JP2011126565A - Method and apparatus for mixing liquids - Google Patents

Method and apparatus for mixing liquids Download PDF

Info

Publication number
JP2011126565A
JP2011126565A JP2009286200A JP2009286200A JP2011126565A JP 2011126565 A JP2011126565 A JP 2011126565A JP 2009286200 A JP2009286200 A JP 2009286200A JP 2009286200 A JP2009286200 A JP 2009286200A JP 2011126565 A JP2011126565 A JP 2011126565A
Authority
JP
Japan
Prior art keywords
liquid
mixing
flow rate
liquids
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009286200A
Other languages
Japanese (ja)
Other versions
JP5606055B2 (en
Inventor
Shoji Hiwada
祥二 日和田
Kazuyuki Sakurai
和之 櫻井
Shigeya Yabuuchi
茂弥 薮内
Shuzo Tahira
修三 田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIWARA DENKI SEISAKUSHO KK
Kirin Engineering Co Ltd
Original Assignee
FUJIWARA DENKI SEISAKUSHO KK
Kirin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIWARA DENKI SEISAKUSHO KK, Kirin Engineering Co Ltd filed Critical FUJIWARA DENKI SEISAKUSHO KK
Priority to JP2009286200A priority Critical patent/JP5606055B2/en
Publication of JP2011126565A publication Critical patent/JP2011126565A/en
Application granted granted Critical
Publication of JP5606055B2 publication Critical patent/JP5606055B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Flow Control (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device with a reduced cost which can mix a low-viscosity liquid and a high-viscosity liquid at a desired ratio. <P>SOLUTION: Liquid supply pipes SP1 and SP2 connecting a plurality of liquid supply sources T1 and T2, respectively, are branched. The branched pipes are connected with a plurality of mixing tank MT1 and MT2, allowing a liquid containing a first liquid and a mixing liquid to be supplied. An integrated flow rate of the first liquid supplied to the mixing tank is measured. An integrated flow rate of the liquid which is required to be supplied to the mixing tank is calculated based on the measured value to obtain a theoretical required amount of the mixing liquid. The integrated flow rate of the mixing liquid supplied to the mixing tank is measured. A shortage of the mixing liquid is calculated based on the measured value and the theoretical required amount of the mixing liquid. When the measured value of the integrated flow rate of the mixing liquid is short with respect to the theoretical required amount of the mixing liquid, a valve opening of a flow rate control valve is controlled based on a valve opening of the flow rate control valve with respect to the shortage of the mixing liquid calculated in advance, thereby, the mixing liquid is supplied to the mixing tank. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数種類の液体を所望の比率で混合するための液体混合方法及び装置に係り、特に果汁や水等の粘性の低い液体と果実繊維や果肉等の固形物を含んだ粘性の高い液体とを所望の比率で混合するための液体混合方法及び装置に関するものである。   The present invention relates to a liquid mixing method and apparatus for mixing a plurality of types of liquids at a desired ratio, and in particular, a high-viscosity liquid containing a low-viscosity liquid such as fruit juice or water and a solid such as fruit fiber or pulp. The present invention relates to a liquid mixing method and apparatus for mixing a liquid with a desired ratio.

食品、化粧品、薬品等の各種製造プラントにおいて、複数種類の液体、例えば2種類の液体原料を混合して液体製品を製造することが行われている。例えば、飲料製造プラントにおいては、2種類の液体原料をそれぞれ貯留タンクに貯留し、タンク内に貯留された液体原料をそれぞれ給液配管を介して混合タンクに供給し、混合タンクで混合した後に混合液を充填機等に供給することが行われている。2種類の液体原料を所望の比率に混合するために、各給液配管には流量計と流量制御弁とを設け、流量計の測定値に基づいて流量制御弁を制御するようにしている。2種類の液体の混合制御には、通常、PID制御を採用している。   In various production plants for foods, cosmetics, medicines, etc., a liquid product is produced by mixing a plurality of types of liquids, for example, two types of liquid raw materials. For example, in a beverage production plant, two types of liquid raw materials are stored in respective storage tanks, the liquid raw materials stored in the tanks are respectively supplied to the mixing tanks via the liquid supply pipes, mixed in the mixing tanks, and then mixed. Supplying a liquid to a filling machine etc. is performed. In order to mix the two types of liquid raw materials in a desired ratio, each liquid supply pipe is provided with a flow meter and a flow control valve, and the flow control valve is controlled based on the measured value of the flow meter. Usually, PID control is adopted for mixing control of two kinds of liquids.

上述した飲料製造プラントにおいて、2種類の液体を混合する混合タンクが複数系列、例えば、2系列ある場合がある。2系列の場合を例に挙げて説明すると、2種類の液体を貯留した2つの貯留タンクと2つの混合タンクとを1対1で対応させてそれぞれ専用配管によって個別に接続する専用配管システムを採用する場合には、4本の専用配管及び4台の送液ポンプが必要になり、貯留タンクと混合タンクとが離間している場合には配管コストが上昇するという問題点がある。そこで、各貯留タンクに1本の給液配管を設け、混合タンクの直上流で分岐させ2本の分岐管路をそれぞれ混合タンクに接続する分岐配管システムの適用が考えられる。この場合には、給液配管が2本になり、送液ポンプも2台になるため、配管及びポンプのコストを低減することができるので、貯留タンクと混合タンクとが離間している場合には有効な配管システムとなる。   In the beverage manufacturing plant described above, there are cases where there are a plurality of mixing tanks for mixing two types of liquids, for example, two systems. Taking the case of two series as an example, we will adopt a dedicated piping system that connects two storage tanks that store two types of liquids and two mixing tanks in a one-to-one correspondence and connects them individually by dedicated piping. In this case, four dedicated pipes and four liquid feed pumps are required, and there is a problem that the pipe cost increases when the storage tank and the mixing tank are separated from each other. Therefore, it is conceivable to apply a branch piping system in which one liquid supply pipe is provided in each storage tank and branched immediately upstream of the mixing tank, and two branch pipes are connected to the mixing tank. In this case, since there are two liquid supply pipes and two liquid feed pumps, the cost of the pipes and pumps can be reduced, so the storage tank and the mixing tank are separated from each other. Becomes an effective piping system.

特開2000−330643号公報JP 2000-330643 A

本発明者らは、2つの貯留タンクにそれぞれ1本の給液配管を設け、各給液配管を混合タンクの直上流で分岐させ2本の分岐管路をそれぞれ混合タンクに接続する分岐配管システムを採用して混合タンクに2種類の液体を供給して混合する実験を繰り返し行った。この場合、各分岐管路に流量計と流量制御弁とを設け、分岐管路を流す目標とする流量比率にしたがってPID制御により流量制御弁を制御して2種類の液体を混合タンクに供給するようにしたものである。   The present inventors provide a branch piping system in which one supply pipe is provided in each of two storage tanks, each supply pipe is branched immediately upstream of the mixing tank, and two branch pipes are connected to the mixing tank, respectively. The experiment in which two types of liquids were supplied to the mixing tank and mixed was repeated. In this case, a flow meter and a flow control valve are provided in each branch pipe, and the two kinds of liquids are supplied to the mixing tank by controlling the flow control valve by PID control according to a target flow ratio flowing through the branch pipe. It is what I did.

本発明者らは、種々の液体を用いて上述の実験を繰り返し行った結果、水や果汁とアルコールとを混合する場合のように、繊維質のものや固形物のものを含んでいない粘性の低い液体同士を混合する場合には、PID制御により所望の比率に混合することができるが、果汁や水等の粘性の低い液体と果実繊維や果肉等の固形物を含んだ粘性の高い液体とを混合する場合には、果実繊維や果肉等の固形物が一方の系路で詰まったり、あるいはその逆に詰まりが突然解消される場合があり、流量制御が困難となるため、PID制御では果実繊維や果肉等の固形物を含んだ粘性が高い液体を所望の比率で流すことができないという事態が生ずることを見出したものである。また、上述した果実繊維や果肉等の固形物を含んだ粘性が高い液体を分岐管路で分流させる場合に、一方の管路に多量に流れ始めた場合に、多量の流れができた管路側に偏重して流れ続ける傾向があり、PID制御では調整が困難であることを見出したものである。   As a result of repeating the above-described experiment using various liquids, the present inventors have found that a viscous material that does not contain a fibrous material or a solid material as in the case of mixing water or fruit juice with alcohol. When mixing low liquids, they can be mixed at a desired ratio by PID control, but low viscosity liquids such as fruit juice and water and high viscosity liquids including solids such as fruit fibers and pulp Is mixed with solid matter such as fruit fiber or pulp, or vice versa, the clogging may suddenly be eliminated, and flow control becomes difficult. It has been found that a situation occurs in which a highly viscous liquid containing solids such as fibers and pulp cannot be flowed at a desired ratio. In addition, when diverting a highly viscous liquid containing solids such as fruit fibers and pulp as described above through a branch pipe, when the pipe starts flowing in a large quantity, the pipe side where a large quantity of flow has been generated It has been found that there is a tendency to continue to flow with a heavy bias, and that adjustment is difficult with PID control.

本発明は、上述の事情に鑑みなされたもので、複数の貯留タンク等の液体供給源にそれぞれ1本の給液配管を設け、各給液配管を複数に分岐させて複数の分岐管路を複数の混合タンクにそれぞれ接続して各混合タンクに複数種類の液体を供給可能とした配管システムにおいて、果汁や水等の粘性の低い液体と果実繊維や果肉等の固形物を含んだ粘性の高い液体を所望の比率で混合することができる液体混合方法及び装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and each liquid supply source, such as a plurality of storage tanks, is provided with one liquid supply pipe, and each liquid supply pipe is branched into a plurality of branch lines. A piping system that can be connected to multiple mixing tanks to supply multiple types of liquids to each mixing tank, and has high viscosity including low viscosity liquids such as fruit juice and water and solids such as fruit fibers and pulp It is an object to provide a liquid mixing method and apparatus capable of mixing liquids in a desired ratio.

上述の目的を達成するため、本発明の液体混合方法は、第1液体を含む異なった種類の液体を供給する複数の液体供給源から複数の混合タンクの各々に複数種類の液体を供給してこれらの液体を所望の比率で混合する液体混合方法において、複数の液体供給源にそれぞれ接続された給液配管を複数に分岐させ、複数の分岐管路を複数の混合タンクにそれぞれ接続して各混合タンクに第1液体と第1液体と混合すべき1又は2以上の混合用液体とからなる複数種類の液体を供給可能とし、混合タンクに供給された第1液体の積算流量を測定し、この測定値から前記所望の比率にするために混合タンクに供給することが必要な液体の積算流量を算出して混合用液体の理論上の必要量を求め、混合タンクに供給された混合用液体の積算流量を測定し、この測定値と前記混合用液体の理論上の必要量とから混合用液体の不足量を算出し、前記混合用液体の積算流量の測定値が前記混合用液体の理論上の必要量に対して不足量が生じた場合には、予め求めておいた混合用液体の不足量に対する流量制御弁の弁開度に基づいて流量制御弁の弁開度を制御して混合用液体を混合タンクに供給し、前記混合用液体の測定値が前記混合用液体の理論上の必要量以上であれば前記流量制御弁を全閉にすることを特徴とする。   In order to achieve the above object, a liquid mixing method of the present invention supplies a plurality of types of liquids to a plurality of mixing tanks from a plurality of liquid supply sources that supply different types of liquids including a first liquid. In the liquid mixing method of mixing these liquids at a desired ratio, the liquid supply pipes respectively connected to the plurality of liquid supply sources are branched into a plurality of parts, and the plurality of branch lines are respectively connected to the plurality of mixing tanks. A plurality of types of liquid consisting of a first liquid and one or more mixing liquids to be mixed with the first liquid can be supplied to the mixing tank, and an integrated flow rate of the first liquid supplied to the mixing tank is measured; From this measurement value, the integrated flow rate of the liquid that needs to be supplied to the mixing tank to obtain the desired ratio is calculated to obtain the theoretical required amount of the mixing liquid, and the mixing liquid supplied to the mixing tank Measure the integrated flow rate of The shortage amount of the mixing liquid is calculated from this measured value and the theoretical required amount of the mixing liquid, and the measured value of the integrated flow rate of the mixing liquid is compared with the theoretical required amount of the mixing liquid. When a shortage occurs, the mixing liquid is supplied to the mixing tank by controlling the valve opening of the flow control valve based on the valve opening of the flow control valve with respect to the mixing liquid shortage obtained in advance. If the measured value of the mixing liquid is greater than the theoretical required amount of the mixing liquid, the flow control valve is fully closed.

本発明の液体混合装置は、第1液体を含む異なった種類の液体を供給する複数の液体供給源から複数の混合タンクの各々に複数種類の液体を供給してこれらの液体を所望の比率で混合する液体混合装置において、複数の液体供給源にそれぞれ接続された給液配管を複数に分岐させ、複数の分岐管路を複数の混合タンクにそれぞれ接続して、各混合タンクに第1液体と第1液体と混合すべき1又は2以上の混合用液体とからなる複数種類の液体を供給可能とし、第1液体を流す分岐管路に設けられた流量計により測定された第1液体の流量に基づいて、混合用液体を流す分岐管路に設けられた流量制御弁の弁開度を制御して混合用液体の積算流量を制御する制御装置を設け、前記制御装置は、混合タンクに供給された第1液体の積算流量の測定値から前記所望の比率にするために混合タンクに供給することが必要な液体の積算流量を算出して前記混合用液体の理論上の必要量を求め、混合タンクに供給された混合用液体の積算流量の測定値と前記混合用液体の理論上の必要量とから混合用液体の不足量を算出し、前記混合用液体の積算流量の測定値が前記混合用液体の理論上の必要量に対して不足量が生じた場合には、予め求めておいた混合用液体の不足量に対する流量制御弁の弁開度に基づいて流量制御弁の弁開度を制御して混合用液体を混合タンクに供給し、前記混合用液体の測定値が前記混合用液体の理論上の必要量以上であれば前記流量制御弁を全閉にするようにしたことを特徴とする。   The liquid mixing apparatus of the present invention supplies a plurality of types of liquid to each of a plurality of mixing tanks from a plurality of liquid supply sources that supply different types of liquid including the first liquid, and these liquids are supplied at a desired ratio. In the liquid mixing apparatus to be mixed, a plurality of liquid supply pipes respectively connected to a plurality of liquid supply sources are branched into a plurality of parts, and a plurality of branch pipes are connected to a plurality of mixing tanks, respectively. The flow rate of the first liquid measured by a flow meter provided in a branch line through which the first liquid can be supplied and a plurality of types of liquids composed of one or more mixing liquids to be mixed with the first liquid. A control device for controlling the integrated flow rate of the mixing liquid by controlling the valve opening degree of the flow rate control valve provided in the branch pipe through which the mixing liquid flows, and the control device supplies the mixing tank Of the accumulated flow rate of the first liquid To calculate the integrated flow rate of the liquid that needs to be supplied to the mixing tank in order to obtain the desired ratio, to obtain the theoretical required amount of the mixing liquid, and to integrate the mixing liquid supplied to the mixing tank The deficiency of the mixing liquid is calculated from the measured value of the flow rate and the theoretical required amount of the mixing liquid, and the measured value of the integrated flow rate of the mixing liquid is smaller than the theoretical required amount of the mixing liquid. If a shortage occurs, the opening of the flow control valve is controlled based on the previously determined shortage of the mixing liquid to control the opening of the flow control valve, and the mixing liquid is transferred to the mixing tank. If the measured value of the mixing liquid is greater than the theoretical required amount of the mixing liquid, the flow control valve is fully closed.

本発明によれば、混合タンクに供給された第1液体の積算流量を測定し、この測定値から、第1液体と、第1液体と混合すべき1又は2以上の混合用液体とを所望の比率に混合するために混合タンクに供給することが必要な混合用液体の積算流量を算出して混合用液体の理論上の必要量を求め、この求めた混合用液体の理論上の必要量に対応した弁開度に流量制御弁を制御して混合用液体を混合タンクに供給し、次に混合タンクに供給された混合用液体の積算流量を測定し、この測定値と前記混合用液体の理論上の必要量とから混合用液体の不足量を算出し、混合用液体の測定値と混合用液体の理論上の必要量との間に不足量が生じた場合には、予め求めておいた混合用液体の不足量に対する流量制御弁の弁開度に基づいて流量制御弁の弁開度を制御して混合用液体を混合タンクに供給し、前記混合用液体の測定値が前記混合用液体の理論上の必要量以上であれば前記流量制御弁を全閉にするようにしたものである。   According to the present invention, the integrated flow rate of the first liquid supplied to the mixing tank is measured, and from this measured value, the first liquid and one or more mixing liquids to be mixed with the first liquid are desired. Calculate the theoretical required amount of the mixing liquid by calculating the integrated flow rate of the mixing liquid that needs to be supplied to the mixing tank in order to mix to the ratio of The flow control valve is controlled to a valve opening corresponding to the above, and the mixing liquid is supplied to the mixing tank, and then the integrated flow rate of the mixing liquid supplied to the mixing tank is measured, and this measured value and the mixing liquid are measured. Calculate the deficiency of the mixing liquid from the theoretically required amount of the liquid, and if there is a deficiency between the measured value of the mixing liquid and the theoretical required amount of the mixing liquid, obtain it in advance. The flow control valve is opened based on the opening of the flow control valve for the shortage of liquid for mixing. The mixing liquid is supplied to the mixing tank and the flow rate control valve is fully closed if the measured value of the mixing liquid is greater than the theoretical required amount of the mixing liquid. is there.

本発明の好ましい態様は、前記第1液体は粘性の低い液体からなり、前記混合用液体は粘性の高い液体からなることを特徴とする。
本発明の好ましい態様は、前記複数の液体供給源が異なった種類の液体をそれぞれ貯留した複数の貯留タンクからなることを特徴とする。
本発明の好ましい態様は、前記複数の混合タンクが2又は3の混合タンクからなることを特徴とする。
本発明の好ましい態様は、前記第1液体を流す分岐管路には、流量計と開閉弁が設置されていることを特徴とする。
本発明の好ましい態様は、前記混合用液体を流す分岐管路には、前記流量制御弁と流量計が設置されていることを特徴とする。
本発明の好ましい態様は、前記給液配管が前記複数の混合タンクの直上流で複数に分岐していることを特徴とする。
本発明の好ましい態様は、前記給液配管にポンプを設け、インバータ制御により該ポンプの回転数を制御することを特徴とする。
In a preferred aspect of the present invention, the first liquid is made of a low viscosity liquid, and the mixing liquid is made of a high viscosity liquid.
In a preferred aspect of the present invention, the plurality of liquid supply sources include a plurality of storage tanks storing different types of liquids.
In a preferred aspect of the present invention, the plurality of mixing tanks include two or three mixing tanks.
In a preferred aspect of the present invention, a flow meter and an on-off valve are installed in the branch pipe for flowing the first liquid.
In a preferred aspect of the present invention, the flow rate control valve and a flow meter are installed in the branch pipe for flowing the mixing liquid.
In a preferred aspect of the present invention, the liquid supply pipe is branched into a plurality of portions immediately upstream of the plurality of mixing tanks.
In a preferred aspect of the present invention, a pump is provided in the liquid supply pipe, and the rotation speed of the pump is controlled by inverter control.

本発明によれば、以下に列挙する効果を奏する。
(1)第1液体の供給量により定まる混合用液体の供給量を所定時間毎に測定して不足量を求め、この混合用液体の不足量を補填することができるため、果汁や水等の粘性の低い第1液体と果実繊維や果肉等の固形物を含んだ粘性の高い混合用液体とを混合する場合であっても、第1液体と混合用液体とを所望の比率で混合することができる。
(2)複数の液体供給源にそれぞれ接続された給液配管を複数の混合タンクの直上流で複数に分岐させ、複数の分岐管路を複数の混合タンクにそれぞれ接続して各混合タンクに第1液体と1又は2以上の混合用液体とからなる複数種類の液体を供給可能としたため、給液配管及び送液ポンプの必要数は、複数の供給液体の数と同数で足りるので、配管及びポンプに関するコストを低減することができ、液体供給源と混合タンクとが離間している場合に有効な配管システムとなる。
(3)複雑なPID制御を採用する必要がないため、制御装置が簡易になり、装置コストを低減することができる。
The present invention has the following effects.
(1) Since the supply amount of the mixing liquid determined by the supply amount of the first liquid is measured every predetermined time to determine the shortage amount, and the shortage amount of this mixing liquid can be compensated, Mixing the first liquid and the mixing liquid in a desired ratio even when mixing the first liquid having a low viscosity and the liquid for mixing containing a solid substance such as fruit fiber or pulp. Can do.
(2) The supply pipes respectively connected to the plurality of liquid supply sources are branched into a plurality immediately upstream of the plurality of mixing tanks, and the plurality of branch pipes are connected to the plurality of mixing tanks, respectively. Since a plurality of types of liquids consisting of one liquid and one or more mixing liquids can be supplied, the required number of liquid supply pipes and liquid feed pumps is the same as the number of the plurality of supply liquids. The cost related to the pump can be reduced, and the piping system is effective when the liquid supply source and the mixing tank are separated from each other.
(3) Since it is not necessary to employ complicated PID control, the control device is simplified and the device cost can be reduced.

図1は、本発明の液体混合装置を備えた飲料製造プラントの構成例を示す概略図である。FIG. 1 is a schematic diagram showing a configuration example of a beverage production plant provided with the liquid mixing apparatus of the present invention. 図2は、本発明の液体混合装置を備えた飲料製造プラントの別の構成例であり、混合タンクを3個備えた例を示す概略図である。FIG. 2 is a schematic diagram showing another example of the structure of a beverage production plant provided with the liquid mixing apparatus of the present invention, and an example provided with three mixing tanks. 図3は、本発明の液体混合装置を備えた飲料製造プラントの別の構成例であり、3つの液体供給源を備えた例を示す概略図である。FIG. 3 is a schematic diagram showing another configuration example of a beverage production plant including the liquid mixing device of the present invention, and an example including three liquid supply sources.

以下、本発明に係る液体混合方法及び装置の実施形態について図1乃至図3を参照して説明する。図1乃至図3において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図1は、本発明の液体混合装置を備えた飲料製造プラントの構成例を示す概略図である。本実施形態においては、粘性の低い液体としての果汁や水等の第1液体と粘性の高い液体としての繊維状の成分や固形物等を含有した混合用液体(以下、第2液体と総称する)とを混合する場合を説明する。
Hereinafter, embodiments of a liquid mixing method and apparatus according to the present invention will be described with reference to FIGS. 1 to 3. 1 to 3, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a schematic diagram showing a configuration example of a beverage production plant provided with the liquid mixing apparatus of the present invention. In the present embodiment, a mixing liquid containing a first liquid such as fruit juice or water as a low-viscosity liquid and a fibrous component or solid as a high-viscosity liquid (hereinafter collectively referred to as a second liquid). ) Will be described.

図1に示すように、飲料製造プラントは、液体供給源としての第1貯留タンクT1と第2貯留タンクT2とを備えている。第1貯留タンクT1には第1液体が貯留されており、第2貯留タンクT2には第2液体が貯留されている。第1貯留タンクT1には給液配管SP1が接続され、第2貯留タンクT2には給液配管SP2が接続されている。第1貯留タンクT1には第1液体供給系から粘性の低い第1液体が補充され、第2貯留タンクT2には2液体供給系から粘性の高い第2液体が補充されるようになっている。   As shown in FIG. 1, the beverage manufacturing plant includes a first storage tank T1 and a second storage tank T2 as liquid supply sources. The first liquid is stored in the first storage tank T1, and the second liquid is stored in the second storage tank T2. A liquid supply pipe SP1 is connected to the first storage tank T1, and a liquid supply pipe SP2 is connected to the second storage tank T2. The first storage tank T1 is replenished with a low-viscosity first liquid from the first liquid supply system, and the second storage tank T2 is replenished with a high-viscosity second liquid from the two liquid supply system. .

給液配管SP1には、第1貯留タンク側から下流側に向かって給液バルブSV1、送液ポンプP1が設置されている。給液配管SP1は下流端ですなわち混合タンクの直上流で第1分岐管BP11と第2分岐管BP21とに分岐しており、第1液体は第1分岐管BP11を介して第1混合タンクMT1に供給されるとともに第2分岐管BP21を介して第2混合タンクMT2に供給されるようになっている。第1分岐管BP11には流量計FM11と開閉弁AV1が設置されており、第2分岐管BP21には流量計FM21と開閉弁AV2が設置されている。   A liquid supply valve SV1 and a liquid feed pump P1 are installed in the liquid supply pipe SP1 from the first storage tank side toward the downstream side. The liquid supply pipe SP1 branches to the first branch pipe BP11 and the second branch pipe BP21 at the downstream end, that is, immediately upstream of the mixing tank, and the first liquid is supplied to the first mixing tank MT1 through the first branch pipe BP11. And is supplied to the second mixing tank MT2 via the second branch pipe BP21. The first branch pipe BP11 is provided with a flow meter FM11 and an on-off valve AV1, and the second branch pipe BP21 is provided with a flow meter FM21 and an on-off valve AV2.

一方、給液配管SP2には、第2貯留タンク側から下流側に向かって給液バルブSV2、送液ポンプP2が設置されている。給液配管SP2は下流端ですなわち混合タンクの直上流で第1分岐管BP12と第2分岐管BP22とに分岐しており、第2液体は第1分岐管BP12を介して第1混合タンクMT1に供給されるとともに第2分岐管BP22を介して第2混合タンクMT2に供給されるようになっている。第1分岐管BP12には流量計FM12と流量制御弁CV1が設置されており、第2分岐管BP22には流量計FM22と流量制御弁CV2が設置されている。各貯留タンクT1,T2からそれぞれ2つの混合タンクMT1,MT2に送液する場合、インバータ制御により送液ポンプP1,P2の回転数(回転速度)を制御することによって必要流量に対応して送液ポンプP1,P2の流量を制御している。   On the other hand, a liquid supply valve SV2 and a liquid feed pump P2 are installed in the liquid supply pipe SP2 from the second storage tank side toward the downstream side. The liquid supply pipe SP2 branches into the first branch pipe BP12 and the second branch pipe BP22 at the downstream end, that is, immediately upstream of the mixing tank, and the second liquid passes through the first branch pipe BP12 and the first mixing tank MT1. And is supplied to the second mixing tank MT2 via the second branch pipe BP22. The first branch pipe BP12 is provided with a flow meter FM12 and a flow control valve CV1, and the second branch pipe BP22 is provided with a flow meter FM22 and a flow control valve CV2. When liquid is fed from the storage tanks T1 and T2 to the two mixing tanks MT1 and MT2, respectively, the number of liquid feed pumps P1 and P2 is controlled by inverter control to control the number of revolutions (rotational speed) and the liquid is fed corresponding to the required flow rate The flow rate of the pumps P1 and P2 is controlled.

第1混合タンクMT1および第2混合タンクMT2には、低液位(LL)を検出するレベル計LM1と高液位(LH)を検出するレベル計LM2とが設置されており、低液位(LL)と高液位(LH)を検出してタンク内の液位が低液位と高液位との間に制御されるようになっている。第1混合タンクMT1および第2混合タンクMT2は、供給された第1液体と第2液体とを撹拌して混合するための攪拌機5を備えている。そして、第1混合タンクMT1および第2混合タンクMT2で混合された混合液は、それぞれ充填機(図示せず)に供給されるようになっている。   The first mixing tank MT1 and the second mixing tank MT2 are provided with a level meter LM1 for detecting a low liquid level (LL) and a level meter LM2 for detecting a high liquid level (LH). LL) and high liquid level (LH) are detected, and the liquid level in the tank is controlled between the low liquid level and the high liquid level. The first mixing tank MT1 and the second mixing tank MT2 include a stirrer 5 for stirring and mixing the supplied first liquid and second liquid. And the liquid mixture mixed with 1st mixing tank MT1 and 2nd mixing tank MT2 is each supplied to a filling machine (not shown).

流量計FM11,FM12,FM21,FM22は、各分岐管BP11,BP12,BP21,BP22を流れる液体の流量を測定するものであり、制御装置10に接続されている。図1においては、流量計FM21および流量計FM22と制御装置10とを接続するラインは省略している。流量計FM11〜FM22には、電磁流量計、超音波流量計、差圧式流量計、質量流量計等の種々の形式の流量計を用いることができる。流量計FM11〜FM22は、流量計の形式を適宜選定することにより、体積流量(m/s,L/s等)又は質量流量(kg/s等)を測定することができる。また、流量制御弁CV1,CV2は、空気圧で作動する自動制御弁からなり、制御装置10に接続されている。図1においては、流量制御弁CV2と制御装置10とを接続するラインは省略している。
制御装置10は、流量計FM11,FM12,FM21,FM22の測定値に基づいて流量制御弁CV1,CV2の弁開度を制御するように構成されている。
The flow meters FM11, FM12, FM21, FM22 measure the flow rate of the liquid flowing through the branch pipes BP11, BP12, BP21, BP22, and are connected to the control device 10. In FIG. 1, lines connecting the flow meter FM21 and the flow meter FM22 and the control device 10 are omitted. As the flow meters FM11 to FM22, various types of flow meters such as an electromagnetic flow meter, an ultrasonic flow meter, a differential pressure flow meter, and a mass flow meter can be used. The flow meters FM11 to FM22 can measure the volume flow rate (m 3 / s, L / s, etc.) or the mass flow rate (kg / s, etc.) by appropriately selecting the flow meter type. The flow control valves CV1 and CV2 are automatic control valves that are operated by air pressure, and are connected to the control device 10. In FIG. 1, a line connecting the flow control valve CV2 and the control device 10 is omitted.
The control device 10 is configured to control the valve opening degrees of the flow control valves CV1, CV2 based on the measured values of the flow meters FM11, FM12, FM21, FM22.

次に、図1に示す飲料製造プラントにおける液体混合装置の動作について説明する。
給液バルブSV1,SV2を開き、送液ポンプP1,P2を運転するとともに、開閉弁AV1,AV2を開き、流量制御弁CV1,CV2の弁開度を制御することにより、第1貯留タンクT1内の第1液体は給液配管SP1を経て第1分岐管BP11と第2分岐管BP21とに分流した後に第1混合タンクMT1と第2混合タンクMT2に供給され、第2貯留タンクT2内の第2液体は給液配管SP2を経て第1分岐管BP12と第2分岐管BP22とに分流した後に第1混合タンクMT1と第2混合タンクMT2に供給される。
Next, operation | movement of the liquid mixing apparatus in the beverage manufacturing plant shown in FIG. 1 is demonstrated.
The liquid supply valves SV1 and SV2 are opened, the liquid feed pumps P1 and P2 are operated, the on-off valves AV1 and AV2 are opened, and the valve opening degree of the flow rate control valves CV1 and CV2 is controlled, thereby controlling the inside of the first storage tank T1. The first liquid is divided into the first branch pipe BP11 and the second branch pipe BP21 via the liquid supply pipe SP1, and then supplied to the first mixing tank MT1 and the second mixing tank MT2, and the first liquid in the second storage tank T2 is supplied. The two liquids are divided into the first branch pipe BP12 and the second branch pipe BP22 through the liquid supply pipe SP2, and then supplied to the first mixing tank MT1 and the second mixing tank MT2.

第1混合タンクMT1に供給される第1液体の流量は流量計FM11により測定され、第2混合タンクMT2に供給される第1液体の流量は流量計FM21により測定される。第1分岐管BP11および第2分岐管BP21に設置された開閉弁AV1,AV2は、開閉機能しかなく、流量制御機能を持たないので、第1分岐管BP11および第2分岐管BP21を流れる第1液体の流量を制御することはできない。しかしながら、第1分岐管BP12および第2分岐管BP22に設置された流量制御弁CV1,CV2は、弁開度を制御することにより第2液体の流量を制御することができる。したがって、第1混合タンクMT1側の第1混合系においては、流量計FM11により測定された第1液体の流量に基づいて流量制御弁CV1の弁開度を制御して第2液体の流量を制御することにより、第1液体と第2液体とを所望の比率で混合することができる。また、第2混合タンクMT2側の第2混合系においても、流量計FM21により測定された第1液体の流量に基づいて流量制御弁CV2の弁開度を制御して第2液体の流量を制御することにより、第1液体と第2液体とを所望の比率で混合することができる。   The flow rate of the first liquid supplied to the first mixing tank MT1 is measured by the flow meter FM11, and the flow rate of the first liquid supplied to the second mixing tank MT2 is measured by the flow meter FM21. Since the on-off valves AV1 and AV2 installed in the first branch pipe BP11 and the second branch pipe BP21 have only an opening / closing function and no flow rate control function, the first and second valves BP11 and BP21 that flow through the first branch pipe BP11 and the second branch pipe BP21. The liquid flow rate cannot be controlled. However, the flow rate control valves CV1, CV2 installed in the first branch pipe BP12 and the second branch pipe BP22 can control the flow rate of the second liquid by controlling the valve opening. Therefore, in the first mixing system on the first mixing tank MT1 side, the flow rate of the second liquid is controlled by controlling the valve opening degree of the flow control valve CV1 based on the flow rate of the first liquid measured by the flow meter FM11. Thus, the first liquid and the second liquid can be mixed at a desired ratio. Also, in the second mixing system on the second mixing tank MT2 side, the flow rate of the second liquid is controlled by controlling the valve opening degree of the flow control valve CV2 based on the flow rate of the first liquid measured by the flow meter FM21. Thus, the first liquid and the second liquid can be mixed at a desired ratio.

次に、第1液体と第2液体とを所望の比率で混合するための制御方法について説明する。第1混合タンクMT1側の第1混合系と第2混合タンクMT2側の第2混合系とは、同一の制御方法であるため、第1混合系のみについて説明する。制御装置10は、CPU(Central Processing Unit)を備え、CPUによって各種数値計算、記憶等の情報処理および機器制御を行って、流量計FM11により測定された第1液体の流量に基づいて流量制御弁CV1の弁開度を制御して第2液体の流量を制御することにより、以下に述べる方法によって第1液体と第2液体とを所望の比率で混合することができる。
第1液体を第1分岐管BP11を介して第1混合タンクMT1に供給し、流量計FM11により第1分岐管BP11から第1混合タンクMT1に所定時間(例えば3秒を1サイクルとする)内に供給された第1液体の流量を1サイクル分測定した積算流量を測定値V1(I)(流量の単位はリットル(L)とし、以下省略する)として記憶する。
Next, a control method for mixing the first liquid and the second liquid at a desired ratio will be described. Since the first mixing system on the first mixing tank MT1 side and the second mixing system on the second mixing tank MT2 side are the same control method, only the first mixing system will be described. The control device 10 includes a central processing unit (CPU), performs various numerical calculations, information processing such as storage, and device control by the CPU, and controls the flow rate control valve based on the flow rate of the first liquid measured by the flow meter FM11. By controlling the valve opening degree of CV1 and controlling the flow rate of the second liquid, the first liquid and the second liquid can be mixed at a desired ratio by the method described below.
The first liquid is supplied to the first mixing tank MT1 through the first branch pipe BP11, and the flow meter FM11 supplies the first liquid from the first branch pipe BP11 to the first mixing tank MT1 within a predetermined time (for example, 3 seconds is defined as one cycle). An integrated flow rate obtained by measuring the flow rate of the first liquid supplied to 1 cycle is stored as a measured value V1 (I) (the unit of the flow rate is liter (L), and is omitted hereinafter).

一方、第2液体の理論上必要とされる流量V2(Q)は、第1液体の積算流量の測定値V1(I)に対して所定の混合比率(ボリューム%)を乗じて算出する。例えば、第1液体に対して5%のボリューム比率を設定して第2液体を混合する場合、第2液体の理論上の必要流量V2(Q)は、第1液体の積算流量V1(I)に対して、V2(Q)=0.05×V1(I)と算出される。この第2液体の理論上の必要量は、例えばリットルを単位とした場合小数点以下4桁程度まで算出する。   On the other hand, the theoretically required flow rate V2 (Q) of the second liquid is calculated by multiplying the measured value V1 (I) of the integrated flow rate of the first liquid by a predetermined mixing ratio (volume%). For example, when the second liquid is mixed while setting a volume ratio of 5% with respect to the first liquid, the theoretical required flow rate V2 (Q) of the second liquid is the integrated flow rate V1 (I) of the first liquid. On the other hand, V2 (Q) = 0.05 × V1 (I) is calculated. The theoretical required amount of the second liquid is calculated to about 4 digits after the decimal point when the unit is, for example, liters.

第1混合タンクMT1には、第1液体の供給と同時に第2液体が供給される。そして、第1分岐管BP12から第1混合タンクMT1に所定時間内に供給された第2液体の積算流量を流量計FM12により測定し、V2(I)として記憶する。   The second liquid is supplied to the first mixing tank MT1 simultaneously with the supply of the first liquid. Then, the integrated flow rate of the second liquid supplied from the first branch pipe BP12 to the first mixing tank MT1 within a predetermined time is measured by the flow meter FM12 and stored as V2 (I).

次に、第2液体の理論上の必要流量V2(Q)(=0.05×V1(I))から実際に第1混合タンクMT1に投入された第2液体の積算流量V2(I)を減算した不足量V2(Q)−V2(I)(=0.05×V1(I)−V2(I))をサイクル毎に算出する。   Next, the integrated flow rate V2 (I) of the second liquid actually introduced into the first mixing tank MT1 from the theoretical required flow rate V2 (Q) (= 0.05 × V1 (I)) of the second liquid is obtained. The subtracted deficiency V2 (Q) −V2 (I) (= 0.05 × V1 (I) −V2 (I)) is calculated for each cycle.

算出した第2液体の不足量に対する流量制御弁CV1の弁開度は、以下の表1で示すように予め求めておき、テーブルとして記憶している。表1においては、第2液体の不足量(リットル)に対する流量制御弁CV1の弁開度を百分率(%)で示している。

Figure 2011126565
このように、第2液体の理論上の必要流量に対して測定値(実測値)が少なくて不足量が生じた場合には、表1から第2液体の不足量に対応した流量制御弁CV1の弁開度に制御する。これによって、第1混合タンクMT1には、第1液体の積算流量の測定値に対応した第2液体の必要流量に前記不足量を加味して投入する。次に、制御開始からの第1液体のトータル積算流量を測定し、この測定値をV1(I)として記憶し、前述と同様に第2液体の理論上の必要流量V2(Q)を求め、かつ制御開始からの第2液体のトータル積算流量V2(I)を測定し、再びV2(Q)−V2(I)(=0.05×V1(I)−V2(I))の計算を行い、不足量を算出する。 The valve opening degree of the flow control valve CV1 corresponding to the calculated shortage amount of the second liquid is obtained in advance as shown in Table 1 below and stored as a table. In Table 1, the valve opening degree of the flow control valve CV1 with respect to the shortage amount (liter) of the second liquid is shown as a percentage (%).
Figure 2011126565
As described above, when the measured value (actually measured value) is small with respect to the theoretical required flow rate of the second liquid and an insufficient amount occurs, the flow control valve CV1 corresponding to the insufficient amount of the second liquid is obtained from Table 1. The valve opening is controlled. As a result, the deficient amount is added to the required flow rate of the second liquid corresponding to the measured value of the integrated flow rate of the first liquid in the first mixing tank MT1. Next, the total integrated flow rate of the first liquid from the start of control is measured, this measured value is stored as V1 (I), and the theoretical required flow rate V2 (Q) of the second liquid is obtained in the same manner as described above. Further, the total integrated flow rate V2 (I) of the second liquid from the start of the control is measured, and V2 (Q) −V2 (I) (= 0.05 × V1 (I) −V2 (I)) is calculated again. Calculate the deficiency.

以下、前記不足量に対応した流量制御弁CV1の弁開度を表1から求め、先の手順と同様の手順で、不足量を加味した第2液体の液体量が供給される。その後、この手順を繰り返すことにより、第1液体と第2液体とを所望の比率で第1混合タンクMT1に供給して混合することができる。   Thereafter, the valve opening degree of the flow control valve CV1 corresponding to the shortage amount is obtained from Table 1, and the liquid amount of the second liquid taking into consideration the shortage amount is supplied in the same procedure as the previous procedure. Thereafter, by repeating this procedure, the first liquid and the second liquid can be supplied to the first mixing tank MT1 and mixed at a desired ratio.

一方、第2液体の測定値と第2液体の理論上の必要量が等しいか、または第2液体の測定値が第2液体の理論上の必要量より大きければ、流量制御弁CV1を全閉にし、3秒の1サイクル分だけ、第1液体のみ供給し、第2液体は供給しない。そして、次の3秒のサイクル、またはその次の3秒のサイクルの測定の際に第2液体が不足して不足量が出れば、流量制御弁を開いて表1に基づいて流量制御弁CV1の弁開度を制御する。
このように、第1液体と第2液体とを第1供給タンクMT1に供給して混合している間に、混合液は第1供給タンクMT1から連続的に充填機に供給されている。
On the other hand, if the measured value of the second liquid and the theoretical required amount of the second liquid are equal, or if the measured value of the second liquid is larger than the theoretical required amount of the second liquid, the flow control valve CV1 is fully closed. Only the first liquid is supplied for one cycle of 3 seconds, and the second liquid is not supplied. Then, if the second liquid is insufficient and a shortage occurs during the measurement of the next 3 second cycle or the next 3 second cycle, the flow control valve is opened and the flow control valve CV1 based on Table 1 is opened. To control the valve opening.
Thus, while supplying and mixing the first liquid and the second liquid to the first supply tank MT1, the mixed liquid is continuously supplied from the first supply tank MT1 to the filling machine.

従来にあっては、2つの貯留タンクにそれぞれ1本の給液配管を設け、各給液配管を混合タンクの直上流で分岐させ2本の分岐管路をそれぞれ混合タンクに接続する配管システムにおいて、各分岐管路に流量計と流量制御弁とを設け、分岐管路を流す目標とする流量比率にしたがってPID制御により流量制御弁を制御して2種類の液体を混合タンクに供給するようにしたが、果汁や水等の粘性の低い液体と果実繊維や果肉等の固形物を含んだ粘性の高い液体を混合する場合には、果実繊維や果肉等の固形物が一方の系路で詰まったり、あるいはその逆に詰まりが突然解消される場合があり、流量制御が困難となるため、PID制御では粘性が高い液体を所望の比率で流すことができないという事態が生じた。また、上述した果実繊維や果肉等の固形物を含んだ液体を分岐管路で分流させる場合に、一方の管路に多量に流れ始めた場合に、他方の管路の流量制御弁を全開にしても多量の流れができた一方の管路側に偏重して流れ続ける傾向があり、PID制御では調整が困難であった。   Conventionally, in a piping system in which one supply pipe is provided for each of two storage tanks, each supply pipe is branched immediately upstream of the mixing tank, and two branch pipes are connected to the mixing tank, respectively. Each flow pipe is provided with a flow meter and a flow control valve, and the flow control valve is controlled by PID control in accordance with a target flow ratio flowing through the branch pipe to supply two kinds of liquids to the mixing tank. However, when mixing a low-viscosity liquid such as fruit juice or water and a high-viscosity liquid containing solids such as fruit fiber or pulp, solids such as fruit fiber or pulp are clogged in one system. In other cases, the clogging may suddenly be eliminated, and the flow rate control becomes difficult, so that a liquid having a high viscosity cannot be flowed at a desired ratio in the PID control. In addition, when a liquid containing solid matter such as fruit fibers and pulp as described above is diverted in a branch line, when a large amount starts flowing in one line, the flow control valve in the other line is fully opened. However, there is a tendency to continue to flow unevenly toward one of the pipes where a large amount of flow has occurred, and adjustment is difficult with PID control.

本発明は、所定時間内に第1液体を実際に混合タンクに供給した測定値に基づいて第2液体の理論上の必要量を求め、この理論上の必要量に対応した弁開度に流量制御弁を制御して第2液体を前記所定時間と同一の時間だけ混合タンクに供給した後に、第2液体を実際に混合タンクに供給した量を測定し、この測定値と前記理論上の必要量とから第2液体の不足量を算出して、この第2液体の不足量に対応した弁開度に流量制御弁を制御して第2液体を混合タンクに供給するようにしたものである。   The present invention obtains the theoretical required amount of the second liquid based on the measured value obtained by actually supplying the first liquid to the mixing tank within a predetermined time, and the flow rate is set to the valve opening corresponding to the theoretical required amount. After controlling the control valve and supplying the second liquid to the mixing tank for the same time as the predetermined time, the amount of the second liquid actually supplied to the mixing tank is measured, and this measured value and the theoretical necessity are measured. The shortage amount of the second liquid is calculated from the amount, and the flow rate control valve is controlled to a valve opening degree corresponding to the shortage amount of the second liquid so as to supply the second liquid to the mixing tank. .

本発明によれば、第2液体の不足量を次のサイクルで補填することができるため、果汁や水等の粘性の低い第1液体と果実繊維や果肉等の固形物を含んだ粘性の高い第2液体とを混合する場合であっても所望の比率で混合することができる。   According to the present invention, since the shortage of the second liquid can be compensated in the next cycle, the first liquid having a low viscosity such as fruit juice or water and the high viscosity containing solid matter such as fruit fiber or pulp are included. Even when the second liquid is mixed, it can be mixed at a desired ratio.

図2は、本発明の液体混合装置を備えた飲料製造プラントの別の構成例を示す概略図である。図2に示す本実施形態においては、図1に示す実施形態と比較して混合タンクが1個増え3個存在し、給液配管も3つに分岐し3個の分岐管路が存在する。その他の構成は図1に示したものと同一である。
図2に示す実施形態においては、給液配管SP1は下流端ですなわち混合タンクの直上流で第1分岐管BP11と第2分岐管BP21と第3分岐管BP31とに分岐しており、第1液体は第1分岐管BP11を介して第1混合タンクMT1に供給されるとともに第2分岐管BP21を介して第2混合タンクMT2に供給され、第3分岐管BP31を介して第3混合タンクMT3に供給されるようになっている。第1分岐管BP11には流量計FM11と開閉弁AV1が設置されており、第2分岐管BP21には流量計FM21と開閉弁AV2が設置されており、第3分岐管BP31には流量計FM31と開閉弁AV3が設置されている。
FIG. 2 is a schematic view showing another configuration example of a beverage production plant provided with the liquid mixing apparatus of the present invention. In the present embodiment shown in FIG. 2, the number of mixing tanks increases by one as compared with the embodiment shown in FIG. 1, there are three, the liquid supply pipe branches into three, and there are three branch pipes. Other configurations are the same as those shown in FIG.
In the embodiment shown in FIG. 2, the liquid supply pipe SP1 is branched into the first branch pipe BP11, the second branch pipe BP21, and the third branch pipe BP31 at the downstream end, that is, immediately upstream of the mixing tank. The liquid is supplied to the first mixing tank MT1 through the first branch pipe BP11, is supplied to the second mixing tank MT2 through the second branch pipe BP21, and is supplied to the third mixing tank MT3 through the third branch pipe BP31. To be supplied. The first branch pipe BP11 is provided with a flow meter FM11 and an on-off valve AV1, the second branch pipe BP21 is provided with a flow meter FM21 and an on-off valve AV2, and the third branch pipe BP31 is provided with a flow meter FM31. And an on-off valve AV3.

給液配管SP2は下流端ですなわち混合タンクの直上流で第1分岐管BP12と第2分岐管BP22と第3分岐管BP32とに分岐しており、第2液体は第1分岐管BP12を介して第1混合タンクMT1に供給されるとともに第2分岐管BP22を介して第2混合タンクMT2に供給され、第3分岐管BP32を介して第3混合タンクMT3に供給されるようになっている。第1分岐管BP12には流量計FM12と流量制御弁CV1が設置されており、第2分岐管BP22には流量計FM22と流量制御弁CV2が設置されており、第3分岐管BP32には流量計FM32と流量制御弁CV3が設置されている。   The liquid supply pipe SP2 branches into the first branch pipe BP12, the second branch pipe BP22, and the third branch pipe BP32 at the downstream end, that is, immediately upstream of the mixing tank, and the second liquid passes through the first branch pipe BP12. To the first mixing tank MT1, to the second mixing tank MT2 via the second branch pipe BP22, and to the third mixing tank MT3 via the third branch pipe BP32. . The first branch pipe BP12 is provided with a flow meter FM12 and a flow control valve CV1, the second branch pipe BP22 is provided with a flow meter FM22 and a flow control valve CV2, and the third branch pipe BP32 is provided with a flow rate. A meter FM32 and a flow control valve CV3 are installed.

図2に示す飲料製造プラントにおける液体混合装置の動作は、図1における動作と同様である。
図3は、本発明の液体混合装置を備えた飲料製造プラントの別の構成例を示す概略図である。図3に示す実施形態においては、図1に示す実施形態と比較して、第2液体供給系が1個増え、第2液体A供給系と第2液体B供給系が存在する。すなわち3つの液体供給源を有している。その他の構成は図1に示したものと同一である。
図3に示す実施形態においては、第1液体と2種類の第2液体(第2液体Aと第2液体B)の合計3種類の液体を、各混合タンクMT1,MT2に所望の混合比率で混合することができる。この場合、第1液体を基準として、第2液体Aを所定の比率で混合し、第2液体Bを所定の比率で混合する。例えば、第1液体に対して、第2液体Aを5%の比率で、第2液体Bを3%の比率で混合する。
図3に示す飲料製造プラントにおける液体混合装置の動作は、図1に示す装置の動作と同様である。すなわち、図1の実施形態における「第2液体」の供給方法、流量測定、理論流量値算出、不足量算出、必要量算出、液体混合等は、図3の実施形態においては「第2液体A及び第2液体B」の供給方法、流量測定、理論流量値算出、不足量算出、必要量算出、液体混合等となる。したがって、第1液体を基準として、第2液体Aが所望の必要量混合されるように制御されるとともに、第2液体Bが所望の必要量混合されるように制御されることになる。
図1及び図3には2個の混合タンクを用いる場合を示し、図2には3個の混合タンクを用いる場合を示したが、4個以上の混合タンクを用いてもよい。その場合には、各混合タンクの直上流で給液配管を混合タンクの数に合わせて複数に分岐させ、複数の分岐管路を各混合タンクに各々接続する。
The operation of the liquid mixing apparatus in the beverage production plant shown in FIG. 2 is the same as the operation in FIG.
FIG. 3 is a schematic view showing another configuration example of a beverage production plant provided with the liquid mixing apparatus of the present invention. In the embodiment shown in FIG. 3, the second liquid supply system is increased by one as compared with the embodiment shown in FIG. 1, and there is a second liquid A supply system and a second liquid B supply system. That is, it has three liquid supply sources. Other configurations are the same as those shown in FIG.
In the embodiment shown in FIG. 3, a total of three types of liquids, ie, a first liquid and two types of second liquids (second liquid A and second liquid B), are mixed in each mixing tank MT1, MT2 at a desired mixing ratio. Can be mixed. In this case, based on the first liquid, the second liquid A is mixed at a predetermined ratio, and the second liquid B is mixed at a predetermined ratio. For example, the second liquid A is mixed at a ratio of 5% and the second liquid B is mixed at a ratio of 3% with respect to the first liquid.
The operation of the liquid mixing apparatus in the beverage production plant shown in FIG. 3 is the same as the operation of the apparatus shown in FIG. That is, the supply method, flow rate measurement, theoretical flow rate value calculation, deficient amount calculation, required amount calculation, liquid mixing, and the like in the embodiment of FIG. 1 are the same as the “second liquid A” in the embodiment of FIG. And second liquid B ”supply method, flow rate measurement, theoretical flow rate value calculation, deficient amount calculation, required amount calculation, liquid mixing, and the like. Therefore, the second liquid A is controlled to be mixed in a desired required amount with the first liquid as a reference, and the second liquid B is controlled to be mixed in a desired required amount.
1 and 3 show a case where two mixing tanks are used, and FIG. 2 shows a case where three mixing tanks are used, but four or more mixing tanks may be used. In that case, the supply pipes are branched into a plurality of pipes according to the number of the mixing tanks immediately upstream of each mixing tank, and a plurality of branch pipes are connected to each mixing tank.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

5 攪拌機
10 制御装置
AV1,AV2,AV3 開閉弁
BP11,BP12,BP21,BP22,BP31,BP32,BP12A,BP22A,BP12B,BP22B 分岐管
CV1,CV2,CV3,CV1A,CV2A,CV1B,CV2B 流量制御弁
FM11,FM12,FM21,FM22,FM31,FM32,FM12A,FM22A,FM12B,FM22B 流量計
LM1,LM2 レベル計
MT1,MT2,MT3 混合タンク
P1,P2,P2A,P2B 送液ポンプ
SP1,SP2,SP2A,SP2B 給液配管
SV1,SV2,SV2A,SV2B 給液バルブ
T1,T2,T2A,T2B 貯留タンク
5 Stirrer 10 Controller AV1, AV2, AV3 On-off valve BP11, BP12, BP21, BP22, BP31, BP32, BP12A, BP22A, BP12B, BP22B Branch pipe CV1, CV2, CV3, CV1A, CV2A, CV1B, CV1F, valve control , FM12, FM21, FM22, FM31, FM32, FM12A, FM22A, FM12B, FM22B Flow meter LM1, LM2 Level meter MT1, MT2, MT3 Mixing tank P1, P2, P2A, P2B Feed pump SP1, SP2, SP2A, SP2B Liquid piping SV1, SV2, SV2A, SV2B Liquid supply valve T1, T2, T2A, T2B Storage tank

Claims (14)

第1液体を含む異なった種類の液体を供給する複数の液体供給源から複数の混合タンクの各々に複数種類の液体を供給してこれらの液体を所望の比率で混合する液体混合方法において、
複数の液体供給源にそれぞれ接続された給液配管を複数に分岐させ、複数の分岐管路を複数の混合タンクにそれぞれ接続して各混合タンクに第1液体と第1液体と混合すべき1又は2以上の混合用液体とからなる複数種類の液体を供給可能とし、
混合タンクに供給された第1液体の積算流量を測定し、この測定値から前記所望の比率にするために混合タンクに供給することが必要な液体の積算流量を算出して混合用液体の理論上の必要量を求め、
混合タンクに供給された混合用液体の積算流量を測定し、この測定値と前記混合用液体の理論上の必要量とから混合用液体の不足量を算出し、
前記混合用液体の積算流量の測定値が前記混合用液体の理論上の必要量に対して不足量が生じた場合には、予め求めておいた混合用液体の不足量に対する流量制御弁の弁開度に基づいて流量制御弁の弁開度を制御して混合用液体を混合タンクに供給し、前記混合用液体の測定値が前記混合用液体の理論上の必要量以上であれば前記流量制御弁を全閉にすることを特徴とする液体混合方法。
In a liquid mixing method of supplying a plurality of types of liquids to a plurality of mixing tanks from a plurality of liquid supply sources that supply different types of liquids including a first liquid, and mixing these liquids in a desired ratio,
A liquid supply pipe connected to each of a plurality of liquid supply sources is branched into a plurality of parts, and a plurality of branch pipes are connected to a plurality of mixing tanks, respectively, so that the first liquid and the first liquid are mixed in each mixing tank. Alternatively, it is possible to supply a plurality of types of liquids composed of two or more mixing liquids,
The integrated flow rate of the first liquid supplied to the mixing tank is measured, and the integrated flow rate of the liquid that needs to be supplied to the mixing tank in order to obtain the desired ratio is calculated from this measured value to calculate the mixing liquid theory. Find the required amount above,
Measure the integrated flow rate of the mixing liquid supplied to the mixing tank, calculate the shortage amount of the mixing liquid from this measured value and the theoretical required amount of the mixing liquid,
When the measured value of the integrated flow rate of the mixing liquid is insufficient with respect to the theoretical required amount of the mixing liquid, the valve of the flow control valve for the previously determined insufficient amount of mixing liquid If the measured value of the mixing liquid is greater than the theoretical required amount of the mixing liquid, the flow rate is controlled by controlling the valve opening of the flow control valve based on the opening and supplying the mixing liquid to the mixing tank. A liquid mixing method, wherein the control valve is fully closed.
前記第1液体は粘性の低い液体からなり、前記混合用液体は粘性の高い液体からなることを特徴とする請求項1記載の液体混合方法。   The liquid mixing method according to claim 1, wherein the first liquid is made of a liquid having low viscosity, and the liquid for mixing is made of liquid having high viscosity. 前記複数の液体供給源は、異なった種類の液体をそれぞれ貯留した複数の貯留タンクからなることを特徴とする請求項1又は2記載の液体混合方法。   The liquid mixing method according to claim 1, wherein the plurality of liquid supply sources include a plurality of storage tanks that store different types of liquids. 前記複数の混合タンクは、2又は3の混合タンクからなることを特徴とする請求項1乃至3のいずれか1項記載の液体混合方法。   The liquid mixing method according to claim 1, wherein the plurality of mixing tanks include two or three mixing tanks. 前記第1液体を流す分岐管路には、流量計と開閉弁が設置されていることを特徴とする請求項1乃至4のいずれか1項記載の液体混合方法。   The liquid mixing method according to any one of claims 1 to 4, wherein a flow meter and an on-off valve are installed in the branch pipe for flowing the first liquid. 前記混合用液体を流す分岐管路には、前記流量制御弁と流量計が設置されていることを特徴とする請求項1乃至4のいずれか1項記載の液体混合方法。   5. The liquid mixing method according to claim 1, wherein the flow rate control valve and a flow meter are installed in a branch pipe for flowing the mixing liquid. 前記給液配管は、前記複数の混合タンクの直上流で複数に分岐していることを特徴とする請求項1乃至6のいずれか1項記載の液体混合方法。   The liquid mixing method according to claim 1, wherein the liquid supply pipe is branched into a plurality of portions immediately upstream of the plurality of mixing tanks. 前記給液配管にポンプを設け、インバータ制御により該ポンプの回転数を制御することを特徴とする請求項1乃至7のいずれか1項記載の液体混合方法。   The liquid mixing method according to claim 1, wherein a pump is provided in the liquid supply pipe, and the rotation speed of the pump is controlled by inverter control. 第1液体を含む異なった種類の液体を供給する複数の液体供給源から複数の混合タンクの各々に複数種類の液体を供給してこれらの液体を所望の比率で混合する液体混合装置において、
複数の液体供給源にそれぞれ接続された給液配管を複数に分岐させ、複数の分岐管路を複数の混合タンクにそれぞれ接続して、各混合タンクに第1液体と第1液体と混合すべき1又は2以上の混合用液体とからなる複数種類の液体を供給可能とし、
第1液体を流す分岐管路に設けられた流量計により測定された第1液体の積算流量に基づいて、混合用液体を流す分岐管路に設けられた流量制御弁の弁開度を制御して混合用液体の流量を制御する制御装置を設け、
前記制御装置は、
混合タンクに供給された第1液体の積算流量の測定値から前記所望の比率にするために混合タンクに供給することが必要な液体の積算流量を算出して前記混合用液体の理論上の必要量を求め、
混合タンクに供給された混合用液体の積算流量の測定値と前記混合用液体の理論上の必要量とから混合用液体の不足量を算出し、
前記混合用液体の積算流量の測定値が前記混合用液体の理論上の必要量に対して不足する場合には、予め求めておいた混合用液体の不足量に対する流量制御弁の弁開度に基づいて流量制御弁の弁開度を制御して混合用液体を混合タンクに供給し、前記混合用液体の測定値が前記混合用液体の理論上の必要量以上であれば前記流量制御弁を全閉にするようにしたことを特徴とする液体混合装置。
In a liquid mixing apparatus that supplies a plurality of types of liquid to each of a plurality of mixing tanks from a plurality of liquid supply sources that supply different types of liquid including the first liquid, and mixes these liquids in a desired ratio.
A plurality of liquid supply pipes respectively connected to a plurality of liquid supply sources should be branched into a plurality of parts, a plurality of branch pipes should be connected to a plurality of mixing tanks, respectively, and the first liquid and the first liquid should be mixed in each mixing tank It is possible to supply a plurality of types of liquids composed of one or more mixing liquids,
Based on the integrated flow rate of the first liquid measured by the flow meter provided in the branch line through which the first liquid flows, the valve opening degree of the flow control valve provided in the branch line through which the mixing liquid flows is controlled. A control device for controlling the flow rate of the liquid for mixing,
The controller is
Calculate the integrated flow rate of the liquid that needs to be supplied to the mixing tank in order to obtain the desired ratio from the measured value of the integrated flow rate of the first liquid supplied to the mixing tank, and the theoretical necessity of the mixing liquid Find the quantity
Calculate the shortage amount of the mixing liquid from the measured value of the integrated flow rate of the mixing liquid supplied to the mixing tank and the theoretical required amount of the mixing liquid,
When the measured value of the integrated flow rate of the mixing liquid is insufficient with respect to the theoretical required amount of the mixing liquid, the valve opening degree of the flow control valve for the insufficient amount of the mixing liquid obtained in advance is set. Based on this, the opening degree of the flow control valve is controlled to supply the mixing liquid to the mixing tank, and if the measured value of the mixing liquid is greater than the theoretical required amount of the mixing liquid, the flow control valve is A liquid mixing apparatus characterized by being fully closed.
前記第1液体は粘性の低い液体からなり、前記混合用液体は粘性の高い液体からなることを特徴とする請求項9記載の液体混合装置。   The liquid mixing apparatus according to claim 9, wherein the first liquid is made of a liquid having a low viscosity, and the liquid for mixing is made of a liquid having a high viscosity. 前記複数の液体供給源は、異なった種類の液体を貯留した複数の貯留タンクからなることを特徴とする請求項9又は10記載の液体混合装置。   The liquid mixing apparatus according to claim 9 or 10, wherein the plurality of liquid supply sources include a plurality of storage tanks storing different types of liquids. 前記複数の混合タンクは、2又は3の混合タンクからなることを特徴とする請求項9乃至11のいずれか1項記載の液体混合装置。   The liquid mixing apparatus according to claim 9, wherein the plurality of mixing tanks include two or three mixing tanks. 前記給液配管は、前記複数の混合タンクの直上流で複数に分岐していることを特徴とする請求項9乃至12のいずれか1項記載の液体混合装置。   13. The liquid mixing apparatus according to claim 9, wherein the liquid supply pipe is branched into a plurality of portions immediately upstream of the plurality of mixing tanks. 前記給液配管にポンプを設け、インバータ制御により該ポンプの回転数を制御することを特徴とする請求項9乃至13のいずれか1項記載の液体混合装置。   The liquid mixing apparatus according to any one of claims 9 to 13, wherein a pump is provided in the liquid supply pipe, and the rotation speed of the pump is controlled by inverter control.
JP2009286200A 2009-12-17 2009-12-17 Liquid mixing method and apparatus Expired - Fee Related JP5606055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286200A JP5606055B2 (en) 2009-12-17 2009-12-17 Liquid mixing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286200A JP5606055B2 (en) 2009-12-17 2009-12-17 Liquid mixing method and apparatus

Publications (2)

Publication Number Publication Date
JP2011126565A true JP2011126565A (en) 2011-06-30
JP5606055B2 JP5606055B2 (en) 2014-10-15

Family

ID=44289618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286200A Expired - Fee Related JP5606055B2 (en) 2009-12-17 2009-12-17 Liquid mixing method and apparatus

Country Status (1)

Country Link
JP (1) JP5606055B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118904A (en) * 2018-01-11 2019-07-22 三菱重工機械システム株式会社 Batch type mixing device and batch type mixing method
WO2023190411A1 (en) * 2022-03-28 2023-10-05 大日本印刷株式会社 Content filling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623500A (en) * 1979-08-01 1981-03-05 Hitachi Ltd Chemical injection device with automatic concentration correction
JPS61156697U (en) * 1985-03-20 1986-09-29
JP2003175997A (en) * 2001-12-12 2003-06-24 Seiko Corp Liquid filling apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623500A (en) * 1979-08-01 1981-03-05 Hitachi Ltd Chemical injection device with automatic concentration correction
JPS61156697U (en) * 1985-03-20 1986-09-29
JP2003175997A (en) * 2001-12-12 2003-06-24 Seiko Corp Liquid filling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118904A (en) * 2018-01-11 2019-07-22 三菱重工機械システム株式会社 Batch type mixing device and batch type mixing method
WO2023190411A1 (en) * 2022-03-28 2023-10-05 大日本印刷株式会社 Content filling system
JP7460023B2 (en) 2022-03-28 2024-04-02 大日本印刷株式会社 Content filling system

Also Published As

Publication number Publication date
JP5606055B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5068756B2 (en) Control system for combining materials
JP7429699B2 (en) Calibration method for liquid flow meters
US5246026A (en) Fluid measuring, dilution and delivery system
AU657446B2 (en) Apparatus for mixing and dispensing chemical concentrates
CA2620331C (en) Control system for and method of combining materials
US6220747B1 (en) Proportional pump system for viscous fluids
US20100031825A1 (en) Blending System
JP2019509224A5 (en)
CN108607462B (en) Liquid mixing device and liquid flow control method
JP2020521243A (en) A production system for producing a blend
TW202138128A (en) On-demand in-line-blending and supply of chemicals
CN102103005A (en) Method and device for calibrating measuring precision of essence/spice adding system
SE467647B (en) APPLICATION FOR THE PREPARATION OF LIQUID GLUE COMPOSITIONS
CN107029622A (en) Urethane raw high-precision measuring mixing equipment
JP2020521240A (en) A production system for producing a blend
JP5606055B2 (en) Liquid mixing method and apparatus
CN209917799U (en) Many liquid of many functional types add system
CN108887730B (en) Secondary feeding and water supplementing control system for tobacco shredding and control method thereof
US8029625B2 (en) Method and device for the simultaneous cleaning of a plurality of pipe conduits or pipe conduit systems
FI105659B (en) Apparatus for cleaning one or more parts of a food processing plant
RU2682063C1 (en) Method for control of metrological characteristics of fixed or mobile metering installations and calibration unit for its implementation
CN216149464U (en) Emulsion mixing system
CN202087289U (en) Multi-path liquid mixing system and liquid on-line mixing system
CN103055735B (en) Mixer for drinks containing pulp and fibre
CN110560335A (en) Online mixing and feeding system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees