°C
Acid-modified polyester resin composition (A): C1/C2/C3/H/AD=180/200/210/200/190°C
Dice: D1/D2/D3/D4/D5=190/190/190/190/190℃
Cooling temperature: 7℃
[実施例2]
 実施例1において、無水マレイン酸0.34部、共役二重結合を有する脂肪族化合物としてソルビン酸0.39部に変更した以外、実施例1と同様の方法で、円柱形ペレットの酸変性ポリエステル系樹脂組成物(A)を作製し、積層体を作製した。
[Example 2]
Cylindrical pellets of acid-modified polyester were prepared in the same manner as in Example 1, except that 0.34 parts of maleic anhydride and 0.39 parts of sorbic acid were used as the aliphatic compound having a conjugated double bond. A resin composition (A) was produced, and a laminate was produced.
[実施例3]
 実施例1において、無水マレイン酸0.29部、ラジカル開始剤として2,5-ジメチル-2,5-ビス(t-ブチルオキシ)ヘキサン(化薬ヌーリオン株式会社製「トリゴノックス 101―45D―PD」)0.38部、共役二重結合を有する脂肪族化合物としてソルビン酸0.34部に変更した以外、実施例1と同様の方法で円柱形ペレットの酸変性ポリエステル系樹脂組成物(A)を作製し、積層体を作製した。
[Example 3]
In Example 1, 0.29 parts of maleic anhydride, 2,5-dimethyl-2,5-bis(t-butyloxy)hexane ("Trigonox 101-45D-PD" manufactured by Kayaku Nourion Co., Ltd.) as a radical initiator An acid-modified polyester resin composition (A) in the form of cylindrical pellets was prepared in the same manner as in Example 1, except that the aliphatic compound having a conjugated double bond was changed to 0.38 parts and 0.34 parts of sorbic acid. Then, a laminate was produced.
[実施例4]
 実施例1において、共役二重結合を有する脂肪族化合物としてソルビン酸Na0.55部に変更した以外、実施例1と同様の方法で円柱形ペレットの酸変性ポリエステル系樹脂組成物(A)を作製し、積層体を作製した。
[Example 4]
An acid-modified polyester resin composition (A) in the form of cylindrical pellets was prepared in the same manner as in Example 1, except that 0.55 parts of Na sorbate was used as the aliphatic compound having a conjugated double bond. Then, a laminate was produced.
[実施例5]
 実施例1において、無水マレイン酸0.34部、共役二重結合を有する脂肪族化合物としてソルビン酸Na0.47部に変更した以外、実施例1と同様の方法で円柱形ペレットの酸変性ポリエステル系樹脂組成物(A)を作製し、積層体を作製した。
[Example 5]
Acid-modified polyester-based cylindrical pellets were prepared in the same manner as in Example 1, except that 0.34 parts of maleic anhydride and 0.47 parts of Na sorbate were used as the aliphatic compound having a conjugated double bond. A resin composition (A) was produced, and a laminate was produced.
[比較例1]
 実施例1において、共役二重結合を有する脂肪族化合物を添加しなかったこと以外は実施例1と同様の方法で酸変性ポリエステル系樹脂組成物(A)を作製し、積層体を作製した。なお、比較例1のラジカル開始剤量は0.44部に合わせると増粘により加工不可なので0.13部添加した。
[Comparative example 1]
In Example 1, an acid-modified polyester resin composition (A) was produced in the same manner as in Example 1 except that an aliphatic compound having a conjugated double bond was not added, and a laminate was produced. The amount of radical initiator in Comparative Example 1 was 0.13 parts because if the amount was adjusted to 0.44 parts, processing would be impossible due to increased viscosity.
[比較例2]
 実施例1において、共役二重結合を有する脂肪族化合物に代えて、共役二重結合を有する芳香族化合物であるケイ皮酸エチルを添加した以外は実施例1と同様に酸変性ポリエステル系樹脂組成物(A)を作製し、積層体を作製した。なお、共役二重結合を有する脂肪族化合物の添加量は酸変性ポリエステル系樹脂組成物(A)に対するモル数で合わせている。
[Comparative example 2]
An acid-modified polyester resin composition was prepared in the same manner as in Example 1 except that ethyl cinnamate, which is an aromatic compound having a conjugated double bond, was added instead of the aliphatic compound having a conjugated double bond. A product (A) was produced, and a laminate was produced. Note that the amount of the aliphatic compound having a conjugated double bond added is determined by the number of moles relative to the acid-modified polyester resin composition (A).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例1~5の酸変性ポリエステル系樹脂組成物(A)は、比較例1、2と比較してMFRが大きく、製膜時の流動性が向上し加工取扱性に優れるものであった。また、多層製膜を実施し加工取扱性に優れることを確認した。
 一方、共役二重結合を有する脂肪族化合物を含有しなかった比較例1の酸変性ポリエステル系樹脂組成物(A)は、MFRが小さかった。また、共役二重結合を有する脂肪族化合物に代えて、共役二重結合を有する芳香族化合物であるケイ皮酸エチルを用いた比較例2の酸変性ポリエステル系樹脂組成物(A)は、MFRの低下が大きく、加工取扱性に劣るものであった。
The acid-modified polyester resin compositions (A) of Examples 1 to 5 had a larger MFR than Comparative Examples 1 and 2, had improved fluidity during film formation, and had excellent processability. In addition, we performed multilayer film formation and confirmed that it has excellent processing and handling properties.
On the other hand, the acid-modified polyester resin composition (A) of Comparative Example 1, which did not contain an aliphatic compound having a conjugated double bond, had a small MFR. Furthermore, the acid-modified polyester resin composition (A) of Comparative Example 2, in which ethyl cinnamate, which is an aromatic compound having a conjugated double bond, was used instead of the aliphatic compound having a conjugated double bond, had a MFR of There was a large decrease in the processability, and the processing and handling properties were poor.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2022年3月28日出願の日本特許出願(特願2022-051566)に基づくものであり、その内容はここに参照として取り込まれる。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2022-051566) filed on March 28, 2022, the contents of which are incorporated herein by reference.
 本発明の酸変性ポリエステル系樹脂組成物(A)は、PVA系樹脂(B)層と生分解性樹脂(C)層との接着層として好適に用いることが出来る。
 得られた積層体は、生分解性であるため、コンポストにそのまま捨てることが出来るもの、例えば、コーヒーカプセル(カプセル式コーヒーメーカー用のコーヒー豆容器)、シュリンク用フィルム、その他食料・飲料品の容器に好適に用いられる。
The acid-modified polyester resin composition (A) of the present invention can be suitably used as an adhesive layer between a PVA resin (B) layer and a biodegradable resin (C) layer.
The obtained laminate is biodegradable, so it can be used as something that can be thrown away into the compost as is, such as coffee capsules (coffee bean containers for capsule coffee makers), shrink film, and other containers for food and beverages. It is suitably used for.

Claims (6)

  1.  酸変性ポリエステル系樹脂及び共役二重結合を有する脂肪族化合物を含有する、酸変性ポリエステル系樹脂組成物。 An acid-modified polyester resin composition containing an acid-modified polyester resin and an aliphatic compound having a conjugated double bond.
  2.  前記酸変性ポリエステル系樹脂が、下記一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位を有する、請求項1に記載の酸変性ポリエステル系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式(1)中、lは2~8の整数である。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式(2)中、mは2~10の整数である。〕
    Figure JPOXMLDOC01-appb-C000003
    〔式(3)中、nは2~9の整数である。〕
    The acid-modified polyester resin composition according to claim 1, wherein the acid-modified polyester resin has at least one structural unit selected from structural units represented by the following general formulas (1) to (3). .
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), l is an integer from 2 to 8. ]
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), m is an integer from 2 to 10. ]
    Figure JPOXMLDOC01-appb-C000003
    [In formula (3), n is an integer from 2 to 9. ]
  3.  前記酸変性ポリエステル系樹脂は、前記一般式(1)~(3)で表される構造単位から選択される少なくとも1種の構造単位を合計で50モル%以上有する、請求項2に記載の酸変性ポリエステル系樹脂組成物。 The acid according to claim 2, wherein the acid-modified polyester resin has a total of 50 mol% or more of at least one structural unit selected from the structural units represented by the general formulas (1) to (3). Modified polyester resin composition.
  4.  前記酸変性ポリエステル系樹脂は、ポリエステル系樹脂に、α,β-不飽和カルボン酸又はその無水物がグラフトされている酸変性ポリエステル系樹脂である、請求項1に記載の酸変性ポリエステル系樹脂組成物。 The acid-modified polyester resin composition according to claim 1, wherein the acid-modified polyester resin is an acid-modified polyester resin in which an α,β-unsaturated carboxylic acid or an anhydride thereof is grafted to a polyester resin. thing.
  5.  請求項1~4のいずれか1項に記載の酸変性ポリエステル系樹脂組成物を含有する層を少なくとも一層有する、積層体。 A laminate comprising at least one layer containing the acid-modified polyester resin composition according to any one of claims 1 to 4.
  6.  ポリビニルアルコール系樹脂(B)層、生分解性樹脂(C)層との間に接着層を設けた積層体であって、
     前記接着層が、請求項1~4のいずれか1項に記載の酸変性ポリエステル系樹脂組成物を含有する、積層体。
    A laminate in which an adhesive layer is provided between a polyvinyl alcohol resin (B) layer and a biodegradable resin (C) layer,
    A laminate, wherein the adhesive layer contains the acid-modified polyester resin composition according to any one of claims 1 to 4.
PCT/JP2023/012699 2022-03-28 2023-03-28 Acid-modified polyester resin composition and laminate WO2023190619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022051566 2022-03-28
JP2022-051566 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190619A1 true WO2023190619A1 (en) 2023-10-05

Family

ID=88201923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012699 WO2023190619A1 (en) 2022-03-28 2023-03-28 Acid-modified polyester resin composition and laminate

Country Status (1)

Country Link
WO (1) WO2023190619A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221423A (en) * 2002-02-01 2003-08-05 Aeba Toshiyuki Composite resin composition and method for producing the same
JP2013212682A (en) * 2011-11-11 2013-10-17 Nippon Synthetic Chem Ind Co Ltd:The Biodegradable laminate
JP2015514639A (en) * 2012-02-17 2015-05-21 ヴァルスパー・ソーシング・インコーポレーテッド Methods and materials for functionalization of polymers and coatings comprising functionalized polymers
CN105237858A (en) * 2015-11-16 2016-01-13 朱丽芬 Polyethylene film with efficient printing effect
CN105254980A (en) * 2015-11-16 2016-01-20 朱丽芬 Polyethylene film for salt packaging bag
JP2019181943A (en) * 2018-03-30 2019-10-24 三菱ケミカル株式会社 Biodegradable laminate
JP2020079349A (en) * 2018-11-12 2020-05-28 独立行政法人国立高等専門学校機構 Sustained-release material, sustained-release agent containing the same and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221423A (en) * 2002-02-01 2003-08-05 Aeba Toshiyuki Composite resin composition and method for producing the same
JP2013212682A (en) * 2011-11-11 2013-10-17 Nippon Synthetic Chem Ind Co Ltd:The Biodegradable laminate
JP2015514639A (en) * 2012-02-17 2015-05-21 ヴァルスパー・ソーシング・インコーポレーテッド Methods and materials for functionalization of polymers and coatings comprising functionalized polymers
CN105237858A (en) * 2015-11-16 2016-01-13 朱丽芬 Polyethylene film with efficient printing effect
CN105254980A (en) * 2015-11-16 2016-01-20 朱丽芬 Polyethylene film for salt packaging bag
JP2019181943A (en) * 2018-03-30 2019-10-24 三菱ケミカル株式会社 Biodegradable laminate
JP2020079349A (en) * 2018-11-12 2020-05-28 独立行政法人国立高等専門学校機構 Sustained-release material, sustained-release agent containing the same and production method thereof

Similar Documents

Publication Publication Date Title
JP5414875B2 (en) Biodegradable laminate
JP4883281B2 (en) Laminated structure
JP2004075866A (en) Polyvinyl alcohol resin for melt molding, and its application
WO2009128411A1 (en) Resin composition and multi-layered construct using the resin composition
JP7361456B2 (en) Laminates and coffee capsules, food containers, cosmetic containers
WO2019049798A1 (en) Biodegradable acid-modified polyester-based resin, and laminate
EP2937386A1 (en) Resin composition and molded article of same
JP2007326943A (en) Resin composition and film obtained by using the same
JP6977499B2 (en) Resin composition and laminate
JP6184093B2 (en) Resin composition and molded product thereof
JP5979996B2 (en) Method for producing multilayer stretched film
JP7119361B2 (en) Resin composition and laminate comprising the same
WO2023190619A1 (en) Acid-modified polyester resin composition and laminate
JP5185182B2 (en) Resin composition and multilayer structure using the resin composition
JP6572557B2 (en) Resin composition
JP2015101612A (en) Modified ethylene-vinyl ester copolymer saponified product composition and method of producing the same
WO2023190618A1 (en) Acid-modified polyester resin, laminate and biodegradable adhesive
JP2023145417A (en) Acid modification polyester resin, laminate and biodegradable adhesive
JP2023145418A (en) Acid-modified polyester-based resin, laminate and biodegradable adhesive
JP2019038944A (en) Biodegradable polyester resin and laminate
JP7359138B2 (en) Resin composition, molded article, and method for producing resin composition
JP2024046111A (en) Acid-modified polyester resin composition and laminate
WO2023190413A1 (en) Modified polyester-based resin, adhesive resin composition, and laminate
JP2019157005A (en) Adhesive resin composition, laminate and molding
JP2024046112A (en) Polyester resin composition and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780628

Country of ref document: EP

Kind code of ref document: A1