WO2023190411A1 - Content filling system - Google Patents

Content filling system Download PDF

Info

Publication number
WO2023190411A1
WO2023190411A1 PCT/JP2023/012337 JP2023012337W WO2023190411A1 WO 2023190411 A1 WO2023190411 A1 WO 2023190411A1 JP 2023012337 W JP2023012337 W JP 2023012337W WO 2023190411 A1 WO2023190411 A1 WO 2023190411A1
Authority
WO
WIPO (PCT)
Prior art keywords
sterilizer
bottle
sterilization
water
raw materials
Prior art date
Application number
PCT/JP2023/012337
Other languages
French (fr)
Japanese (ja)
Inventor
文明 古谷
睦 早川
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2023526104A priority Critical patent/JP7460023B2/en
Publication of WO2023190411A1 publication Critical patent/WO2023190411A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/16Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
    • A23L3/18Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials while they are progressively transported through the apparatus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/12Sterilising contents prior to, or during, packaging
    • B65B55/14Sterilising contents prior to, or during, packaging by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/12Sterilising contents prior to, or during, packaging
    • B65B55/16Sterilising contents prior to, or during, packaging by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C7/00Concurrent cleaning, filling, and closing of bottles; Processes or devices for at least two of these operations

Definitions

  • the present disclosure relates to a content filling system.
  • An aseptic filling system (aseptic filling system) is known in which a sterilized container (PET bottle) is filled with sterilized contents in an aseptic environment, and then the container is closed with a cap (for example, see Patent Document 1). ).
  • a shaped container is supplied to the aseptic filling system, and an aqueous hydrogen peroxide solution as a sterilizing agent is sprayed onto the container within the aseptic filling system. Thereafter, the container is sterilized by drying the aqueous hydrogen peroxide solution. Next, the heat-sterilized contents are aseptically filled into the container at room temperature.
  • the present disclosure has been made in consideration of these points, and provides a content filling system that can realize various fillings into bottles using a sterilized first content liquid and a second content liquid.
  • the purpose is to
  • the present disclosure includes a first sterilization line that sterilizes a first content liquid, a second sterilization line that sterilizes a second content liquid, and a first sterilization line that is connected to the first sterilization line and that sterilizes the first content of the bottle.
  • the first sterilization line includes a first filling device that fills a liquid, and a second filling device that is connected to the second sterilization line and fills the second content liquid into the bottle being transported. Further connected to a second filling device, said second sterilization line is a content filling system further connected to said first filling device.
  • a first mixing tank is interposed between the first sterilization line and the first filling device, and a second mixing tank is interposed between the second sterilization line and the second filling device.
  • a content filling system is interposed between the first sterilization line and the first filling device.
  • the present disclosure is a content filling system, wherein the first sterilization line is further connected to the second mixing tank, and the second sterilization line is further connected to the first mixing tank.
  • the present disclosure is a content filling system, wherein the first mixing tank is further connected to the second filling device, and the second mixing tank is further connected to the first filling device.
  • the present disclosure further includes a third sterilization line that sterilizes the third content liquid, and a third filling device that is connected to the third sterilization line and fills the third content liquid into the transported bottle.
  • a third sterilization line that sterilizes the third content liquid
  • a third filling device that is connected to the third sterilization line and fills the third content liquid into the transported bottle.
  • the present disclosure is a content filling system in which the second filling device and the third filling device are arranged in series on the downstream side in the bottle transport direction with respect to the first filling device.
  • the present disclosure is a content filling system in which the second filling device and the third filling device are arranged in parallel on the downstream side in the bottle conveyance direction with respect to the first filling device.
  • a variety of fillings can be realized in a bottle using the sterilized first content liquid and second content liquid.
  • FIG. 1A is a schematic system diagram showing a content filling system according to a first embodiment.
  • FIG. 1B is a schematic plan view showing the content filling system according to the first embodiment.
  • FIG. 1C is a schematic diagram showing a filling device.
  • FIG. 2A1 is a schematic diagram showing a sterilization line for raw materials to be mixed according to the first embodiment.
  • FIG. 2A2 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2A3 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2A4 is a schematic diagram showing another example of the raw material sterilization line to be mixed.
  • FIG. 2A5 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2A6 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2A7 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2B is a schematic diagram showing another example of the raw material sterilization line to be mixed.
  • FIG. 2C is a schematic diagram showing another example of the raw material sterilization line to be mixed.
  • FIG. 2D is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2E is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2F is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2A6 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2A7 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2B is a schematic diagram showing another
  • FIG. 2G is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2H is a schematic diagram showing another example of the raw material sterilization line to be mixed.
  • FIG. 2I is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2J is a schematic diagram showing another example of a sterilization line for raw materials to be mixed.
  • FIG. 2K is a schematic diagram showing another cleaning process of the sterilizer, and is similar to FIG. 2A1.
  • FIG. 3 is a plan view showing a first sterilizer of the sterilizer of the raw material line to be mixed according to the first embodiment.
  • FIG. 4 is a cross-sectional view (cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5A is a plan view showing another example of the first sterilizer of the sterilizer according to the first embodiment.
  • FIG. 5B is a sectional view (a sectional view taken along the line VB-VB in FIG. 5A) showing another example of the first sterilizer of the sterilizer according to the first embodiment.
  • FIG. 6A is a front view showing another example of the first sterilizer of the sterilizer according to the first embodiment.
  • FIG. 6B is a sectional view (a sectional view taken along the line VIB-VIB in FIG. 6A) showing another example of the first sterilizer of the sterilizer according to the first embodiment.
  • FIG. 6C is a sectional view (an enlarged view of the VIC section in FIG.
  • FIG. 6B showing another example of the first sterilizer of the water sterilizer according to one embodiment.
  • FIG. 7 is a schematic diagram showing a raw material sterilization line according to the first embodiment.
  • FIG. 8 is a flowchart showing a content filling method using the content filling system according to the first embodiment.
  • FIG. 9A is a flowchart showing a sterilization method of a sterilizer, which is a sterilization method for a content filling system according to the first embodiment.
  • FIG. 9B is a flowchart showing another example of the sterilization method of the sterilizer, which is the sterilization method of the content filling system according to the first embodiment.
  • FIG. 9A is a flowchart showing a sterilization method of a sterilizer, which is a sterilization method for a content filling system according to the first embodiment.
  • FIG. 9B is a flowchart showing another example of the sterilization method of the sterilizer, which is the sterilization method of the content filling system according to the first embodiment.
  • FIG. 9C is a flowchart showing still another example of the sterilization method of the sterilizer, which is the sterilization method of the content filling system according to the first embodiment.
  • FIG. 9D is a flowchart showing still another example of the sterilization method of the sterilizer, which is the sterilization method of the content filling system according to the first embodiment.
  • FIG. 9E is a flowchart illustrating still another example of a method for sterilizing a sterilizer, which is a method for sterilizing a content filling system according to the first embodiment.
  • FIG. 10 is a schematic system diagram showing a content filling system according to the second embodiment.
  • FIG. 11 is a diagram showing the arrangement of the first filling device and the second filling device according to the second embodiment.
  • FIG. 12 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment.
  • FIG. 13 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment.
  • FIG. 14 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment.
  • FIG. 15 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment.
  • FIG. 16 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment.
  • FIG. 17 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment.
  • FIG. 18A is a schematic diagram showing a sterilization line for raw materials to be mixed in a modified example of the content filling system.
  • FIG. 18B is a schematic diagram showing a sterilization line for raw materials to be mixed in another modification of the content filling system.
  • FIG. 18C is a schematic diagram showing a sterilization line for raw materials to be mixed in a modified example of the content filling system.
  • FIG. 18D is a schematic plan view showing a modification of the content filling system.
  • FIG. 18E is a schematic diagram showing a sterilization line for raw materials to be mixed in a modified example of the content filling system.
  • FIGS. 1 to 10B are diagrams showing a first embodiment of the present disclosure.
  • a content filling system 10 shown in FIGS. 1A and 1B is a system for filling a bottle (container) 100 with content such as a beverage.
  • the contents are produced by diluting the product stock solution with water.
  • the product stock solution may be diluted with water from 1.1 times to 100 times, preferably from 2 times to 10 times. Further, the product stock solution may be diluted with water 10 times or more and 80 times or less, 20 times or more and 70 times or less, or 30 times or more and 50 times or less.
  • the bottle 100 can be manufactured by biaxially stretching blow molding a preform 100a manufactured by injection molding a synthetic resin material. Note that the bottle 100 may be manufactured by direct blow molding.
  • the material for the bottle 100 it is preferable to use a thermoplastic resin, particularly PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), or PEN (polyethylene naphthalate).
  • the container may be glass, a can, paper, a pouch, a cup, or a composite container thereof.
  • a synthetic resin bottle is used as the container will be described as an example.
  • the content filling system 10 includes a mixing line 51A that mixes target raw materials and water to produce mixed target raw materials, and a mixed target raw material sterilization line 50 that non-heat sterilizes the mixed target raw materials. is connected to the other raw material sterilization line 70 that heat-sterilizes raw materials other than the target raw material, the raw material sterilization line 50 to be mixed, and the other raw material sterilization line 70, and the raw material to be mixed and the other raw materials are mixed. It includes a mixing tank 55 that generates the contents, and a filling device 21 that fills the bottle 100 with the contents generated in the mixing tank 55. In FIG. 1B, one filling device 21 is shown, but as shown in FIG.
  • a plurality of filling devices may be provided as the filling device 21. Further, the filling device 21 may use a rotary filler or a linear filler.
  • non-heat sterilization refers to methods other than heat sterilization, and includes all sterilization methods that inactivate bacteria. Examples include ultraviolet rays, radiation, pulsed microwaves, ultrahigh pressure, ozone, high voltage extremely short pulse discharge, electrolyzed acidic water, light pulses, shock waves, and the like.
  • the mixing line 51A includes a water tank 50a that stores water (pure water) supplied from the pure water production device 50c, a target raw material tank 50b that stores the target raw material among the raw materials in the content, and a water tank 50a that stores the water (pure water) supplied from the pure water production device 50c. It has a mixing tank 51 that mixes water and the target raw material in the target raw material tank 50b.
  • the mixing tank 51 water and the raw material to be mixed are mixed to produce a raw material to be mixed, and this raw material to be mixed is sterilized by non-heating in the raw material to be mixed sterilization line 50 as described above.
  • raw materials other than the target raw material are stored in other raw material tanks 71, and other raw materials stored in other raw material tanks 71 are transferred to other raw material sterilization lines as described above. Heat sterilized at 70°C.
  • the raw materials to be mixed that have been non-heat sterilized in the raw material sterilization line 50 and other raw materials that have been heat sterilized in other raw material sterilization lines are mixed in a mixing tank 55 to produce contents.
  • the target raw material for the contents is thermally decomposed by being heated, or by being heated to be used for other raw materials sterilization line 70 that performs heat sterilization of the contents filling system 10. This can cause metal corrosion or precipitate, deteriorating the functionality of detection devices, etc. Therefore, in this embodiment, the target raw material is sterilized by non-heat sterilization.
  • raw materials refer to raw materials other than the target raw materials among the raw materials of the contents. It is also possible to sterilize other raw materials without heat, but since the non-heat sterilization line has a filter as described below, the throughput will decrease due to filter blockage. In this embodiment, other raw materials are heat sterilized to prevent clogging.
  • the target raw material is vitamins.
  • Vitamins contained in drinking water include vitamin A, vitamin D, vitamin E, vitamin K, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin C, niacin, pantothenic acid, folic acid, biotin, pantothenic acid, and folic acid. There is at least one kind or a mixture of two or more kinds selected from these derivatives.
  • vitamin A and vitamin D are fat-soluble vitamins that are highly thermally decomposable.
  • the fat-soluble vitamin is not particularly limited as long as it is a fat-soluble vitamin other than vitamin A palmitate, ⁇ -tocopherol, and vitamin E acetate.
  • vitamin A such as retinol, 3-hydroretinol, retinal, 3-hydroretinal, retinoic acid, 3-dehydroretinoic acid, vitamin A acetate; ⁇ , ⁇ , ⁇ -carotene, ⁇ -cryptoxanthin , carotenoids such as echinenone, and provitamin A such as xanthophylls.
  • vitamin D such as vitamins D2 to D7; esters such as ⁇ , ⁇ , ⁇ -tocopherol, ⁇ , ⁇ , ⁇ , ⁇ -tocotrienol, and vitamin E nicotinic acid; vitamins K1 to K3, etc. Contains vitamin K.
  • these fat-soluble vitamins can be added alone, but it is also possible to add two or more kinds in combination.
  • Vitamins contained in drinking water decompose thermally when heated, resulting in changes in its properties and a decrease in the amount of vitamins themselves. For this reason, it is necessary to predict the loss of vitamins when heated and add a large amount of vitamins in advance.
  • deterioration or reduction of vitamins can be suppressed by non-heat sterilization using vitamins as a target raw material and distinguishing them from other raw materials.
  • the target raw material is calcium.
  • the calcium component contained in milky drinking water or calcium-added functional drinking water is preferably a water-soluble calcium salt, and either a water-soluble organic acid salt or an inorganic acid salt can be used.
  • preferred examples include organic acid salts such as calcium lactate, calcium gluconate, calcium citrate, calcium fumarate, and calcium succinate; and inorganic acid salts such as calcium chloride.
  • the amount of calcium component to be used is preferably such that 200 to 1000 mg, more preferably 300 to 600 mg of calcium is contained per 100 g of the obtained concentrated beverage. If the calcium content is less than 200 mg per 100 g, when the concentrated beverage is diluted usually 3 to 6 times, the calcium concentration during drinking will be low, and the intended calcium-enhancing effect will be diluted. On the other hand, if the amount exceeds 1000 mg per 100 g, it is not preferable because a good flavor may not be obtained.
  • the calcium component used as the target raw material is preferably a water-soluble calcium salt, and either a water-soluble organic acid salt or an inorganic acid salt can be used.
  • organic acid salts such as calcium lactate, calcium citrate, calcium fumarate, and calcium succinate
  • inorganic acid salts such as calcium chloride are preferred. These can be used alone or as a mixture.
  • calcium is treated as a target raw material and is sterilized by non-heating while being distinguished from other raw materials, thereby suppressing the decrease due to calcium precipitation or the functional deterioration of the measuring device.
  • the target raw material is a chloride compound that generates chloride ions.
  • ingredients contained in functional drinking water for the purpose of replenishing electrolytes such as sodium and water lost through exercise, etc. include sodium chloride (salt), sodium citrate, potassium chloride, sodium phosphate, and magnesium chloride. , sugars, fragrances, etc.
  • the chloride ion concentration of electrolytes in functional drinking water intended for electrolytes such as sodium and water lost due to exercise, etc. it is 3 to 30,000 mEq/l (functional drinking water that is drunk directly without dilution). (preferably 4 to 1,000 mEq/l).
  • chloride compounds that generate chloride ions are sometimes contained in liquid foods such as noodle soup.
  • a chloride compound that generates chloride ions is the target raw material, and another raw material that does not generate chloride ions is the other raw material.
  • noodle soups include mentsuyu (straight) and mentsuyu (3 times concentrated).
  • specific examples of the above-mentioned liquid foods include dark soy sauce and hotpot soup.
  • functional drinking water and liquid foods are not limited to those mentioned above.
  • functional drinking water or liquid foods with a chlorine concentration of 12 mg/100 ml or more and a Cl concentration of 3 mEq/l or more may cause metal corrosion over time depending on the heating temperature, heating time, and stress damage to the metal. . Therefore, it is included in the functional drinking water or liquid food according to this embodiment.
  • chloride ions contained in functional drinking water or the like containing chloride compounds cause metal corrosion to the various lines 50A, 50, 70 of the content filling system 10 or the filling device 21, especially other raw material sterilization lines 70. cause
  • SUS316L material, SUS317L, SUS329J1 material, SUS890L material, super stainless steel material, and titanium material which have excellent corrosion resistance, are normally used as parts of the content filling system 10, but chloride ions become more corrosive when heated. , metal corrosion is caused in these SUS316L materials, SUS317L, SUS329J1 materials, SUS890L materials, super stainless steel materials, and titanium materials.
  • chloride ions are precipitated by heating and are precipitated within the various lines 70 of the content filling system 10, degrading the functionality of the measuring device and the like.
  • the target raw materials may include flavoring agents, sweeteners, acidulants, coloring agents, and preservatives.
  • Drinking water to which flavorings, sweeteners, acidulants, coloring agents, preservatives, etc. have been added will thermally decompose when heated, resulting in changes in its properties and a decrease or deterioration in the amount and functionality of the added substances themselves. . (including a decrease in stability) Therefore, when the additive is heated, it is necessary to predict the amount of decrease and add a large amount in advance.
  • flavorings, sweeteners, acidulants, colorants, and preservatives are target raw materials and are separated from other raw materials and non-heat sterilized. It is possible to suppress the deterioration or reduction of materials.
  • the fragrances include aromatic alcohol-based aromatic aldehydes, aliphatic higher alcohol-based aliphatic higher aldehydes, ester-based ketones, and phenol ether-based phenols.
  • Specific examples include citrus essential oils such as orange oil, lemon oil, grapefruit oil, lime oil, tangerine oil, mandarin oil and bergamot oil; essential oils such as peppermint oil, spearmint oil and cinnamon oil; allspice and anise.
  • Spices such as seeds, basil, laurel, cardamom, celery, cloves, cumin, dale, garlic, ginger, mace, mustard, onion, paprika, parsley, black pepper, nutmeg, saffron, rosemary, essential oils or oleoresins; and limonene.
  • fragrance compounds such as allyl, methyl-n-amyl ketone, diacetyl, acetic acid, and butyric acid; fragrance oils (reactive flavors); and blended fragrances made by mixing any combination of these natural essential oils, oleoresins, fragrance compounds, etc. However, it is not limited to these.
  • sweeteners include natural sweeteners such as stevia extract (such as stevioside), Luo Han Guo extract, and thaumatin; and artificial sweeteners such as aspartame, acesulfame potassium, sucralose, saccharin, neotame, and advantame. .
  • natural sweeteners such as stevia extract (such as stevioside), Luo Han Guo extract, and thaumatin
  • artificial sweeteners such as aspartame, acesulfame potassium, sucralose, saccharin, neotame, and advantame.
  • the acidulant includes carboxylic acids, amino acids, brewed vinegars, fermented milk foods, and plant-derived acidulants.
  • carboxylic acids include acetic acid, lactic acid, malic acid, succinic acid, methylene succinic acid, citric acid, ascorbic acid, glutaric acid, ⁇ -ketoglutaric acid, and the like.
  • amino acids include glutamic acid and aspartic acid.
  • brewed vinegars include rice vinegar, grain vinegar, malt vinegar, black vinegar, grape vinegar, plum vinegar, and apple vinegar.
  • milk fermented foods include yogurt and whey.
  • the above-mentioned plant-derived acidulants include citrus fruits such as unshu mandarin oranges, summer mandarin oranges, yuzu, daidai, sudachi, lemon, grapefruit, fruit juices of apples, strawberries, grapes, pineapples, peaches, acerola, tomatoes, plums, rice bran, soybeans, etc.
  • citrus fruits such as unshu mandarin oranges, summer mandarin oranges, yuzu, daidai, sudachi, lemon, grapefruit, fruit juices of apples, strawberries, grapes, pineapples, peaches, acerola, tomatoes, plums, rice bran, soybeans, etc.
  • grain extracts containing inositol hexaphosphate such as wheat and corn, and purified products thereof; petals of hibiscus and roses; crushed products, such as perilla leaves, lettuce, and celery; and extracts thereof.
  • the coloring agent includes carotene pigments (carotenoid pigments), cochineal pigments, anthocyanin pigments, gardenia pigments, red koji pigments, and the like.
  • the preservatives include benzoic acid, sodium benzoate, sorbic acid, potassium sorbate, isobutyl paraoxybenzoate, isopropyl paraoxybenzoate, ethyl paraoxybenzoate, butyl paraoxybenzoate, propyl paraoxybenzoate, etc. There is.
  • raw materials other than flavorings, sweeteners, acidulants, coloring agents, and preservatives in drinking water containing flavoring agents, sweeteners, acidulants, coloring agents, and preservatives, such as acidulants, fruit juice, caffeine, sugar, etc. It becomes the raw material for
  • the content may be an infusion containing at least one or a mixture of two selected from amino acids and electrolytes.
  • Amino acids in infusions undergo thermal decomposition when heated, resulting in changes in their properties and a decrease in the amount of amino acids themselves. For this reason, when amino acids are heated, it is necessary to add a large amount of amino acids in advance in anticipation of the loss.
  • the electrolytic solution in the infusion contains a chloride compound that generates chloride ions.
  • the chloride ions contained in the infusion cause metal corrosion in the various lines 50A, 50, 70 of the content filling system 10, or the filling device 21, especially the other raw material sterilization line 70.
  • SUS316L material, SUS317L, SUS329J1 material, SUS890L material, super stainless steel material, and titanium material which have excellent corrosion resistance, are normally used as parts of the content filling system 10, but chloride ions become more corrosive when heated. , metal corrosion also occurs on these SUS316L materials, SUS317L, SUS329J1 materials, SUS890L materials, super stainless steel materials, and titanium materials.
  • chloride ions are precipitated by heating and are precipitated within the various lines 70 of the content filling system 10, degrading the functionality of the measuring device and the like.
  • a mixture of at least one or two selected from amino acids and electrolytes is used as the target raw material, and is sterilized by non-heating while distinguishing it from other raw materials in the infusion, so that it can be stored in the content filling system 10. metal corrosion or functional deterioration can be suppressed.
  • raw materials other than the amino acids and electrolytes in the infusion become other raw materials in the infusion.
  • Other ingredients in such infusions include sugars, fat emulsions, or trace elements.
  • amino acids As the amino acid, various amino acids (essential amino acids and non-essential amino acids) that have been used in amino acid infusions for the purpose of nutritional supplementation to living organisms can be used.
  • amino acids do not necessarily have to be used in the form of free amino acids, but can be used in the form of inorganic acid salts (for example, L-lysine hydrochloride, etc.) or organic acid salts (for example, L-lysine acetate, L-lysine malate, etc.).
  • inorganic acid salts for example, L-lysine hydrochloride, etc.
  • organic acid salts for example, L-lysine acetate, L-lysine malate, etc.
  • esters e.g., L-tyrosine methyl ester, L-methionine methyl ester, L-methionine ethyl ester, etc.
  • N-substituted products e.g., N-acetyl-L-tryptophan, N- acetyl-L-cysteine, N-acetyl-L-proline, etc.
  • dipeptides with peptide bonds of the same or different amino acids e.g., L-tyrosyl-L-tyrosine, L-alanyl-L-tyrosine, L-arginyl) -L-tyrosine, L-tyrosyl-L-arginine, etc.
  • water-soluble salts conventionally used in infusions such as physiological saline can be used.
  • the water-soluble salts include, for example, various inorganic components (e.g., sodium, potassium, calcium, magnesium, zinc, iron, copper, manganese, iodine) necessary for maintaining biological functions and electrolyte balance of body fluids. , phosphorus, etc.). Specifically, it includes, for example, chloride, sulfate, acetate, gluconate, lactate, and the like. These water-soluble salts may be hydrates.
  • various saccharides can be used as the sugar in an infusion such as 5% glucose injection.
  • reducing sugars are preferably used.
  • examples of reducing sugars include glucose, fructose, and maltose. These reducing sugars can be used singly or in combination of two or more. Furthermore, these reducing sugars can also be used in combination with sorbitol, xylitol, and the like.
  • Trace elements refer to elements that improve various deficiency symptoms that may occur when administering high-calorie infusion therapy to humans. Specific examples include iron, copper, zinc, manganese, iodine, selenium, molybdenum, chromium, and fluorine. Only one type of these trace elements may be used, or two or more types may be used depending on the condition of the target patient. In the present invention, trace elements are filled in a compartment different from components that can undergo chemical changes due to their coexistence with trace elements.
  • the fat emulsion it is preferable to use an oil-in-water emulsion produced by dispersing fats and oils in water using an emulsifier. Production of fat emulsions can be carried out by known methods.
  • the fat emulsion is loaded into a separate compartment from the electrolyte.
  • fat-soluble vitamins such as vitamin A, vitamin D, vitamin E, and vitamin K may be filled together with the fat emulsion.
  • the content filling system 10 includes a control unit 90 that controls the content filling system 10.
  • the contents filling system 10 includes a bottle forming section 30, a sterilizing device (container sterilizing device) 11, an air rinsing device 14, the above-mentioned filling device 21, and a capping device (capper, seaming and capping machine) 16. , and a product bottle unloading section 25.
  • the bottle forming section 30, the sterilizing device 11, the air rinsing device 14, the filling device 21, the cap mounting device 16, and the product bottle unloading section 25 are arranged in this order from the upstream side to the downstream side along the conveyance direction of the bottle 100. has been done.
  • a plurality of conveyance wheels 12 are provided between the air rinse device 14, the filling device 21, the cap attachment device 16, etc. to convey the bottle 100 between these devices.
  • the bottle forming section 30, the sterilizing device 11, the air rinsing device 14, the filling device 21, the cap attaching device 16, and the product bottle unloading section 25 will be explained.
  • the bottle molding section 30 is configured to receive a preform 100a from the outside and mold the bottle 100.
  • the bottle molding unit 30 is configured to transport the molded bottle 100 toward the sterilizer 11. Thereby, in the content filling system 10, the steps from supplying the preform 100a, molding the bottle 100, filling the bottle 100 with the content, and closing the bottle can be performed continuously. In this case, a preform 100a with a small volume, rather than a bottle 100 with a large volume, is transported from the outside to the filling system 10. Therefore, transportation costs can be reduced.
  • the bottle molding section 30 includes a preform transport section 31 that transports the preform 100a, and a blow molding section (container molding section) that molds the bottle 100 from the preform 100a by performing blow molding on the preform 100a. 32, and a bottle transport section 33 that transports the molded bottle 100.
  • the preform transport section 31 includes a receiving section 34, a heating section 35, and a delivery section 36.
  • the receiving section 34 is configured to receive the preform 100a supplied from the preform supply device 1 via the preform supply conveyor 2.
  • This receiving section 34 is provided with a preform sterilizer 34a for sterilizing the preform 100a, and a preform air rinsing device 34b for air rinsing the preform 100a.
  • the receiving section 34 is provided with one preform sterilizer 34a and one preform air rinse device 34b. Note that the number of preform sterilizers 34a and preform air rinse devices 34b is not limited to this.
  • the preform sterilizer 34a sprays hydrogen peroxide aqueous solution gas or mist onto the preform 100a to sterilize the preform 100a (preliminary sterilization).
  • the sterilizing agent for sterilizing the preform 100a may have the property of inactivating microorganisms, such as hydrogen peroxide, peracetic acid, acetic acid, pernitric acid, nitric acid, chlorine-based agents, and water.
  • Alcohols such as sodium oxide, potassium hydroxide, ethyl alcohol, and isopropyl alcohol, chlorine dioxide, ozone water, acidic water, and surfactants may be used alone, or two or more of these may be used in combination. .
  • the preform sterilizer 34a by sterilizing the preform 100a in advance (preliminary sterilization) using the preform sterilizer 34a, it is possible to reduce the number of bacteria that adhere to the bottle 100 produced from the preform 100a. Therefore, the amount of hydrogen peroxide used in the sterilizer 11 that sterilizes the bottle 100 can be reduced, and the sterilization time can be shortened.
  • the amount of sterilizer used to sterilize the small-volume preform 100a may be smaller than the amount of sterilizer used to sterilize the bottle 100. Therefore, by pre-sterilizing the preform 100a, the total amount of disinfectant used can be reduced.
  • the sterilizer 11 can be made smaller. Furthermore, since the sterilization time for sterilizing the bottle 100 can be shortened, the heat load on the bottle 100 can be reduced. Therefore, even if the bottle 100 is lightweight or uses recycled PET, deformation of the bottle 100 due to the heat of the disinfectant can be suppressed.
  • the sterilization conditions may be weakened in the sterilizer 11.
  • the body of the bottle 100 is heated by supplying hot water from a mold temperature controller (not shown) to the mold in the blow molding section 32. Heat set.
  • the sterilization effect in the sterilizer 11 can be improved, and the shrinkage of the bottle 100 in the sterilizer 11 can be reduced.
  • the number of bacteria adhering to the bottle 100 can be reduced.
  • the blow molding section (container molding device) 32 may mold the bottle 100 without adjusting the temperature of the bottle 100 with hot water. That is, in the blow molding section 32, the hot water that has been supplied to the mold in order to improve the sterilization effect does not need to be supplied to the mold. As a result, the amount of carbon dioxide emitted by the content filling system 10 can be reduced. Further, since it is not necessary to supply hot water to the mold of the blow molding section 32, the blow molding section 32 can be simplified. Furthermore, since the blow molding section 32 can be simplified, the amount of heat applied to the bottle 100 can be reduced. Therefore, even if the hot water described above is not supplied to the mold, shrinkage of the bottle 100 in the sterilizer 11 can be reduced.
  • sterilization treatment may be performed not only at the receiving section 34 but also at the heating section 35 or the delivery section 36. Furthermore, the sterilization process may be performed after the bottle 100 is formed, between the bottle transport section 33 and the filling device 20. Furthermore, the sterilization treatment may be performed at multiple locations. In addition, in the sterilization treatment, bacteria may be inactivated by ultraviolet irradiation, electron beam irradiation, or the like, without using a sterilizing agent.
  • the above-mentioned preform air rinsing device 34b is provided downstream of the preform sterilizing device 34a.
  • the preform 100a sprayed with the disinfectant is dried with hot air in the preform air rinse device 34b.
  • hot air is supplied to the preform 100a with the mouth of the preform 100a facing downward.
  • foreign matter can be effectively removed from within the preform 100a. Therefore, the step of washing the preform 100a with sterile water can be omitted, and the amount of carbon dioxide emitted by the content filling system 10 can be reduced.
  • the receiving section 34 may not be provided with the preform air rinse device 34b.
  • a foreign matter removing device (not shown) for removing foreign matter adhering to the preform 100a may be provided upstream of the preform sterilizing device 34a.
  • the heating unit 35 is configured to receive the preform 100a from the receiving unit 34 and heat the preform 100a while conveying it.
  • This heating section 35 is provided with a heater 35a that heats the preform 100a.
  • This heater 35a may be, for example, an infrared heater.
  • the preform 100a is heated, for example, to about 90° C. or more and 130° C. or less by the heater 35a. Note that the temperature at the mouth of the preform 100a is suppressed to 70° C. or lower to prevent deformation and the like.
  • the delivery section 36 is configured to receive the preform 100a heated by the heating section 35 and deliver it to the blow molding section 32.
  • the blow molding section 32 includes a mold (not shown).
  • the bottle 100 is molded by performing blow molding on the preform 100a using this mold.
  • the shaped bottle 100 is then transported downstream by the bottle transport section 33.
  • an adjustment transport section 5 that receives the bottle 100 from the bottle transport section 33 and delivers the bottle 100 to the sterilizer 11. At least a portion of this adjustment conveyance section 5 is housed inside an atmosphere isolation chamber 70c (described later) provided upstream of a disinfectant spray chamber 70d (described later). In the illustrated example, the adjustment conveyance section 5 is arranged so as to straddle a forming section chamber 70b (described later) that accommodates the bottle forming section 30 and an atmosphere blocking chamber 70c.
  • the adjustment conveyance section 5 is housed inside the atmosphere isolation chamber 70c, so that the sterilant gas or mist or the mixture thereof generated in the sterilizer spray chamber 70d can be It is possible to suppress the liquid from flowing into the internal chamber 70b.
  • a single conveyance wheel 12 is provided between the adjustment conveyance section 5 and the bottle conveyance section 33 of the bottle forming section 30. That is, between the blow molding section 32 of the bottle molding section 30 and the sterilizer 11, the bottle conveyance section 33 of the bottle molding section 30, the single conveyance wheel 12, and the adjustment conveyance section 5 are provided.
  • the content filling system 10 can be made more compact compared to a case where a plurality of conveyance wheels 12 are provided between the adjustment conveyance section 5 and the bottle conveyance section 33 of the bottle forming section 30.
  • only the adjustment conveyance section 5 may be provided between the blow molding section 32 of the bottle molding section 30 and the sterilizer 11. In this case, the content filling system 10 can be made even more compact.
  • the sterilizer 11 is a device that sterilizes the bottle 100 by injecting a sterilizer into the bottle 100. Thereby, the bottle 100 is sterilized by the sterilizing agent before filling with the contents.
  • the disinfectant for example, an aqueous hydrogen peroxide solution is used.
  • a gas or mist of an aqueous hydrogen peroxide solution is generated, and the gas or mist is sprayed onto the inner and outer surfaces of the bottle 100 . Since the bottle 100 is thus sterilized with the gas or mist of the hydrogen peroxide aqueous solution, the inner and outer surfaces of the bottle 100 are sterilized evenly.
  • the air rinse device 14 is a device that removes foreign matter, hydrogen peroxide, etc. from inside the bottle 100 while activating hydrogen peroxide by supplying sterile heated air or room temperature air to the bottle 100. At this time, it is preferable that sterile air be supplied to the bottle 100 with the mouth of the bottle 100 facing downward. Thereby, foreign matter can be effectively removed from inside the bottle 100. Therefore, the step of washing the bottle 100 with sterile water can be omitted, and the amount of carbon dioxide emitted by the content filling system 10 can be reduced. Note that, if necessary, a condensed mist of low concentration hydrogen peroxide may be mixed with sterilized air at room temperature to gasify hydrogen peroxide, and the gasified hydrogen peroxide may be supplied to the bottle 100.
  • the filling device 21 is a device that fills the bottle 100 with water and product stock solution. That is, the filling device 21 fills the bottle 100 from the mouth of the bottle 100 with a liquid content consisting of a raw material to be mixed, which is made by mixing the target raw material and water, and which has been sterilized by non-heating, and other raw materials which have been sterilized by heat. It is filled with Thereby, in the filling device 21, the empty bottle 100 is filled with the contents generated by mixing the raw material to be mixed, which is made of water and the target raw material, and other raw materials. In this filling device 21, contents are filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the filling device 21 is placed inside a sterile chamber 70f, which will be described later.
  • the filling device 21 may be a so-called rotary filler having a plurality of rotatable filling nozzles 21a (see FIG. 1C).
  • the filling device 21 fills the bottle 100 with sterilized contents. In this case, the filling device 21 fills the empty bottle 100 with sterilized contents.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained.
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70f and near the cap attachment device 16.
  • a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 . While the cap 88 is on its way to the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized.
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • the content filling system 10 includes a preform sterilization chamber 70a, a forming part chamber 70b, an atmosphere isolation chamber 70c, a sterilizer spray chamber 70d, an air rinse chamber 70e, a sterile chamber 70f, and an outlet chamber 70g. have.
  • an air rinse chamber 70e is provided upstream of the sterile chamber 70f. That is, the preform sterilization chamber 70a, the forming part chamber 70b, the atmosphere isolation chamber 70c, the sterilizer spray chamber 70d, the air rinse chamber 70e, the sterile chamber 70f, and the outlet chamber 70g are arranged along the transport direction of the preform 100a and the bottle 100. They are arranged in this order from the upstream side to the downstream side.
  • the chambers 70a to 70g are separated by partition walls.
  • the partition wall serves to prevent the sterilizer and the like from flowing in unintended directions between the chambers 70a to 70g, and to stabilize the pressure within each chamber 70a to 70g.
  • a gap is formed in the partition wall, which is large enough to allow the preform 100a or the bottle 100 to pass through. This gap is formed to a minimum size, for example, approximately the size of one preform 100a or bottle 100, so that the pressure within each chamber 70a to 70g does not change.
  • the partition wall may be provided with a shutter that closes the above-mentioned gap. This shutter may be configured to open and close automatically in response to a signal from the control unit 90, for example.
  • the preform sterilizer 34a and the like are housed inside the preform sterilizer chamber 70a.
  • the blow molding section 32 of the bottle molding section 30 and the like are housed inside the molding section chamber 70b.
  • At least a portion of the adjustment transport section 5 is housed inside the atmosphere blocking chamber 70c.
  • a camera may be provided inside the atmosphere blocking chamber 70c. Then, by using a camera, it may be inspected whether the bottle 100 has any problems in molding.
  • a thermometer may be provided inside the atmosphere isolation chamber 70c. The temperature of the bottle 100 before sterilization may be measured by this thermometer.
  • the temperature of the bottle 100 is one of the important factors that influences the sterilization efficiency of the bottle 100. That is, by keeping the temperature of the bottle 100 at an appropriate temperature, the sterilization efficiency of the bottle 100 can be improved.
  • the temperature of the bottle 100 during sterilization can be maintained at an appropriate temperature, and the sterilization efficiency of the bottle 100 can be improved.
  • the pitch between bottles 100 on the bottle forming section 30 side may be changed to the pitch between bottles 100 on the filling device 21.
  • an adjustment wheel may be provided inside the atmosphere isolation chamber 70c to align the phases of the bottle forming section 30 and the filling device 21 and synchronize the rotational speeds of the wheels.
  • a sterilizer 11 is housed inside the sterilizer spray chamber 70d. Furthermore, the air rinse device 14 is housed inside the air rinse chamber 70e.
  • a filling device 21, a conveyance wheel 12, and a cap mounting device 16 are housed inside the sterile chamber 70f. Furthermore, a product bottle delivery section 25 is housed inside the outlet chamber 70g.
  • Pressure gauges are installed inside the preform sterilization chamber 70a, sterilizer spray chamber 70d, air rinse chamber 70e, sterile chamber 70f, and outlet chamber 70g to measure the pressure inside each chamber. ing. Note that a pressure gauge may be attached to the molding section chamber 70b and/or the atmosphere isolation chamber 70c to measure the pressure inside each chamber.
  • the content filling system 10 includes the control unit 90 that controls the content filling system 10.
  • This control section 90 is electrically connected to the filling device 21 and controls the filling device 21.
  • the control unit 90 controls the mixing target raw material sterilization line 50, other raw material sterilization lines 70, the bottle forming unit 30, the sterilizer 11, the air rinse device 14, the cap mounting device 16, the product bottle delivery unit 25, and the cap sterilizer 18. They may be electrically connected, and the control unit 90 may control the mixing target material sterilization line 50 and the like.
  • This control unit 90 may clean and sterilize the inside of each chamber, and may also clean and sterilize a sterilizer 60, which will be described later, in the mixing target raw material sterilization line 50.
  • the control unit 90 cleans the inside of the sterile chamber 70f (hereinafter, cleaning inside each chamber is also referred to as COP).
  • the control unit 90 also cleans the filling device 21 (hereinafter, cleaning inside the filling device 21 is also referred to as CIP (Cleaning in Place)).
  • the pressure inside the sterile chamber 70f is preferably 30 Pa or more and 60 Pa or less.
  • the pressure within the air rinse chamber 70e is preferably equal to or lower than the pressure within the sterile chamber 70f. Thereby, the air in the air rinse chamber 70e can be prevented from entering the sterile chamber 70f. Therefore, the sterile state inside the sterile chamber 70f can be maintained well.
  • the pressure inside the air rinse chamber 70e is preferably 10 Pa or more and 40 Pa or less. Further, when cleaning and sterilizing the filling device 21, the pressure inside the air rinse chamber 70e is preferably 10 Pa or more and 40 Pa or less. Thereby, the air in the air rinse chamber 70e can be prevented from entering the sterile chamber 70f, and the sterile state inside the sterile chamber 70f can be maintained even better. Note that when producing the product bottle 101, the pressure in the air rinse chamber 70e is preferably 10 Pa or more and 30 Pa or less.
  • the pressure within the disinfectant spray chamber 70d is equal to or lower than the pressure within the atmosphere isolation chamber 70c.
  • the air in the disinfectant spray chamber 70d can be prevented from entering the atmosphere isolation chamber 70c and the forming part chamber 70b.
  • the blow molding section 32 of the bottle molding section 30 is housed inside the molding section chamber 70b. Therefore, by suppressing the increase in humidity within the molding section chamber 70b, corrosion of the machine that constitutes the blow molding section 32 can be suppressed.
  • the pressure inside the sterilizing agent spraying chamber 70d is preferably 0 Pa or more and 20 Pa or less. Furthermore, when cleaning and sterilizing the filling device 21, the pressure inside the sterilizing agent spray chamber 70d is preferably 0 Pa or more and 20 Pa or less. Thereby, the air in the disinfectant spray chamber 70d can be prevented from entering the atmosphere isolation chamber 70c and the molding part chamber 70b, and the rise in humidity in the molding part chamber 70b can be suppressed. Note that when producing the product bottle 101, the pressure inside the disinfectant spray chamber 70d is preferably -10 Pa or more and 10 Pa or less.
  • the pressure inside the outlet chamber 70g is preferably 0 Pa or more and 20 Pa or less. Further, when cleaning and sterilizing the filling device 21, the pressure inside the outlet chamber 70g is preferably 0 Pa or more and 20 Pa or less. Thereby, the air in the outlet chamber 70g can be prevented from entering the sterile chamber 70f, and the sterile state inside the sterile chamber 70f can be maintained even better. Note that when producing the product bottle 101, the pressure in the outlet chamber 70g is preferably 10 Pa or more and 20 Pa or less.
  • Such a content filling system 10 may be comprised of, for example, an aseptic filling system.
  • the interiors of the disinfectant spray chamber 70d, air rinse chamber 70e, sterile chamber 70f, and outlet chamber 70g are maintained in a sterile state.
  • a chamber (not shown) that connects a sterile zone in a sterile state and a non-sterile zone in a non-sterile state may be provided downstream of the outlet chamber 70g.
  • the mixing line 51A mixes the target raw material and water to produce a mixed target raw material.
  • a mixing line 51A includes a water tank 50a that stores water (pure water) supplied from the pure water production device 50c, a target raw material tank 50b that stores target raw materials among the raw materials in the contents, and a water tank 50a. It has a mixing tank 51 that mixes the water in the container and the target raw material in the target raw material tank 50b to generate the raw material to be mixed.
  • the water tank 50a is a tank that stores water (pure water) supplied from a water supply source (for example, the above-mentioned pure water production device 50c).
  • a water supply source for example, the above-mentioned pure water production device 50c.
  • the water for food production is pure water (RO water, ion exchange water, or distilled water) produced by a pure water production apparatus 50c equipped with activated carbon, a reverse osmosis membrane, an ion exchange resin (including EDI), or the like.
  • Pure water is water from which impurities such as calcium, magnesium, chlorine, iron, or minerals have been removed. In this case, the evaporation residue of pure water is 20 mg/L or less.
  • the electrical conductivity of pure water is 0.1 ⁇ S/cm or more and 20 ⁇ S/cm or less.
  • water is sterilized by ultraviolet light. Therefore, by setting the electrical conductivity of the water to be sterilized to 20 ⁇ S/cm or less, it is possible to prevent inorganic substances (oxides such as calcium) from adhering to the surfaces of the first ultraviolet lamp 67a, etc., which will be described later. Therefore, a decrease in ultraviolet transmittance can be prevented.
  • the water supplied from the pure water production device 50c is not limited to pure water, and may be ultrapure water. Purified water used as pharmaceutical water or water for injection may be used.
  • This water tank 50a plays a role of smoothing the flow of water by storing water.
  • the volume of the water tank 50a may be 30 m 3 or more and 100 m 3 or less, and may be 50 m 3 as an example.
  • the number of bacteria in the water tank 50a is 0.01 CFU/mL or more and 10 CFU/mL or less. Note that if the number of bacteria in the water tank 50a is greater than 10 CFU/mL, it is preferable to sterilize the water tank 50a with chlorine, hot water, steam, or the like. The number of bacteria in the water tank 50a may be constantly monitored and controlled to be within the above range. This makes it possible to produce water that maintains sterility without the need for additional equipment. For this reason, the amount of carbon dioxide emitted by the sterilizer 60 can be reduced without making the sterilizer 60 of the mixing target material sterilization line 50 described later expensive. Note that a pre-stage sterilizer 62A having the same configuration as the first sterilizer 62 may be provided on the upstream or downstream side of the water tank 50a.
  • the target raw material tank 50b stores the target raw material among the contents described above, and the water from the water tank 50a and the target raw material from the target raw material tank 50b are mixed in the mixing tank 51, and the target raw material is mixed. generated.
  • a pump P1 for transporting water and a flow meter F for measuring the flow rate of water may be provided on the downstream side of the mixing line 51A having such a configuration.
  • the pump P1 and the flow meter F may be provided in this order from the upstream side to the downstream side along the water transport direction.
  • a mixing target material sterilization line 50 consisting of the above-mentioned sterilizer 60.
  • the mixing target raw material sterilization line 50 consisting of the sterilizer 60 is a sterilizer that sterilizes the mixing target raw material obtained by mixing water and the target raw material in the mixing tank 51 without heating. Note that details of the sterilizer 60 will be described later.
  • a tank 52 is provided downstream of the sterilizer 60, and this tank 52 is a tank (so-called aseptic tank) that stores the raw materials to be mixed that have been sterilized by the sterilizer 60.
  • This tank 52 plays a role of smoothing the flow of the raw materials to be mixed by storing the sterilized raw materials to be mixed.
  • the volume of the tank 52 may be 5 m 3 or more and 50 m 3 or less, and may be 10 m 3 as an example.
  • a mixing tank 55 is provided downstream of the tank 52, and the mixing tank 55 mixes the raw material to be mixed with other raw materials sterilized by the other raw material sterilization line 70 to generate contents. Ru.
  • a circulation line 59 may be connected to the upstream side of the tank 52.
  • This circulation line 59 may be connected to the mixing tank 51.
  • water is circulated by the foreign matter removal filter 61 of the sterilizer 60, the first sterilizer 62, the first sterilizer filter 63, the second sterilizer 64, the second sterilizer filter 65, the circulation line 59, and the mixing tank 51.
  • a circulatory system 59A may be configured.
  • This sterilizer 60 is a sterilizer that sterilizes the raw materials to be mixed used in the content filling system 10.
  • the sterilizer 60 sterilizes the raw materials to be mixed without heating.
  • the sterilizer 60 sterilizes the raw materials to be mixed stored in the mixing tank 51. Therefore, the sterilizer 60 sterilizes the raw materials to be mixed whose electrical conductivity is 0.1 ⁇ S/cm or more and 20 ⁇ S/cm or less.
  • the sterilizer 60 includes at least one sterilization filter (a first sterilization filter 63 and a second sterilization filter 65). Furthermore, the sterilizer 60 includes at least one sterilizer (a first sterilizer 62 and a second sterilizer 64). Since the sterilizer 60 includes at least one sterilizing filter and at least one sterilizer, even if one of the sterilizing filter and the sterilizer is stopped, the sterilizing filter and the sterilizing machine can be operated. By the other hand, the sterility of the water can be guaranteed. Moreover, as shown in FIG. 2A2, the sterilizer 60 has a circulation system 95A described later.
  • the sterilizer 60 includes a foreign matter removal filter 61, a first sterilizer 62, a first sterilizer 63, a second sterilizer 64, and a second sterilizer 65. It is equipped with The foreign matter removal filter 61, the first sterilizer 62, the first sterilizer filter 63, the second sterilizer 64, and the second sterilizer filter 65 are arranged in this direction from the upstream side to the downstream side along the conveyance direction of the contents. They are arranged in order. In this way, the sterilizer (in this case, the second sterilizer 64) is disposed downstream of the sterilizer filter (in this case, the first sterilizer filter 63), so that bacteria can pass through the sterilizer filter.
  • the foreign matter removal filter 61, the first sterilizer 62, the second sterilizer 64, the first sterilizer filter 63, and the second sterilizer filter 65 move along the conveyance direction of the contents. , may be arranged in this order from the upstream side to the downstream side.
  • the sterilizer 60 includes a plurality of sterilization filters (the first sterilization filter 63 and the second sterilization filter 65), one of the sterilization filters stops. However, the sterilization of the water can be guaranteed by the other sterilization filter.
  • the sterilizer 60 since the sterilizer 60 includes a plurality of sterilizers (the first sterilizer 62 and the second sterilizer 64), even if one sterilizer stops, the other sterilizer can handle the contents. Can guarantee the sterility of items. Note that the foreign matter removal filter 61 and the first sterilization filter 63 are provided with a drain line 95c.
  • the sterilizer 60 may include a foreign matter removal filter 61, a first sterilizer 62, a first sterilizer filter 63, and a second sterilizer filter 65.
  • the foreign matter removal filter 61, the first sterilizer 62, the first sterilization filter 63, and the second sterilization filter 65 are arranged in this order from the upstream side to the downstream side along the content conveyance direction. Also good.
  • the sterilizer 60 may further include a second sterilizer 64 provided between the first sterilizer filter 63 and the second sterilizer filter 65.
  • the sterilizer 60 may include a first sterilizer 62, a first sterilizer filter 63, and a second sterilizer filter 65.
  • the first sterilizer 62, the first sterilization filter 63, and the second sterilization filter 65 may be arranged in this order from the upstream side to the downstream side along the water transport direction.
  • the sterilizer 60 may further include a second sterilizer 64 provided between the first sterilizer filter 63 and the second sterilizer filter 65.
  • the first sterilizing filter 63, the first sterilizer 62, the second sterilizing filter 65, and the second sterilizer 64 are arranged from the upstream side to the downstream side along the conveyance direction of the contents. They may be arranged in this order toward.
  • the first sterilizer 62, the first sterilizer filter 63, the second sterilizer filter 65, and the second sterilizer 64 are arranged from the upstream side to the downstream side along the conveyance direction of the contents. They may be arranged in this order toward.
  • the sterilizer 60 may include a first sterilizer 62 and a first sterilization filter 63.
  • the first sterilizer 62 and the first sterilization filter 63 may be arranged in this order from the upstream side to the downstream side along the transport direction of the contents.
  • the first sterilization filter 63 and the first sterilizer 62 may be arranged in this order from the upstream side to the downstream side along the conveyance direction of the contents.
  • the sterilizer 60 may further include a second sterilizer 64 provided between the first sterilizing filter 63 and a valve V1 to be described later.
  • the sterilizer 60 may include a first sterilizer 62, a second sterilizer 64, and a first sterilization filter 63.
  • the first sterilizer 62, the second sterilizer 64, and the first sterilization filter 63 may be arranged in this order from the upstream side to the downstream side along the transport direction of the contents.
  • the sterilizer 60 may further include a second sterilization filter 65 provided downstream of the first sterilization filter 63.
  • a pre-stage sterilizer 62A is provided upstream of the first sterilizer 62.
  • the sterilizer 60 may include a first sterilizer filter 63, a second sterilizer filter 65, and a first sterilizer 62.
  • the first sterilizing filter 63, the second sterilizing filter 65, and the first sterilizer 62 may be arranged in this order from the upstream side to the downstream side along the transport direction of the contents.
  • the sterilizer 60 may further include a second sterilizer 64 provided downstream of the first sterilizer 62.
  • the sterilizer 60 does not need to be equipped with a sterilization filter. That is, depending on the sterile quality level of the contents produced by diluting the product stock solution with water and/or the growth characteristics of bacteria in the contents, the sterilizer 60 may not need to be equipped with a sterilization filter. .
  • the sterilizer 60 may include only the first sterilizer 62.
  • the sterilizer 60 may include a first sterilizer 62 and a second sterilizer 64. In this way, when the sterilizer 60 is not equipped with a sterile filter, the manufacturing cost of the sterilizer 60 can be reduced.
  • the sterilizer 60 does not need to be equipped with a sterilizer. That is, depending on the sterile quality level of the contents produced by diluting the product stock solution with water and/or the growth characteristics of bacteria in the contents, the sterilizer 60 may not be equipped with a sterilizer. In this case, for example, as shown in FIG. 2H, the sterilizer 60 may include only the first sterilization filter 63. Further, as shown in FIG. 2I, the sterilizer 60 may include a first sterilizing filter 63 and a second sterilizing filter 65. In this way, even when the sterilizer 60 is not equipped with a sterilizer, the manufacturing cost of the sterilizer 60 can be reduced.
  • the foreign matter removal filter 61 First sterilizer 62, first sterilizer 63, second sterilizer 64, and second sterilizer 65 will be explained.
  • the sterilizer 60 shown in FIG. Explain.
  • the foreign matter removal filter 61 will be explained.
  • the foreign matter removal filter 61 is a filter that removes foreign matter from water.
  • the sterilizer 60 includes a single foreign matter removal filter 61.
  • the present invention is not limited to this, and the sterilizer 60 may include a plurality of foreign matter removal filters 61.
  • the opening (filtration accuracy) of this foreign matter removal filter 61 may be, for example, 0.20 ⁇ m or more and 10 ⁇ m or less, or 0.45 ⁇ m or more and 10 ⁇ m or less. Further, the opening of the foreign matter removal filter 61 is preferably large enough to remove fungi (mold, yeast, etc.).
  • the opening of the foreign matter removal filter 61 is preferably large enough to remove molds that are resistant to ultraviolet rays, and is preferably 0.45 ⁇ m or more and 1.0 ⁇ m or less.
  • the opening of the foreign matter removal filter 61 may be 0.2 ⁇ m or more and 1.0 ⁇ m or less. This allows almost all bacteria remaining in the water to be collected.
  • a sterile grade filter with an opening of 0.1 ⁇ m or more and 0.22 ⁇ m or less may be used as the foreign matter removal filter 61.
  • the first sterilizer 62 is provided downstream of the foreign matter removal filter 61. Further, the first sterilizer 62 is provided upstream of the first sterilizing filter 63.
  • the first sterilizer 62 is a sterilizer that sterilizes the raw materials to be mixed using ultraviolet rays. Thereby, bacteria (bacteria other than mold and yeast) that have passed through the foreign matter removal filter 61 can be sterilized. Furthermore, when the first sterilizer 62 sterilizes the raw materials to be mixed with ultraviolet rays, the content filling system emits less carbon dioxide than when the raw materials to be mixed are sterilized by heating the raw materials to be mixed. The amount can be reduced.
  • the product raw material when producing the contents, can be diluted with water from 1.1 times to 100 times, preferably from 2 times to 10 times.
  • the product raw material when the product raw material is diluted with water to 2 times or more and 10 times or less, 50% or more and 90% or less of the content is water. Therefore, by sterilizing the water-containing raw materials to be mixed without heating, it is possible to significantly reduce the amount of carbon dioxide emitted when producing the contents.
  • the bacterial count concentration supplied from the pure water production device 50c is high (for example, 1 CFU/ml or more), and when the foreign matter removal filter 61 has a pore size of a sterilization filter (0.1 to 1 ⁇ m),
  • the foreign matter removal filter 61 becomes contaminated with bacteria in a short period of time. If a large amount of bacteria is captured by the foreign matter removal filter 61 and the bacteria multiply, the quality of the water may be affected. Therefore, it is preferable to install the first sterilizer 62 also on the upstream side of the foreign matter removal filter 61 (see 62A in FIG. 2B). It becomes possible to produce high-quality sterile water for a long period of time.
  • the first sterilizer 62 sterilizes water with ultraviolet rays.
  • the first sterilizer 62 may include a main body 66 and an ultraviolet irradiator 67 provided within the main body 66.
  • the main body portion 66 is formed in a hollow shape. Further, the shape of the main body portion 66 is a truncated cone shape. Specifically, the main body portion 66 has a truncated conical inner surface, and is oriented such that the end on the small diameter side is located above the end on the large diameter side.
  • An introduction part 68 for introducing the raw materials to be mixed into the interior of the main body part 66 is formed in the lower part of the main body part 66, and a discharge part 69 for discharging the sterilized raw materials to be mixed from the main part 66 is formed in the upper part of the main part 66. may be formed.
  • An introduction pipe 68a may be connected to the introduction part 68 formed in the main body part 66, and the introduction pipe 68a may be provided so as to extend in the tangential direction of the inner surface of the main body part 66 when viewed from above. good.
  • the tangential direction of the inner surface refers to the portion of the tangent to the circle formed by the inner surface of the main body section 66 in the horizontal section including the introduction section 68, where the raw materials to be mixed to be introduced collide with the inner surface of the main body section 66. is the tangential direction at .
  • the raw materials to be mixed introduced into the main body part 66 through the introduction part 68 are guided along the inner surface of the main body part 66, thereby turning in the circumferential direction. Then, the raw materials to be mixed move upward while rotating and are discharged from the discharge section 69. Thereby, it is possible to suppress uneven flow of the raw materials to be mixed introduced into the main body portion 66. Therefore, it is possible to prevent part of the raw materials to be mixed introduced into the main body part 66 from being discharged from the discharge part 69 in a short period of time (so-called short path).
  • a baffle plate 66a may be provided within the main body portion 66 to regulate the flow of the raw materials to be mixed.
  • This baffle plate 66a may protrude in the radial direction from the inner surface of the main body portion 66 so as to spirally circulate.
  • the baffle plate 66a does not have to spiral in the main body 66.
  • a plurality of baffle plates 66a each having an annular shape in plan view may be provided in the main body 66, and are configured so that water passes through a central opening. Also good.
  • a fixing member 66b for fixing a first ultraviolet lamp 67a and a second ultraviolet lamp 67b, which will be described later, of the ultraviolet irradiation section 67 may be provided within the main body 66.
  • the shape of the fixing member 66b may be, for example, a cross shape in plan view. Thereby, upward movement of water can be prevented from being obstructed by the fixing member 66b.
  • the shape of the fixing member 66b may be, for example, a disk shape or a circular shape in a plan view.
  • a through hole (not shown) may be formed in the fixing member 66b, and the raw material to be mixed may be configured to pass through the through hole.
  • an illuminance meter that measures the illuminance of the ultraviolet rays irradiated from the ultraviolet ray irradiation section 67 may be installed in the main body part 66. Further, an output meter may be installed to measure the output of a first ultraviolet lamp 67a and a second ultraviolet lamp 67b, which will be described later, of the ultraviolet irradiation unit 67. Further, the time (residence time) during which the raw materials to be mixed pass through the interior of the main body portion 66 may be constantly monitored by the flowmeter F described above.
  • the temperature, turbidity, and/or chromaticity of the raw materials to be mixed passing through the main body 66 may be constantly or appropriately measured to confirm that there is no abnormality in the amount of ultraviolet ray irradiation and/or the transmittance.
  • Sterilization of raw materials to be mixed is guaranteed by constantly monitoring the readings on the illumination meter. If the illuminance rises or falls from the set value, it is a good idea to automatically adjust the ultraviolet light output to bring it closer to the set value. Furthermore, in order to vary the liquid feeding flow rate, the frequency of the pump P1 may be varied to bring the illuminance closer to the set value. Regarding illuminance, only a lower limit value may be provided without providing an upper limit value. Furthermore, in the event that the illuminance during liquid feeding falls below the lower limit value, the flow of the raw materials to be mixed is immediately switched to the circulation line 59 to maintain sterility from the tank (aseptic tank) 52 onwards. Thereafter, the sterilizer 60 may be cleaned and sterilized, or only sterilized, and production may be resumed.
  • the ultraviolet irradiation section 67 may include a first ultraviolet lamp 67a provided at the radial center of the main body 66, and a plurality of second ultraviolet lamps 67b provided around the first ultraviolet lamp 67a. In the illustrated example, four second ultraviolet lamps 67b are provided around one first ultraviolet lamp 67a.
  • Each second ultraviolet lamp 67b is arranged along the inner surface of the main body part 66. That is, each second ultraviolet lamp 67b is provided so as to be inclined radially inward as it goes upward. In this case, the second ultraviolet lamps 67b are preferably arranged at equal intervals along the circumferential direction. Thereby, it is possible to suppress variations in the cumulative irradiation amount (mJ/cm 2 ) of ultraviolet rays.
  • the first ultraviolet lamp 67a and the second ultraviolet lamp 67b may each be an ultraviolet lamp that emits ultraviolet light having a wavelength of 200 nm or more and 450 nm or less.
  • the first ultraviolet lamp 67a and the second ultraviolet lamp 67b may be a low-pressure mercury lamp, a medium-pressure mercury lamp, or a UV-LED, respectively.
  • the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are preferably low-pressure mercury lamps or medium-pressure mercury lamps, respectively.
  • a low-pressure mercury lamp is a mercury lamp in which the mercury vapor pressure during lighting is less than 10 Pa. This low-pressure mercury lamp can efficiently irradiate ultraviolet rays with a wavelength (253.7 nm) that is highly effective in sterilizing. Therefore, when the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are each low-pressure mercury lamps, the sterilization effects in the first sterilizer 62 and the second sterilizer 64 can be improved.
  • the low-pressure mercury lamp may be an amalgam lamp (low-pressure high-output amalgam lamp) in which amalgam, which is an alloy of mercury and other metals, is sealed in an arc tube.
  • a medium pressure mercury lamp is a mercury lamp with a mercury vapor pressure of 40 kPa or more during lighting.
  • medium-pressure mercury lamps are high-power mercury lamps compared to low-pressure mercury lamps. Therefore, when the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are medium pressure mercury lamps, the first sterilizer 62 and the second sterilizer 64 can sterilize a large amount of water. Further, since the medium pressure mercury lamp is a high output mercury lamp, if the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are medium pressure mercury lamps, the first sterilizer 62 and the second sterilizer 64 Miniaturization can be achieved.
  • the bactericidal effect of ultraviolet rays changes depending on the cumulative irradiation amount (mJ/cm 2 ) of ultraviolet rays. That is, the greater the cumulative irradiation amount of ultraviolet rays, the more effective the bacteria sterilization effect of ultraviolet rays becomes.
  • This cumulative irradiation amount is determined by the product of illuminance (mW/cm 2 ) and irradiation time (sec). Therefore, in order to enhance the effect of sterilizing bacteria with ultraviolet rays, the distance between the light sources (first ultraviolet lamp 67a and second ultraviolet lamp 67b) and the raw materials to be mixed is shortened, and the irradiation time of ultraviolet rays is lengthened. That is required.
  • the illuminance is inversely proportional to the square of the distance from the light source emitting ultraviolet light. For example, when the distance from the light source doubles, the illuminance becomes 1/4, and when the distance from the light source triples, the illuminance becomes 1/9. Therefore, by allowing water to pass near the light source, the bacteria sterilization effect of ultraviolet rays can be enhanced.
  • the introduction part 68 for introducing the raw materials to be mixed into the interior of the main body part 66 is formed in the lower part of the main body part 66, and the sterilized raw materials to be mixed are formed in the upper part of the main body part 66.
  • a discharge portion 69 is formed to discharge the water from the main body portion 66.
  • the raw materials to be mixed can be mixed. Sufficient time for the target raw material to stay inside the main body portion 66 can be ensured. Therefore, the irradiation time of ultraviolet rays to water can be increased.
  • the shape of the main body portion 66 is a truncated cone shape. Thereby, the distance between the first ultraviolet lamp 67a and the second ultraviolet lamp 67b and the raw materials to be mixed can be shortened in the upper part of the main body part 66. Therefore, the bactericidal effect of ultraviolet rays can be enhanced.
  • the ultraviolet irradiation section 67 includes a first ultraviolet lamp 67a provided at the radial center of the main body 66, and a plurality of second ultraviolet lamps 67b provided around the first ultraviolet lamp 67a. Thereby, the raw materials to be mixed that move upward while rotating in the circumferential direction can be evenly irradiated with ultraviolet rays. Therefore, it is possible to suppress variations in the cumulative irradiation amount of ultraviolet rays.
  • the cumulative irradiation amount of ultraviolet rays to water is preferably 10 mJ/cm 2 or more and 10000 mJ/cm 2 or less, and more preferably 100 mJ/cm 2 or more and 1000 mJ/cm 2 or less. That is, when passing through the main body portion 66, the cumulative irradiation amount of ultraviolet rays to the contents is preferably 10 mJ/cm 2 or more and 10000 mJ/cm 2 or less at a wavelength of 254 nm, and 100 mJ/cm 2 or more and 1000 mJ/cm 2 or less. It is more preferable that it is below.
  • the cumulative irradiation amount of ultraviolet rays is 10 mJ/ cm2 or more, aquatic bacteria (such as Pseudomonas or Methylobacterium that can grow in water in an oligotrophic environment) that may pass through the second sterilization filter 65. Can effectively sterilize negative bacteria). Furthermore, bacterial spores can also be sterilized by setting the cumulative irradiation amount of ultraviolet rays to 100 mJ/cm 2 or more.
  • the wavelength of the ultraviolet rays may be 250 nm or more and 260 nm or less, and may be 253.7 nm (254 nm) as an example.
  • the wavelength of the ultraviolet rays is 250 nm or more and 260 nm or less, especially 253.7 nm, the effect of sterilizing bacteria by the ultraviolet rays can be enhanced.
  • aquatic bacteria means bacteria that can pass through a sterilization filter with an opening of 0.2 ⁇ m, and can also be referred to as “bacteria that pass through a sterilization filter” hereinafter.
  • the amount of ultraviolet rays emitted by the ultraviolet irradiator 67 may be set based on the RED (Reduction Equivalent UV Dose) determined by an actual chemical dosimeter or biological dosimeter. For details, refer to "ULTRAVIOLET DISINFECTION GUIDANCE MANUAL FOR THE FINAL LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE, United States Environmental Protection Agency, EPA 815-R-06-007, November 2006."
  • a first sterilizer 62 is capable of sterilization (SIP). Thereby, the first sterilizer 62 can be regularly sterilized.
  • the control unit 90 described above may sterilize the first sterilizer 62 with steam or hot water.
  • the control unit 90 sterilizes the first sterilizer 62 by circulating a sterilizer containing peracetic acid, for example, in the circulation system 59A including the sterilizer 60. You may do so.
  • the control unit 90 may circulate the disinfectant in the circulation system 59A for at least 10 seconds or more and 60 minutes or less.
  • the main body portion 66 of the first sterilizer 62 may have a cylindrical shape.
  • a discharge pipe 69a may be connected to the discharge part 69 formed in the main body part 66, and the discharge pipe 69a is provided so as to extend in the tangential direction of the inner surface of the main body part 66 in a plan view. You can leave it there.
  • the tangential direction of the inner surface refers to the tangential direction of the circle formed by the inner surface of the main body section 66 in the horizontal cross section including the discharge section 69. This is the tangential direction that points away from .
  • the time during which the raw materials to be mixed stay inside the main body part 66 can be increased. For this reason, the irradiation time of ultraviolet rays to the raw materials to be mixed can be lengthened, and the cumulative irradiation amount of ultraviolet rays can be increased.
  • the plurality of second ultraviolet lamps 67b may be provided so as to be inclined radially inward toward the top.
  • the main body 66 has a cylindrical shape, and an introduction part 68 for introducing the raw materials to be mixed into the main body 66 is provided at one end of the main body 66. It may be formed. Further, a discharge portion 69 for discharging the sterilized raw materials to be mixed from the body portion 66 may be formed at the other end of the body portion 66 .
  • the main body 66 may be arranged such that the longitudinal direction (the direction in which water travels) of the main body 66 is the horizontal direction, and the longitudinal direction (the direction in which water travels) of the main body 66 is the vertical direction.
  • the main body portion 66 may be arranged as shown in FIG.
  • the ultraviolet irradiation section 67 may include a plurality of third ultraviolet lamps 67c arranged along the traveling direction of the raw materials to be mixed. This allows water to be evenly irradiated with ultraviolet rays. Therefore, it is possible to suppress variations in the cumulative irradiation amount of ultraviolet rays.
  • each third ultraviolet lamp 67c is regularly arranged. That is, each third ultraviolet lamp 67c, when viewed from the upstream side in the traveling direction of the raw materials to be mixed (left side in FIG. 6B), moves toward the downstream side in the traveling direction of the raw materials to be mixed (right side in FIG. 6B), It rotates clockwise by 45 degrees around the central axis X of the main body part 66. Note that each of the third ultraviolet lamps 67c may be arranged irregularly.
  • the third ultraviolet lamp 67c may be the same ultraviolet lamp as the first ultraviolet lamp 67a and the second ultraviolet lamp 67b. That is, the third ultraviolet lamp 67c may be an ultraviolet lamp that emits ultraviolet light having a wavelength of 200 nm or more and 450 nm or less. Furthermore, the third ultraviolet lamp 67c may be a low-pressure mercury lamp (including a low-pressure high-output amalgam lamp) or a medium-pressure mercury lamp. Although not shown, a baffle plate 66a may be provided inside the main body 66 to regulate the flow of water.
  • the main body 66 includes an outer member 660 and an inner member 661 provided inside the outer member 660. May contain.
  • Outer member 660 may be constructed from polished stainless steel tubing, for example.
  • the inner member 661 may be made of a glass tube. Further, an air layer 662 may be interposed between the outer member 660 and the inner member 661.
  • the inner member 661 if glass with high ultraviolet transmittance (for example, quartz glass or fluoride glass) is used as the glass of the glass tube of the inner member 661, as shown in FIG. 6C, the inner member 661 and the air layer 662 At the interface, ultraviolet light (UV) can be reflected.
  • a material having a high transmittance of ultraviolet rays may be appropriately selected according to the wavelength of the ultraviolet rays irradiated by the third ultraviolet lamp 67c and the like.
  • a material other than glass may be used, and for example, plastic having properties similar to glass may be used.
  • the inner surface of the outer member 660 and/or the outer surface of the inner member 661 may be coated with a highly reflective material.
  • the attenuation of ultraviolet rays can be suppressed by coating the inner surface of the outer member 660 with a material having a high reflectance. At the same time, it can repeatedly reflect ultraviolet rays. Therefore, water can be efficiently sterilized. Note that it is preferable that the ultraviolet rays UV be reflected one or more times inside the main body portion 66.
  • the number of times the ultraviolet rays are reflected is two or more by shortening the distance between the outer member 660 etc. and the third ultraviolet lamp 67c etc.
  • the ultraviolet rays emitted from a medium-pressure mercury lamp can maintain illuminance over a longer distance than the ultraviolet rays emitted from a low-pressure mercury lamp. Therefore, if the third ultraviolet lamp 67c or the like is a medium-pressure mercury lamp, even if the ultraviolet rays are reflected multiple times inside the main body 66, the sterilizing effect of the ultraviolet rays will be reduced. can be suppressed.
  • the passage time for water to pass through the first sterilizer 62 may be 0.1 seconds or more and less than 10 seconds, and preferably 0.5 seconds or more and less than 5 seconds.
  • the passage time is the time required for water introduced into the main body part 66 from the introduction part 68 to be discharged from the discharge part 69.
  • the passage time is less than 10 seconds, it is possible to suppress variations in the sterilizing effect of water. Therefore, a sufficient sterilizing effect can be obtained. Since the passing time is less than 10 seconds, the first sterilizer 62 can be made smaller.
  • the passage time for water to pass through the first sterilizer 62 may be changed as appropriate based on the flow rate of the water that the first sterilizer 62 processes (sterilizes).
  • the first sterilization filter 63 is provided downstream of the first sterilizer 62.
  • This first sterilization filter 63 is a micro-filtration filter (MF) that sterilizes the raw materials to be mixed by collecting bacteria remaining in the raw materials to be mixed.
  • the opening may be 0.1 ⁇ m or more and 0.45 ⁇ m or less, and preferably 0.1 ⁇ m or more and 0.22 ⁇ m or less.
  • the first sterilization filter 63 effectively removes bacteria remaining in the raw materials to be mixed.
  • a filter with an opening of 0.02 ⁇ m or more and 0.1 ⁇ m or less, which can also remove some viruses, may be used as the sterile filter 63.
  • the filtration membrane of the first sterilization filter 63 (Membrane) materials include polyvinylidene fluoride (PVDF), polyethersulfone (PES), mixed cellulose (SCWP), polycarbonate (PC), polypropylene (PP), polyamide, etc.
  • PVDF polyvinylidene fluoride
  • PES polyethersulfone
  • SCWP mixed cellulose
  • PC polycarbonate
  • PP polypropylene
  • polyamide polyamide
  • this first sterilization filter 63 is capable of sterilization (SIP). Thereby, the first sterilization filter 63 can be regularly sterilized.
  • the first sterilizing filter 63 passes through the first sterilizer 62 and collects bacteria remaining in the raw materials to be mixed. Therefore, if water sterilization is continued for a long period of time in the sterilizer 60, the collected bacteria may propagate within the first sterilization filter 63.
  • dead bacteria which is an organic matter, is attached to the first sterilization filter 63 or the like, the dead bacteria may become a substrate. In this case, bacteria may further propagate within the first sterilization filter 63.
  • the first sterilizing filter 63 can be sterilized, it is possible to prevent bacteria attached to the first sterilizing filter 63 from entering the raw materials to be mixed that pass through the first sterilizing filter 63. . As a result, it is possible to suppress the filtration performance of the first sterilization filter 63 from decreasing. Note that when sterilizing the first sterilizing filter 63, sterilizing steam or the like may be supplied to the first sterilizing filter 63 from a sterile air supply port 60a, which will be described later.
  • the degree of sterilization of the first sterilization filter 63 may be managed by the F value.
  • the control unit 90 measures the temperature of the heated steam (fluid) or hot water (fluid) flowing through the flow path of the first sterilization filter 63, and also measures the F value based on the measured temperature. may also be calculated. Then, when the F value becomes equal to or greater than the target value, the control unit 90 may end the sterilization of the first sterilization filter 63.
  • the control unit 90 When measuring the temperature of heated steam or hot water, the control unit 90 flows heated steam or hot water through the flow path of the first sterilization filter 63, and is arranged at various locations in the flow path where the temperature is unlikely to rise.
  • the temperature may be measured using a temperature sensor.
  • the control unit 90 may terminate the heating of the flow path using heating steam or the like when the time during which the temperature from each temperature sensor reaches a predetermined temperature is equal to or longer than a predetermined time.
  • the first sterilizing filter 63 can be sterilized without applying more heat than necessary to the first sterilizing filter 63.
  • the F value is the heating time required to kill all bacteria when bacteria are heated for a certain period of time, and is expressed as the time required to kill bacteria at 121.1°C, and is calculated by the following formula. .
  • the first sterilizing filter 63 is capable of performing an integrity test on the opening of the first sterilizing filter 63, which will be described later.
  • the integrity test can be performed as follows. For example, first, a housing (not shown) in the first sterilizing filter 63 is filled with water. Next, sterile air is injected into the first sterilizing filter 63 filled with water, for example, from the sterile air supply port 60a.
  • the pressure of the sterile air is increased until the sterile air is released from the first sterilizing filter 63.
  • the size of the opening of the first sterilizing filter 63 is determined based on the pressure (bubble point) of the sterile air when the sterile air leaves the first sterilizing filter 63 .
  • a pressure gauge P2 may be provided near the sterile air supply port 60a.
  • the integrity test may be performed by a diffusion flow test, a pressure hold test, or the like.
  • the second sterilizer 64 is provided downstream of the first sterilization filter 63.
  • the configuration of the second sterilizer 64 may be substantially the same as the first sterilizer 62 shown in FIGS. 3 to 6B. That is, the second sterilizer 64 may be a sterilizer that sterilizes water with ultraviolet rays.
  • the second sterilization filter 65 is provided downstream of the second sterilizer 64.
  • This second sterilization filter 65 is a filter that sterilizes the raw materials to be mixed by passing through the second sterilizer 64 and collecting bacteria remaining in the raw materials to be mixed.
  • the opening of the second sterilizing filter 65 is preferably equal to or less than the opening of the first sterilizing filter 63. Thereby, even if bacteria in the raw materials to be mixed pass through the first sterilization filter 63, the second sterilization filter 65 can collect the bacteria. Therefore, the sterility of the raw materials to be mixed can be sufficiently ensured.
  • the sterilizing set consisting of the sterilizer and the sterilizing filter is moved in the direction of conveyance of the raw materials to be mixed.
  • Two sets can be placed along the line. That is, a first sterilization set constituted by the first sterilizer 62 and the first sterilization filter 63, and a second sterilization set constituted by the second sterilizer 64 and the second sterilization filter 65. , can be arranged in series along the conveyance direction of the raw materials to be mixed. Therefore, even if some abnormality occurs in one of the sterilization sets, the sterility of the raw materials to be mixed can be guaranteed.
  • a plurality of sterilization sets may be provided depending on the sterility assurance level (SAL) of the raw materials to be mixed or the final product (contents) (Fig. 2A1, Fig. 2A2, Fig. 2A4 to Fig. 2A4). (See Figure A7).
  • the number of sterilization sets may be one, and although not shown, the number of sterilization sets may be three or more.
  • the opening of the second sterilizing filter 65 may be 0.1 ⁇ m or more and 0.45 ⁇ m or less, and preferably 0.1 ⁇ m or more and 0.22 ⁇ m or less. By setting the opening of the second sterilization filter 65 to 0.1 ⁇ m or more, it is possible to suppress a decrease in the sterilization efficiency of the raw materials to be mixed. Further, since the opening of the second sterilizing filter 65 is 0.45 ⁇ m or less, the second sterilizing filter 65 can more effectively collect bacteria remaining in the raw materials to be mixed.
  • the filtration membrane of the second sterilization filter 65 may be, for example, a reverse osmosis (RO) membrane or an ultra-filtration (UF) membrane.
  • the second sterilizing filter 65 may be substantially the same as those of the first sterilizing filter 63. That is, the second sterilization filter 65 may be sterilized (SIP). Further, the second sterilizing filter 65 may be capable of performing an integrity test on the opening of the second sterilizing filter 65.
  • SIP sterilized
  • N 0 means the initial number of bacteria in the water
  • NR 1 means the number of bacteria to be mixed after being sterilized by a filter (for example, the first sterilization filter 63). It means the number of bacteria in the raw material.
  • N I means the number of bacteria that increased while passing through the filter.
  • the sterilizer for example, the second sterilizer 64
  • NR2 means the number of bacteria in the raw material to be mixed after being sterilized by a sterilizer (for example, the second sterilizer 64), and "N” means the number of bacteria in the raw material to be mixed after being sterilized by the sterilizer (for example, the second sterilizer 64). 64) refers to the target value of the number of bacteria in the raw materials to be mixed after being sterilized.
  • the sterilizer (for example, the second sterilizer ) is By setting the sterilization capacity of the machine 64), it is possible to keep the sterility of the raw materials to be mixed below the target value (FSO).
  • sampling points SP1 to SP6 are located at the inlet of the sterilizer 60, the outlet of the sterilizer 60, and between the foreign matter removal filter 61 and the first sterilizer 62, etc. SP) may be provided. Further, a sampling line SL may be connected to at least some of the sampling points SP1 to SP6 via a valve (not shown). Thereby, the number of bacteria in the water can be easily measured by sampling the water aseptically from the sampling points SP1 to SP6 or the sampling line SL. Note that the sampling line SL may be provided with a thermometer T, and when the first sterilization filter 63 and the second sterilization filter 65 are sterilized with steam, the temperature of the steam is monitored by the thermometer T.
  • the liquid may be sampled and the number of bacteria may be counted using a plate medium.
  • the number of bacteria and/or changes in the state of bacteria in the raw materials to be mixed can be measured using a microbial measuring device (for example, Real-time Microbial Detector, IMD-W (registered trademark) manufactured by Azbil Corporation) or a particulate measuring device (in-liquid It may be measured and/or confirmed using a particle counter) or the like.
  • a microbial measuring device for example, Real-time Microbial Detector, IMD-W (registered trademark) manufactured by Azbil Corporation
  • a particulate measuring device in-liquid It may be measured and/or confirmed using a particle counter
  • the processing capacity of such a sterilizer 60 is preferably 105% or more of the maximum processing capacity required when producing the product bottles 101, and preferably 110% of the maximum processing capacity required when producing the product bottles 101. It is more preferable that it is above.
  • the processing capacity of the sterilizer 60 may be 5 m 3 /h or more and 50 m 3 /h or less, and may be 24 m 3 /h as an example.
  • a predetermined amount of water is stored in the tank 52 when producing the product bottle 101. You can also do that.
  • the volume of the tank 52 may be set to be greater than or equal to the amount of raw materials to be mixed that are used in the content filling system 10 when producing the product bottle 101 for one hour.
  • the processing capacity of the sterilizer 60 may be controlled by the control unit 90.
  • the control unit 90 determines the amount of water to be used for cleaning and sterilizing the content filling system 10, and also controls the sterilizer of the raw material sterilization line 50 based on the determined amount of raw materials to be mixed.
  • 60 may determine the amount of raw materials to be mixed to be sterilized during production of the product bottle 101.
  • the amount of sterile water required for cleaning and/or sterilizing the inside of each chamber after producing the product bottle 101 can be determined for each chamber. Therefore, the processing capacity of the sterilizer 60 may be controlled by the control unit 90 so that sterile water to be used after producing the product bottles 101 can be stored while producing one lot of the product bottles 101. Thereby, after producing the product bottle 101, the inside of each chamber etc. can be immediately cleaned and/or sterilized. Therefore, downtime can be reduced.
  • Such a sterilizer 60 fills the bottles 100 with contents in the content filling system 10, thereby sterilizing the raw materials to be mixed without stopping the sterilization of the raw materials to be mixed while producing the product bottles 101. It is preferable to continue sterilizing. Thereby, it is possible to suppress the proliferation of bacteria within the first sterilizing filter 63 and the second sterilizing filter 65. That is, when the flow of the raw materials to be mixed stops in the sterilizer 60, bacteria may grow in the first sterilizing filter 63 and the second sterilizing filter 65. On the other hand, while producing the product bottle 101 in the content filling system 10, by continuing to sterilize the raw materials to be mixed without stopping the pump P1, the inside of the first sterilization filter 63 and the second Propagation of bacteria within the bacteria filter 65 can be suppressed.
  • the sterilized raw materials to be mixed are circulated in the circulation system 59A (see FIG. 2A, etc.). It's okay. Thereby, even when the tank 52 becomes full of water, it is possible to suppress the flow of the raw materials to be mixed from stopping within the sterilizer 60. Therefore, it is possible to suppress the proliferation of bacteria within the first sterilizing filter 63 and the second sterilizing filter 65. Note that when the circulation time of the sterilized raw materials to be mixed becomes long, the temperature of the sterilized raw materials to be mixed may rise due to the irradiation energy of the ultraviolet rays irradiated from the ultraviolet irradiation unit 67.
  • the raw materials to be mixed flowing through the circulation line 59 may be discharged from the circulation line 59 without being returned to the mixing tank 51. Then, by supplying new pure water from the pure water production device 50c to the mixing tank 51 via the water tank 50a, the rise in temperature of the circulating raw materials to be mixed may be suppressed.
  • the raw material sterilization line 50 to be mixed is divided into a non-sterile zone Z1, a first gray zone Z2, a second gray zone Z3, and a sterile zone Z4.
  • the non-sterile zone Z1, the first gray zone Z2, the second gray zone Z3, and the sterile zone Z4 are provided in this order from the upstream side to the downstream side along the content transport direction.
  • the non-sterile zone Z1 is a zone under a non-sterile atmosphere, and is a zone where bacteria may exist.
  • the non-sterile zone Z1 is an area upstream of the pre-sterilizer 62A.
  • the mixing tank 51 and the flow path downstream of the mixing tank 51 are sterilized before manufacturing the product bottle 101.
  • bacteria may be brought in from the upstream side of the mixing tank 51, so that the mixing tank 51 and the like may be contaminated with bacteria.
  • the first gray zone Z2 and the second gray zone Z3 are zones for separating a non-sterile atmosphere and a sterile atmosphere, respectively.
  • the first gray zone Z2 is a zone where bacteria passing through the sterilization filter are sterilized.
  • the second gray zone Z3 is a zone in which no bacteria passing through the sterilization filter is maintained during production of the product bottle 101.
  • the first gray zone Z2 is an area from the front sterilizer 62A to the outlet of the second sterilizer 64.
  • the second gray zone Z3 is an area from the outlet of the second sterilizer 64 to the inlet of the first sterile filter 63.
  • the pure water production device 50c that supplies water to the raw material sterilization line 50 to be mixed is sterilized (SIP) before sterilizing water to the raw material sterilization line 50 to be mixed.
  • SIP sterilized
  • sterilization is performed under conditions that can kill at least bacteria that pass through the sterilization filter.
  • the temperature of steam or hot water used for sterilization and the sterilization time may be at least 60° C. and 5 minutes or more, preferably 85° C. and 30 minutes or more.
  • the sterilization conditions may be high temperature and short time conditions such as the temperature of steam or hot water used for sterilization and the sterilization time of 95° C.
  • the bactericidal activity under these sterilizing conditions generally does not kill bacterial spores. Therefore, bacterial spores may exist in the area up to this side of the first sterile filter 63. Therefore, the area from the front sterilizer 62A to just before the first sterile filter 63 is called a gray zone.
  • the second gray zone Z3 is maintained in a positive pressure state by continuously supplying water to the second gray zone Z3. As a result, in the second gray zone Z3, a state in which no bacteria pass through the sterilization filter is maintained.
  • the positive pressure state of the second gray zone Z3 is managed by a pressure gauge (not shown).
  • the method of sterilizing bacteria that passes through the sterilizing filter is not limited to steam or hot water. A drug or the like that inactivates bacteria passing through the sterilization filter may also be used.
  • the contents can be irradiated with ultraviolet rays in the first gray zone Z2.
  • the cumulative irradiation amount of ultraviolet rays applied to water by the first stage sterilizer 62A may be at least 10 mJ/cm 2 or more, and preferably 100 mJ/cm 2 or more.
  • the pre-sterilizer 62A may include a low-pressure mercury lamp.
  • the total cumulative irradiation amount of ultraviolet rays to water by the first sterilizer 62 and the second sterilizer 64 may be 100 mJ/cm 2 or more.
  • the first sterilizer 62 and the second sterilizer 64 may each include a medium pressure mercury lamp.
  • the contents before being supplied to the first removal filter 63 may be circulated by a circulation line 95. This can prevent contents in which bacteria passing through the sterilization filter may exist from being supplied to the first sterilization filter 63 . Therefore, the sterility of the contents in the sterile zone Z4 can be guaranteed. In this case, before supplying the contents to the sterile zone Z4 (first sterilization filter 63), the front sterilizer 62A, the foreign matter removal filter 61, the first sterilizer 62, and the second sterilizer 64 are sterilized (SIP). ) may be done.
  • SIP sterilized
  • the test result of the integrity test before and after production (first integrity test and second integrity test) described below is passed. It is preferable. As a result, at least one of the first sterilizing filter 63 and the second sterilizing filter 65 can filter and sterilize bacteria other than those passing through the sterilizing filter. Therefore, the sterility of the contents in the sterile zone Z4 can be guaranteed.
  • the foreign matter removing filter 61 may be a filter with an opening of, for example, 0.1 ⁇ m or more and 0.22 ⁇ m or less. Certain sterile grade filters may be used.
  • the foreign matter removal filter 61 pass the integrity test results before and after production. Thereby, the foreign matter removal filter 61 can filter and sterilize bacteria other than bacteria that have passed through the sterilization filter, and the sterility of the contents in the sterile zone Z4 can be guaranteed.
  • the amount of ultraviolet irradiation is equal to or higher than a predetermined value or within a predetermined range, and If the integrity test result passes, the sterility of the water is ensured.
  • the other raw material sterilization line 70 is a sterilization line that heat-sterilizes other raw materials other than the target raw material among the raw materials in the contents.
  • the other raw material sterilization line 70 has a raw material sterilizer 80 that heat-sterilizes other raw materials from other raw material tanks 71, and a raw material tank 72 is installed downstream of the raw material sterilizer 80. has been done.
  • the other raw material tank 71, the raw material sterilizer 80, and the raw material tank 72 are arranged in this order from the upstream side to the downstream side along the conveyance direction of other raw materials.
  • a circulation line 89 may be connected that returns other raw materials to other raw material tanks 71 without sending the liquid from the third stage cooling section 86 to the raw material tanks 72.
  • the other raw material tank 71 is a tank that stores other raw materials supplied from a supply source (not shown). This other raw material tank 71 plays a role of smoothing the flow of other raw materials by storing other raw materials.
  • the volume of the other raw material tank 71 may be 0.3 m 3 or more and 3 m 3 or less, and may be 1 m 3 as an example.
  • a pump P3 for conveying other raw materials may be provided downstream of this other raw material tank 71. Furthermore, a raw material sterilizer 80 that constitutes the other raw material sterilization line 70 described above is provided downstream of the pump P3.
  • the raw material sterilizer 80 is a sterilizer that heat-sterilizes other raw materials stored in other raw material tanks 71.
  • the raw material sterilizer 80 may be a sterilizer (Ultra High-temperature, hereinafter simply referred to as UHT) that sterilizes other raw materials using an ultra-high-temperature heat treatment method.
  • UHT 80 includes a first stage heating section 81, a second stage heating section 82, a holding tube 83, a first stage cooling section 84, a second stage cooling section 85, and a third stage cooling section 86. ing.
  • Other raw materials supplied to the UHT 80 are gradually heated by the first-stage heating section 81 and the second-stage heating section 82, and are heated to a target temperature within the holding tube 83.
  • the other raw materials may be heated to 60° C. or more and 80° C. or less by the first stage heating section 81, and may be heated to 80° C. or more and 150° C. or less by the second stage heating section 82. Further, the temperature of other raw materials is maintained within the holding tube 83 for a certain period of time. Other raw materials that have passed through the holding tube 83 are gradually cooled by the first stage cooling section 84, the second stage cooling section 85, and the third stage cooling section 86. Note that the number of stages of the heating section and the cooling section may be increased or decreased as necessary. Moreover, pressure loss of other raw materials may become high between the first-stage heating section 81 and the second-stage heating section 82.
  • an additional pump (not shown) may be provided between the first stage heating section 81 and the second stage heating section 82.
  • a homogenizer for homogenizing other raw materials is provided between the first stage heating section 81 and the second stage heating section 82 or between the first stage cooling section 84 and the second stage cooling section 85. It may be provided.
  • the processing capacity of such UHT80 may be 3 m 3 /h or more and 30 m 3 /h or less, and may be 6 m 3 /h as an example.
  • scale (deposits such as calcium) adhering to the UHT 80 may be monitored by monitoring the temperature of the highest temperature part of the UHT 80 (for example, the second stage heating section 82). Then, when cleaning (CIP) the UHT 80, the state of scale removal may be monitored. Thereby, the cleaning process for cleaning the UHT 80 can be optimized. Therefore, the cleaning time can be shortened, and the amount of water, steam, and cleaning agent used for cleaning can be reduced. As a result, the amount of carbon dioxide emitted by the content filling system 10 can be reduced.
  • the UHT80 may be an injection method or an infusion method.
  • the heat exchanger used for heat exchange in the content filling system 10 such as the UHT80 heat exchanger, may be of a plate type or a shell and tube type.
  • a type that heats up and cools down while circulating water or hot water through the medium side of the shell may be used, and other raw materials (products)
  • a type of heat exchange (liquid-liquid exchange) may also be used.
  • the raw material sterilizer 80 may be an ohmic (Joule type) heat sterilizer that directly applies electricity to other raw materials and causes them to self-generate heat.
  • the raw material sterilizer 80 may be a sterilizer that sterilizes other raw materials using microwaves (915 MHz, 2450 MHz). In this case, the microwave may be irradiated from outside the piping through which the undiluted solution or solid matter in other raw materials passes. Thereby, the temperature of the stock solution or solid material in other raw materials can be raised, and the stock solution or solid material in other raw materials can be sterilized. Even in these cases, the amount of carbon dioxide emitted by the content filling system 10 can be reduced.
  • the raw material tank 72 is a tank (so-called aseptic tank) that stores other raw materials sterilized by the raw material sterilizer 80. This raw material tank 72 plays the role of smoothing the flow of other raw materials by storing other sterilized raw materials.
  • the volume of the raw material tank 72 may be 1 m 3 or more and 20 m 3 or less, and may be 2 m 3 as an example.
  • the raw material tank 72 may not be provided and the mixing tank 55 may be used alone. Moreover, one more tank 52 and one more raw material tank 72 may be provided.
  • an auxiliary filter 53 for filtering out foreign substances and a filling machine tank 57 for storing the final product liquid that has passed through the auxiliary filter 53 may be provided.
  • the auxiliary filter 53 may be provided at the tip of the filling device 21 (not shown).
  • the filling machine tank 57 serves as a so-called cushion tank that does not cause a shortage of liquid even if the capacity of the filling device 21 is varied and ensures the filling amount and filling accuracy.
  • the volume of the filling machine tank 57 may be 0.1 m 3 or more and 1 m 3 or less, and may be 0.3 m 3 as an example.
  • An addition unit 75 that adds solids to other raw materials may be connected. Thereby, in the content filling system 10, the bottle 100 can be filled with a solid content.
  • the solid matter added by the addition unit 75 to the other raw materials may be, for example, canard, nata de coco, tapioca, or aloe.
  • the solid material may be a sterile solid material that has been sterilized in advance.
  • sterile or non-sterile flavorings, acidulants, and colorants may be quantitatively added to other raw materials from the addition unit 75.
  • the preform supply device 1 sequentially supplies a plurality of preforms 100a to the receiving section 34 of the preform conveyance section 31 via the preform supply conveyor 2 (preform supply step, reference numeral S1 in FIG. 8). ).
  • the preform 100a is sterilized in the preform sterilizer 34a by spraying hydrogen peroxide gas or mist onto the preform 100a, and then dried with hot air.
  • the preform 100a is sent to the heating section 35, and heated by the heater 35a to, for example, about 90° C. or higher and 130° C. or lower.
  • the preform 100a heated by the heating section 35 is sent to the delivery section 36.
  • the preform 100a is then sent from the delivery section 36 to the blow molding section 32.
  • the bottle 100 is blow-molded by blow-molding the preform 100a sent to the blow-molding section 32 using a mold (not shown) (bottle-molding process, reference numeral S2 in FIG. 8).
  • the blow-molded bottle 100 is then sent to the bottle transport section 33.
  • the bottle 100 is sterilized using an aqueous hydrogen peroxide solution that is a sterilizer (container sterilization step, reference numeral S3 in FIG. 8).
  • the disinfectant may be a gas or a mist obtained by once vaporizing an aqueous hydrogen peroxide solution at a temperature above the boiling point.
  • the gas or mist of the aqueous hydrogen peroxide solution adheres to the inner and outer surfaces of the bottle 100 and sterilizes the inner and outer surfaces of the bottle 100.
  • the bottle 100 is sent to the air rinse device 14.
  • sterile heated air or room temperature air is supplied to the bottle 100, thereby activating hydrogen peroxide and removing foreign matter, hydrogen peroxide, etc. from the bottle 100.
  • Air rinse step reference numeral S4 in FIG. 8).
  • a condensed mist of low concentration hydrogen peroxide may be mixed with sterile heated air or sterilized air at room temperature, if necessary.
  • hydrogen peroxide is gasified by sterile air.
  • gasified hydrogen peroxide may be supplied to the bottle 100.
  • the bottle 100 is transported to the filling device 21.
  • the raw material to be mixed that has been non-heat sterilized by the raw material sterilization line 50 and other raw materials that have been heat sterilized by the other raw material sterilization line 70 are mixed in the mixing tank 55 to produce the contents.
  • product production step reference numeral S5 in FIG. 8
  • a method of mixing non-heat sterilized raw materials to be mixed with other raw materials in the mixing tank 55 will be described. First, non-heat sterilized raw materials to be mixed are received into the mixing tank 55, and then other heat sterilized raw materials are received into the mixing tank 55.
  • the order in which liquids are received into the mixing tank 55 may be the non-heat sterilized raw materials to be mixed first or the heat sterilized other raw materials.
  • each liquid may be simultaneously received into the mixing tank 55 at a constant rate (appropriate flow rate ratio). good.
  • Yield is improved (see second embodiment shown in FIG. 10). Further, even when a plurality of filling machines are installed downstream of the mixing tank 55 or when the capacity of the filling machine is changed, the plurality of mixing tanks act as a buffer and can avoid a decrease in the operating rate.
  • the filling device 21 the contents generated in the mixing tank 55 are filled into the bottle 100 from its mouth while the bottle 100 is rotated (revolution) (contents filling step, reference numeral S6 in FIG. 8). .
  • the heating temperature at which other raw materials are heated by the other raw material sterilization line 70 may generally be about 60°C or more and 120°C or less when the acidity of the contents is less than pH 4.5, and the heating time may be approximately 30 seconds or more and 120 seconds or less.
  • the heating temperature for heating other raw materials may be approximately 115° C. or higher and 150° C. or lower.
  • the heating time may be about 30 seconds or more and 120 seconds or less. This sterilizes all microorganisms that could grow inside the product bottle 101 among the microorganisms in the contents before filling.
  • the other raw materials that have been heat sterilized are cooled to a temperature of approximately 3°C or higher and 40°C or lower.
  • the bottle 100 is filled at room temperature with the contents that have been sterilized and cooled to room temperature in the mixing tank 55.
  • the temperature of the contents during filling is, for example, approximately 3°C or higher and 40°C or lower.
  • the filling speed of the contents may be 30 mL/sec or more and 400 mL/sec or less.
  • the bottle 100 filled with the contents is transported to the cap attachment device 16 by the transport wheel 12.
  • the cap 88 is sterilized in advance by the cap sterilizer 18 (cap sterilization process, reference numeral S7 in FIG. 8). During this time, the cap 88 is first introduced into the cap sterilizer 18 from outside the filling system 10 . Next, the cap 88 is sprayed with hydrogen peroxide gas or mist in the cap sterilizer 18 to sterilize its inner and outer surfaces, dried with hot air, and sent to the cap attachment device 16 .
  • the sterilized cap 88 is attached to the mouth of the bottle 100 conveyed from the filling device 20, whereby the bottle 100 is closed and a product bottle 101 is obtained (cap attaching step, Fig. 8 code S8).
  • the product bottle 101 is conveyed from the cap attachment device 16 to the product bottle discharge section 25, and is conveyed to the outside of the content filling system 10 (bottle discharge step, reference numeral S9 in FIG. 8).
  • the product bottle 101 is then transported to a packaging line (not shown) and packaged.
  • the container sterilization process, air rinse process, contents filling process, cap attachment process, and bottle discharge process are performed in a sterile atmosphere surrounded by a sterilizer spray chamber 70d, an air rinse chamber 70e, a sterile chamber 70f, and an outlet chamber 70g. It is done indoors, i.e. in a sterile environment.
  • the cap sterilization process is performed by the cap sterilization device 18.
  • the disinfectant spray chamber 70d, air rinse chamber 70e, sterile chamber 70f, outlet chamber 70g, and cap sterilizer 18 have been sterilized in advance by spraying hydrogen peroxide or peracetic acid, or by spraying hot water. .
  • the sterilizer spray chamber 70d After the sterilization process of each chamber, the sterilizer spray chamber 70d, the air Positive pressure sterile air is supplied into the rinse chamber 70e, the sterile chamber 70f, and the outlet chamber 70g. Further, positive pressure sterile air is always supplied into the cap sterilizer 18 so that the sterile air is blown out to the outside of the cap sterilizer 18.
  • the atmosphere isolation chamber 70c, sterilizer spray chamber 70d, and outlet chamber 70g are used for bottle sterilization with the sterile air in each chamber. Disinfect the disinfectant.
  • the pressure in each chamber may be adjusted so that the pressure in the disinfectant spray chamber 70d, the air rinse chamber 70e, the sterile chamber 70f, and the outlet chamber 70g are each positive pressure.
  • the pressure inside the disinfectant spray chamber 70d may be -10 Pa or more and 10 Pa or less.
  • the pressure inside the air rinse chamber 70e may be 10 Pa or more and 30 Pa or less.
  • the pressure inside the sterile chamber 70f may be 30 Pa or more and 60 Pa or less.
  • the pressure within the outlet chamber 70g may be 10 Pa or more and 20 Pa or less.
  • the production (transportation) speed of the bottles 100 in the content filling system 10 is preferably 100 bpm or more and 1500 bpm or less.
  • bpm bottle per minute refers to the transport speed of 100 bottles per minute.
  • the filling (production) of the contents by the contents filling system is finished ("end of production” in FIG. 9A).
  • a post-production integrity test of the first sterilizing filter 63 and the second sterilizing filter 65 of the sterilizer 60 is performed (S20A in FIG. 9A). If the foreign matter removal filter 61 is also a sterile filter, the integrity test is performed on at least two of the three filters. This post-production integrity test confirms that the integrity test results before and after the start of production passed (no leakage was observed) and that the amount of ultraviolet rays irradiated during production was above the specified value or within the specified value range. This ensures the sterility of the raw materials to be mixed.
  • CIP processing is performed on the first sterilizer 62 and/or the second sterilizer 64 (hereinafter also simply referred to as the first sterilizer 62 etc.) (sterilizer cleaning and sterilization process, reference numeral S20 in FIG. 9A).
  • CIP treatment is an alkaline treatment in which an alkaline chemical such as caustic soda (sodium hydroxide), potassium hydroxide, sodium carbonate, sodium silicate, sodium phosphate, sodium hypochlorite, surfactants, and chelating agents is added to water. After flowing the cleaning liquid into the channel or before flowing the alkaline cleaning solution into the channel, this is done by flowing an acidic cleaning solution in which a nitric acid-based or phosphoric acid-based acidic agent is added to water into the channel.
  • an alkaline chemical such as caustic soda (sodium hydroxide), potassium hydroxide, sodium carbonate, sodium silicate, sodium phosphate, sodium hypochlorite, surfactants, and chelating agents is added to water.
  • the alkaline cleaning process using an alkaline cleaning liquid and the acid cleaning process using an acidic cleaning liquid may be carried out in any combination.
  • residues of the previous mixing target materials adhering to the flow path through which the drinking water passes are removed.
  • CIP treatment using only warm water or hot water may be used without adding a detergent.
  • the CIP process may be omitted.
  • the SIP step for example, steam or hot water is supplied to the circulation system 59A including the sterilizer 60 (sterilizer cleaning sterilization step, reference numeral S20 in FIG. 9A).
  • the first ultraviolet lamp 67a, the second ultraviolet lamp 67b, and the third ultraviolet lamp 67c (hereinafter also simply referred to as the first ultraviolet lamp 67a, etc.) of the first sterilizer 62, etc., the first sterilizer 62, the second sterilizer, etc.
  • Each corner of the piping of the machine 64 is sterilized by heating with steam or hot water.
  • the first sterilizer 62, the second sterilizer 64, the foreign matter removal filter 61, the sterilization filter 63, and the sterilization filter 65 may be sterilized at the same time. Furthermore, by adjusting the temperature, concentration, and time of the cleaning agent used in the CIP process, bacteria can be simultaneously inactivated (SIP process) without performing the subsequent SIP process (CSIP process). After the CIP process, SIP process, or CSIP process is completed, the cleaning agent is discharged. Thereafter, a rinsing step is performed to completely remove the cleaning agent. Pure water is supplied from a 50a pure water tank for rinsing.
  • the first sterilizer 62 etc. may be sterilized with a sterilizer or a detergent (see FIG. 2K).
  • a sterilizer is supplied to the sterilizer 60 (a sterilizer supply step, reference numeral S201 in FIG. 9B).
  • the sterilizer or cleaning agent is fed from a sterilizer supply unit 96 that includes a tank, pump, heater, concentration meter, etc. (not shown), and is supplied to the pre-sterilizer 62A, the first sterilizer 62, and the first sterilizer provided in the sterilizer 60. 2.
  • the liquid is sent to a sterilizer 64 or the like. It may be supplied from sampling point SP2 or sampling point SP4.
  • the disinfectant may include peracetic acid.
  • the concentration of the disinfectant may be 1000 ppm or more and 3000 ppm or less.
  • the concentration of the sterilizer is 1000 ppm or more, the sterilizing effect of the first sterilizer 62 and the like by the sterilizer can be enhanced. Further, since the concentration of the sterilizer is 3000 ppm or less, the amount of peracetic acid used can be reduced, and the cost when sterilizing the sterilizer 60 can be reduced.
  • the temperature of the disinfectant or cleaning agent supplied to the circulation system 59A may be 50°C or higher and 150°C or lower.
  • the temperature of the sterilizer or cleaning agent By setting the temperature of the sterilizer or cleaning agent to 50° C. or higher, the sterilizing effect and cleaning effect of the first sterilizer 62 and the like by the sterilizer can be enhanced. Further, since the temperature of the disinfectant or cleaning agent is 150° C. or lower, the first sterilizer 62 and the like can be manufactured at low cost without using special materials.
  • a circulation system 59A including a pump P1 may be used to circulate a disinfectant or a cleaning agent (a disinfectant circulation step, reference numeral S202 in FIG. 9B).
  • the pre-sterilizer provided in the sterilizer 60 The sterilizer 62A, the first sterilizer 62, and the second sterilizer 64 may be sterilized.
  • the circulation time is 10 seconds or more, the sterilization effect of the first sterilizer 62 and the like by the sterilizer can be enhanced.
  • the circulation time is 60 minutes or less, the sterilization time of the first sterilizer 62 and the like can be shortened. Therefore, downtime can be reduced
  • the next raw material to be mixed has a pH of less than 4.5
  • hot water at a temperature of 70°C or higher, preferably 85°C or higher and lower than 100°C is heated for at least 3 minutes or more at 60°C in the circulation system 95A.
  • the liquid is fed while being circulated for less than a minute, and in this way, the SIP of the raw material sterilization line 50 to be mixed is performed.
  • the first sterilizer 62 or the like has an ultraviolet lamp, the process may be performed with the ultraviolet lamp turned on. If the UV lamp does not have heat resistance, it is best to cool it down to a temperature at which the UV lamp can be turned on while circulating it after SIP. Further, it is preferable to provide a heat exchanger 97 and a pump (not shown) in the circulation line 95 of the circulation system 95A.
  • the disinfectant is discharged from the sampling point SP3 or the sampling point SP5 (S203 in FIG. 9B), and then enters the rinsing process (S204 in FIG. 9B).
  • sterile air may be supplied (not shown) to prevent bacterial contamination within the sterilized piping, and the pipe may be discharged in a short time. You may move to the rinsing process without performing the discharge process from sampling point SP3 or SP5.
  • the pre-stage sterilizer 62A is thoroughly rinsed with a rinsing liquid so that the sterilizer does not adhere to the foreign substance removal filter 61, and then the rinsing liquid is passed through the foreign substance removal filter 61.
  • the rinsing liquid is passed through the first sterilizing filter 63. Thereafter, the same operation is performed in order toward the downstream side.
  • the first sterilizing filter 63 and/or the second sterilizing filter 65 are sterilized (filter sterilizing step, reference numeral S21 in FIG. 9A).
  • filter sterilizing step reference numeral S21 in FIG. 9A.
  • heated steam (fluid) or hot water (fluid) is supplied to the flow path of the first sterilization filter 63 etc.
  • fluid supply step reference numeral S211 in FIG. 9A.
  • sterilizing steam is supplied to the first sterilizing filter 63 and the like from the sterile air supply port 60a, for example.
  • the first sterilization filter 63 and the like are sterilized.
  • the first sterilizing filter 63 etc. can be sterilized without applying more heat than necessary to the first sterilizing filter 63 etc. can be sterilized. Therefore, the amount of carbon dioxide emitted by the content filling system 10 can be reduced.
  • the first sterilizing filter 63 and the like can be sterilized without applying more heat than necessary to the first sterilizing filter 63 and the like, damage to the membrane of the first sterilizing filter 63 and the like can be suppressed. Therefore, the life of the first sterilizing filter 63 and the like can be extended, and the first sterilizing filter 63 and the like can be used for a long period of time without being replaced.
  • the area to be sterilized by steam may be divided by opening and closing valves (not shown) provided at sampling points SP1 to SP6.
  • the steam that sterilizes the first sterilization filter 63 may be supplied to the area between the sampling point SP3 and the sampling point SP4, thereby sterilizing the area.
  • the steam that sterilizes the second sterilization filter 65 may be supplied to the area between the sampling point SP5 and the sampling point SP6, thereby sterilizing the area.
  • the foreign matter removal filter 61 (or the sterilization filter) may be sterilized together with the first sterilization filter 63 and the second sterilization filter 65.
  • the SIP process is performed on the first sterilizing filter 63 and the second sterilizing filter 65, and then the first sterilizing filter 63 and the second sterilizing filter 65 are cooled (S213 in FIG. 9A).
  • an integrity test is performed on the first sterilizing filter 63 and the second sterilizing filter 65 of the sterilizer 60 (reference numeral 22 in FIG. 9A). After that, filling (production) of contents by the contents filling system is started again.
  • the order of the sterilizer cleaning and sterilization step (S20 in FIG. 9A) and the filter cleaning and sterilization step (S21 in FIG. 9A) may be reversed (see FIG. 9D).
  • the cooling time can be shortened.
  • the first sterilizer 62 and the like when producing the product bottle 101, ultraviolet rays are irradiated by the first ultraviolet lamp 67a and the like. Thereby, there is little possibility that the first sterilizer 62 and the like will be contaminated with bacteria. Therefore, when sterilizing the sterilizer 60, the first sterilizer 62 and the like do not need to be sterilized.
  • the first sterilizing filter 63 and the second sterilizing filter 65 of the sterilizer 60 and the first sterilizer 62 and the second sterilizer 64 are simultaneously cleaned. ⁇ Can be sterilized.
  • filling (production) is first completed. Thereafter, a post-production integrity test is performed on the first sterilizing filter 63 and the second sterilizing filter 65 (S30 in FIG. 9C).
  • a cleaning agent and a sterilizing agent are supplied from before the foreign matter removal filter 61, and a cleaning (CIP) process is performed for a predetermined time while circulating them using the circulation line 59 (S31 in FIG. 9).
  • a sterilization (SIP) process may be performed (S32 in FIG. 9C).
  • SIP sterilization
  • CSIP treatment cleaning and sterilization may be performed simultaneously (S33 in FIG. 9C).
  • Cleaning agents and disinfectants used for CIP treatment, SIP treatment, or CSIP treatment include acidic agents such as peracetic acid, acetic acid, hydrogen peroxide, pernitric acid, nitric acid, and phosphoric acid, and alkaline agents such as sodium hydroxide and potassium hydroxide.
  • acidic agents such as peracetic acid, acetic acid, hydrogen peroxide, pernitric acid, nitric acid, and phosphoric acid
  • alkaline agents such as sodium hydroxide and potassium hydroxide.
  • Chemicals, chlorine-based chemicals such as sodium hypochlorite and chlorine dioxide
  • alcohols such as ethyl alcohol and isopropyl alcohol
  • ozone water such as ethyl alcohol and isopropyl alcohol
  • surfactants may be used alone, or two or more of these may be used alone. may be used in combination.
  • the temperature of the cleaning agent and disinfectant is raised by a heater (not shown), and the cleaning or disinfecting agent is heated under predetermined conditions (temperature, concentration, time) based on the values of the thermometer 59b and concentration meter 59c installed at each location in the sterilizer 60 and circulation line 59. Perform sterilization or washing and sterilization.
  • the cleaning agent and the disinfectant may be discharged while supplying pure water from the water tank 50a and replacing the disinfectant with pure water using the pump P1. Water may be supplied and disinfectant may be discharged from other equipment (not shown). When discharging the disinfectant, it is preferable to monitor the value of a concentration meter 59c provided on the downstream side of the circulation line 59, and rinse until this value becomes the same value as that of the pure water production device 50c.
  • the rinsing time may be set using a timer, and the rinsing process may be completed when the rinsing time reaches a predetermined value.
  • the first ultraviolet lamp 67a and the second ultraviolet lamp 67b may or may not be turned on during the cleaning process, sterilization process, or cleaning and sterilization process. Alternatively, the light may be turned on only during the rinsing process. After cleaning and sterilization are completed, a pre-production integrity test is performed on the first sterilizing filter 63 and the second sterilizing filter 65 (S34 in FIG. 9C
  • the process moves to a first production preparation step in which the product liquid is replaced (S35 in FIG. 9C).
  • the first production preparation step while circulating pure water through the circulation line 59, it is confirmed that the first ultraviolet lamp 67a and the second ultraviolet lamp 67b have illuminance equal to or higher than a specified level.
  • the total irradiation amount is preferably 10 mJ/cm 2 or more, preferably 100 mJ/cm 2 or more, for example.
  • a non-heat sterilized target raw material (product liquid) is supplied from the target raw material sterilization line 50B, and pure water is replaced with the product liquid.
  • the pipe line is switched from the circulation line 59 to the tank 52 side, and the product liquid is stored in the tank 52.
  • the process moves to a second production preparation step in which the product liquid is blended (S36 in FIG. 9C).
  • the other raw material sterilization line 70 performs thermal decomposition by being heated or heat sterilizes the content filling system 10 by being heated among the raw materials of the contents.
  • Raw materials that cause metal corrosion or precipitate to deteriorate the functionality of detection devices, etc. are treated as target raw materials and are distinguished from other raw materials and sterilized with water without heating. This can prevent the target raw material from being thermally decomposed or degraded and reduced, and metal corrosion and precipitation due to heating will not occur within the content filling system 10. Therefore, it is possible to prevent the target raw material from being supplied in excess of what is necessary, to suppress material deterioration of the target raw material, and to prolong the period for repair or replacement of the content filling system 10. Furthermore, it is possible to prevent functional deterioration of the content filling system 10.
  • the raw material to be mixed consisting of water and the target raw material, and other raw materials as a whole are not sterilized by non-heating, so when other raw materials are passed through the non-heat sterilization line, It is possible to prevent filter clogging of the non-heat sterilization line from occurring.
  • FIG. 10 is a schematic system diagram showing a content filling system according to the second embodiment, and is a diagram corresponding to FIG. 1A showing the first embodiment.
  • the second embodiment shown in FIG. 10 differs in that a water sterilization line 50A for non-heat sterilization of water and a target raw material sterilization line 50B for non-heat sterilization of target raw materials are provided independently, but other configurations are possible. is substantially the same as the first embodiment shown in FIGS. 1A to 9B.
  • the same parts as in the first embodiment shown in FIGS. 1A to 9B are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the content filling system 10 includes a water sterilization line (first sterilization line) 50A that sterilizes water (first content liquid) without heating, and a water sterilization line (first sterilization line) 50A that sterilizes the target raw material (second content liquid) without heating.
  • Target raw material sterilization line (second sterilization line) 50B, other raw material sterilization line (third sterilization line) 70 that heat-sterilizes raw materials other than the target raw material (third content liquid), water sterilization line 50A, target A first mixing tank 55A, a second mixing tank 55B, and a third mixing tank 55C are connected to each of the raw material sterilization line 50B and other raw material sterilization lines 70, and the first mixing tank 55A, the second mixing tank 55B, and the third It includes a first filling device 21A, a second filling device 21B, and a third filling device 21C connected to each of the mixing tanks 55C.
  • a water sterilization line 50A that non-heat sterilizes water, a target raw material sterilization line 50B that non-heat sterilizes target raw materials, and another raw material sterilization line 70 that heat sterilizes other raw materials are installed in parallel and independently from each other. has been done.
  • water (pure water) supplied from the pure water production device 50c is stored in a water tank 50a, and the water supplied from the water tank 50a is non-heat sterilized by a water sterilization line 50A.
  • the target raw material mentioned above is stored in the target raw material tank 50b, and the target raw material supplied from the target raw material tank 50b is non-heat sterilized by the target raw material sterilization line 50B.
  • raw materials other than the target raw materials are stored in other raw material tanks 71, and other raw materials stored in other raw material tanks 71 are sterilized in other raw material sterilization lines 70 as described above. Heat sterilized.
  • the water non-heat sterilized by the water sterilization line 50A, the target raw material non-heat sterilized by the target raw material sterilization line 50B, and other raw materials heat sterilized by the other raw material sterilization line 70 are each stored in a first mixing tank. 55A, a second mixing tank 55B, and a third mixing tank 55C.
  • water that has been non-heat sterilized by the water sterilization line 50A may be uniformly sent to the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, respectively, or to the first mixing tank 55A.
  • a large amount of water may be sent, or a small amount of water may be sent to the second mixing tank 55B and the third mixing tank 55C.
  • the target raw material non-heat sterilized by the target raw material sterilization line 50B may be uniformly sent to the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, respectively.
  • a large amount of the target raw material may be sent, or a small amount of the target raw material may be sent to the second mixing tank 55B and the third mixing tank 55C.
  • other raw materials heat-sterilized in the other raw material sterilization line 70 may be uniformly sent to the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, respectively.
  • a large amount of other raw materials may be sent to the second mixing tank 55B and a small amount of other raw materials may be sent to the third mixing tank 55C.
  • non-heat sterilized water, non-heat sterilized target raw material, and other heat sterilized raw materials are mixed to form the contents. generated.
  • the contents generated in the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C are supplied to either the first filling device 21A, the second filling device 21B, or the third filling device 21C, Empty bottles 100 are filled with contents from the first filling device 21A, the second filling device 21B, and the third filling device 21C.
  • the first filling device 21A which has been cleaned and sterilized, It becomes possible to promptly send the generated contents to any one of the filling device 21A, the second filling device 21B, and the third filling device 21C. Furthermore, by installing two or more mixing tanks 55A to 55C, a buffer for the generated contents can be created, and it becomes possible to fill the contents without waiting for generation.
  • the concentrations in the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C do not fall within the specified range, the water tank 50a, target raw material tank 50b, and other raw material tanks 71 are supplied as appropriate, Concentration can be adjusted.
  • the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C are kept in a sterile state. , has the function of aseptic blowing.
  • blow piping for drainage sterilized with steam is provided below the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C, and the inside of the piping is sterilized with steam immediately before draining, and then The liquids in the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C are blown while maintaining positive tank pressure, and after blowing, the above-mentioned piping is re-sterilized with steam (not shown).
  • an aseptic valve equipped with a steam barrier, a sterile water barrier, or a sterile air barrier for the piping through which each liquid flows so that the respective liquids do not mix.
  • water that has been non-heat sterilized by the water sterilization line 50A is sent to the first mixing tank 55A, stored in the first mixing tank s55A without mixing with the target raw material or other raw materials, and directly sent to the first filling device 21A.
  • the liquid may be sent and filled into the bottle 100 by the first filling device 21A.
  • only the target raw material that has been non-heat sterilized by the target raw material sterilization line 50B is sent to the second tank 55B, and is sent to the second filling device 21B without being mixed with other raw materials or water.
  • the bottle 100 may be filled with the filling device 21B.
  • the three systems of liquids may be sterilized individually and then mixed aseptically in a single filling device, for example, the first filling device 21A, without passing through a mixing tank.
  • the three systems of liquids may be sterilized by heating or non-heating, and filled aseptically by the first filling device 21A to the third filling device 21C, respectively.
  • water, the target raw material, or other raw materials may be directly sent to the first filling device 21A to the third filling device 21C and mixed therein instead of the first mixing tank 55A to the third mixing tank.
  • the target raw materials are those that thermally decompose when heated, cause metal corrosion, or precipitate and impair the functions of the detection device, etc. It causes deterioration. Therefore, in this embodiment, the target raw material is sterilized by non-heat sterilization.
  • other raw materials refer to raw materials other than the target raw material among the raw materials of the content. It is also possible to non-heat sterilize other raw materials, but since the non-heat sterilization line has a filter, in consideration of the fact that the throughput will decrease due to filter blockage, this embodiment Heat sterilization is applied to the raw materials.
  • the water sterilization line 50A is for non-heat sterilization of water
  • the target raw material sterilization line 50B is for non-heat sterilization of target raw materials
  • the water sterilization line 50A and the target raw material sterilization line 50B are Both have the sterilizer 60 described in the first embodiment.
  • the sterilizer 60 having the configuration shown in FIGS. 2 to 6B described in the first embodiment can be used.
  • the other raw material sterilization line 70 heat-sterilizes other raw materials, and the other raw material sterilization line 70 has the raw material sterilizer 80 described in the first embodiment.
  • the raw material sterilizer 80 one having the configuration shown in FIG. 7 described in the first embodiment can be used.
  • a raw material tank 72 may be provided downstream of the raw material sterilizer 80, and an auxiliary filter 73 and a raw material tank 74 may further be provided downstream of the raw material tank 72. good.
  • an addition unit 75 may be provided on the downstream side of the raw material tank 72, and in this case, the addition unit 75 can add solid substances such as sardine, nata de coco, tapioca, or aloe to other raw materials.
  • the solid material may be a sterile solid material that has been sterilized in advance. In addition to the solids, sterile or non-sterile fragrances, acidulants, and colorants may be quantitatively added to other raw materials from the addition unit 75.
  • first filling device 21A, the second filling device 21B, and the third filling device 21C are capable of handling water, target raw materials, etc. in any of the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C.
  • the container receives the contents created by mixing the raw materials, and fills the contents into the bottle 100 from the mouth of the bottle 100.
  • the first filling device 21A, the second filling device 21B, and the third filling device 21C are all made of, for example, a rotary filler arranged in a sterile chamber, similar to the filling device 21 in the first embodiment.
  • a linear filler may be used as the first filling device 21A, the second filling device 21B, and the third filling device 21C.
  • the bottles 100 filled in the first filling device 21A, the second filling device 21B, and the third filling device 21C may be plastic bottles or cups, or may be paper containers or pouches. A composite container of these may also be used.
  • some of the raw materials in the content may thermally decompose when heated, cause metal corrosion when heated, or precipitate and impair the functions of the detection device, etc.
  • the raw material to be degraded is treated as the target raw material and is distinguished from other raw materials and sterilized without heating. This can prevent the target raw material from thermally decomposing and deteriorating or decreasing, and metal corrosion due to heating and precipitation due to heating will not occur within the content filling system 10. Therefore, it is possible to prevent the target raw material from being supplied in excess of what is necessary, to suppress material deterioration of the target raw material, and to prolong the period for repair or replacement of the content filling system 10. Furthermore, functional deterioration of the content filling system 10 can be prevented.
  • the raw material to be mixed consisting of water and the target raw material, and other raw materials as a whole are not sterilized by non-heating, so when other raw materials are passed through the non-heat sterilization line, It is possible to prevent filter clogging of the non-heat sterilization line from occurring.
  • the water sterilized without heating by the water sterilization line 50A is not sent to the first mixing tank 55A, the second mixing tank 55B, or the third mixing tank 55C, and the contents are
  • the water may be sent to chambers 70a to 70g that house various devices of the filling system 10, and these chambers 70a to 70g may be washed with non-heat sterilized water via the water sterilization line 50A.
  • water that has been non-heat sterilized by the water sterilization line 50A is transferred to another raw material sterilization line 70, the target raw material sterilization line 50B, the first mixing tank 55A to the third mixing tank 55C, or the first filling device 21A to the third filling device. It may be supplied as rinsing water after CIP processing, SIP processing, or CSIP processing in which CIP and SIP are performed simultaneously on the device 21C.
  • a part of the water (pure water) supplied from the pure water production device 50c and stored in the water tank 50a is supplied to the target raw material tank 50b, and this target raw material tank
  • the target raw material in 50b may be diluted with water.
  • a part of the water (pure water) stored in the water tank 50a may be supplied to another raw material tank 71, and other raw materials in this other raw material tank 71 may be diluted with water.
  • the target raw material can be passed smoothly into the target raw material sterilization line 50B. can.
  • water from the water tank 50a is supplied to another raw material tank 71, and other raw materials in the other raw material tank 71 are diluted with water, thereby allowing the other raw materials to smoothly pass into the other raw material sterilization line 70. be able to.
  • non-heat sterilized water is sent to the first mixing tank 55A by the water sterilization line 50A and mixed with the target raw material or other raw materials.
  • This example shows an example in which the liquid is sent from the first mixing tank 55A to the first filling device 21A, and water is filled into the bottle 100 by the first filling device 21A.
  • the target raw material that has been non-heat sterilized by the target raw material sterilization line 50B is sent to the second mixing tank 55B, and the liquid is sent from the second mixing tank 55B to the second filling device 21B without mixing with other raw materials or water. Then, the target raw material is filled into the bottle 100 by the second filling device 21B.
  • the first filling device 21A is placed inside the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100 via a transport wheel 12, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
  • a sterile chamber 70j is provided downstream of the sterile chamber 70h in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j. Further, an outlet chamber 70g is provided downstream of the sterile chamber 70j.
  • the first filling device 21A and the second filling device 21B are both rotary fillers having a plurality of rotatable filling nozzles 21a.
  • a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f.
  • the empty bottle 100 is filled with water sent from the first mixing tank 55A.
  • water is filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 is transported via the transport wheel 12 to the second filling device 21B inside the sterile chamber 70h.
  • the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been previously filled with water by the first filling device 21A.
  • target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 is sent via the transport wheel 12 to the capping device 16 in the sterile chamber 70j.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the bottle 100 filled with water and target raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16.
  • a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 .
  • the cap 88 is blown with hydrogen peroxide gas or mist toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized (see FIG. 1B).
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • the first filling device 21A is arranged within the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100 via a transport wheel 12, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
  • a sterile chamber 70i is provided adjacent to the sterile chamber 70h, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C.
  • the sterile chamber 70i is arranged downstream of the sterile chamber 70f in the direction of transport of the bottle 100, so that the sterile chamber 70h and the sterile chamber 70i are arranged in parallel on the downstream side of the sterile chamber 70f in the direction of transport of the bottle 100. It can also be said that it has been done.
  • a sterile chamber 70j is provided downstream of the sterile chambers 70h and 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j. Furthermore, an outlet chamber 70g is provided downstream of the sterile chamber 70j.
  • first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a.
  • a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f.
  • the empty bottle 100 is filled with water sent from the first mixing tank 55A.
  • water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f is transported via the transport wheel 12 to the second filling device 21B in the sterile chamber 70h.
  • the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A.
  • target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f may be transported via the transport wheel 12 to the third filling device 21C in the sterile chamber 70i. In this case, the bottle 100 in the sterile chamber 70f is not sent to the second filling device 21B side in the sterile chamber 70h.
  • the other raw materials fed from the third mixing tank 55C are transferred into the bottle 100 which has been filled with water by the first filling device 21A. is filled with.
  • this third filling device 21C other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the bottle 100 filled with water, target raw material, or other raw material (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16.
  • a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 .
  • the cap 88 is blown with hydrogen peroxide gas or mist toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized (see FIG. 1B).
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • the first filling device 21A is placed in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A.
  • a sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h.
  • the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
  • a sterile chamber 70i is provided on the downstream side of the sterile chamber 70h in the transport direction of the bottle 100, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C. Further, a sterile chamber 70j is provided downstream of the sterile chamber 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within the sterile chamber 70j.
  • the sterile chamber 70f, the sterile chamber 70h, the sterile chamber 70i, and the sterile chamber 70j are arranged along the outer periphery of a circular carrier 110 that rotationally transports the bottle 100. Further, on the outer periphery of the circular conveyance body 110, a sterile chamber 70k containing the conveyance wheel 12 is arranged upstream of the sterile chamber 70f. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
  • the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a.
  • a bottle 100 that has been sterilized in advance on the upstream side is transported to a sterile chamber 70f via a transport wheel 12 and a circular transport body 110 arranged in a sterile chamber 70k, and then transported to a sterile chamber 70f via a transport wheel 12 and a circular transport body 110 disposed in a sterile chamber 70k. It is transported to the first filling device 21A via the container.
  • the empty bottle 100 is filled with water sent from the first mixing tank 55A.
  • water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f is transported to the second filling device 21B via the transport wheel 12 in the sterile chamber 70f, the circular transport body 110, and the transport wheel 12 in the sterile chamber 70h.
  • the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A.
  • target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70h is transported to the third filling device 21C via the transport wheel 12 in the sterile chamber 70h, the circular transport body 110, and the transport wheel 12 in the sterile chamber 70i.
  • the other raw materials sent from the third mixing tank 55C are filled into the bottle 100 that has been filled with water and the target raw material in advance. Ru.
  • this third filling device 21C other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16.
  • a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • the first filling device 21A is arranged within the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
  • a sterile chamber 70i is provided adjacent to the sterile chamber 70h, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C.
  • a sterile chamber 70h and a sterile chamber 70i are arranged in parallel on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100.
  • a sterile chamber 70j is provided downstream of the sterile chambers 70h and 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
  • the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a. Further, of the sterile chamber 70h that accommodates the second filling device 21B, a region on the side of the sterile chamber 70i that accommodates the third filling device 21C is partitioned to form a sterile chamber 70l, and the transport wheel 12 is placed in the sterile chamber 70l. It is located.
  • a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f.
  • the empty bottle 100 is filled with water sent from the first mixing tank 55A.
  • water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f is transported via the transport wheel 12 to the second filling device 21B in the sterile chamber 70h.
  • the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A.
  • target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f may be transported to the third filling device 21C in the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70h and the transport wheel 12 in the sterile chamber 70i. In this case, the bottle in the sterile chamber 70f is not sent to the second filling device 21B side in the sterile chamber 70h.
  • the other raw materials fed from the third mixing tank 55C are transferred into the bottle 100 which has been filled with water by the first filling device 21A. is filled with.
  • this third filling device 21C other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70h and the bottle 100 in the sterile chamber 70i are transported via the transport wheel 12 in the sterile chamber 70h and the transport wheel 12 in the sterile chamber 70i, respectively, to the transport wheel 12 in the sterile chamber 70j. It is sent to the cap attachment device 16.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the bottle 100 filled with water, the target raw material, or other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16.
  • a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • the bottle 100 filled with water by the first filling device 21A in the sterile chamber 70f is transferred to the second filling device 21B in the sterile chamber 70h or the third filling device 21C in the sterile chamber 70i. It may be directly sent to the sterile chamber 70j via the transport wheel 12 in the sterile chamber 70l without sending it to the sterile chamber 70j. In this case, a product bottle 101 is obtained by attaching the cap 88 to the bottle 100 filled only with water.
  • the first filling device 21A is arranged in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70i is provided on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100 via a transport wheel 12, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C.
  • a sterile chamber 70h is provided adjacent to the sterile chamber 70f and the sterile chamber 70i, and the second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
  • a sterile chamber 70h and a sterile chamber 70i are arranged in parallel on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100.
  • a sterile chamber 70j is provided downstream of the sterile chambers 70h and 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j.
  • an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
  • the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a. Further, of the sterile chamber 70i that houses the third filling device 21C, a region on the side of the sterile chamber 70h that houses the second filling device 21B is partitioned to form a sterile chamber 70l, and the transport wheel 12 is inside this sterile chamber 70l. is located.
  • a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f.
  • the empty bottle 100 is filled with water sent from the first mixing tank 55A.
  • water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f is transported to the second filling device 21B via the transport wheel 12 in the sterile chamber 70f and the transport wheel 12 in the sterile chamber 70h.
  • the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A.
  • target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f may be transported to the third filling device 21C in the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70f and the transport wheel 12 in the sterile chamber 70l.
  • the other raw materials fed from the third mixing tank 55C are transferred into the bottle 100 which has been filled with water by the first filling device 21A. is filled with.
  • this third filling device 21C other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the capping device 16 the bottle 100 filled with water, the target raw material, or other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16.
  • a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • the first filling device 21A is placed in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
  • a sterile chamber 70i is provided on the downstream side of the sterile chamber 70h in the transport direction of the bottle 100, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C. Further, a sterile chamber 70j is provided downstream of the sterile chamber 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within the sterile chamber 70j. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
  • first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a.
  • a sterile chamber 70m is provided adjacent to the sterile chambers 70f, 70h, and 70i, and the transport wheel 12 is disposed within this sterile chamber 70m.
  • a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f.
  • the empty bottle 100 is filled with water sent from the first mixing tank 55A.
  • water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f is sent to the sterile chamber 70h via the transport wheel 12 in the sterile chamber 70f and the transport wheel 12 in the sterile chamber 70m, and then via the transport wheel 12 in the sterile chamber 70h to the second filling device. It is transported to 21B.
  • the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A.
  • target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70h is sent into the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70h and the transport wheel 12 in the sterile chamber 70m, and then transported to the third filling device 21C.
  • the other raw materials sent from the third mixing tank 55C are filled into the bottle 100 that has been filled with water and the target raw material in advance. Ru.
  • this third filling device 21C other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16.
  • a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • the first filling device 21A is placed in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a small sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
  • a sterile chamber 70n that accommodates the transport wheel 12 is provided downstream of the sterile chamber 70h in the transport direction of the bottle 100.
  • a small sterile chamber 70i is provided on the downstream side of the sterile chamber 70n in the transport direction of the bottle 100, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C.
  • a sterile chamber 70j is provided downstream of the sterile chamber 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within the sterile chamber 70j.
  • an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
  • the first filling device 21A is composed of a rotary filler having a plurality of rotatable filling nozzles 21a.
  • the second filling device 21B and the third filling device 21C are filling devices for filling contents with a small amount of filling, and include a fixed amount type filling nozzle 21b fixed on the mouth of the bottle 100 and a filling device 21C. It includes a nozzle 21c.
  • the second filling device 21B and the third filling device 21C may have a filling nozzle 21b and a filling nozzle 21c that do not fill the contents intermittently but continuously.
  • the filling nozzle 21a and the filling nozzle 21b may be installed upstream of the filling nozzle 21a made of a rotary filler, or one or more of them may be installed upstream and downstream. The same liquid may be filled from the second filling device 21B and the third filling device 21C.
  • a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f.
  • the empty bottle 100 is filled with water sent from the first mixing tank 55A.
  • water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
  • the bottle 100 in the sterile chamber 70f is transported via the transport wheel 12 to the second filling device 21B in the sterile chamber 70h.
  • the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A.
  • the target raw material is intermittently filled into the bottle 100.
  • the bottle 100 in the sterile chamber 70h is transported to the third filling device 21C in the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70n.
  • the other raw materials sent from the third mixing tank 55C are filled into the bottle 100 that has been filled with water and the target raw material in advance. Ru.
  • this third filling device 21C other raw materials are intermittently filled into the bottle 100.
  • the bottle 100 in the sterile chamber 70i is sent into the sterile chamber 70j, via the transport wheel 12, and then to the capping device 16.
  • the cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100.
  • the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering.
  • the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
  • the cap 88 is sterilized in advance by the cap sterilizer 18.
  • the cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16.
  • a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 .
  • the cap 88 is blown with hydrogen peroxide gas or mist toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized (see FIG. 1B).
  • the product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
  • first mixing tank 55A in FIGS. 11 to 17 is described as water, and the second mixing tank 55B and third mixing tank 55C are used as target raw materials or other raw materials, the present invention is not limited thereto. It is a good idea to change the order as appropriate, taking into account the ease with which the contents mix and the possibility of liquid boiling over.
  • the present invention is not limited to this, and other raw materials stored in other raw material tanks 71 may be sterilized in advance by a desired method. In this case, there is no need to heat and sterilize the other raw materials stored in the other raw material tanks 71 again using the other raw material sterilization line 70.
  • other sterilized raw materials may be aseptically connected from 75 in FIG. 1B using a bag-in-box, a sterile container, a sterile tank, etc., and supplied to the product liquid line in an aseptic manner.
  • the circulation system (second circulation system) 95A is configured by the first sterilizer 62A, the third bypass line 95a, the first sterilizer 62, the second sterilizer 64, and the circulation line 95.
  • An example (see FIG. 2A3, etc.) has been described.
  • bacteria collected on the foreign matter removal filter 61 may be periodically sterilized by circulating water in the circulation system 95A with the first ultraviolet lamp 67a etc. turned on. Sterilization of bacteria trapped in the foreign matter removal filter 61 may be performed, for example, while the production of the product bottle 101 is stopped. At this time, for example, as shown in FIG.
  • one end of the circulation line 95 may be connected between the second sterilizer 64 and the first sterilization filter 63, and the other end of the circulation line 95 is It may be connected to the mixing tank 51. Further, by changing the frequency of the pump P1, the pressure difference (differential pressure) between the pressure on the upstream side and the pressure on the downstream side of the foreign matter removal filter 61 may be changed. By changing the pressure difference (differential pressure) between the pressure on the upstream side and the pressure on the downstream side of the foreign matter removal filter 61, the bacteria collected on the foreign matter removal filter 61 are actively removed. It may be pushed out to the downstream side of the filter 61.
  • the pressure on the upstream side of the foreign matter removal filter 61 is made 0.05 MPa or more higher than the pressure at the time of manufacturing the product bottle 101. 0.1 MPa or higher, preferably 0.1 MPa or more.
  • the bacteria collected in the foreign matter removal filter 61 may be circulated in the circulation system 95A by causing the contents to flow backwards. At this time, the difference between the primary side pressure and the secondary side pressure of the foreign matter removal filter 61 is such that both the positive pressure and the reverse pressure of the foreign matter removal filter 61 do not exceed the allowable maximum pressure.
  • the mixing target material sterilization line 50 by regularly sterilizing the bacteria collected in the foreign matter removal filter 61, even when the contents are continuously sterilized for a long time by the mixing target material sterilization line 50, the mixing target materials can be sterilized. The sterilization of the contents sterilized by the sterilization line 50 can be ensured.
  • the mixing target raw material sterilization line 50 may include a plurality of (for example, two) sterilizers 60.
  • the sterilizers 60 stops or the amount of ultraviolet rays irradiated in one of the sterilizers 60 decreases, the sterility of the contents can be ensured by the other sterilizer 60.
  • the other sterilizer 60 can be used to sterilize the contents. Therefore, the product bottles 101 can be manufactured continuously.
  • the configuration of the sterilizer 60 is the same as the configuration of the sterilizer 60 shown in FIG. 2A1, but the configuration is not limited thereto.
  • the sterilizer 60 may be the sterilizer 60 shown in FIGS. 2A2 to 2J, for example.
  • the sterilizers 60 that the mixing target raw material sterilizing line 50 has may be different from each other.
  • the mixing target raw material sterilization line 50 may include a sterilizer 60 shown in FIG. 2A1 and a sterilizer 60 shown in FIG. 2A3.
  • the content filling system 10 is a system for filling the bottle 100 with content
  • the present invention is not limited to this.
  • the content filling system 10 is a filling system (so-called Blow-Fill-Seal (BFS)) that molds the bottle 100 from the preform 100a by filling the preform 100a with content. It may be.
  • BFS Blow-Fill-Seal
  • the filling device 21 may be incorporated into the bottle forming section 30, as shown in FIG. 18D.
  • the filling device 21 is incorporated into the bottle molding section 30. It's okay.
  • the preform sterilizer 34a may be provided downstream of the heating section 35.
  • the preform sterilizer 34a may be configured to sterilize the preform 100a heated by the heating section 35.
  • the preform sterilizer 34a may be placed within the chamber 70s.
  • the filling device 21 can fill the sterilized preform 100a with pressurized contents. Thereby, molding of the bottle 100 and filling of the contents into the bottle 100 can be performed simultaneously.
  • the sterilizer 60 sterilizes contents whose electrical conductivity is 0.1 ⁇ S/cm or more and 20 ⁇ S/cm or less, but the present invention is not limited to this.
  • the content that is sterilized by the sterilizer 60 may be water with a concentration higher than 20 ⁇ S/cm.
  • the water may be tap water or well water.
  • the mixing target raw material sterilization line 50 is provided upstream of the mixing tank 51, and includes a pre-stage water tank 50d that stores water (tap water, well water, etc.) and a first sterilizer.
  • a pre-stage sterilizer 62A having the same configuration as 62 may be provided. Note that when the sterilizer 60 sterilizes tap water or the like, inorganic substances (oxides such as calcium) etc. may adhere to the surface of the first ultraviolet lamp 67a etc. (for example, the surface made of quartz glass). If inorganic matter or the like adheres to the surface of the first ultraviolet lamp 67a or the like, the amount of ultraviolet rays irradiated in the sterilizer 60 may decrease.
  • the mixing target material sterilization line 50 may include a plurality of (for example, two) sterilizers 60. Thereby, when one sterilizer 60 is being cleaned (CIP) or sterilized (SIP), the other sterilizer 60 can be used to sterilize water. Therefore, the product bottles 101 can be manufactured continuously.
  • the first sterilizer 62 and the second sterilizer 64 for example, By irradiating the raw materials to be mixed with ultraviolet rays of 500 mJ/cm2 or more, not only bacteria but also endotoxins can be inactivated or reduced. In this manner, according to the present embodiment, not only bacteria but also endotoxins in the raw materials to be mixed can be inactivated or reduced, so it is possible to provide a content filling system suitable for pharmaceutical manufacturing.
  • Sterilizing device 18 Cap sterilizing device 21 Filling device 21A First filling device 21B Second filling device 21C Third filling device 21a Filling nozzle 32 Blow molding section 34a Preform sterilizing device 50 Mixing target raw material sterilizing line 50A Water Sterilization line 50B Target raw material sterilization line 50a Water tank 50b Target raw material tank 50c Pure water production equipment 51 Mixing tank 51A Mixing line 52 Tank 53 Auxiliary filter 54 Tank 55 Mixing tank 55A First mixing tank 55B Second mixing tank 55C Third mixing tank 60 Sterilizer 70 Other raw material sterilization line 71 Other raw material tank 72 Raw material tank 73 Auxiliary filter 74 Raw material tank 75 Addition unit 80 Raw material sterilizer 88 Cap 100 Bottle 100a preform

Abstract

[Problem] To enable various filling operations of a bottle to be realized using a sterilized first content liquid and second content liquid. [Solution] A content filling system 10 comprises a first sterilization line 50A for sterilizing a first content liquid, a second sterilization line 50B for sterilizing a second content liquid, a first filling device 21A which is connected to the first sterilization line 50A and fills a conveyed bottle with first contents, and a second filling device 21B which is connected to the second sterilization line 50B and fills the conveyed bottle with second contents. The first sterilization line 50A is furthermore connected to the second filling device 21B, and the second sterilization line 50B is furthermore connected to the first filling device 21A.

Description

内容物充填システムContent filling system
 本開示は、内容物充填システムに関する。 The present disclosure relates to a content filling system.
 殺菌された容器(PETボトル)に殺菌された内容物を無菌環境下で充填し、その後、容器をキャップによって閉栓する無菌充填システム(アセプティック充填システム)が知られている(例えば、特許文献1参照)。 An aseptic filling system (aseptic filling system) is known in which a sterilized container (PET bottle) is filled with sterilized contents in an aseptic environment, and then the container is closed with a cap (for example, see Patent Document 1). ).
 具体的には、無菌充填システムにおいて、成形した容器を無菌充填システムに供給し、無菌充填システム内で、容器に殺菌剤としての過酸化水素水溶液をスプレーする。その後、過酸化水素水溶液を乾燥することにより容器を殺菌する。次いで、容器に加熱殺菌した内容物を常温下で無菌充填する。 Specifically, in an aseptic filling system, a shaped container is supplied to the aseptic filling system, and an aqueous hydrogen peroxide solution as a sterilizing agent is sprayed onto the container within the aseptic filling system. Thereafter, the container is sterilized by drying the aqueous hydrogen peroxide solution. Next, the heat-sterilized contents are aseptically filled into the container at room temperature.
 近年、環境負荷の低減を目的として、排出される二酸化炭素の量を低減することが求められている。内容物は殺菌処理が施された後、容器内に充填される。内容物の中には高温で殺菌した場合、分解したりシステムの装置に対して金属腐食を生じさせたり、加熱により析出してシステムの装置の性能を劣化させるものがある。他方、殺菌後の第1内容液と第2内容液を用いてボトルに対して、多様な充填が実現できる、内容物充填システムが求められている。 In recent years, there has been a need to reduce the amount of carbon dioxide emitted with the aim of reducing environmental impact. After the contents are sterilized, they are filled into containers. When sterilized at high temperatures, some of the contents may decompose, cause metal corrosion to system equipment, or precipitate due to heating, deteriorating the performance of system equipment. On the other hand, there is a need for a content filling system that can realize a variety of fillings into bottles using sterilized first and second content liquids.
特許第4526820号公報Patent No. 4526820
 本開示はこのような点を考慮してなされたものであり、殺菌後の第1内容液と第2内容液を用いてボトルに対して、多様な充填が実現できる、内容物充填システムを提供することを目的とする。 The present disclosure has been made in consideration of these points, and provides a content filling system that can realize various fillings into bottles using a sterilized first content liquid and a second content liquid. The purpose is to
 本開示は、第1内容液を殺菌する第1殺菌ラインと、第2内容液を殺菌する第2殺菌ラインと、前記第1殺菌ラインに接続され、搬送されるボトルに対して前記第1内容液を充填する第1充填装置と、前記第2殺菌ラインに接続され、搬送されるボトルに対して前記第2内容液を充填する第2充填装置と、を備え、前記第1殺菌ラインは、さらに第2充填装置に接続され、前記第2殺菌ラインは、さらに前記第1充填装置に接続される、内容物充填システムである。 The present disclosure includes a first sterilization line that sterilizes a first content liquid, a second sterilization line that sterilizes a second content liquid, and a first sterilization line that is connected to the first sterilization line and that sterilizes the first content of the bottle. The first sterilization line includes a first filling device that fills a liquid, and a second filling device that is connected to the second sterilization line and fills the second content liquid into the bottle being transported. Further connected to a second filling device, said second sterilization line is a content filling system further connected to said first filling device.
 本開示は、前記第1殺菌ラインと前記第1充填装置との間に第1混合タンクが介在され、前記第2殺菌ラインと前記第2充填装置との間に第2混合タンクが介在される、内容物充填システムである。 In the present disclosure, a first mixing tank is interposed between the first sterilization line and the first filling device, and a second mixing tank is interposed between the second sterilization line and the second filling device. , is a content filling system.
 本開示は、前記第1殺菌ラインは、さらに前記第2混合タンクに接続され、前記第2殺菌ラインは、さらに前記第1混合タンクに接続される、内容物充填システムである。 The present disclosure is a content filling system, wherein the first sterilization line is further connected to the second mixing tank, and the second sterilization line is further connected to the first mixing tank.
 本開示は、前記第1混合タンクは、さらに前記第2充填装置に接続され、前記第2混合タンクは、さらに前記第1充填装置に接続される、内容物充填システムである。 The present disclosure is a content filling system, wherein the first mixing tank is further connected to the second filling device, and the second mixing tank is further connected to the first filling device.
 本開示は、第3内容液を殺菌する第3殺菌ラインと、前記第3殺菌ラインに接続され、搬送されるボトルに対して前記第3内容液を充填する第3充填装置とを更に備えた、内容物充填システムである。 The present disclosure further includes a third sterilization line that sterilizes the third content liquid, and a third filling device that is connected to the third sterilization line and fills the third content liquid into the transported bottle. , is a content filling system.
 本開示は、前記第2充填装置と前記第3充填装置は、前記第1充填装置に対して、ボトルの搬送方向下流側に直列に配置されている、内容物充填システムである。 The present disclosure is a content filling system in which the second filling device and the third filling device are arranged in series on the downstream side in the bottle transport direction with respect to the first filling device.
本開示は、前記第2充填装置と前記第3充填装置は、前記第1充填装置に対して、ボトルの搬送方向下流側に並列に配置されている、内容物充填システムである。 The present disclosure is a content filling system in which the second filling device and the third filling device are arranged in parallel on the downstream side in the bottle conveyance direction with respect to the first filling device.
 本開示によれば、殺菌後の第1内容液と第2内容液を用いてボトルに対して、多様な充填が実現できる。 According to the present disclosure, a variety of fillings can be realized in a bottle using the sterilized first content liquid and second content liquid.
図1Aは、第1の実施の形態による内容物充填システムを示す概略系統図である。FIG. 1A is a schematic system diagram showing a content filling system according to a first embodiment. 図1Bは、第1の実施の形態による内容物充填システムを示す概略平面図である。FIG. 1B is a schematic plan view showing the content filling system according to the first embodiment. 図1Cは、充填装置を示す概略図である。FIG. 1C is a schematic diagram showing a filling device. 図2A1は、第1の実施の形態による混合対象原料殺菌ラインを示す概略図である。FIG. 2A1 is a schematic diagram showing a sterilization line for raw materials to be mixed according to the first embodiment. 図2A2は、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2A2 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2A3は、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2A3 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2A4は、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2A4 is a schematic diagram showing another example of the raw material sterilization line to be mixed. 図2A5は、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2A5 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2A6は、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2A6 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2A7は、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2A7 is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2Bは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2B is a schematic diagram showing another example of the raw material sterilization line to be mixed. 図2Cは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2C is a schematic diagram showing another example of the raw material sterilization line to be mixed. 図2Dは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2D is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2Eは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2E is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2Fは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2F is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2Gは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2G is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2Hは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2H is a schematic diagram showing another example of the raw material sterilization line to be mixed. 図2Iは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2I is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2Jは、混合対象原料殺菌ラインの他の例を示す概略図である。FIG. 2J is a schematic diagram showing another example of a sterilization line for raw materials to be mixed. 図2Kは、殺菌機の他の洗浄工程を示す概略図であって、図2A1と類似の図ある。FIG. 2K is a schematic diagram showing another cleaning process of the sterilizer, and is similar to FIG. 2A1. 図3は、第1の実施の形態による混合対象原料ラインの殺菌機の第1殺菌機を示す平面図である。FIG. 3 is a plan view showing a first sterilizer of the sterilizer of the raw material line to be mixed according to the first embodiment. 図4は、第1の実施の形態による殺菌機の第1殺菌機を示す断面図(図3のIV-IV線断面図)である。FIG. 4 is a cross-sectional view (cross-sectional view taken along line IV-IV in FIG. 3) showing the first sterilizer of the sterilizer according to the first embodiment. 図5Aは、第1の実施の形態による殺菌機の第1殺菌機の他の例を示す平面図である。FIG. 5A is a plan view showing another example of the first sterilizer of the sterilizer according to the first embodiment. 図5Bは、第1の実施の形態による殺菌機の第1殺菌機の他の例を示す断面図(図5AのVB-VB線断面図)である。FIG. 5B is a sectional view (a sectional view taken along the line VB-VB in FIG. 5A) showing another example of the first sterilizer of the sterilizer according to the first embodiment. 図6Aは、第1の実施の形態による殺菌機の第1殺菌機の他の例を示す正面図である。FIG. 6A is a front view showing another example of the first sterilizer of the sterilizer according to the first embodiment. 図6Bは、第1の実施の形態による殺菌機の第1殺菌機の他の例を示す断面図(図6AのVIB-VIB線断面図)である。FIG. 6B is a sectional view (a sectional view taken along the line VIB-VIB in FIG. 6A) showing another example of the first sterilizer of the sterilizer according to the first embodiment. 図6Cは、一実施の形態による水殺菌機の第1殺菌機の他の例を示す断面図(図6BのVIC部拡大図)である。FIG. 6C is a sectional view (an enlarged view of the VIC section in FIG. 6B) showing another example of the first sterilizer of the water sterilizer according to one embodiment. 図7は、第1の実施の形態による原料殺菌ラインを示す概略図である。FIG. 7 is a schematic diagram showing a raw material sterilization line according to the first embodiment. 図8は、第1の実施の形態による内容物充填システムを用いた内容物充填方法を示すフローチャートである。FIG. 8 is a flowchart showing a content filling method using the content filling system according to the first embodiment. 図9Aは、第1の実施の形態による内容物充填システムの殺菌方法であって、殺菌機の殺菌方法を示すフローチャートである。FIG. 9A is a flowchart showing a sterilization method of a sterilizer, which is a sterilization method for a content filling system according to the first embodiment. 図9Bは、第1の実施の形態による内容物充填システムの殺菌方法であって、殺菌機の殺菌方法の他の例を示すフローチャートである。FIG. 9B is a flowchart showing another example of the sterilization method of the sterilizer, which is the sterilization method of the content filling system according to the first embodiment. 図9Cは、第1の実施の形態による内容物充填システムの殺菌方法であって、殺菌機の殺菌方法のさらに他の例を示すフローチャートである。FIG. 9C is a flowchart showing still another example of the sterilization method of the sterilizer, which is the sterilization method of the content filling system according to the first embodiment. 図9Dは、第1の実施の形態による内容物充填システムの殺菌方法であって、殺菌機の殺菌方法のさらに他の例を示すフローチャートである。FIG. 9D is a flowchart showing still another example of the sterilization method of the sterilizer, which is the sterilization method of the content filling system according to the first embodiment. 図9Eは、第1の実施の形態による内容物充填システムの殺菌方法であって、殺菌機の殺菌方法のさらに他の例を示すフローチャートである。FIG. 9E is a flowchart illustrating still another example of a method for sterilizing a sterilizer, which is a method for sterilizing a content filling system according to the first embodiment. 図10は、第2の実施の形態による内容物充填システムを示す概略系統図である。FIG. 10 is a schematic system diagram showing a content filling system according to the second embodiment. 図11は、第2の実施の形態による第1充填装置と第2充填装置の配置構成を示す図。FIG. 11 is a diagram showing the arrangement of the first filling device and the second filling device according to the second embodiment. 図12は、第2の実施の形態による第1充填装置と第2充填装置と第3充填装置の配置構成を示す図。FIG. 12 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment. 図13は、第2の実施の形態による第1充填装置と第2充填装置と第3充填装置の配置構成を示す図。FIG. 13 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment. 図14は、第2の実施の形態による第1充填装置と第2充填装置と第3充填装置の配置構成を示す図。FIG. 14 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment. 図15は、第2の実施の形態による第1充填装置と第2充填装置と第3充填装置の配置構成を示す図。FIG. 15 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment. 図16は、第2の実施の形態による第1充填装置と第2充填装置と第3充填装置の配置構成を示す図。FIG. 16 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment. 図17は、第2の実施の形態による第1充填装置と第2充填装置と第3充填装置の配置構成を示す図。FIG. 17 is a diagram showing the arrangement of a first filling device, a second filling device, and a third filling device according to the second embodiment. 図18Aは、内容物充填システムの変形例における、混合対象原料殺菌ラインを示す概略図である。FIG. 18A is a schematic diagram showing a sterilization line for raw materials to be mixed in a modified example of the content filling system. 図18Bは、内容物充填システムの変形例の他の例における、混合対象原料殺菌ラインを示す概略図である。FIG. 18B is a schematic diagram showing a sterilization line for raw materials to be mixed in another modification of the content filling system. 図18Cは、内容物充填システムの変形例における、混合対象原料殺菌ラインを示す概略図である。FIG. 18C is a schematic diagram showing a sterilization line for raw materials to be mixed in a modified example of the content filling system. 図18Dは、内容物充填システムの変形例を示す概略平面図である。FIG. 18D is a schematic plan view showing a modification of the content filling system. 図18Eは、内容物充填システムの変形例における、混合対象原料殺菌ラインを示す概略図である。FIG. 18E is a schematic diagram showing a sterilization line for raw materials to be mixed in a modified example of the content filling system.
<第1の実施の形態>
 以下、図面を参照して本発明の実施の形態について説明する。図1乃至図10Bは本開示の第1の実施の形態を示す図である。
<First embodiment>
Embodiments of the present invention will be described below with reference to the drawings. 1 to 10B are diagrams showing a first embodiment of the present disclosure.
 (内容物充填システム)
 まず、図1Aおよび図1Bにより、実施の形態による内容物充填システム(無菌充填システム)について説明する。
(Contents filling system)
First, a content filling system (aseptic filling system) according to an embodiment will be described with reference to FIGS. 1A and 1B.
 図1Aおよび図1Bに示す内容物充填システム10は、ボトル(容器)100に飲料等の内容物を充填するシステムである。内容物は、製品原液を水によって希釈することによって生成される。この場合、製品原液は、水によって、1.1倍以上100倍以下に希釈されても良く、好ましくは2倍以上10倍以下に希釈されても良い。また、製品原液は、水によって、10倍以上80倍以下に希釈されても良く、20倍以上70倍以下に希釈されても良く、30倍以上50倍以下に希釈されても良い。ボトル100は、合成樹脂材料を射出成形して製作したプリフォーム100aを二軸延伸ブロー成形することにより作製できる。なお、ボトル100は、ダイレクトブロー成形により作製されても良い。ボトル100の材料としては、熱可塑性樹脂、特にPE(ポリエチレン)、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)、又はPEN(ポリエチレンナフタレート)を使用することが好ましい。このほか、容器としては、ガラス、缶、紙、パウチ、カップ又はこれらの複合容器であっても良い。本実施の形態においては、容器として合成樹脂製ボトルを用いる場合を例にとって説明する。 A content filling system 10 shown in FIGS. 1A and 1B is a system for filling a bottle (container) 100 with content such as a beverage. The contents are produced by diluting the product stock solution with water. In this case, the product stock solution may be diluted with water from 1.1 times to 100 times, preferably from 2 times to 10 times. Further, the product stock solution may be diluted with water 10 times or more and 80 times or less, 20 times or more and 70 times or less, or 30 times or more and 50 times or less. The bottle 100 can be manufactured by biaxially stretching blow molding a preform 100a manufactured by injection molding a synthetic resin material. Note that the bottle 100 may be manufactured by direct blow molding. As the material for the bottle 100, it is preferable to use a thermoplastic resin, particularly PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), or PEN (polyethylene naphthalate). In addition, the container may be glass, a can, paper, a pouch, a cup, or a composite container thereof. In this embodiment, a case where a synthetic resin bottle is used as the container will be described as an example.
 図1Aおよび図1Bに示すように、内容物充填システム10は、対象原料と水を混合して混合対象原料を生成する混合ライン51Aと、混合対象原料を非加熱殺菌する混合対象原料殺菌ライン50と、対象原料以外の他の原料を加熱殺菌する他の原料殺菌ライン70と、混合対象原料殺菌ライン50と他の原料殺菌ライン70とに接続され、混合対象原料と他の原料を混合して内容物を生成する混合タンク55と、混合タンク55で生成された内容物をボトル100に充填する充填装置21とを備えている。図1Bにおいて、充填装置21は1台で示しているが、図10に示す通り、充填装置21として、複数台、好ましくは2台または3台の充填フィラを設けても良い。また充填装置21は、ロータリーフィラを用いても良いし、直線式のフィラを用いても良い。ここで「非加熱殺菌」とは、加熱殺菌以外の方法であり、菌を不活化するすべての殺菌を含む。例えば紫外線、放射線、パルス状マイクロ波、超高圧、オゾン、高電圧極短パルス放電、電解酸性水、光パルス、衝撃波などが挙げられる。 As shown in FIGS. 1A and 1B, the content filling system 10 includes a mixing line 51A that mixes target raw materials and water to produce mixed target raw materials, and a mixed target raw material sterilization line 50 that non-heat sterilizes the mixed target raw materials. is connected to the other raw material sterilization line 70 that heat-sterilizes raw materials other than the target raw material, the raw material sterilization line 50 to be mixed, and the other raw material sterilization line 70, and the raw material to be mixed and the other raw materials are mixed. It includes a mixing tank 55 that generates the contents, and a filling device 21 that fills the bottle 100 with the contents generated in the mixing tank 55. In FIG. 1B, one filling device 21 is shown, but as shown in FIG. 10, a plurality of filling devices, preferably two or three filling fillers, may be provided as the filling device 21. Further, the filling device 21 may use a rotary filler or a linear filler. Here, "non-heat sterilization" refers to methods other than heat sterilization, and includes all sterilization methods that inactivate bacteria. Examples include ultraviolet rays, radiation, pulsed microwaves, ultrahigh pressure, ozone, high voltage extremely short pulse discharge, electrolyzed acidic water, light pulses, shock waves, and the like.
 このうち混合ライン51Aは純水製造装置50cから供給された水(純水)を貯留する水タンク50aと、内容物の原料のうち対象原料を貯留する対象原料タンク50bと、水タンク50a内の水と対象原料タンク50b内の対象原料を混合する混合タンク51とを有する。 Of these, the mixing line 51A includes a water tank 50a that stores water (pure water) supplied from the pure water production device 50c, a target raw material tank 50b that stores the target raw material among the raw materials in the content, and a water tank 50a that stores the water (pure water) supplied from the pure water production device 50c. It has a mixing tank 51 that mixes water and the target raw material in the target raw material tank 50b.
 混合タンク51では水と対象原料が混合されて混合対象原料が生成され、この混合対象原料は上述のように混合対象原料殺菌ライン50において非加熱殺菌される。 In the mixing tank 51, water and the raw material to be mixed are mixed to produce a raw material to be mixed, and this raw material to be mixed is sterilized by non-heating in the raw material to be mixed sterilization line 50 as described above.
 他方、内容物の原料のうち、対象原料以外の他の原料は他の原料タンク71内に貯留され、他の原料タンク71内に貯留された他の原料は上述のように他の原料殺菌ライン70で加熱殺菌される。 On the other hand, among the raw materials in the content, raw materials other than the target raw material are stored in other raw material tanks 71, and other raw materials stored in other raw material tanks 71 are transferred to other raw material sterilization lines as described above. Heat sterilized at 70°C.
 そして混合対象原料殺菌ライン50において非加熱殺菌された混合対象原料と、他の原料殺菌ラインで加熱殺菌された他の原料は混合タンク55で混合されて内容物を生成する。 Then, the raw materials to be mixed that have been non-heat sterilized in the raw material sterilization line 50 and other raw materials that have been heat sterilized in other raw material sterilization lines are mixed in a mixing tank 55 to produce contents.
 本実施の形態において、内容物の原料の対象原料とは、加熱されることにより熱分解したり、加熱されることにより、内容物充填システム10の加熱殺菌を行う他の原料殺菌ライン70に対して金属腐食を生じさせたり、析出して検出装置等の機能を劣化させるものである。このため本実施の形態においては、対象原料の殺菌にあたっては、非加熱殺菌を行っている。 In the present embodiment, the target raw material for the contents is thermally decomposed by being heated, or by being heated to be used for other raw materials sterilization line 70 that performs heat sterilization of the contents filling system 10. This can cause metal corrosion or precipitate, deteriorating the functionality of detection devices, etc. Therefore, in this embodiment, the target raw material is sterilized by non-heat sterilization.
 他方、他の原料とは内容物の原料のうち対象原料以外の他の原料をいう。他の原料に対して非加熱殺菌することも可能であるが、非加熱殺菌ラインは、後述のようにフィルタを有するため、フィルタ閉塞により処理量が低下することを考慮して、すなわち他の原料が目詰まりしないよう、本実施の形態においては、他の原料に対して加熱殺菌が施される。 On the other hand, other raw materials refer to raw materials other than the target raw materials among the raw materials of the contents. It is also possible to sterilize other raw materials without heat, but since the non-heat sterilization line has a filter as described below, the throughput will decrease due to filter blockage. In this embodiment, other raw materials are heat sterilized to prevent clogging.
 次に対象原料について述べる。本実施の形態において、内容物が例えば飲料水の場合、対象原料としてはビタミンがある Next, we will discuss the target raw materials. In this embodiment, when the content is drinking water, for example, the target raw material is vitamins.
 飲料水に含まれるビタミンとしては、ビタミンA、ビタミンD、ビタミンE、ビタミンK、ビタミンB1、ビタミンB2、ビタミンB6、ビタミンB12、ビタミンC、ナイアシン、パントテン酸、葉酸、ビオチン、パントテン酸及び葉酸及びこれらの誘導体から選ばれる少なくとも1種又は2種以上の混合物がある。 Vitamins contained in drinking water include vitamin A, vitamin D, vitamin E, vitamin K, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin C, niacin, pantothenic acid, folic acid, biotin, pantothenic acid, and folic acid. There is at least one kind or a mixture of two or more kinds selected from these derivatives.
 このうち、ビタミンA、ビタミンDは熱分解性が高い脂溶性ビタミン類となっている。 Of these, vitamin A and vitamin D are fat-soluble vitamins that are highly thermally decomposable.
 脂溶性ビタミンとしては、ビタミンAパルミテート,α-トコフェロール及びビタミンEアセテートを除く脂溶性ビタミンであれば特に限定されない。具体的には、例えばレチノール,3-ヒドロレチノール,レチナール,3-ヒドロレチナール,レチノイン酸,3-デヒドロレチノイン酸,ビタミンAアセテート等のビタミンA類;α,β,γ-カロテン,β-クリプトキサンチン,エキネノン等のカロテノイドやキサントフィル等のプロビタミンA類がある。 The fat-soluble vitamin is not particularly limited as long as it is a fat-soluble vitamin other than vitamin A palmitate, α-tocopherol, and vitamin E acetate. Specifically, vitamin A such as retinol, 3-hydroretinol, retinal, 3-hydroretinal, retinoic acid, 3-dehydroretinoic acid, vitamin A acetate; α, β, γ-carotene, β-cryptoxanthin , carotenoids such as echinenone, and provitamin A such as xanthophylls.
 また、脂溶性ビタミンとして、ビタミンD2乃至D7等のビタミンD類;β,γ,δ-トコフェロール、α,β,γ,δ-トコトリエノール,ニコチン酸ビタミンE等のエステル類;ビタミンK1乃至K3等のビタミンK類がある。また、これらの脂溶性ビタミン類は、単独で添加することもできるが、2種以上を組み合わせて添加することも可能である。 In addition, as fat-soluble vitamins, vitamin D such as vitamins D2 to D7; esters such as β, γ, δ-tocopherol, α, β, γ, δ-tocotrienol, and vitamin E nicotinic acid; vitamins K1 to K3, etc. Contains vitamin K. Moreover, these fat-soluble vitamins can be added alone, but it is also possible to add two or more kinds in combination.
 飲料水中に含まれるビタミンは加熱されると熱分解するため、その特性が変化したりビタミン自体の量が減少する。このためビタミンを加熱した場合にその減少分を予測して予めビタミンの量を多目に添加する必要がある。 Vitamins contained in drinking water decompose thermally when heated, resulting in changes in its properties and a decrease in the amount of vitamins themselves. For this reason, it is necessary to predict the loss of vitamins when heated and add a large amount of vitamins in advance.
 本実施の形態によれば、ビタミンを対象原料として他の原料と区別して非加熱殺菌することにより、ビタミンの劣化あるいは減少を抑えることができる。 According to this embodiment, deterioration or reduction of vitamins can be suppressed by non-heat sterilization using vitamins as a target raw material and distinguishing them from other raw materials.
 また飲料水中にビタミンが含まれる場合、飲料水中のビタミン以外の他の原料、例えば糖分、着色料等が他の原料となる。 In addition, when vitamins are contained in drinking water, other raw materials other than vitamins in the drinking water, such as sugar and coloring agents, become other raw materials.
 あるいは、内容物が例えば乳性飲料水やカルシウムを添加した機能性飲料水の場合、対象原料はカルシウムとなる。 Alternatively, if the content is, for example, milky drinking water or functional drinking water to which calcium has been added, the target raw material is calcium.
 乳性飲料水やカルシウムを添加した機能性飲料水に含まれるカルシウム成分としては、好ましくは水溶性カルシウム塩が好ましく、水溶性の有機酸塩又は無機酸塩のいずれでも使用することができる。具体的には例えば、乳酸カルシウム、グルコン酸カルシウム、クエン酸カルシウム、フマル酸カルシウム、琥珀酸カルシウム等の有機酸塩;塩化カルシウム等の無機酸塩等を好ましく挙げることができる。前記カルシウム成分の使用量は、得られる濃縮飲料100gあたり、カルシウムが200~1000mg、更に好ましくは300~600mg含有されるような使用量が望ましい。カルシウムの含有量が100gあたり200mg未満では、濃縮飲料を通常3~6倍に希釈して飲用する場合において、飲用時のカルシウム濃度が低くなり、目的とするカルシウム強化効果が希薄になる。一方、100gあたり1000mgを超えると良好な風味が得られない恐れがあるので好ましくない。 The calcium component contained in milky drinking water or calcium-added functional drinking water is preferably a water-soluble calcium salt, and either a water-soluble organic acid salt or an inorganic acid salt can be used. Specifically, preferred examples include organic acid salts such as calcium lactate, calcium gluconate, calcium citrate, calcium fumarate, and calcium succinate; and inorganic acid salts such as calcium chloride. The amount of calcium component to be used is preferably such that 200 to 1000 mg, more preferably 300 to 600 mg of calcium is contained per 100 g of the obtained concentrated beverage. If the calcium content is less than 200 mg per 100 g, when the concentrated beverage is diluted usually 3 to 6 times, the calcium concentration during drinking will be low, and the intended calcium-enhancing effect will be diluted. On the other hand, if the amount exceeds 1000 mg per 100 g, it is not preferable because a good flavor may not be obtained.
 あるいは対象原料として用いるカルシウム成分としては、好ましくは水溶性カルシウム塩が好ましく、水溶性の有機酸塩又は無機酸塩のいずれでも使用することができる。例えば、乳酸カルシウム、クエン酸カルシウム、フマル酸カルシウム、琥珀酸カルシウム等の有機酸塩;塩化カルシウム等の無機酸塩等が好ましい。これらは単独又は混合物として用いることができる。 Alternatively, the calcium component used as the target raw material is preferably a water-soluble calcium salt, and either a water-soluble organic acid salt or an inorganic acid salt can be used. For example, organic acid salts such as calcium lactate, calcium citrate, calcium fumarate, and calcium succinate; inorganic acid salts such as calcium chloride are preferred. These can be used alone or as a mixture.
 乳性飲料水に含まれるカルシウムは高温下(例えば40℃以上)で析出するため、装置表面に析出したカルシウム自体の量が飲料水の成分から減少する。このためカルシウムを加熱した場合に、その減少分を予測して予めカルシウムを多目に添加する必要がある。 Since the calcium contained in milky drinking water precipitates at high temperatures (for example, 40° C. or higher), the amount of calcium itself precipitated on the surface of the device is reduced from the components of the drinking water. For this reason, when calcium is heated, it is necessary to predict the decrease in calcium and add a large amount of calcium in advance.
 またカルシウムは加熱により析出して、装置を制御する計測装置の機能を低下させる。 Additionally, calcium precipitates due to heating, reducing the functionality of the measuring device that controls the device.
 本実施の形態によれば、カルシウムを対象原料として他の原料と区別して非加熱殺菌することにより、カルシウムの析出による減少あるいは計測装置の機能低下を抑えることができる。 According to this embodiment, calcium is treated as a target raw material and is sterilized by non-heating while being distinguished from other raw materials, thereby suppressing the decrease due to calcium precipitation or the functional deterioration of the measuring device.
 また乳性飲料水中にカルシウムが含まれる場合、乳性飲料水中のカルシウム以外の他の原料、例えば乳酸菌発酵乳、糖分、ペクチン水溶液等が他の原料となる。 In addition, when calcium is contained in the milky drinking water, other raw materials other than calcium in the milky drinking water, such as lactic acid bacteria fermented milk, sugar, pectin aqueous solution, etc., are other raw materials.
 あるいは内容物が例えば塩化化合物を加えた機能性飲料水の場合、対象原料としては塩化物イオンを生成する塩化化合物がある。 Alternatively, if the content is functional drinking water containing, for example, a chloride compound, the target raw material is a chloride compound that generates chloride ions.
 また運動等により失われたナトリウムなどの電解質や水分を補うことを目的とした機能性飲料水に含まれる原料としては、塩化ナトリウム(食塩)、クエン酸ナトリウム、塩化カリウム、リン酸ナトリウム、塩化マグネシウム、糖類、香料等、がある。 In addition, the ingredients contained in functional drinking water for the purpose of replenishing electrolytes such as sodium and water lost through exercise, etc. include sodium chloride (salt), sodium citrate, potassium chloride, sodium phosphate, and magnesium chloride. , sugars, fragrances, etc.
 また運動等により失われたナトリウムなどの電解質や水分を目的とした機能性飲料水等における電解質の塩素イオン濃度の例として、3~30,000mEq/l(希釈せず直接飲用する機能性飲料水として好ましくは4~1,000mEq/l)がある。 In addition, as an example of the chloride ion concentration of electrolytes in functional drinking water intended for electrolytes such as sodium and water lost due to exercise, etc., it is 3 to 30,000 mEq/l (functional drinking water that is drunk directly without dilution). (preferably 4 to 1,000 mEq/l).
 また、塩化物イオンを生成する塩化化合物は、麺つゆ等の液体食品中に含まれることもある。この場合、塩化物イオンを生成する塩化化合物が対象原料となり、塩化物イオンを生成しない他の原料が他の原料となる。このような麺つゆとしては、麺つゆ(ストレート)、麺つゆ(3倍濃縮)があげられる。さらに上記の液体食品の具体例としては、その他、濃口醤油あるいは鍋用スープがある。 Additionally, chloride compounds that generate chloride ions are sometimes contained in liquid foods such as noodle soup. In this case, a chloride compound that generates chloride ions is the target raw material, and another raw material that does not generate chloride ions is the other raw material. Examples of such noodle soups include mentsuyu (straight) and mentsuyu (3 times concentrated). Further, specific examples of the above-mentioned liquid foods include dark soy sauce and hotpot soup.
 なお、機能性飲料水および液体食品としては、上記のものに限られることはない。例えば、塩素濃度が12mg/100ml以上、Cl濃度が3mEq/l以上の機能性飲料水あるいは液体食品は、加熱温度、加熱時間、金属の応力ダメージによって経時的な金属腐食を生じさせる可能性がある。このため、本実施の形態による、機能性飲料水あるいは液体食品に含まれる。 Note that functional drinking water and liquid foods are not limited to those mentioned above. For example, functional drinking water or liquid foods with a chlorine concentration of 12 mg/100 ml or more and a Cl concentration of 3 mEq/l or more may cause metal corrosion over time depending on the heating temperature, heating time, and stress damage to the metal. . Therefore, it is included in the functional drinking water or liquid food according to this embodiment.
 塩化化合物を加えた機能性飲料水等に含まれる塩化物イオンは加熱されると内容物充填システム10の各種ライン50A、50、70、あるいは充填装置21、とりわけ他の原料殺菌ライン70に金属腐食を生じさせる。 When heated, chloride ions contained in functional drinking water or the like containing chloride compounds cause metal corrosion to the various lines 50A, 50, 70 of the content filling system 10 or the filling device 21, especially other raw material sterilization lines 70. cause
 すなわち、内容物充填システム10の部品としては、通常耐食性に優れたSUS316L材、SUS317L、SUS329J1材、SUS890L材、スーパーステンレス材、チタン材が用いられるが、塩化物イオンは加熱により腐食性が増して、これらSUS316L材、SUS317L、SUS329J1材、SUS890L材、スーパーステンレス材、チタン材に金属腐食を生じさせる。 That is, SUS316L material, SUS317L, SUS329J1 material, SUS890L material, super stainless steel material, and titanium material, which have excellent corrosion resistance, are normally used as parts of the content filling system 10, but chloride ions become more corrosive when heated. , metal corrosion is caused in these SUS316L materials, SUS317L, SUS329J1 materials, SUS890L materials, super stainless steel materials, and titanium materials.
 また塩化物イオンは加熱により析出して内容物充填システム10の各種ライン70、内で析出して計測装置等の機能を低下させる。 In addition, chloride ions are precipitated by heating and are precipitated within the various lines 70 of the content filling system 10, degrading the functionality of the measuring device and the like.
 本実施の形態によれば、塩化物イオンを対象原料として他の原料と区別して非加熱殺菌することにより、内容物充填システム10内では金属腐食あるいは機能の低下を抑えることができる。 According to the present embodiment, by non-heating sterilization using chloride ions as a target raw material to distinguish it from other raw materials, metal corrosion or functional deterioration can be suppressed within the content filling system 10.
 あるいは内容物が例えば香料、甘味料、酸味料、着色料、保存料等が添加されている飲料水の場合、対象原料としては香料、甘味料、酸味料、着色料、保存料が考えられる。 Alternatively, in the case of drinking water to which the contents include, for example, flavorings, sweeteners, acidulants, coloring agents, preservatives, etc., the target raw materials may include flavoring agents, sweeteners, acidulants, coloring agents, and preservatives.
 香料、甘味料、酸味料、着色料、保存料等が添加されている飲料水は加熱されると熱分解し、その特性が変化したり、添加したもの自体の量や機能が減少・低下する。安定性の低下も含む)このため添加物を加熱した場合に、その減少分を予測して予め多目に添加する必要がある。 Drinking water to which flavorings, sweeteners, acidulants, coloring agents, preservatives, etc. have been added will thermally decompose when heated, resulting in changes in its properties and a decrease or deterioration in the amount and functionality of the added substances themselves. . (including a decrease in stability) Therefore, when the additive is heated, it is necessary to predict the amount of decrease and add a large amount in advance.
 本実施の形態によれば、香料、甘味料、酸味料、着色料、保存料を対象原料として他の原料と区別して非加熱殺菌することにより、香料、甘味料、酸味料、着色料、保存料の劣化あるいは減少を抑えることができる。 According to the present embodiment, flavorings, sweeteners, acidulants, colorants, and preservatives are target raw materials and are separated from other raw materials and non-heat sterilized. It is possible to suppress the deterioration or reduction of materials.
 本実施の形態において、香料としては芳香族アルコール系の芳香族アルデヒド類、脂肪族高級アルコール系の脂肪族高級アルデヒド類、エステル系のケトン類、フェノールエーテル系のフェノール類がある。具体例としては、オレンジ油、レモン油、グレープフルーツ油、ライム油、タンジェリン油、マンダリン油およびベルガモット油などの柑橘精油類;ペパ-ミント油、スペアミント油、シンナモン油などの精油類;オールスパイス、アニスシード、バジル、ローレル、カルダモン、セロリ、クローブ、クミン、デイル、ガーリック、ジンジャー、メース、マスタード、オニオン、パプリカ、パセリ、ブラックペパー、ナッツメグ、サフラン、ローズマリーなどのスパイス精油またはオレオレジン類;さらにリモネン、リナロール、ネロール、シトロネロール、ゲラニオール、シトラール、l-メントール、オイゲノール、シンナミックアルデヒド、アネトール、ペリラアルデヒド、バニリン、γ-ウンデカラクトン、l-カルボン、マルトール、フルフリルメルカプタン、プロピオン酸エチル、カプロン酸アリル、メチル-n-アミルケトン、ジアセチル、酢酸、酪酸などの公知香料化合物;着香油(反応フレ-バ-);およびこれらの天然精油、オレオレジンおよび香料化合物などを任意に組み合わせて混合した調合香料があるが、これらに限定されるものではない。 In the present embodiment, the fragrances include aromatic alcohol-based aromatic aldehydes, aliphatic higher alcohol-based aliphatic higher aldehydes, ester-based ketones, and phenol ether-based phenols. Specific examples include citrus essential oils such as orange oil, lemon oil, grapefruit oil, lime oil, tangerine oil, mandarin oil and bergamot oil; essential oils such as peppermint oil, spearmint oil and cinnamon oil; allspice and anise. Spices such as seeds, basil, laurel, cardamom, celery, cloves, cumin, dale, garlic, ginger, mace, mustard, onion, paprika, parsley, black pepper, nutmeg, saffron, rosemary, essential oils or oleoresins; and limonene. , linalool, nerol, citronellol, geraniol, citral, l-menthol, eugenol, cinnamic aldehyde, anethole, perilaldehyde, vanillin, γ-undecalactone, l-carvone, maltol, furfuryl mercaptan, ethyl propionate, caproic acid Known fragrance compounds such as allyl, methyl-n-amyl ketone, diacetyl, acetic acid, and butyric acid; fragrance oils (reactive flavors); and blended fragrances made by mixing any combination of these natural essential oils, oleoresins, fragrance compounds, etc. However, it is not limited to these.
 本実施の形態において、甘味料としては、ステビア抽出物(ステビオシド等)、羅漢果抽出物、ソーマチン等の天然甘味料:アスパルテーム、アセスルファムカリウム、スクラロース、サッカリン、ネオテーム、アドバンテーム等の人口甘味料がある。 In this embodiment, sweeteners include natural sweeteners such as stevia extract (such as stevioside), Luo Han Guo extract, and thaumatin; and artificial sweeteners such as aspartame, acesulfame potassium, sucralose, saccharin, neotame, and advantame. .
 本実施の形態において、酸味料としては、カルボン酸類、アミノ酸類、醸造酢類、乳醗酵食品、植物由来の酸味料がある。上記カルボン酸類としては、酢酸、乳酸、リンゴ酸、コハク酸、メチレンコハク酸、クエン酸、アスコルビン酸、グルタル酸、α-ケトグルタル酸等がある。上記アミノ酸類としては、グルタミン酸、アスパラギン酸等がある。上記醸造酢類としては、米酢、穀物酢、麦芽酢、黒酢、ブドウ酢、梅酢、リンゴ酢等がある。上記乳醗酵食品としては、ヨーグルト、乳清等がある。上記植物由来の酸味料としては、温州みかん、夏みかん、柚子、だいだい、すだち、レモン、グレープフルーツ等の柑橘類やリンゴ、いちご、ブドウ、パイナップル、桃、アセロラ、トマト、梅等の果汁、米糠、大豆、小麦、トウモロコシ等のイノシトールヘキサリン酸等を含む穀類抽出物やその精製物、ハイビスカス、バラ等の花弁、シソ葉、レタス、セロリ等の粉砕物やその抽出物等がある。 In this embodiment, the acidulant includes carboxylic acids, amino acids, brewed vinegars, fermented milk foods, and plant-derived acidulants. Examples of the carboxylic acids include acetic acid, lactic acid, malic acid, succinic acid, methylene succinic acid, citric acid, ascorbic acid, glutaric acid, α-ketoglutaric acid, and the like. Examples of the above amino acids include glutamic acid and aspartic acid. Examples of the above-mentioned brewed vinegars include rice vinegar, grain vinegar, malt vinegar, black vinegar, grape vinegar, plum vinegar, and apple vinegar. Examples of the milk fermented foods include yogurt and whey. The above-mentioned plant-derived acidulants include citrus fruits such as unshu mandarin oranges, summer mandarin oranges, yuzu, daidai, sudachi, lemon, grapefruit, fruit juices of apples, strawberries, grapes, pineapples, peaches, acerola, tomatoes, plums, rice bran, soybeans, etc. Examples include grain extracts containing inositol hexaphosphate, such as wheat and corn, and purified products thereof; petals of hibiscus and roses; crushed products, such as perilla leaves, lettuce, and celery; and extracts thereof.
 本実施の形態において、着色料としては、カロテン系色素(カロテノイド色素)、コチニール色素、アントシアニン系色素、クチナシ色素、紅コウジ色素などがある。 In this embodiment, the coloring agent includes carotene pigments (carotenoid pigments), cochineal pigments, anthocyanin pigments, gardenia pigments, red koji pigments, and the like.
 本実施の形態において、保存料としては、安息香酸、安息香酸ナトリウム、ソルビン酸、ソルビン酸カリウム、パラオキシ安息香酸イソブチル、パラオキシ安息香酸イソプロピル、パラオキシ安息香酸エチル、パラオキシ安息香酸ブチル、パラオキシ安息香酸プロピル等がある。 In this embodiment, the preservatives include benzoic acid, sodium benzoate, sorbic acid, potassium sorbate, isobutyl paraoxybenzoate, isopropyl paraoxybenzoate, ethyl paraoxybenzoate, butyl paraoxybenzoate, propyl paraoxybenzoate, etc. There is.
 また香料、甘味料、酸味料、着色料、保存料入り飲料水中の香料、甘味料、酸味料、着色料、保存料以外の他の原料、例えば酸味料、果汁、カフェイン、糖分等が他の原料となる。 In addition, other raw materials other than flavorings, sweeteners, acidulants, coloring agents, and preservatives in drinking water containing flavoring agents, sweeteners, acidulants, coloring agents, and preservatives, such as acidulants, fruit juice, caffeine, sugar, etc. It becomes the raw material for
 あるいは、内容物が、アミノ酸および電解質から選ばれる少なくとも1種または2種の混合物を含む輸液であっても良い。輸液中のアミノ酸は、加熱されると熱分解するため、その特性が変化したり、アミノ酸自体の量が減少する。このため、アミノ酸を加熱した場合に、その減少分を見越して予めアミノ酸の量を多目に添加する必要がある。また、輸液中の電解液は、塩化物イオンを生成する塩化化合物を含む。 Alternatively, the content may be an infusion containing at least one or a mixture of two selected from amino acids and electrolytes. Amino acids in infusions undergo thermal decomposition when heated, resulting in changes in their properties and a decrease in the amount of amino acids themselves. For this reason, when amino acids are heated, it is necessary to add a large amount of amino acids in advance in anticipation of the loss. Furthermore, the electrolytic solution in the infusion contains a chloride compound that generates chloride ions.
 輸液中に含まれる塩化物イオンは加熱されると内容物充填システム10の各種ライン50A、50、70、あるいは充填装置21、とりわけ他の原料殺菌ライン70に金属腐食を生じさせる。 When heated, the chloride ions contained in the infusion cause metal corrosion in the various lines 50A, 50, 70 of the content filling system 10, or the filling device 21, especially the other raw material sterilization line 70.
 すなわち、内容物充填システム10の部品としては、通常耐食性に優れたSUS316L材、SUS317L、SUS329J1材、SUS890L材、スーパーステンレス材、チタン材が用いられるが、塩化物イオンは加熱により腐食性が増して、これらSUS316L材、SUS317L、SUS329J1材、SUS890L材、スーパーステンレス材、チタン材に対しても金属腐食を生じさせる。 That is, SUS316L material, SUS317L, SUS329J1 material, SUS890L material, super stainless steel material, and titanium material, which have excellent corrosion resistance, are normally used as parts of the content filling system 10, but chloride ions become more corrosive when heated. , metal corrosion also occurs on these SUS316L materials, SUS317L, SUS329J1 materials, SUS890L materials, super stainless steel materials, and titanium materials.
 また塩化物イオンは加熱により析出して内容物充填システム10の各種ライン70、内で析出して計測装置等の機能を低下させる。 In addition, chloride ions are precipitated by heating and are precipitated within the various lines 70 of the content filling system 10, degrading the functionality of the measuring device and the like.
 本実施の形態によれば、アミノ酸および電解質から選ばれる少なくとも1種または2種の混合物を対象原料として、輸液中の他の原料と区別して非加熱殺菌することにより、内容物充填システム10内での金属腐食あるいは機能低下を抑えることができる。 According to the present embodiment, a mixture of at least one or two selected from amino acids and electrolytes is used as the target raw material, and is sterilized by non-heating while distinguishing it from other raw materials in the infusion, so that it can be stored in the content filling system 10. metal corrosion or functional deterioration can be suppressed.
 ここで、輸液中のアミノ酸および電解質以外の他の原料が輸液中の他の原料となる。このような輸液中の他の原料としては、糖類、脂肪乳剤、あるいは微量元素がある。 Here, other raw materials other than the amino acids and electrolytes in the infusion become other raw materials in the infusion. Other ingredients in such infusions include sugars, fat emulsions, or trace elements.
 次に輸液中の各成分について述べる。 Next, we will discuss each component in the infusion.
 アミノ酸としては、従来から生体への栄養補給を目的とするアミノ酸輸液に利用されている各種のアミノ酸(必須アミノ酸および非必須アミノ酸)を用いることができる。具体的には、例えばL-イソロイシン、L-ロイシン、L-バリン、L-リジン、L-メチオニン、L-フェニルアラニン、L-トレオニン、L-トリプトファン、L-アルギニン、L-ヒスチジン、グリシン、L-アラニン、L-プロリン、L-アスパラギン酸、L-セリン、L-チロシン、L-グルタミン酸、L-システインなどが例示される。これらのアミノ酸は、必ずしも遊離アミノ酸の形態で用いる必要はなく、無機酸塩(例えば、L-リジン塩酸塩など)、有機酸塩(例えば、L-リジン酢酸塩、L-リジンリンゴ酸塩など)、生体内で加水分解可能なエステル体(例えば、L-チロシンメチルエステル、L-メチオニンメチルエステル、L-メチオニンエチルエステルなど)、N-置換体(例えば、N-アセチル-L-トリプトファン、N-アセチル-L-システイン、N-アセチル-L-プロリンなど)、同種または異種のアミノ酸をペプチド結合させたジペプチド類(例えば、L-チロシル-L-チロシン、L-アラニル-L-チロシン、L-アルギニル-L-チロシン、L-チロシル-L-アルギニンなど)などの形態で用いることもできる。 As the amino acid, various amino acids (essential amino acids and non-essential amino acids) that have been used in amino acid infusions for the purpose of nutritional supplementation to living organisms can be used. Specifically, for example, L-isoleucine, L-leucine, L-valine, L-lysine, L-methionine, L-phenylalanine, L-threonine, L-tryptophan, L-arginine, L-histidine, glycine, L- Examples include alanine, L-proline, L-aspartic acid, L-serine, L-tyrosine, L-glutamic acid, and L-cysteine. These amino acids do not necessarily have to be used in the form of free amino acids, but can be used in the form of inorganic acid salts (for example, L-lysine hydrochloride, etc.) or organic acid salts (for example, L-lysine acetate, L-lysine malate, etc.). , in vivo hydrolyzable esters (e.g., L-tyrosine methyl ester, L-methionine methyl ester, L-methionine ethyl ester, etc.), N-substituted products (e.g., N-acetyl-L-tryptophan, N- acetyl-L-cysteine, N-acetyl-L-proline, etc.), dipeptides with peptide bonds of the same or different amino acids (e.g., L-tyrosyl-L-tyrosine, L-alanyl-L-tyrosine, L-arginyl) -L-tyrosine, L-tyrosyl-L-arginine, etc.).
  電解質としては、従来から、例えば、生理食塩液のような輸液に用いられている各種水溶性塩を用いることができる。該水溶性塩には、例えば、生体の機能、体液の電解質バランスなどを維持する上で必要とされる各種無機成分(例えば、ナトリウム、カリウム、カルシウム、マグネシウム、亜鉛、鉄、銅、マンガン、ヨウ素、リンなど)の水溶性塩が含まれる。具体的には、例えば塩化物、硫酸塩、酢酸塩、グルコン酸塩、乳酸塩などが含まれる。これらの水溶性塩は、水和物であってもよい。 As the electrolyte, various water-soluble salts conventionally used in infusions such as physiological saline can be used. The water-soluble salts include, for example, various inorganic components (e.g., sodium, potassium, calcium, magnesium, zinc, iron, copper, manganese, iodine) necessary for maintaining biological functions and electrolyte balance of body fluids. , phosphorus, etc.). Specifically, it includes, for example, chloride, sulfate, acetate, gluconate, lactate, and the like. These water-soluble salts may be hydrates.
 例えば、5%ブドウ糖注射液のような輸液中の糖としては各種糖類を用いることができる。その内でも還元糖が好適に用いられる。還元糖としては、例えばブドウ糖、果糖、マルトースなどがある。これらの還元糖は1種を単独で用い得ると共に、2種以上を混合して用いることもできる。更に、これらの還元糖は、ソルビトール、キシリトールなどと併用することもできる。 For example, various saccharides can be used as the sugar in an infusion such as 5% glucose injection. Among them, reducing sugars are preferably used. Examples of reducing sugars include glucose, fructose, and maltose. These reducing sugars can be used singly or in combination of two or more. Furthermore, these reducing sugars can also be used in combination with sorbitol, xylitol, and the like.
 微量元素とは、ヒトに対して高カロリー輸液療法を施す際に生じ得る各種欠乏症状を改善する元素をいう。具体的には、鉄、銅、亜鉛、マンガン、ヨウ素、セレン、モリブデン、クロム、フッ素等が挙げられる。これらの微量元素は、対象となる患者の状態に対応して一種類のみを使用しても良く、二種類以上を使用しても良い。本発明において、微量元素は微量元素と共存することにより化学変化を受け得る成分と異なる区画に充填される。 Trace elements refer to elements that improve various deficiency symptoms that may occur when administering high-calorie infusion therapy to humans. Specific examples include iron, copper, zinc, manganese, iodine, selenium, molybdenum, chromium, and fluorine. Only one type of these trace elements may be used, or two or more types may be used depending on the condition of the target patient. In the present invention, trace elements are filled in a compartment different from components that can undergo chemical changes due to their coexistence with trace elements.
 脂肪乳剤としては、油脂を乳化剤を用いて水に分散させて生成された水中油型乳剤を用いることが好ましい。脂肪乳剤の生成は公知の方法により行うことができる。本発明において、脂肪乳剤は電解質とは異なる区画に充填される。また、目的に応じて、ビタミンA、ビタミンD、ビタミンE、ビタミンK等の脂溶性ビタミンが脂肪乳剤と共に充填されていても良い。 As the fat emulsion, it is preferable to use an oil-in-water emulsion produced by dispersing fats and oils in water using an emulsifier. Production of fat emulsions can be carried out by known methods. In the present invention, the fat emulsion is loaded into a separate compartment from the electrolyte. Depending on the purpose, fat-soluble vitamins such as vitamin A, vitamin D, vitamin E, and vitamin K may be filled together with the fat emulsion.
 次に、本実施の形態による内容物充填システム10について、図1Aおよび図1Bにより更に述べる。 Next, the content filling system 10 according to this embodiment will be further described with reference to FIGS. 1A and 1B.
 図1Bに示すように、内容物充填システム10は、内容物充填システム10を制御する制御部90を備えている。内容物充填システム10は、ボトル成形部30と、殺菌装置(容器殺菌装置)11と、エアリンス装置14と、上述した充填装置21と、キャップ装着装置(キャッパー、巻締及び打栓機)16と、製品ボトル搬出部25とを備えている。ボトル成形部30、殺菌装置11、エアリンス装置14、充填装置21、キャップ装着装置16及び製品ボトル搬出部25は、ボトル100の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。エアリンス装置14、充填装置21及びキャップ装着装置16等の間には、これらの装置間でボトル100を搬送する複数の搬送ホイール12が設けられている。ここでは、ボトル成形部30、殺菌装置11、エアリンス装置14、充填装置21、キャップ装着装置16及び製品ボトル搬出部25について説明する。 As shown in FIG. 1B, the content filling system 10 includes a control unit 90 that controls the content filling system 10. The contents filling system 10 includes a bottle forming section 30, a sterilizing device (container sterilizing device) 11, an air rinsing device 14, the above-mentioned filling device 21, and a capping device (capper, seaming and capping machine) 16. , and a product bottle unloading section 25. The bottle forming section 30, the sterilizing device 11, the air rinsing device 14, the filling device 21, the cap mounting device 16, and the product bottle unloading section 25 are arranged in this order from the upstream side to the downstream side along the conveyance direction of the bottle 100. has been done. A plurality of conveyance wheels 12 are provided between the air rinse device 14, the filling device 21, the cap attachment device 16, etc. to convey the bottle 100 between these devices. Here, the bottle forming section 30, the sterilizing device 11, the air rinsing device 14, the filling device 21, the cap attaching device 16, and the product bottle unloading section 25 will be explained.
 ボトル成形部30は、外部からプリフォーム100aを受け入れるとともにボトル100の成形を行うように構成されている。そして、ボトル成形部30は、成形されたボトル100を殺菌装置11へ向けて搬送するように構成されている。これにより、内容物充填システム10において、プリフォーム100aの供給からボトル100の成形を経て、ボトル100への内容物の充填及び閉栓に至る工程を連続して行うようにできる。この場合、容積の大きいボトル100ではなく、容積の小さいプリフォーム100aが、外部から内容物充填システム10に運搬される。このため、運送費を低減できる。 The bottle molding section 30 is configured to receive a preform 100a from the outside and mold the bottle 100. The bottle molding unit 30 is configured to transport the molded bottle 100 toward the sterilizer 11. Thereby, in the content filling system 10, the steps from supplying the preform 100a, molding the bottle 100, filling the bottle 100 with the content, and closing the bottle can be performed continuously. In this case, a preform 100a with a small volume, rather than a bottle 100 with a large volume, is transported from the outside to the filling system 10. Therefore, transportation costs can be reduced.
 このようなボトル成形部30は、プリフォーム100aを搬送するプリフォーム搬送部31と、プリフォーム100aに対してブロー成形を施すことにより、プリフォーム100aからボトル100を成形するブロー成形部(容器成形装置)32と、成形されたボトル100を搬送するボトル搬送部33とから構成される。 The bottle molding section 30 includes a preform transport section 31 that transports the preform 100a, and a blow molding section (container molding section) that molds the bottle 100 from the preform 100a by performing blow molding on the preform 100a. 32, and a bottle transport section 33 that transports the molded bottle 100.
 このうち、プリフォーム搬送部31は、受取部34と、加熱部35と、受渡部36とを含んでいる。このうち、受取部34は、プリフォーム供給装置1からプリフォーム供給コンベア2を介して供給されるプリフォーム100aを受け取るように構成されている。この受取部34には、プリフォーム100aを殺菌するためのプリフォーム殺菌装置34aと、プリフォーム100aをエアリンスするためのプリフォームエアリンス装置34bとが設けられている。図示された例においては、受取部34には、1つのプリフォーム殺菌装置34aと、1つのプリフォームエアリンス装置34bとが設けられている。なお、プリフォーム殺菌装置34a及びプリフォームエアリンス装置34bの個数は、これに限られない。 Of these, the preform transport section 31 includes a receiving section 34, a heating section 35, and a delivery section 36. Of these, the receiving section 34 is configured to receive the preform 100a supplied from the preform supply device 1 via the preform supply conveyor 2. This receiving section 34 is provided with a preform sterilizer 34a for sterilizing the preform 100a, and a preform air rinsing device 34b for air rinsing the preform 100a. In the illustrated example, the receiving section 34 is provided with one preform sterilizer 34a and one preform air rinse device 34b. Note that the number of preform sterilizers 34a and preform air rinse devices 34b is not limited to this.
 受取部34において、プリフォーム殺菌装置34aにより、過酸化水素水溶液のガス又はミストがプリフォーム100aに吹き付けられ、プリフォーム100aが殺菌される(予備殺菌)。 In the receiving section 34, the preform sterilizer 34a sprays hydrogen peroxide aqueous solution gas or mist onto the preform 100a to sterilize the preform 100a (preliminary sterilization).
 プリフォーム100aを殺菌するための殺菌剤としては、微生物を不活性化させる性質を有していれば良く、例えば過酸化水素のほか、過酢酸、酢酸、過硝酸、硝酸、塩素系薬剤、水酸化ナトリウム、水酸化カリウム、エチルアルコール、イソプロピルアルコール等のアルコール類、二酸化塩素、オゾン水、酸性水、界面活性剤を単体で用いても良く、これらのうち2種以上を組み合わせて用いても良い。 The sterilizing agent for sterilizing the preform 100a may have the property of inactivating microorganisms, such as hydrogen peroxide, peracetic acid, acetic acid, pernitric acid, nitric acid, chlorine-based agents, and water. Alcohols such as sodium oxide, potassium hydroxide, ethyl alcohol, and isopropyl alcohol, chlorine dioxide, ozone water, acidic water, and surfactants may be used alone, or two or more of these may be used in combination. .
 このように、プリフォーム殺菌装置34aにより予めプリフォーム100aを殺菌(予備殺菌)することによって、プリフォーム100aから作製されるボトル100に付着する菌を少なくできる。このため、ボトル100を殺菌する殺菌装置11で使用する過酸化水素の使用量を低減できるとともに、殺菌時間を短縮できる。ここで、一般に、容積の小さいプリフォーム100aを殺菌するために使用する殺菌剤の量は、ボトル100を殺菌するために使用する殺菌剤の量よりも少なくて良い。このため、プリフォーム100aを予備殺菌することにより、殺菌剤の全体の使用量を低減できる。 In this way, by sterilizing the preform 100a in advance (preliminary sterilization) using the preform sterilizer 34a, it is possible to reduce the number of bacteria that adhere to the bottle 100 produced from the preform 100a. Therefore, the amount of hydrogen peroxide used in the sterilizer 11 that sterilizes the bottle 100 can be reduced, and the sterilization time can be shortened. Here, in general, the amount of sterilizer used to sterilize the small-volume preform 100a may be smaller than the amount of sterilizer used to sterilize the bottle 100. Therefore, by pre-sterilizing the preform 100a, the total amount of disinfectant used can be reduced.
 また、殺菌装置11で使用する過酸化水素の使用量を低減できるとともに、殺菌時間を短縮できるため、殺菌装置11の小型化を図ることができる。また、ボトル100を殺菌する殺菌時間を短縮できるため、ボトル100への熱負荷を低減できる。このため、軽量化されたボトル100又はリサイクルによる再生PETを使用したボトル100であっても、殺菌剤の熱によるボトル100の変形を抑制できる。 Furthermore, since the amount of hydrogen peroxide used in the sterilizer 11 can be reduced and the sterilization time can be shortened, the sterilizer 11 can be made smaller. Furthermore, since the sterilization time for sterilizing the bottle 100 can be shortened, the heat load on the bottle 100 can be reduced. Therefore, even if the bottle 100 is lightweight or uses recycled PET, deformation of the bottle 100 due to the heat of the disinfectant can be suppressed.
 さらに、プリフォーム100aを予備殺菌することによって、ボトル100に付着する菌を少なくできるため、殺菌装置11において、殺菌条件を弱化させても良い。ここで、一般に、殺菌装置11における殺菌効果を向上させるために、ブロー成形部32において、金型温調器(図示せず)の温水を金型に供給することによって、ボトル100の胴部をヒートセットしている。これにより、殺菌装置11における殺菌効果を向上できるとともに、殺菌装置11におけるボトル100の収縮を低減できる。ところが、本実施の形態では、上述したように、プリフォーム100aを予備殺菌することによって、ボトル100に付着する菌を少なくできる。このため、ブロー成形部(容器成形装置)32が、温水によってボトル100の温度を調節することなく、ボトル100を成形しても良い。すなわち、ブロー成形部32において、殺菌効果を向上させるために金型に供給していた温水を、金型に供給しなくても良い。この結果、内容物充填システム10が排出する二酸化炭素の排出量を低減できる。また、ブロー成形部32の金型に温水を供給しなくても良いため、ブロー成形部32の簡素化を図ることができる。また、ブロー成形部32の簡素化を図ることができるため、ボトル100に加えられる熱量を低減できる。このため、上述した温水を金型に供給しない場合であっても、殺菌装置11におけるボトル100の収縮を低減できる。 Furthermore, since the number of bacteria adhering to the bottle 100 can be reduced by pre-sterilizing the preform 100a, the sterilization conditions may be weakened in the sterilizer 11. Generally, in order to improve the sterilization effect in the sterilizer 11, the body of the bottle 100 is heated by supplying hot water from a mold temperature controller (not shown) to the mold in the blow molding section 32. Heat set. Thereby, the sterilization effect in the sterilizer 11 can be improved, and the shrinkage of the bottle 100 in the sterilizer 11 can be reduced. However, in the present embodiment, as described above, by pre-sterilizing the preform 100a, the number of bacteria adhering to the bottle 100 can be reduced. Therefore, the blow molding section (container molding device) 32 may mold the bottle 100 without adjusting the temperature of the bottle 100 with hot water. That is, in the blow molding section 32, the hot water that has been supplied to the mold in order to improve the sterilization effect does not need to be supplied to the mold. As a result, the amount of carbon dioxide emitted by the content filling system 10 can be reduced. Further, since it is not necessary to supply hot water to the mold of the blow molding section 32, the blow molding section 32 can be simplified. Furthermore, since the blow molding section 32 can be simplified, the amount of heat applied to the bottle 100 can be reduced. Therefore, even if the hot water described above is not supplied to the mold, shrinkage of the bottle 100 in the sterilizer 11 can be reduced.
 なお、このような殺菌処理は、受取部34だけでなく、加熱部35又は受渡部36で行われても良い。また、殺菌処理は、ボトル100の成形後に、ボトル搬送部33から充填装置20までの間に行われても良い。さらに、殺菌処理は、複数の箇所で行われても良い。なお、殺菌処理において、殺菌剤を使用することなく、紫外線照射又は電子線照射等によって、菌を不活性化しても良い。 Note that such sterilization treatment may be performed not only at the receiving section 34 but also at the heating section 35 or the delivery section 36. Furthermore, the sterilization process may be performed after the bottle 100 is formed, between the bottle transport section 33 and the filling device 20. Furthermore, the sterilization treatment may be performed at multiple locations. In addition, in the sterilization treatment, bacteria may be inactivated by ultraviolet irradiation, electron beam irradiation, or the like, without using a sterilizing agent.
 図1Bを参照すると、プリフォーム殺菌装置34aの下流側には、上述したプリフォームエアリンス装置34bが設けられている。殺菌剤が吹き付けられたプリフォーム100aは、プリフォームエアリンス装置34bにおいて、ホットエアで乾燥される。この際、プリフォーム100aの口部を下に向けた状態で、プリフォーム100aに対してホットエアが供給されることが好ましい。これにより、プリフォーム100a内から異物を効果的に除去できる。このため、無菌水によってプリフォーム100aを洗浄する工程を省略でき、内容物充填システム10が排出する二酸化炭素の排出量を低減できる。なお、受取部34において、プリフォームエアリンス装置34bは設けられていなくても良い。また、受取部34において、プリフォーム殺菌装置34aの上流側に、プリフォーム100aに付着した異物を除去するための異物除去装置(図示せず)が設けられていても良い。 Referring to FIG. 1B, the above-mentioned preform air rinsing device 34b is provided downstream of the preform sterilizing device 34a. The preform 100a sprayed with the disinfectant is dried with hot air in the preform air rinse device 34b. At this time, it is preferable that hot air is supplied to the preform 100a with the mouth of the preform 100a facing downward. Thereby, foreign matter can be effectively removed from within the preform 100a. Therefore, the step of washing the preform 100a with sterile water can be omitted, and the amount of carbon dioxide emitted by the content filling system 10 can be reduced. Note that the receiving section 34 may not be provided with the preform air rinse device 34b. Further, in the receiving section 34, a foreign matter removing device (not shown) for removing foreign matter adhering to the preform 100a may be provided upstream of the preform sterilizing device 34a.
 加熱部35は、受取部34からプリフォーム100aを受け取り、プリフォーム100aを搬送しながら加熱するように構成されている。この加熱部35には、プリフォーム100aを加熱するヒーター35aが設けられている。このヒーター35aは、例えば赤外線ヒーターであっても良い。このヒーター35aにより、プリフォーム100aは、例えば90℃以上130℃以下程度に加熱される。なお、プリフォーム100aの口部の温度は、変形等を防止するため70℃以下の温度に抑えられる。 The heating unit 35 is configured to receive the preform 100a from the receiving unit 34 and heat the preform 100a while conveying it. This heating section 35 is provided with a heater 35a that heats the preform 100a. This heater 35a may be, for example, an infrared heater. The preform 100a is heated, for example, to about 90° C. or more and 130° C. or less by the heater 35a. Note that the temperature at the mouth of the preform 100a is suppressed to 70° C. or lower to prevent deformation and the like.
 受渡部36は、加熱部35により加熱されたプリフォーム100aを受け取り、ブロー成形部32に受け渡すように構成されている。 The delivery section 36 is configured to receive the preform 100a heated by the heating section 35 and deliver it to the blow molding section 32.
 ブロー成形部32は、図示しない金型を含んでいる。この金型を用いてプリフォーム100aに対してブロー成形を施すことにより、ボトル100が成形される。そして、成形されたボトル100は、ボトル搬送部33によって、下流側に搬送される。 The blow molding section 32 includes a mold (not shown). The bottle 100 is molded by performing blow molding on the preform 100a using this mold. The shaped bottle 100 is then transported downstream by the bottle transport section 33.
 ここで、ボトル成形部30と殺菌装置11との間に、ボトル搬送部33からボトル100を受け取り、殺菌装置11へボトル100を受け渡す調整搬送部5が設けられている。この調整搬送部5の少なくとも一部は、殺菌剤噴霧チャンバ70d(後述)の上流側に設けられた雰囲気遮断チャンバ70c(後述)の内部に収容されている。図示された例においては、調整搬送部5は、ボトル成形部30を収容する成形部チャンバ70b(後述)と、雰囲気遮断チャンバ70cとに跨がるように配置されている。このように、調整搬送部5の少なくとも一部が、雰囲気遮断チャンバ70cの内部に収容されていることにより、殺菌剤噴霧チャンバ70d内で発生する殺菌剤のガス若しくはミスト又はこれらの混合物が、成形部チャンバ70bに流入することを抑制できる。 Here, between the bottle molding section 30 and the sterilizer 11, there is provided an adjustment transport section 5 that receives the bottle 100 from the bottle transport section 33 and delivers the bottle 100 to the sterilizer 11. At least a portion of this adjustment conveyance section 5 is housed inside an atmosphere isolation chamber 70c (described later) provided upstream of a disinfectant spray chamber 70d (described later). In the illustrated example, the adjustment conveyance section 5 is arranged so as to straddle a forming section chamber 70b (described later) that accommodates the bottle forming section 30 and an atmosphere blocking chamber 70c. As described above, at least a portion of the adjustment conveyance section 5 is housed inside the atmosphere isolation chamber 70c, so that the sterilant gas or mist or the mixture thereof generated in the sterilizer spray chamber 70d can be It is possible to suppress the liquid from flowing into the internal chamber 70b.
 図示された例においては、調整搬送部5とボトル成形部30のボトル搬送部33との間には、単一の搬送ホイール12が設けられている。すなわち、ボトル成形部30のブロー成形部32と殺菌装置11との間には、ボトル成形部30のボトル搬送部33、単一の搬送ホイール12及び調整搬送部5が設けられている。これにより、調整搬送部5とボトル成形部30のボトル搬送部33との間に、複数の搬送ホイール12が設けられている場合と比較して、内容物充填システム10をコンパクトにできる。なお、図示はしないが、ボトル成形部30のブロー成形部32と殺菌装置11との間に、調整搬送部5のみが設けられていても良い。この場合、内容物充填システム10を更にコンパクトにできる。 In the illustrated example, a single conveyance wheel 12 is provided between the adjustment conveyance section 5 and the bottle conveyance section 33 of the bottle forming section 30. That is, between the blow molding section 32 of the bottle molding section 30 and the sterilizer 11, the bottle conveyance section 33 of the bottle molding section 30, the single conveyance wheel 12, and the adjustment conveyance section 5 are provided. Thereby, the content filling system 10 can be made more compact compared to a case where a plurality of conveyance wheels 12 are provided between the adjustment conveyance section 5 and the bottle conveyance section 33 of the bottle forming section 30. Although not shown, only the adjustment conveyance section 5 may be provided between the blow molding section 32 of the bottle molding section 30 and the sterilizer 11. In this case, the content filling system 10 can be made even more compact.
 殺菌装置11は、殺菌剤をボトル100に噴射することにより、ボトル100を殺菌する装置である。これにより、内容物の充填前に殺菌剤によってボトル100が殺菌される。殺菌剤としては、例えば過酸化水素水溶液が用いられる。殺菌装置11においては、過酸化水素水溶液のガス又はミストが生成され、ガス又はミストがボトル100の内外面に噴霧される。このようにボトル100が過酸化水素水溶液のガス又はミストで殺菌されるので、ボトル100の内外面がムラなく殺菌される。 The sterilizer 11 is a device that sterilizes the bottle 100 by injecting a sterilizer into the bottle 100. Thereby, the bottle 100 is sterilized by the sterilizing agent before filling with the contents. As the disinfectant, for example, an aqueous hydrogen peroxide solution is used. In the sterilizer 11 , a gas or mist of an aqueous hydrogen peroxide solution is generated, and the gas or mist is sprayed onto the inner and outer surfaces of the bottle 100 . Since the bottle 100 is thus sterilized with the gas or mist of the hydrogen peroxide aqueous solution, the inner and outer surfaces of the bottle 100 are sterilized evenly.
 エアリンス装置14は、ボトル100に無菌の加熱エア又は常温エアを供給することにより、過酸化水素の活性化を行いつつ、ボトル100内から異物、過酸化水素等を除去する装置である。この際、ボトル100の口部を下に向けた状態で、ボトル100に対して無菌エアが供給されることが好ましい。これにより、ボトル100内から異物を効果的に除去できる。このため、無菌水によってボトル100を洗浄する工程を省略でき、内容物充填システム10が排出する二酸化炭素の排出量を低減できる。なお、必要に応じて、常温の無菌化されたエアに、低濃度の過酸化水素の凝結ミストを混ぜて過酸化水素をガス化させて、ボトル100に供給しても良い。 The air rinse device 14 is a device that removes foreign matter, hydrogen peroxide, etc. from inside the bottle 100 while activating hydrogen peroxide by supplying sterile heated air or room temperature air to the bottle 100. At this time, it is preferable that sterile air be supplied to the bottle 100 with the mouth of the bottle 100 facing downward. Thereby, foreign matter can be effectively removed from inside the bottle 100. Therefore, the step of washing the bottle 100 with sterile water can be omitted, and the amount of carbon dioxide emitted by the content filling system 10 can be reduced. Note that, if necessary, a condensed mist of low concentration hydrogen peroxide may be mixed with sterilized air at room temperature to gasify hydrogen peroxide, and the gasified hydrogen peroxide may be supplied to the bottle 100.
 充填装置21は、水及び製品原液をボトル100に充填する装置である。すなわち、充填装置21は、ボトル100の口部からボトル100内へ、対象原料と水を混合してなり予め非加熱殺菌された混合対象原料と、予め加熱殺菌された他の原料からなる内容液を充填するものである。これにより、充填装置21において、水と対象原料とからなる混合対象原料と、他の原料とを混合することによって生成された内容物が、空の状態のボトル100に充填される。この充填装置21では、複数のボトル100が回転搬送されながら、ボトル100の内部へ内容物が充填される。 The filling device 21 is a device that fills the bottle 100 with water and product stock solution. That is, the filling device 21 fills the bottle 100 from the mouth of the bottle 100 with a liquid content consisting of a raw material to be mixed, which is made by mixing the target raw material and water, and which has been sterilized by non-heating, and other raw materials which have been sterilized by heat. It is filled with Thereby, in the filling device 21, the empty bottle 100 is filled with the contents generated by mixing the raw material to be mixed, which is made of water and the target raw material, and other raw materials. In this filling device 21, contents are filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 充填装置21は、後述する無菌チャンバ70fの内部に配置されている。充填装置21は、回転可能な複数の充填ノズル21aを有するいわゆるロータリーフィラであっても良い(図1C参照)。 The filling device 21 is placed inside a sterile chamber 70f, which will be described later. The filling device 21 may be a so-called rotary filler having a plurality of rotatable filling nozzles 21a (see FIG. 1C).
 充填装置21は、ボトル100に対して、殺菌された内容物を充填する。この場合、充填装置21は、空のボトル100に対して、殺菌された内容物を充填する。 The filling device 21 fills the bottle 100 with sterilized contents. In this case, the filling device 21 fills the empty bottle 100 with sterilized contents.
 キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水、対象原料および他の原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる。 The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the cap attachment device 16, the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained.
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70fの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かって列になって搬送される。キャップ88がキャップ装着装置16に向かう途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70f and near the cap attachment device 16. In the cap sterilizing device 18 , a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 . While the cap 88 is on its way to the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized.
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。 The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
 なお、内容物充填システム10は、プリフォーム殺菌チャンバ70aと、成形部チャンバ70bと、雰囲気遮断チャンバ70cと、殺菌剤噴霧チャンバ70dと、エアリンスチャンバ70eと、無菌チャンバ70fと、出口チャンバ70gとを有している。このうち、無菌チャンバ70fの上流側に、エアリンスチャンバ70eが設けられている。すなわち、プリフォーム殺菌チャンバ70a、成形部チャンバ70b、雰囲気遮断チャンバ70c、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、及び出口チャンバ70gは、プリフォーム100a及びボトル100の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。 The content filling system 10 includes a preform sterilization chamber 70a, a forming part chamber 70b, an atmosphere isolation chamber 70c, a sterilizer spray chamber 70d, an air rinse chamber 70e, a sterile chamber 70f, and an outlet chamber 70g. have. Of these, an air rinse chamber 70e is provided upstream of the sterile chamber 70f. That is, the preform sterilization chamber 70a, the forming part chamber 70b, the atmosphere isolation chamber 70c, the sterilizer spray chamber 70d, the air rinse chamber 70e, the sterile chamber 70f, and the outlet chamber 70g are arranged along the transport direction of the preform 100a and the bottle 100. They are arranged in this order from the upstream side to the downstream side.
 各チャンバ70a乃至70gは、それぞれ隔壁によって分離されている。隔壁は、各チャンバ70a乃至70g間で、殺菌剤等が意図しない方向へ流通することを防ぎ、各チャンバ70a乃至70g内の圧力を安定させる役割を果たす。なお、隔壁には、それぞれプリフォーム100a又はボトル100が通過できる程度の隙間が形成されている。この隙間は、各チャンバ70a乃至70g内の圧力が変化しないように、最小限、例えば1個分のプリフォーム100a又はボトル100程度の大きさに形成されている。また、隔壁には、上述した隙間を閉鎖するシャッターが設けられていても良い。このシャッターは、例えば制御部90からの信号により、自動で開閉するように構成されていても良い。 The chambers 70a to 70g are separated by partition walls. The partition wall serves to prevent the sterilizer and the like from flowing in unintended directions between the chambers 70a to 70g, and to stabilize the pressure within each chamber 70a to 70g. Note that a gap is formed in the partition wall, which is large enough to allow the preform 100a or the bottle 100 to pass through. This gap is formed to a minimum size, for example, approximately the size of one preform 100a or bottle 100, so that the pressure within each chamber 70a to 70g does not change. Furthermore, the partition wall may be provided with a shutter that closes the above-mentioned gap. This shutter may be configured to open and close automatically in response to a signal from the control unit 90, for example.
 各チャンバ70a乃至70gのうち、プリフォーム殺菌チャンバ70aの内部には、プリフォーム殺菌装置34a等が収容されている。 Among the chambers 70a to 70g, the preform sterilizer 34a and the like are housed inside the preform sterilizer chamber 70a.
 成形部チャンバ70bの内部には、ボトル成形部30のブロー成形部32等が収容されている。 The blow molding section 32 of the bottle molding section 30 and the like are housed inside the molding section chamber 70b.
 雰囲気遮断チャンバ70cの内部には、調整搬送部5の少なくとも一部が収容されている。また、雰囲気遮断チャンバ70cの内部に、カメラが設けられていても良い。そして、カメラを用いることにより、ボトル100が成形上問題ないかどうかを検査しても良い。さらに、雰囲気遮断チャンバ70cの内部に、温度計が設けられていても良い。そして、この温度計によって、殺菌前のボトル100の温度が測定されても良い。ここで、ボトル100の温度は、ボトル100の殺菌効率を左右する重要な要素の1つである。すなわち、ボトル100の温度を適切な温度に保つことにより、ボトル100の殺菌効率を向上できる。このため、温度計によって、殺菌前のボトル100の温度を測定することにより、殺菌時のボトル100の温度を適切な温度に保つことができ、ボトル100の殺菌効率を向上できる。また、雰囲気遮断チャンバ70cの内部で、ボトル成形部30側のボトル100間ピッチから充填装置21のボトル100間ピッチへ変更しても良い。あるいは、雰囲気遮断チャンバ70cの内部にボトル成形部30と充填装置21の位相を合わせ、ホイールの回転速度を同期させる調整ホイールを設けても良い。 At least a portion of the adjustment transport section 5 is housed inside the atmosphere blocking chamber 70c. Furthermore, a camera may be provided inside the atmosphere blocking chamber 70c. Then, by using a camera, it may be inspected whether the bottle 100 has any problems in molding. Furthermore, a thermometer may be provided inside the atmosphere isolation chamber 70c. The temperature of the bottle 100 before sterilization may be measured by this thermometer. Here, the temperature of the bottle 100 is one of the important factors that influences the sterilization efficiency of the bottle 100. That is, by keeping the temperature of the bottle 100 at an appropriate temperature, the sterilization efficiency of the bottle 100 can be improved. Therefore, by measuring the temperature of the bottle 100 before sterilization with a thermometer, the temperature of the bottle 100 during sterilization can be maintained at an appropriate temperature, and the sterilization efficiency of the bottle 100 can be improved. Furthermore, inside the atmosphere blocking chamber 70c, the pitch between bottles 100 on the bottle forming section 30 side may be changed to the pitch between bottles 100 on the filling device 21. Alternatively, an adjustment wheel may be provided inside the atmosphere isolation chamber 70c to align the phases of the bottle forming section 30 and the filling device 21 and synchronize the rotational speeds of the wheels.
 殺菌剤噴霧チャンバ70dの内部には、殺菌装置11が収容されている。また、エアリンスチャンバ70eの内部には、エアリンス装置14が収容されている。 A sterilizer 11 is housed inside the sterilizer spray chamber 70d. Furthermore, the air rinse device 14 is housed inside the air rinse chamber 70e.
 無菌チャンバ70fの内部には、充填装置21と、搬送ホイール12と、キャップ装着装置16とが収容されている。さらに、出口チャンバ70gの内部には、製品ボトル搬出部25が収容されている。 A filling device 21, a conveyance wheel 12, and a cap mounting device 16 are housed inside the sterile chamber 70f. Furthermore, a product bottle delivery section 25 is housed inside the outlet chamber 70g.
 上述したプリフォーム殺菌チャンバ70a、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、及び出口チャンバ70gの内部には、各チャンバ内の圧力を測定する圧力計(図示せず)が取り付けられている。なお、成形部チャンバ70b及び又は雰囲気遮断チャンバ70cにも、各チャンバ内の圧力を測定する圧力計が取り付けられていても良い。 Pressure gauges (not shown) are installed inside the preform sterilization chamber 70a, sterilizer spray chamber 70d, air rinse chamber 70e, sterile chamber 70f, and outlet chamber 70g to measure the pressure inside each chamber. ing. Note that a pressure gauge may be attached to the molding section chamber 70b and/or the atmosphere isolation chamber 70c to measure the pressure inside each chamber.
 ここで、上述したように、内容物充填システム10は、内容物充填システム10を制御する制御部90を備えている。この制御部90は、充填装置21に電気的に接続されており、充填装置21を制御する。なお、制御部90は、混合対象原料殺菌ライン50、他の原料殺菌ライン70、ボトル成形部30、殺菌装置11、エアリンス装置14、キャップ装着装置16、製品ボトル搬出部25及びキャップ殺菌装置18に電気的に接続されていても良く、制御部90が混合対象原料殺菌ライン50等を制御しても良い。 Here, as described above, the content filling system 10 includes the control unit 90 that controls the content filling system 10. This control section 90 is electrically connected to the filling device 21 and controls the filling device 21. The control unit 90 controls the mixing target raw material sterilization line 50, other raw material sterilization lines 70, the bottle forming unit 30, the sterilizer 11, the air rinse device 14, the cap mounting device 16, the product bottle delivery unit 25, and the cap sterilizer 18. They may be electrically connected, and the control unit 90 may control the mixing target material sterilization line 50 and the like.
 この制御部90は、各チャンバ内を洗浄及び殺菌しても良く、混合対象原料殺菌ライン50の後述する殺菌機60等を洗浄及び殺菌しても良い。本実施の形態では、制御部90は、無菌チャンバ70f内を洗浄(以下、各チャンバ内の洗浄をCOPとも記す)する。また、制御部90は、充填装置21を洗浄(以下、充填装置21内の洗浄をCIP(Cleaning in Place)とも記す)する。 This control unit 90 may clean and sterilize the inside of each chamber, and may also clean and sterilize a sterilizer 60, which will be described later, in the mixing target raw material sterilization line 50. In this embodiment, the control unit 90 cleans the inside of the sterile chamber 70f (hereinafter, cleaning inside each chamber is also referred to as COP). The control unit 90 also cleans the filling device 21 (hereinafter, cleaning inside the filling device 21 is also referred to as CIP (Cleaning in Place)).
 なお、製品ボトル101を生産する際には、無菌チャンバ70f内の圧力は、30Pa以上60Pa以下であることが好ましい。 Note that when producing the product bottle 101, the pressure inside the sterile chamber 70f is preferably 30 Pa or more and 60 Pa or less.
 また、エアリンスチャンバ70e内の圧力は、無菌チャンバ70f内の圧力以下であることが好ましい。これにより、エアリンスチャンバ70e内の空気が、無菌チャンバ70f内に入り込むことを抑制できる。このため、無菌チャンバ70fの内部の無菌状態を良好に維持できる。 Furthermore, the pressure within the air rinse chamber 70e is preferably equal to or lower than the pressure within the sterile chamber 70f. Thereby, the air in the air rinse chamber 70e can be prevented from entering the sterile chamber 70f. Therefore, the sterile state inside the sterile chamber 70f can be maintained well.
 無菌チャンバ70f内を洗浄及び殺菌する際、エアリンスチャンバ70e内の圧力は、10Pa以上40Pa以下であることが好ましい。また、充填装置21を洗浄及び殺菌する際、エアリンスチャンバ70e内の圧力は、10Pa以上40Pa以下であることが好ましい。これにより、エアリンスチャンバ70e内の空気が、無菌チャンバ70f内に入り込むことを抑制でき、無菌チャンバ70fの内部の無菌状態を更に良好に維持できる。なお、製品ボトル101を生産する際には、エアリンスチャンバ70e内の圧力は、10Pa以上30Pa以下であることが好ましい。 When cleaning and sterilizing the inside of the sterile chamber 70f, the pressure inside the air rinse chamber 70e is preferably 10 Pa or more and 40 Pa or less. Further, when cleaning and sterilizing the filling device 21, the pressure inside the air rinse chamber 70e is preferably 10 Pa or more and 40 Pa or less. Thereby, the air in the air rinse chamber 70e can be prevented from entering the sterile chamber 70f, and the sterile state inside the sterile chamber 70f can be maintained even better. Note that when producing the product bottle 101, the pressure in the air rinse chamber 70e is preferably 10 Pa or more and 30 Pa or less.
 また、殺菌剤噴霧チャンバ70d内の圧力は、雰囲気遮断チャンバ70c内の圧力以下であることが好ましい。これにより、殺菌剤噴霧チャンバ70d内の空気が、雰囲気遮断チャンバ70c及び成形部チャンバ70b内に入り込むことを抑制できる。ここで、殺菌剤噴霧チャンバ70d内の空気が成形部チャンバ70b内に入り込むことを抑制できることにより、成形部チャンバ70b内の湿度の上昇を抑制できる。上述したように、成形部チャンバ70bの内部には、ボトル成形部30のブロー成形部32が収容されている。このため、成形部チャンバ70b内の湿度の上昇を抑制することにより、ブロー成形部32を構成する機械の腐食を抑制できる。 Furthermore, it is preferable that the pressure within the disinfectant spray chamber 70d is equal to or lower than the pressure within the atmosphere isolation chamber 70c. Thereby, the air in the disinfectant spray chamber 70d can be prevented from entering the atmosphere isolation chamber 70c and the forming part chamber 70b. Here, by being able to suppress the air in the sterilizing agent spray chamber 70d from entering into the molding part chamber 70b, it is possible to suppress the increase in humidity in the molding part chamber 70b. As described above, the blow molding section 32 of the bottle molding section 30 is housed inside the molding section chamber 70b. Therefore, by suppressing the increase in humidity within the molding section chamber 70b, corrosion of the machine that constitutes the blow molding section 32 can be suppressed.
 無菌チャンバ70f内を洗浄及び殺菌する際、殺菌剤噴霧チャンバ70d内の圧力は、0Pa以上20Pa以下であることが好ましい。また、充填装置21を洗浄及び殺菌する際、殺菌剤噴霧チャンバ70d内の圧力は、0Pa以上20Pa以下であることが好ましい。これにより、殺菌剤噴霧チャンバ70d内の空気が、雰囲気遮断チャンバ70c及び成形部チャンバ70b内に入り込むことを抑制でき、成形部チャンバ70b内の湿度の上昇を抑制できる。なお、製品ボトル101を生産する際には、殺菌剤噴霧チャンバ70d内の圧力は、-10Pa以上10Pa以下であることが好ましい。 When cleaning and sterilizing the inside of the sterile chamber 70f, the pressure inside the sterilizing agent spraying chamber 70d is preferably 0 Pa or more and 20 Pa or less. Furthermore, when cleaning and sterilizing the filling device 21, the pressure inside the sterilizing agent spray chamber 70d is preferably 0 Pa or more and 20 Pa or less. Thereby, the air in the disinfectant spray chamber 70d can be prevented from entering the atmosphere isolation chamber 70c and the molding part chamber 70b, and the rise in humidity in the molding part chamber 70b can be suppressed. Note that when producing the product bottle 101, the pressure inside the disinfectant spray chamber 70d is preferably -10 Pa or more and 10 Pa or less.
 無菌チャンバ70f内を洗浄及び殺菌する際、出口チャンバ70g内の圧力は、0Pa以上20Pa以下であることが好ましい。また、充填装置21を洗浄及び殺菌する際、出口チャンバ70g内の圧力は、0Pa以上20Pa以下であることが好ましい。これにより、出口チャンバ70g内の空気が無菌チャンバ70f内に入り込むことを抑制でき、無菌チャンバ70fの内部の無菌状態を更に良好に維持できる。なお、製品ボトル101を生産する際には、出口チャンバ70g内の圧力は、10Pa以上20Pa以下であることが好ましい。 When cleaning and sterilizing the inside of the sterile chamber 70f, the pressure inside the outlet chamber 70g is preferably 0 Pa or more and 20 Pa or less. Further, when cleaning and sterilizing the filling device 21, the pressure inside the outlet chamber 70g is preferably 0 Pa or more and 20 Pa or less. Thereby, the air in the outlet chamber 70g can be prevented from entering the sterile chamber 70f, and the sterile state inside the sterile chamber 70f can be maintained even better. Note that when producing the product bottle 101, the pressure in the outlet chamber 70g is preferably 10 Pa or more and 20 Pa or less.
 このような内容物充填システム10は、例えば無菌充填システムからなっていても良い。この場合、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、及び出口チャンバ70gの内部は無菌状態に保持される。なお、出口チャンバ70gの下流側に、無菌状態の無菌ゾーンと、非無菌状態の非無菌ゾーンとを連結するチャンバ(図示せず)が設けられていてもよい。 Such a content filling system 10 may be comprised of, for example, an aseptic filling system. In this case, the interiors of the disinfectant spray chamber 70d, air rinse chamber 70e, sterile chamber 70f, and outlet chamber 70g are maintained in a sterile state. Note that a chamber (not shown) that connects a sterile zone in a sterile state and a non-sterile zone in a non-sterile state may be provided downstream of the outlet chamber 70g.
 次に、内容物充填システム10の混合ライン51Aと、混合対象原料殺菌ライン50と、他の原料殺菌ライン70について説明する。 Next, the mixing line 51A, the mixing target material sterilization line 50, and the other material sterilization line 70 of the content filling system 10 will be explained.
 ここではまず図2A1により、混合ライン51Aについて説明する。混合ライン51Aは対象原料と水を混合して混合対象原料を生成するものである。このような混合ライン51Aは、純水製造装置50cから供給された水(純水)を貯留する水タンク50aと、内容物の原料のうち対象原料を貯留する対象原料タンク50bと、水タンク50a内の水と対象原料タンク50b内の対象原料を混合して混合対象原料を生成する混合タンク51とを有する。 First, the mixing line 51A will be explained with reference to FIG. 2A1. The mixing line 51A mixes the target raw material and water to produce a mixed target raw material. Such a mixing line 51A includes a water tank 50a that stores water (pure water) supplied from the pure water production device 50c, a target raw material tank 50b that stores target raw materials among the raw materials in the contents, and a water tank 50a. It has a mixing tank 51 that mixes the water in the container and the target raw material in the target raw material tank 50b to generate the raw material to be mixed.
 水タンク50aは、水の供給源(例えば、上述する純水製造装置50c)から供給された水(純水)を貯留するタンクである。例えば内容物が飲料水の場合、食品衛生法によって定められている食品製造用水を使用することが義務付けられている。食品製造用水は、活性炭、逆浸透膜又はイオン交換樹脂(EDI含む)等を備える純水製造装置50cで生成された純水(RO水、イオン交換水または蒸留水)である。純水は、カルシウム、マグネシウム、塩素、鉄又はミネラル分等の不純物が取り除かれた水である。この場合、純水の蒸発残留物は、20mg/L以下である。さらに、純水の電気伝導率は、0.1μS/cm以上20μS/cm以下である。後述するように、本実施の形態では、水は、紫外線によって殺菌される。このため、殺菌する水の電気伝導率が20μS/cm以下であることにより、後述する第1紫外線ランプ67a等の表面に、無機物(カルシウム等の酸化物)等が付着することを抑制できる。このため、紫外線透過率の低下を防ぐことができる。また、純水製造装置50cから供給される水は、純水に限らず、超純水でもよい。製薬用水として用いられる精製水や注射用水でもよい。 The water tank 50a is a tank that stores water (pure water) supplied from a water supply source (for example, the above-mentioned pure water production device 50c). For example, if the content is drinking water, it is mandatory to use water for food manufacturing as stipulated by the Food Sanitation Act. The water for food production is pure water (RO water, ion exchange water, or distilled water) produced by a pure water production apparatus 50c equipped with activated carbon, a reverse osmosis membrane, an ion exchange resin (including EDI), or the like. Pure water is water from which impurities such as calcium, magnesium, chlorine, iron, or minerals have been removed. In this case, the evaporation residue of pure water is 20 mg/L or less. Furthermore, the electrical conductivity of pure water is 0.1 μS/cm or more and 20 μS/cm or less. As described later, in this embodiment, water is sterilized by ultraviolet light. Therefore, by setting the electrical conductivity of the water to be sterilized to 20 μS/cm or less, it is possible to prevent inorganic substances (oxides such as calcium) from adhering to the surfaces of the first ultraviolet lamp 67a, etc., which will be described later. Therefore, a decrease in ultraviolet transmittance can be prevented. Further, the water supplied from the pure water production device 50c is not limited to pure water, and may be ultrapure water. Purified water used as pharmaceutical water or water for injection may be used.
 この水タンク50aは、水を貯留することにより、水の流れを円滑にする役割を果たす。水タンク50aの容積は、30m以上100m以下であっても良く、一例として、50mであっても良い。 This water tank 50a plays a role of smoothing the flow of water by storing water. The volume of the water tank 50a may be 30 m 3 or more and 100 m 3 or less, and may be 50 m 3 as an example.
 また、水タンク50a内の菌数は、0.01CFU/mL以上10CFU/mL以下であることが望ましい。なお、水タンク50a内の菌数が10CFU/mLよりも多くなる場合、水タンク50aを塩素、熱水又は蒸気等で殺菌することが好ましい。水タンク50a内の菌数は、常時モニタリングされるとともに、上記範囲内になるように制御されても良い。これにより、追加の機器を設けることなく、無菌性を維持した水を製造できる。このため、後述する混合対象原料殺菌ライン50の殺菌機60を高コストな仕様にすることなく、殺菌機60が排出する二酸化炭素の排出量を低減できる。なお、水タンク50aの上流側又は下流側に第1殺菌機62と同一構成の前段殺菌機62Aを設けてもよい。 Furthermore, it is desirable that the number of bacteria in the water tank 50a is 0.01 CFU/mL or more and 10 CFU/mL or less. Note that if the number of bacteria in the water tank 50a is greater than 10 CFU/mL, it is preferable to sterilize the water tank 50a with chlorine, hot water, steam, or the like. The number of bacteria in the water tank 50a may be constantly monitored and controlled to be within the above range. This makes it possible to produce water that maintains sterility without the need for additional equipment. For this reason, the amount of carbon dioxide emitted by the sterilizer 60 can be reduced without making the sterilizer 60 of the mixing target material sterilization line 50 described later expensive. Note that a pre-stage sterilizer 62A having the same configuration as the first sterilizer 62 may be provided on the upstream or downstream side of the water tank 50a.
 また対象原料タンク50bは上述した内容物のうち対象原料を貯留するものであり、水タンク50aからの水と対象原料タンク50bからの対象原料とが混合タンク51内で混合されて混合対象原料が生成される。 Further, the target raw material tank 50b stores the target raw material among the contents described above, and the water from the water tank 50a and the target raw material from the target raw material tank 50b are mixed in the mixing tank 51, and the target raw material is mixed. generated.
 このような構成からなる混合ライン51Aの下流側に、水を搬送するためのポンプP1と、水の流量を測定するための流量計Fが設けられていても良い。ポンプP1及び流量計Fは、水の搬送方向に沿って、上流側から下流側に向けてこの順に設けられていても良い。また、流量計Fの下流側には、上述した殺菌機60からなる混合対象原料殺菌ライン50が設けられている。 A pump P1 for transporting water and a flow meter F for measuring the flow rate of water may be provided on the downstream side of the mixing line 51A having such a configuration. The pump P1 and the flow meter F may be provided in this order from the upstream side to the downstream side along the water transport direction. Furthermore, on the downstream side of the flow meter F, there is provided a mixing target material sterilization line 50 consisting of the above-mentioned sterilizer 60.
 殺菌機60からなる混合対象原料殺菌ライン50は、混合タンク51内で水と対象原料とを混合することにより得られた混合対象原料を非加熱で殺菌する殺菌機である。なお、殺菌機60の詳細は後述する。 The mixing target raw material sterilization line 50 consisting of the sterilizer 60 is a sterilizer that sterilizes the mixing target raw material obtained by mixing water and the target raw material in the mixing tank 51 without heating. Note that details of the sterilizer 60 will be described later.
 また殺菌機60の下流側にはタンク52が設けられ、このタンク52は、殺菌機60によって殺菌された混合対象原料を貯留するタンク(いわゆるアセプティックタンク)である。このタンク52は、殺菌された混合対象原料を貯留することにより、混合対象原料の流れを円滑にする役割を果たす。タンク52の容積は、5m以上50m以下であっても良く、一例として、10mであっても良い。 Further, a tank 52 is provided downstream of the sterilizer 60, and this tank 52 is a tank (so-called aseptic tank) that stores the raw materials to be mixed that have been sterilized by the sterilizer 60. This tank 52 plays a role of smoothing the flow of the raw materials to be mixed by storing the sterilized raw materials to be mixed. The volume of the tank 52 may be 5 m 3 or more and 50 m 3 or less, and may be 10 m 3 as an example.
 また、タンク52の下流側に、混合タンク55が設けられ、この混合タンク55により、混合対象原料と、他の原料殺菌ライン70により殺菌された他の原料とが混合されて内容物が生成される。 Further, a mixing tank 55 is provided downstream of the tank 52, and the mixing tank 55 mixes the raw material to be mixed with other raw materials sterilized by the other raw material sterilization line 70 to generate contents. Ru.
 さらに、図2A2に示すように、タンク52の上流側に、循環ライン59が接続されていても良い。この循環ライン59は、混合タンク51に接続されていても良い。これにより、殺菌機60の異物除去フィルタ61、第1殺菌機62、第1除菌フィルタ63、第2殺菌機64、第2除菌フィルタ65、循環ライン59及び混合タンク51によって、水を循環させる循環系59Aが構成されていても良い。 Furthermore, as shown in FIG. 2A2, a circulation line 59 may be connected to the upstream side of the tank 52. This circulation line 59 may be connected to the mixing tank 51. As a result, water is circulated by the foreign matter removal filter 61 of the sterilizer 60, the first sterilizer 62, the first sterilizer filter 63, the second sterilizer 64, the second sterilizer filter 65, the circulation line 59, and the mixing tank 51. A circulatory system 59A may be configured.
 (混合対象原料殺菌ラインと殺菌機)
 次に、混合対象原料殺菌ライン50の殺菌機60について説明する。この殺菌機60は、内容物充填システム10で使用する混合対象原料を殺菌する殺菌機である。本実施の形態では、殺菌機60は、混合対象原料を非加熱殺菌する。上述したように、殺菌機60は、混合タンク51に貯留された混合対象原料を殺菌する。このため、殺菌機60は、電気伝導率が、0.1μS/cm以上20μS/cm以下である混合対象原料を殺菌する。
(raw material sterilization line and sterilizer for mixing)
Next, the sterilizer 60 of the raw material sterilization line 50 to be mixed will be explained. This sterilizer 60 is a sterilizer that sterilizes the raw materials to be mixed used in the content filling system 10. In this embodiment, the sterilizer 60 sterilizes the raw materials to be mixed without heating. As described above, the sterilizer 60 sterilizes the raw materials to be mixed stored in the mixing tank 51. Therefore, the sterilizer 60 sterilizes the raw materials to be mixed whose electrical conductivity is 0.1 μS/cm or more and 20 μS/cm or less.
 図2A1及び図2A2に示すように、殺菌機60は、少なくとも1つの除菌フィルタ(第1除菌フィルタ63及び第2除菌フィルタ65)を備えている。また、殺菌機60は、少なくとも1つの殺菌機(第1殺菌機62及び第2殺菌機64)を備えている。殺菌機60が、少なくとも1つの除菌フィルタと、少なくとも1つの殺菌機とを備えていることにより、除菌フィルタ及び殺菌機の一方が停止した場合であっても、除菌フィルタ及び殺菌機の他方によって、水の無菌性を保証できる。また、図2A2に示すように、殺菌機60は後述する循環系95Aを有する。 As shown in FIGS. 2A1 and 2A2, the sterilizer 60 includes at least one sterilization filter (a first sterilization filter 63 and a second sterilization filter 65). Furthermore, the sterilizer 60 includes at least one sterilizer (a first sterilizer 62 and a second sterilizer 64). Since the sterilizer 60 includes at least one sterilizing filter and at least one sterilizer, even if one of the sterilizing filter and the sterilizer is stopped, the sterilizing filter and the sterilizing machine can be operated. By the other hand, the sterility of the water can be guaranteed. Moreover, as shown in FIG. 2A2, the sterilizer 60 has a circulation system 95A described later.
 図2A1及び図2A2に示す例においては、殺菌機60は、異物除去フィルタ61と、第1殺菌機62と、第1除菌フィルタ63と、第2殺菌機64と、第2除菌フィルタ65とを備えている。異物除去フィルタ61、第1殺菌機62、第1除菌フィルタ63、第2殺菌機64及び第2除菌フィルタ65は、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。このように、除菌フィルタ(この場合、第1除菌フィルタ63)の下流側に、殺菌機(この場合、第2殺菌機64)が配設されていることにより、菌が除菌フィルタを通過した場合であっても、殺菌機によって、当該菌を殺菌できる。このとき、図2A3に示すように、異物除去フィルタ61、第1殺菌機62、第2殺菌機64、第1除菌フィルタ63及び第2除菌フィルタ65が、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。図2A1乃至図2A3に示すように、殺菌機60が複数の除菌フィルタ(第1除菌フィルタ63及び第2除菌フィルタ65)を備えていることにより、一方の除菌フィルタが停止した場合であっても、他方の除菌フィルタによって、水の無菌性を保証できる。また、殺菌機60が複数の殺菌機(第1殺菌機62及び第2殺菌機64)を備えていることにより、一方の殺菌機が停止した場合であっても、他方の殺菌機によって、内容物の無菌性を保証できる。なお、異物除去フィルタ61および第1除菌フィルタ63には、ドレンライン95cが設けられている。 In the example shown in FIGS. 2A1 and 2A2, the sterilizer 60 includes a foreign matter removal filter 61, a first sterilizer 62, a first sterilizer 63, a second sterilizer 64, and a second sterilizer 65. It is equipped with The foreign matter removal filter 61, the first sterilizer 62, the first sterilizer filter 63, the second sterilizer 64, and the second sterilizer filter 65 are arranged in this direction from the upstream side to the downstream side along the conveyance direction of the contents. They are arranged in order. In this way, the sterilizer (in this case, the second sterilizer 64) is disposed downstream of the sterilizer filter (in this case, the first sterilizer filter 63), so that bacteria can pass through the sterilizer filter. Even if the bacteria passes through, a sterilizer can sterilize the bacteria. At this time, as shown in FIG. 2A3, the foreign matter removal filter 61, the first sterilizer 62, the second sterilizer 64, the first sterilizer filter 63, and the second sterilizer filter 65 move along the conveyance direction of the contents. , may be arranged in this order from the upstream side to the downstream side. As shown in FIGS. 2A1 to 2A3, when the sterilizer 60 includes a plurality of sterilization filters (the first sterilization filter 63 and the second sterilization filter 65), one of the sterilization filters stops. However, the sterilization of the water can be guaranteed by the other sterilization filter. In addition, since the sterilizer 60 includes a plurality of sterilizers (the first sterilizer 62 and the second sterilizer 64), even if one sterilizer stops, the other sterilizer can handle the contents. Can guarantee the sterility of items. Note that the foreign matter removal filter 61 and the first sterilization filter 63 are provided with a drain line 95c.
 また、図2A4に示すように、殺菌機60は、異物除去フィルタ61と、第1殺菌機62と、第1除菌フィルタ63と、第2除菌フィルタ65とを備えていても良い。異物除去フィルタ61、第1殺菌機62、第1除菌フィルタ63及び第2除菌フィルタ65は、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。この場合、殺菌機60は、第1除菌フィルタ63と第2除菌フィルタ65との間に設けられた第2殺菌機64を更に備えていても良い。 Furthermore, as shown in FIG. 2A4, the sterilizer 60 may include a foreign matter removal filter 61, a first sterilizer 62, a first sterilizer filter 63, and a second sterilizer filter 65. The foreign matter removal filter 61, the first sterilizer 62, the first sterilization filter 63, and the second sterilization filter 65 are arranged in this order from the upstream side to the downstream side along the content conveyance direction. Also good. In this case, the sterilizer 60 may further include a second sterilizer 64 provided between the first sterilizer filter 63 and the second sterilizer filter 65.
 また、図2A5に示すように、殺菌機60は、第1殺菌機62と、第1除菌フィルタ63と、第2除菌フィルタ65とを備えていても良い。第1殺菌機62、第1除菌フィルタ63及び第2除菌フィルタ65は、水の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。この場合、殺菌機60は、第1除菌フィルタ63と第2除菌フィルタ65との間に設けられた第2殺菌機64を更に備えていても良い。また、図2A6に示すように、第1除菌フィルタ63、第1殺菌機62、第2除菌フィルタ65及び第2殺菌機64が、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。さらに、図2A7に示すように、第1殺菌機62、第1除菌フィルタ63、第2除菌フィルタ65及び第2殺菌機64が、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。 Furthermore, as shown in FIG. 2A5, the sterilizer 60 may include a first sterilizer 62, a first sterilizer filter 63, and a second sterilizer filter 65. The first sterilizer 62, the first sterilization filter 63, and the second sterilization filter 65 may be arranged in this order from the upstream side to the downstream side along the water transport direction. In this case, the sterilizer 60 may further include a second sterilizer 64 provided between the first sterilizer filter 63 and the second sterilizer filter 65. Moreover, as shown in FIG. 2A6, the first sterilizing filter 63, the first sterilizer 62, the second sterilizing filter 65, and the second sterilizer 64 are arranged from the upstream side to the downstream side along the conveyance direction of the contents. They may be arranged in this order toward. Further, as shown in FIG. 2A7, the first sterilizer 62, the first sterilizer filter 63, the second sterilizer filter 65, and the second sterilizer 64 are arranged from the upstream side to the downstream side along the conveyance direction of the contents. They may be arranged in this order toward.
 また、図2Bに示すように、殺菌機60は、第1殺菌機62と、第1除菌フィルタ63とを備えていても良い。第1殺菌機62及び第1除菌フィルタ63は、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。また、図2Cに示すように、第1除菌フィルタ63及び第1殺菌機62が、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。これらの場合、殺菌機60は、第1除菌フィルタ63と後述するバルブV1との間に設けられた第2殺菌機64を更に備えていても良い。 Furthermore, as shown in FIG. 2B, the sterilizer 60 may include a first sterilizer 62 and a first sterilization filter 63. The first sterilizer 62 and the first sterilization filter 63 may be arranged in this order from the upstream side to the downstream side along the transport direction of the contents. Moreover, as shown in FIG. 2C, the first sterilization filter 63 and the first sterilizer 62 may be arranged in this order from the upstream side to the downstream side along the conveyance direction of the contents. In these cases, the sterilizer 60 may further include a second sterilizer 64 provided between the first sterilizing filter 63 and a valve V1 to be described later.
 また、図2Dに示すように、殺菌機60は、第1殺菌機62と、第2殺菌機64と、第1除菌フィルタ63とを備えていても良い。第1殺菌機62、第2殺菌機64及び第1除菌フィルタ63は、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。この場合、殺菌機60は、第1除菌フィルタ63の下流側に設けられた第2除菌フィルタ65を更に備えていても良い。また、第1殺菌機62の上流側に前段殺菌機62Aが設けられている。 Furthermore, as shown in FIG. 2D, the sterilizer 60 may include a first sterilizer 62, a second sterilizer 64, and a first sterilization filter 63. The first sterilizer 62, the second sterilizer 64, and the first sterilization filter 63 may be arranged in this order from the upstream side to the downstream side along the transport direction of the contents. In this case, the sterilizer 60 may further include a second sterilization filter 65 provided downstream of the first sterilization filter 63. Further, a pre-stage sterilizer 62A is provided upstream of the first sterilizer 62.
 また、図2Eに示すように、殺菌機60は、第1除菌フィルタ63と、第2除菌フィルタ65と、第1殺菌機62とを備えていても良い。第1除菌フィルタ63、第2除菌フィルタ65及び第1殺菌機62は、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に配設されていても良い。この場合、殺菌機60は、第1殺菌機62の下流側に設けられた第2殺菌機64を更に備えていても良い。 Further, as shown in FIG. 2E, the sterilizer 60 may include a first sterilizer filter 63, a second sterilizer filter 65, and a first sterilizer 62. The first sterilizing filter 63, the second sterilizing filter 65, and the first sterilizer 62 may be arranged in this order from the upstream side to the downstream side along the transport direction of the contents. In this case, the sterilizer 60 may further include a second sterilizer 64 provided downstream of the first sterilizer 62.
 また、殺菌機60は、除菌フィルタを備えていなくても良い。すなわち、製品原液を水によって希釈することによって生成された内容物の無菌品質レベル、及び又は内容物における菌の増殖特性等により、殺菌機60が除菌フィルタを備えていなくても良い場合がある。この場合、例えば、図2Fに示すように、殺菌機60は、第1殺菌機62のみを備えていても良い。また、図2Gに示すように、殺菌機60は、第1殺菌機62と第2殺菌機64とを備えていても良い。このように、殺菌機60が無菌フィルタを備えていない場合、殺菌機60の製造コストを低減できる。 Additionally, the sterilizer 60 does not need to be equipped with a sterilization filter. That is, depending on the sterile quality level of the contents produced by diluting the product stock solution with water and/or the growth characteristics of bacteria in the contents, the sterilizer 60 may not need to be equipped with a sterilization filter. . In this case, for example, as shown in FIG. 2F, the sterilizer 60 may include only the first sterilizer 62. Further, as shown in FIG. 2G, the sterilizer 60 may include a first sterilizer 62 and a second sterilizer 64. In this way, when the sterilizer 60 is not equipped with a sterile filter, the manufacturing cost of the sterilizer 60 can be reduced.
 さらに、殺菌機60は、殺菌機を備えていなくても良い。すなわち、製品原液を水によって希釈することによって生成された内容物の無菌品質レベル、及び又は内容物における菌の増殖特性等により、殺菌機60が殺菌機を備えていなくても良い場合がある。この場合、例えば、図2Hに示すように、殺菌機60は、第1除菌フィルタ63のみを備えていても良い。また、図2Iに示すように、殺菌機60は、第1除菌フィルタ63と第2除菌フィルタ65とを備えていても良い。このように、殺菌機60が殺菌機を備えていない場合においても、殺菌機60の製造コストを低減できる。 Furthermore, the sterilizer 60 does not need to be equipped with a sterilizer. That is, depending on the sterile quality level of the contents produced by diluting the product stock solution with water and/or the growth characteristics of bacteria in the contents, the sterilizer 60 may not be equipped with a sterilizer. In this case, for example, as shown in FIG. 2H, the sterilizer 60 may include only the first sterilization filter 63. Further, as shown in FIG. 2I, the sterilizer 60 may include a first sterilizing filter 63 and a second sterilizing filter 65. In this way, even when the sterilizer 60 is not equipped with a sterilizer, the manufacturing cost of the sterilizer 60 can be reduced.
 次に、異物除去フィルタ61、第1殺菌機62、第1除菌フィルタ63、第2殺菌機64及び第2除菌フィルタ65について説明する。なお、以下の説明では、主に図2A1に示す殺菌機60を例にとって、異物除去フィルタ61、第1殺菌機62、第1除菌フィルタ63、第2殺菌機64及び第2除菌フィルタ65を説明する。ここでは、まず、異物除去フィルタ61について説明する。 Next, the foreign matter removal filter 61, first sterilizer 62, first sterilizer 63, second sterilizer 64, and second sterilizer 65 will be explained. In the following description, the sterilizer 60 shown in FIG. Explain. Here, first, the foreign matter removal filter 61 will be explained.
 異物除去フィルタ61は、水内の異物を除去するフィルタである。図示された例においては、殺菌機60は、単一の異物除去フィルタ61を備えている。しかしながら、これに限られず、殺菌機60が、複数の異物除去フィルタ61を備えていても良い。この異物除去フィルタ61の目開き(濾過精度)は、例えば0.20μm以上10μm以下であっても良く、0.45μm以上10μm以下であっても良い。また、異物除去フィルタ61の目開きは、真菌類(カビ・酵母等)を除去可能な大きさであることが好ましい。後述するように、異物除去フィルタ61の下流側に設けられた第1殺菌機62等では、水に対して紫外線が照射される。このため、異物除去フィルタ61の目開きは、紫外線に対して耐性のあるカビ類を除去可能な大きさであることが好ましく、0.45μm以上1.0μm以下であることが好ましい。なお、異物除去フィルタ61を通過した水の無菌性を高めるために、異物除去フィルタ61の目開きは、0.2μm以上1.0μm以下であっても良い。これにより、水に残存するほぼ全ての菌を捕集し得る。また、異物除去フィルタ61を通過した水の無菌性を高めるために、目開きが0.1μm以上0.22μm以下である無菌グレードのフィルタが、異物除去フィルタ61として使用されても良い。 The foreign matter removal filter 61 is a filter that removes foreign matter from water. In the illustrated example, the sterilizer 60 includes a single foreign matter removal filter 61. However, the present invention is not limited to this, and the sterilizer 60 may include a plurality of foreign matter removal filters 61. The opening (filtration accuracy) of this foreign matter removal filter 61 may be, for example, 0.20 μm or more and 10 μm or less, or 0.45 μm or more and 10 μm or less. Further, the opening of the foreign matter removal filter 61 is preferably large enough to remove fungi (mold, yeast, etc.). As will be described later, in the first sterilizer 62 and the like provided on the downstream side of the foreign matter removal filter 61, ultraviolet rays are irradiated onto the water. Therefore, the opening of the foreign matter removal filter 61 is preferably large enough to remove molds that are resistant to ultraviolet rays, and is preferably 0.45 μm or more and 1.0 μm or less. Note that in order to improve the sterility of the water that has passed through the foreign matter removal filter 61, the opening of the foreign matter removal filter 61 may be 0.2 μm or more and 1.0 μm or less. This allows almost all bacteria remaining in the water to be collected. Furthermore, in order to improve the sterility of the water that has passed through the foreign matter removal filter 61, a sterile grade filter with an opening of 0.1 μm or more and 0.22 μm or less may be used as the foreign matter removal filter 61.
 第1殺菌機62は、異物除去フィルタ61の下流側に設けられている。また、第1殺菌機62は、第1除菌フィルタ63の上流側に設けられている。第1殺菌機62は、紫外線によって混合対象原料を殺菌する殺菌機である。これにより、異物除去フィルタ61を通過した菌(カビ・酵母以外の細菌)を殺菌できる。また、第1殺菌機62が紫外線によって混合対象原料を殺菌することにより、混合対象原料を加熱することによって混合対象原料を殺菌する場合と比較して、内容物充填システムが排出する二酸化炭素の排出量を低減できる。とりわけ、上述したように、内容物を生成する場合、製品原料は、水によって、1.1倍以上100倍以下に希釈され得て、好ましくは2倍以上10倍以下に希釈され得る。製品原料が水によって、2倍以上10倍以下に希釈された場合、内容物の50%以上90%以下は、水である。このため、水を含む混合対象原料を加熱することなく殺菌することにより、内容物を生成する際に排出される二酸化炭素の排出量を大幅に低減できる。 The first sterilizer 62 is provided downstream of the foreign matter removal filter 61. Further, the first sterilizer 62 is provided upstream of the first sterilizing filter 63. The first sterilizer 62 is a sterilizer that sterilizes the raw materials to be mixed using ultraviolet rays. Thereby, bacteria (bacteria other than mold and yeast) that have passed through the foreign matter removal filter 61 can be sterilized. Furthermore, when the first sterilizer 62 sterilizes the raw materials to be mixed with ultraviolet rays, the content filling system emits less carbon dioxide than when the raw materials to be mixed are sterilized by heating the raw materials to be mixed. The amount can be reduced. In particular, as mentioned above, when producing the contents, the product raw material can be diluted with water from 1.1 times to 100 times, preferably from 2 times to 10 times. When the product raw material is diluted with water to 2 times or more and 10 times or less, 50% or more and 90% or less of the content is water. Therefore, by sterilizing the water-containing raw materials to be mixed without heating, it is possible to significantly reduce the amount of carbon dioxide emitted when producing the contents.
 ところで、純水製造装置50cから供給される菌数濃度が高い場合(例えば、1CFU/ml以上)、且つ異物除去フィルタ61が除菌フィルタのポアサイズ(0.1~1μm)であった場合に、異物除去フィルタ61は短期間で菌汚染される。菌が異物除去フィルタ61で大量に捕捉され、菌増殖すると、水の品質に影響を及ぼす場合がある。そこで、第1殺菌機62を異物除去フィルタ61の上流側にも設置すると良い(図2Bの62A参照)。長期間、品質の良い無菌水を製造することが可能になる。 By the way, when the bacterial count concentration supplied from the pure water production device 50c is high (for example, 1 CFU/ml or more), and when the foreign matter removal filter 61 has a pore size of a sterilization filter (0.1 to 1 μm), The foreign matter removal filter 61 becomes contaminated with bacteria in a short period of time. If a large amount of bacteria is captured by the foreign matter removal filter 61 and the bacteria multiply, the quality of the water may be affected. Therefore, it is preferable to install the first sterilizer 62 also on the upstream side of the foreign matter removal filter 61 (see 62A in FIG. 2B). It becomes possible to produce high-quality sterile water for a long period of time.
 上述したように、本実施の形態では、第1殺菌機62は、紫外線によって水を殺菌する。この場合、図3及び図4に示すように、第1殺菌機62は、本体部66と、本体部66内に設けられた紫外線照射部67とを有していても良い。 As described above, in this embodiment, the first sterilizer 62 sterilizes water with ultraviolet rays. In this case, as shown in FIGS. 3 and 4, the first sterilizer 62 may include a main body 66 and an ultraviolet irradiator 67 provided within the main body 66.
 このうち本体部66は、中空状に形成されている。また、本体部66の形状は、円錐台形状である。具体的には、本体部66は、円錐台形状の内面を有しており、小径側の端部が、大径側の端部より上方に位置するように向けられている。この本体部66の下部に、本体部66の内部に混合対象原料を導入する導入部68が形成され、本体部66の上部に、殺菌された混合対象原料を本体部66から排出する排出部69が形成されていても良い。本体部66に形成された導入部68には、導入管68aが連結されていても良く、導入管68aは、平面視において、本体部66の内面の接線方向に延びるように設けられていても良い。この場合、内面の接線方向とは、導入部68を含む水平断面において、本体部66の内面によって構成される円の接線のうち、導入される混合対象原料が本体部66の内面に衝突する部分における接線方向である。 Of these, the main body portion 66 is formed in a hollow shape. Further, the shape of the main body portion 66 is a truncated cone shape. Specifically, the main body portion 66 has a truncated conical inner surface, and is oriented such that the end on the small diameter side is located above the end on the large diameter side. An introduction part 68 for introducing the raw materials to be mixed into the interior of the main body part 66 is formed in the lower part of the main body part 66, and a discharge part 69 for discharging the sterilized raw materials to be mixed from the main part 66 is formed in the upper part of the main part 66. may be formed. An introduction pipe 68a may be connected to the introduction part 68 formed in the main body part 66, and the introduction pipe 68a may be provided so as to extend in the tangential direction of the inner surface of the main body part 66 when viewed from above. good. In this case, the tangential direction of the inner surface refers to the portion of the tangent to the circle formed by the inner surface of the main body section 66 in the horizontal section including the introduction section 68, where the raw materials to be mixed to be introduced collide with the inner surface of the main body section 66. is the tangential direction at .
 導入部68を通って本体部66の内部に導入された混合対象原料は、本体部66の内面に沿って案内されることにより、周方向に旋回する。そして、混合対象原料は、旋回しながら上方に移動し、排出部69から排出される。これにより、本体部66の内部に導入された混合対象原料の流れの偏りを抑制できる。このため、本体部66の内部に導入された混合対象原料の一部が短時間で排出部69から排出されること(いわゆるショートパス)を防止できる。 The raw materials to be mixed introduced into the main body part 66 through the introduction part 68 are guided along the inner surface of the main body part 66, thereby turning in the circumferential direction. Then, the raw materials to be mixed move upward while rotating and are discharged from the discharge section 69. Thereby, it is possible to suppress uneven flow of the raw materials to be mixed introduced into the main body portion 66. Therefore, it is possible to prevent part of the raw materials to be mixed introduced into the main body part 66 from being discharged from the discharge part 69 in a short period of time (so-called short path).
 また、図4に示すように、本体部66内に、混合対象原料の流れを規制する邪魔板66aが設けられていても良い。この邪魔板66aは、螺旋状に周回するように、本体部66の内面から径方向に突出していても良い。このような邪魔板66aが本体部66内に設けられることにより、導入部68を通って本体部66の内部に導入された混合対象原料が、周方向に旋回することなく上方に移動することを抑制できる。このため、いわゆるショートパスをより確実に防止できる。なお、図示はしないが、本体部66内において、邪魔板66aが螺旋状に周回していなくても良い。この場合、例えば、本体部66内に、それぞれ平面視における形状が円環形状である複数の邪魔板66aが設けられていても良く、中央の開口部を水が通過するように構成されていても良い。 Furthermore, as shown in FIG. 4, a baffle plate 66a may be provided within the main body portion 66 to regulate the flow of the raw materials to be mixed. This baffle plate 66a may protrude in the radial direction from the inner surface of the main body portion 66 so as to spirally circulate. By providing such a baffle plate 66a in the main body 66, it is possible to prevent the raw materials to be mixed introduced into the main body 66 through the introduction part 68 from moving upward without turning in the circumferential direction. It can be suppressed. Therefore, so-called short passes can be more reliably prevented. Although not shown, the baffle plate 66a does not have to spiral in the main body 66. In this case, for example, a plurality of baffle plates 66a each having an annular shape in plan view may be provided in the main body 66, and are configured so that water passes through a central opening. Also good.
 さらに、本体部66内に、紫外線照射部67の後述する第1紫外線ランプ67a及び第2紫外線ランプ67bを固定するための固定部材66bが設けられていても良い。固定部材66bの形状は、例えば、平面視において、十字形状であっても良い。これにより、水の上方への移動が、固定部材66bによって妨げられることを抑制できる。あるいは、固定部材66bの形状は、例えば、円盤形状であっても良く、平面視において円形状であっても良い。この場合、固定部材66bには、図示しない貫通孔が形成されていても良く、当該貫通孔を混合対象原料が通過するように構成されていても良い。 Furthermore, a fixing member 66b for fixing a first ultraviolet lamp 67a and a second ultraviolet lamp 67b, which will be described later, of the ultraviolet irradiation section 67 may be provided within the main body 66. The shape of the fixing member 66b may be, for example, a cross shape in plan view. Thereby, upward movement of water can be prevented from being obstructed by the fixing member 66b. Alternatively, the shape of the fixing member 66b may be, for example, a disk shape or a circular shape in a plan view. In this case, a through hole (not shown) may be formed in the fixing member 66b, and the raw material to be mixed may be configured to pass through the through hole.
 なお、本体部66に、紫外線照射部67から照射された紫外線の照度を測定する照度計が設置されていても良い。また、紫外線照射部67の後述する第1紫外線ランプ67a及び第2紫外線ランプ67bの出力を測定する出力計が設置されていても良い。また、上述した流量計Fにより、混合対象原料が本体部66の内部を通過する時間(滞留時間)を常時監視しても良い。さらに、本体部66を通過する混合対象原料の温度、濁度及び又は色度を、常時又は適宜測定し、紫外線の照射量及び又は透過率に異常がないことを確認しても良い。 Incidentally, an illuminance meter that measures the illuminance of the ultraviolet rays irradiated from the ultraviolet ray irradiation section 67 may be installed in the main body part 66. Further, an output meter may be installed to measure the output of a first ultraviolet lamp 67a and a second ultraviolet lamp 67b, which will be described later, of the ultraviolet irradiation unit 67. Further, the time (residence time) during which the raw materials to be mixed pass through the interior of the main body portion 66 may be constantly monitored by the flowmeter F described above. Furthermore, the temperature, turbidity, and/or chromaticity of the raw materials to be mixed passing through the main body 66 may be constantly or appropriately measured to confirm that there is no abnormality in the amount of ultraviolet ray irradiation and/or the transmittance.
 混合対象原料の殺菌保証は、照度計の指示値を常時監視して行う。照度が設定値から上昇あるいは下降した場合、紫外線の出力を自動調整し、設定値に近づけると良い。また、送液流量を変動させるためにポンプP1の周波数を変動させ、照度を設定値に近づけても良い。照度に関し、上限値は設けずに、下限値のみ設けても良い。また、万が一送液時の照度が下限値を下回った場合、混合対象原料の流れを直ちに循環ライン59に切替え、タンク(アセプティックタンク)52以降の無菌性を維持する。その後、殺菌機60の洗浄・殺菌、又は殺菌のみを行い、製造を再開しても良い。 Sterilization of raw materials to be mixed is guaranteed by constantly monitoring the readings on the illumination meter. If the illuminance rises or falls from the set value, it is a good idea to automatically adjust the ultraviolet light output to bring it closer to the set value. Furthermore, in order to vary the liquid feeding flow rate, the frequency of the pump P1 may be varied to bring the illuminance closer to the set value. Regarding illuminance, only a lower limit value may be provided without providing an upper limit value. Furthermore, in the event that the illuminance during liquid feeding falls below the lower limit value, the flow of the raw materials to be mixed is immediately switched to the circulation line 59 to maintain sterility from the tank (aseptic tank) 52 onwards. Thereafter, the sterilizer 60 may be cleaned and sterilized, or only sterilized, and production may be resumed.
 次に、紫外線照射部67について説明する。紫外線照射部67は、本体部66の径方向中央に設けられた第1紫外線ランプ67aと、第1紫外線ランプ67aの周囲に設けられた複数の第2紫外線ランプ67bとを含んでいても良い。図示された例においては、1本の第1紫外線ランプ67aの周囲に、4本の第2紫外線ランプ67bが設けられている。 Next, the ultraviolet irradiation section 67 will be explained. The ultraviolet irradiation section 67 may include a first ultraviolet lamp 67a provided at the radial center of the main body 66, and a plurality of second ultraviolet lamps 67b provided around the first ultraviolet lamp 67a. In the illustrated example, four second ultraviolet lamps 67b are provided around one first ultraviolet lamp 67a.
 各々の第2紫外線ランプ67bは、本体部66の内面に沿って配置されている。すなわち、各々の第2紫外線ランプ67bは、上方に向かうにつれて径方向内側に傾斜するように設けられている。この場合、第2紫外線ランプ67bは、周方向に沿って等間隔に配置されていることが好ましい。これにより、紫外線の積算照射量(mJ/cm)にバラツキが生じることを抑制できる。第1紫外線ランプ67a及び第2紫外線ランプ67bは、それぞれ、波長が200nm以上450nm以下の紫外線を照射する紫外線ランプであっても良い。 Each second ultraviolet lamp 67b is arranged along the inner surface of the main body part 66. That is, each second ultraviolet lamp 67b is provided so as to be inclined radially inward as it goes upward. In this case, the second ultraviolet lamps 67b are preferably arranged at equal intervals along the circumferential direction. Thereby, it is possible to suppress variations in the cumulative irradiation amount (mJ/cm 2 ) of ultraviolet rays. The first ultraviolet lamp 67a and the second ultraviolet lamp 67b may each be an ultraviolet lamp that emits ultraviolet light having a wavelength of 200 nm or more and 450 nm or less.
 このような第1紫外線ランプ67a及び第2紫外線ランプ67bは、それぞれ低圧水銀ランプ、中圧水銀ランプ又はUV-LEDであっても良い。この場合、第1紫外線ランプ67a及び第2紫外線ランプ67bは、それぞれ低圧水銀ランプ又は中圧水銀ランプであることが好ましい。低圧水銀ランプは、点灯中の水銀蒸気圧が10Pa未満となる水銀ランプである。この低圧水銀ランプは、殺菌効果の高い波長(253.7nm)の紫外線を効率よく照射できる。このため、第1紫外線ランプ67a及び第2紫外線ランプ67bが、それぞれ低圧水銀ランプである場合、第1殺菌機62及び第2殺菌機64における殺菌効果を向上できる。低圧水銀ランプは、水銀と他の金属との合金であるアマルガムが発光管内に封入されたアマルガムランプ(低圧高出力アマルガムランプ)であっても良い。 The first ultraviolet lamp 67a and the second ultraviolet lamp 67b may be a low-pressure mercury lamp, a medium-pressure mercury lamp, or a UV-LED, respectively. In this case, the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are preferably low-pressure mercury lamps or medium-pressure mercury lamps, respectively. A low-pressure mercury lamp is a mercury lamp in which the mercury vapor pressure during lighting is less than 10 Pa. This low-pressure mercury lamp can efficiently irradiate ultraviolet rays with a wavelength (253.7 nm) that is highly effective in sterilizing. Therefore, when the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are each low-pressure mercury lamps, the sterilization effects in the first sterilizer 62 and the second sterilizer 64 can be improved. The low-pressure mercury lamp may be an amalgam lamp (low-pressure high-output amalgam lamp) in which amalgam, which is an alloy of mercury and other metals, is sealed in an arc tube.
 中圧水銀ランプは、点灯中の水銀蒸気圧が40kPa以上となる水銀ランプである。一般的に、中圧水銀ランプは、低圧水銀ランプと比較して、高出力の水銀ランプである。このため、第1紫外線ランプ67a及び第2紫外線ランプ67bが、それぞれ中圧水銀ランプである場合、多くの量の水を第1殺菌機62及び第2殺菌機64が殺菌できる。また、中圧水銀ランプが高出力の水銀ランプであるため、第1紫外線ランプ67a及び第2紫外線ランプ67bが、それぞれ中圧水銀ランプである場合、第1殺菌機62及び第2殺菌機64の小型化を図ることができる。 A medium pressure mercury lamp is a mercury lamp with a mercury vapor pressure of 40 kPa or more during lighting. Generally, medium-pressure mercury lamps are high-power mercury lamps compared to low-pressure mercury lamps. Therefore, when the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are medium pressure mercury lamps, the first sterilizer 62 and the second sterilizer 64 can sterilize a large amount of water. Further, since the medium pressure mercury lamp is a high output mercury lamp, if the first ultraviolet lamp 67a and the second ultraviolet lamp 67b are medium pressure mercury lamps, the first sterilizer 62 and the second sterilizer 64 Miniaturization can be achieved.
 ここで、紫外線による菌の殺菌効果は、紫外線の積算照射量(mJ/cm)によって変化する。すなわち、紫外線の積算照射量が多いほど紫外線による菌の殺菌効果が高まる。この積算照射量は、照度(mW/cm)と、照射時間(sec)との積によって求められる。このため、紫外線による菌の殺菌効果を高めるためには、光源(第1紫外線ランプ67a及び第2紫外線ランプ67b)と混合対象原料との間の距離を短くするとともに、紫外線の照射時間を長くすることが求められる。とりわけ、照度は、紫外線を照射する光源からの距離の二乗に反比例する。例えば、光源からの距離が2倍になった場合、照度は1/4になり、光源からの距離が3倍になった場合、照度は1/9になる。このため、水が光源の近くを通過することにより、紫外線による菌の殺菌効果を高めることができる。 Here, the bactericidal effect of ultraviolet rays changes depending on the cumulative irradiation amount (mJ/cm 2 ) of ultraviolet rays. That is, the greater the cumulative irradiation amount of ultraviolet rays, the more effective the bacteria sterilization effect of ultraviolet rays becomes. This cumulative irradiation amount is determined by the product of illuminance (mW/cm 2 ) and irradiation time (sec). Therefore, in order to enhance the effect of sterilizing bacteria with ultraviolet rays, the distance between the light sources (first ultraviolet lamp 67a and second ultraviolet lamp 67b) and the raw materials to be mixed is shortened, and the irradiation time of ultraviolet rays is lengthened. That is required. In particular, the illuminance is inversely proportional to the square of the distance from the light source emitting ultraviolet light. For example, when the distance from the light source doubles, the illuminance becomes 1/4, and when the distance from the light source triples, the illuminance becomes 1/9. Therefore, by allowing water to pass near the light source, the bacteria sterilization effect of ultraviolet rays can be enhanced.
 上述したように、本実施の形態では、本体部66の下部に、本体部66の内部に混合対象原料を導入する導入部68が形成され、本体部66の上部に、殺菌された混合対象原料を本体部66から排出する排出部69が形成されている。これにより、ショートパスを防止でき、混合対象原料が本体部66の内部に滞留する時間を長くできる。このため、混合対象原料に対する紫外線の照射時間を長くでき、紫外線の積算照射量を多くできる。また、混合対象原料を本体部66の下部から導入することにより、第1殺菌機62の稼働初期の水、すなわち、空の状態の本体部66に導入された混合対象原料であっても、混合対象原料が本体部66の内部に滞留する時間を十分に確保できる。このため、水に対する紫外線の照射時間を長くできる。 As described above, in this embodiment, the introduction part 68 for introducing the raw materials to be mixed into the interior of the main body part 66 is formed in the lower part of the main body part 66, and the sterilized raw materials to be mixed are formed in the upper part of the main body part 66. A discharge portion 69 is formed to discharge the water from the main body portion 66. Thereby, a short pass can be prevented, and the time during which the raw materials to be mixed can stay inside the main body part 66 can be extended. For this reason, the irradiation time of ultraviolet rays to the raw materials to be mixed can be lengthened, and the cumulative irradiation amount of ultraviolet rays can be increased. Furthermore, by introducing the raw materials to be mixed from the lower part of the main body part 66, even if the water is in the initial stage of operation of the first sterilizer 62, that is, the raw materials to be mixed are introduced into the empty main body part 66, the raw materials to be mixed can be mixed. Sufficient time for the target raw material to stay inside the main body portion 66 can be ensured. Therefore, the irradiation time of ultraviolet rays to water can be increased.
 また、本体部66の形状は、円錐台形状である。これにより、本体部66の上部において、第1紫外線ランプ67a及び第2紫外線ランプ67bと混合対象原料と間の距離を短くできる。このため、紫外線による菌の殺菌効果を高めることができる。また、紫外線照射部67が、本体部66の径方向中央に設けられた第1紫外線ランプ67aと、第1紫外線ランプ67aの周囲に設けられた複数の第2紫外線ランプ67bとを含んでいる。これにより、周方向に旋回しながら上方に移動する混合対象原料に対して、ムラなく紫外線を照射できる。このため、紫外線の積算照射量にバラツキが生じることを抑制できる。 Further, the shape of the main body portion 66 is a truncated cone shape. Thereby, the distance between the first ultraviolet lamp 67a and the second ultraviolet lamp 67b and the raw materials to be mixed can be shortened in the upper part of the main body part 66. Therefore, the bactericidal effect of ultraviolet rays can be enhanced. Further, the ultraviolet irradiation section 67 includes a first ultraviolet lamp 67a provided at the radial center of the main body 66, and a plurality of second ultraviolet lamps 67b provided around the first ultraviolet lamp 67a. Thereby, the raw materials to be mixed that move upward while rotating in the circumferential direction can be evenly irradiated with ultraviolet rays. Therefore, it is possible to suppress variations in the cumulative irradiation amount of ultraviolet rays.
 ここで、水に対する紫外線の積算照射量は、10mJ/cm以上10000mJ/cm以下であることが好ましく、100mJ/cm以上1000mJ/cm以下であることがより好ましい。すなわち、本体部66を通過した際に、内容物に対する紫外線の積算照射量は、254nmの波長で10mJ/cm以上10000mJ/cm以下であることが好ましく、100mJ/cm以上1000mJ/cm以下であることがより好ましい。またより好ましくは130mJ/cm以上500mJ/cm以下である。紫外線の積算照射量が10mJ/cm以上であることにより、第2除菌フィルタ65を通過する可能性がある水棲菌(貧栄養環境の水内で増殖可能なPseudomonas属またはMethylobacterium属等のグラム陰性菌)を効果的に殺菌できる。また、紫外線の積算照射量が100mJ/cm以上であることにより、細菌胞子も殺菌できる。また、紫外線の積算照射量が10000mJ/cm以下であることにより、電気消費量を低減でき、内容物充填システム10が排出する二酸化炭素の排出量を低減できる。ここで、紫外線の波長は、250nm以上260nm以下であっても良く、一例として253.7nm(254nm)であっても良い。紫外線の波長が250nm以上260nm以下、とりわけ253.7nmであることにより、紫外線による菌の殺菌効果を高めることができる。ここで、本明細書中「水棲菌」とは、目開きが0.2μmの除菌フィルタを通過可能な菌を意味し、以下、「除菌フィルタ通過菌」ともいうことができる。また、紫外線照射部67が照射する紫外線の照射量は、実際の化学線量計又は生物線量計によって求められたRED(換算紫外線照射量:Reduction Equivalent UV Dose)に基づいて設定されても良い。詳細は、「ULTRAVIOLET DISINFECTION GUIDANCE MANUAL FOR THE FINAL LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE, United States Environmental Protection Agency, EPA 815-R-06-007,November 2006」を参照できる。 Here, the cumulative irradiation amount of ultraviolet rays to water is preferably 10 mJ/cm 2 or more and 10000 mJ/cm 2 or less, and more preferably 100 mJ/cm 2 or more and 1000 mJ/cm 2 or less. That is, when passing through the main body portion 66, the cumulative irradiation amount of ultraviolet rays to the contents is preferably 10 mJ/cm 2 or more and 10000 mJ/cm 2 or less at a wavelength of 254 nm, and 100 mJ/cm 2 or more and 1000 mJ/cm 2 or less. It is more preferable that it is below. More preferably, it is 130 mJ/cm 2 or more and 500 mJ/cm 2 or less. Since the cumulative irradiation amount of ultraviolet rays is 10 mJ/ cm2 or more, aquatic bacteria (such as Pseudomonas or Methylobacterium that can grow in water in an oligotrophic environment) that may pass through the second sterilization filter 65. Can effectively sterilize negative bacteria). Furthermore, bacterial spores can also be sterilized by setting the cumulative irradiation amount of ultraviolet rays to 100 mJ/cm 2 or more. Moreover, since the cumulative irradiation amount of ultraviolet rays is 10,000 mJ/cm 2 or less, electricity consumption can be reduced, and the amount of carbon dioxide emitted by the content filling system 10 can be reduced. Here, the wavelength of the ultraviolet rays may be 250 nm or more and 260 nm or less, and may be 253.7 nm (254 nm) as an example. When the wavelength of the ultraviolet rays is 250 nm or more and 260 nm or less, especially 253.7 nm, the effect of sterilizing bacteria by the ultraviolet rays can be enhanced. Here, in this specification, "aquatic bacteria" means bacteria that can pass through a sterilization filter with an opening of 0.2 μm, and can also be referred to as "bacteria that pass through a sterilization filter" hereinafter. Further, the amount of ultraviolet rays emitted by the ultraviolet irradiator 67 may be set based on the RED (Reduction Equivalent UV Dose) determined by an actual chemical dosimeter or biological dosimeter. For details, refer to "ULTRAVIOLET DISINFECTION GUIDANCE MANUAL FOR THE FINAL LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE, United States Environmental Protection Agency, EPA 815-R-06-007, November 2006."
 このような第1殺菌機62は、殺菌(SIP)可能であることが好ましい。これにより、第1殺菌機62を定期的に殺菌できる。なお、第1殺菌機62を殺菌する場合、上述した制御部90は、蒸気又は熱水で第1殺菌機62を殺菌しても良い。あるいは、第1殺菌機62が熱に弱い場合には、制御部90は、殺菌機60を含む循環系59Aにおいて、例えば過酢酸を含む殺菌剤を循環させることにより、第1殺菌機62を殺菌しても良い。この場合、制御部90は、循環系59Aにおいて、殺菌剤を少なくとも10秒以上60分以下で循環させても良い。 It is preferable that such a first sterilizer 62 is capable of sterilization (SIP). Thereby, the first sterilizer 62 can be regularly sterilized. In addition, when sterilizing the first sterilizer 62, the control unit 90 described above may sterilize the first sterilizer 62 with steam or hot water. Alternatively, if the first sterilizer 62 is sensitive to heat, the control unit 90 sterilizes the first sterilizer 62 by circulating a sterilizer containing peracetic acid, for example, in the circulation system 59A including the sterilizer 60. You may do so. In this case, the control unit 90 may circulate the disinfectant in the circulation system 59A for at least 10 seconds or more and 60 minutes or less.
 なお、図5A及び図5Bに示すように、第1殺菌機62の本体部66の形状が、円筒形状であっても良い。この場合、本体部66に形成された排出部69には、排出管69aが連結されていても良く、排出管69aは、平面視において、本体部66の内面の接線方向に延びるように設けられていても良い。この場合、内面の接線方向とは、排出部69を含む水平断面において、本体部66の内面によって構成される円の接線のうち、内面に当接しながら周回した混合対象原料が本体部66の内面から離れる方向に向かう接線方向である。本体部66の形状が、円筒形状である場合、混合対象原料が本体部66の内部に滞留する時間を長くできる。このため、混合対象原料に対する紫外線の照射時間を長くでき、紫外線の積算照射量を多くできる。なお、この場合、図示はしないが、複数の第2紫外線ランプ67bが、上方に向かうにつれて径方向内側に傾斜するように設けられていても良い。 Note that, as shown in FIGS. 5A and 5B, the main body portion 66 of the first sterilizer 62 may have a cylindrical shape. In this case, a discharge pipe 69a may be connected to the discharge part 69 formed in the main body part 66, and the discharge pipe 69a is provided so as to extend in the tangential direction of the inner surface of the main body part 66 in a plan view. You can leave it there. In this case, the tangential direction of the inner surface refers to the tangential direction of the circle formed by the inner surface of the main body section 66 in the horizontal cross section including the discharge section 69. This is the tangential direction that points away from . When the main body part 66 has a cylindrical shape, the time during which the raw materials to be mixed stay inside the main body part 66 can be increased. For this reason, the irradiation time of ultraviolet rays to the raw materials to be mixed can be lengthened, and the cumulative irradiation amount of ultraviolet rays can be increased. In this case, although not shown, the plurality of second ultraviolet lamps 67b may be provided so as to be inclined radially inward toward the top.
 また、図6A及び図6Bに示すように、本体部66の形状が、円筒形状であり、本体部66の一方の端部に、本体部66の内部に混合対象原料を導入する導入部68が形成されていても良い。また、本体部66の他方の端部に、殺菌された混合対象原料を本体部66から排出する排出部69が形成されていても良い。この場合、本体部66の長手方向(水の進行方向)が水平方向となるように、本体部66が配置されても良く、本体部66の長手方向(水の進行方向)が上下方向になるように、本体部66が配置されても良い。 Further, as shown in FIGS. 6A and 6B, the main body 66 has a cylindrical shape, and an introduction part 68 for introducing the raw materials to be mixed into the main body 66 is provided at one end of the main body 66. It may be formed. Further, a discharge portion 69 for discharging the sterilized raw materials to be mixed from the body portion 66 may be formed at the other end of the body portion 66 . In this case, the main body 66 may be arranged such that the longitudinal direction (the direction in which water travels) of the main body 66 is the horizontal direction, and the longitudinal direction (the direction in which water travels) of the main body 66 is the vertical direction. The main body portion 66 may be arranged as shown in FIG.
 本変形例では、紫外線照射部67は、混合対象原料の進行方向に沿って配置された複数の第3紫外線ランプ67cを含んでいても良い。これにより、水に対して、ムラなく紫外線を照射できる。このため、紫外線の積算照射量にバラツキが生じることを抑制できる。 In this modification, the ultraviolet irradiation section 67 may include a plurality of third ultraviolet lamps 67c arranged along the traveling direction of the raw materials to be mixed. This allows water to be evenly irradiated with ultraviolet rays. Therefore, it is possible to suppress variations in the cumulative irradiation amount of ultraviolet rays.
 また、混合対象原料の進行方向において互いに隣り合う第3紫外線ランプ67cは、混合対象原料の進行方向から見た場合に、互いに異なる方向に延びていても良い。これにより、紫外線の積算照射量にバラツキが生じることをより効果的に抑制できる。図示された例においては、各々の第3紫外線ランプ67cは、規則的に配置されている。すなわち、各々の第3紫外線ランプ67cは、混合対象原料の進行方向の上流側(図6Bの左側)から見た場合に、混合対象原料の進行方向下流側(図6Bの右側)に向かうにつれて、本体部66の中心軸線Xを中心に45°ずつ時計回り方向に回転している。なお、各々の第3紫外線ランプ67cは、不規則的に配置されていても良い。 Further, the third ultraviolet lamps 67c that are adjacent to each other in the direction of movement of the raw materials to be mixed may extend in different directions from each other when viewed from the direction of movement of the raw materials to be mixed. Thereby, it is possible to more effectively suppress variations in the cumulative irradiation amount of ultraviolet rays. In the illustrated example, each third ultraviolet lamp 67c is regularly arranged. That is, each third ultraviolet lamp 67c, when viewed from the upstream side in the traveling direction of the raw materials to be mixed (left side in FIG. 6B), moves toward the downstream side in the traveling direction of the raw materials to be mixed (right side in FIG. 6B), It rotates clockwise by 45 degrees around the central axis X of the main body part 66. Note that each of the third ultraviolet lamps 67c may be arranged irregularly.
 第3紫外線ランプ67cは、第1紫外線ランプ67a及び第2紫外線ランプ67bと同様の紫外線ランプであっても良い。すなわち、第3紫外線ランプ67cは、波長が200nm以上450nm以下の紫外線を照射する紫外線ランプであっても良い。また、第3紫外線ランプ67cは、低圧水銀ランプ(低圧高出力アマルガムランプを含む)又は中圧水銀ランプであっても良い。なお、図示はしないが、本体部66内に、水の流れを規制する邪魔板66aが設けられていても良い。 The third ultraviolet lamp 67c may be the same ultraviolet lamp as the first ultraviolet lamp 67a and the second ultraviolet lamp 67b. That is, the third ultraviolet lamp 67c may be an ultraviolet lamp that emits ultraviolet light having a wavelength of 200 nm or more and 450 nm or less. Furthermore, the third ultraviolet lamp 67c may be a low-pressure mercury lamp (including a low-pressure high-output amalgam lamp) or a medium-pressure mercury lamp. Although not shown, a baffle plate 66a may be provided inside the main body 66 to regulate the flow of water.
 また、図3乃至図6Bに示す第1殺菌機62において、第1殺菌機62における殺菌効率を高めるために、本体部66内で紫外線を反射させても良い。例えば、図6A及び図6Bに示す第1殺菌機62を例にとって説明すると、図6Cに示すように、本体部66は、外側部材660と、外側部材660の内部に設けられた内側部材661とを含んでいても良い。外側部材660は、例えば、研磨されたステンレス鋼管から構成されていても良い。内側部材661は、ガラス管から構成されていても良い。また、外側部材660と内側部材661との間に、空気層662が介在されていても良い。この場合、内側部材661のガラス管のガラスとして、紫外線透過率の高いガラス(例えば、石英ガラス又はフッ化物ガラス)を用いた場合、図6Cに示すように、内側部材661と空気層662との界面において、紫外線UVを反射させることができる。なお、内側部材661の材料としては、第3紫外線ランプ67c等が照射する紫外線の波長に合わせて、紫外線の透過率が高い材質が適宜選択されても良い。また、内側部材661の材料としては、ガラス以外が用いられても良く、例えば、ガラスと同様の特性を有するプラスチックが用いられても良い。さらに、外側部材660の内面及び又は内側部材661の外面に、反射率の高い材料がコーティングされていても良い。とりわけ、図6A及び図6Bに示す第1殺菌機62のように、本体部66が細長い場合、外側部材660の内面等に反射率の高い材料をコーティングすることにより、紫外線UVの減衰を抑制しつつ、紫外線UVを繰り返し反射させることができる。このため、水を効率よく殺菌できる。なお、紫外線UVは、本体部66の内部において、1回以上反射することが好ましい。この場合、外側部材660等と第3紫外線ランプ67c等との間の距離を短くすることにより、紫外線UVの反射回数を2回以上とすることがより好ましい。ここで、中圧水銀ランプから照射された紫外線は、低圧水銀ランプから照射された紫外線と比較して、より遠くまで照度を維持できる。このため、第3紫外線ランプ67c等が中圧水銀ランプである場合、本体部66の内部において、紫外線UVを複数回反射させた場合であっても、紫外線UVによる殺菌効果が低下することを効果的に抑制できる。 Furthermore, in the first sterilizer 62 shown in FIGS. 3 to 6B, ultraviolet rays may be reflected within the main body 66 in order to increase the sterilization efficiency in the first sterilizer 62. For example, taking the first sterilizer 62 shown in FIGS. 6A and 6B as an example, as shown in FIG. 6C, the main body 66 includes an outer member 660 and an inner member 661 provided inside the outer member 660. May contain. Outer member 660 may be constructed from polished stainless steel tubing, for example. The inner member 661 may be made of a glass tube. Further, an air layer 662 may be interposed between the outer member 660 and the inner member 661. In this case, if glass with high ultraviolet transmittance (for example, quartz glass or fluoride glass) is used as the glass of the glass tube of the inner member 661, as shown in FIG. 6C, the inner member 661 and the air layer 662 At the interface, ultraviolet light (UV) can be reflected. Note that as the material of the inner member 661, a material having a high transmittance of ultraviolet rays may be appropriately selected according to the wavelength of the ultraviolet rays irradiated by the third ultraviolet lamp 67c and the like. Further, as the material of the inner member 661, a material other than glass may be used, and for example, plastic having properties similar to glass may be used. Furthermore, the inner surface of the outer member 660 and/or the outer surface of the inner member 661 may be coated with a highly reflective material. In particular, when the main body part 66 is elongated like the first sterilizer 62 shown in FIGS. 6A and 6B, the attenuation of ultraviolet rays can be suppressed by coating the inner surface of the outer member 660 with a material having a high reflectance. At the same time, it can repeatedly reflect ultraviolet rays. Therefore, water can be efficiently sterilized. Note that it is preferable that the ultraviolet rays UV be reflected one or more times inside the main body portion 66. In this case, it is more preferable that the number of times the ultraviolet rays are reflected is two or more by shortening the distance between the outer member 660 etc. and the third ultraviolet lamp 67c etc. Here, the ultraviolet rays emitted from a medium-pressure mercury lamp can maintain illuminance over a longer distance than the ultraviolet rays emitted from a low-pressure mercury lamp. Therefore, if the third ultraviolet lamp 67c or the like is a medium-pressure mercury lamp, even if the ultraviolet rays are reflected multiple times inside the main body 66, the sterilizing effect of the ultraviolet rays will be reduced. can be suppressed.
 また、水が第1殺菌機62を通過する通過時間は、0.1秒以上10秒未満であっても良く、0.5秒以上5秒未満であることが好ましい。なお、通過時間は、導入部68から本体部66の内部に導入された水が、排出部69から排出されるまでの時間である。通過時間が0.1秒以上であることにより、水の殺菌効果にバラツキが生じることを抑制できる。このため、十分な殺菌効果を得ることができる。通過時間が10秒未満であることにより、第1殺菌機62の小型化を図ることができる。なお、水が第1殺菌機62を通過する通過時間は、第1殺菌機62が処理(殺菌)する水の流量に基づいて、適宜変更されても良い。 Further, the passage time for water to pass through the first sterilizer 62 may be 0.1 seconds or more and less than 10 seconds, and preferably 0.5 seconds or more and less than 5 seconds. Note that the passage time is the time required for water introduced into the main body part 66 from the introduction part 68 to be discharged from the discharge part 69. By setting the passage time to 0.1 seconds or more, it is possible to suppress variations in the sterilizing effect of water. Therefore, a sufficient sterilizing effect can be obtained. Since the passing time is less than 10 seconds, the first sterilizer 62 can be made smaller. Note that the passage time for water to pass through the first sterilizer 62 may be changed as appropriate based on the flow rate of the water that the first sterilizer 62 processes (sterilizes).
 再度図2A1を参照すると、第1除菌フィルタ63は、第1殺菌機62の下流側に設けられている。この第1除菌フィルタ63は、混合対象原料に残存する菌を捕集することにより、混合対象原料を除菌する精密濾過フィルタ(MF(Micro-Filtration)である。第1除菌フィルタ63の目開きは、0.1μm以上0.45μm以下であっても良く、0.1μm以上0.22μm以下であることが好ましい。第1除菌フィルタ63の目開きが0.1μm以上であることにより、混合対象原料の殺菌効率の低下を抑制できる。また、第1除菌フィルタ63の目開きが0.45μm以下であることにより、混合対象原料に残存する菌を第1除菌フィルタ63によって効果的に捕集できる。一部のウイルスも除去可能な、目開きが0.02μm以上0.1μm以下のフィルタを、無菌フィルタ63として使用されても良い。また第1除菌フィルタ63の濾過膜(メンブレン)の材質は、ポリフッ化ビニリデン(PVDF)、ポリエーテルサルフォン(PES)、混合セルロース(SCWP)、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリアミドなどが良い。内容物の適性に応じて、例えば逆浸透膜(RO(Reverse Osmosis)膜)であっても良く、限界濾過膜(UF(Ultra-Filtration)膜)であっても良い。 Referring again to FIG. 2A1, the first sterilization filter 63 is provided downstream of the first sterilizer 62. This first sterilization filter 63 is a micro-filtration filter (MF) that sterilizes the raw materials to be mixed by collecting bacteria remaining in the raw materials to be mixed. The opening may be 0.1 μm or more and 0.45 μm or less, and preferably 0.1 μm or more and 0.22 μm or less. By having the opening of the first sterilizing filter 63 be 0.1 μm or more, In addition, since the opening of the first sterilization filter 63 is 0.45 μm or less, the first sterilization filter 63 effectively removes bacteria remaining in the raw materials to be mixed. A filter with an opening of 0.02 μm or more and 0.1 μm or less, which can also remove some viruses, may be used as the sterile filter 63. Also, the filtration membrane of the first sterilization filter 63 (Membrane) materials include polyvinylidene fluoride (PVDF), polyethersulfone (PES), mixed cellulose (SCWP), polycarbonate (PC), polypropylene (PP), polyamide, etc. Depending on the suitability of the contents. For example, it may be a reverse osmosis membrane (RO (Reverse Osmosis) membrane) or an ultra-filtration membrane (UF (Ultra-Filtration) membrane).
 この第1除菌フィルタ63は、殺菌(SIP)可能であることが好ましい。これにより、第1除菌フィルタ63を定期的に殺菌できる。ここで、上述したように、第1除菌フィルタ63は、第1殺菌機62を通過し、混合対象原料に残存する菌を捕集する。このため、殺菌機60において長期間水の殺菌を続けると、捕集された菌が第1除菌フィルタ63内で繁殖し得る。また、有機物である菌の死骸が第1除菌フィルタ63等に付着していた場合、菌の死骸が基質になり得る。この場合、菌が第1除菌フィルタ63内で更に繁殖し得る。このように、第1除菌フィルタ63内で繁殖した場合、第1除菌フィルタ63を通過する混合対象原料内に入り込む可能性がある。これに対して、第1除菌フィルタ63が殺菌可能であることにより、第1除菌フィルタ63に付着した菌が、第1除菌フィルタ63を通過する混合対象原料内に入り込むことを抑制できる。この結果、第1除菌フィルタ63の濾過性能が低下することを抑制できる。なお、第1除菌フィルタ63を殺菌する場合、殺菌用の蒸気等は、後述する、無菌エアの供給口60aから第1除菌フィルタ63に供給されても良い。 It is preferable that this first sterilization filter 63 is capable of sterilization (SIP). Thereby, the first sterilization filter 63 can be regularly sterilized. Here, as described above, the first sterilizing filter 63 passes through the first sterilizer 62 and collects bacteria remaining in the raw materials to be mixed. Therefore, if water sterilization is continued for a long period of time in the sterilizer 60, the collected bacteria may propagate within the first sterilization filter 63. Furthermore, if dead bacteria, which is an organic matter, is attached to the first sterilization filter 63 or the like, the dead bacteria may become a substrate. In this case, bacteria may further propagate within the first sterilization filter 63. In this way, if the germs multiply within the first sterilizing filter 63, there is a possibility that they will enter the raw material to be mixed that passes through the first sterilizing filter 63. On the other hand, since the first sterilizing filter 63 can be sterilized, it is possible to prevent bacteria attached to the first sterilizing filter 63 from entering the raw materials to be mixed that pass through the first sterilizing filter 63. . As a result, it is possible to suppress the filtration performance of the first sterilization filter 63 from decreasing. Note that when sterilizing the first sterilizing filter 63, sterilizing steam or the like may be supplied to the first sterilizing filter 63 from a sterile air supply port 60a, which will be described later.
 ここで、第1除菌フィルタ63の殺菌の程度については、F値によって管理されても良い。言い換えれば、第1除菌フィルタ63を有する殺菌機60を殺菌する際、殺菌機60の殺菌の程度については、F値によって管理されても良い。この際、例えば、制御部90は、第1除菌フィルタ63の流路に流された加熱蒸気(流体)又は熱水(流体)の温度を測定するとともに、測定された温度に基づいてF値を算出しても良い。そして、F値が目的値以上となった場合に、制御部90は、第1除菌フィルタ63の殺菌を終了しても良い。加熱蒸気又は熱水の温度を測定する場合、制御部90は、第1除菌フィルタ63の流路に、加熱蒸気又は熱水を流しつつ、流路のうち温度が上昇しにくい各所に配置された温度センサで温度を測定しても良い。そして、制御部90は、各温度センサからの温度が所定温度に達した時間が所定時間以上となったときに、加熱蒸気等による流路の加熱を終了させても良い。これにより、第1除菌フィルタ63に対して必要以上に熱を加えることなく、第1除菌フィルタ63を殺菌できる。ここでF値とは、菌を一定時間で加熱したとき、全ての菌を死滅させるのに要する加熱時間であり、121.1℃における菌の致死時間で示され、下記の式によって算出される。
Figure JPOXMLDOC01-appb-M000001
Here, the degree of sterilization of the first sterilization filter 63 may be managed by the F value. In other words, when sterilizing the sterilizer 60 having the first sterilizing filter 63, the degree of sterilization of the sterilizer 60 may be managed by the F value. At this time, for example, the control unit 90 measures the temperature of the heated steam (fluid) or hot water (fluid) flowing through the flow path of the first sterilization filter 63, and also measures the F value based on the measured temperature. may also be calculated. Then, when the F value becomes equal to or greater than the target value, the control unit 90 may end the sterilization of the first sterilization filter 63. When measuring the temperature of heated steam or hot water, the control unit 90 flows heated steam or hot water through the flow path of the first sterilization filter 63, and is arranged at various locations in the flow path where the temperature is unlikely to rise. The temperature may be measured using a temperature sensor. Then, the control unit 90 may terminate the heating of the flow path using heating steam or the like when the time during which the temperature from each temperature sensor reaches a predetermined temperature is equal to or longer than a predetermined time. Thereby, the first sterilizing filter 63 can be sterilized without applying more heat than necessary to the first sterilizing filter 63. Here, the F value is the heating time required to kill all bacteria when bacteria are heated for a certain period of time, and is expressed as the time required to kill bacteria at 121.1°C, and is calculated by the following formula. .
Figure JPOXMLDOC01-appb-M000001
 (ただし、Tは任意の殺菌温度(℃)、10^{(T-Tr)/Z}は任意の殺菌温度Tでの致死率、Trは基準温度(℃)、ZはZ値(℃)を表す。)
 また、第1除菌フィルタ63は、第1除菌フィルタ63の目開きに対する後述する完全性試験を行うことが可能であることが好ましい。ここで、完全性試験は、以下のようにして行うことができる。例えば、まず、第1除菌フィルタ63内のハウジング(図示せず)に水を充填する。次に、水が充填された第1除菌フィルタ63内に、例えば無菌エアの供給口60aから無菌エアを注入する。次いで、第1除菌フィルタ63から無菌エアが抜けるまで、無菌エアの圧力を高める。そして、第1除菌フィルタ63から無菌エアが抜けた際の無菌エアの圧力(バブルポイント)に基づいて、第1除菌フィルタ63の目開きの大きさを判断する。このように、第1除菌フィルタ63が、第1除菌フィルタ63の目開きに対する完全性試験を行うことが可能であることにより、第1除菌フィルタ63の劣化具合を容易に判断できる。なお、第1除菌フィルタ63内の圧力を測定するために、無菌エアの供給口60a近傍に、圧力計P2が設けられていても良い。完全性試験は、前述のバブルポイント試験以外に、ディフージョンフロー試験、プレッシャーホールド試験などで行ってもよい。
(However, T is the arbitrary sterilization temperature (℃), 10^{(T-Tr)/Z} is the lethality rate at the arbitrary sterilization temperature T, Tr is the reference temperature (℃), and Z is the Z value (℃) )
Further, it is preferable that the first sterilizing filter 63 is capable of performing an integrity test on the opening of the first sterilizing filter 63, which will be described later. Here, the integrity test can be performed as follows. For example, first, a housing (not shown) in the first sterilizing filter 63 is filled with water. Next, sterile air is injected into the first sterilizing filter 63 filled with water, for example, from the sterile air supply port 60a. Next, the pressure of the sterile air is increased until the sterile air is released from the first sterilizing filter 63. Then, the size of the opening of the first sterilizing filter 63 is determined based on the pressure (bubble point) of the sterile air when the sterile air leaves the first sterilizing filter 63 . In this way, since the first sterilizing filter 63 can perform the integrity test on the opening of the first sterilizing filter 63, the degree of deterioration of the first sterilizing filter 63 can be easily determined. In addition, in order to measure the pressure inside the first sterilization filter 63, a pressure gauge P2 may be provided near the sterile air supply port 60a. In addition to the above-mentioned bubble point test, the integrity test may be performed by a diffusion flow test, a pressure hold test, or the like.
 第2殺菌機64は、第1除菌フィルタ63の下流側に設けられている。この第2殺菌機64の構成は、図3乃至図6Bに示す第1殺菌機62と略同一の構成としても良い。すなわち、第2殺菌機64は、紫外線によって水を殺菌する殺菌機であっても良い。 The second sterilizer 64 is provided downstream of the first sterilization filter 63. The configuration of the second sterilizer 64 may be substantially the same as the first sterilizer 62 shown in FIGS. 3 to 6B. That is, the second sterilizer 64 may be a sterilizer that sterilizes water with ultraviolet rays.
 第2除菌フィルタ65は、第2殺菌機64の下流側に設けられている。この第2除菌フィルタ65は、第2殺菌機64を通過し、混合対象原料に残存する菌を捕集することにより、混合対象原料を除菌するフィルタである。第2除菌フィルタ65の目開きは、第1除菌フィルタ63の目開き以下であることが好ましい。これにより、万が一、混合対象原料内の菌が第1除菌フィルタ63を通過した場合であっても、第2除菌フィルタ65によって、当該菌を捕集できる。このため、混合対象原料の無菌性を十分に確保できる。また、第2除菌フィルタ65の目開きが、第1除菌フィルタ63の目開きと同等である場合、殺菌機と除菌フィルタとによって構成される殺菌セットを、混合対象原料の搬送方向に沿って、2セット配置できる。すなわち、第1殺菌機62と第1除菌フィルタ63とによって構成される第1の殺菌セットと、第2殺菌機64と第2除菌フィルタ65とによって構成される第2の殺菌セットとを、混合対象原料の搬送方向に沿って、直列に配置できる。このため、一方の殺菌セットに何らかの異常が発生した場合であっても、混合対象原料の無菌性を保証できる。なお、殺菌セットは、混合対象原料又は最終製品(内容物)の無菌性保証レベル(SAL(Sterility Assurance Level))に合わせて、複数設けられていても良い(図2A1、図2A2、図2A4乃至図A7参照)。また、図2B等に示すように、殺菌セットの個数は、1つであっても良く、図示はしないが、殺菌セットの個数は、3つ以上であっても良い。 The second sterilization filter 65 is provided downstream of the second sterilizer 64. This second sterilization filter 65 is a filter that sterilizes the raw materials to be mixed by passing through the second sterilizer 64 and collecting bacteria remaining in the raw materials to be mixed. The opening of the second sterilizing filter 65 is preferably equal to or less than the opening of the first sterilizing filter 63. Thereby, even if bacteria in the raw materials to be mixed pass through the first sterilization filter 63, the second sterilization filter 65 can collect the bacteria. Therefore, the sterility of the raw materials to be mixed can be sufficiently ensured. In addition, when the opening of the second sterilizing filter 65 is equivalent to the opening of the first sterilizing filter 63, the sterilizing set consisting of the sterilizer and the sterilizing filter is moved in the direction of conveyance of the raw materials to be mixed. Two sets can be placed along the line. That is, a first sterilization set constituted by the first sterilizer 62 and the first sterilization filter 63, and a second sterilization set constituted by the second sterilizer 64 and the second sterilization filter 65. , can be arranged in series along the conveyance direction of the raw materials to be mixed. Therefore, even if some abnormality occurs in one of the sterilization sets, the sterility of the raw materials to be mixed can be guaranteed. Note that a plurality of sterilization sets may be provided depending on the sterility assurance level (SAL) of the raw materials to be mixed or the final product (contents) (Fig. 2A1, Fig. 2A2, Fig. 2A4 to Fig. 2A4). (See Figure A7). Moreover, as shown in FIG. 2B etc., the number of sterilization sets may be one, and although not shown, the number of sterilization sets may be three or more.
 第2除菌フィルタ65の目開きは、0.1μm以上0.45μm以下であっても良く、0.1μm以上0.22μm以下であることが好ましい。第2除菌フィルタ65の目開きが0.1μm以上であることにより、混合対象原料の殺菌効率の低下を抑制できる。また、第2除菌フィルタ65の目開きが0.45μm以下であることにより、混合対象原料に残存する菌を第2除菌フィルタ65によって更に効果的に捕集できる。第2除菌フィルタ65の濾過膜は、例えば、逆浸透膜(RO(Reverse Osmosis)膜)であっても良く、限界濾過膜(UF(Ultra-Filtration)膜)であっても良い。 The opening of the second sterilizing filter 65 may be 0.1 μm or more and 0.45 μm or less, and preferably 0.1 μm or more and 0.22 μm or less. By setting the opening of the second sterilization filter 65 to 0.1 μm or more, it is possible to suppress a decrease in the sterilization efficiency of the raw materials to be mixed. Further, since the opening of the second sterilizing filter 65 is 0.45 μm or less, the second sterilizing filter 65 can more effectively collect bacteria remaining in the raw materials to be mixed. The filtration membrane of the second sterilization filter 65 may be, for example, a reverse osmosis (RO) membrane or an ultra-filtration (UF) membrane.
 第2除菌フィルタ65のその他の構成は、第1除菌フィルタ63と略同一の構成としても良い。すなわち、第2除菌フィルタ65は、殺菌(SIP)可能であっても良い。また、第2除菌フィルタ65は、第2除菌フィルタ65の目開きに対する完全性試験を行うことが可能であっても良い。 Other configurations of the second sterilizing filter 65 may be substantially the same as those of the first sterilizing filter 63. That is, the second sterilization filter 65 may be sterilized (SIP). Further, the second sterilizing filter 65 may be capable of performing an integrity test on the opening of the second sterilizing filter 65.
 ここで、殺菌機60において、菌数レベルの目標値(FSO(Food Safety Objective/ISO13409-1996)(=logN))に基づいて、水の殺菌強度を調整しても良い。 Here, in the sterilizer 60, the sterilization strength of the water may be adjusted based on the target value of the bacterial count level (FSO (Food Safety Objective/ISO13409-1996) (=logN)).
 この場合、例えばフィルタ(例えば、第1除菌フィルタ63)に入る前の混合対象原料内の初発菌数レベルをH(=logN)とする。この場合、フィルタの初発菌数レベルHは、フィルタ(例えば、第1除菌フィルタ63)による除菌効果(水内の菌減少数レベル:ΣR(=log(N/NR)>0)によって減少する。なお、「N」は、水内の初発菌数を意味し、「NR」は、フィルタ(例えば、第1除菌フィルタ63)によって除菌された後の混合対象原料内の菌数を意味する。 In this case, for example, the initial bacterial count level in the raw materials to be mixed before entering the filter (for example, the first sterilization filter 63) is set as H 0 (=logN 0 ). In this case, the initial bacteria count level H 0 of the filter is the sterilization effect by the filter (for example, the first sterilization filter 63) (level of decrease in the number of bacteria in water: ΣR 1 (=log(N 0 /NR 1 )> 0). Note that "N 0 " means the initial number of bacteria in the water, and "NR 1 " means the number of bacteria to be mixed after being sterilized by a filter (for example, the first sterilization filter 63). It means the number of bacteria in the raw material.
 一方、フィルタを通過する間に、混合対象原料内の菌が、ある一定の割合で増加する場合も考えられる(混合対象原料内の菌増加数レベル:ΣI(=log(N)≧0))。なお、「N」は、フィルタを通過する間に増加した菌数を意味する。 On the other hand, it is possible that the bacteria in the raw materials to be mixed increase at a certain rate while passing through the filter (level of increase in the number of bacteria in the raw materials to be mixed: ΣI (=log(N I ) ≧ 0) ). Note that "N I " means the number of bacteria that increased while passing through the filter.
 また、混合対象原料内の菌は、殺菌機(例えば、第2殺菌機64)による殺菌効果(混合対象原料内の菌減少数レベル:ΣR(=log(N/NR)>0))によって再び減少する。殺菌機60を通過した後の混合対象原料内の菌数レベルが目標値(FSO(Food Safety Objective/ISO13409-1996)(=logN))以下であれば、混合対象原料殺菌ライン50によって殺菌された混合対象原料の無菌性には問題がないと考えることができる。なお、「NR」は、殺菌機(例えば、第2殺菌機64)によって殺菌された後の混合対象原料内の菌数を意味し、「N」は、殺菌機(例えば、第2殺菌機64)によって殺菌された後の混合対象原料内の菌数の目標値を意味する。 In addition, the bacteria in the raw materials to be mixed are sterilized by the sterilizer (for example, the second sterilizer 64) (level of reduction in the number of bacteria in the raw materials to be mixed: ΣR 2 (=log(N I /NR 2 )>0) ) decreases again. If the bacterial count level in the raw material to be mixed after passing through the sterilizer 60 is below the target value (FSO (Food Safety Objective/ISO13409-1996) (=logN)), the raw material to be mixed has been sterilized by the sterilization line 50. It can be considered that there is no problem with the sterility of the raw materials to be mixed. Note that " NR2 " means the number of bacteria in the raw material to be mixed after being sterilized by a sterilizer (for example, the second sterilizer 64), and "N" means the number of bacteria in the raw material to be mixed after being sterilized by the sterilizer (for example, the second sterilizer 64). 64) refers to the target value of the number of bacteria in the raw materials to be mixed after being sterilized.
 上述した、H、ΣR、ΣI、ΣR及びFSOの関係を式として表すと以下のようになる。 The above-mentioned relationship among H 0 , ΣR 1 , ΣI, ΣR 2 and FSO is expressed as the following equation.
 H-ΣR+ΣI-ΣR≦FSO・・・(式1) このため、ΣRの値が(H-ΣR+ΣI)-FSO以上となるように、殺菌機(例えば、第2殺菌機64)の殺菌能力を設定することにより、混合対象原料の無菌性を目標値(FSO)以下とすることが可能となる。 H 0 −ΣR 1 +ΣI−ΣR 2 ≦FSO (Formula 1 ) Therefore, the sterilizer (for example, the second sterilizer ) is By setting the sterilization capacity of the machine 64), it is possible to keep the sterility of the raw materials to be mixed below the target value (FSO).
 また、殺菌機60の入口、殺菌機60の出口、及び、異物除去フィルタ61と第1殺菌機62との間等には、混合対象原料を無菌的にサンプリングするためのサンプリングポイントSP1乃至SP6(SP)が設けられていても良い。また、このサンプリングポイントSP1乃至SP6のうちの少なくとも一部には、図示しないバルブを介して、サンプリングラインSLが接続されていても良い。これにより、サンプリングポイントSP1乃至SP6又はサンプリングラインSLから水を無菌的にサンプリングすることにより、水内の菌数を容易に測定できる。なお、サンプリングラインSLには、温度計Tが設けられていても良く、第1除菌フィルタ63及び第2除菌フィルタ65を蒸気によって殺菌する際に、温度計Tによって、蒸気の温度を監視しても良い。また、混合対象原料内の菌数を測定する場合、及び又は菌の繁殖といった状態変化を確認する場合、例えば、液をサンプリングし、平板培地を用いて菌数をカウントしても良い。また、例えば、混合対象原料内の菌数及び又は菌の状態変化は、微生物計測器(例えば、アズビル株式会社製、リアルタイム微生物ディテクタ、IMD-W(登録商標))、又は微粒子計測器(液中パーティクルカウンタ)等を用いて測定及び又は確認されても良い。 Additionally, sampling points SP1 to SP6 (for aseptically sampling the raw materials to be mixed) are located at the inlet of the sterilizer 60, the outlet of the sterilizer 60, and between the foreign matter removal filter 61 and the first sterilizer 62, etc. SP) may be provided. Further, a sampling line SL may be connected to at least some of the sampling points SP1 to SP6 via a valve (not shown). Thereby, the number of bacteria in the water can be easily measured by sampling the water aseptically from the sampling points SP1 to SP6 or the sampling line SL. Note that the sampling line SL may be provided with a thermometer T, and when the first sterilization filter 63 and the second sterilization filter 65 are sterilized with steam, the temperature of the steam is monitored by the thermometer T. You may do so. Furthermore, when measuring the number of bacteria in the raw material to be mixed and/or confirming a change in state such as proliferation of bacteria, for example, the liquid may be sampled and the number of bacteria may be counted using a plate medium. For example, the number of bacteria and/or changes in the state of bacteria in the raw materials to be mixed can be measured using a microbial measuring device (for example, Real-time Microbial Detector, IMD-W (registered trademark) manufactured by Azbil Corporation) or a particulate measuring device (in-liquid It may be measured and/or confirmed using a particle counter) or the like.
 このような殺菌機60の処理能力は、製品ボトル101の生産時に必要とされる最大処理能力の105%以上であることが好ましく、製品ボトル101の生産時に必要とされる最大処理能力の110%以上であることがより好ましい。例えば、殺菌機60の処理能力は、5m/h以上50m/h以下であっても良く、一例として、24m/hであっても良い。また、殺菌機60の処理能力が、製品ボトル101の生産時に必要とされる最大処理能力の105%以上である場合、製品ボトル101の生産時に、タンク52内に所定の量の水を貯留することもできる。この場合、タンク52の容積を適宜設計することにより、上述した第1除菌フィルタ63等の殺菌(SIP)又は完全性試験時であっても、混合対象原料を不足させることなく、製品ボトル101の生産、及び第1除菌フィルタ63等の殺菌(SIP)又は完全性試験を行うことができる。なお、第1除菌フィルタ63等の殺菌(SIP)の所要時間及び完全性試験の所要時間は、それぞれ約30分以上約1時間以下である。このため、タンク52の容積は、製品ボトル101を1時間生産する際に、内容物充填システム10において使用される混合対象原料の量以上としても良い。 The processing capacity of such a sterilizer 60 is preferably 105% or more of the maximum processing capacity required when producing the product bottles 101, and preferably 110% of the maximum processing capacity required when producing the product bottles 101. It is more preferable that it is above. For example, the processing capacity of the sterilizer 60 may be 5 m 3 /h or more and 50 m 3 /h or less, and may be 24 m 3 /h as an example. Further, when the processing capacity of the sterilizer 60 is 105% or more of the maximum processing capacity required when producing the product bottle 101, a predetermined amount of water is stored in the tank 52 when producing the product bottle 101. You can also do that. In this case, by appropriately designing the volume of the tank 52, even during sterilization (SIP) or integrity testing of the first sterilization filter 63, etc., the product bottle 101 can be used without causing a shortage of raw materials to be mixed. production, and sterilization (SIP) or integrity testing of the first sterilization filter 63 and the like. Note that the time required for sterilization (SIP) of the first sterilization filter 63 and the like and the time required for the integrity test are approximately 30 minutes or more and approximately 1 hour or less, respectively. Therefore, the volume of the tank 52 may be set to be greater than or equal to the amount of raw materials to be mixed that are used in the content filling system 10 when producing the product bottle 101 for one hour.
 また、殺菌機60の処理能力は、制御部90によって制御されても良い。例えば、制御部90は、内容物充填システム10を洗浄及び殺菌するために使用する水の量を決定するとともに、決定された混合対象原料の量に基づいて、混合対象原料殺菌ライン50の殺菌機60が製品ボトル101の生産中に殺菌する混合対象原料の量を決定しても良い。ここで、製品ボトル101の生産後に各チャンバ内等を洗浄及び又は殺菌するために必要な無菌水の量は、チャンバ等毎に把握可能である。このため、殺菌機60の処理能力は、製品ボトル101の生産後に使用する無菌水を、製品ボトル101を1ロット生産する間に蓄えられるように、制御部90によって制御されても良い。これにより、製品ボトル101の生産後に、直ちに各チャンバ内等を洗浄及び又は殺菌できる。このため、ダウンタイムを短縮できる。 Additionally, the processing capacity of the sterilizer 60 may be controlled by the control unit 90. For example, the control unit 90 determines the amount of water to be used for cleaning and sterilizing the content filling system 10, and also controls the sterilizer of the raw material sterilization line 50 based on the determined amount of raw materials to be mixed. 60 may determine the amount of raw materials to be mixed to be sterilized during production of the product bottle 101. Here, the amount of sterile water required for cleaning and/or sterilizing the inside of each chamber after producing the product bottle 101 can be determined for each chamber. Therefore, the processing capacity of the sterilizer 60 may be controlled by the control unit 90 so that sterile water to be used after producing the product bottles 101 can be stored while producing one lot of the product bottles 101. Thereby, after producing the product bottle 101, the inside of each chamber etc. can be immediately cleaned and/or sterilized. Therefore, downtime can be reduced.
 このような殺菌機60は、内容物充填システム10においてボトル100に内容物を充填することにより、製品ボトル101を生産している間、混合対象原料の殺菌を停止することなく、混合対象原料を殺菌し続けることが好ましい。これにより、第1除菌フィルタ63内及び第2除菌フィルタ65内で、菌が繁殖することを抑制できる。すなわち、殺菌機60内において、混合対象原料の流れが停止した場合、第1除菌フィルタ63内及び第2除菌フィルタ65内で、菌が増殖する可能性がある。これに対して、内容物充填システム10において製品ボトル101を生産している間、ポンプP1を停止することなく、混合対象原料を殺菌し続けることにより、第1除菌フィルタ63内及び第2除菌フィルタ65内で、菌が繁殖することを抑制できる。なお、内容物充填システム10において製品ボトル101を生産している間に、タンク52が満水になった場合には、殺菌された混合対象原料を循環系59A(図2A等参照)内で循環させても良い。これにより、タンク52が満水になった場合であっても、殺菌機60内において、混合対象原料の流れが停止することを抑制できる。このため、第1除菌フィルタ63内及び第2除菌フィルタ65内で、菌が繁殖することを抑制できる。なお、殺菌された混合対象原料の循環時間が長くなる場合、紫外線照射部67から照射された紫外線の照射エネルギーにより、殺菌された混合対象原料の温度が上昇する場合がある。この場合、循環ライン59を流れる混合対象原料を混合タンク51に戻すことなく、循環ライン59から排出しても良い。そして、純水製造装置50cから水タンク50aを介して混合タンク51に新しい純水を供給することにより、循環する混合対象原料の温度の上昇を抑制しても良い。 Such a sterilizer 60 fills the bottles 100 with contents in the content filling system 10, thereby sterilizing the raw materials to be mixed without stopping the sterilization of the raw materials to be mixed while producing the product bottles 101. It is preferable to continue sterilizing. Thereby, it is possible to suppress the proliferation of bacteria within the first sterilizing filter 63 and the second sterilizing filter 65. That is, when the flow of the raw materials to be mixed stops in the sterilizer 60, bacteria may grow in the first sterilizing filter 63 and the second sterilizing filter 65. On the other hand, while producing the product bottle 101 in the content filling system 10, by continuing to sterilize the raw materials to be mixed without stopping the pump P1, the inside of the first sterilization filter 63 and the second Propagation of bacteria within the bacteria filter 65 can be suppressed. Note that when the tank 52 becomes full of water while producing the product bottle 101 in the content filling system 10, the sterilized raw materials to be mixed are circulated in the circulation system 59A (see FIG. 2A, etc.). It's okay. Thereby, even when the tank 52 becomes full of water, it is possible to suppress the flow of the raw materials to be mixed from stopping within the sterilizer 60. Therefore, it is possible to suppress the proliferation of bacteria within the first sterilizing filter 63 and the second sterilizing filter 65. Note that when the circulation time of the sterilized raw materials to be mixed becomes long, the temperature of the sterilized raw materials to be mixed may rise due to the irradiation energy of the ultraviolet rays irradiated from the ultraviolet irradiation unit 67. In this case, the raw materials to be mixed flowing through the circulation line 59 may be discharged from the circulation line 59 without being returned to the mixing tank 51. Then, by supplying new pure water from the pure water production device 50c to the mixing tank 51 via the water tank 50a, the rise in temperature of the circulating raw materials to be mixed may be suppressed.
 ここで、図2Jに示すように、混合対象原料殺菌ライン50は、非無菌ゾーンZ1 と、第1グレーゾーンZ2と、第2グレーゾーンZ3と、無菌ゾーンZ4とに区画されている。非無菌ゾーンZ1、第1グレーゾーンZ2、第2グレーゾーンZ3及び無菌ゾーンZ4は、内容物の搬送方向に沿って、上流側から下流側に向けてこの順に設けられている。 Here, as shown in FIG. 2J, the raw material sterilization line 50 to be mixed is divided into a non-sterile zone Z1, a first gray zone Z2, a second gray zone Z3, and a sterile zone Z4. The non-sterile zone Z1, the first gray zone Z2, the second gray zone Z3, and the sterile zone Z4 are provided in this order from the upstream side to the downstream side along the content transport direction.
 このうち非無菌ゾーンZ1は、非無菌雰囲気下のゾーンであり、菌が存在し得るゾーンである。図示された例においては、非無菌ゾーンZ1は、前段殺菌機62Aよりも上流側の領域である。非無菌ゾーンZ1では、製品ボトル101の製造前に、混合タンク51、及び混合タンク51よりも下流側の流路が殺菌される。一方、製品ボトル101の製造開始後、混合タンク51よりも上流側から菌が持ち込まれることにより、混合タンク51等が菌によって汚染され得る。 Of these, the non-sterile zone Z1 is a zone under a non-sterile atmosphere, and is a zone where bacteria may exist. In the illustrated example, the non-sterile zone Z1 is an area upstream of the pre-sterilizer 62A. In the non-sterile zone Z1, the mixing tank 51 and the flow path downstream of the mixing tank 51 are sterilized before manufacturing the product bottle 101. On the other hand, after the production of the product bottle 101 is started, bacteria may be brought in from the upstream side of the mixing tank 51, so that the mixing tank 51 and the like may be contaminated with bacteria.
 第1グレーゾーンZ2及び第2グレーゾーンZ3は、それぞれ、非無菌雰囲気と無菌雰囲気とを隔絶するためのゾーンである。このうち第1グレーゾーンZ2は、除菌フィルタ通過菌を滅菌するゾーンである。第2グレーゾーンZ3は、製品ボトル101の製造時、除菌フィルタ通過菌が存在しない状態を維持するゾーンである。図示された例においては、第1グレーゾーンZ2は、前段殺菌機62Aから第2殺菌機64の出口までの領域である。また、第2グレーゾーンZ3は、第2殺菌機64の出口から第1無菌フィルタ63の入口までの領域である。ここで、混合対象原料殺菌ライン50に水を供給する純水製造装置50cは、混合対象原料殺菌ライン50に水を殺菌する前に殺菌(SIP)される。このとき、殺菌は、少なくとも除菌フィルタ通過菌を殺菌可能な条件で行われる。殺菌に使用する蒸気又は熱水の温度及び殺菌時間は、少なくとも60℃以上、5分以上であっても良く、好ましくは85℃、30分以上である。殺菌に使用する蒸気又は熱水の温度及び殺菌時間は、殺菌価がZ=5℃と同等の条件である90℃、3分としても良い。また、殺菌条件は、殺菌に使用する蒸気又は熱水の温度及び殺菌時間が95℃、0.3分である高温短時間の条件でも良い。一方、これらの殺菌条件における殺菌価では、一般的に細菌芽胞は殺菌できない。よって、第1無菌フィルタ63の手前までの領域では、細菌芽胞が存在し得る。このため、前段殺菌機62Aから第1無菌フィルタ63の手前までの領域をグレーゾーンと呼ぶ。純水製造装置50cの殺菌後、第2グレーゾーンZ3に常時水を供給し続けることにより、第2グレーゾーンZ3が陽圧状態に維持される。これにより、第2グレーゾーンZ3において、除菌フィルタ通過菌が存在しない状態が維持される。なお、第2グレーゾーンZ3の陽圧状態は、圧力計(図示せず)で管理する。除菌フィルタ通過菌の殺菌方法は、蒸気又は熱水に限らない。除菌フィルタ通過菌を不活化する薬剤等でも構わない。 The first gray zone Z2 and the second gray zone Z3 are zones for separating a non-sterile atmosphere and a sterile atmosphere, respectively. Among these, the first gray zone Z2 is a zone where bacteria passing through the sterilization filter are sterilized. The second gray zone Z3 is a zone in which no bacteria passing through the sterilization filter is maintained during production of the product bottle 101. In the illustrated example, the first gray zone Z2 is an area from the front sterilizer 62A to the outlet of the second sterilizer 64. Further, the second gray zone Z3 is an area from the outlet of the second sterilizer 64 to the inlet of the first sterile filter 63. Here, the pure water production device 50c that supplies water to the raw material sterilization line 50 to be mixed is sterilized (SIP) before sterilizing water to the raw material sterilization line 50 to be mixed. At this time, sterilization is performed under conditions that can kill at least bacteria that pass through the sterilization filter. The temperature of steam or hot water used for sterilization and the sterilization time may be at least 60° C. and 5 minutes or more, preferably 85° C. and 30 minutes or more. The temperature and sterilization time of steam or hot water used for sterilization may be 90° C. and 3 minutes, which are conditions equivalent to a sterilization value of Z=5° C. Furthermore, the sterilization conditions may be high temperature and short time conditions such as the temperature of steam or hot water used for sterilization and the sterilization time of 95° C. and 0.3 minutes. On the other hand, the bactericidal activity under these sterilizing conditions generally does not kill bacterial spores. Therefore, bacterial spores may exist in the area up to this side of the first sterile filter 63. Therefore, the area from the front sterilizer 62A to just before the first sterile filter 63 is called a gray zone. After the pure water production device 50c is sterilized, the second gray zone Z3 is maintained in a positive pressure state by continuously supplying water to the second gray zone Z3. As a result, in the second gray zone Z3, a state in which no bacteria pass through the sterilization filter is maintained. Note that the positive pressure state of the second gray zone Z3 is managed by a pressure gauge (not shown). The method of sterilizing bacteria that passes through the sterilizing filter is not limited to steam or hot water. A drug or the like that inactivates bacteria passing through the sterilization filter may also be used.
 無菌ゾーンZ4は、無菌雰囲気下のゾーンである。すなわち、無菌ゾーンZ4は、無菌状態に保持されたゾーンである。図示された例においては、無菌ゾーンZ4は、第1無菌フィルタ63よりも下流側の領域である。無菌ゾーンZ4には、各機器を蒸気又は熱水で殺菌(SIP/F≧3以上、Z=10℃)することにより細菌芽胞を含めた全ての菌を殺菌した後、無菌エア又は無菌水が供給される。無菌ゾーンZ4のSIPは、少なくとも第2グレーゾーンZ3との境界面までを行う。無菌ゾーンZ4を殺菌するとき、無菌ゾーンZ4とともに、第2グレーゾーンZ3の配管もSIPしても良い。これにより、無菌ゾーンZ4が陽圧状態に維持され、無菌ゾーンZ4が無菌状態に保持される。 Aseptic zone Z4 is a zone under an aseptic atmosphere. That is, the sterile zone Z4 is a zone maintained in a sterile state. In the illustrated example, the sterile zone Z4 is a region downstream of the first sterile filter 63. In sterile zone Z4, all bacteria including bacterial spores are sterilized by sterilizing each device with steam or hot water (SIP/F 0 ≥ 3, Z = 10°C), and then sterile air or sterile water is added. is supplied. SIP of the sterile zone Z4 is performed at least up to the interface with the second gray zone Z3. When sterilizing the sterile zone Z4, the piping of the second gray zone Z3 may also be SIPed together with the sterile zone Z4. Thereby, the sterile zone Z4 is maintained in a positive pressure state, and the sterile zone Z4 is maintained in a sterile state.
 これらの非無菌ゾーンZ1、第1グレーゾーンZ2、第2グレーゾーンZ3及び無菌ゾーンZ4のうち、第1グレーゾーンZ2では、内容物に対して紫外線が照射され得る。第1グレーゾーンZ2において、前段殺菌機62Aによる水に対する紫外線の積算照射量は、少なくとも10mJ/cm以上であっても良く、好ましくは100mJ/cm以上であっても良い。この場合、前段殺菌機62Aは、低圧水銀ランプを含んでいても良い。また、第1グレーゾーンZ2において、第1殺菌機62及び第2殺菌機64による水に対する紫外線の合計積算照射量は、100mJ/cm以上であっても良い。このように、第1殺菌機62及び第2殺菌機64による水に対する紫外線の合計積算照射量が100mJ/cm以上であることにより、第1グレーゾーンZ2において、除菌フィルタ通過菌を殺菌できる。このため、第2グレーゾーンZ3における水の無菌性を保証できる。この場合、第1殺菌機62及び第2殺菌機64は、それぞれ中圧水銀ランプを含んでいても良い。 Among these non-sterile zone Z1, first gray zone Z2, second gray zone Z3, and sterile zone Z4, the contents can be irradiated with ultraviolet rays in the first gray zone Z2. In the first gray zone Z2, the cumulative irradiation amount of ultraviolet rays applied to water by the first stage sterilizer 62A may be at least 10 mJ/cm 2 or more, and preferably 100 mJ/cm 2 or more. In this case, the pre-sterilizer 62A may include a low-pressure mercury lamp. Further, in the first gray zone Z2, the total cumulative irradiation amount of ultraviolet rays to water by the first sterilizer 62 and the second sterilizer 64 may be 100 mJ/cm 2 or more. In this way, since the total cumulative irradiation amount of ultraviolet rays to the water by the first sterilizer 62 and the second sterilizer 64 is 100 mJ/cm 2 or more, it is possible to sterilize bacteria that pass through the sterilizing filter in the first gray zone Z2. . Therefore, the sterility of the water in the second gray zone Z3 can be guaranteed. In this case, the first sterilizer 62 and the second sterilizer 64 may each include a medium pressure mercury lamp.
 第1グレーゾーンZ2において、第1殺菌機62及び第2殺菌機64による内容物に対する紫外線の合計積算照射量が100mJ/cm2未満である場合、第1除去フィルタ63に供給される前の内容物を循環ライン95によって循環させても良い。これにより、除菌フィルタ通過菌が存在し得る内容物が、第1除菌フィルタ63に供給されることを防止できる。このため、無菌ゾーンZ4における内容物の無菌性を保証できる。また、この場合、内容物を無菌ゾーンZ4(第1除菌フィルタ63)に供給する前に、前段殺菌機62A、異物除去フィルタ61、第1殺菌機62及び第2殺菌機64を殺菌(SIP)しても良い。 In the first gray zone Z2, if the total cumulative irradiation amount of ultraviolet rays to the contents by the first sterilizer 62 and the second sterilizer 64 is less than 100 mJ/cm2, the contents before being supplied to the first removal filter 63 may be circulated by a circulation line 95. This can prevent contents in which bacteria passing through the sterilization filter may exist from being supplied to the first sterilization filter 63 . Therefore, the sterility of the contents in the sterile zone Z4 can be guaranteed. In this case, before supplying the contents to the sterile zone Z4 (first sterilization filter 63), the front sterilizer 62A, the foreign matter removal filter 61, the first sterilizer 62, and the second sterilizer 64 are sterilized (SIP). ) may be done.
 また、第1除菌フィルタ63及び第2除菌フィルタ65のうちの少なくとも一方において、後述する生産前後の完全性試験(第1完全性試験及び第2完全性試験)の試験結果が合格であることが好ましい。これにより、第1除菌フィルタ63及び第2除菌フィルタ65のうちの少なくとも一方により、除菌フィルタ通過菌以外の菌を濾過滅菌できる。このため、無菌ゾーンZ4における内容物の無菌性を保証できる。なお、第1除菌フィルタ63及び第2除菌フィルタ65において、生産前後の完全性試験結果が不合格である場合、異物除去フィルタ61として、例えば目開きが0.1μm以上0.22μm以下である無菌グレードのフィルタを使用されても良い。この場合、異物除去フィルタ61において、生産前後の完全性試験結果が合格であることが好ましい。これにより、異物除去フィルタ61により、除菌フィルタ通過菌以外の菌を濾過滅菌でき、無菌ゾーンZ4における内容物の無菌性を保証できる。 Further, in at least one of the first sterilizing filter 63 and the second sterilizing filter 65, the test result of the integrity test before and after production (first integrity test and second integrity test) described below is passed. It is preferable. As a result, at least one of the first sterilizing filter 63 and the second sterilizing filter 65 can filter and sterilize bacteria other than those passing through the sterilizing filter. Therefore, the sterility of the contents in the sterile zone Z4 can be guaranteed. In addition, if the integrity test results before and after production of the first sterilizing filter 63 and the second sterilizing filter 65 fail, the foreign matter removing filter 61 may be a filter with an opening of, for example, 0.1 μm or more and 0.22 μm or less. Certain sterile grade filters may be used. In this case, it is preferable that the foreign matter removal filter 61 pass the integrity test results before and after production. Thereby, the foreign matter removal filter 61 can filter and sterilize bacteria other than bacteria that have passed through the sterilization filter, and the sterility of the contents in the sterile zone Z4 can be guaranteed.
 このように、本実施の形態による混合対象原料殺菌ライン50の殺菌機60においては、生産中、紫外線の照射量が所定の値以上又は所定の範囲内であったこと、及び、生産開始前後の完全性試験結果が合格であることにより、水の無菌性が担保される。 As described above, in the sterilizer 60 of the mixing target material sterilization line 50 according to the present embodiment, during production, the amount of ultraviolet irradiation is equal to or higher than a predetermined value or within a predetermined range, and If the integrity test result passes, the sterility of the water is ensured.
(他の原料殺菌ライン70)
 次に、他の原料殺菌ライン70について説明する。他の原料殺菌ライン70は、内容物の原料のうち対象原料以外の他の原料を加熱殺菌する殺菌ラインである。
(Other raw material sterilization line 70)
Next, another raw material sterilization line 70 will be explained. The other raw material sterilization line 70 is a sterilization line that heat-sterilizes other raw materials other than the target raw material among the raw materials in the contents.
 図7に示すように、他の原料殺菌ライン70は、他の原料タンク71からの他の原料を加熱殺菌する原料殺菌機80を有し、原料殺菌機80の下流側に原料タンク72が設置されている。他の原料タンク71、原料殺菌機80及び原料タンク72は、他の原料の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。第3段冷却部86から原料タンク72へ送液せずに、他の原料を他の原料タンク71に戻す、循環ライン89が接続されていても良い。 As shown in FIG. 7, the other raw material sterilization line 70 has a raw material sterilizer 80 that heat-sterilizes other raw materials from other raw material tanks 71, and a raw material tank 72 is installed downstream of the raw material sterilizer 80. has been done. The other raw material tank 71, the raw material sterilizer 80, and the raw material tank 72 are arranged in this order from the upstream side to the downstream side along the conveyance direction of other raw materials. A circulation line 89 may be connected that returns other raw materials to other raw material tanks 71 without sending the liquid from the third stage cooling section 86 to the raw material tanks 72.
 他の原料タンク71は、図示しない供給源から供給された他の原料を貯留するタンクである。この他の原料タンク71は、他の原料を貯留することにより、他の原料の流れを円滑にする役割を果たす。他の原料タンク71の容積は、0.3m以上3m以下であっても良く、一例として、1mであっても良い。 The other raw material tank 71 is a tank that stores other raw materials supplied from a supply source (not shown). This other raw material tank 71 plays a role of smoothing the flow of other raw materials by storing other raw materials. The volume of the other raw material tank 71 may be 0.3 m 3 or more and 3 m 3 or less, and may be 1 m 3 as an example.
 この他の原料タンク71の下流側には、他の原料を搬送するためのポンプP3が設けられていても良い。また、ポンプP3の下流側には、上述した他の原料殺菌ライン70を構成する原料殺菌機80が設けられている。 A pump P3 for conveying other raw materials may be provided downstream of this other raw material tank 71. Furthermore, a raw material sterilizer 80 that constitutes the other raw material sterilization line 70 described above is provided downstream of the pump P3.
 原料殺菌機80は、他の原料タンク71に貯留された他の原料を加熱殺菌する殺菌機である。本実施の形態では、原料殺菌機80は、超高温加熱処理法によって他の原料を殺菌する殺菌機(Ultra High-temperature、以下、単にUHTと記す)であっても良い。このUHT80は、第1段加熱部81と、第2段加熱部82と、ホールディングチューブ83と、第1段冷却部84と、第2段冷却部85、第3段冷却部86とを有している。UHT80に供給された他の原料は、第1段加熱部81及び第2段加熱部82によって徐々に加熱され、ホールディングチューブ83内で目標温度まで加熱される。この場合、例えば他の原料は、第1段加熱部81によって60℃以上80℃以下に加熱され、第2段加熱部82によって80℃以上150℃以下に加熱されても良い。また、ホールディングチューブ83内で、他の原料の温度が一定時間保持される。ホールディングチューブ83内を通過した他の原料は、第1段冷却部84、第2段冷却部85及び第3段冷却部86によって徐々に冷却される。なお、加熱部や冷却部の段数は必要に応じて増減される。また、第1段加熱部81と第2段加熱部82との間において、他の原料の圧力損失が高くなり得る。このため、第1段加熱部81と第2段加熱部82との間に、追加のポンプ(図示せず)が設けられていても良い。また、第1段加熱部81と第2段加熱部82との間、又は第1段冷却部84と第2段冷却部85との間等に、他の原料を均質化するためのホモゲナイザーが設けられても良い。 The raw material sterilizer 80 is a sterilizer that heat-sterilizes other raw materials stored in other raw material tanks 71. In this embodiment, the raw material sterilizer 80 may be a sterilizer (Ultra High-temperature, hereinafter simply referred to as UHT) that sterilizes other raw materials using an ultra-high-temperature heat treatment method. This UHT 80 includes a first stage heating section 81, a second stage heating section 82, a holding tube 83, a first stage cooling section 84, a second stage cooling section 85, and a third stage cooling section 86. ing. Other raw materials supplied to the UHT 80 are gradually heated by the first-stage heating section 81 and the second-stage heating section 82, and are heated to a target temperature within the holding tube 83. In this case, for example, the other raw materials may be heated to 60° C. or more and 80° C. or less by the first stage heating section 81, and may be heated to 80° C. or more and 150° C. or less by the second stage heating section 82. Further, the temperature of other raw materials is maintained within the holding tube 83 for a certain period of time. Other raw materials that have passed through the holding tube 83 are gradually cooled by the first stage cooling section 84, the second stage cooling section 85, and the third stage cooling section 86. Note that the number of stages of the heating section and the cooling section may be increased or decreased as necessary. Moreover, pressure loss of other raw materials may become high between the first-stage heating section 81 and the second-stage heating section 82. For this reason, an additional pump (not shown) may be provided between the first stage heating section 81 and the second stage heating section 82. Further, a homogenizer for homogenizing other raw materials is provided between the first stage heating section 81 and the second stage heating section 82 or between the first stage cooling section 84 and the second stage cooling section 85. It may be provided.
 このようなUHT80の処理能力は、3m/h以上30m/h以下であっても良く、一例として、6m/hであっても良い。 The processing capacity of such UHT80 may be 3 m 3 /h or more and 30 m 3 /h or less, and may be 6 m 3 /h as an example.
 また、UHT80のうち、最も高温となる場所(例えば、第2段加熱部82)の温度をモニタリングすることにより、UHT80に付着したスケール(カルシウム等の堆積物)を監視しても良い。そして、UHT80を洗浄(CIP)する際に、スケールの除去状態をモニタリングしても良い。これにより、UHT80を洗浄する洗浄工程の最適化を図ることができる。このため、洗浄時間を短縮できるとともに、洗浄に使用する水、蒸気及び洗浄剤の使用量を低減できる。この結果、内容物充填システム10が排出する二酸化炭素の排出量を低減できる。 Furthermore, scale (deposits such as calcium) adhering to the UHT 80 may be monitored by monitoring the temperature of the highest temperature part of the UHT 80 (for example, the second stage heating section 82). Then, when cleaning (CIP) the UHT 80, the state of scale removal may be monitored. Thereby, the cleaning process for cleaning the UHT 80 can be optimized. Therefore, the cleaning time can be shortened, and the amount of water, steam, and cleaning agent used for cleaning can be reduced. As a result, the amount of carbon dioxide emitted by the content filling system 10 can be reduced.
 なお、UHT80はインジェクション方式でもインフュージョン方式でも良い。また、UHT80の熱交換器等、内容物充填システム10において熱交換を行うために使用される熱交換機はプレート式でもシェル&チューブ式でも良い。また熱交換器として、シェル&チューブ式のものを用いる場合、シェルの媒体側を水や温水を循環させながら昇温・冷却する型式のものを用いても良く、他の原料同士(製品同士)で熱交換させる形式のもの(液-液交換)を用いても良い。 Note that the UHT80 may be an injection method or an infusion method. Further, the heat exchanger used for heat exchange in the content filling system 10, such as the UHT80 heat exchanger, may be of a plate type or a shell and tube type. In addition, when using a shell and tube type heat exchanger, a type that heats up and cools down while circulating water or hot water through the medium side of the shell may be used, and other raw materials (products) A type of heat exchange (liquid-liquid exchange) may also be used.
 また、上述した実施の形態において、他の原料を加熱殺菌する原料殺菌機80が、UHTである例について説明したが、これに限られない。例えば、原料殺菌機80が、他の原料に直接通電し、自己発熱させるオーミック(ジュール式)加熱殺菌機であっても良い。また、原料殺菌機80は、マイクロ波(915MHz、2450MHz)を用いて他の原料を殺菌する殺菌機であっても良い。この場合、マイクロ波は、他の原料中の原液又は固形物が通過する配管の外部から照射されても良い。これにより、他の原料中の原液又は固形物の温度を上昇させることができ、他の原料中の原液又は固形物を殺菌できる。これらの場合においても、内容物充填システム10が排出する二酸化炭素の排出量を低減できる。 Furthermore, in the embodiment described above, an example has been described in which the raw material sterilizer 80 that heat-sterilizes other raw materials is a UHT, but the present invention is not limited to this. For example, the raw material sterilizer 80 may be an ohmic (Joule type) heat sterilizer that directly applies electricity to other raw materials and causes them to self-generate heat. Further, the raw material sterilizer 80 may be a sterilizer that sterilizes other raw materials using microwaves (915 MHz, 2450 MHz). In this case, the microwave may be irradiated from outside the piping through which the undiluted solution or solid matter in other raw materials passes. Thereby, the temperature of the stock solution or solid material in other raw materials can be raised, and the stock solution or solid material in other raw materials can be sterilized. Even in these cases, the amount of carbon dioxide emitted by the content filling system 10 can be reduced.
 原料タンク72は、原料殺菌機80によって殺菌された他の原料を貯留するタンク(いわゆるアセプティックタンク)である。この原料タンク72は、殺菌された他の原料を貯留することにより、他の原料の流れを円滑にする役割を果たす。原料タンク72の容積は、1m以上20m以下であっても良く、一例として、2mであっても良い。 The raw material tank 72 is a tank (so-called aseptic tank) that stores other raw materials sterilized by the raw material sterilizer 80. This raw material tank 72 plays the role of smoothing the flow of other raw materials by storing other sterilized raw materials. The volume of the raw material tank 72 may be 1 m 3 or more and 20 m 3 or less, and may be 2 m 3 as an example.
 また、原料タンク72を設けず、混合タンク55のみで構成しても良い。またタンク52と原料タンク72を其々もう1基設けても良い。 Alternatively, the raw material tank 72 may not be provided and the mixing tank 55 may be used alone. Moreover, one more tank 52 and one more raw material tank 72 may be provided.
 さらに、混合タンク55の下流側に、異物を濾過する補助フィルタ53と、補助フィルタ53を通過した最終製品液を貯留する充填機タンク57とが設けられていても良い。補助フィルタ53は充填装置21の先端に設けても良い(図示なし)。充填機タンク57は、充填装置21の能力が可変しても液不足にならず充填量、充填精度を確保する、いわゆるクッションタンクとしての役割を果たす。充填機タンク57の容積は、0.1m以上1m以下であっても良く、一例として、0.3mであっても良い。 Further, on the downstream side of the mixing tank 55, an auxiliary filter 53 for filtering out foreign substances and a filling machine tank 57 for storing the final product liquid that has passed through the auxiliary filter 53 may be provided. The auxiliary filter 53 may be provided at the tip of the filling device 21 (not shown). The filling machine tank 57 serves as a so-called cushion tank that does not cause a shortage of liquid even if the capacity of the filling device 21 is varied and ensures the filling amount and filling accuracy. The volume of the filling machine tank 57 may be 0.1 m 3 or more and 1 m 3 or less, and may be 0.3 m 3 as an example.
 他の原料に対して固形物を添加する添加ユニット75が連結されていても良い。これにより、内容物充填システム10において、固形物入りの内容物をボトル100に充填できる。この場合、添加ユニット75が他の原料に対して添加する固形物としては、例えば、さのう、ナタデココ、タピオカ又はアロエ等であっても良い。また、固形物は、予め殺菌された無菌の固形物であっても良い。さらに、固形物以外に無菌あるいは非無菌の香料、酸味料、着色料を添加ユニット75から他の原料に対して、定量的に添加しても良い。 An addition unit 75 that adds solids to other raw materials may be connected. Thereby, in the content filling system 10, the bottle 100 can be filled with a solid content. In this case, the solid matter added by the addition unit 75 to the other raw materials may be, for example, canard, nata de coco, tapioca, or aloe. Further, the solid material may be a sterile solid material that has been sterilized in advance. Furthermore, in addition to the solids, sterile or non-sterile flavorings, acidulants, and colorants may be quantitatively added to other raw materials from the addition unit 75.
<内容物充填方法>
 次に、上述した内容物充填システム10(図1Aおよび図1B)を用いた内容物充填方法について、図8により説明する。
<Content filling method>
Next, a content filling method using the above-described content filling system 10 (FIGS. 1A and 1B) will be described with reference to FIG. 8.
 まず、プリフォーム供給装置1により、プリフォーム供給コンベア2を介して、複数のプリフォーム100aが、プリフォーム搬送部31の受取部34に順次供給される(プリフォーム供給工程、図8の符号S1)。この際、プリフォーム100aは、プリフォーム殺菌装置34aにおいて、プリフォーム100aに対して過酸化水素のガス又はミストを吹き付けることによって殺菌処理された後、ホットエアで乾燥される。 First, the preform supply device 1 sequentially supplies a plurality of preforms 100a to the receiving section 34 of the preform conveyance section 31 via the preform supply conveyor 2 (preform supply step, reference numeral S1 in FIG. 8). ). At this time, the preform 100a is sterilized in the preform sterilizer 34a by spraying hydrogen peroxide gas or mist onto the preform 100a, and then dried with hot air.
 次に、プリフォーム100aは、加熱部35に送られ、ヒーター35aにより、例えば90℃以上130℃以下程度に加熱される。次いで、加熱部35により加熱されたプリフォーム100aは、受渡部36に送られる。そして、プリフォーム100aは、受渡部36からブロー成形部32に送られる。 Next, the preform 100a is sent to the heating section 35, and heated by the heater 35a to, for example, about 90° C. or higher and 130° C. or lower. Next, the preform 100a heated by the heating section 35 is sent to the delivery section 36. The preform 100a is then sent from the delivery section 36 to the blow molding section 32.
 次いで、ブロー成形部32に送られたプリフォーム100aに対して、図示しない金型を用いてブロー成形を施すことにより、ボトル100がブロー成形される(ボトル成形工程、図8の符号S2)。そして、ブロー成形されたボトル100は、ボトル搬送部33に送られる。 Next, the bottle 100 is blow-molded by blow-molding the preform 100a sent to the blow-molding section 32 using a mold (not shown) (bottle-molding process, reference numeral S2 in FIG. 8). The blow-molded bottle 100 is then sent to the bottle transport section 33.
 次に、殺菌装置11において、ボトル100に対して殺菌剤である過酸化水素水溶液を用いて殺菌処理が行われる(容器殺菌工程、図8の符号S3)。このとき、殺菌剤は、過酸化水素水溶液を一旦沸点以上で気化させたガス又はミストであっても良い。過酸化水素水溶液のガス又はミストは、ボトル100の内面及び外面に付着し、ボトル100の内外面を殺菌する。 Next, in the sterilizer 11, the bottle 100 is sterilized using an aqueous hydrogen peroxide solution that is a sterilizer (container sterilization step, reference numeral S3 in FIG. 8). At this time, the disinfectant may be a gas or a mist obtained by once vaporizing an aqueous hydrogen peroxide solution at a temperature above the boiling point. The gas or mist of the aqueous hydrogen peroxide solution adheres to the inner and outer surfaces of the bottle 100 and sterilizes the inner and outer surfaces of the bottle 100.
 続いて、ボトル100は、エアリンス装置14に送られる。エアリンス装置14において、ボトル100に対して無菌の加熱エア又は常温エアが供給されることにより、過酸化水素の活性化が行われ、かつ、ボトル100から異物及び過酸化水素等が除去される(エアリンス工程、図8の符号S4)。なお、エアリンス工程において、必要に応じて、無菌の加熱エア又は常温の無菌化されたエアに、低濃度の過酸化水素の凝結ミストを混ぜても良い。この場合、過酸化水素は、無菌エアによってガス化される。そして、エアリンス工程において、ガス化された過酸化水素をボトル100に供給しても良い。 Next, the bottle 100 is sent to the air rinse device 14. In the air rinse device 14, sterile heated air or room temperature air is supplied to the bottle 100, thereby activating hydrogen peroxide and removing foreign matter, hydrogen peroxide, etc. from the bottle 100. Air rinse step, reference numeral S4 in FIG. 8). In addition, in the air rinsing process, a condensed mist of low concentration hydrogen peroxide may be mixed with sterile heated air or sterilized air at room temperature, if necessary. In this case, hydrogen peroxide is gasified by sterile air. Then, in the air rinse step, gasified hydrogen peroxide may be supplied to the bottle 100.
 続いて、ボトル100は、充填装置21に搬送される。 Subsequently, the bottle 100 is transported to the filling device 21.
 この間、混合対象原料殺菌ライン50により非加熱殺菌された混合対象原料と、他の原料殺菌ライン70により加熱殺菌された他の原料が混合タンク55において混合されて、内容物が生成される(内容物生成工程、図8の符号S5)。非加熱殺菌された混合対象原料と他の原料を混合タンク55で混合させる方法について説明する。はじめに非加熱殺菌された混合対象原料を混合タンク55に受け入れ、次に加熱殺菌された他の原料を混合タンク55に受け入れる。混合タンク55に液を受け入れる順番は、非加熱殺菌された混合対象原料が先でも加熱殺菌された他の原料が先でも良い。また、混合対象原料殺菌ライン50と他の原料殺菌ライン70の其々の流量計の指示値を利用し、それぞれの液を同時に混合タンク55に一定の割合(適切な流量比)で受け入れても良い。液を受け入れる際は、混合タンク55内のアジテーター(図示せず)で撹拌すると良い。また混合タンク55内に糖度計、比重計等の混合割合が所定の範囲内に入っているかモニタリングし、其々の液の送液流量やタンク受け入れ量に反映させると良い。混合タンク55を複数設置することで、加熱殺菌及び非加熱殺菌された其々の液の送液を循環ライン59で待機運転させることなく、次々に混合タンク55へ送液できるため、製品液の歩留まりが改善される(図10に示す第2の実施の形態参照)。また、混合タンク55の下流に複数の充填機を設置した場合や充填機の能力が可変した場合にも、複数の混合タンクがバッファーとなり稼働率の低下を避けることができる。
 次に充填装置21において、ボトル100は回転(公転)されながら、その口部からボトル100内へ混合タンク55で生成された内容物が充填される(内容物充填工程、図8の符号S6)。
During this time, the raw material to be mixed that has been non-heat sterilized by the raw material sterilization line 50 and other raw materials that have been heat sterilized by the other raw material sterilization line 70 are mixed in the mixing tank 55 to produce the contents. product production step, reference numeral S5 in FIG. 8). A method of mixing non-heat sterilized raw materials to be mixed with other raw materials in the mixing tank 55 will be described. First, non-heat sterilized raw materials to be mixed are received into the mixing tank 55, and then other heat sterilized raw materials are received into the mixing tank 55. The order in which liquids are received into the mixing tank 55 may be the non-heat sterilized raw materials to be mixed first or the heat sterilized other raw materials. Alternatively, by using the indicated values of the flow meters of the raw material sterilization line 50 to be mixed and the other raw material sterilization line 70, each liquid may be simultaneously received into the mixing tank 55 at a constant rate (appropriate flow rate ratio). good. When receiving the liquid, it is preferable to stir it with an agitator (not shown) in the mixing tank 55. Further, it is preferable to monitor whether the mixing ratio is within a predetermined range using a saccharimeter, hydrometer, etc. in the mixing tank 55, and to reflect this in the flow rate of each liquid sent and the amount received in the tank. By installing a plurality of mixing tanks 55, the heat sterilized and non-heat sterilized liquids can be sent to the mixing tanks 55 one after another without having to standby in the circulation line 59. Yield is improved (see second embodiment shown in FIG. 10). Further, even when a plurality of filling machines are installed downstream of the mixing tank 55 or when the capacity of the filling machine is changed, the plurality of mixing tanks act as a buffer and can avoid a decrease in the operating rate.
Next, in the filling device 21, the contents generated in the mixing tank 55 are filled into the bottle 100 from its mouth while the bottle 100 is rotated (revolution) (contents filling step, reference numeral S6 in FIG. 8). .
 なお、他の原料殺菌ライン70により他の原料を加熱する加熱温度は、一般的に内容物の酸性度がpH4.5未満の場合は60℃以上120℃以下程度であっても良く、加熱時間は、30秒以上120秒以下程度であっても良い。また、内容物の酸性度がpH4.5以上の場合は、他の原料を加熱する加熱温度は、115℃以上150℃以下程度であっても良い。また、加熱時間は、30秒以上120秒以下程度であっても良い。これにより、充填前の内容物中の微生物のうち、製品ボトル101内で発育しうる微生物が、全て殺菌される。加熱殺菌処理された他の原料は、3℃以上かつ40℃以下程度の温度まで冷却される。 In addition, the heating temperature at which other raw materials are heated by the other raw material sterilization line 70 may generally be about 60°C or more and 120°C or less when the acidity of the contents is less than pH 4.5, and the heating time may be approximately 30 seconds or more and 120 seconds or less. Moreover, when the acidity of the contents is pH 4.5 or higher, the heating temperature for heating other raw materials may be approximately 115° C. or higher and 150° C. or lower. Further, the heating time may be about 30 seconds or more and 120 seconds or less. This sterilizes all microorganisms that could grow inside the product bottle 101 among the microorganisms in the contents before filling. The other raw materials that have been heat sterilized are cooled to a temperature of approximately 3°C or higher and 40°C or lower.
 充填装置21においては、ボトル100に、上記殺菌処理され混合タンク55内で常温まで冷やされた内容物が常温で充填される。充填時の内容物の温度は、例えば3℃以上かつ40℃以下程度である。充填装置21において、内容物の充填速度は30mL/sec以上400mL/sec以下であっても良い。 In the filling device 21, the bottle 100 is filled at room temperature with the contents that have been sterilized and cooled to room temperature in the mixing tank 55. The temperature of the contents during filling is, for example, approximately 3°C or higher and 40°C or lower. In the filling device 21, the filling speed of the contents may be 30 mL/sec or more and 400 mL/sec or less.
 続いて、内容物が充填されたボトル100は、搬送ホイール12によってキャップ装着装置16に搬送される。 Subsequently, the bottle 100 filled with the contents is transported to the cap attachment device 16 by the transport wheel 12.
 一方、キャップ88は、予めキャップ殺菌装置18によって殺菌処理される(キャップ殺菌工程、図8の符号S7)。この間、まずキャップ88は、内容物充填システム10の外部からキャップ殺菌装置18に搬入される。続いて、キャップ88は、キャップ殺菌装置18において、過酸化水素のガス又はミストが吹き付けられて、その内外面が殺菌処理された後、ホットエアで乾燥し、キャップ装着装置16に送られる。 On the other hand, the cap 88 is sterilized in advance by the cap sterilizer 18 (cap sterilization process, reference numeral S7 in FIG. 8). During this time, the cap 88 is first introduced into the cap sterilizer 18 from outside the filling system 10 . Next, the cap 88 is sprayed with hydrogen peroxide gas or mist in the cap sterilizer 18 to sterilize its inner and outer surfaces, dried with hot air, and sent to the cap attachment device 16 .
 次いで、キャップ装着装置16において、充填装置20から搬送されてきたボトル100の口部に殺菌済みのキャップ88を装着することにより、ボトル100が閉栓され製品ボトル101が得られる(キャップ装着工程、図8の符号S8)。 Next, in the cap attaching device 16, the sterilized cap 88 is attached to the mouth of the bottle 100 conveyed from the filling device 20, whereby the bottle 100 is closed and a product bottle 101 is obtained (cap attaching step, Fig. 8 code S8).
 その後、製品ボトル101は、キャップ装着装置16から製品ボトル搬出部25へ搬送され、内容物充填システム10の外部へ向けて搬出される(ボトル排出工程、図8の符号S9)。そして、製品ボトル101は、図示しない包装ラインへと運ばれ、包装される。 Thereafter, the product bottle 101 is conveyed from the cap attachment device 16 to the product bottle discharge section 25, and is conveyed to the outside of the content filling system 10 (bottle discharge step, reference numeral S9 in FIG. 8). The product bottle 101 is then transported to a packaging line (not shown) and packaged.
 なお、上記容器殺菌工程、エアリンス工程、内容物充填工程、キャップ装着工程及びボトル排出工程は、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、及び出口チャンバ70gで囲まれた無菌の雰囲気内すなわち無菌の環境下で行われる。また、キャップ殺菌工程は、キャップ殺菌装置18によって行われる。この場合、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、出口チャンバ70g及びキャップ殺菌装置18は、予め過酸化水素若しくは過酢酸の噴霧、又は温水の放水等により、殺菌処理されている。 Note that the container sterilization process, air rinse process, contents filling process, cap attachment process, and bottle discharge process are performed in a sterile atmosphere surrounded by a sterilizer spray chamber 70d, an air rinse chamber 70e, a sterile chamber 70f, and an outlet chamber 70g. It is done indoors, i.e. in a sterile environment. Further, the cap sterilization process is performed by the cap sterilization device 18. In this case, the disinfectant spray chamber 70d, air rinse chamber 70e, sterile chamber 70f, outlet chamber 70g, and cap sterilizer 18 have been sterilized in advance by spraying hydrogen peroxide or peracetic acid, or by spraying hot water. .
 そして、各チャンバの殺菌処理後は、常時、無菌エアが、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、及び出口チャンバ70g外に向かって吹き出るように、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、及び出口チャンバ70g内に陽圧の無菌エアが供給される。また、常時、無菌エアが、キャップ殺菌装置18外に向かって吹き出るように、キャップ殺菌装置18内に陽圧の無菌エアが供給される。 After the sterilization process of each chamber, the sterilizer spray chamber 70d, the air Positive pressure sterile air is supplied into the rinse chamber 70e, the sterile chamber 70f, and the outlet chamber 70g. Further, positive pressure sterile air is always supplied into the cap sterilizer 18 so that the sterile air is blown out to the outside of the cap sterilizer 18.
 このように、各チャンバ70d乃至70g内に陽圧の無菌エアが供給される場合、雰囲気遮断チャンバ70c、殺菌剤噴霧チャンバ70d及び出口チャンバ70gで、各チャンバ内の無菌エアとボトル殺菌で使用された殺菌剤とを排気する。その際、殺菌剤噴霧チャンバ70d、エアリンスチャンバ70e、無菌チャンバ70f、及び出口チャンバ70g内の圧力がそれぞれ陽圧になるように、各チャンバ内の圧力が調整されても良い。この場合、上述したように、殺菌剤噴霧チャンバ70d内の圧力は、-10Pa以上10Pa以下であっても良い。エアリンスチャンバ70e内の圧力は、10Pa以上30Pa以下であっても良い。無菌チャンバ70f内の圧力は、30Pa以上60Pa以下であっても良い。出口チャンバ70g内の圧力は、10Pa以上20Pa以下であっても良い。 In this way, when positive pressure sterile air is supplied into each chamber 70d to 70g, the atmosphere isolation chamber 70c, sterilizer spray chamber 70d, and outlet chamber 70g are used for bottle sterilization with the sterile air in each chamber. Disinfect the disinfectant. At this time, the pressure in each chamber may be adjusted so that the pressure in the disinfectant spray chamber 70d, the air rinse chamber 70e, the sterile chamber 70f, and the outlet chamber 70g are each positive pressure. In this case, as described above, the pressure inside the disinfectant spray chamber 70d may be -10 Pa or more and 10 Pa or less. The pressure inside the air rinse chamber 70e may be 10 Pa or more and 30 Pa or less. The pressure inside the sterile chamber 70f may be 30 Pa or more and 60 Pa or less. The pressure within the outlet chamber 70g may be 10 Pa or more and 20 Pa or less.
 なお、内容物充填システム10におけるボトル100の生産(搬送)速度は、100bpm以上かつ1500bpm以下とすることが好ましい。ここでbpm(bottle per minute)とは、1分間当たりのボトル100の搬送速度をいう。 Note that the production (transportation) speed of the bottles 100 in the content filling system 10 is preferably 100 bpm or more and 1500 bpm or less. Here, bpm (bottle per minute) refers to the transport speed of 100 bottles per minute.
 次に、殺菌機60の殺菌方法について、図9Aにより説明する。 Next, the sterilization method of the sterilizer 60 will be explained with reference to FIG. 9A.
 (殺菌機の殺菌方法)
 まず、内容物充填システム10における飲料の充填が終了した後、例えば、制御部90の操作ボタンを操作する。これにより、殺菌機60の殺菌(SIP)が開始される。なお、殺菌機60の殺菌は、製品ボトル101の生産中に行っても良い。
(Sterilization method of sterilizer)
First, after the filling of the beverage in the content filling system 10 is completed, for example, the operation button of the control unit 90 is operated. Thereby, sterilization (SIP) of the sterilizer 60 is started. Note that the sterilization by the sterilizer 60 may be performed during production of the product bottles 101.
 具体的には、まず、内容物充填システムによる内容物の充填(生産)が終了する(図9Aの「生産終了」)。その後、図2Aに示すように、殺菌機60の第1除菌フィルタ63および第2除菌フィルタ65の生産後の完全性試験が行われる(図9Aの符号S20A)。異物除去フィルタ61も無菌フィルタであった場合、3か所のフィルタの内、少なくとも2カ所のフィルタの完全性試験を行う。この生産後の完全性試験により、生産開始前後の完全性試験結果が合格であること(リークが認められないこと)と生産中、紫外線の照射量が規定値以上または規定値範囲内であったことで混合対象原料の無菌性が担保される。次に、第1殺菌機62及び又は第2殺菌機64(以下、単に第1殺菌機62等とも記す)のCIP処理を行う(殺菌機洗浄殺菌工程、図9Aの符号S20)。CIP処理は、水に苛性ソーダ(水酸化ナトリウム)、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、リン酸ナトリウム、次亜塩素酸ナトリウム、界面活性剤及びキレート剤などを混ぜたアルカリ性薬剤を添加したアルカリ性洗浄液を流路内に流した後、又はアルカリ性洗浄液を流路内に流す前に、水に硝酸系やリン酸系の酸性薬剤を添加した酸性洗浄液を流路内に流すことによって行われる。なお、アルカリ性洗浄液によるアルカリ洗浄工程と酸性洗浄液による酸洗浄工程とは、自由に組み合わせて実施しても良い。これにより、飲料水が通過する流路内に付着した前回の混合対象原料の残留物等が除去される。また混合対象原料が少ない場合や、混合対象原料が洗浄性の高い成分を含む場合は、洗浄剤を添加せずに、温水や熱水だけのCIP処理でも構わない。あるいはCIP処理を省略しても構わない。 Specifically, first, the filling (production) of the contents by the contents filling system is finished ("end of production" in FIG. 9A). Thereafter, as shown in FIG. 2A, a post-production integrity test of the first sterilizing filter 63 and the second sterilizing filter 65 of the sterilizer 60 is performed (S20A in FIG. 9A). If the foreign matter removal filter 61 is also a sterile filter, the integrity test is performed on at least two of the three filters. This post-production integrity test confirms that the integrity test results before and after the start of production passed (no leakage was observed) and that the amount of ultraviolet rays irradiated during production was above the specified value or within the specified value range. This ensures the sterility of the raw materials to be mixed. Next, CIP processing is performed on the first sterilizer 62 and/or the second sterilizer 64 (hereinafter also simply referred to as the first sterilizer 62 etc.) (sterilizer cleaning and sterilization process, reference numeral S20 in FIG. 9A). CIP treatment is an alkaline treatment in which an alkaline chemical such as caustic soda (sodium hydroxide), potassium hydroxide, sodium carbonate, sodium silicate, sodium phosphate, sodium hypochlorite, surfactants, and chelating agents is added to water. After flowing the cleaning liquid into the channel or before flowing the alkaline cleaning solution into the channel, this is done by flowing an acidic cleaning solution in which a nitric acid-based or phosphoric acid-based acidic agent is added to water into the channel. Note that the alkaline cleaning process using an alkaline cleaning liquid and the acid cleaning process using an acidic cleaning liquid may be carried out in any combination. As a result, residues of the previous mixing target materials adhering to the flow path through which the drinking water passes are removed. Furthermore, when there are few raw materials to be mixed, or when the raw materials to be mixed contain components with high detergency, CIP treatment using only warm water or hot water may be used without adding a detergent. Alternatively, the CIP process may be omitted.
 次にSIP工程に移行する。SIP工程では、例えば、殺菌機60を含む循環系59Aに蒸気又は熱水を供給する(殺菌機洗浄殺菌工程、図9Aの符号S20)。これにより、第1殺菌機62等の第1紫外線ランプ67a、第2紫外線ランプ67b及び第3紫外線ランプ67c(以下、単に第1紫外線ランプ67a等とも記す)及び第1殺菌機62、第2殺菌機64の配管内の隅々が、それぞれ蒸気又は熱水で加熱殺菌される。第1殺菌機62、第2殺菌機64と、異物除去フィルタ61、除菌フィルタ63、除菌フィルタ65とを同時に殺菌しても良い。また上記CIP処理で使用する洗浄剤の温度、濃度、時間を調整することで菌の不活化(SIP処理)を同時に行い、その後のSIP処理を実行しなくても良い(CSIP処理)。CIP処理、SIP処理、またはCSIP処理が終了した後、洗浄剤を排出する。その後、洗浄剤を完全に除去するために濯ぎ工程へ移行する。濯ぎ水は50aの純水タンクから純水を供給して行う。 Next, move on to the SIP process. In the SIP step, for example, steam or hot water is supplied to the circulation system 59A including the sterilizer 60 (sterilizer cleaning sterilization step, reference numeral S20 in FIG. 9A). As a result, the first ultraviolet lamp 67a, the second ultraviolet lamp 67b, and the third ultraviolet lamp 67c (hereinafter also simply referred to as the first ultraviolet lamp 67a, etc.) of the first sterilizer 62, etc., the first sterilizer 62, the second sterilizer, etc. Each corner of the piping of the machine 64 is sterilized by heating with steam or hot water. The first sterilizer 62, the second sterilizer 64, the foreign matter removal filter 61, the sterilization filter 63, and the sterilization filter 65 may be sterilized at the same time. Furthermore, by adjusting the temperature, concentration, and time of the cleaning agent used in the CIP process, bacteria can be simultaneously inactivated (SIP process) without performing the subsequent SIP process (CSIP process). After the CIP process, SIP process, or CSIP process is completed, the cleaning agent is discharged. Thereafter, a rinsing step is performed to completely remove the cleaning agent. Pure water is supplied from a 50a pure water tank for rinsing.
 また、第1殺菌機62等が熱に弱い場合には、第1殺菌機62等を殺菌剤または洗浄剤によって殺菌しても良い(図2K参照)。この際、まず、殺菌機60に殺菌剤を供給する(殺菌剤供給工程、図9Bの符号S201)。殺菌剤または洗浄剤は、図示しないタンク、ポンプ、ヒーター、濃度計等を含む殺菌剤供給ユニット96から送液され、殺菌機60に設けられた前段殺菌機62A、第1殺菌機62,および第2殺菌機64等に送液される。サンプリングポイントSP2又はサンプリングポイントSP4から供給されても良い。この殺菌剤は、過酢酸を含んでいても良い。また、殺菌剤が過酢酸を含む場合、殺菌剤の濃度は、1000ppm以上3000ppm以下であっても良い。殺菌剤の濃度が1000ppm以上であることにより、殺菌剤による第1殺菌機62等の殺菌効果を高めることができる。また、殺菌剤の濃度が3000ppm以下であることにより、過酢酸の使用量を低減でき、殺菌機60を殺菌する際のコストを低減できる。 Furthermore, if the first sterilizer 62 etc. are sensitive to heat, the first sterilizer 62 etc. may be sterilized with a sterilizer or a detergent (see FIG. 2K). At this time, first, a sterilizer is supplied to the sterilizer 60 (a sterilizer supply step, reference numeral S201 in FIG. 9B). The sterilizer or cleaning agent is fed from a sterilizer supply unit 96 that includes a tank, pump, heater, concentration meter, etc. (not shown), and is supplied to the pre-sterilizer 62A, the first sterilizer 62, and the first sterilizer provided in the sterilizer 60. 2. The liquid is sent to a sterilizer 64 or the like. It may be supplied from sampling point SP2 or sampling point SP4. The disinfectant may include peracetic acid. Moreover, when the disinfectant contains peracetic acid, the concentration of the disinfectant may be 1000 ppm or more and 3000 ppm or less. When the concentration of the sterilizer is 1000 ppm or more, the sterilizing effect of the first sterilizer 62 and the like by the sterilizer can be enhanced. Further, since the concentration of the sterilizer is 3000 ppm or less, the amount of peracetic acid used can be reduced, and the cost when sterilizing the sterilizer 60 can be reduced.
 また、循環系59Aに供給される殺菌剤または洗浄剤の温度は、50℃以上150℃以下であっても良い。殺菌剤または洗浄剤の温度が50℃以上であることにより、殺菌剤による第1殺菌機62等の殺菌効果と洗浄効果を高めることができる。また、殺菌剤または洗浄剤の温度が150℃以下であることにより、第1殺菌機62等を特殊な材料を用いることなく低コストで製作することができる。 Furthermore, the temperature of the disinfectant or cleaning agent supplied to the circulation system 59A may be 50°C or higher and 150°C or lower. By setting the temperature of the sterilizer or cleaning agent to 50° C. or higher, the sterilizing effect and cleaning effect of the first sterilizer 62 and the like by the sterilizer can be enhanced. Further, since the temperature of the disinfectant or cleaning agent is 150° C. or lower, the first sterilizer 62 and the like can be manufactured at low cost without using special materials.
 次に、図2Kの太線に示すように、殺菌機60に設けられた前段殺菌機62A、第1殺菌機62,第2殺菌機64および循環ライン95を含む循環系95Aにおいて(混合タンク51、ポンプP1を含む循環系59Aを用いても良い)、殺菌剤または洗浄剤を循環させる(殺菌剤循環工程、図9Bの符号S202)。この場合、前段殺菌機62A、第1殺菌機62,および第2殺菌機64含む循環系95Aにおいて、殺菌剤を少なくとも10秒以上60分以下循環させることにより、殺菌機60に設けられた前段殺菌機62A、第1殺菌機62,および第2殺菌機64を殺菌しても良い。循環時間が10秒以上であることにより、殺菌剤による第1殺菌機62等の殺菌効果を高めることができる。また、循環時間が60分以下であることにより、第1殺菌機62等の殺菌時間を短縮できる。このため、ダウンタイムを短縮できる Next, as shown by the thick line in FIG. 2K, in the circulation system 95A including the first sterilizer 62A, the first sterilizer 62, the second sterilizer 64, and the circulation line 95 provided in the sterilizer 60 (mixing tank 51, A circulation system 59A including a pump P1 may be used) to circulate a disinfectant or a cleaning agent (a disinfectant circulation step, reference numeral S202 in FIG. 9B). In this case, by circulating the sterilizer for at least 10 seconds or more and 60 minutes or less in the circulation system 95A including the pre-sterilizer 62A, the first sterilizer 62, and the second sterilizer 64, the pre-sterilizer provided in the sterilizer 60 The sterilizer 62A, the first sterilizer 62, and the second sterilizer 64 may be sterilized. By setting the circulation time to 10 seconds or more, the sterilization effect of the first sterilizer 62 and the like by the sterilizer can be enhanced. Moreover, since the circulation time is 60 minutes or less, the sterilization time of the first sterilizer 62 and the like can be shortened. Therefore, downtime can be reduced
 また、次に生産される混合対象原料が、pH4.5未満の原料の場合、循環系95A内で70℃以上、好ましくは85℃以上、100℃未満の熱水を、少なくとも3分以上、60分未満、循環しながら送液し、このようにして、混合対象原料殺菌ライン50のSIPを行う。第1殺菌機62等が紫外線ランプを有する場合、紫外線ランプを点灯したまま行っても良い。紫外線ランプに耐熱性がない場合、SIP後、循環させながら紫外線ランプ点灯可能な温度まで冷却させると良い。また循環系95Aの循環ライン95に熱交換器97および図示しないポンプを設けると良い。 In addition, if the next raw material to be mixed has a pH of less than 4.5, hot water at a temperature of 70°C or higher, preferably 85°C or higher and lower than 100°C is heated for at least 3 minutes or more at 60°C in the circulation system 95A. The liquid is fed while being circulated for less than a minute, and in this way, the SIP of the raw material sterilization line 50 to be mixed is performed. If the first sterilizer 62 or the like has an ultraviolet lamp, the process may be performed with the ultraviolet lamp turned on. If the UV lamp does not have heat resistance, it is best to cool it down to a temperature at which the UV lamp can be turned on while circulating it after SIP. Further, it is preferable to provide a heat exchanger 97 and a pump (not shown) in the circulation line 95 of the circulation system 95A.
 その後、殺菌剤は、サンプリングポイントSP3又はサンプリングポイントSP5から排出され(図9Bの符号S203)、その後、すすぎ工程に入る(図9Bの符号S204)。排出時は、殺菌された配管内の菌汚染を防ぐために、無菌エアを供給し(図示なし)、短時間で排出させても良い。サンプリングポイントSP3又はSP5からの排出工程を行わずに、すすぎ工程に移行しても良い。すすぎ工程では、まず異物除去フィルタ61に殺菌剤が付着しないように、十分に前段殺菌機62Aを濯ぎ液で濯いだ後、濯ぎ液を異物除去フィルタ61に通過させる。次に、第1殺菌機62に残存する殺菌剤を十分に濯ぎ液で濯いだ後、濯ぎ液を第1除菌フィルタ63に通過させる。以降、順番に下流側へ向かって同様の操作を行う。 Thereafter, the disinfectant is discharged from the sampling point SP3 or the sampling point SP5 (S203 in FIG. 9B), and then enters the rinsing process (S204 in FIG. 9B). When discharging, sterile air may be supplied (not shown) to prevent bacterial contamination within the sterilized piping, and the pipe may be discharged in a short time. You may move to the rinsing process without performing the discharge process from sampling point SP3 or SP5. In the rinsing process, first, the pre-stage sterilizer 62A is thoroughly rinsed with a rinsing liquid so that the sterilizer does not adhere to the foreign substance removal filter 61, and then the rinsing liquid is passed through the foreign substance removal filter 61. Next, after the sterilizer remaining in the first sterilizer 62 is thoroughly rinsed with a rinsing liquid, the rinsing liquid is passed through the first sterilizing filter 63. Thereafter, the same operation is performed in order toward the downstream side.
 次に、第1除菌フィルタ63及び又は第2除菌フィルタ65(以下、単に第1除菌フィルタ63等とも記す)を殺菌する(フィルタ殺菌工程、図9Aの符号S21)。この際、まず、第1除菌フィルタ63等の流路に加熱蒸気(流体)又は熱水(流体)を供給する(流体供給工程、図9Aの符号S211)。このとき、例えば、無菌エアの供給口60aから、第1除菌フィルタ63等に、殺菌用の蒸気が供給される。 Next, the first sterilizing filter 63 and/or the second sterilizing filter 65 (hereinafter also simply referred to as the first sterilizing filter 63 etc.) are sterilized (filter sterilizing step, reference numeral S21 in FIG. 9A). At this time, first, heated steam (fluid) or hot water (fluid) is supplied to the flow path of the first sterilization filter 63 etc. (fluid supply step, reference numeral S211 in FIG. 9A). At this time, sterilizing steam is supplied to the first sterilizing filter 63 and the like from the sterile air supply port 60a, for example.
 次に、第1除菌フィルタ63等の流路に供給された加熱蒸気又は熱水の温度を測定するとともに、測定された温度に基づいてF値を算出する(F値算出工程、図9Aの符号S212)。 Next, the temperature of the heated steam or hot water supplied to the flow path of the first sterilization filter 63 etc. is measured, and the F value is calculated based on the measured temperature (F value calculation step, as shown in FIG. 9A). code S212).
 その後、F値が目的値以上となった場合に、第1除菌フィルタ63等の殺菌を終了する。このようにして、第1除菌フィルタ63等が殺菌される。このように、F値を利用した第1除菌フィルタ63等の加熱殺菌を行うことにより、第1除菌フィルタ63等に対して必要以上に熱を加えることなく、第1除菌フィルタ63等を殺菌できる。このため、内容物充填システム10が排出する二酸化炭素の排出量を低減できる。また、第1除菌フィルタ63等に対して必要以上に熱を加えることなく、第1除菌フィルタ63等を殺菌できるため、第1除菌フィルタ63等のメンブレンの損傷を抑制できる。このため、第1除菌フィルタ63等の寿命を長くでき、第1除菌フィルタ63等を、交換することなく、長期間使用できる。 Thereafter, when the F value becomes equal to or higher than the target value, sterilization of the first sterilization filter 63 and the like is finished. In this way, the first sterilization filter 63 and the like are sterilized. In this way, by performing heat sterilization of the first sterilizing filter 63 etc. using the F value, the first sterilizing filter 63 etc. can be sterilized without applying more heat than necessary to the first sterilizing filter 63 etc. can be sterilized. Therefore, the amount of carbon dioxide emitted by the content filling system 10 can be reduced. Furthermore, since the first sterilizing filter 63 and the like can be sterilized without applying more heat than necessary to the first sterilizing filter 63 and the like, damage to the membrane of the first sterilizing filter 63 and the like can be suppressed. Therefore, the life of the first sterilizing filter 63 and the like can be extended, and the first sterilizing filter 63 and the like can be used for a long period of time without being replaced.
 なお、第1除菌フィルタ63等を殺菌する際、サンプリングポイントSP1乃至SP6に設けられたバルブ(図示せず)を開閉することにより、蒸気によって殺菌される領域を区画しても良い。例えば、第1除菌フィルタ63を殺菌する蒸気は、サンプリングポイントSP3とサンプリングポイントSP4との間の領域に供給されることにより、当該領域を殺菌しても良い。また、第2除菌フィルタ65を殺菌する蒸気は、サンプリングポイントSP5とサンプリングポイントSP6との間の領域に供給されることにより、当該領域を殺菌しても良い。なお、第1除菌フィルタ63及び第2除菌フィルタ65と共に、異物除去フィルタ61(又は除菌フィルタ)を殺菌しても良い。 Note that when sterilizing the first sterilizing filter 63 and the like, the area to be sterilized by steam may be divided by opening and closing valves (not shown) provided at sampling points SP1 to SP6. For example, the steam that sterilizes the first sterilization filter 63 may be supplied to the area between the sampling point SP3 and the sampling point SP4, thereby sterilizing the area. Furthermore, the steam that sterilizes the second sterilization filter 65 may be supplied to the area between the sampling point SP5 and the sampling point SP6, thereby sterilizing the area. Note that the foreign matter removal filter 61 (or the sterilization filter) may be sterilized together with the first sterilization filter 63 and the second sterilization filter 65.
 このようにして、第1除菌フィルタ63と第2除菌フィルタ65に対するSIP処理が行われ、その後、第1除菌フィルタ63および第2除菌フィルタ65が冷却され(図9Aの符号S213)、殺菌機60の第1除菌フィルタ63および第2除菌フィルタ65の完全性試験が行われる(図9Aの符号22)。その後、内容物充填システムによる内容物の充填(生産)が再度開始される。 In this way, the SIP process is performed on the first sterilizing filter 63 and the second sterilizing filter 65, and then the first sterilizing filter 63 and the second sterilizing filter 65 are cooled (S213 in FIG. 9A). , an integrity test is performed on the first sterilizing filter 63 and the second sterilizing filter 65 of the sterilizer 60 (reference numeral 22 in FIG. 9A). After that, filling (production) of contents by the contents filling system is started again.
 また殺菌機洗浄殺菌工程(図9AのS20)とフィルタ洗浄殺菌工程(図9AのS21)の順番を逆に行っても良い(図9D参照)。更に、フィルタ61,63,65のSIPの冷却工程中に、第1殺菌機62,第2殺菌機64の洗浄殺菌工程を並行して行うことが好ましい(図9E参照)。この場合は、フィルタ61,63,65の前後に接する配管、バルブが殺菌剤に接するため、冷却時間の短縮化が図られる。具体的にはフィルタ61,63,65が110℃未満まで冷却された時点から殺菌剤を送液すると良い。これにより、フィルタ61,63,65の冷却工程中に殺菌機洗浄殺菌工程が終了することも可能である。 Furthermore, the order of the sterilizer cleaning and sterilization step (S20 in FIG. 9A) and the filter cleaning and sterilization step (S21 in FIG. 9A) may be reversed (see FIG. 9D). Furthermore, during the SIP cooling process of the filters 61, 63, and 65, it is preferable to perform the cleaning and sterilization process of the first sterilizer 62 and the second sterilizer 64 in parallel (see FIG. 9E). In this case, since the pipes and valves in contact with the front and rear of the filters 61, 63, and 65 come into contact with the sterilizing agent, the cooling time can be shortened. Specifically, it is preferable to send the sterilizing agent from the time when the filters 61, 63, and 65 have been cooled to below 110°C. Thereby, the sterilizer cleaning and sterilization process can be completed during the cooling process of the filters 61, 63, and 65.
 また、第1殺菌機62等では、製品ボトル101の生産時には、第1紫外線ランプ67a等によって紫外線が照射されている。これにより、第1殺菌機62等が菌によって汚染される可能性は少ない。このため、殺菌機60を殺菌する際、第1殺菌機62等は、殺菌されなくても良い。 Further, in the first sterilizer 62 and the like, when producing the product bottle 101, ultraviolet rays are irradiated by the first ultraviolet lamp 67a and the like. Thereby, there is little possibility that the first sterilizer 62 and the like will be contaminated with bacteria. Therefore, when sterilizing the sterilizer 60, the first sterilizer 62 and the like do not need to be sterilized.
 なお、別の実施の形態として、図9Cに示すように、殺菌機60の第1除菌フィルタ63および第2除菌フィルタ65と、第1殺菌機62および第2殺菌機64とを同時に洗浄・殺菌しても良い。図9Cに示すように、まず充填(生産)が終了する。その後、第1除菌フィルタ63および第2除菌フィルタ65に対して生産後の完全性試験が行われる(図9Cの符号S30)。次に異物除去フィルタ61の手前から洗浄剤及び殺菌剤を供給し、循環ライン59を使用し、循環させながら所定時間、洗浄(CIP)処理を行う(図9の符号S31)。CIP処理を行った後、殺菌(SIP)処理を行っても良い(図9Cの符号S32)。あるいはCIP処理およびSIP処理に換えて、洗浄と殺菌を同時に行っても良い(CSIP処理)(図9Cの符号S33)。 In addition, as another embodiment, as shown in FIG. 9C, the first sterilizing filter 63 and the second sterilizing filter 65 of the sterilizer 60 and the first sterilizer 62 and the second sterilizer 64 are simultaneously cleaned.・Can be sterilized. As shown in FIG. 9C, filling (production) is first completed. Thereafter, a post-production integrity test is performed on the first sterilizing filter 63 and the second sterilizing filter 65 (S30 in FIG. 9C). Next, a cleaning agent and a sterilizing agent are supplied from before the foreign matter removal filter 61, and a cleaning (CIP) process is performed for a predetermined time while circulating them using the circulation line 59 (S31 in FIG. 9). After the CIP process, a sterilization (SIP) process may be performed (S32 in FIG. 9C). Alternatively, instead of the CIP treatment and the SIP treatment, cleaning and sterilization may be performed simultaneously (CSIP treatment) (S33 in FIG. 9C).
 CIP処理、SIP処理、またはCSIP処理に用いる洗浄剤及び殺菌剤としては、過酢酸、酢酸、過酸化水素、過硝酸、硝酸、リン酸等の酸性薬剤、水酸化ナトリウム、水酸化カリウム等のアルカリ性薬剤、次亜塩素酸ナトリウム、二酸化塩素等の塩素系薬剤、エチルアルコール、イソプロピルアルコール等のアルコール類、或いはオゾン水、酸性水、界面活性剤を単体で用いても良く、これらのうち2種以上を組み合わせて用いても良い。洗浄剤及び殺菌剤の昇温は図示しないヒーターで行い、殺菌機60及び循環ライン59に設置した各所温度計59b、および濃度計59cの値から所定の条件(温度、濃度、時間)で洗浄又は殺菌又は洗浄殺菌を行う。 Cleaning agents and disinfectants used for CIP treatment, SIP treatment, or CSIP treatment include acidic agents such as peracetic acid, acetic acid, hydrogen peroxide, pernitric acid, nitric acid, and phosphoric acid, and alkaline agents such as sodium hydroxide and potassium hydroxide. Chemicals, chlorine-based chemicals such as sodium hypochlorite and chlorine dioxide, alcohols such as ethyl alcohol and isopropyl alcohol, ozone water, acidic water, and surfactants may be used alone, or two or more of these may be used alone. may be used in combination. The temperature of the cleaning agent and disinfectant is raised by a heater (not shown), and the cleaning or disinfecting agent is heated under predetermined conditions (temperature, concentration, time) based on the values of the thermometer 59b and concentration meter 59c installed at each location in the sterilizer 60 and circulation line 59. Perform sterilization or washing and sterilization.
 洗浄剤及び殺菌剤の排出は、水タンク50aから純水を供給し、ポンプP1より殺菌剤を純水に置換しながら行っても良い。他の装置から水を供給し(図示なし)、殺菌剤を排出しても良い。殺菌剤の排出は、循環ライン59の下流側に設けられた濃度計59cの値を監視し、この値が純水製造装置50cと同じ値になるまで濯ぐと良い。タイマーで濯ぎ時間を規定し、所定の値になったら濯ぎ工程を完了しても良い。第1紫外線ランプ67aおよび第2紫外線ランプ67bは、洗浄工程、殺菌工程、あるいは洗浄殺菌工程中に点灯させても良く、点灯させなくても良い。また濯ぎ工程のみ点灯させても良い。洗浄・殺菌が完了した後、第1除菌フィルタ63および第2除菌フィルタ65に対して生産前の完全性試験を行う(図9Cの符号S34)。 The cleaning agent and the disinfectant may be discharged while supplying pure water from the water tank 50a and replacing the disinfectant with pure water using the pump P1. Water may be supplied and disinfectant may be discharged from other equipment (not shown). When discharging the disinfectant, it is preferable to monitor the value of a concentration meter 59c provided on the downstream side of the circulation line 59, and rinse until this value becomes the same value as that of the pure water production device 50c. The rinsing time may be set using a timer, and the rinsing process may be completed when the rinsing time reaches a predetermined value. The first ultraviolet lamp 67a and the second ultraviolet lamp 67b may or may not be turned on during the cleaning process, sterilization process, or cleaning and sterilization process. Alternatively, the light may be turned on only during the rinsing process. After cleaning and sterilization are completed, a pre-production integrity test is performed on the first sterilizing filter 63 and the second sterilizing filter 65 (S34 in FIG. 9C).
 次に、完全性試験でフィルタのリークが認められなかった場合、製品液を置換する第1生産準備工程へ移行する(図9Cの符号S35)。第1生産準備工程では、循環ライン59の管路で純水循環させながら第1紫外線ランプ67aおよび第2紫外線ランプ67bが規定の照度以上をもつことを確認する。紫外線ランプ67a、67bが複数ある場合、例えば、合計照射量が10mJ/cm以上、好ましくは100mJ/cm以上あると良い。次に、対象原料殺菌ライン50Bから非加熱殺菌の対象原料(製品液)を供給し、純水から製品液への置換を行う。殺菌機60が製品液に十分置換された後(流量計とタイマーで計測し、所定時間経過後)、循環ライン59からタンク52側へ管路を切り替え、製品液をタンク52に貯留して、製品液のブレンディングを行う第2生産準備工程へ移行する(図9Cの符号S36)。 Next, if no leakage from the filter is found in the integrity test, the process moves to a first production preparation step in which the product liquid is replaced (S35 in FIG. 9C). In the first production preparation step, while circulating pure water through the circulation line 59, it is confirmed that the first ultraviolet lamp 67a and the second ultraviolet lamp 67b have illuminance equal to or higher than a specified level. When there are a plurality of ultraviolet lamps 67a and 67b, the total irradiation amount is preferably 10 mJ/cm 2 or more, preferably 100 mJ/cm 2 or more, for example. Next, a non-heat sterilized target raw material (product liquid) is supplied from the target raw material sterilization line 50B, and pure water is replaced with the product liquid. After the sterilizer 60 is sufficiently replaced with the product liquid (after a predetermined period of time as measured by a flow meter and a timer), the pipe line is switched from the circulation line 59 to the tank 52 side, and the product liquid is stored in the tank 52. The process moves to a second production preparation step in which the product liquid is blended (S36 in FIG. 9C).
 以上のように本実施の形態によれば、内容物の原料のうち、加熱されることにより熱分解したり、加熱されることにより内容物充填システム10の加熱殺菌を行う他の原料殺菌ライン70に対して金属腐食を生じさせたり、析出して検出装置等の機能を低下させる原料を、対象原料として他の原料と区別して水とともに非加熱殺菌する。このことにより対象原料が熱分解したり、あるいは劣化して減少することを抑えることができ、また内容物充填システム10内で加熱による金属腐食が生じたり、加熱による析出が生じることはない。このため対象原料を必要以上に供給したり、対象原料の材料劣化を抑えることができ、かつ内容物充填システム10の修理、交換の時期を長く延ばすことができる。さらに内容物充填システム10の機能低下を未然に防ぐことができる。 As described above, according to the present embodiment, the other raw material sterilization line 70 performs thermal decomposition by being heated or heat sterilizes the content filling system 10 by being heated among the raw materials of the contents. Raw materials that cause metal corrosion or precipitate to deteriorate the functionality of detection devices, etc., are treated as target raw materials and are distinguished from other raw materials and sterilized with water without heating. This can prevent the target raw material from being thermally decomposed or degraded and reduced, and metal corrosion and precipitation due to heating will not occur within the content filling system 10. Therefore, it is possible to prevent the target raw material from being supplied in excess of what is necessary, to suppress material deterioration of the target raw material, and to prolong the period for repair or replacement of the content filling system 10. Furthermore, it is possible to prevent functional deterioration of the content filling system 10.
 また本実施の形態によれば、水と対象原料とからなる混合対象原料、および他の原料全体に対して非加熱殺菌することはないので、他の原料を非加熱殺菌ラインに通した場合に生じる非加熱殺菌ラインのフィルタ閉塞を未然に防ぐことができる。 Furthermore, according to the present embodiment, the raw material to be mixed consisting of water and the target raw material, and other raw materials as a whole are not sterilized by non-heating, so when other raw materials are passed through the non-heat sterilization line, It is possible to prevent filter clogging of the non-heat sterilization line from occurring.
<第2の実施の形態>
 以下、図面を参照して本開示の第2の実施の形態について説明する。
<Second embodiment>
A second embodiment of the present disclosure will be described below with reference to the drawings.
 ここで図10は第2の実施の形態による内容物充填システムを示す概略系統図であり、第1の実施の形態を示す図1Aに対応する図である。 Here, FIG. 10 is a schematic system diagram showing a content filling system according to the second embodiment, and is a diagram corresponding to FIG. 1A showing the first embodiment.
 図10に示す第2の実施の形態は、水を非加熱殺菌する水殺菌ライン50Aと、対象原料を非加熱殺菌する対象原料殺菌ライン50Bを独立して設けた点が異なるが、他の構成は、図1A乃至図9Bに示す第1の実施の形態と略同一である。図10に示す第2の実施の形態において、図1A乃至図9Bに示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。 The second embodiment shown in FIG. 10 differs in that a water sterilization line 50A for non-heat sterilization of water and a target raw material sterilization line 50B for non-heat sterilization of target raw materials are provided independently, but other configurations are possible. is substantially the same as the first embodiment shown in FIGS. 1A to 9B. In the second embodiment shown in FIG. 10, the same parts as in the first embodiment shown in FIGS. 1A to 9B are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図10に示すように、内容物充填システム10は水(第1内容液)を非加熱殺菌する水殺菌ライン(第1殺菌ライン)50Aと、対象原料(第2内容液)を非加熱殺菌する対象原料殺菌ライン(第2殺菌ライン)50Bと、対象原料以外の他の原料(第3内容液)を加熱殺菌する他の原料殺菌ライン(第3殺菌ライン)70と、水殺菌ライン50A、対象原料殺菌ライン50Bおよび他の原料殺菌ライン70の各々に接続された第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cと、第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cの各々に接続された第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cとを備えている。 As shown in FIG. 10, the content filling system 10 includes a water sterilization line (first sterilization line) 50A that sterilizes water (first content liquid) without heating, and a water sterilization line (first sterilization line) 50A that sterilizes the target raw material (second content liquid) without heating. Target raw material sterilization line (second sterilization line) 50B, other raw material sterilization line (third sterilization line) 70 that heat-sterilizes raw materials other than the target raw material (third content liquid), water sterilization line 50A, target A first mixing tank 55A, a second mixing tank 55B, and a third mixing tank 55C are connected to each of the raw material sterilization line 50B and other raw material sterilization lines 70, and the first mixing tank 55A, the second mixing tank 55B, and the third It includes a first filling device 21A, a second filling device 21B, and a third filling device 21C connected to each of the mixing tanks 55C.
 このうち水を非加熱殺菌する水殺菌ライン50Aと、対象原料を非加熱殺菌する対象原料殺菌ライン50Bと、他の原料を加熱殺菌する他の原料殺菌ライン70は、並列にかつ互いに独立に設置されている。 Of these, a water sterilization line 50A that non-heat sterilizes water, a target raw material sterilization line 50B that non-heat sterilizes target raw materials, and another raw material sterilization line 70 that heat sterilizes other raw materials are installed in parallel and independently from each other. has been done.
 図10において、純水製造装置50cから供給された水(純水)が水タンク50aに貯留され、水タンク50aから供給される水が水殺菌ライン50Aにより非加熱殺菌される。 In FIG. 10, water (pure water) supplied from the pure water production device 50c is stored in a water tank 50a, and the water supplied from the water tank 50a is non-heat sterilized by a water sterilization line 50A.
 また内容物の原料のうち、上述した対象原料が対象原料タンク50bに貯留され、この対象原料タンク50bから供給される対象原料が対象原料殺菌ライン50Bにより非加熱殺菌される。 Also, among the raw materials of the contents, the target raw material mentioned above is stored in the target raw material tank 50b, and the target raw material supplied from the target raw material tank 50b is non-heat sterilized by the target raw material sterilization line 50B.
 他方、内容物の原料のうち、対象原料以外の原料は他の原料タンク71内に貯留され、他の原料タンク71内に貯留された他の原料は上述のように他の原料殺菌ライン70で加熱殺菌される。 On the other hand, among the raw materials in the contents, raw materials other than the target raw materials are stored in other raw material tanks 71, and other raw materials stored in other raw material tanks 71 are sterilized in other raw material sterilization lines 70 as described above. Heat sterilized.
 そして水殺菌ライン50Aにより非加熱殺菌された水と、対象原料殺菌ライン50Bにより非加熱殺菌された対象原料と、他の原料殺菌ライン70で加熱殺菌された他の原料は、各々第1混合タンク55A、第2混合タンク55B、第3混合タンク55Cへ送られる。この場合、例えば、水殺菌ライン50Aにより非加熱殺菌された水を、それぞれ第1混合タンク55A、第2混合タンク55B、第3混合タンク55Cに均一に送ってもよく、第1混合タンク55Aに多量の水を送っても良く、第2混合タンク55B、第3混合タンク55Cへは少量の水を送っても良い。同様に、対象原料殺菌ライン50Bにより非加熱殺菌された対象原料を、それぞれ第1混合タンク55A、第2混合タンク55B、第3混合タンク55Cに均一に送ってもよく、第1混合タンク55Aに多量の対象原料を送っても良く、第2混合タンク55B、第3混合タンク55Cへは少量の対象原料を送っても良い。同様に、他の原料殺菌ライン70で加熱殺菌された他の原料を、それぞれ第1混合タンク55A、第2混合タンク55B、第3混合タンク55Cに均一に送ってもよく、第1混合タンク55Aに多量の他の原料を送っても良く、第2混合タンク55B、第3混合タンク55Cへは少量の他の原料を送っても良い。 The water non-heat sterilized by the water sterilization line 50A, the target raw material non-heat sterilized by the target raw material sterilization line 50B, and other raw materials heat sterilized by the other raw material sterilization line 70 are each stored in a first mixing tank. 55A, a second mixing tank 55B, and a third mixing tank 55C. In this case, for example, water that has been non-heat sterilized by the water sterilization line 50A may be uniformly sent to the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, respectively, or to the first mixing tank 55A. A large amount of water may be sent, or a small amount of water may be sent to the second mixing tank 55B and the third mixing tank 55C. Similarly, the target raw material non-heat sterilized by the target raw material sterilization line 50B may be uniformly sent to the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, respectively. A large amount of the target raw material may be sent, or a small amount of the target raw material may be sent to the second mixing tank 55B and the third mixing tank 55C. Similarly, other raw materials heat-sterilized in the other raw material sterilization line 70 may be uniformly sent to the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, respectively. A large amount of other raw materials may be sent to the second mixing tank 55B and a small amount of other raw materials may be sent to the third mixing tank 55C.
 第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cにおいて、非加熱殺菌された水と、非加熱殺菌された対象原料と、加熱殺菌された他の原料が混合されて内容物が生成される。 In the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, non-heat sterilized water, non-heat sterilized target raw material, and other heat sterilized raw materials are mixed to form the contents. generated.
 そして第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cにおいて生成された内容物は、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cのいずれかに供給され、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cから空のボトル100内に内容物が充填される。混合タンク55A~55Cを複数設置することにより、第1充填装置21A、第2充填装置21B、第3充填装置21Cの洗浄・殺菌が終わり、生産準備が整い次第、洗浄・殺菌が終了した第1充填装置21A、第2充填装置21B、第3充填装置21Cのいずれかに、生成された内容物を速やかに送液することが可能になる。また混合タンク55A~55Cを2基以上設置することで、生成された内容物のバッファーができ、内容物の生成を待つことなく充填することが可能になる。また、第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cの濃度が、規定範囲に入らなかった場合、水タンク50a、対象原料タンク50b、他の原料タンク71を適宜供給し、濃度調整することができる。また第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cの再調合を行うために、第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cは無菌状態を維持したまま、無菌的にブローできる機能を持つ。具体的には、第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55C下方に蒸気で殺菌した排液用ブロー配管を設け、排液する直前に配管内を蒸気で殺菌し、その後、第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55C内の液を、タンク陽圧を維持したままブローし、ブロー後、蒸気で上記配管を再殺菌する(図示せず)。なお、其々の液が流れる配管は、其々の液が交わらないように蒸気バリア、無菌水バリア、又は無菌エアバリアを備えたアセプティックバルブを用いると良い。 The contents generated in the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C are supplied to either the first filling device 21A, the second filling device 21B, or the third filling device 21C, Empty bottles 100 are filled with contents from the first filling device 21A, the second filling device 21B, and the third filling device 21C. By installing a plurality of mixing tanks 55A to 55C, as soon as the cleaning and sterilization of the first filling device 21A, the second filling device 21B, and the third filling device 21C are completed, and production preparations are completed, the first filling device 21A, which has been cleaned and sterilized, It becomes possible to promptly send the generated contents to any one of the filling device 21A, the second filling device 21B, and the third filling device 21C. Furthermore, by installing two or more mixing tanks 55A to 55C, a buffer for the generated contents can be created, and it becomes possible to fill the contents without waiting for generation. In addition, if the concentrations in the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C do not fall within the specified range, the water tank 50a, target raw material tank 50b, and other raw material tanks 71 are supplied as appropriate, Concentration can be adjusted. In addition, in order to remix the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C, the first mixing tank 55A, the second mixing tank 55B, and the third mixing tank 55C are kept in a sterile state. , has the function of aseptic blowing. Specifically, blow piping for drainage sterilized with steam is provided below the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C, and the inside of the piping is sterilized with steam immediately before draining, and then The liquids in the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C are blown while maintaining positive tank pressure, and after blowing, the above-mentioned piping is re-sterilized with steam (not shown). In addition, it is preferable to use an aseptic valve equipped with a steam barrier, a sterile water barrier, or a sterile air barrier for the piping through which each liquid flows so that the respective liquids do not mix.
 また、水殺菌ライン50Aにより非加熱殺菌された水を第1混合タンク55Aへ送液し、対象原料あるいは他の原料と混ぜずに第1混合タンクs55Aで貯留し、そのまま第1充填装置21Aへ送液し、第1充填装置21Aによりボトル100内に充填しても良い。同様に、対象原料殺菌ライン50Bにより非加熱殺菌された対象原料のみを第2タンク55Bへ送液し、他の原料あるいは水と混合することなく、第2充填装置21Bへ送液し、第2充填装置21Bによりボトル100内に充填しても良い。同じく、他の原料殺菌ライン70で加熱殺菌された他の原料のみを第3混合タンク55Cへ送液し、対象原料や水と混ぜることなく、第3充填装置21Cへ送液し、加熱殺菌された他の原料のみを第3充填装置21Cによりボトル100内に充填しても良い。また、図10では3系統の液を互いに混合可能に送液する態様で説明したが、これに限らず、3系統の液を互いに独立して送液できるようにしても良い。あるいは3系統の液を其々殺菌し、その後、3系統の液を単一の混合タンク、例えば第1混合タンク55で無菌混合しても良い。あるいは3系統の液を其々殺菌し、その後、混合タンクを通すことなく、単一の充填装置、例えば、第1充填装置21Aで無菌混合しても良い。無菌混合を行わずに、3系統の液を加熱又は非加熱で殺菌し、各々独立して第1充填装置21A~第3充填装置21Cにより無菌充填しても良い。あるいは菌数の多い他の原料および対象原料のみを加熱又は非加熱で殺菌し、菌数の少ない水又は無菌水を殺菌することなく、他の原料および対象原料と、水とを混合しても良い。なお、水、対象原料、あるいは他の原料を、第1混合タンク55A~第3混合タンクではなく、第1充填装置21A~第3充填装置21Cへ直接送って混合しても良い。 In addition, water that has been non-heat sterilized by the water sterilization line 50A is sent to the first mixing tank 55A, stored in the first mixing tank s55A without mixing with the target raw material or other raw materials, and directly sent to the first filling device 21A. The liquid may be sent and filled into the bottle 100 by the first filling device 21A. Similarly, only the target raw material that has been non-heat sterilized by the target raw material sterilization line 50B is sent to the second tank 55B, and is sent to the second filling device 21B without being mixed with other raw materials or water. The bottle 100 may be filled with the filling device 21B. Similarly, only other raw materials that have been heat sterilized in the other raw material sterilization line 70 are sent to the third mixing tank 55C, and are sent to the third filling device 21C without being mixed with the target raw materials or water, where they are heat sterilized. Alternatively, only other raw materials may be filled into the bottle 100 by the third filling device 21C. Further, in FIG. 10, an embodiment has been described in which three systems of liquids are fed so that they can be mixed with each other, but the present invention is not limited to this, and three systems of liquids may be fed independently of each other. Alternatively, the liquids of the three systems may be sterilized individually, and then the liquids of the three systems may be mixed aseptically in a single mixing tank, for example, the first mixing tank 55. Alternatively, the three systems of liquids may be sterilized individually and then mixed aseptically in a single filling device, for example, the first filling device 21A, without passing through a mixing tank. Instead of aseptic mixing, the three systems of liquids may be sterilized by heating or non-heating, and filled aseptically by the first filling device 21A to the third filling device 21C, respectively. Alternatively, you can sterilize only other raw materials and target raw materials with a large number of bacteria by heating or non-heating, and mix the other raw materials and target raw materials with water without sterilizing water or sterile water with a low number of bacteria. good. Note that water, the target raw material, or other raw materials may be directly sent to the first filling device 21A to the third filling device 21C and mixed therein instead of the first mixing tank 55A to the third mixing tank.
 ここで内容物の原料のうち対象原料としては、第1の実施の形態で説明したとおり、加熱されることにより熱分解したり、金属腐食を生じさせたり、析出して検出装置等の機能を劣化させるものである。このため本実施の形態においては、対象原料の殺菌にあたっては非加熱殺菌を行っている。 As explained in the first embodiment, among the raw materials of the contents, the target raw materials are those that thermally decompose when heated, cause metal corrosion, or precipitate and impair the functions of the detection device, etc. It causes deterioration. Therefore, in this embodiment, the target raw material is sterilized by non-heat sterilization.
 他方、他の原料とは第1の実施の形態で説明したとおり、内容物の原料のうち対象原料以外の他の原料をいう。他の原料に対しても非加熱殺菌することも可能であるが、非加熱殺菌ラインはフィルタを有するため、フィルタ閉塞により処理量が低下することを考慮して、本実施の形態においては、他の原料に対して加熱殺菌が施される。 On the other hand, as explained in the first embodiment, other raw materials refer to raw materials other than the target raw material among the raw materials of the content. It is also possible to non-heat sterilize other raw materials, but since the non-heat sterilization line has a filter, in consideration of the fact that the throughput will decrease due to filter blockage, this embodiment Heat sterilization is applied to the raw materials.
 本実施の形態において、水殺菌ライン50Aは水を非加熱殺菌するものであり、対象原料殺菌ライン50Bは対象原料を非加熱殺菌するものであり、水殺菌ライン50Aおよび対象原料殺菌ライン50Bは、いずれも第1の実施の形態において説明した殺菌機60を有する。 In this embodiment, the water sterilization line 50A is for non-heat sterilization of water, the target raw material sterilization line 50B is for non-heat sterilization of target raw materials, and the water sterilization line 50A and the target raw material sterilization line 50B are Both have the sterilizer 60 described in the first embodiment.
 すなわち殺菌機60は、第1の実施の形態で説明した図2乃至図6Bに示す構成のものを用いることができる。 That is, the sterilizer 60 having the configuration shown in FIGS. 2 to 6B described in the first embodiment can be used.
 また他の原料殺菌ライン70は他の原料を加熱殺菌するものであり、他の原料殺菌ライン70は、第1の実施の形態において説明した原料殺菌機80を有する。 The other raw material sterilization line 70 heat-sterilizes other raw materials, and the other raw material sterilization line 70 has the raw material sterilizer 80 described in the first embodiment.
 すなわち原料殺菌機80としては、第1の実施の形態で説明した図7に示す構成のものを用いることができる。 That is, as the raw material sterilizer 80, one having the configuration shown in FIG. 7 described in the first embodiment can be used.
 また図7に示す第1の実施の形態と同様、原料殺菌機80の下流側に原料タンク72を設けてもよく、さらに原料タンク72の下流側に補助フィルタ73と原料タンク74を設けてもよい。さらに原料タンク72の下流側に添加ユニット75を設けてもよく、この場合、添加ユニット75により他の原料中にさのう、ナタデココ、タピオカ又はアロエ等の固形物を添加することができる。また固形物は、予め殺菌された無菌の固形物であってもよい。固形物以外に無菌あるいは非無菌の香料、酸味料、着色料を添加ユニット75から定量的に他の原料に対して添加しても良い。 Further, as in the first embodiment shown in FIG. 7, a raw material tank 72 may be provided downstream of the raw material sterilizer 80, and an auxiliary filter 73 and a raw material tank 74 may further be provided downstream of the raw material tank 72. good. Furthermore, an addition unit 75 may be provided on the downstream side of the raw material tank 72, and in this case, the addition unit 75 can add solid substances such as sardine, nata de coco, tapioca, or aloe to other raw materials. Further, the solid material may be a sterile solid material that has been sterilized in advance. In addition to the solids, sterile or non-sterile fragrances, acidulants, and colorants may be quantitatively added to other raw materials from the addition unit 75.
 また第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cは、第1混合タンク55A、第2混合タンク55Bおよび第3混合タンク55Cのいずれかにおいて、水と、対象原料と、他の原料とを混合して作成された内容物を受け、この内容物をボトル100の口部からボトル100内に充填するものである。 In addition, the first filling device 21A, the second filling device 21B, and the third filling device 21C are capable of handling water, target raw materials, etc. in any of the first mixing tank 55A, second mixing tank 55B, and third mixing tank 55C. The container receives the contents created by mixing the raw materials, and fills the contents into the bottle 100 from the mouth of the bottle 100.
 このような第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cは、いずれも第1の実施の形態における充填装置21と同様、無菌チャンバ内に配置された例えばロータリーフィラからなる。第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cとしては、直線式のフィラを用いても良い。また、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cにおいて充填されるボトル100としては、プラスチックボトルやカップを用いても良く、紙容器やパウチを用いても良い。これらの複合容器でも良い。 The first filling device 21A, the second filling device 21B, and the third filling device 21C are all made of, for example, a rotary filler arranged in a sterile chamber, similar to the filling device 21 in the first embodiment. A linear filler may be used as the first filling device 21A, the second filling device 21B, and the third filling device 21C. Furthermore, the bottles 100 filled in the first filling device 21A, the second filling device 21B, and the third filling device 21C may be plastic bottles or cups, or may be paper containers or pouches. A composite container of these may also be used.
 以上のように本実施の形態によれば、内容物の原料のうち、加熱されることにより熱分解したり、加熱されることにより金属腐食を生じさせたり、析出して検出装置等の機能を劣化させる原料を対象原料として他の原料と区別して非加熱殺菌する。このことにより対象原料が熱分解して、劣化したり減少することを抑えることができ、また内容物充填システム10内で加熱による金属腐食が生じたり、加熱による析出が生じることはない。このため対象原料を必要以上に供給したり、対象原料の材料劣化を抑えることができ、かつ内容物充填システム10の修理、交換の時期を長く延ばすことができる。さらに内容物充填システム10の機能劣化を未然に防ぐことができる。 As described above, according to the present embodiment, some of the raw materials in the content may thermally decompose when heated, cause metal corrosion when heated, or precipitate and impair the functions of the detection device, etc. The raw material to be degraded is treated as the target raw material and is distinguished from other raw materials and sterilized without heating. This can prevent the target raw material from thermally decomposing and deteriorating or decreasing, and metal corrosion due to heating and precipitation due to heating will not occur within the content filling system 10. Therefore, it is possible to prevent the target raw material from being supplied in excess of what is necessary, to suppress material deterioration of the target raw material, and to prolong the period for repair or replacement of the content filling system 10. Furthermore, functional deterioration of the content filling system 10 can be prevented.
 また本実施の形態によれば、水と対象原料とからなる混合対象原料、および他の原料全体に対して非加熱殺菌することはないので、他の原料を非加熱殺菌ラインに通した場合に生じる非加熱殺菌ラインのフィルタ閉塞を未然に防ぐことができる。 Furthermore, according to the present embodiment, the raw material to be mixed consisting of water and the target raw material, and other raw materials as a whole are not sterilized by non-heating, so when other raw materials are passed through the non-heat sterilization line, It is possible to prevent filter clogging of the non-heat sterilization line from occurring.
 なお、図10に示す第2の実施の形態において、水殺菌ライン50Aにより非加熱殺菌された水を第1混合タンク55A、第2混合タンク55Bあるいは第3混合タンク55Cへ送ることなく、内容物充填システム10の各種機器を収納するチャンバ70a~70gへ送り、これらチャンバ70a~70gを水殺菌ライン50Aにより非加熱殺菌された水で洗浄してもよい。また、水殺菌ライン50Aにより非加熱殺菌された水を、他の原料殺菌ライン70、対象原料殺菌ライン50B、第1混合タンク55A~第3混合タンク55C、あるいは第1充填装置21A~第3充填装置21Cに対するCIP処理、又はSIP処理、又はCIPとSIPを同時に行うCSIP処理の後の濯ぎ水として、供給しても良い。 In addition, in the second embodiment shown in FIG. 10, the water sterilized without heating by the water sterilization line 50A is not sent to the first mixing tank 55A, the second mixing tank 55B, or the third mixing tank 55C, and the contents are The water may be sent to chambers 70a to 70g that house various devices of the filling system 10, and these chambers 70a to 70g may be washed with non-heat sterilized water via the water sterilization line 50A. In addition, water that has been non-heat sterilized by the water sterilization line 50A is transferred to another raw material sterilization line 70, the target raw material sterilization line 50B, the first mixing tank 55A to the third mixing tank 55C, or the first filling device 21A to the third filling device. It may be supplied as rinsing water after CIP processing, SIP processing, or CSIP processing in which CIP and SIP are performed simultaneously on the device 21C.
 さらにまた図10に示す第2の実施の形態において、純水製造装置50cから供給され水タンク50aに貯留された水(純水)の一部を対象原料タンク50bへ供給し、この対象原料タンク50b内の対象原料を水で希釈してもよい。 Furthermore, in the second embodiment shown in FIG. 10, a part of the water (pure water) supplied from the pure water production device 50c and stored in the water tank 50a is supplied to the target raw material tank 50b, and this target raw material tank The target raw material in 50b may be diluted with water.
 また水タンク50aに貯留された水(純水)の一部を他の原料タンク71へ供給し、この他の原料タンク71内の他の原料を水で希釈してもよい。 Also, a part of the water (pure water) stored in the water tank 50a may be supplied to another raw material tank 71, and other raw materials in this other raw material tank 71 may be diluted with water.
 このように水タンク50aからの水を対象原料タンク50bへ供給し、対象原料タンク50b内の対象原料を水で希釈することにより、対象原料をスムーズに対象原料殺菌ライン50B内に通過させることができる。 In this way, by supplying water from the water tank 50a to the target raw material tank 50b and diluting the target raw material in the target raw material tank 50b with water, the target raw material can be passed smoothly into the target raw material sterilization line 50B. can.
 また水タンク50aからの水を他の原料タンク71へ供給し、他の原料タンク71内の他の原料を水で希釈することにより他の原料をスムーズに他の原料殺菌ライン70内に通過させることができる。 Also, water from the water tank 50a is supplied to another raw material tank 71, and other raw materials in the other raw material tank 71 are diluted with water, thereby allowing the other raw materials to smoothly pass into the other raw material sterilization line 70. be able to.
 次に図10に示す第2の実施の形態の応用例について図11乃至図17により説明する。 Next, an application example of the second embodiment shown in FIG. 10 will be described with reference to FIGS. 11 to 17.
 図11乃至図17に示す応用例は、図10に示す実施の形態において、水殺菌ライン50Aにより非加熱殺菌された水を第1混合タンク55Aへ送液し、対象原料あるいは他の原料と混ぜることなく第1混合タンク55Aから第1充填装置21Aへ送液し、第1充填装置21Aによりボトル100内に水充填する例を示している。同様に対象原料殺菌ライン50Bにより非加熱殺菌された対象原料を第2混合タンク55Bへ送液し、他の原料あるいは水と混ぜることなく、第2混合タンク55Bから第2充填装置21Bへ送液し、第2充填装置21Bにより対象原料をボトル100内へ充填する。 In the application example shown in FIGS. 11 to 17, in the embodiment shown in FIG. 10, non-heat sterilized water is sent to the first mixing tank 55A by the water sterilization line 50A and mixed with the target raw material or other raw materials. This example shows an example in which the liquid is sent from the first mixing tank 55A to the first filling device 21A, and water is filled into the bottle 100 by the first filling device 21A. Similarly, the target raw material that has been non-heat sterilized by the target raw material sterilization line 50B is sent to the second mixing tank 55B, and the liquid is sent from the second mixing tank 55B to the second filling device 21B without mixing with other raw materials or water. Then, the target raw material is filled into the bottle 100 by the second filling device 21B.
 図12乃至図17に示す応用例では、さらに他の原料殺菌ライン70で加熱殺菌された他の原料のみを第3混合タンク55Cへ送液し、対象原料や水と混ぜることなく、第3混合タンク55Cから第3充填装置21Cへ送液し、第3充填装置21Cにより他の原料をボトル100内へ充填している。 In the application example shown in FIGS. 12 to 17, only other raw materials heat-sterilized in the other raw material sterilization line 70 are sent to the third mixing tank 55C, and the third mixing is performed without mixing with the target raw materials or water. The liquid is sent from the tank 55C to the third filling device 21C, and the bottle 100 is filled with other raw materials by the third filling device 21C.
 このうち図11に示す例では、第1充填装置21Aは無菌チャンバ70f内に配置されている。そしてこの第1充填装置21Aに第1混合タンク55Aから水が送液される。また無菌チャンバ70fのボトル100の搬送方向下流側に搬送ホイール12を介して無菌チャンバ70hが設けられ、この無菌チャンバ70h内に第2充填装置21Bが配置されている。そしてこの第2充填装置21Bに第2混合タンク55Bから対象原料が送液される。 In the example shown in FIG. 11, the first filling device 21A is placed inside the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100 via a transport wheel 12, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
 さらに無菌チャンバ70hのボトル100の搬送方向下流側に無菌チャンバ70jが設けられ、この無菌チャンバ70j内にキャップ装着装置16が配置されている。また無菌チャンバ70jの下流側に出口チャンバ70gが設けられている。
 なお、第1充填装置21Aおよび第2充填装置21Bは、いずれも回転可能な複数の充填ノズル21aを有するロータリーフィラからなる。
Further, a sterile chamber 70j is provided downstream of the sterile chamber 70h in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j. Further, an outlet chamber 70g is provided downstream of the sterile chamber 70j.
The first filling device 21A and the second filling device 21B are both rotary fillers having a plurality of rotatable filling nozzles 21a.
 図11において、予め上流側で殺菌されたボトル100が搬送ホイール12を介して無菌チャンバ70f内の第1充填装置21Aまで搬送される。第1充填装置21Aにおいて、第1混合タンク55Aから送液された水が空のボトル100内に充填される。この第1充填装置21Aでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ水が充填される。 In FIG. 11, a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f. In the first filling device 21A, the empty bottle 100 is filled with water sent from the first mixing tank 55A. In this first filling device 21A, water is filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次にボトル100は搬送ホイール12を介して、無菌チャンバ70h内の第2充填装置21Bまで搬送される。 Next, the bottle 100 is transported via the transport wheel 12 to the second filling device 21B inside the sterile chamber 70h.
 第2充填装置21Bにおいて、第2混合タンク55Bから送液された対象原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第2充填装置21Bでは、複数のボトル100が回転搬送されながらボトル100内部へ対象原料が充填される。 In the second filling device 21B, the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been previously filled with water by the first filling device 21A. In this second filling device 21B, target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次にボトル100は搬送ホイール12を介して、無菌チャンバ70j内のキャップ装着装置16まで送られる。 Next, the bottle 100 is sent via the transport wheel 12 to the capping device 16 in the sterile chamber 70j.
 キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水および対象原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる(図1B参照)。 The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the cap attachment device 16, the bottle 100 filled with water and target raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70jの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かって列になって搬送される。キャップ88がキャップ装着装置16に向かう途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される(図1B参照)。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16. In the cap sterilizing device 18 , a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 . On the way to the cap attachment device 16, the cap 88 is blown with hydrogen peroxide gas or mist toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized (see FIG. 1B).
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。 The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
 次に、図12に示す例では、第1充填装置21Aは無菌チャンバ70f内に配置されている。そしてこの第1充填装置21Aに第1混合タンク55Aから水が送液される。また無菌チャンバ70fのボトル100の搬送方向下流側に搬送ホイール12を介して無菌チャンバ70hが設けられ、この無菌チャンバ70h内に第2充填装置21Bが配置されている。そしてこの第2充填装置21Bに第2混合タンク55Bから対象原料が送液される。 Next, in the example shown in FIG. 12, the first filling device 21A is arranged within the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100 via a transport wheel 12, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
 さらに無菌チャンバ70hに隣接して無菌チャンバ70iが設けられ、この無菌チャンバ70i内に第3充填装置21Cが配置されている。そしてこの第3充填装置21Cに第3混合タンク55Cから他の原料が送液される。なお、無菌チャンバ70iは、無菌チャンバ70fに対してボトル100の搬送方向下流側に配置され、これによって無菌チャンバ70fのボトル100の搬送方向下流側に無菌チャンバ70hと無菌チャンバ70iとが並列に配置されているとも言える。 Further, a sterile chamber 70i is provided adjacent to the sterile chamber 70h, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C. Note that the sterile chamber 70i is arranged downstream of the sterile chamber 70f in the direction of transport of the bottle 100, so that the sterile chamber 70h and the sterile chamber 70i are arranged in parallel on the downstream side of the sterile chamber 70f in the direction of transport of the bottle 100. It can also be said that it has been done.
 さらに無菌チャンバ70h、70iのボトル100の搬送方向下流側に無菌チャンバ70jが設けられ、この無菌チャンバ70j内にキャップ装着装置16が配置されている。さらに無菌チャンバ70jの下流側に出口チャンバ70gが設けられている。 Further, a sterile chamber 70j is provided downstream of the sterile chambers 70h and 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j. Furthermore, an outlet chamber 70g is provided downstream of the sterile chamber 70j.
 なお、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cは、いずれも回転可能な複数の充填ノズル21aを有するロータリーフィラからなる。
 図12において、予め上流側で殺菌されたボトル100が搬送ホイール12を介して無菌チャンバ70f内の第1充填装置21Aまで搬送される。
Note that the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a.
In FIG. 12, a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f.
 第1充填装置21Aにおいて、第1混合タンク55Aから送液された水が空のボトル100内に充填される。この第1充填装置21Aでは複数のボトル100が回転搬送されながら、ボトル100の内部へ水が充填される。 In the first filling device 21A, the empty bottle 100 is filled with water sent from the first mixing tank 55A. In this first filling device 21A, water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次に無菌チャンバ70f内のボトル100は搬送ホイール12を介して無菌チャンバ70h内の第2充填装置21Bまで搬送される。第2充填装置21Bにおいて、第2混合タンク55Bから送液された対象原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第2充填装置21Bでは、複数のボトル100が回転搬送されながらボトル100の内部へ対象原料が充填される。 Next, the bottle 100 in the sterile chamber 70f is transported via the transport wheel 12 to the second filling device 21B in the sterile chamber 70h. In the second filling device 21B, the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A. In this second filling device 21B, target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 他方、無菌チャンバ70f内のボトル100を搬送ホイール12を介して無菌チャンバ70i内の第3充填装置21Cまで搬送してもよい。この場合、無菌チャンバ70f内のボトル100は無菌チャンバ70h内の第2充填装置21B側へ送られることはない。
 第3充填装置21Cまでボトル100が搬送されると、第3充填装置21Cにおいて第3混合タンク55Cから送液された他の原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第3充填装置21Cでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ他の原料が充填される。
On the other hand, the bottle 100 in the sterile chamber 70f may be transported via the transport wheel 12 to the third filling device 21C in the sterile chamber 70i. In this case, the bottle 100 in the sterile chamber 70f is not sent to the second filling device 21B side in the sterile chamber 70h.
When the bottle 100 is transported to the third filling device 21C, the other raw materials fed from the third mixing tank 55C are transferred into the bottle 100 which has been filled with water by the first filling device 21A. is filled with. In this third filling device 21C, other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 その後、無菌チャンバ70h内のボトル100および無菌チャンバ70i内のボトル100は、いずれも搬送ホイール12を介して無菌チャンバ70j内のキャップ装着装置16まで送られる。キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水、対象原料または他の原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる(図1B参照)。 Thereafter, the bottles 100 in the sterile chamber 70h and the bottles 100 in the sterile chamber 70i are both sent via the transport wheel 12 to the cap attachment device 16 in the sterile chamber 70j. The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the capping device 16, the bottle 100 filled with water, target raw material, or other raw material (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70jの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かって列になって搬送される。キャップ88がキャップ装着装置16に向かう途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される(図1B参照)。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16. In the cap sterilizing device 18 , a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 . On the way to the cap attachment device 16, the cap 88 is blown with hydrogen peroxide gas or mist toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized (see FIG. 1B).
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。
 次に、図13に示す例では、第1充填装置21Aは無菌チャンバ70f内に配置されている。そしてこの第1充填装置21Aに第1混合タンク55Aから水が送液される。また無菌チャンバ70fのボトル100の搬送方向下流側に無菌チャンバ70hが設けられ、この無菌チャンバ70h内に第2充填装置21Bが配置されている。そしてこの第2充填装置21Bに第2混合タンク55Bから対象原料が送液される。
The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
Next, in the example shown in FIG. 13, the first filling device 21A is placed in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
 さらに無菌チャンバ70hのボトル100の搬送方向下流側に無菌チャンバ70iが設けられ、この無菌チャンバ70i内に第3充填装置21Cが配置されている。そしてこの第3充填装置21Cに第3混合タンク55Cから他の原料が送液される。さらに無菌チャンバ70iのボトル100の搬送方向下流側に無菌チャンバ70jが設けられ、この無菌チャンバ70j内にキャップ装着装置16が配置されている。 Further, a sterile chamber 70i is provided on the downstream side of the sterile chamber 70h in the transport direction of the bottle 100, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C. Further, a sterile chamber 70j is provided downstream of the sterile chamber 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within the sterile chamber 70j.
 そして図13において、無菌チャンバ70f、無菌チャンバ70h、無菌チャンバ70iおよび無菌チャンバ70jは、ボトル100を回転搬送する円形の円形搬送体110の外周に並んで配置されている。また円形搬送体110の外周には無菌チャンバ70fの上流側に、搬送ホイール12を収納した無菌チャンバ70kが配置されている。さらに無菌チャンバ70jのボトル100の搬送方向下流側に出口チャンバ70gが設けられている。 In FIG. 13, the sterile chamber 70f, the sterile chamber 70h, the sterile chamber 70i, and the sterile chamber 70j are arranged along the outer periphery of a circular carrier 110 that rotationally transports the bottle 100. Further, on the outer periphery of the circular conveyance body 110, a sterile chamber 70k containing the conveyance wheel 12 is arranged upstream of the sterile chamber 70f. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
 なお、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cは、いずれも回転可能な複数の充填ノズル21aを有するロータリーフィラからなる。
 図13において、予め上流側で殺菌されたボトル100が無菌チャンバ70k内に配置された搬送ホイール12および円形搬送体110を介して無菌チャンバ70fまで搬送され、さらに無菌チャンバ70f内で搬送ホイール12を介して第1充填装置21Aまで搬送される。
Note that the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a.
In FIG. 13, a bottle 100 that has been sterilized in advance on the upstream side is transported to a sterile chamber 70f via a transport wheel 12 and a circular transport body 110 arranged in a sterile chamber 70k, and then transported to a sterile chamber 70f via a transport wheel 12 and a circular transport body 110 disposed in a sterile chamber 70k. It is transported to the first filling device 21A via the container.
 第1充填装置21Aにおいて、第1混合タンク55Aから送液された水が空のボトル100内に充填される。この第1充填装置21Aでは複数のボトル100が回転搬送されながら、ボトル100の内部へ水が充填される。 In the first filling device 21A, the empty bottle 100 is filled with water sent from the first mixing tank 55A. In this first filling device 21A, water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次に無菌チャンバ70f内のボトル100は無菌チャンバ70f内の搬送ホイール12、円形搬送体110、および無菌チャンバ70h内の搬送ホイール12を介して第2充填装置21Bまで搬送される。第2充填装置21Bにおいて、第2混合タンク55Bから送液された対象原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第2充填装置21Bでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ対象原料が充填される。 Next, the bottle 100 in the sterile chamber 70f is transported to the second filling device 21B via the transport wheel 12 in the sterile chamber 70f, the circular transport body 110, and the transport wheel 12 in the sterile chamber 70h. In the second filling device 21B, the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A. In this second filling device 21B, target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 その後、無菌チャンバ70h内のボトル100は無菌チャンバ70h内の搬送ホイール12、円形搬送体110および無菌チャンバ70i内の搬送ホイール12を介して第3充填装置21Cまで搬送される。第3充填装置21Cまでボトル100が搬送されると、第3充填装置21Cにおいて第3混合タンク55Cから送液された他の原料が、予め水と対象原料が充填されたボトル100内に充填される。この第3充填装置21Cでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ他の原料が充填される。 Thereafter, the bottle 100 in the sterile chamber 70h is transported to the third filling device 21C via the transport wheel 12 in the sterile chamber 70h, the circular transport body 110, and the transport wheel 12 in the sterile chamber 70i. When the bottle 100 is transported to the third filling device 21C, the other raw materials sent from the third mixing tank 55C are filled into the bottle 100 that has been filled with water and the target raw material in advance. Ru. In this third filling device 21C, other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 その後、無菌チャンバ70i内のボトル100は、無菌チャンバ70i内の搬送ホイール12、円形搬送体110、および無菌チャンバ70j内の搬送ホイール12を介してキャップ装着装置16まで送られる。キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水、対象原料および他の原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる(図1B参照)。 Thereafter, the bottle 100 in the sterile chamber 70i is sent to the capping device 16 via the transport wheel 12 in the sterile chamber 70i, the circular transport body 110, and the transport wheel 12 in the sterile chamber 70j. The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the cap attachment device 16, the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70jの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かってキャップ搬送路18Aにより列になって搬送される。キャップ88がキャップ装着装置16に向かうキャップ搬送路18Aの途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16. In the cap sterilizing device 18, a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。 The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
 次に、図14に示す例では、第1充填装置21Aは無菌チャンバ70f内に配置されている。そしてこの第1充填装置21Aに第1混合タンク55Aから水が送液される。また無菌チャンバ70fのボトル100の搬送方向下流側に無菌チャンバ70hが設けられ、この無菌チャンバ70h内に第2充填装置21Bが配置されている。そしてこの第2充填装置21Bに第2混合タンク55Bから対象原料が送液される。 Next, in the example shown in FIG. 14, the first filling device 21A is arranged within the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
 さらに無菌チャンバ70hに隣接して無菌チャンバ70iが設けられ、この無菌チャンバ70i内に第3充填装置21Cが配置されている。そしてこの第3充填装置21Cに第3混合タンク55Cから他の原料が送液される。図14において、無菌チャンバ70fのボトル100の搬送方向下流側に、無菌チャンバ70hと無菌チャンバ70iとが並列に配置されることになる。 Further, a sterile chamber 70i is provided adjacent to the sterile chamber 70h, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C. In FIG. 14, a sterile chamber 70h and a sterile chamber 70i are arranged in parallel on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100.
 さらに無菌チャンバ70h、70iのボトル100の搬送方向下流側に無菌チャンバ70jが設けられ、この無菌チャンバ70j内にキャップ装着装置16が配置されている。さらに無菌チャンバ70jのボトル100の搬送方向下流側に出口チャンバ70gが設けられている。 Further, a sterile chamber 70j is provided downstream of the sterile chambers 70h and 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
 なお、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cは、いずれも回転可能な複数の充填ノズル21aを有するロータリーフィラからなる。また第2充填装置21Bを収納する無菌チャンバ70hのうち、第3充填装置21Cを収納する無菌チャンバ70i側の領域が区画されて無菌チャンバ70lが形成され、この無菌チャンバ70l内に搬送ホイール12が配置されている。 Note that the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a. Further, of the sterile chamber 70h that accommodates the second filling device 21B, a region on the side of the sterile chamber 70i that accommodates the third filling device 21C is partitioned to form a sterile chamber 70l, and the transport wheel 12 is placed in the sterile chamber 70l. It is located.
 図14において、予め上流側で殺菌されたボトル100が搬送ホイール12を介して無菌チャンバ70f内の第1充填装置21Aまで搬送される。第1充填装置21Aにおいて、第1混合タンク55Aから送液された水が空のボトル100内に充填される。この第1充填装置21Aでは複数のボトル100が回転搬送されながら、ボトル100の内部へ水が充填される。 In FIG. 14, a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f. In the first filling device 21A, the empty bottle 100 is filled with water sent from the first mixing tank 55A. In this first filling device 21A, water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次に無菌チャンバ70f内のボトル100は搬送ホイール12を介して無菌チャンバ70h内の第2充填装置21Bまで搬送される。第2充填装置21Bにおいて、第2混合タンク55Bから送液された対象原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第2充填装置21Bでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ対象原料が充填される。 Next, the bottle 100 in the sterile chamber 70f is transported via the transport wheel 12 to the second filling device 21B in the sterile chamber 70h. In the second filling device 21B, the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A. In this second filling device 21B, target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 他方、無菌チャンバ70f内のボトル100を無菌チャンバ70h内の搬送ホイール12および無菌チャンバ70i内の搬送ホイール12を介して無菌チャンバ70i内の第3充填装置21Cまで搬送してもよい。この場合、無菌チャンバ70f内のボトルは無菌チャンバ70h内の第2充填装置21B側へ送られない。 On the other hand, the bottle 100 in the sterile chamber 70f may be transported to the third filling device 21C in the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70h and the transport wheel 12 in the sterile chamber 70i. In this case, the bottle in the sterile chamber 70f is not sent to the second filling device 21B side in the sterile chamber 70h.
 第3充填装置21Cまでボトル100が搬送されると、第3充填装置21Cにおいて第3混合タンク55Cから送液された他の原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第3充填装置21Cでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ他の原料が充填される。 When the bottle 100 is transported to the third filling device 21C, the other raw materials fed from the third mixing tank 55C are transferred into the bottle 100 which has been filled with water by the first filling device 21A. is filled with. In this third filling device 21C, other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 その後、無菌チャンバ70h内のボトル100および無菌チャンバ70i内のボトル100は、それぞれ無菌チャンバ70h内の搬送ホイール12および無菌チャンバ70i内の搬送ホイール12を介して無菌チャンバ70j内の搬送ホイール12を経てキャップ装着装置16まで送られる。キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水、対象原料あるいは他の原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる(図1B参照)。 Thereafter, the bottle 100 in the sterile chamber 70h and the bottle 100 in the sterile chamber 70i are transported via the transport wheel 12 in the sterile chamber 70h and the transport wheel 12 in the sterile chamber 70i, respectively, to the transport wheel 12 in the sterile chamber 70j. It is sent to the cap attachment device 16. The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the capping device 16, the bottle 100 filled with water, the target raw material, or other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70jの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かってキャップ搬送路18Aにより列になって搬送される。キャップ88がキャップ装着装置16に向かうキャップ搬送路18Aの途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16. In the cap sterilizing device 18, a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。 The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
 なお、図14に示す例において、無菌チャンバ70f内で第1充填装置21Aにより水が充填されたボトル100を、無菌チャンバ70h内の第2充填装置21Bあるいは無菌チャンバ70i内の第3充填装置21Cへ送ることなく、無菌チャンバ70l内の搬送ホイール12を経て直接無菌チャンバ70jへ送ってもよい。この場合は、水のみが充填されたボトル100に対してキャップ88が装着されて製品ボトル101が得られる。 In the example shown in FIG. 14, the bottle 100 filled with water by the first filling device 21A in the sterile chamber 70f is transferred to the second filling device 21B in the sterile chamber 70h or the third filling device 21C in the sterile chamber 70i. It may be directly sent to the sterile chamber 70j via the transport wheel 12 in the sterile chamber 70l without sending it to the sterile chamber 70j. In this case, a product bottle 101 is obtained by attaching the cap 88 to the bottle 100 filled only with water.
 次に、図15に示す例では、第1充填装置21Aは無菌チャンバ70f内に配置されている。そしてこの第1充填装置21Aに第1混合タンク55Aから水が送液される。また無菌チャンバ70fのボトル100の搬送方向下流側に搬送ホイール12を介して無菌チャンバ70iが設けられ、この無菌チャンバ70i内に第3充填装置21Cが配置されている。そしてこの第3充填装置21Cに第3混合タンク55Cから他の原料が送液される。 Next, in the example shown in FIG. 15, the first filling device 21A is arranged in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70i is provided on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100 via a transport wheel 12, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C.
 さらに無菌チャンバ70fおよび無菌チャンバ70iに隣接して無菌チャンバ70hが設けられ、この無菌チャンバ70h内に第2充填装置21Bが配置されている。そしてこの第2充填装置21Bに第2混合タンク55Bから対象原料が送液される。図15において、無菌チャンバ70fのボトル100の搬送方向下流側に、無菌チャンバ70hと無菌チャンバ70iとが並列に配置されることになる。さらに無菌チャンバ70h、70iのボトル100の搬送方向下流側に無菌チャンバ70jが設けられ、この無菌チャンバ70j内にキャップ装着装置16が配置されている。さらに無菌チャンバ70jのボトル100の搬送方向下流側に出口チャンバ70gが設けられている。 Further, a sterile chamber 70h is provided adjacent to the sterile chamber 70f and the sterile chamber 70i, and the second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B. In FIG. 15, a sterile chamber 70h and a sterile chamber 70i are arranged in parallel on the downstream side of the sterile chamber 70f in the transport direction of the bottle 100. Further, a sterile chamber 70j is provided downstream of the sterile chambers 70h and 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within this sterile chamber 70j. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
 なお、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cは、いずれも回転可能な複数の充填ノズル21aを有するロータリーフィラからなる。また、第3充填装置21Cを収納する無菌チャンバ70iのうち、第2充填装置21Bを収納する無菌チャンバ70h側の領域が区画されて無菌チャンバ70lが形成され、この無菌チャンバ70l内に搬送ホイール12が配置されている。 Note that the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a. Further, of the sterile chamber 70i that houses the third filling device 21C, a region on the side of the sterile chamber 70h that houses the second filling device 21B is partitioned to form a sterile chamber 70l, and the transport wheel 12 is inside this sterile chamber 70l. is located.
 図15において、予め上流側で殺菌されたボトル100が搬送ホイール12を介して無菌チャンバ70f内の第1充填装置21Aまで搬送される。第1充填装置21Aにおいて、第1混合タンク55Aから送液された水が空のボトル100内に充填される。この第1充填装置21Aでは複数のボトル100が回転搬送されながら、ボトル100の内部へ水が充填される。 In FIG. 15, a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f. In the first filling device 21A, the empty bottle 100 is filled with water sent from the first mixing tank 55A. In this first filling device 21A, water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次に無菌チャンバ70f内のボトル100は無菌チャンバ70f内の搬送ホイール12および無菌チャンバ70h内の搬送ホイール12を介して第2充填装置21Bまで搬送される。第2充填装置21Bにおいて、第2混合タンク55Bから送液された対象原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第2充填装置21Bでは、複数のボトル100が回転搬送されながらボトル100の内部へ対象原料が充填される。 Next, the bottle 100 in the sterile chamber 70f is transported to the second filling device 21B via the transport wheel 12 in the sterile chamber 70f and the transport wheel 12 in the sterile chamber 70h. In the second filling device 21B, the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A. In this second filling device 21B, target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 他方、無菌チャンバ70f内のボトル100を無菌チャンバ70f内の搬送ホイール12および無菌チャンバ70l内の搬送ホイール12を介して無菌チャンバ70i内の第3充填装置21Cまで搬送してもよい。 On the other hand, the bottle 100 in the sterile chamber 70f may be transported to the third filling device 21C in the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70f and the transport wheel 12 in the sterile chamber 70l.
 第3充填装置21Cまでボトル100が搬送されると、第3充填装置21Cにおいて第3混合タンク55Cから送液された他の原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第3充填装置21Cでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ他の原料が充填される。 When the bottle 100 is transported to the third filling device 21C, the other raw materials fed from the third mixing tank 55C are transferred into the bottle 100 which has been filled with water by the first filling device 21A. is filled with. In this third filling device 21C, other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 その後、無菌チャンバ70h内のボトル100および無菌チャンバ70i内のボトル100は、いずれも無菌チャンバ70l内の搬送ホイール12を介して無菌チャンバ70j内の搬送ホイール12を経てキャップ装着装置16まで送られる。キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水、対象原料あるいは他の原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる(図1B参照)。 Thereafter, the bottles 100 in the sterile chamber 70h and the bottles 100 in the sterile chamber 70i are both sent to the cap attachment device 16 via the transport wheel 12 in the sterile chamber 70l, via the transport wheel 12 in the sterile chamber 70j. The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the capping device 16, the bottle 100 filled with water, the target raw material, or other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70jの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かってキャップ搬送路18Aにより列になって搬送される。キャップ88がキャップ装着装置16に向かうキャップ搬送路18Aの途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16. In the cap sterilizing device 18, a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。 The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
 次に、図16に示す例では、第1充填装置21Aは無菌チャンバ70f内に配置されている。そしてこの第1充填装置21Aに第1混合タンク55Aから水が送液される。また無菌チャンバ70fのボトル100の搬送方向下流側に無菌チャンバ70hが設けられ、この無菌チャンバ70h内に第2充填装置21Bが配置されている。そしてこの第2充填装置21Bに第2混合タンク55Bから対象原料が送液される。 Next, in the example shown in FIG. 16, the first filling device 21A is placed in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
 さらに無菌チャンバ70hのボトル100の搬送方向下流側に無菌チャンバ70iが設けられ、この無菌チャンバ70i内に第3充填装置21Cが配置されている。そしてこの第3充填装置21Cに第3混合タンク55Cから他の原料が送液される。さらに無菌チャンバ70iのボトル100の搬送方向下流側に無菌チャンバ70jが設けられ、この無菌チャンバ70j内にキャップ装着装置16が配置されている。さらに無菌チャンバ70jのボトル100の搬送方向下流側に出口チャンバ70gが設けられている。 Further, a sterile chamber 70i is provided on the downstream side of the sterile chamber 70h in the transport direction of the bottle 100, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C. Further, a sterile chamber 70j is provided downstream of the sterile chamber 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within the sterile chamber 70j. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
 なお、第1充填装置21A、第2充填装置21Bおよび第3充填装置21Cは、いずれも回転可能な複数の充填ノズル21aを有するロータリーフィラからなる。また無菌チャンバ70f、70hおよび70iに隣接して無菌チャンバ70mが設けられ、この無菌チャンバ70m内に搬送ホイール12が配置されている。 Note that the first filling device 21A, the second filling device 21B, and the third filling device 21C are all composed of rotary fillers having a plurality of rotatable filling nozzles 21a. Further, a sterile chamber 70m is provided adjacent to the sterile chambers 70f, 70h, and 70i, and the transport wheel 12 is disposed within this sterile chamber 70m.
 図16において、予め上流側で殺菌されたボトル100が搬送ホイール12を介して無菌チャンバ70f内の第1充填装置21Aまで搬送される。第1充填装置21Aにおいて、第1混合タンク55Aから送液された水が空のボトル100内に充填される。この第1充填装置21Aでは複数のボトル100が回転搬送されながら、ボトル100の内部へ水が充填される。 In FIG. 16, a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f. In the first filling device 21A, the empty bottle 100 is filled with water sent from the first mixing tank 55A. In this first filling device 21A, water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次に無菌チャンバ70f内のボトル100は無菌チャンバ70f内の搬送ホイール12および無菌チャンバ70m内の搬送ホイール12を介して無菌チャンバ70hへ送られ、無菌チャンバ70hの搬送ホイール12を経て第2充填装置21Bまで搬送される。第2充填装置21Bにおいて、第2混合タンク55Bから送液された対象原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第2充填装置21Bでは、複数のボトル100が回転搬送されながらボトル100の内部へ対象原料が充填される。 Next, the bottle 100 in the sterile chamber 70f is sent to the sterile chamber 70h via the transport wheel 12 in the sterile chamber 70f and the transport wheel 12 in the sterile chamber 70m, and then via the transport wheel 12 in the sterile chamber 70h to the second filling device. It is transported to 21B. In the second filling device 21B, the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A. In this second filling device 21B, target raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次に無菌チャンバ70h内のボトル100が無菌チャンバ70h内の搬送ホイール12および無菌チャンバ70m内の搬送ホイール12を介して無菌チャンバ70i内へ送られ、その後第3充填装置21Cまで搬送される。第3充填装置21Cまでボトル100が搬送されると、第3充填装置21Cにおいて第3混合タンク55Cから送液された他の原料が、予め水と対象原料が充填されたボトル100内に充填される。この第3充填装置21Cでは、複数のボトル100が回転搬送されながら、ボトル100の内部へ他の原料が充填される。 Next, the bottle 100 in the sterile chamber 70h is sent into the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70h and the transport wheel 12 in the sterile chamber 70m, and then transported to the third filling device 21C. When the bottle 100 is transported to the third filling device 21C, the other raw materials sent from the third mixing tank 55C are filled into the bottle 100 that has been filled with water and the target raw material in advance. Ru. In this third filling device 21C, other raw materials are filled into the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 その後、無菌チャンバ70i内のボトル100は、無菌チャンバ70i内の搬送ホイール12および無菌チャンバ70m内の搬送ホイール12を介して無菌チャンバ70j内のキャップ装着装置16まで送られる。キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水、対象原料および他の原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる(図1B参照)。 Thereafter, the bottle 100 in the sterile chamber 70i is sent to the cap attachment device 16 in the sterile chamber 70j via the transport wheel 12 in the sterile chamber 70i and the transport wheel 12 in the sterile chamber 70m. The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the cap attachment device 16, the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70jの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かってキャップ搬送路18Aにより列になって搬送される。キャップ88がキャップ装着装置16に向かうキャップ搬送路18Aの途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16. In the cap sterilizing device 18, a large number of caps 88 brought in from the outside of the content filling system 10 are collected in advance and transported in a line toward the cap mounting device 16 by the cap transport path 18A. While the cap 88 is on the cap conveyance path 18A toward the cap mounting device 16, hydrogen peroxide gas or mist is blown toward the inner and outer surfaces of the cap 88, and then the cap 88 is dried with hot air and sterilized.
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。 The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
 次に、図17に示す例では、第1充填装置21Aは無菌チャンバ70f内に配置されている。そしてこの第1充填装置21Aに第1混合タンク55Aから水が送液される。また無菌チャンバ70fのボトル100の搬送方向下流側に小型の無菌チャンバ70hが設けられ、この無菌チャンバ70h内に第2充填装置21Bが配置されている。そしてこの第2充填装置21Bに第2混合タンク55Bから対象原料が送液される。 Next, in the example shown in FIG. 17, the first filling device 21A is placed in the sterile chamber 70f. Water is fed from the first mixing tank 55A to the first filling device 21A. Further, a small sterile chamber 70h is provided downstream of the sterile chamber 70f in the transport direction of the bottle 100, and a second filling device 21B is disposed within this sterile chamber 70h. Then, the target raw material is fed from the second mixing tank 55B to the second filling device 21B.
 さらに無菌チャンバ70hのボトル100の搬送方向下流側に搬送ホイール12を収納する無菌チャンバ70nが設けられている。また無菌チャンバ70nのボトル100の搬送方向下流側に小型の無菌チャンバ70iが設けられ、この無菌チャンバ70i内に第3充填装置21Cが配置されている。そしてこの第3充填装置21Cに第3混合タンク55Cから他の原料が送液される。さらに無菌チャンバ70iのボトル100の搬送方向下流側に無菌チャンバ70jが設けられ、この無菌チャンバ70j内にキャップ装着装置16が配置されている。さらに無菌チャンバ70jのボトル100の搬送方向下流側に出口チャンバ70gが設けられている。 Furthermore, a sterile chamber 70n that accommodates the transport wheel 12 is provided downstream of the sterile chamber 70h in the transport direction of the bottle 100. Further, a small sterile chamber 70i is provided on the downstream side of the sterile chamber 70n in the transport direction of the bottle 100, and a third filling device 21C is disposed within this sterile chamber 70i. Then, other raw materials are sent from the third mixing tank 55C to the third filling device 21C. Further, a sterile chamber 70j is provided downstream of the sterile chamber 70i in the transport direction of the bottle 100, and a cap mounting device 16 is disposed within the sterile chamber 70j. Further, an outlet chamber 70g is provided on the downstream side of the sterile chamber 70j in the transport direction of the bottle 100.
 なお、第1充填装置21Aは回転可能な複数の充填ノズル21aを有するロータリーフィラからなる。また第2充填装置21Bおよび第3充填装置21Cは、充填量が少ない内容物を充填する充填装置であって、ボトル100の口部上に固定して使用される定量タイプの充填ノズル21bおよび充填ノズル21cを含む。 Note that the first filling device 21A is composed of a rotary filler having a plurality of rotatable filling nozzles 21a. Further, the second filling device 21B and the third filling device 21C are filling devices for filling contents with a small amount of filling, and include a fixed amount type filling nozzle 21b fixed on the mouth of the bottle 100 and a filling device 21C. It includes a nozzle 21c.
 そしてボトル100が充填ノズル21bに達すると、近赤外線でボトル100が検出されてボトル100の口部が充填ノズル21bの下を通過している間だけ、ボトル100に対して充填ノズル21bから、ボトル一本一本に対して間欠的に内容物が充填される。なお、第2充填装置21Bおよび第3充填装置21Cは、間欠的に内容物を充填するものではなく、連続的に充填する充填ノズル21bおよび充填ノズル21cを有していてもよい。充填ノズル21aおよび充填ノズル21bはロータリーフィラからなる充填ノズル21aよりも上流側に設置しても良く、上流と下流に1台以上設置しても良い。第2充填装置21Bと第3充填装置21Cからは同じ液を充填しても良い。 When the bottle 100 reaches the filling nozzle 21b, the bottle 100 is detected by near infrared rays, and only while the mouth of the bottle 100 passes under the filling nozzle 21b, the bottle 100 is exposed to the filling nozzle 21b. Contents are filled intermittently into each bottle. Note that the second filling device 21B and the third filling device 21C may have a filling nozzle 21b and a filling nozzle 21c that do not fill the contents intermittently but continuously. The filling nozzle 21a and the filling nozzle 21b may be installed upstream of the filling nozzle 21a made of a rotary filler, or one or more of them may be installed upstream and downstream. The same liquid may be filled from the second filling device 21B and the third filling device 21C.
 図17において、予め上流側で殺菌されたボトル100が搬送ホイール12を介して無菌チャンバ70f内の第1充填装置21Aまで搬送される。第1充填装置21Aにおいて、第1混合タンク55Aから送液された水が空のボトル100内に充填される。この第1充填装置21Aでは複数のボトル100が回転搬送されながら、ボトル100の内部へ水が充填される。 In FIG. 17, a bottle 100 that has been sterilized in advance on the upstream side is transported via the transport wheel 12 to the first filling device 21A in the sterile chamber 70f. In the first filling device 21A, the empty bottle 100 is filled with water sent from the first mixing tank 55A. In this first filling device 21A, water is filled into the inside of the bottles 100 while the plurality of bottles 100 are being rotated and conveyed.
 次に無菌チャンバ70f内のボトル100は搬送ホイール12を介して無菌チャンバ70h内の第2充填装置21Bまで搬送される。第2充填装置21Bにおいて、第2混合タンク55Bから送液された対象原料が、予め第1充填装置21Aにより水が充填されたボトル100内に充填される。この第2充填装置21Bでは、ボトル100に対して対象原料が間欠的に充填される。 Next, the bottle 100 in the sterile chamber 70f is transported via the transport wheel 12 to the second filling device 21B in the sterile chamber 70h. In the second filling device 21B, the target raw material sent from the second mixing tank 55B is filled into a bottle 100 that has been filled with water in advance by the first filling device 21A. In this second filling device 21B, the target raw material is intermittently filled into the bottle 100.
 次に無菌チャンバ70h内のボトル100は無菌チャンバ70n内の搬送ホイール12を介して無菌チャンバ70i内の第3充填装置21Cまで搬送される。第3充填装置21Cまでボトル100が搬送されると、第3充填装置21Cにおいて第3混合タンク55Cから送液された他の原料が、予め水と対象原料が充填されたボトル100内に充填される。この第3充填装置21Cでは、ボトル100に対して他の原料が間欠的に充填される。
 その後、無菌チャンバ70i内のボトル100は、無菌チャンバ70j内へ送られ、搬送ホイール12を経てキャップ装着装置16まで送られる。
Next, the bottle 100 in the sterile chamber 70h is transported to the third filling device 21C in the sterile chamber 70i via the transport wheel 12 in the sterile chamber 70n. When the bottle 100 is transported to the third filling device 21C, the other raw materials sent from the third mixing tank 55C are filled into the bottle 100 that has been filled with water and the target raw material in advance. Ru. In this third filling device 21C, other raw materials are intermittently filled into the bottle 100.
Thereafter, the bottle 100 in the sterile chamber 70i is sent into the sterile chamber 70j, via the transport wheel 12, and then to the capping device 16.
 キャップ装着装置16は、ボトル100にキャップ88を装着することにより、ボトル100を閉栓する装置である。キャップ装着装置16において、水、対象原料および他の原料(内容物)が充填されたボトル100はキャップ88により閉じられ、ボトル100内に外部の空気や微生物が侵入しないように密封される。キャップ装着装置16において、内容物が充填された複数のボトル100が回転(公転)されながら、その口部にキャップ88が装着される。このようにして、ボトル100にキャップ88を装着することにより、製品ボトル101が得られる(図1B参照)。 The cap attachment device 16 is a device that closes the bottle 100 by attaching the cap 88 to the bottle 100. In the cap attachment device 16, the bottle 100 filled with water, the target raw material, and other raw materials (contents) is closed with a cap 88, and the bottle 100 is sealed to prevent outside air and microorganisms from entering. In the cap attachment device 16, the caps 88 are attached to the mouths of the plurality of bottles 100 filled with contents while being rotated (revolving). By attaching the cap 88 to the bottle 100 in this manner, a product bottle 101 is obtained (see FIG. 1B).
 キャップ88は、予めキャップ殺菌装置18によって殺菌される。キャップ殺菌装置18は、例えば無菌チャンバ70jの外側であってキャップ装着装置16の近傍に配置されている。キャップ殺菌装置18において、内容物充填システム10の外部から搬入されたキャップ88は、予め多数集められ、キャップ装着装置16に向かって列になって搬送される。キャップ88がキャップ装着装置16に向かう途中で、過酸化水素のガス又はミストがキャップ88の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される(図1B参照)。 The cap 88 is sterilized in advance by the cap sterilizer 18. The cap sterilizer 18 is disposed, for example, outside the sterile chamber 70j and near the cap attachment device 16. In the cap sterilizing device 18 , a large number of caps 88 brought in from outside the content filling system 10 are collected in advance and conveyed in a line toward the cap mounting device 16 . On the way to the cap attachment device 16, the cap 88 is blown with hydrogen peroxide gas or mist toward the inner and outer surfaces of the cap 88, and then dried with hot air and sterilized (see FIG. 1B).
 製品ボトル搬出部25は、キャップ装着装置16でキャップ88を装着された製品ボトル101を、内容物充填システム10の外部へ向けて連続的に搬出する。 The product bottle unloading section 25 continuously unloads the product bottles 101 to which the caps 88 have been attached by the cap attaching device 16 to the outside of the content filling system 10 .
 また、図11~17の第1混合タンク55Aは水、第2混合タンク55Bおよび第3混合タンク55Cは、対象原料または他の原料として説明を行ったがこれに限らない。内容物の混ざりやすさ、液の吹きこぼれ等を考慮し、順序を適宜変更すると良い。 Furthermore, although the first mixing tank 55A in FIGS. 11 to 17 is described as water, and the second mixing tank 55B and third mixing tank 55C are used as target raw materials or other raw materials, the present invention is not limited thereto. It is a good idea to change the order as appropriate, taking into account the ease with which the contents mix and the possibility of liquid boiling over.
 なお、図1A乃至図9Bに示す第1の実施の形態および図10に示す第2の実施の形態において、他の原料タンク71内の他の原料を他の原料殺菌ライン70により加熱殺菌する例を示したが、これに限らず他の原料タンク71内に貯留された他の原料を予め所望の手法により殺菌しておいてもよい。この場合は、他の原料タンク71内に貯留された他の原料を再度、他の原料殺菌ライン70を用いて加熱殺菌する必要はない。また、殺菌された他の原料をバッグ・イン・ボックス、無菌コンテナ、無菌タンク等を用いて、図1Bの75より無菌的に接続し、無菌的に製品液ラインに供給しても良い。 Note that in the first embodiment shown in FIGS. 1A to 9B and the second embodiment shown in FIG. However, the present invention is not limited to this, and other raw materials stored in other raw material tanks 71 may be sterilized in advance by a desired method. In this case, there is no need to heat and sterilize the other raw materials stored in the other raw material tanks 71 again using the other raw material sterilization line 70. Alternatively, other sterilized raw materials may be aseptically connected from 75 in FIG. 1B using a bag-in-box, a sterile container, a sterile tank, etc., and supplied to the product liquid line in an aseptic manner.
 (他の変形例)
 また、上述した実施の形態において、循環系(第2循環系)95Aが、前段殺菌機62A、第3バイパスライン95a、第1殺菌機62、第2殺菌機64及び循環ライン95によって構成されている例(図2A3等参照)について説明した。この場合、第1紫外線ランプ67a等を点灯した状態で、循環系95Aにおいて水を循環させることにより、異物除去フィルタ61に捕集された菌を定期的に殺菌しても良い。異物除去フィルタ61に捕集された菌の殺菌は、例えば、製品ボトル101の製造を停止している間に行われても良い。このとき、例えば、図18Aに示すように、循環ライン95の一端は、第2殺菌機64と第1除菌フィルタ63との間に接続されていても良く、循環ライン95の他端は、混合タンク51に接続されていても良い。また、ポンプP1の周波数を変化させることにより、異物除去フィルタ61の上流側の圧力と下流側の圧力との間の圧力差(差圧)を変化させても良い。そして、異物除去フィルタ61の上流側の圧力と下流側の圧力との間の圧力差(差圧)を変化させることにより、異物除去フィルタ61に捕集された菌を、積極的に、異物除去フィルタ61の下流側に押し出しても良い。具体的には、循環系95Aにおいて水を循環させることにより菌を殺菌するとき、異物除去フィルタ61の上流側の圧力を、製品ボトル101の製造時における圧力よりも0.05MPa以上高くしても良く、好ましくは0.1MPa以上高くしても良い。また、図18Bに示すように、フィルタの構造上問題なければ、内容物を逆流させることにより、異物除去フィルタ61に捕集された菌を、循環系95Aにおいて循環させても良い。なお、このとき、異物除去フィルタ61の1次側圧力と2次側圧力の差は、異物除去フィルタ61の正圧、逆圧ともに許容最大圧力を超えないようにする。
このように、異物除去フィルタ61に捕集された菌を定期的に殺菌することにより、混合対象原料殺菌ライン50によって、連続して長時間内容物を殺菌した場合であっても、混合対象原料殺菌ライン50によって殺菌された内容物の無菌性を担保できる。
(Other variations)
Further, in the embodiment described above, the circulation system (second circulation system) 95A is configured by the first sterilizer 62A, the third bypass line 95a, the first sterilizer 62, the second sterilizer 64, and the circulation line 95. An example (see FIG. 2A3, etc.) has been described. In this case, bacteria collected on the foreign matter removal filter 61 may be periodically sterilized by circulating water in the circulation system 95A with the first ultraviolet lamp 67a etc. turned on. Sterilization of bacteria trapped in the foreign matter removal filter 61 may be performed, for example, while the production of the product bottle 101 is stopped. At this time, for example, as shown in FIG. 18A, one end of the circulation line 95 may be connected between the second sterilizer 64 and the first sterilization filter 63, and the other end of the circulation line 95 is It may be connected to the mixing tank 51. Further, by changing the frequency of the pump P1, the pressure difference (differential pressure) between the pressure on the upstream side and the pressure on the downstream side of the foreign matter removal filter 61 may be changed. By changing the pressure difference (differential pressure) between the pressure on the upstream side and the pressure on the downstream side of the foreign matter removal filter 61, the bacteria collected on the foreign matter removal filter 61 are actively removed. It may be pushed out to the downstream side of the filter 61. Specifically, when sterilizing bacteria by circulating water in the circulation system 95A, even if the pressure on the upstream side of the foreign matter removal filter 61 is made 0.05 MPa or more higher than the pressure at the time of manufacturing the product bottle 101. 0.1 MPa or higher, preferably 0.1 MPa or more. Furthermore, as shown in FIG. 18B, if there is no problem with the structure of the filter, the bacteria collected in the foreign matter removal filter 61 may be circulated in the circulation system 95A by causing the contents to flow backwards. At this time, the difference between the primary side pressure and the secondary side pressure of the foreign matter removal filter 61 is such that both the positive pressure and the reverse pressure of the foreign matter removal filter 61 do not exceed the allowable maximum pressure.
In this way, by regularly sterilizing the bacteria collected in the foreign matter removal filter 61, even when the contents are continuously sterilized for a long time by the mixing target material sterilization line 50, the mixing target materials can be sterilized. The sterilization of the contents sterilized by the sterilization line 50 can be ensured.
 (更に他の変形例)
 また、図18Cに示すように、混合対象原料殺菌ライン50は、複数(例えば2つ)の殺菌機60を有していても良い。これにより、一方の殺菌機60が停止した場合、又は一方の殺菌機60において紫外線の照射量が低下した場合であっても、他方の殺菌機60によって、内容物の無菌性を担保できる。また、一方の殺菌機60を洗浄(CIP)又は殺菌(SIP)している場合に、他方の殺菌機60を使用して、内容物を殺菌できる。このため、製品ボトル101の製造を連続して行うことができる。なお、図18Cに示す例においては、殺菌機60の構成が図2A1に示す殺菌機60の構成と同一であるが、これに限られない。図示はしないが、例えば、殺菌機60が、図2A2乃至図2Jに示す殺菌機60であっても良い。また、混合対象原料殺菌ライン50が複数の殺菌機60を有する場合、混合対象原料殺菌ライン50が有する殺菌機60が互いに異なっていても良い。一例として、混合対象原料殺菌ライン50が、図2A1に示す殺菌機60と、図2A3に示す殺菌機60とを有していても良い。
(Further variations)
Further, as shown in FIG. 18C, the mixing target raw material sterilization line 50 may include a plurality of (for example, two) sterilizers 60. Thereby, even if one of the sterilizers 60 stops or the amount of ultraviolet rays irradiated in one of the sterilizers 60 decreases, the sterility of the contents can be ensured by the other sterilizer 60. Further, when one sterilizer 60 is being cleaned (CIP) or sterilized (SIP), the other sterilizer 60 can be used to sterilize the contents. Therefore, the product bottles 101 can be manufactured continuously. Note that in the example shown in FIG. 18C, the configuration of the sterilizer 60 is the same as the configuration of the sterilizer 60 shown in FIG. 2A1, but the configuration is not limited thereto. Although not shown, the sterilizer 60 may be the sterilizer 60 shown in FIGS. 2A2 to 2J, for example. Moreover, when the mixing target raw material sterilization line 50 has a plurality of sterilizers 60, the sterilizers 60 that the mixing target raw material sterilizing line 50 has may be different from each other. As an example, the mixing target raw material sterilization line 50 may include a sterilizer 60 shown in FIG. 2A1 and a sterilizer 60 shown in FIG. 2A3.
 (更に他の変形例)
 また、上述した実施の形態において、内容物充填システム10が、ボトル100に内容物を充填するシステムである場合を例にとって説明したが、これに限られない。例えば、内容物充填システム10が、プリフォーム100aに対して内容物を充填することにより、プリフォーム100aからボトル100を成形する充填システム(いわゆる、ブローフィルシール(Blow-Fill-Seal(BFS))であっても良い。
(Further variations)
Furthermore, in the above-described embodiment, the case where the content filling system 10 is a system for filling the bottle 100 with content has been described as an example, but the present invention is not limited to this. For example, the content filling system 10 is a filling system (so-called Blow-Fill-Seal (BFS)) that molds the bottle 100 from the preform 100a by filling the preform 100a with content. It may be.
 この場合、図18Dに示すように、充填装置21は、ボトル成形部30内に組み込まれていても良い。なお、図示はしないが、例えば、プリフォーム100aに対して内容物を充填することにより、プリフォーム100aからボトル100を成形する場合には、充填装置21が、ボトル成形部30内に組み込まれていても良い。 In this case, the filling device 21 may be incorporated into the bottle forming section 30, as shown in FIG. 18D. Although not shown, when molding the bottle 100 from the preform 100a by filling the preform 100a with contents, for example, the filling device 21 is incorporated into the bottle molding section 30. It's okay.
 また、図18Dに示すように、ボトル成形部30のプリフォーム搬送部31において、プリフォーム殺菌装置34aは、加熱部35の下流側に設けられていても良い。そして、プリフォーム殺菌装置34aは、加熱部35によって加熱されたプリフォーム100aを殺菌するように構成されていても良い。プリフォーム殺菌装置34aは、チャンバ70s内に配置されていても良い。 Furthermore, as shown in FIG. 18D, in the preform transport section 31 of the bottle forming section 30, the preform sterilizer 34a may be provided downstream of the heating section 35. The preform sterilizer 34a may be configured to sterilize the preform 100a heated by the heating section 35. The preform sterilizer 34a may be placed within the chamber 70s.
 本変形例では、充填装置21において、殺菌されたプリフォーム100aに対して、加圧された内容物が充填され得る。これにより、ボトル100の成形と、ボトル100に対する内容物の充填とが同時に行われ得る。 In this modification, the filling device 21 can fill the sterilized preform 100a with pressurized contents. Thereby, molding of the bottle 100 and filling of the contents into the bottle 100 can be performed simultaneously.
 (他の変形例)
 さらに、上述した実施の形態において、殺菌機60が、電気伝導率が0.1μS/cm以上20μS/cm以下である内容物を殺菌する例について説明したが、これに限られない。例えば、殺菌機60が殺菌する内容物が、20μS/cmよりも大きい水であっても良い。この場合、水は、水道水又は井水であっても良い。
(Other variations)
Furthermore, in the embodiment described above, an example has been described in which the sterilizer 60 sterilizes contents whose electrical conductivity is 0.1 μS/cm or more and 20 μS/cm or less, but the present invention is not limited to this. For example, the content that is sterilized by the sterilizer 60 may be water with a concentration higher than 20 μS/cm. In this case, the water may be tap water or well water.
 この場合、図18Eに示すように、混合対象原料殺菌ライン50は、混合タンク51の上流側に設けられ、水(水道水又は井水等)を貯留する前段水タンク50dと、第1殺菌機62と同一構成の前段殺菌機62Aとを設けても良い。なお、殺菌機60が水道水等を殺菌する場合、第1紫外線ランプ67a等の表面(例えば、石英ガラスによって構成される表面)に、無機物(カルシウム等の酸化物)等が付着し得る。そして、第1紫外線ランプ67a等の表面に無機物等が付着した場合、殺菌機60における紫外線の照射量が低下し得る。このため、殺菌機60における紫外線の照射量が低下した場合には、殺菌機60を洗浄(CIP)及び殺菌(SIP)することにより、第1紫外線ランプ67a等の表面に付着した無機物等を除去することが好ましい。この場合、図18Cを用いて説明したように、混合対象原料殺菌ライン50が、複数(例えば2つ)の殺菌機60を有していても良い。これにより、一方の殺菌機60を洗浄(CIP)又は殺菌(SIP)している場合に、他方の殺菌機60を使用して、水を殺菌できる。このため、製品ボトル101の製造を連続して行うことができる。 In this case, as shown in FIG. 18E, the mixing target raw material sterilization line 50 is provided upstream of the mixing tank 51, and includes a pre-stage water tank 50d that stores water (tap water, well water, etc.) and a first sterilizer. A pre-stage sterilizer 62A having the same configuration as 62 may be provided. Note that when the sterilizer 60 sterilizes tap water or the like, inorganic substances (oxides such as calcium) etc. may adhere to the surface of the first ultraviolet lamp 67a etc. (for example, the surface made of quartz glass). If inorganic matter or the like adheres to the surface of the first ultraviolet lamp 67a or the like, the amount of ultraviolet rays irradiated in the sterilizer 60 may decrease. Therefore, when the amount of ultraviolet rays irradiated in the sterilizer 60 decreases, the sterilizer 60 is cleaned (CIP) and sterilized (SIP) to remove inorganic substances, etc. attached to the surfaces of the first ultraviolet lamp 67a, etc. It is preferable to do so. In this case, as described using FIG. 18C, the mixing target material sterilization line 50 may include a plurality of (for example, two) sterilizers 60. Thereby, when one sterilizer 60 is being cleaned (CIP) or sterilized (SIP), the other sterilizer 60 can be used to sterilize water. Therefore, the product bottles 101 can be manufactured continuously.
 なお、上記の実施の形態において、第1殺菌機62および第2殺菌機64により、菌を不活性化又は減少させる例を説明したが、第1殺菌機62および第2殺菌機64により、例えば混合対象原料に対して、500mJ/cm2 以上の紫外線を照射することにより、菌のみではなく、エンドトキシンも不活性化又は減少させることができる。このように、本実施の形態により、混合対象原料中の菌のみではなくエンドトキシンも不活性化又は減少させることができるので、製薬製造に適した内容物充填システムを提供することができる。 In addition, in the above-mentioned embodiment, the example in which bacteria are inactivated or reduced by the first sterilizer 62 and the second sterilizer 64 was explained, but the first sterilizer 62 and the second sterilizer 64, for example, By irradiating the raw materials to be mixed with ultraviolet rays of 500 mJ/cm2 or more, not only bacteria but also endotoxins can be inactivated or reduced. In this manner, according to the present embodiment, not only bacteria but also endotoxins in the raw materials to be mixed can be inactivated or reduced, so it is possible to provide a content filling system suitable for pharmaceutical manufacturing.
 10   内容物充填システム
 11   殺菌装置
 18   キャップ殺菌装置
 21   充填装置
 21A  第1充填装置
 21B  第2充填装置
 21C  第3充填装置
 21a  充填ノズル
 32   ブロー成形部
 34a  プリフォーム殺菌装置
 50   混合対象原料殺菌ライン
 50A  水殺菌ライン
 50B  対象原料殺菌ライン
 50a  水タンク
 50b  対象原料タンク
 50c  純水製造装置
 51   混合タンク
 51A  混合ライン
 52   タンク
 53   補助フィルタ
 54   タンク
 55   混合タンク
 55A  第1混合タンク
 55B  第2混合タンク
 55C  第3混合タンク
 60   殺菌機
 70   他の原料殺菌ライン
 71   他の原料タンク
 72   原料タンク
 73   補助フィルタ
 74   原料タンク
 75   添加ユニット
 80   原料殺菌機
 88   キャップ
 100  ボトル

 100a プリフォーム
10 Content filling system 11 Sterilizing device 18 Cap sterilizing device 21 Filling device 21A First filling device 21B Second filling device 21C Third filling device 21a Filling nozzle 32 Blow molding section 34a Preform sterilizing device 50 Mixing target raw material sterilizing line 50A Water Sterilization line 50B Target raw material sterilization line 50a Water tank 50b Target raw material tank 50c Pure water production equipment 51 Mixing tank 51A Mixing line 52 Tank 53 Auxiliary filter 54 Tank 55 Mixing tank 55A First mixing tank 55B Second mixing tank 55C Third mixing tank 60 Sterilizer 70 Other raw material sterilization line 71 Other raw material tank 72 Raw material tank 73 Auxiliary filter 74 Raw material tank 75 Addition unit 80 Raw material sterilizer 88 Cap 100 Bottle

100a preform

Claims (7)

  1.  第1内容液を殺菌する第1殺菌ラインと、
     第2内容液を殺菌する第2殺菌ラインと、
    前記第1殺菌ラインに接続され、搬送されるボトルに対して前記第1内容液を充填する第1充填装置と、
    前記第2殺菌ラインに接続され、搬送されるボトルに対して前記第2内容液を充填する第2充填装置と、を備え、
     前記第1殺菌ラインは、さらに第2充填装置に接続され、前記第2殺菌ラインは、さらに前記第1充填装置に接続される、内容物充填システム。
    a first sterilization line that sterilizes the first content liquid;
    a second sterilization line that sterilizes the second content liquid;
    a first filling device that is connected to the first sterilization line and fills the first content liquid into the transported bottle;
    a second filling device connected to the second sterilization line and filling the second content liquid into the bottle being transported;
    The first sterilization line is further connected to a second filling device, and the second sterilization line is further connected to the first filling device.
  2.  前記第1殺菌ラインと前記第1充填装置との間に第1混合タンクが介在され、前記第2殺菌ラインと前記第2充填装置との間に第2混合タンクが介在される、請求項1記載の内容物充填システム。 A first mixing tank is interposed between the first sterilization line and the first filling device, and a second mixing tank is interposed between the second sterilization line and the second filling device. Content filling system as described.
  3.  前記第1殺菌ラインは、さらに前記第2混合タンクに接続され、前記第2殺菌ラインは、さらに前記第1混合タンクに接続される、請求項2記載の内容物充填システム。 The content filling system according to claim 2, wherein the first sterilization line is further connected to the second mixing tank, and the second sterilization line is further connected to the first mixing tank.
  4.  前記第1混合タンクは、さらに前記第2充填装置に接続され、前記第2混合タンクは、さらに前記第1充填装置に接続される、請求項2または3記載の内容物充填システム。 The content filling system according to claim 2 or 3, wherein the first mixing tank is further connected to the second filling device, and the second mixing tank is further connected to the first filling device.
  5.  第3内容液を殺菌する第3殺菌ラインと、
     前記第3殺菌ラインに接続され、搬送されるボトルに対して前記第3内容液を充填する第3充填装置とを更に備えた、請求項1記載の内容物充填システム。
    a third sterilization line that sterilizes the third content liquid;
    The content filling system according to claim 1, further comprising a third filling device connected to the third sterilization line and filling the third content liquid into the bottle being transported.
  6.  前記第2充填装置と前記第3充填装置は、前記第1充填装置に対して、ボトルの搬送方向下流側に直列に配置されている、請求項5記載の内容物充填システム。 The content filling system according to claim 5, wherein the second filling device and the third filling device are arranged in series on the downstream side of the bottle conveyance direction with respect to the first filling device.
  7. 前記第2充填装置と前記第3充填装置は、前記第1充填装置に対して、ボトルの搬送方向下流側に並列に配置されている、請求項5記載の内容物充填システム。 The content filling system according to claim 5, wherein the second filling device and the third filling device are arranged in parallel on the downstream side of the bottle conveyance direction with respect to the first filling device.
PCT/JP2023/012337 2022-03-28 2023-03-27 Content filling system WO2023190411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023526104A JP7460023B2 (en) 2022-03-28 2023-03-27 Content filling system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022052520 2022-03-28
JP2022-052520 2022-03-28
JP2022122236 2022-07-29
JP2022-122236 2022-07-29

Publications (1)

Publication Number Publication Date
WO2023190411A1 true WO2023190411A1 (en) 2023-10-05

Family

ID=88202380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012337 WO2023190411A1 (en) 2022-03-28 2023-03-27 Content filling system

Country Status (2)

Country Link
JP (1) JP7460023B2 (en)
WO (1) WO2023190411A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338697A (en) * 1992-06-09 1993-12-21 Kanebo Ltd Connecting device in piping
JP2000190922A (en) * 1998-12-28 2000-07-11 Shibuya Kogyo Co Ltd Filling device
JP2004162756A (en) * 2002-11-11 2004-06-10 Kirin Engineering Co Ltd Piping system
JP2008302315A (en) * 2007-06-08 2008-12-18 Nissan Motor Co Ltd Apparatus for supplying coating material, and method of coating
JP2011126565A (en) * 2009-12-17 2011-06-30 Kirin Engineering Co Ltd Method and apparatus for mixing liquids
JP2015062902A (en) * 2014-11-18 2015-04-09 岩崎電気株式会社 Liquid sterilization method and apparatus
JP2018122914A (en) * 2017-02-02 2018-08-09 大日本印刷株式会社 Beverage aseptic filling system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338697A (en) * 1992-06-09 1993-12-21 Kanebo Ltd Connecting device in piping
JP2000190922A (en) * 1998-12-28 2000-07-11 Shibuya Kogyo Co Ltd Filling device
JP2004162756A (en) * 2002-11-11 2004-06-10 Kirin Engineering Co Ltd Piping system
JP2008302315A (en) * 2007-06-08 2008-12-18 Nissan Motor Co Ltd Apparatus for supplying coating material, and method of coating
JP2011126565A (en) * 2009-12-17 2011-06-30 Kirin Engineering Co Ltd Method and apparatus for mixing liquids
JP2015062902A (en) * 2014-11-18 2015-04-09 岩崎電気株式会社 Liquid sterilization method and apparatus
JP2018122914A (en) * 2017-02-02 2018-08-09 大日本印刷株式会社 Beverage aseptic filling system

Also Published As

Publication number Publication date
JP7460023B2 (en) 2024-04-02
JPWO2023190411A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2017135449A1 (en) Purification method
JP6348581B2 (en) Continuous packaging process using C region ultraviolet light for bottle sterilization
CA2954565A1 (en) System and method for sterilizing a fluid
JP6836548B2 (en) Positive pressure holding method in tank and positive pressure holding device in tank
WO2023190411A1 (en) Content filling system
WO2023190412A1 (en) Content filling system
JP7336088B1 (en) Content filling system
JP7324438B2 (en) Water sterilizer and contents filling system
JP7233505B1 (en) Water sterilizer and contents filling system
JP7245454B1 (en) Content filling system and sterilization method
JP7482405B2 (en) Content filling system and sterilization method
JP7245453B1 (en) Content filling system and sterilization method
JP7367889B2 (en) Content filling system and sterilization method
JP7316558B2 (en) Content filling system and sterilization method
WO2023063419A1 (en) Content filling system and sterilization method
WO2023234282A1 (en) Content filling system and processing method
JP6405348B2 (en) UV sterilization method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023526104

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780420

Country of ref document: EP

Kind code of ref document: A1