JP2015062902A - Liquid sterilization method and apparatus - Google Patents
Liquid sterilization method and apparatus Download PDFInfo
- Publication number
- JP2015062902A JP2015062902A JP2014233624A JP2014233624A JP2015062902A JP 2015062902 A JP2015062902 A JP 2015062902A JP 2014233624 A JP2014233624 A JP 2014233624A JP 2014233624 A JP2014233624 A JP 2014233624A JP 2015062902 A JP2015062902 A JP 2015062902A
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet
- liquid
- illuminance
- ultraviolet rays
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
本発明は、液体を紫外線で殺菌する技術に係り、特に、飲料水の殺菌に用いて好適な紫外線殺菌技術に関する。 The present invention relates to a technique for sterilizing a liquid with ultraviolet rays, and particularly to an ultraviolet sterilization technique suitable for use in sterilizing drinking water.
従来、飲料水の殺菌方法として、紫外線透過材で構成した流路管に飲料水を流し、当該流路管に外部から紫外線を照射して殺菌する方法が知られている(例えば、特許文献1参照)。 Conventionally, as a method for sterilizing drinking water, a method is known in which drinking water is passed through a flow path tube made of an ultraviolet transmitting material, and the flow path pipe is irradiated with ultraviolet rays from the outside to be sterilized (for example, Patent Document 1). reference).
しかしながら、紫外線の吸光度が高く紫外線透過率が悪い飲料水の場合、流路管の深部まで紫外線が到達せず殺菌処理が不充分となる。このため、紫外線透過率が悪い飲料物水の殺菌には紫外線殺菌技術を用いることができず、製造工程中での加熱殺菌が一般に用いられている。しかしながら、加熱殺菌では、飲料水に変色や変質が生じ、また飲料水の風味が損なわれる、という問題がある。
本発明は、上述した事情に鑑みてなされたものであり、吸光度が高い液体であっても充分に紫外線殺菌することができる液体殺菌方法及び液体殺菌装置を提供することを目的とする。
However, in the case of drinking water having a high ultraviolet light absorbance and a low ultraviolet light transmittance, the ultraviolet light does not reach the deep part of the flow path tube and the sterilization treatment becomes insufficient. For this reason, ultraviolet sterilization technology cannot be used for sterilization of drinking water having poor ultraviolet transmittance, and heat sterilization during the manufacturing process is generally used. However, in the heat sterilization, there is a problem that discoloration or alteration occurs in the drinking water and the flavor of the drinking water is impaired.
This invention is made | formed in view of the situation mentioned above, and it aims at providing the liquid sterilization method and liquid sterilizer which can fully sterilize even if it is a liquid with a high light absorbency.
上記目的を達成するために、本発明は、液体を紫外線照射器の前に通し、当該液体に紫外線を照射して殺菌する液体殺菌方法において、前記紫外線が照射される箇所での液体の厚みを、前記液体の表面での紫外線照度と当該表面からの最遠点での紫外線照度との比である照度比を20%以上とする厚みに制限しつつ、殺菌する微生物の生残率を所定値以下とする紫外線照射量が前記紫外線の照射箇所において得られる照射線強度、或いは照射時間で紫外線を照射することを特徴とする。 In order to achieve the above object, the present invention relates to a liquid sterilization method in which a liquid is passed in front of an ultraviolet irradiator and irradiated with ultraviolet light to sterilize the liquid. The survival rate of microorganisms to be sterilized is limited to a predetermined value while limiting the illuminance ratio, which is the ratio of the ultraviolet illuminance on the surface of the liquid to the ultraviolet illuminance at the farthest point from the surface, to 20% or more. The following ultraviolet irradiation amount is irradiated with the ultraviolet ray at the irradiation line intensity or irradiation time obtained at the ultraviolet irradiation point.
また本発明は、上記液体殺菌方法において、基準の厚み、及び吸光度の液体に生残している所定の菌を所定割合まで不活化するために要する紫外線照射量を事前に求め、前記紫外線照射器で紫外線を照射する液体の吸光度に応じて、当該液体に生残している前記所定の菌を所定割合まで不活化するために要する紫外線照射量を補正し、補正した紫外線照射量の紫外線を照射して前記液体を殺菌することを特徴とする。 Further, in the liquid sterilization method, the present invention obtains in advance the amount of ultraviolet irradiation required to inactivate the predetermined bacteria remaining in the liquid having the standard thickness and absorbance to a predetermined ratio, and the ultraviolet irradiator According to the absorbance of the liquid irradiated with ultraviolet rays, the ultraviolet ray irradiation amount required to inactivate the predetermined bacteria remaining in the liquid to a predetermined ratio is corrected, and the ultraviolet ray of the corrected ultraviolet ray irradiation amount is irradiated. The liquid is sterilized.
また本発明は、紫外線を照射する紫外線照射器を備え、液体を紫外線照射器の前を通し、当該液体に当該紫外線を照射して殺菌する液体殺菌装置において、前記紫外線が照射される箇所での液体の厚みを、前記液体の表面での紫外線照度と当該表面からの最遠点での紫外線照度との比である照度比を20%以上とする厚みに制限する厚み制限部を備え、殺菌する微生物の生残率を所定値以下とする紫外線照射量が前記紫外線の照射箇所において得られる照射線強度、或いは照射時間で紫外線を照射することを特徴とする。 The present invention also includes an ultraviolet irradiator that irradiates ultraviolet rays, and in a liquid sterilization apparatus that sterilizes the liquid by irradiating the liquid with ultraviolet rays through the front of the ultraviolet irradiator. Provided with a thickness limiting part that limits the thickness of the liquid to a thickness at which the illuminance ratio, which is the ratio of the ultraviolet illuminance on the surface of the liquid to the ultraviolet illuminance at the farthest point from the surface, is 20% or more, and sterilizes The amount of ultraviolet irradiation with which the survival rate of microorganisms is a predetermined value or less is irradiated with ultraviolet rays at the irradiation line intensity or irradiation time obtained at the ultraviolet irradiation site.
本発明によれば、液体の厚みを所定の厚みに制限した箇所に紫外線を照射して殺菌するため、液体の深部で高い紫外線照度を達成し液表面のみならず深部も充分に紫外線殺菌することができる。 According to the present invention, the portion where the thickness of the liquid is limited to a predetermined thickness is sterilized by irradiating with ultraviolet rays, so that a high ultraviolet illuminance is achieved in the deep part of the liquid and not only the liquid surface but also the deep part is sufficiently sterilized with ultraviolet rays. Can do.
以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係る液体殺菌システム1の構成を模式的に示すブロック図である。
液体殺菌システム1は、紫外線吸光度が高い飲料水を充分に紫外線殺菌するシステムであり、図1に示すように、液体殺菌装置3、導入ポンプ5及び排出ポンプ7を備えている。導入ポンプ5は、タンク9に貯留した殺菌処理対象の飲料水を液体殺菌装置3に導入するポンプであり、排出ポンプ7は、紫外線殺菌後の飲料水を液体殺菌装置3から排出するポンプである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram schematically showing a configuration of a
The
液体殺菌装置3は、導入ポンプ5により導入された飲料水の流路Rを挟んで対向配置された一対の紫外線照射器11と、この流路R内に設けられ飲料水を一対の紫外線照射器11の間に噴射するスリットノズル13と、紫外線照射器11の間を通って紫外線殺菌された飲料水を受ける受けタンク15とを備えている。この受けタンク15に貯留した飲料水が上記排出ポンプ7により液体殺菌装置3から外部に導出される。
The
紫外線照射器11は、紫外線ランプ17及び反射板19を備えて構成されている。紫外線ランプ17は、波長254nmの光を照射する直管型ランプであり、図2に示すように、紫外線照射器11の奥行方向に延びる姿勢で水平に設けられている。
スリットノズル13は、飲料水を膜状にして噴射することで、紫外線が照射される箇所の厚みを制限する厚み制限部として機能するものである。スリットノズル13は、液体殺菌装置3の奥行方向に所定のスリット長に亘って延在し、飲料水の導入口たる複数のインレット21が上面に一定ピッチで設けられ、これらインレット21に上記導入ポンプ5が接続されている。スリットノズル13の下端部には、所定スリット幅のスリット23(図1参照)がノズル部として設けられており、上記インレット21から導入された飲料水がスリット23のスリット幅に応じた膜厚で、スリット長に相当する長さの液膜として噴射する。
The
The
このように、飲料水を膜状にして紫外線照射器11の間を通すため、そのままでは単位時間当たりに紫外線殺菌する処理量が減るものの、所定のスリット長に亘る液膜を生成し、当該液膜に沿って紫外線ランプ17を延在させているため、これにより処理量の減少が補われ生産性を阻害することがない。
In this way, since drinking water is formed into a film and passed between the
次いで、紫外線照射による液体殺菌について説明する。
紫外線照射による液体殺菌においては、非常に小さな微生物を対象とするため、液体が吸収しなかった光、すなわち液体を透過した光が微生物に照射された光と仮定できる。一般的に、牛乳、果汁などの不透明液や、酒などのように液体が紫外線を吸収するような飲料水は、紫外線を透過しないため紫外線照射による殺菌、消毒は非常に効率が悪い。
Next, liquid sterilization by ultraviolet irradiation will be described.
In liquid sterilization by ultraviolet irradiation, since very small microorganisms are targeted, it can be assumed that light that the liquid has not absorbed, that is, light that has passed through the liquid has been irradiated to the microorganism. In general, opaque liquids such as milk and fruit juice and drinking water in which liquids absorb ultraviolet rays such as liquor do not transmit ultraviolet rays, so sterilization and disinfection by ultraviolet irradiation are very inefficient.
詳述すると、紫外線処理対応である飲料水の吸光度をA(cm−1)としたとき、入射時の紫外線照度である入射光照度I0(mW/cm2)は、距離d(cm)の地点では紫外線照度Id(mW/cm2)まで減衰する。この減衰量は、Lambert Beer則に従い次の式(1)で表せる。
Id=I0×10−Ad (1)
More specifically, the incident light illuminance I 0 (mW / cm 2 ), which is the ultraviolet illuminance at the time of incidence, is a point at a distance d (cm), where A (cm −1 ) is the absorbance of drinking water that is compatible with ultraviolet treatment. Then, it attenuates to ultraviolet illuminance I d (mW / cm 2 ). This attenuation amount can be expressed by the following equation (1) according to the Lambert Beer rule.
I d = I 0 × 10 −Ad (1)
図3は、厚み1cmの液体試料に紫外線を照射したときの減衰の様子を紫外線の吸光度Aが異なる4種の液体試料について調べた結果を示す図である。
この図には、紫外線照射面である液表面からの距離dが長くなるに従って紫外線が減衰する現象が示されている。特に、吸光度AがA=0.01cm−1のように小さい場合には、液体試料の最遠点(距離d=1cm)においても紫外線照度は大きく、入射時の照度とほとんど変わらない。反対に吸光度AがA=1cm−1のように大きい場合、紫外線照射面から距離d=0.3cmにおいて紫外線照度は入射光の半分程度まで減衰する。このことからも、吸光度Aが大きい液体には紫外線照射による殺菌、消毒は不向きであることが分る。
これに対して、本実施形態では、上述のように、スリットノズル13により飲料水を膜状にして噴射して紫外線が照射される箇所の厚みを制限することで、吸光度Aが高い飲料水の場合でも最遠点で高い紫外線照度を達成し、紫外線殺菌、消毒を行うことを可能としている。
FIG. 3 is a diagram showing the results of examining four types of liquid samples having different absorbances A of ultraviolet rays when the liquid sample having a thickness of 1 cm is irradiated with ultraviolet rays.
This figure shows a phenomenon in which ultraviolet rays attenuate as the distance d from the liquid surface, which is the ultraviolet irradiation surface, increases. In particular, when the absorbance A is as small as A = 0.01 cm −1 , the ultraviolet illuminance is large even at the farthest point (distance d = 1 cm) of the liquid sample and is almost the same as the illuminance at the time of incidence. Conversely, when the absorbance A is as large as A = 1 cm −1 , the ultraviolet illuminance attenuates to about half of the incident light at a distance d = 0.3 cm from the ultraviolet irradiation surface. This also shows that sterilization and disinfection by ultraviolet irradiation are not suitable for a liquid having a large absorbance A.
In contrast, in the present embodiment, as described above, drinking water having a high absorbance A is formed by limiting the thickness of the portion irradiated with ultraviolet rays by spraying drinking water in the form of a film by the
図4は、大腸菌ファージMS2が混入した液体試料に紫外線を照射したときの大腸菌ファージMS2の生残率Sと紫外線照射量H(mJ/cm2)との関係を、液体試料の液表面から最遠点までの距離d(すなわち、厚み)を異ならせて実験した結果を示す図であり、図4(A)〜図4(C)は、それぞれ液体試料の吸光度Aが、1.0cm−1、2.0cm−1、3.0cm−1の場合を示している。
また図5は、大腸菌ファージMS2の生残率Sと紫外線照射時間t(sec:秒)との関係を、液体試料の液表面から最遠点までの距離dを異ならせて実験した結果を示す図であり、図5(A)〜図5(C)は、それぞれ液体試料の吸光度Aが、1.0cm−1、2.0cm−1、3.0cm−1の場合を示している。
FIG. 4 shows the relationship between the survival rate S of Escherichia coli phage MS2 and the amount of ultraviolet irradiation H (mJ / cm 2 ) from the liquid surface of the liquid sample when the liquid sample mixed with E. coli phage MS2 is irradiated with ultraviolet rays. It is a figure which shows the result of having experimented by varying distance d (namely, thickness) to a far point, and FIG. 4 (A)-FIG.4 (C) are the light absorbency A of a liquid sample, respectively 1.0 cm < -1 >. , 2.0 cm −1 and 3.0 cm −1 are shown.
FIG. 5 shows the relationship between the survival rate S of Escherichia coli phage MS2 and the ultraviolet irradiation time t (sec: second) by experimenting with different distances d from the liquid surface to the farthest point of the liquid sample. a diagram, FIG. 5 (a) ~ FIG 5 (C) is the absorbance a of the liquid sample, respectively, 1.0 cm -1, 2.0 cm -1, which shows the case of 3.0 cm -1.
なお、以下の説明では、液体試料の液表面での紫外線照度である入射光照度I0(mW/cm2)と、液体試料表面から水深(距離)dの測定点での紫外線照度である出射光照度Id(mW/cm2)の比を照度比IEと言うことにする。この入射光照度I0は、化学線量計(ヨウ化カリウム溶液)によって試料表面の紫外線強度を測定したものである。この入射光照度I0を吸光度A及び距離dにて補正した試料内の平均紫外線強度と、紫外線照射時間tとの積により上記紫外線照射量Hが求められる。 In the following description, the incident light illuminance I 0 (mW / cm 2 ), which is the ultraviolet illuminance on the liquid surface of the liquid sample, and the emitted light illuminance, which is the ultraviolet illuminance at the water depth (distance) d measurement point from the liquid sample surface. The ratio of I d (mW / cm 2 ) will be referred to as the illuminance ratio IE . The incident light illuminance I 0 is obtained by measuring the ultraviolet intensity of the sample surface with a chemical dosimeter (potassium iodide solution). The ultraviolet irradiation amount H is obtained from the product of the average ultraviolet intensity in the sample obtained by correcting the incident light illuminance I 0 with the absorbance A and the distance d and the ultraviolet irradiation time t.
照度比IEは、入射光照度I0が一定である場合、厚みが増加して距離dが大きくなるほど液体試料に吸収される紫外線量が増加し出射光照度Idが減少することから、厚みの増加に応じて小さくなる。換言すれば、照度比IEが小さくなると、出射光照度Idが減ることから、この箇所での殺菌能力が低下する。このため、図4及び図5に示すように、吸光度Aが異なる液体試料の全てに共通して、照度比IEが低下するほど、生残率Sが高くなる。 When the incident light illuminance I 0 is constant, the illuminance ratio IE is increased in thickness because the amount of ultraviolet light absorbed by the liquid sample increases and the emitted light illuminance I d decreases as the distance increases and the distance d increases. It becomes small according to. In other words, when the illuminance ratio IE is reduced, the emitted light illuminance Id is reduced, so that the sterilizing ability at this point is reduced. For this reason, as shown in FIGS. 4 and 5, the survival rate S increases as the illuminance ratio IE decreases in common for all liquid samples having different absorbances A.
また、照度比IEが一定である場合には、出射光照度Idは入射光照度I0に応じて大きくなるため、入射光照度I0の紫外線照射量Hが大きいほど殺菌能力が高められる。また、紫外線照射量Hが一定であれば、紫外線照射時間tが長くなるほど殺菌能力が高められる。したがって、図4及び図5に示すように、吸光度Aが異なる液体試料の全てに共通して、紫外線照射量Hが大きいほど、或いは紫外線照射時間tが長くなるほど生残率Sが低下する。
しかしながら、図4及び図5に示すように、照度比IEが20%以下の場合には、上記の傾向とは異なり、紫外線照射量Hを大きくし、或いは紫外線照射時間tを長くしても、全ての吸光度Aにおいて、生残率Sがばらつき、また、比較的高いオーダー(大凡10−2)で飽和する傾向が見られる。
Further, when the illuminance ratio I E is constant, the output light intensity I d to become larger in accordance with the incident light intensity I 0, ultraviolet irradiation amount H of the incident light intensity I 0 is large enough sterilizing effect is enhanced. Moreover, if the ultraviolet irradiation amount H is constant, the sterilization ability is enhanced as the ultraviolet irradiation time t becomes longer. Therefore, as shown in FIGS. 4 and 5, the survival rate S decreases as the ultraviolet ray irradiation amount H increases or the ultraviolet ray irradiation time t increases in common for all liquid samples having different absorbances A.
However, as shown in FIG. 4 and FIG. 5, when the illuminance ratio IE is 20% or less, unlike the above-mentioned tendency, even if the ultraviolet irradiation amount H is increased or the ultraviolet irradiation time t is increased. In all absorbances A, the survival rate S varies, and a tendency to saturate at a relatively high order (approximately 10 −2 ) is observed.
すなわち、液体殺菌装置3においては、照度比IEが20%以下となると、紫外線照射器11の紫外線照射量Hや紫外線照射時間tの制御では、十分な殺菌能力が得られない。
そこで本実施形態では、液体試料の厚み(距離d)を照度比IEが20%以上となる厚みに制限し、これにより、紫外線照射量H及び紫外線照射時間tに応じて微生物の生残率Sを減少させ、効率の良い殺菌を実現している。
That is, in the
Therefore, in the present embodiment, the thickness (distance d) of the liquid sample is limited to a thickness at which the illuminance ratio IE is 20% or more, whereby the survival rate of microorganisms depends on the ultraviolet irradiation amount H and the ultraviolet irradiation time t. S is reduced and efficient sterilization is realized.
図6は、照度比IEごとに紫外線照射量H(mJ/cm2)と生残率Sの関係を示す図である。なお、同図のデータは、水深(距離d)を小さくしつつ、吸光度Aを1〜3cm−1と高くした実験条件で測定したものである。
同図のグラフにおいて、紫外線照射量Hと生残率Sとの関係を直線近似し、その傾きから、紫外線照射量Hに対する反応速度定数Dt(mJ/cm2)を求めた。この反応速度定数Dtは、図6の実験条件において大腸菌ファージMS2を90%不活化するのに要した紫外線照射量Hを示すものであり、図6において、「反応速度定数Dt=ln(10)/傾き」として求められる。なお、図6の直線近似においてはテーリングに相当するデータを除いている。
FIG. 6 is a diagram illustrating the relationship between the ultraviolet irradiation amount H (mJ / cm 2 ) and the survival rate S for each illuminance ratio IE . In addition, the data of the figure are measured on the experimental condition which made the light absorbency A high with 1-3 cm < -1 >, making water depth (distance d) small.
In the graph of the figure, the relationship between the ultraviolet irradiation amount H and the survival rate S was linearly approximated, and the reaction rate constant D t (mJ / cm 2 ) with respect to the ultraviolet irradiation amount H was obtained from the slope. This reaction rate constant D t indicates the amount of ultraviolet irradiation H required to inactivate E. coli phage MS2 by 90% under the experimental conditions of FIG. 6. In FIG. 6, “reaction rate constant D t = ln ( 10) / tilt ". In the linear approximation in FIG. 6, data corresponding to tailing is excluded.
水深(距離d)方向に対する光の減衰を考慮して試料内の平均紫外線強度で生残率Sを表することができる。その理由は、Id=I0×10−Adにおいて、水深(距離d)と吸光度Aが十分に小さい場合、つまり吸光度A=10−3(cm−1)程度と十分に小さい場合は、吸光度Aによる影響が無視できると考えられるためである。
水深(距離d)が小さく、なおかつ吸光度Aが例えば吸光度A=10−3(cm−1)と小さい試料を基準試料として用いた実験における大腸菌ファージMS2の90%不活化に要した紫外線照射量Hである不活化速度定数Diを事前に求めておき、この不活化速度定数Diを用いて生残率Sから再度、平均紫外線量を算出した。このようにして算出した平均紫外線量を換算等価紫外線量RED(mJ/cm2)と定義する。この換算等価紫外線量REDは、微生物が吸収した紫外線照射量Hである。
すると、図4〜図6において、
生残率S=exp(−平均紫外線量/反応速度定数Dt) (2)
ln(生残率S)=−(平均紫外線量/反応速度定数Dt) (3)
−ln(生残率S)×不活化速度定数Di
=換算等価紫外線量RED
=反応速度定数Dt×−ln(生残率S) (4)
が得られる。
The survival rate S can be expressed by the average ultraviolet intensity in the sample in consideration of light attenuation with respect to the water depth (distance d) direction. The reason is that when the water depth (distance d) and the absorbance A are sufficiently small at I d = I 0 × 10 −Ad , that is, when the absorbance A is approximately as small as 10 −3 (cm −1 ), the absorbance. This is because the influence of A is considered negligible.
UV irradiation amount H required for 90% inactivation of E. coli phage MS2 in an experiment using a sample having a small water depth (distance d) and a small absorbance A, for example, absorbance A = 10 −3 (cm −1 ) as a reference sample The inactivation rate constant D i is calculated in advance, and the average ultraviolet ray amount is calculated again from the survival rate S using the inactivation rate constant D i . The average ultraviolet ray amount thus calculated is defined as a converted equivalent ultraviolet ray amount RED (mJ / cm 2 ). This equivalent equivalent ultraviolet ray amount RED is the ultraviolet ray irradiation amount H absorbed by the microorganism.
Then, in FIGS.
Survival rate S = exp (−average amount of ultraviolet light / reaction rate constant D t ) (2)
ln (survival rate S) =-(average ultraviolet light amount / reaction rate constant D t ) (3)
−ln (survival rate S) × inactivation rate constant D i
= Reduced equivalent ultraviolet ray RED
= Reaction rate constant D t × −ln (survival rate S) (4)
Is obtained.
図7は、図4〜図6の実験結果から求められる反応速度定数Dtと吸光度Aの関係を示す図である。
本来、Lambert Beer則に従って水深方向へ光が減衰するため、照度比IEが同じであれば理論上(計算上)は同じ換算等価紫外線量REDとなる。したがって、上記(4)式の関係にも示されるように、基準試料の不活化速度定数Diと、吸光度Aが比較的大きい試料に対する反応速度定数Dtとは理論上同じとなる。
しかしながら、実際には、図7に示すように、吸光度Aが大きくなるに従って反応速度定数Dtが小さくなる傾向が見られ、不活化速度定数Diとの間に差が生じる、との知見を発明者等は得た。
FIG. 7 is a graph showing the relationship between the reaction rate constant Dt and the absorbance A obtained from the experimental results of FIGS.
Originally, light attenuates in the depth direction according to the Lambert Beer rule, so if the illuminance ratio IE is the same, the equivalent (equivalently calculated) equivalent ultraviolet ray amount RED is obtained. Therefore, as shown in the relationship of the above formula (4), the inactivation rate constant D i of the reference sample and the reaction rate constant D t for the sample having a relatively large absorbance A are theoretically the same.
However, in practice, as shown in FIG. 7, the absorbance A is a tendency that the reaction rate constant D t decreases observed with increasing large, the knowledge of difference occurs, and between the inactivation rate constant D i The inventors obtained.
図8は、反応速度定数Dt/不活化速度定数Di(以下、「紫外線照射量比」と言う)と、照度比IEとの関係を吸光度Aごとに示す図である。なお、基準試料の不活化速度定数Diの実験値として21.4(mJ/cm2)を用いている。
この図8によれば、近似により、
紫外線照射量比=反応速度定数Dt/不活化速度定数Di
=Z×IE+1(但し、Zは吸光度Aを変数とした関数) (5)
と表せるため,吸光度Aがゼロに近づけば、すなわち、試料の透過率が非常に高ければ、紫外線照射量Hの比は1に漸近する。
FIG. 8 is a diagram showing the relationship between the reaction rate constant D t / inactivation rate constant D i (hereinafter referred to as “ultraviolet irradiation amount ratio”) and the illuminance ratio IE for each absorbance A. Note that 21.4 (mJ / cm 2 ) is used as the experimental value of the inactivation rate constant Di of the reference sample.
According to FIG. 8, by approximation,
UV irradiation dose ratio = reaction rate constant D t / inactivation rate constant D i
= Z × I E +1 (where Z is a function with absorbance A as a variable) (5)
Therefore, if the absorbance A is close to zero, that is, if the transmittance of the sample is very high, the ratio of the ultraviolet irradiation amount H gradually approaches 1.
このZ(傾き係数)について、吸光度Aを変数とした近似式を求めると、図9に示すように、二次方程式で近似される。(ただ切片はゼロとしている。)
Z=1.39×10−1×A2+2.26×10−1×A (6)
When an approximate expression with the absorbance A as a variable is obtained for Z (slope coefficient), it is approximated by a quadratic equation as shown in FIG. (However, the intercept is zero.)
Z = 1.39 * 10 < -1 > * A < 2 > + 2.26 * 10 < -1 > * A (6)
以上のことから、必要とされる(照射したい)紫外線照射量HをB(mJ/cm2)とすると、少なくとも今回の実験条件である吸光度A≦3cm−1の場合には、実際に照射される紫外線照射量Hは、必要とされる紫外線照射量Bに対して減衰率Kで減衰する。
実際に照射される紫外線照射量H=B×K (7)
なお、減衰率Kは上記紫外線照射量比と同じであり吸光度Aの関数によって表され、
減衰率K=Z×IE+1 (8)
Z=1.39×10−1×A2+2.26×10−1×A (9)
である。
From the above, assuming that the required (irradiated) ultraviolet irradiation amount H is B (mJ / cm 2 ), at least in the case of absorbance A ≦ 3 cm −1 , which is the experimental condition of this time, the actual irradiation is performed. The ultraviolet ray irradiation amount H is attenuated by the attenuation factor K with respect to the required ultraviolet ray irradiation amount B.
UV irradiation amount actually irradiated H = B × K (7)
The attenuation rate K is the same as the above-mentioned UV irradiation dose ratio and is expressed by a function of absorbance A.
Decay rate K = Z × I E +1 (8)
Z = 1.39 * 10 < -1 > * A < 2 > + 2.26 * 10 < -1 > * A (9)
It is.
したがって、吸光度AがA=2.5cm−1の飲料水を、照度比IE=Id/I0=0.4(=40%)で殺菌する場合には、水深(距離d)は、式(1)にしたがいd=0.159cmに制限される。式(9)にしたがってZ=1.43、式(8)にしたがって減衰率K=1.57が求められ、対象に照射したい紫外線照射量Bを40mJ/cm2とすると、実際に照射しなければならい紫外線照射量Hの補正値は、式(7)にしたがって、62.9mJ/cm2と求められる。 Therefore, when the drinking water having an absorbance A of A = 2.5 cm −1 is sterilized at an illuminance ratio I E = I d / I 0 = 0.4 (= 40%), the water depth (distance d) is: According to the formula (1), it is limited to d = 0.159 cm. Z = 1.43 is obtained according to equation (9), attenuation factor K = 1.57 is obtained according to equation (8), and if the amount of ultraviolet light irradiation B desired to be irradiated on the target is 40 mJ / cm 2 , the actual irradiation must be performed. The correction value of the necessary ultraviolet irradiation amount H is obtained as 62.9 mJ / cm 2 according to the equation (7).
このように、本実施形態によれば、紫外線が照射される箇所での飲料水の厚み(距離d)を所定の厚みに制限する厚み制限部としてのスリットノズル13を備えるため、飲料水の深部で高い紫外線照度を達成し液表面のみならず深部も充分に紫外線殺菌することができる。これにより、飲料水を熱処理で殺菌せずに済むため、殺菌により風味が損なわれることがなく、また殺菌による変質を抑制することができる。
Thus, according to this embodiment, since it is provided with the
また本実施形態によれば、所望の殺菌能力を得るために必要な紫外線照射量Bを、殺菌対象の飲料水の吸光度Aに起因する、不活化速度定数Di及び反応速度定数Dtの差に基づいて(すなわち、上記式(7)の減衰率Kに基づいて)、所望の殺菌能力を得るために必要な紫外線照射量Bを補正し、補正した紫外線照射量Hの紫外線を飲料水の厚みを制限した箇所に照射して殺菌を行う構成とした。
これにより、吸光度Aが異なる飲料水のそれぞれに、所望の殺菌能力を得るために必要な紫外線照射量Bを適切に照射して、十分な殺菌を行うことができる。
In addition, according to the present embodiment, the ultraviolet irradiation amount B necessary for obtaining a desired sterilizing ability is set to a difference between the inactivation rate constant D i and the reaction rate constant D t caused by the absorbance A of the drinking water to be sterilized. (Ie, based on the attenuation rate K in the above equation (7)), the ultraviolet irradiation amount B necessary to obtain a desired sterilizing ability is corrected, and the corrected ultraviolet irradiation amount H is converted into the drinking water. It was set as the structure which irradiates and sterilizes the location which restricted thickness.
Thereby, it can irradiate with sufficient ultraviolet irradiation amount B required in order to obtain desired sterilization ability to each drinking water from which the light absorbency A differs, and can fully sterilize.
さらに本実施形態によれば、照度比IEが20%以上となるように、紫外線照射箇所の厚みを制限したため、紫外線照射量Hの増加に対して殺菌能力が飽和することなく、効率の良い殺菌が実現できる。
また、紫外線照射量Hの増加に対して殺菌能力が飽和しないように厚みを規定した後に、上記減衰率Kに基づいて、所望の殺菌能力を得るために必要な紫外線照射量Bを補正して照射することで、殺菌能力に飽和を生じることなく補正後の紫外線照射量Hで確実に所望の殺菌能力を得ることができる。
Furthermore, according to this embodiment, since the thickness of the ultraviolet irradiation portion is limited so that the illuminance ratio IE is 20% or more, the sterilization ability is not saturated with respect to the increase in the ultraviolet irradiation amount H, and the efficiency is high. Sterilization can be realized.
In addition, after the thickness is defined so that the sterilization ability is not saturated with respect to the increase in the ultraviolet irradiation amount H, the ultraviolet irradiation amount B necessary for obtaining the desired sterilizing ability is corrected based on the attenuation rate K. By irradiating, the desired sterilizing ability can be reliably obtained with the corrected ultraviolet ray irradiation amount H without causing saturation in the sterilizing ability.
本実施形態の液体殺菌装置3では、前掲図1に示すように、膜状にした飲料水の両側から紫外線を照射して殺菌するため、上記照度比IEを決定する際の出射光照度Idの値には、液表面から最遠点ではなく、図10の模式図に示すように、厚み方向の中心点Cでの値が用いられる。そして、上記のようにして求めた紫外線照射量Hの紫外線を、膜状にした飲料水の両側から照射することで、この飲料水を十分に殺菌することができる。
また本実施形態によれば、飲料水の両側から紫外線を照射するため、殺菌のムラを確実に抑制することができる。
In the
Moreover, according to this embodiment, since ultraviolet rays are irradiated from both sides of the drinking water, sterilization unevenness can be reliably suppressed.
なお、上述した実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の趣旨を逸脱しない範囲で任意に変形及び応用が可能である。 The above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.
例えば、上述した実施形態では、スリットノズル13により紫外線を照射する箇所での飲料水の厚みを制限した。しかしながら、厚みを制限する手段として、照度比IEが20%以上となる厚みを実現できる手段であれば、スリットノズル13に限らず任意の手段を用いることができ、例えば、多数の細い管体を並列に並べ、各管体に飲料水を通しつつ紫外線を照射しても良い。
また例えば、図11に示すように、直管型の紫外線ランプ117を納めた紫外線透過材で形成された筒状のランプスリーブ130を、飲料水が流れる流通管132の中に同軸に納め、ランプスリーブ130と流通管132との間の隙間に飲料水を流通させることで、紫外線ランプ117で照射される箇所の飲料水の厚みを制限する構成としても良い。かかる構成によれば、ランプスリーブ130を納めた流通管132を直列に複数接続することで、飲料水への紫外線照射時間tを延ばすことができ、殺菌能力を簡単に高めることができる。
For example, in the above-described embodiment, the thickness of the drinking water at the location where the
Further, for example, as shown in FIG. 11, a
また例えば、上述した実施形態では、飲料水の両側から紫外線を照射して殺菌する場合を例示したが、これに限らず、飲料水の片側から紫外線を照射する構成としても良い。
また、上述した実施形態では、吸光度Aが大きな飲料水を紫外線殺菌する場合を例示したが、飲料水に限らず、任意の液体の紫外線殺菌に本発明を用いることができることは勿論である。
Further, for example, in the above-described embodiment, the case of sterilizing by irradiating ultraviolet rays from both sides of the drinking water has been illustrated, but the present invention is not limited thereto, and the configuration may be such that ultraviolet rays are irradiated from one side of the drinking water.
Moreover, although the case where ultraviolet-ray sterilization of the drinking water with a large light absorbency A was illustrated in embodiment mentioned above, it cannot be overemphasized that this invention can be used for the ultraviolet sterilization of not only a drinking water but arbitrary liquids.
1 液体殺菌システム
3 液体殺菌装置
11 紫外線照射器
13 スリットノズル(厚み制限部)
17、117 紫外線ランプ
19 反射板
d 距離(厚み)
A 吸光度
S 生残率
Di 不活化速度定数
Dt 反応速度定数
H 紫外線照射量
K 減衰率(=Dt/Di)
IE 照度比
Id 出射光照度
I0 入射光照度
d 距離
t 紫外線照射時間
DESCRIPTION OF
17, 117
A absorbance S survival rate D i inactivation rate constant D t rate constant H UV irradiation amount K attenuation factor (= Dt / Di)
IE Illuminance ratio I d Output light illuminance I 0 Incident light illuminance d Distance t UV irradiation time
Claims (3)
前記紫外線が照射される箇所での液体の厚みを、前記液体の表面での紫外線照度と当該表面からの最遠点での紫外線照度との比である照度比を20%以上とする厚みに制限しつつ、
殺菌する微生物の生残率を所定値以下とする紫外線照射量が前記紫外線の照射箇所において得られる照射線強度、或いは照射時間で紫外線を照射する
ことを特徴とする液体殺菌方法。 In a liquid sterilization method of passing a liquid in front of an ultraviolet irradiator and irradiating the liquid with ultraviolet rays,
The thickness of the liquid at the location irradiated with the ultraviolet rays is limited to a thickness at which the illuminance ratio, which is the ratio of the ultraviolet illuminance at the surface of the liquid to the ultraviolet illuminance at the farthest point from the surface, is 20% or more. While
A liquid sterilization method characterized by irradiating ultraviolet rays at an irradiation intensity or an irradiation time obtained at an irradiation site of the ultraviolet rays so that the survival rate of microorganisms to be sterilized is a predetermined value or less.
前記紫外線照射器で紫外線を照射する液体の吸光度に応じて、当該液体に生残している前記所定の菌を所定割合まで不活化するために要する紫外線照射量を補正し、
補正した紫外線照射量の紫外線を照射して前記液体を殺菌することを特徴とする請求項1に記載の液体殺菌方法。 Obtain the UV irradiation amount required to inactivate the predetermined bacteria remaining in the liquid with the standard thickness and absorbance to a predetermined ratio in advance,
According to the absorbance of the liquid irradiated with ultraviolet rays by the ultraviolet irradiator, the amount of ultraviolet irradiation required to inactivate the predetermined bacteria remaining in the liquid to a predetermined ratio,
The liquid sterilization method according to claim 1, wherein the liquid is sterilized by irradiating the corrected ultraviolet irradiation amount of ultraviolet rays.
前記紫外線が照射される箇所での液体の厚みを、前記液体の表面での紫外線照度と当該表面からの最遠点での紫外線照度との比である照度比を20%以上とする厚みに制限する厚み制限部を備え、
殺菌する微生物の生残率を所定値以下とする紫外線照射量が前記紫外線の照射箇所において得られる照射線強度、或いは照射時間で紫外線を照射する
ことを特徴とする液体殺菌装置。 In a liquid sterilizer equipped with an ultraviolet irradiator for irradiating ultraviolet rays, passing the liquid in front of the ultraviolet irradiator and sterilizing the liquid by irradiating the ultraviolet rays,
The thickness of the liquid at the location irradiated with the ultraviolet rays is limited to a thickness at which the illuminance ratio, which is the ratio of the ultraviolet illuminance at the surface of the liquid to the ultraviolet illuminance at the farthest point from the surface, is 20% or more. A thickness limiting part to
A liquid sterilization apparatus characterized by irradiating ultraviolet rays at an irradiation intensity or irradiation time obtained at an ultraviolet irradiation site such that an ultraviolet irradiation amount with a survival rate of microorganisms to be sterilized is a predetermined value or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014233624A JP5924394B2 (en) | 2014-11-18 | 2014-11-18 | Liquid sterilization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014233624A JP5924394B2 (en) | 2014-11-18 | 2014-11-18 | Liquid sterilization method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010082575A Division JP2011212573A (en) | 2010-03-31 | 2010-03-31 | Method and apparatus for sterilizing liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015062902A true JP2015062902A (en) | 2015-04-09 |
JP5924394B2 JP5924394B2 (en) | 2016-05-25 |
Family
ID=52831268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014233624A Expired - Fee Related JP5924394B2 (en) | 2014-11-18 | 2014-11-18 | Liquid sterilization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5924394B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107041319A (en) * | 2017-04-05 | 2017-08-15 | 深圳前海霍曼科技有限公司 | A kind of pet sterilization waterer and its sterilization method |
JP6219473B1 (en) * | 2016-09-15 | 2017-10-25 | 株式会社トクヤマ | Manufacturing method and manufacturing apparatus for packaged articles |
WO2023190411A1 (en) * | 2022-03-28 | 2023-10-05 | 大日本印刷株式会社 | Content filling system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106213825A (en) * | 2016-08-26 | 2016-12-14 | 四川辛迪泛美家具有限公司 | A kind of have the hallway shoe cabinet drying sterilizing function |
TWI812075B (en) * | 2022-03-16 | 2023-08-11 | 蔡耀輝 | Liquid sterilization device and liquid sterilization equipment using the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5238062A (en) * | 1975-09-17 | 1977-03-24 | Ushio Electric Inc | Ultra violet pasteurizing apparatus |
JPH01236986A (en) * | 1988-03-18 | 1989-09-21 | Ushio Inc | Method and apparatus for treating liquid by ultraviolet irradiation |
JPH0365493U (en) * | 1989-10-30 | 1991-06-26 | ||
JPH11319817A (en) * | 1998-05-12 | 1999-11-24 | Mitsubishi Electric Corp | Apparatus for sterilization by ultra violet radiation |
JP2000070928A (en) * | 1998-08-31 | 2000-03-07 | Shimada Denshi Kogyo Kk | Water purifier and hot water pool water purifying system using the purifier |
JP2000140888A (en) * | 1998-11-16 | 2000-05-23 | Miyaji Kaken:Kk | Method for purifying and sterilizing sewage and device therefor |
JP2000288559A (en) * | 1999-04-08 | 2000-10-17 | Zenken:Kk | Waste water treatment method and apparatus using hydroxylic radical |
JP2000515803A (en) * | 1996-08-06 | 2000-11-28 | ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア | UV water sterilizer |
JP2001259622A (en) * | 2000-03-16 | 2001-09-25 | Toto Ltd | Water cleaning device |
JP2011212573A (en) * | 2010-03-31 | 2011-10-27 | Iwasaki Electric Co Ltd | Method and apparatus for sterilizing liquid |
-
2014
- 2014-11-18 JP JP2014233624A patent/JP5924394B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5238062A (en) * | 1975-09-17 | 1977-03-24 | Ushio Electric Inc | Ultra violet pasteurizing apparatus |
JPH01236986A (en) * | 1988-03-18 | 1989-09-21 | Ushio Inc | Method and apparatus for treating liquid by ultraviolet irradiation |
JPH0365493U (en) * | 1989-10-30 | 1991-06-26 | ||
JP2000515803A (en) * | 1996-08-06 | 2000-11-28 | ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア | UV water sterilizer |
JPH11319817A (en) * | 1998-05-12 | 1999-11-24 | Mitsubishi Electric Corp | Apparatus for sterilization by ultra violet radiation |
JP2000070928A (en) * | 1998-08-31 | 2000-03-07 | Shimada Denshi Kogyo Kk | Water purifier and hot water pool water purifying system using the purifier |
JP2000140888A (en) * | 1998-11-16 | 2000-05-23 | Miyaji Kaken:Kk | Method for purifying and sterilizing sewage and device therefor |
JP2000288559A (en) * | 1999-04-08 | 2000-10-17 | Zenken:Kk | Waste water treatment method and apparatus using hydroxylic radical |
JP2001259622A (en) * | 2000-03-16 | 2001-09-25 | Toto Ltd | Water cleaning device |
JP2011212573A (en) * | 2010-03-31 | 2011-10-27 | Iwasaki Electric Co Ltd | Method and apparatus for sterilizing liquid |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6219473B1 (en) * | 2016-09-15 | 2017-10-25 | 株式会社トクヤマ | Manufacturing method and manufacturing apparatus for packaged articles |
WO2018051784A1 (en) * | 2016-09-15 | 2018-03-22 | 株式会社トクヤマ | Method and device for manufacturing bagged article |
JP2018043779A (en) * | 2016-09-15 | 2018-03-22 | 株式会社トクヤマ | Manufacturing method and manufacturing apparatus of bagged article |
CN107041319A (en) * | 2017-04-05 | 2017-08-15 | 深圳前海霍曼科技有限公司 | A kind of pet sterilization waterer and its sterilization method |
WO2023190411A1 (en) * | 2022-03-28 | 2023-10-05 | 大日本印刷株式会社 | Content filling system |
JP7460023B2 (en) | 2022-03-28 | 2024-04-02 | 大日本印刷株式会社 | Content filling system |
Also Published As
Publication number | Publication date |
---|---|
JP5924394B2 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011212573A (en) | Method and apparatus for sterilizing liquid | |
JP5924394B2 (en) | Liquid sterilization method | |
Koutchma | Advances in ultraviolet light technology for non-thermal processing of liquid foods | |
US7683344B2 (en) | In-line treatment of liquids and gases by light irradiation | |
Murakami et al. | Factors affecting the ultraviolet inactivation of Escherichia coli K12 in apple juice and a model system | |
AU2006292890B2 (en) | Ultraviolet radiation treatment system | |
JP5844250B2 (en) | UV light processing chamber | |
EP2266630B1 (en) | Device for calibration in a method for the validatable inactivation of pathogens in a biological fluid by irradiation | |
CN110944679A (en) | Fluid disinfection apparatus and method | |
JP5769802B2 (en) | Device for virus inactivation of liquid media | |
JP2014233712A (en) | Ultraviolet sterilization device | |
JP6559577B2 (en) | Fluid sterilization apparatus and fluid sterilization method | |
JP2017522159A (en) | Fluid sterilization system and fluid sterilization method | |
JPH077967Y2 (en) | UV irradiation device | |
JP6541671B2 (en) | Receiver with variable geometry for clean water by UV | |
JP2016106682A (en) | Liquid sterilization method and liquid sterilization device | |
Guerrero-Beltran et al. | Ultraviolet-C light processing of liquid food products | |
JP2018134607A (en) | UV sterilization system and UV irradiation device | |
JP2018019670A (en) | Sterilization method and sterilization device of liquid | |
JP2008142593A (en) | Inactivation treatment method by ultraviolet light | |
CA2980178A1 (en) | Distributing light in a reaction chamber | |
JP2018068313A (en) | Sterilization method of liquid | |
CN117105324A (en) | Ultraviolet disinfection device based on bifocal positioning cavity | |
WO2022158169A1 (en) | Fluid sterilizing apparatus | |
KR101890486B1 (en) | Hybrid water treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5924394 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |