WO2023190157A1 - 高周波システム - Google Patents

高周波システム Download PDF

Info

Publication number
WO2023190157A1
WO2023190157A1 PCT/JP2023/011816 JP2023011816W WO2023190157A1 WO 2023190157 A1 WO2023190157 A1 WO 2023190157A1 JP 2023011816 W JP2023011816 W JP 2023011816W WO 2023190157 A1 WO2023190157 A1 WO 2023190157A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
frequency
waves
electromagnetic wave
wave
Prior art date
Application number
PCT/JP2023/011816
Other languages
English (en)
French (fr)
Inventor
加茂宏幸
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023190157A1 publication Critical patent/WO2023190157A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/22Reflecting surfaces; Equivalent structures functioning also as polarisation filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • the present invention relates to a high frequency system.
  • Patent Documents 1 and 2 As a high-frequency system using high-frequency waves such as millimeter waves, a high-frequency system that detects a dangerous object held by a person or a fall of a person at a short distance is known (for example, Patent Documents 1 and 2).
  • Patent Document 3 In order to suppress the reflection of millimeter waves, it is known to provide a radio wave absorber on the floor or the like (for example, Patent Document 3).
  • Patent Documents 4 and 5 vertically polarized electromagnetic waves incident at the Brewster angle are reflected less than horizontally polarized electromagnetic waves.
  • Patent Document 6 It is known to use a laminated film to prevent reflection of radio waves
  • a transmitting antenna irradiates a target object with high-frequency electromagnetic waves, and a receiving antenna receives the electromagnetic waves reflected by the target object.
  • the transmission waves radiated from the transmitting antenna take two routes to reach the target object: a direct route to reach the target object, and an indirect route to reach the target object by reflecting off the floor, ceiling, etc.
  • a direct wave propagated through a direct path and an indirect wave propagated through an indirect path are combined.
  • a direct wave propagated through a direct path and an indirect wave propagated through an indirect path are combined. In this way, due to the two-time combination, the received power periodically fluctuates depending on the phase and amplitude (spatial attenuation and loss upon reflection) of the electromagnetic waves propagating on each path.
  • the present invention was made in view of the above problems, and aims to suppress the influence of indirect waves.
  • the present invention provides an antenna for transmitting high-frequency electromagnetic waves vertically polarized with respect to a floor to a target object and receiving the electromagnetic waves reflected at the target object, and an antenna for transmitting the electromagnetic waves between the antenna and the target object.
  • a first dielectric layer provided on the uppermost layer of the floor in a region including a location where the electromagnetic waves are reflected in the path of the first dielectric layer, and having a relative dielectric constant of 2 or more and 6 or less at the frequency of the electromagnetic waves;
  • the electromagnetic waves propagating through the dielectric layer are reflected under the first dielectric layer, and the electromagnetic waves propagating through the dielectric layer are reflected under the first dielectric layer, and the electromagnetic wave propagates between the antenna and the object at the point in a direction parallel to a plane including the top surface of the first dielectric layer. It is a high frequency system with a distance of less than 10 meters.
  • the electromagnetic wave may be a millimeter wave.
  • the incident angle at which the electromagnetic wave is incident on the first dielectric layer at the location may be 30° or more and 70° or less.
  • the distance between the antenna and a plane including the upper surface of the first dielectric layer at the location is h1
  • the distance between the plane and the object is h2
  • the distance between the antenna and the object is h1
  • the distance between the plane and the object is h2.
  • the thickness of the first dielectric layer is T1 [mm]
  • the relative dielectric constant of the first dielectric layer at the frequency of the electromagnetic wave is ⁇ r
  • the dielectric constant of the first dielectric layer at the frequency of the electromagnetic wave is T1 [mm].
  • the frequency of the electromagnetic wave may be greater than or equal to 60 GHz and less than or equal to 90 GHz.
  • the thickness of the first dielectric layer is T1 [mm]
  • the relative dielectric constant of the first dielectric layer at the frequency of the electromagnetic wave is ⁇ r
  • the dielectric constant of the first dielectric layer at the frequency of the electromagnetic wave is T1 [mm].
  • the frequency of the electromagnetic wave is f [Hz]
  • the speed of light in vacuum is c [mm/s]
  • 0.087 ⁇ T1 ⁇ r ⁇ tan ⁇ f/c and the frequency of the electromagnetic wave is can be configured to be 60 GHz or more and 90 GHz or less.
  • the electromagnetic wave propagating through the first dielectric layer is provided between a surface on which the electromagnetic wave propagating under the first dielectric layer is reflected and the first dielectric layer, and the electromagnetic wave at the frequency of the electromagnetic wave is
  • the structure may include a second dielectric layer having a dielectric constant at the frequency of the electromagnetic wave that is higher than the dielectric constant of the first dielectric layer.
  • the dielectric loss tangent of the second dielectric layer at the frequency of the electromagnetic wave may be larger than the dielectric loss tangent of the first dielectric layer at the frequency of the electromagnetic wave.
  • the target object may be a person or an object held by a person.
  • the influence of indirect waves can be suppressed.
  • FIG. 1 is a schematic diagram of a millimeter wave system according to a first embodiment.
  • FIG. 2 is a block diagram of the detector in the first embodiment.
  • FIG. 3 is a diagram showing a propagation model of the millimeter wave system in Example 1.
  • FIG. 4 is a diagram showing power loss versus distance R in Comparative Example 1.
  • 5(a) to 5(c) are enlarged cross-sectional views of the vicinity of the floor surface in Example 1.
  • FIG. FIG. 6 is a diagram showing reflection coefficients with respect to incident angles ⁇ i in vertically polarized waves TM and horizontally polarized waves TE.
  • FIG. 7 is a diagram showing power loss versus distance R in vertical polarization.
  • FIG. 8 is a diagram showing power loss versus distance R in horizontally polarized waves.
  • FIG. 9 is an enlarged sectional view of the vicinity of the floor surface in Example 2.
  • a high frequency system uses electromagnetic waves with a frequency of 300 MHz or higher, for example.
  • a millimeter wave system targeted at a person or an object held by a person will be described as a high frequency system.
  • Millimeter waves are radio waves with a frequency of 30 GHz or more and 300 GHz or less.
  • Millimeter wave systems for people or objects held by people are systems that non-contact detect dangerous objects held by pedestrians at airports, stations, etc., and systems that non-contact detect vital signals such as a person's heartbeat. , systems that detect falls and whether people are alive or dead, and systems that detect the flow of people.
  • the characteristics of such a millimeter wave system are that the distance between the antenna that transmits and receives millimeter waves and the target object is close, less than 10 meters, and the height of the target object is shorter than the height of a person.
  • FIG. 1 is a schematic diagram of a millimeter wave system according to Example 1.
  • a detector 10 is installed on a floor 20 with a support 18 interposed therebetween.
  • Detector 10 includes an antenna 12.
  • the upper surface of the floor 20 is a floor surface 21.
  • a gate 34 is provided on the floor 20.
  • Millimeter wave system 100 inspects pedestrians 32 passing through gate 34.
  • a pedestrian 32 is holding an object 30.
  • the target object 30 is, for example, a dangerous object held by a pedestrian 32.
  • the target object 30 is the chest of a pedestrian 32.
  • the gate 34 may not be provided.
  • a dielectric layer 22 is provided on the floor 20 between the antenna 12 and the object 30.
  • the antenna 12 irradiates the object 30 with millimeter waves.
  • the millimeter waves transmitted by the antenna 12 are vertically polarized with respect to the floor surface 21 .
  • Antenna 12 receives millimeter waves reflected from target object 30 .
  • the first path is a path 40 in which the signal is not reflected by the floor surface 21 and propagates directly between the antenna 12 and the object 30 .
  • the millimeter wave propagating through the path 40 is called a direct wave.
  • the second path is a path 42 that is reflected on the floor surface 21 and indirectly propagates between the antenna 12 and the object 30 .
  • the millimeter waves propagating through the path 42 are called indirect waves.
  • a portion 36 of the floor surface 21 where indirect waves are reflected is the upper surface of the dielectric layer 22 .
  • the millimeter wave system 100 is installed in a free space where there is almost no reflection from walls other than the floor surface (for example, a space where reflections from walls other than the floor surface can be ignored for system operation even if it is outdoors or indoors). ing.
  • FIG. 2 is a block diagram of the detector in Example 1.
  • the detector 10 includes one or more antennas 12a, 12b, a transmitting section 14, a receiving section 15, and a detecting section 16.
  • the transmitter 14 transmits millimeter waves 43 via the antenna 12a.
  • the receiving unit 15 receives the millimeter wave 44 via the antenna 12b.
  • the millimeter wave 43 is vertically polarized. If a plurality of antennas arranged perpendicularly to the floor surface 21 are used as the antenna 12b, vertically polarized millimeter waves 44 can be received.
  • the method for vertically polarizing the millimeter wave 43 may be other than the above method.
  • the detection unit 16 detects the target object 30 based on the transmitted millimeter waves 43 and the received millimeter waves 44. For example, the detection unit 16 detects whether or not the pedestrian 32 is holding a dangerous object, or detects the vital signals of the pedestrian 32 or the like.
  • a method for detecting the position and velocity of the object 30 a method such as an FM-CW (Frequency Modulated Continuous Wave) method, an FCM (Fast-Chirp Modulation) method, or a Doppler method is used.
  • FIG. 3 is a diagram showing a propagation model of the millimeter wave system 100 in the first embodiment.
  • the antenna 12 and the object 30 are provided above the floor surface 21.
  • R be the distance between the antenna 12 and the object 30 in a direction parallel to the floor surface 21.
  • the distance between the antenna 12 and the object 30 be r1 .
  • the height of the antenna 12 from the floor 21 is h1, and the height of the object 30 from the floor 21 is h2.
  • a path 40 directly connecting the antenna 12 and the object 30 is a path through which direct waves propagate.
  • a path 42 reflected on the floor surface 21 between the antenna 12 and the object 30 is a path along which indirect waves propagate.
  • the route between the antenna 12 and the location 36 is designated as 42a
  • the route between the object 30 and the location 36 is designated as 42b.
  • the angle ⁇ 1 between the path 42 a and the floor 21 is equal to the angle ⁇ 1 between the path 42 b and the floor 21 .
  • the incident angle ⁇ i of the path 42a (the angle between the normal to the floor surface 21 and the path 42a) and the incident angle ⁇ i of the path 42b are equal.
  • ⁇ i + ⁇ 1 90°.
  • the relationship between the incident angle ⁇ i , the heights h1 and h2, and the distance R is expressed by Equation 1.
  • h1 1 m
  • h2 1.17 m
  • R 3.6 m
  • the height h1 corresponds to the antenna 12 being installed at a height of 1 m
  • the horizontal distance R is assumed to be a general distance at which the antenna 12 is arranged.
  • ⁇ i 59°.
  • Equation 2 Reception of the received millimeter wave when the millimeter wave transmitted from the antenna 12 propagates along the path 40 and is reflected at the target object 30, and then propagates along the path 40 and is received at the antenna 12 (that is, in the case of a direct wave)
  • the electric power Pf ree is expressed as Equation 2.
  • Pt is the transmission power transmitted by the antenna 12
  • Gt is the gain of the transmitting antenna 12a
  • Gr is the gain of the receiving antenna 12b
  • the wavelength of the millimeter wave in vacuum
  • is the target object. This is the reflection cross section of millimeter waves at 30.
  • the received power of the millimeter wave to be received is the product of P free in Equation 2 and E r in Equation 3.
  • D T ( ⁇ 1 ) is the directivity of the antenna 12a
  • D R ( ⁇ 1 ) is the directivity of the antenna 12b
  • R 1 is the reflection coefficient of the floor 21
  • R 2 is the reflection coefficient of the object 30, and
  • is the phase coefficient
  • r 4 r 2 +r 3 .
  • Equation 2 power loss with respect to distance was calculated for the case of direct waves and the cases of both direct waves and indirect waves.
  • FIG. 4 is a diagram showing power loss versus distance R in Comparative Example 1.
  • the horizontal axis is the distance R in FIG. 3, which is varied from 1 m to 10 m.
  • the vertical axis is power loss, and the received power/transmitted power is expressed in dB.
  • the power loss of the direct wave is shown by a thick solid line, and the power loss of the direct wave + indirect wave is shown by the broken line.
  • the power loss monotonically decreases as the distance R increases.
  • the power loss varies greatly with respect to the distance R due to the phase difference between the direct wave and the indirect wave.
  • the distance R between the antenna 12 and the object 30 changes over time. Therefore, when affected by indirect waves, the received power is unstable.
  • the reception power becomes a blind spot (reception is no longer possible) at frequencies where the power of the direct wave and the indirect wave cancel each other out, and the reception level decreases.
  • the received power level etc. locally saturate at a frequency where the power of the direct wave and the indirect wave increase each other. Since the magnitude of received power varies depending on frequency or time, it becomes difficult to stably use the tracking function in a millimeter wave system and to estimate the received level. Due to the large spatial (element-by-element) or temporal variations in digital beamforming technology or MIMO (Multiple Input and Multiple Output) technology, the accuracy and azimuth resolution of azimuth measurements are reduced. These issues can be solved if the effects of indirect waves can be reduced.
  • FIGS. 5(a) to 5(c) are enlarged cross-sectional views of the vicinity of the floor surface in Example 1, and are enlarged views of the vicinity of the location 36 where millimeter waves are reflected on the floor surface 21.
  • a dielectric layer 22 having a thickness of T1 is provided on the reflective layer 24 on the floor 20 in a region including the location 36.
  • the interface between the reflective layer 24 and the dielectric layer 22 is a reflective surface 23.
  • the millimeter wave 45a propagating in space enters the floor surface 21 (the upper surface of the dielectric layer 22) from the air at an incident angle ⁇ i .
  • the millimeter wave 45a is refracted at the floor surface 21 and transmitted to the dielectric layer 22 at a transmission angle ⁇ t .
  • the millimeter wave 45b transmitted into the dielectric layer 22 is reflected at the reflective surface 23.
  • the reflected millimeter waves 45c are refracted at the floor surface 21 and emitted into the air as millimeter waves 45d.
  • the incident angle ⁇ i of the millimeter wave 45a and the output angle of the millimeter wave 45d are equal. If the millimeter waves 45b and 45c are attenuated within the dielectric layer 22, the power of the millimeter wave 45d emitted from the dielectric layer 22 becomes smaller than the power of the millimeter wave 45a.
  • the relative dielectric constant of the dielectric layer 22 is, for example, 2 to 6, and the dielectric loss tangent tan ⁇ is, for example, 0.01 or more.
  • the reflective layer 24 is, for example, a metal layer such as a metal panel made of aluminum, stainless steel, zinc, or the like.
  • the reflective layer 24 may be a layer made of a material that reflects millimeter waves, for example, a material with a high dielectric constant.
  • the dielectric layer 22 is provided on the ground or floor material 24a.
  • the floor material 24a is, for example, marble or hard glass.
  • a surface between the dielectric layer 22 and the ground or floor material 24a is a reflective surface 23.
  • the other configurations are the same as in FIG. 5(a).
  • the dielectric layer 22 may be embedded in the ground or in the floor material 24a.
  • the other configurations are the same as in FIG. 5(b).
  • the relative permittivity of the ground, marble, hard glass, etc. is sufficiently larger than the relative permittivity of the dielectric layer 22.
  • the floor 20 may include a ground or floor covering 24a and a dielectric layer 22.
  • the dielectric constant of the dielectric layer 22 is selected so that the incident angle ⁇ i of the millimeter wave 45a becomes the Brewster angle ⁇ B.
  • the real part of the complex refractive index of the dielectric layer 22 is sufficiently larger than the imaginary part. Therefore, the relationship between the Brewster angle ⁇ B and the relative permittivity ⁇ r of the dielectric layer 22 is expressed by Equation 4.
  • Equation 6 The propagation length L of the millimeter waves 45b and 45c propagating within the dielectric layer 22 is expressed by Equation 6.
  • h1 is the distance between the antenna 12 and a plane containing the floor 21 (i.e. the top surface of the dielectric layer 22) at the location 36
  • h2 is the distance between this plane and the object 30
  • the distance R is the distance between the antenna 12 and the object 30 in a direction parallel to this plane.
  • the dielectric layer 22 was made of polypene coacetal, and the reflection coefficient when air was incident on the dielectric layer 22 was calculated for the incident angle ⁇ i .
  • the reflection coefficients when the millimeter wave 45a is vertically polarized TM and horizontally polarized TE were calculated using Fresnel's equation.
  • FIG. 6 is a diagram showing reflection coefficients with respect to incident angles ⁇ i in vertically polarized waves TM and horizontally polarized waves TE.
  • the horizontal axis is the incident angle ⁇ i
  • the vertical axis is the reflection coefficient when light enters the dielectric layer 22 from air.
  • the reflection coefficient is approximately 0.25, and when the incident angle ⁇ i is 90°, the reflection coefficient is It is 1.
  • the reflection coefficient increases monotonically as the incident angle ⁇ i increases.
  • the reflection coefficient when the incident angle ⁇ i is 59° is approximately 0.48.
  • the reflection coefficient decreases as the incident angle ⁇ i increases, and when the incident angle ⁇ i is 59°, which is the Brewster angle ⁇ B , the reflection coefficient becomes 0.
  • the reflection coefficient increases. In this way, when the incident angle ⁇ i is the Brewster angle ⁇ B , the vertically polarized millimeter wave 45 a is hardly reflected at the floor surface 21 and is transmitted to the dielectric layer 22 .
  • the incident angle ⁇ i is between 30° and 70°.
  • Equation 7 the attenuation coefficient ⁇ [dB/mm] of a high frequency signal in the dielectric layer is 27.3 ⁇ r ⁇ tan ⁇ / ⁇ [dB/mm].
  • is the wavelength [mm] of a millimeter wave in vacuum.
  • Equation 7 for polypene coacetal whose dielectric constant is 2.8 and tan ⁇ is 0.02, the attenuation coefficient ⁇ at 79 GHz is 0.24 dB/mm.
  • the incident angle ⁇ i is 59°, which is the Brewster's angle ⁇ B
  • the transmission angle ⁇ t is 31° from equation 5.
  • the propagation length L of the millimeter waves 45b and 45c is about 70 mm according to equation 6.
  • Attenuation L ⁇ of millimeter waves within the dielectric layer 22 is approximately 17 dB.
  • the power loss with respect to the distance R of vertically polarized waves and horizontally polarized waves under this condition was calculated and shown in FIGS. 7 and 8.
  • FIG. 7 is a diagram showing power loss versus distance R in vertical polarization.
  • the power loss of the direct wave is shown by a thick solid line, and the power loss of the direct wave + indirect wave is shown by the broken line.
  • the fluctuations in the direct wave+indirect wave are smaller than in the comparative example shown in FIG.
  • R B 3.6 m
  • the influence of indirect waves almost disappears. This is because when the incident angle ⁇ i is the Brewster angle ⁇ B , the millimeter wave 45 a is not reflected on the upper surface of the dielectric layer 22 and enters the dielectric layer 22 .
  • FIG. 8 is a diagram showing power loss versus distance R in horizontally polarized waves.
  • the power loss of the direct wave is shown by a thick solid line, and the power loss of the direct wave + indirect wave is shown by the broken line.
  • the variation of the direct wave+indirect wave is smaller than that of the comparative example in FIG. 4, but larger than that of the vertically polarized wave in FIG. In this way, horizontally polarized waves cannot suppress the influence of indirect waves.
  • the antenna 12 transmits millimeter waves vertically polarized with respect to the floor 20 to the object 30 and receives millimeter waves reflected at the object 30.
  • the dielectric layer 22 (first dielectric layer) is provided on the uppermost layer of the floor 20 in a region including the location 36 where millimeter waves are reflected in the indirect wave path 42 . Since the millimeter wave 45a is vertically polarized, it is hardly reflected on the upper surface of the dielectric layer 22 and enters the dielectric layer 22.
  • the reflective surface 23 is provided under the dielectric layer 22 and reflects the millimeter waves 45b propagating through the dielectric layer 22. That is, the millimeter wave 45b propagating through the dielectric layer 22 is reflected below the dielectric layer 22.
  • the millimeter waves 45b incident on the dielectric layer 22 and the millimeter waves 45c reflected on the reflective surface 23 are attenuated in the dielectric layer 22 and emitted from the dielectric layer 22. Ru. Therefore, the influence of indirect waves can be further suppressed.
  • the vertical electric field component is preferably 1.5 times or more, more preferably 2 times or more, and even more preferably 2.5 times or more as large as the horizontal electric field component.
  • Table 1 is a diagram showing the relative dielectric constant ⁇ r, Brewster angle ⁇ B , propagation length L, and material.
  • the relative permittivity ⁇ r is the relative permittivity of the dielectric layer 22.
  • the Brewster angle ⁇ B is the Brewster angle ⁇ B at the interface between the air and the dielectric layer 22 (floor surface 21 ).
  • the propagation length L is the propagation length L of the millimeter waves 45b and 45c when the incident angle ⁇ i of the millimeter wave 45a is the Brewster angle ⁇ B and the thickness T1 of the dielectric layer 22 is 30 mm. It is the length.
  • the material is an example of a material having a dielectric constant ⁇ r at 79 GHz.
  • the Brewster angle ⁇ B is preferably 55° to 68°. By setting the Brewster angle ⁇ B to 55° or more, the distance R can be increased and the range in which the object 30 can be detected can be expanded. By setting the Brewster angle ⁇ B to 68° or less, the distance R can be shortened and detection accuracy can be improved.
  • the relative dielectric constant ⁇ r of the dielectric layer 22 at the millimeter wave frequency is preferably 2 or more and 6 or less.
  • the Brewster angle ⁇ B is more preferably 56° to 65° (at this time, the relative permittivity ⁇ r is 2.2 to 5), and even more preferably 57° to 63° (at this time, the relative permittivity is 2.4 ⁇ 4).
  • the distance R is preferably 1 m or more, more preferably 2 m or more.
  • the distance R is preferably 8 m or less, more preferably 6 m or less.
  • Examples of materials having a dielectric constant ⁇ r of 2 or more and 6 or less include wood, plasterboard, fibrous flooring materials such as nylon, and concrete boards. Glass and marble have too large a dielectric constant. The dielectric constant is too large even for ground and water. Any material having a dielectric constant ⁇ of 2 or more and 6 or less can be used as a flooring material.
  • a radio wave absorber is used as in Patent Document 3
  • the radio wave absorber is made of a soft material and is therefore not suitable as a floor material for pedestrians to walk on.
  • a triangular pyramid or mountain-shaped three-dimensional structure is used as a radio wave absorber, it is also not suitable for flooring.
  • the angle of incidence ⁇ i on the dielectric layer 22 will be considered.
  • the incident angle ⁇ i at which the millimeter wave enters the dielectric layer 22 at the location 36 is 30° or more and 70° or less.
  • the reflection coefficient of the vertically polarized millimeter wave at the location 36 can be reduced. It can be reduced to 0.2 or less. Therefore, most of the millimeter waves enter the dielectric layer 22 and are attenuated in the dielectric layer 22. Therefore, the influence of indirect waves can be suppressed.
  • the dielectric constant of the dielectric layer 22 is in the range of 2 to 6
  • the Brewster angle ⁇ B is 55° to 68°, and almost similarly to FIG .
  • the incident angle ⁇ i of the vertically polarized millimeter wave at the location 36 is preferably 40° or more, more preferably 50° or more.
  • the incident angle ⁇ i is more preferably 65° or less.
  • h1+h2 is about 1 m to 3 m.
  • the thickness T1 and dielectric loss tangent tan ⁇ of the dielectric layer 22 will be considered.
  • the thickness T1 and dielectric loss tangent tan ⁇ of the dielectric layer 22 are set so that millimeter waves that have passed through the propagation length L are attenuated sufficiently.
  • the attenuation of a millimeter wave that has passed through the propagation length L is L ⁇ .
  • the attenuation L ⁇ in the dielectric layer 22 is 5 dB or more
  • the power of the millimeter wave 45d reflected on the floor surface 21 is attenuated by about 70% compared to the millimeter wave 45a. Therefore, the received power does not become a blind spot at a frequency where the power of the direct wave and the indirect wave cancel each other out.
  • L ⁇ is 10 dB or more
  • the power of the millimeter wave 45d is attenuated by about 90% compared to the millimeter wave 45a. Therefore, it is possible to eliminate the low reception power level at frequencies where the power of direct waves and indirect waves cancel each other out, and to prevent the reception power level etc. from becoming locally saturated at frequencies where the power of direct waves and indirect waves increases each other. It disappears.
  • L ⁇ is 15 dB or more
  • the power of the millimeter wave 45d is attenuated by about 97% compared to the millimeter wave 45a. Therefore, the influence of indirect waves on the received power level can be almost ignored.
  • the thickness T1 of the dielectric layer 22 is preferably 5 mm or more, more preferably 10 mm or more. If the thickness T1 of the dielectric layer 22 is too thick, it will be difficult to use it as a flooring material. From this viewpoint, the thickness T1 is preferably 100 mm or less, more preferably 50 mm or less.
  • the dielectric loss tangent tan ⁇ of the dielectric layer 22 at the millimeter wave frequency f is preferably 0.005 or more, and more preferably 0.01 or more.
  • the dielectric loss tangent tan ⁇ of the dielectric layer 22 at the millimeter wave frequency f is 0.1 or less, and 0.05 or less.
  • the frequency of millimeter waves is 30 GHz or more and 300 GHz or less, but the above model is a millimeter wave with a frequency of 79 GHz. Therefore, in order to generalize the above model, the frequency of millimeter waves is preferably 50 GHz or more and 100 GHz or less, more preferably 60 GHz or more and 90 GHz or less.
  • the millimeter wave frequency, etc. By limiting the thickness T1 of the dielectric layer 22, the tan ⁇ of the dielectric layer 22, the millimeter wave frequency, etc. as described above, when the millimeter wave attenuation L ⁇ by the dielectric layer 22 becomes 5 dB or more, the above-mentioned It is possible to eliminate blind spots at frequencies where the power of direct waves and indirect waves cancel each other out. Additionally, when the millimeter wave attenuation L ⁇ becomes 10 dB or more, the low receiving power level is eliminated at frequencies where the power of direct waves and indirect waves cancel each other out, and at frequencies where the powers of direct waves and indirect waves increase each other. Local saturation of the received power level etc. can be suppressed. This makes it possible to stably use the reception level tracking function in the millimeter wave system.
  • the millimeter wave attenuation L ⁇ is 15 dB or more, the influence of indirect waves on the received power level can be almost ignored. For this reason, a prediction of the attenuation value can be made. Further, when an array antenna is used as a receiving antenna, there is no difference in received power level between antennas.
  • the millimeter wave system 100 that targets a person or an object held by a person has been described as an example of the millimeter wave system, the millimeter wave system may be any system as long as it detects an object at a relatively short distance. If the object 30 is a person or something held by a person, h1+h2 is 1 m to 3 m, and the model of Example 1 can be applied. Further, when the location 36 is located in a passageway through which people pass, it is difficult to provide a soft radio wave absorber and a radio wave absorber having a triangular pyramid or mountain-shaped three-dimensional structure on the floor. Therefore, it is preferable to provide the dielectric layer 22.
  • FIG. 9 is an enlarged sectional view of the vicinity of the floor surface in Example 2.
  • the floor 20 is provided with a dielectric layer 26 having a thickness of T2 on the reflective layer 24, and a dielectric layer 26 with a thickness of T1 on the dielectric layer 26. 22 are provided.
  • the interface between the reflective layer 24 and the dielectric layer 26 is a reflective surface 23.
  • the interface between the dielectric layers 22 and 26 is an interface 25.
  • the dielectric constant and refractive index of the dielectric layer 26 are larger than those of the dielectric layer 26, respectively.
  • the millimeter wave 45a propagating in space enters the floor surface 21 from the air at an incident angle ⁇ i .
  • the millimeter wave 45a is refracted at the floor surface 21 and transmitted to the dielectric layer 22 at a transmission angle ⁇ t .
  • the millimeter wave 45b transmitted into the dielectric layer 22 is refracted at the interface 25 and transmitted to the dielectric layer 26 at a transmission angle ⁇ t2 .
  • ⁇ t can be brought close to the Brewster angle at the interface 25.
  • ⁇ t becomes approximately the Brewster angle at the interface 25.
  • reflection of the millimeter wave 45b at the interface 25 can be reduced.
  • the transmission angle ⁇ t2 becomes smaller than the transmission angle ⁇ t .
  • the millimeter wave 45e transmitted through the dielectric layer 26 is reflected at the reflective surface 23.
  • the millimeter wave 45f reflected at the reflective surface 23 is refracted at the interface 25 and transmitted to the dielectric layer 22.
  • the millimeter waves 45c incident on the dielectric layer 22 are refracted at the floor surface 21 and emitted to the air as millimeter waves 45d.
  • the dielectric layer 22 was made of polypene coacetal with a dielectric constant of 2.8 and tan ⁇ of 0.02, as in Example 1, and the dielectric layer 26 was made of polypene coacetal with a dielectric constant of 5.5 and tan ⁇ of 0.
  • the attenuation coefficient ⁇ of millimeter waves 45e and 45f with a frequency of 79 GHz is 0.7 dB/mm. Therefore, even if the thickness T1+T2 is smaller than the thickness T1 of the first embodiment, it is possible to further increase the attenuation of millimeter waves.
  • the dielectric layer 26 (second dielectric layer) is provided between the dielectric layer 22 and the reflective surface 23, and the dielectric constant of the dielectric layer 26 at the millimeter wave frequency is The dielectric constant is made larger than the dielectric constant of the dielectric layer 22. As a result, the millimeter waves 45e and 45f are attenuated also in the dielectric layer 22. Therefore, the influence of indirect waves can be further suppressed.
  • the relative permittivity of the dielectric layer 26 at millimeter wave frequencies is preferably 1.2 times or more, more preferably twice or more, the relative permittivity of the dielectric layer 22 at millimeter waves.
  • the dielectric constant of the dielectric layer 26 at the millimeter wave frequency is preferably 3 times or less, more preferably 2.5 times or less, the dielectric constant of the dielectric layer 22 at the millimeter wave.
  • the dielectric loss tangent of the dielectric layer 26 at the millimeter wave frequency is larger than the dielectric loss tangent of the dielectric layer 22 at the millimeter wave frequency. In this case, the attenuation of millimeter waves 45e and 45f in dielectric layer 22 can be increased. Therefore, the influence of indirect waves can be further suppressed.
  • the dielectric loss tangent of the dielectric layer 26 at the millimeter wave frequency is preferably 1.5 times or more, more preferably twice or more, the dielectric loss tangent of the dielectric layer 22 at the millimeter wave frequency.
  • millimeter waves were used as an example of high-frequency electromagnetic waves, but the high-frequency electromagnetic waves may be microwaves (frequency of 300 MHz to 30 GHz) or electromagnetic waves with a higher frequency than millimeter waves.
  • the frequency of high-frequency electromagnetic waves is 300 MHz to 1 THz.
  • some of the effects of Examples 1 and 2 may be obtained even under conditions outside the numerical ranges described in Examples 1 and 2. Examples 1 and 2 are found to be effective even in areas outside these numerical ranges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

高周波システムは、対象物に、床に対し垂直偏波された高周波の電磁波を送信し、前記対象物において反射された前記電磁波を受信するアンテナと、前記アンテナと前記対象物との間における前記電磁波の経路において前記電磁波が反射する箇所36、を含む領域における床の最上層に設けられ、前記電磁波の周波数における比誘電率が2以上かつ6以下の第1誘電体層22と、を備え、前記第1誘電体層を伝搬する前記電磁波は前記第1誘電体層の下において反射し、前記箇所における前記第1誘電体層の上面を含む平面に平行な方向における前記アンテナと前記対象物との間の距離は10m以下である。 

Description

高周波システム
 本発明は、高周波システムに関する。
 ミリ波等の高周波を用いた高周波システムとして、近距離において、人の保持する危険物や人の転倒を検出する高周波システムが知られている(例えば特許文献1、2)。ミリ波の反射を抑制するために、床などに電波吸収体を設けることが知られている(例えば、特許文献3)。ブリュースター角で入射した垂直偏波電磁波は水平偏波電磁波より反射が小さいことが知られている(例えば、特許文献4、5)。電波の反射防止に積層膜を用いることが知られている(例えば特許文献6)。
特開2018-146257号公報 特開2020-71226号公報 特開2003-156570号公報 特開2000-28714号公報 特開2020-128919号公報 特開2021-162483号公報
 高周波システムでは、送信アンテナから対象物に高周波の電磁波を照射し、対象物において反射された電磁波を受信アンテナで受信する。送信アンテナから放射された送信波が対象物に至る経路は、対象物に直接到達する直接経路と、床や天井などを反射して対象物に到達する間接経路がある。対象物では、直接経路を伝搬した直接波と、間接経路を伝搬した間接波と、が合成される。対象物において反射した反射波が受信アンテナに至る経路も直接経路と間接経路がある。受信アンテナでは、直接経路を伝搬した直接波と、間接経路を伝搬した間接波と、が合成される。このように、2回の合成により、受信電力はそれぞれの経路で伝搬する電磁波の位相と振幅(空間減衰と反射時の損失)により周期的に変動する。
 本発明は、上記課題に鑑みなされたものであり、間接波の影響を抑制することを目的とする。
 本発明は、対象物に、床に対し垂直偏波された高周波の電磁波を送信し、前記対象物において反射された前記電磁波を受信するアンテナと、前記アンテナと前記対象物との間における前記電磁波の経路において前記電磁波が反射する箇所、を含む領域における床の最上層に設けられ、前記電磁波の周波数における比誘電率が2以上かつ6以下の第1誘電体層と、を備え、前記第1誘電体層を伝搬する前記電磁波は前記第1誘電体層の下において反射し、前記箇所における前記第1誘電体層の上面を含む平面に平行な方向における前記アンテナと前記対象物との間の距離は10m以下である高周波システムである。
 上記構成において、前記電磁波はミリ波である構成とすることができる。
 上記構成において前記電磁波が前記箇所において前記第1誘電体層に入射する入射角は30°以上かつ70°以下である構成とすることができる。
 上記構成において、前記箇所における前記第1誘電体層の上面を含む平面と前記アンテナとの距離をh1、前記平面と前記対象物との距離をh2、前記アンテナと前記対象物との間の前記平面に平行な方向の距離をRとしたとき、0.35≦(h1+h2)/R≦1.73である構成とすることができる。
 上記構成において、前記第1誘電体層の厚さをT1[mm]、前記電磁波の周波数における前記第1誘電体層の比誘電率をεr、前記電磁波の周波数における前記第1誘電体層の誘電正接をtanδ、前記電磁波の周波数をf[Hz]、真空中の光速をc[mm/s]としたとき、0.087≦T1×√εr×tanδ×f/cである構成とすることができる。
 上記構成において、前記電磁波の周波数は60GHz以上かつ90GHz以下である構成とすることができる。
 上記構成において、前記第1誘電体層の厚さをT1[mm]、前記電磁波の周波数における前記第1誘電体層の比誘電率をεr、前記電磁波の周波数における前記第1誘電体層の誘電正接をtanδ、前記電磁波の周波数をf[Hz]、真空中の光速をc[mm/s]としたとき、0.087≦T1×√εr×tanδ×f/cであり、前記電磁波の周波数は60GHz以上かつ90GHz以下である構成とすることができる。
 上記構成において、前記第1誘電体層を伝搬する前記電磁波が前記第1誘電体層の下において反射される面と前記第1誘電体層との間に設けられ、前記電磁波の周波数における前記第1誘電体層の比誘電率より高い前記電磁波の周波数における比誘電率を有する第2誘電体層を備える構成とすることができる。
 上記構成において、前記電磁波の周波数における前記第2誘電体層の誘電正接は前記電磁波の周波数における前記第1誘電体層の誘電正接より大きい構成とすることができる。
 上記構成において、前記対象物は、人または人が保持する物である構成とすることができる。
 本発明によれば、間接波の影響を抑制することができる。
図1は、実施例1に係るミリ波システムの模式図である。 図2は、実施例1における検出器のブロック図である。 図3は、実施例1におけるミリ波システムの伝搬モデルを示す図である。 図4は、比較例1における距離Rに対する電力損失を示す図である。 図5(a)から図5(c)は、実施例1における床面付近の拡大断面図である。 図6は、垂直偏波TMおよび水平偏波TEにおける入射角θに対する反射係数を示す図である。 図7は、垂直偏波における距離Rに対する電力損失を示す図である。 図8は、水平偏波における距離Rに対する電力損失を示す図である。 図9は、実施例2における床面付近の拡大断面図である。
 以下、図面を参照にしつつ実施例について説明する。
 高周波システムでは、例えば周波数が300MHz以上の電磁波を用いる。以下の実施例において、高周波システムとして、人または人が保持する物を対象としたミリ波システムについて説明する。ミリ波は、周波数が30GHz以上かつ300GHz以下の電波である。人または人が保持する物を対象としたミリ波システムは、空港や駅などにおいて歩行者が保持する危険物を非接触に検出するシステム、非接触に人の心拍等のバイタル信号を検出するシステム、人の転倒や死活を検出するシステム、人流を検出するシステムなどである。このようなミリ波システムの特徴としては、ミリ波を送受信するアンテナと対象物との距離が10m以下と近いこと、対象物の高さが人の身長より低いことである。
 図1は、実施例1に係るミリ波システムの模式図である。図1に示すように、床20上に検出器10が支持体18を介して設置されている。検出器10はアンテナ12を備えている。床20の上面は床面21である。床20上にゲート34が設けられている。ミリ波システム100は、ゲート34内を通過する歩行者32を検査する。歩行者32は対象物30を保持している。危険物を検出するミリ波システム100では、対象物30は例えば歩行者32が保持する危険物などである。心拍等のバイタル信号を検出するミリ波システム100では、対象物30は、歩行者32の胸部である。ゲート34は設けられていなくてもよい。アンテナ12と対象物30の間の床20に誘電体層22が設けられている。
 アンテナ12はミリ波を対象物30に照射する。アンテナ12が送信するミリ波は床面21に対し垂直偏波されている。アンテナ12は対象物30において反射したミリ波を受信する。アンテナ12と対象物30との間のミリ波の経路には以下の2つがある。1つ目は、床面21に反射されずアンテナ12と対象物30との間を直接伝搬する経路40である。経路40を伝搬するミリ波を直接波という。2つ目は、床面21において反射されアンテナ12と対象物30との間を間接的に伝搬する経路42である。経路42を伝搬するミリ波を間接波という。床面21のうち間接波が反射する箇所36は、誘電体層22の上面である。ミリ波システム100は、床面以外の壁などの反射がほとんどない自遊空間(例えば、屋外または屋内であっても床面以外の壁などの反射がシステムの運用上無視できる空間)に設置されている。
 図2は、実施例1における検出器のブロック図である。図2示すように、検出器10は、アンテナ12a、12b、送信部14、受信部15および検出部16を各々1または複数備えている。送信部14はアンテナ12aを介しミリ波43を送信する。受信部15はアンテナ12bを介しミリ波44を受信する。アンテナ12aとして、床面21に対し垂直方向に配列させた複数のアンテナを用いると、ミリ波43は垂直偏波される。アンテナ12bとして、床面21に対し垂直方向に配列させた複数のアンテナを用いると、垂直偏波されたミリ波44を受信できる。ミリ波43を垂直偏波する方法は、上記以外の方法でもよい。
 検出部16は、送信したミリ波43と受信したミリ波44に基づき、対象物30を検出する。例えば、検出部16は、歩行者32が危険物を保持しているか否かの検出、または歩行者32のバイタル信号等の検出を行う。対象物30の位置および速度の検出方法としては、例えばFM-CW(Frequency Modulated Continuous Wave)方式、FCM(Fast-Chirp Modulation)方式またはドプラー方式などの方法を用いる。
 実施例1に係るミリ波システムのミリ波の伝搬モデルについて説明する。図3は、実施例1におけるミリ波システム100の伝搬モデルを示す図である。図3に示すように、床面21の上方にアンテナ12および対象物30が設けられている。アンテナ12と対象物30との床面21に平行な方向における距離をRとする。アンテナ12と対象物30との距離をrとする。床面21からアンテナ12の高さをh1、床面21から対象物30の高さをh2とする。アンテナ12と対象物30とを直接結ぶ経路40は直接波が伝搬する経路である。アンテナ12と対象物30との間において床面21において反射する経路42は間接波が伝搬する経路である。経路42のうち、アンテナ12と箇所36との間の経路を42aとし、対象物30と箇所36との間に経路を42bとする。経路42aの長さをrとし、経路42bの長さをrとする。
 電波は最短距離を伝搬するため、経路42aと床面21とのなす角度θは、経路42bと床面21とのなす角度θと等しい。経路42aの入射角θ(床面21の法線と経路42aのなす角度)と経路42bの入射角θは等しい。θ+θ=90°である。入射角θと高さh1、h2および距離Rとの関係は数1となる。
Figure JPOXMLDOC01-appb-M000001
 ここで、仮にh1=1m、h2=1.17mおよびR=3.6mとする。高さh1は、アンテナ12を1mの高さに設けたことに相当し、h2=1.17mは人間の腰から胸にかけての高さに相当する。水平距離Rは、アンテナ12を配置する一般的な距離を想定した。この場合、θ=tan-1((h1+h2)/R)=31°であり、θ=59°である。
 アンテナ12から送信されたミリ波が経路40を伝搬し対象物30において反射した後、経路40を伝搬しアンテナ12において受信された場合(すなわち直接波の場合)における、受信されるミリ波の受信電力Pfreeは数2となる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Pはアンテナ12が送信する送信電力、Gは送信用のアンテナ12aの利得、Gは受信用のアンテナ12bの利得、λはミリ波の真空中の波長、σは対象物30におけるミリ波の反射断面積である。
 アンテナ12から送信されたミリ波が経路40または42を伝搬し対象物30において反射した後、経路40または42を伝搬しアンテナ12において受信された場合(すなわち直接波および間接波の両方が存在する場合)における、受信されるミリ波の受信電力は数2のPfreeと数3のEの積となる。
Figure JPOXMLDOC01-appb-M000003
 ここで、D(θ)はアンテナ12aの指向性、D(θ)はアンテナ12bの指向性、Rは床面21の反射係数、Rは対象物30の反射係数、βは位相係数、r=r+rである。
 数2および数3を用い、距離に対する電力損失を、直接波の場合と直接波と間接波の両方の場合について算出した。算出条件は、h1=1m、h2=1.17m、P=10dB、G=10dB、G=10dB、σ=10dB/m、ミリ波の周波数は79GHzである。
 比較例1として、床面21が金属である場合について、距離Rに対する電力損失を算出した。図4は、比較例1における距離Rに対する電力損失を示す図である。図4において、横軸は、図3の距離Rであり1m~10mまで変化させている。縦軸は電力損失であり、受信電力/送信電力をdB表示している。直接波の電力損失を太実線で示し、直接波+間接波の電力損失を破線で示している。
 図4に示すように、直接波では、電力損失は距離Rが長くなると単調に小さくなる。一方、直接波と間接波が合成されると、直接波と間接波との位相差に起因して、距離Rに対し電力損失が大きく変動する。アンテナ12と対象物30との距離Rは、時間とともに変化する。このため、間接波の影響を受けると、受信電力が安定しない。
 より詳細には、間接波の影響を受けると、直接波と間接波との電力が打消し合う周波数において受信電力がブラインドスポット(受信できなくなる)となり、受信レベルが低下する。直接波と間接波との電力が高め合う周波数において受信電力レベル等が局所的に飽和する。周波数または時間による受信電力の大小が生じるため、ミリ波システムにおけるトラッキング機能を安定的に用いること、および受信レベルの推定が難しくなる。デジタルビームフォーミング技術またはMIMO(Multiple Input and Multiple Output)技術における空間(素子毎)または時間的変化が大きくなるため、方位測定の精度および方位分解能が低下する。間接波の影響を低減できれば、これらの課題を解決できる。
 図5(a)から図5(c)は、実施例1における床面付近の拡大断面図であり、ミリ波が床面21において反射する箇所36付近の拡大図である。図5(a)に示すように、箇所36を含む領域において、床20には、反射層24上に厚さがT1の誘電体層22が設けられている。反射層24と誘電体層22との界面は反射面23である。
 空間を伝搬するミリ波45aは、入射角θで空気から床面21(誘電体層22の上面)に入射する。ミリ波45aは床面21において屈折し、透過角θで誘電体層22に透過する。誘電体層22内に透過したミリ波45bは、反射面23において反射する。反射したミリ波45cは床面21において屈折し、ミリ波45dとして空気に出射される。ミリ波45aの入射角θとミリ波45dの出射角は等しくなる。誘電体層22内においてミリ波45bおよび45cが減衰すれば、誘電体層22から出射するミリ波45dの電力はミリ波45aの電力に対し小さくなる。
 誘電体層22の比誘電率は例えば2~6であり、誘電正接tanδは例えば0.01以上である。反射層24は、例えばアルミニウム、ステンレス、亜鉛等の金属パネル等の金属層である。反射層24はミリ波を反射する素材からなる層であればよく、例えば比誘電率の大きい材料でもよい。
 図5(b)に示すように、誘電体層22は、地面または床材24a上に設けられている。床材24aは、例えば大理石または硬質ガラスである。誘電体層22と地面または床材24aとの間の面は反射面23である。その他の構成は図5(a)と同じである。図5(c)に示すように、誘電体層22は、地面または床材24aに埋め込まれていてもよい。その他の構成は図5(b)と同じである。図5(b)および図5(c)では、地面、大理石または硬質ガラス等は比誘電率が誘電体層22の比誘電率より十分大きい。このため、誘電体層22から床材24aへの入射角(θに相当)が大きければ、反射面23においてミリ波はほとんど反射する。このように、床20は、地面または床材24aと誘電体層22とを含んでもよい。
 ミリ波45aの入射角θをブリュースター角θとなるように、誘電体層22の比誘電率を選択する。ブリュースター角θは、誘電体層22の屈折率をn、空間の屈折率を1とすると、θ=tan-1(n)である。誘電体層22の複素屈折率の実部は虚部より十分大きい。このため、ブリュースター角θと誘電体層22の比誘電率εrとの関係は数4となる。
Figure JPOXMLDOC01-appb-M000004
 透過角θと入射角θの関係は誘電体層22の屈折率nとすると、n=sinθ/sinθである。よって、透過角θは数5となる。
Figure JPOXMLDOC01-appb-M000005
 誘電体層22内をミリ波45bおよび45cが伝搬する伝搬長Lは、数6である。
Figure JPOXMLDOC01-appb-M000006
 図5(a)では、誘電体層22が設けられる床面21とアンテナ12および対象物30が設けられる床面21とが同じ平面である場合を説明した。より一般的には、h1は、箇所36における床面21(すなわち誘電体層22の上面)を含む平面とアンテナ12との距離であり、h2は、この平面と対象物30との距離であり、距離Rはアンテナ12と対象物30との間のこの平面に平行な方向の距離である。
 実施例1における距離Rに対する電力損失を算出した。図3で説明したh1=1m、h2=1.17mおよびR=3.6mの条件では、入射角θ=59°であり、θ=θとなる誘電体層22の比誘電率εrは数4からεr=(tanθ≒2.8である。周波数が79GHzにおいて、比誘電率εrが2.8付近であり、誘電正接tanδがある程度大きい(例えばtanδが0.01以上)材料は、例えばアセタールコポリマーを原料とする樹脂であるポリペンコアセタールである。なお、ポリペンコは登録商標である。ポリペンコアセタールの79GHzにおけるtanδは0.02である。
 誘電体層22をポリペンコアセタールとし、空気から誘電体層22に入射するときの反射係数を入射角θに対して算出した。ミリ波45aが垂直偏波TMのときと水平偏波TEときの反射係数をフレネルの式を用いて算出した。
 図6は、垂直偏波TMおよび水平偏波TEにおける入射角θに対する反射係数を示す図である。図6において、横軸は入射角θであり、縦軸は空気から誘電体層22に入射するときの反射係数である。
 図6に示すように、水平偏波TEおよび垂直偏波TMともに入射角θが0°のとき、反射係数は約0.25であり、入射角θが90°のとき、反射係数は1である。水平偏波TEでは、入射角θが大きくなると反射係数は単調に大きくなる。入射角θが59°のときの反射係数は約0.48である。垂直偏波TMでは入射角θが大きくなると反射係数は小さくなり、入射角θがブリュースター角θである59°のとき、反射係数は0となる。入射角θがブリュースター角θより大きくなると、反射係数は大きくなる。このように、入射角θがブリュースター角θのとき、垂直偏波されたミリ波45aは床面21においてほとんど反射されずに誘電体層22に透過する。反射係数を0.2以下とするためには、入射角θは30°~70°である。反射係数を0.2以下とすることで、受信部15が受信する信号の電力の変動を±1dB以下とすることができる。
 誘電体層内における高周波信号の減衰係数α[dB/mm]は27.3×√εr×tanδ/λ[dB/mm]であることが知られている。ここで、λはミリ波の真空中の波長[mm]である。波長λをミリ波の周波数f[Hz]と真空中の光速c=3×1011[mm/s]であらわすと、数7となる。
Figure JPOXMLDOC01-appb-M000007
 数7より、比誘電率が2.8であり、tanδが0.02であるポリペンコアセタールでは、79GHzの減衰係数α=0.24dB/mmである。図5(a)において、入射角θをブリュースター角θである59°とすると、数5より透過角θは31°となる。誘電体層22の厚さT1を30mmとすると、ミリ波45bおよび45cの伝搬長Lは、数6より約70mmである。誘電体層22内のミリ波の減衰L×αは約17dBとなる。この条件における垂直偏波および水平偏波の距離Rに対する電力損失を算出し、図7および図8に示した。
 図7は、垂直偏波における距離Rに対する電力損失を示す図である。直接波の電力損失を太実線で示し、直接波+間接波の電力損失を破線で示している。図7に示すように、直接波+間接波の変動が比較例の図4に比べ小さい。特に、入射角θがブリュースター角θとなる距離RがR=3.6mでは間接波の影響はほとんどなくなる。これは、入射角θがブリュースター角θのときは、ミリ波45aは誘電体層22の上面において反射せず誘電体層22に入射する。ミリ波45bおよび45cが誘電体層22を通過するときの電力損失は17dBとなり、誘電体層22から出射されるミリ波45dの電力は非常に小さくなるためである。図7では、距離Rが2.5m~4.1mの範囲では、間接波の影響が低減している。この範囲ではθiは50°~62°であり、図6から床面21における垂直偏波のミリ波の反射係数が0.1以下となるためである。
 図8は、水平偏波における距離Rに対する電力損失を示す図である。直接波の電力損失を太実線で示し、直接波+間接波の電力損失を破線で示している。図8に示すように、直接波+間接波の変動は比較例の図4より小さいものの、垂直偏波の図7に比べると大きい。このように水平偏波では、間接波の影響を抑制することができない。
 実施例1によれば、アンテナ12は、対象物30に、床20に対し垂直偏波されたミリ波を送信し、対象物30において反射されたミリ波を受信する。誘電体層22(第1誘電体層)は、間接波の経路42においてミリ波が反射する箇所36、を含む領域における床20の最上層に設けられている。ミリ波45aは、垂直偏波されているため、誘電体層22の上面において反射されにくく、誘電体層22内に入射する。反射面23は、誘電体層22の下に設けられ、誘電体層22を伝搬するミリ波45bを反射する。すなわち、誘電体層22を伝搬するミリ波45bは誘電体層22の下において反射される。これにより、距離Rが10m以下のミリ波システムにおいて、誘電体層22に入射したミリ波45bおよび反射面23において反射したミリ波45cが誘電体層22において減衰し、誘電体層22から出射される。このため、間接波の影響をより抑制できる。
 なお、垂直偏波されたミリ波(電磁波)とは、ミリ波(電磁波)における床面21に垂直な電界成分が床面21に水平な電界成分より大きければよい。箇所36におけるミリ波の反射を抑制するためには、垂直な電界成分は水平な電界成分の1.5倍以上が好ましく、2倍以上がより好ましく、2.5倍以上がさらに好ましい。
 誘電体層22の比誘電率について検討する。表1は、比誘電率εr、ブリュースター角θ、伝搬長L、材料を示す図である。比誘電率εrは誘電体層22の比誘電率である。ブリュースター角θは、空気と誘電体層22の界面(床面21)のブリュースター角θである。伝搬長Lは、図5(a)において、ミリ波45aの入射角θをブリュースター角θとし、誘電体層22の厚さT1を30mmとしたとき、ミリ波45bおよび45cの伝搬する長さである。材料は、79GHzにおいて比誘電率εrとなる材料の例である。
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、比誘電率εrが大きくなるとブリュースター角θが大きくなり、伝搬長Lは短くなる。ブリュースター角θが大きい場合には、入射角θをブリュースター角θとしようとすると、数1より、h1+h2が同じであれば、アンテナ12と対象物30との距離Rが長くなる。距離Rが長くなると、図7のように送信電力に対する受信電力の電力損失が大きくなり検出精度が低下する。一方、ブリュースター角θが小さい場合には、入射角θをブリュースター角θとしようとすると、数1より、h1+h2が同じであれば、距離Rは短くなる。距離Rが短くなると、対象物30を検出できる範囲が狭くなってしまう。これらを考慮すると、ブリュースター角θとして55°~68°が好ましい。ブリュースター角θを55°以上とすることで、距離Rを長くでき対象物30を検出できる範囲を広くできる。ブリュースター角θを68°以下とすることで、距離Rを短くでき検出精度を向上できる。これを実現するためには誘電体層22のミリ波の周波数における比誘電率εrは2以上かつ6以下が好ましい。ブリュースター角θは、より好ましくは56°~65°(このとき比誘電率εrは2.2~5)であり、さらに好ましくは57°~63°(このとき比誘電率は2.4~4)である。距離Rは、1m以上が好ましく、2m以上がより好ましい。距離Rは8m以下が好ましく、6m以下がより好ましい。
 比誘電率εrは2以上かつ6以下の材料としては、木材、石膏ボード、ナイロン等の繊維系床材、コンクリートボードである。ガラスおよび大理石は比誘電率が大きすぎる。地面および水でも比誘電率が大きすぎる。比誘電率εが2以上かつ6以下の材料であれば、床材として用いることができる。一方、特許文献3のように、電波吸収体を用いる場合、電波吸収体は柔らかい素材のため、歩行者等が歩行する床材には適さない。また、電波吸収体として三角錐または山型の立体構造を用いた場合も床材には適さない。
 次に、誘電体層22への入射角θについて検討する。図6のように、ミリ波が箇所36において誘電体層22に入射する入射角θを30°以上かつ70°以下とすることで、箇所36における垂直偏波されたミリ波の反射係数を0.2以下にできる。よって、ほとんどのミリ波は誘電体層22内に入射し、誘電体層22において減衰する。よって、間接波の影響を抑制できる。誘電体層22の比誘電率が2~6の範囲であれば、ブリュースター角θは55°~68°であり、図6とほぼ同様に、入射角θを30°以上かつ70°以下とすることで、箇所36における垂直偏波されたミリ波の反射係数を小さくできる。箇所36における垂直偏波されたミリ波の入射角θは40°以上が好ましく、50°以上がより好ましい。入射角θは65°以下がより好ましい。
 次に、アンテナ12の高さh1、対象物30の高さh2および距離Rについて検討する。数1より、入射角θが30°のとき、(h1+h2)/R=1.732であり、入射角θが70°のとき、(h1+h2)/R=0.364である。よって、0.36≦(h1+h2)/R≦1.73が好ましい。対象物30が人の保持する危険物または人の胸部の場合、h1+h2は1m~3m程度である。入射角θ=30°のとき、h1+h2が1m~3mであれば、距離Rは0.58m~1.73mとなり、入射角θ=70°のとき、h1+h2が1m~3mであれば、距離Rは2.75m~8.24mとなる。よって、0.68m≦R≦8.24mである。同様に、θ=40°のとき、(h1+h2)/R=1.192であり、h1+h2を1m~3mとすると、距離Rは0.84m~2.52mである。θ=50°のとき、(h1+h2)/R=0.839であり、h1+h2を1m~3mとすると、距離Rは1.19m~3.58mである。θ=60°のとき、(h1+h2)/R=0.577であり、h1+h2を1m~3mとすると、距離Rは1.73m~5.20mである。
 次に、誘電体層22の厚さT1および誘電正接tanδについて検討する。誘電体層22の厚さT1と誘電正接tanδは、伝搬長Lを通過したミリ波の減衰が十分になるように設定される。伝搬長Lを通過したミリ波の減衰はL×αである。比誘電率が2~6、入射角θが30°~70°範囲では、数5および数6から、伝搬長Lが最も短くなるのは、θ=30°、εr=6のときであり、L=2.1×T1である。伝搬長Lが最も長くなるのは、θ=70°、εr=2のときであり、L=2.7×T1である。伝搬長Lが最も短くなるL=2.1×T1と仮定し、L×αが5dB以上となるためには、数7より、5≦2.1×T1×27.3×√εr×tanδ×f/cであればよい。数値をまとめると、0.087≦T1×√εr×tanδ×f/cであればよい。L×αが10dB以上となるためには、0.174≦T1×√εr×tanδ×f/cであればよい。L×αが15dB以上となるためには、0.262≦T1×√εr×tanδ×f/cであればよい。
 例えば、誘電体層22における減衰L×αが5dB以上となる場合、床面21において反射したミリ波45dはミリ波45aに対し電力が70%程度減衰する。このため、直接波と間接波との電力が打消し合う周波数において受信電力がブラインドスポットとなることがなくなる。L×αが10dB以上となる場合、ミリ波45dはミリ波45aに対し電力が90%程度減衰する。このため、直接波と間接波との電力が打消し合う周波数における低受信力レベルの解消、および直接波と間接波との電力が高め合う周波数において受信電力レベル等が局所的に飽和することがなくなる。L×αが15dB以上となる場合、ミリ波45dはミリ波45aに対し電力が97%程度減衰する。このため、間接波による受信電力レベルへの影響をほとんど無視できる。
 誘電体層22の厚さT1が薄すぎると、誘電体層22が摩耗してしまう。この観点から厚さT1は5mm以上が好ましく、10mm以上がより好ましい。誘電体層22の厚さT1が厚すぎると、床材として使用しにくい。この観点から厚さT1は100mm以下が好ましく、50mm以下がより好ましい。ミリ波45bおよび45cの減衰を大きくするため、誘電体層22のミリ波の周波数fにおける誘電正接tanδは0.005以上が好ましく、0.01以上がより好ましい。誘電正接tanδの大きい材料は比誘電率が大きくなる傾向となる。このため、誘電体層22のミリ波の周波数fにおける誘電正接tanδは0.1以下であり、0.05以下となる。
 ミリ波の周波数は30GHz以上かつ300GHz以下であるが、上記モデルは周波数が79GHzのミリ波のものである。よって、上記モデルを一般化するため、ミリ波の周波数は50GHz以上かつ100GHz以下が好ましく、60GHz以上かつ90GHz以下がより好ましい。
 誘電体層22の厚さT1、誘電体層22のtanδおよびミリ波の周波数等を上記のように限定することで、誘電体層22によるミリ波の減衰L×αが5dB以上となると、上述のように、直接波と間接波の電力が打ち消しあう周波数におけるブラインドスポットをなくすることができる。また、ミリ波の減衰L×αが10dB以上となると、直接波と間接波との電力が打消し合う周波数における低受信力レベルの解消、および直接波と間接波との電力が高め合う周波数において受信電力レベル等が局所的に飽和することを抑制できる。これにより、ミリ波システムにおける受信レベルのトラッキング機能を安定的に用いることが可能となる。さらに、ミリ波の減衰L×αが15dB以上となると、間接波による受信電力レベルへの影響をほとんど無視できる。このため、減衰値の予測が立てられる。また、受信アンテナとしてアレーアンテナを用いた場合に、アンテナ毎の受信電力レベル差がなくなる。
 ミリ波システムとして、人または人が保持する物を対象としたミリ波システム100を例に説明したが、ミリ波システムは、比較的近距離の対象物を検出するシステムであればよい。対象物30が人または人が保持する物の場合、h1+h2が1m~3mとなり、実施例1のモデルが適用できる。また、箇所36が人の通過する通路に位置する場合、床に柔らかい電波吸収体および三角錐または山型の立体構造を有する電波吸収体を設けることが難しい。よって、誘電体層22を設けることが好ましい。
 図9は、実施例2における床面付近の拡大断面図である。図9に示すように、箇所36を含む領域において、床20には、反射層24上に厚さがT2の誘電体層26が設けられ、誘電体層26上に厚さT1の誘電体層22が設けられている。反射層24と誘電体層26との界面は反射面23である。誘電体層22と26との界面は界面25である。誘電体層26の比誘電率および屈折率は誘電体層26の比誘電率および屈折率よりそれぞれ大きい。
 空間を伝搬するミリ波45aは、入射角θで空気から床面21に入射する。ミリ波45aは床面21において屈折し、透過角θで誘電体層22に透過する。誘電体層22内に透過したミリ波45bは、界面25において屈折し、透過角θt2で誘電体層26に透過する。ミリ波の周波数における誘電体層26の比誘電率をミリ波の周波数における誘電体層22の比誘電率より大きくすると、θを界面25におけるブリュースター角に近づけることができる。例えば、誘電体層26の比誘電率を誘電体層22の比誘電率の約2倍とすると、θはほぼ界面25におけるブリュースター角となる。これにより、界面25におけるミリ波45bの反射を少なくすることができる。このとき、透過角θt2は透過角θより小さくなる。誘電体層26に透過したミリ波45eは反射面23において反射する。反射面23において反射したミリ波45fは、界面25において屈折し誘電体層22に透過する。誘電体層22に入射したミリ波45cは、床面21において屈折し、ミリ波45dとして空気に出射される。
 誘電体層22として、実施例1と同様に比誘電率が2.8でありtanδが0.02のポリペンコアセタールとし、誘電体層26として、比誘電率が5.5であり、tanδが0.06のベークライトとすると、周波数が79GHzのミリ波45eおよび45fの減衰係数αは0.7dB/mmとなる。よって、厚さT1+T2が実施例1の厚さT1より小さくてもミリ波の減衰をより大きくすることができる。
 実施例2のように、誘電体層26(第2誘電体層)を誘電体層22と反射面23との間に設け、ミリ波の周波数における誘電体層26の比誘電率をミリ波における誘電体層22の比誘電率より大きくする。これにより、ミリ波45eおよび45fは誘電体層22においても減衰する。よって、間接波の影響をより抑制できる。ミリ波の周波数における誘電体層26の比誘電率は、ミリ波における誘電体層22の比誘電率の1.2倍以上が好ましく、2倍以上がより好ましい。ミリ波の周波数における誘電体層26の比誘電率は、ミリ波における誘電体層22の比誘電率の3倍以下が好ましく、2.5倍以下がより好ましい。
 ミリ波の周波数における誘電体層26の誘電正接はミリ波の周波数における誘電体層22の誘電正接より大きい。この場合、誘電体層22におけるミリ波45eおよび45fの減衰をより大きくできる。よって、間接波の影響をより抑制できる。ミリ波の周波数における誘電体層26の誘電正接はミリ波の周波数における誘電体層22の誘電正接の1.5倍以上が好ましく、2倍以上がより好ましい。
 実施例1および2では、高周波の電磁波としてミリ波を例に説明したが高周波の電磁波は、マイクロ波(周波数が300MHz~30GHz)または、ミリ波より周波数が高い電磁波でもよい。例えば高周波の電磁波の周波数は300MHz~1THzである。また、実施例1および2に記載された数値範囲の外にある条件でも、実施例1および2の一部の効果は得られる場合もある。実施例1および2はこれら数値範囲外の領域でも有効性が認められる。
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 10 検出器
 12 アンテナ
 20 床
 21 床面
 22、26 誘電体層
 23 反射面
 24 反射層
 25 界面
 30 対象物
 32 歩行者
 34 ゲート
 36 箇所
 40、42、42a、42b 経路
 43、44、45a~45f ミリ波
 

Claims (10)

  1.  対象物に、床に対し垂直偏波された高周波の電磁波を送信し、前記対象物において反射された前記電磁波を受信するアンテナと、
     前記アンテナと前記対象物との間における前記電磁波の経路において前記電磁波が反射する箇所、を含む領域における床の最上層に設けられ、前記電磁波の周波数における比誘電率が2以上かつ6以下の第1誘電体層と、
    を備え、
     前記第1誘電体層を伝搬する前記電磁波は前記第1誘電体層の下において反射し、
     前記箇所における前記第1誘電体層の上面を含む平面に平行な方向における前記アンテナと前記対象物との間の距離は10m以下である高周波システム。
  2.  前記電磁波はミリ波である請求項1に記載の高周波システム。
  3.  前記電磁波が前記箇所において前記第1誘電体層に入射する入射角は30°以上かつ70°以下である請求項2に記載の高周波システム。
  4.  前記箇所における前記第1誘電体層の上面を含む平面と前記アンテナとの距離をh1、前記平面と前記対象物との距離をh2、前記アンテナと前記対象物との間の前記平面に平行な方向の距離をRとしたとき、0.35≦(h1+h2)/R≦1.73である請求項2に記載の高周波システム。
  5.  前記第1誘電体層の厚さをT1[mm]、前記電磁波の周波数における前記第1誘電体層の比誘電率をεr、前記電磁波の周波数における前記第1誘電体層の誘電正接をtanδ、前記電磁波の周波数をf[Hz]、真空中の光速をc[mm/s]としたとき、
    0.087≦T1×√εr×tanδ×f/cである請求項3または4に記載の高周波システム。
  6.  前記電磁波の周波数は60GHz以上かつ90GHz以下である請求項3または4に記載の高周波システム。
  7.  前記第1誘電体層の厚さをT1[mm]、前記電磁波の周波数における前記第1誘電体層の比誘電率をεr、前記電磁波の周波数における前記第1誘電体層の誘電正接をtanδ、前記電磁波の周波数をf[Hz]、真空中の光速をc[mm/s]としたとき、0.087≦T1×√εr×tanδ×f/cであり、
     前記電磁波の周波数は60GHz以上かつ90GHz以下である請求項3または4に記載の高周波システム。
  8.  前記第1誘電体層を伝搬する前記電磁波が前記第1誘電体層の下において反射される面と前記第1誘電体層との間に設けられ、前記電磁波の周波数における前記第1誘電体層の比誘電率より高い前記電磁波の周波数における比誘電率を有する第2誘電体層を備える請求項1に記載の高周波システム。
  9.  前記電磁波の周波数における前記第2誘電体層の誘電正接は前記電磁波の周波数における前記第1誘電体層の誘電正接より大きい請求項8に記載の高周波システム。
  10.  前記対象物は、人または人が保持する物である請求項2または8に記載の高周波システム。
     
PCT/JP2023/011816 2022-03-31 2023-03-24 高周波システム WO2023190157A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022060246 2022-03-31
JP2022-060246 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190157A1 true WO2023190157A1 (ja) 2023-10-05

Family

ID=88201411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011816 WO2023190157A1 (ja) 2022-03-31 2023-03-24 高周波システム

Country Status (1)

Country Link
WO (1) WO2023190157A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494880B2 (ja) 2022-06-14 2024-06-04 Toppanホールディングス株式会社 電磁波吸収体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023597B1 (ja) * 1970-03-06 1975-08-08
JPH10205215A (ja) * 1997-01-20 1998-08-04 Tsuuden:Kk 自動ドアの安全兼起動装置
JP2000028714A (ja) * 1998-07-10 2000-01-28 Toyota Motor Corp 車載用fm−cwレーダ装置
JP2003156570A (ja) * 2001-11-19 2003-05-30 Mitsubishi Heavy Ind Ltd 電磁波を用いた物体検知装置
US20200062245A1 (en) * 2016-11-30 2020-02-27 Limited Liability Company "Innovative Center Jewel" Method of providing for the dynamic stability and safety of a vehicle and device for the implementation thereof
WO2020111159A1 (ja) * 2018-11-27 2020-06-04 関西ペイント株式会社 準ミリ波・ミリ波帯域用電波吸収シート及び準ミリ波・ミリ波電波吸収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023597B1 (ja) * 1970-03-06 1975-08-08
JPH10205215A (ja) * 1997-01-20 1998-08-04 Tsuuden:Kk 自動ドアの安全兼起動装置
JP2000028714A (ja) * 1998-07-10 2000-01-28 Toyota Motor Corp 車載用fm−cwレーダ装置
JP2003156570A (ja) * 2001-11-19 2003-05-30 Mitsubishi Heavy Ind Ltd 電磁波を用いた物体検知装置
US20200062245A1 (en) * 2016-11-30 2020-02-27 Limited Liability Company "Innovative Center Jewel" Method of providing for the dynamic stability and safety of a vehicle and device for the implementation thereof
WO2020111159A1 (ja) * 2018-11-27 2020-06-04 関西ペイント株式会社 準ミリ波・ミリ波帯域用電波吸収シート及び準ミリ波・ミリ波電波吸収方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494880B2 (ja) 2022-06-14 2024-06-04 Toppanホールディングス株式会社 電磁波吸収体

Similar Documents

Publication Publication Date Title
US6950054B1 (en) Handheld radar frequency scanner for concealed object detection
Frazier Radar surveillance through solid materials
WO2023190157A1 (ja) 高周波システム
EP1941629A2 (en) Through-the-wall motion detector with improved antenna
Sizov et al. Forward scattering radar power budget analysis for ground targets
EP3076482A1 (en) Radar obstacle detector for a railway crossing
EP0879425A1 (en) Collision warning system
Ponsford et al. A review of high frequency surface wave radar for detection and tracking of ships
CN105785368B (zh) 一种基于视频sar的隐匿危险品探测方法
JP2016138796A (ja) 物体検知センサーおよび部屋内物体検知システム
US4837574A (en) Near-field monostatic intrusion detection system
CN111446547A (zh) 一种天线罩和毫米波雷达装置
US8064737B2 (en) Spatial bandwidth imaging of structural interiors
EP0859425A1 (en) On-vehicle radar antenna
US9658320B2 (en) System and a method for illumination and imaging of an object
JP2007518325A (ja) マイクロ波アンテナのための被覆
JP4580217B2 (ja) レーダシステム、物体検出方法、レーダ装置、電波反射体
Frazier MDR for law enforcement [motion detector radar]
US20140240166A1 (en) Device for clutter-resistant target detection
JP2003243920A (ja) レドーム
US6172510B1 (en) System for detection of flaws by use of microwave radiation
US9316726B2 (en) Quantum harmonic radar
Bramley et al. Investigation of microwave scattering by tall buildings
Fackelmeier et al. Dual frequency methods for identifying hidden targets in road traffic
US20090121958A1 (en) Microwave motion sensor with a reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780167

Country of ref document: EP

Kind code of ref document: A1