WO2023189777A1 - 複合材料シートの製造方法及び複合材料シート用製造装置 - Google Patents

複合材料シートの製造方法及び複合材料シート用製造装置 Download PDF

Info

Publication number
WO2023189777A1
WO2023189777A1 PCT/JP2023/010753 JP2023010753W WO2023189777A1 WO 2023189777 A1 WO2023189777 A1 WO 2023189777A1 JP 2023010753 W JP2023010753 W JP 2023010753W WO 2023189777 A1 WO2023189777 A1 WO 2023189777A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
composite material
material sheet
pair
manufacturing
Prior art date
Application number
PCT/JP2023/010753
Other languages
English (en)
French (fr)
Inventor
智也 加藤
哲弥 大塚
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023189777A1 publication Critical patent/WO2023189777A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • B29C39/16Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length between endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out

Definitions

  • the present invention relates to a method for manufacturing a composite material sheet and a manufacturing device for a composite material sheet.
  • thermosetting resins Conventionally, composite materials containing inorganic materials and thermosetting resins are known.
  • Patent Document 1 describes a composite material including a filler and a binding resin.
  • the filler is a scaly filler made of an inorganic material.
  • the binding resin is a thermosetting resin that binds the filler.
  • This composite material is a foam material formed so that a plurality of voids are dispersed.
  • the filler is accumulated on the inner wall of the void so that the flat surfaces of the filler overlap each other.
  • a slurry-like mixture is prepared by mixing a filler, a polyester resin, and a blowing agent such as ethanol, and the mixture is poured into a mold.
  • a composite material is produced by heating a mixture in a mold to a temperature higher than a curing temperature, foaming a polyester resin, and curing the foamed polyester resin.
  • the method for manufacturing a composite material described in Patent Document 1 has room for reexamination from the viewpoint of high thermal conductivity and prevention of foreign matter generation.
  • the present invention provides a method for manufacturing a composite material sheet that is advantageous from the viewpoint of high thermal conductivity and prevention of foreign matter generation.
  • thermosetting resin A fluid containing a thermosetting resin and inorganic particles and having a first thickness is heated while being molded to have a second thickness smaller than the first thickness to form the thermosetting resin. or curing the thermosetting resin by heating the fluid after shaping the fluid having the first thickness to have a second thickness smaller than the first thickness.
  • the present invention a supply device for supplying a fluid containing a thermosetting resin and inorganic particles; a pair of members arranged at a predetermined interval and shaping the fluid supplied from the supply device; a heater that heats the fluid when the fluid is between the pair of members or after the fluid passes between the pair of members, the pair of members shape the fluid so that it has a second thickness smaller than the first thickness when the fluid is supplied from the supply device;
  • a manufacturing device for composite material sheets is provided.
  • a composite material sheet that is advantageous from the viewpoint of high thermal conductivity and prevention of foreign matter generation can be manufactured.
  • FIG. 1 is a diagram schematically showing an example of an apparatus and method for manufacturing a composite material sheet according to the present embodiment.
  • FIG. 2A is a plan view schematically showing the surface of the composite material sheet.
  • FIG. 2B is a cross-sectional view of the composite material sheet taken along line BB in FIG. 2A.
  • FIG. 3 is a drawing schematically illustrating a method for manufacturing a composite material sheet according to a reference example.
  • FIG. 4 is a diagram schematically showing another example of the composite material sheet manufacturing apparatus and manufacturing method in this embodiment.
  • FIG. 5A is a photograph of the composite material sheet according to Example 1 in plan view.
  • FIG. 5B is a photograph of the cross section of the composite material sheet according to Example 1.
  • FIG. 6A is a photograph of the composite material sheet according to Comparative Example 1 in plan view.
  • FIG. 6B is a photograph of the composite material sheet according to Comparative Example 1.
  • the composite material sheet 2 is manufactured by, for example, a manufacturing apparatus 100.
  • the fluid 1 is subjected to a predetermined process to manufacture the composite material sheet 2.
  • the fluid 1 contains a thermosetting resin 1b and inorganic particles 1a.
  • the fluid 1 is heated and the thermosetting resin 1b is cured. Thereby, a composite material sheet 2 is obtained.
  • the composite material sheet 2 includes, for example, inorganic particles 1a and a skeleton portion 2s.
  • the skeleton portion 2s includes a cured product of the thermosetting resin 1b.
  • the fluid 1 having the first thickness t1 is molded to have the second thickness t2, so that the inorganic particles 1a are formed along the flat surface in the surface layer 2k of the composite material sheet 2.
  • the inorganic particles 1a tend to be in an aggregated state, and the inorganic particles 1a tend to be arranged at a high density on the surface layer 2k of the composite material sheet 2. Therefore, the thermal conductivity of the surface layer 2k of the composite material sheet 2 tends to increase, and the thermal conductivity of the composite material sheet 2 also tends to increase.
  • the ratio S1/S2 of the area S1 of the portion of the surface layer 2k where the inorganic particles 1a are present to the area S2 of the surface layer 2k of the composite material sheet 2 is not limited to a specific value.
  • the ratio S1/S2 is 15% or more.
  • the ratio S1/S2 may be 20% or more, or 25% or more.
  • the ratio S1/S2 is, for example, 80% or less.
  • FIG. 3 schematically shows a method for manufacturing a composite material sheet 7 according to a reference example.
  • the composite material sheet 7 is constructed in the same manner as the composite material sheet 2 except for the parts to be specifically explained.
  • the composite material sheet 7 is obtained by cutting the surface layer of the preliminary sheet 7a to expose the inorganic particles 1a.
  • the preliminary sheet 7a is produced by, for example, filling a predetermined mold with composite particles to which inorganic particles 1a are attached, filling the gaps between the composite particles with thermosetting resin 1b, and then filling the gaps between the composite particles with thermosetting resin 1b. It is made by curing.
  • the inorganic particles 1a tend to exist at a high density on the surface of the composite material sheet 7, and the thermal conductivity on the surface of the composite material sheet 7 tends to increase.
  • the inorganic particles 1a are likely to be arranged at a high density on the surface layer 2k of the composite material sheet 2 without cutting the surface layer 2k. Therefore, even if the inorganic particles 1a are present at a high density on the surface layer 2k of the composite material sheet 2, the inorganic particles 1a are difficult to detach from the surface of the composite material sheet 2. Therefore, the composite material sheet 2 is less likely to generate foreign matter.
  • the thickness t1 and the thickness t2 are not limited to specific values as long as they satisfy the relationship t1>t2.
  • the thickness t1 is, for example, 0.5 mm or more, may be 1 mm or more, or may be 3 mm or more.
  • the thickness t1 is, for example, 30 mm or less, may be 20 mm or less, or may be 10 mm or less.
  • the thickness t2 is, for example, 0.1 mm or more, may be 0.5 mm or more, or may be 1 mm or more.
  • the thickness t2 is, for example, 20 mm or less, may be 10 mm or less, or may be 5 mm or less.
  • the thickness of the composite material sheet 2 is, for example, the same as the thickness t2.
  • the thickness of the composite material sheet 2 may be 90% to 110% of the thickness t2.
  • the heating time of the fluid 1 is not limited to a specific value as long as the thermosetting resin 1b can be cured.
  • the heating time of the fluid 1 depends on the type of thermosetting resin 1b and the additives. The heating time is, for example, 10 seconds or more and 1 hour or less.
  • the inorganic particles 1a are not limited to specific particles.
  • the inorganic particles 1a have, for example, a higher thermal conductivity than that of the cured product of the thermosetting resin 1b.
  • Examples of inorganic materials contained in the inorganic particles 1a include hexagonal boron nitride (h-BN), alumina, crystalline silica, amorphous silica, aluminum nitride, magnesium oxide, carbon fiber, silver, copper, aluminum, and silicon carbide. , graphite, zinc oxide, silicon nitride, silicon carbide, cubic boron nitride (c-BN), beryllia, diamond, carbon black, graphene, carbon nanotubes, carbon fiber, and aluminum hydroxide.
  • the number of types of inorganic particles 1a in the fluid 1 and the composite material sheet 2 may be only one, or two or more types of inorganic particles 1a may be used in combination in the fluid 1 and the composite material sheet 2. .
  • the shape of the inorganic particles 1a is not limited to a specific shape. Examples of the shape are spherical shape, rod shape (including short fiber shape), scale shape, and needle shape.
  • the aspect ratio of the inorganic particles 1a is not limited to a specific value.
  • the aspect ratio of the inorganic particles 1a is, for example, less than 50, may be 40 or less, or may be 30 or less.
  • the aspect ratio of the inorganic particles 1a may be 1, 2 or more, or 3 or more.
  • the aspect ratio is the ratio of the maximum diameter of the particles to the minimum diameter of the particles (maximum diameter/minimum diameter) when the inorganic particles 1a are viewed from the direction in which the projected area of the inorganic particles 1a is maximum.
  • the average particle diameter of the inorganic particles 1a is not limited to a specific value.
  • the average particle size of the inorganic particles 1a is, for example, 0.05 ⁇ m to 100 ⁇ m, may be 0.1 ⁇ m to 50 ⁇ m, may be 0.1 ⁇ m to 30 ⁇ m, or may be 0.5 to 10 ⁇ m. .
  • the "average particle size" can be determined, for example, by a laser diffraction scattering method.
  • the average particle diameter is determined by the 50% cumulative value (median diameter ) d50 .
  • the shape of the inorganic particles 1a can be determined, for example, by observation using a scanning electron microscope (SEM) or the like.
  • the aspect ratio is 1.0 or more and less than 1.7, particularly 1.0 or more and 1.5 or less, and even 1.0 or more and 1.3 or less, and at least part of the outline
  • the inorganic particles 1a have a spherical shape.
  • the average particle size of the inorganic particles 1a is, for example, 0.1 ⁇ m to 50 ⁇ m, may be 0.1 ⁇ m to 10 ⁇ m, or may be 0.5 ⁇ m to 5 ⁇ m.
  • the average particle size of the inorganic particles 1a is, for example, 0.1 ⁇ m to 20 ⁇ m, and may be 0.5 ⁇ m to 15 ⁇ m.
  • the average thickness of the inorganic particles 1a is, for example, 0.05 ⁇ m to 1 ⁇ m, and may be 0.08 ⁇ m to 0.5 ⁇ m.
  • the average thickness can be determined by measuring the thickness of any 50 inorganic particles 1a using a SEM and calculating the arithmetic mean value.
  • the minimum diameter (usually short axis length) of the inorganic particles 1a is, for example, 0.01 ⁇ m to 10 ⁇ m, and may be 0.05 ⁇ m to 1 ⁇ m.
  • the maximum diameter (usually long axis length) of the inorganic particles 1a is, for example, 0.1 ⁇ m to 20 ⁇ m, and may be 0.5 ⁇ m to 10 ⁇ m. If the size of the inorganic particles 1a is within such a range, heat transfer paths are likely to be formed in the thickness direction of the composite material sheet 2 by the plurality of inorganic particles 1a.
  • the content of inorganic particles 1a in the composite material sheet 2 is not limited to a specific value.
  • the content of the inorganic particles 1a in the composite material sheet 2 is, for example, 10% by mass to 80% by mass, may be 10% by mass to 70% by mass, or may be 10% by mass to 55% by mass.
  • the content of the inorganic particles 1a in the composite material sheet 2 is, for example, 1% to 50% by volume, may be 2% to 45% by volume, or may be 5% to 40% by volume, It may be 5% to 30% by volume.
  • the composite material sheet 2 can have high thermal conductivity and desired rigidity.
  • the mass-based content of the inorganic particles 1a in the composite material sheet 2 can be determined, for example, by removing materials other than the inorganic particles 1a from the composite material sheet 2. For example, materials other than the inorganic particles 1a are burned out from the composite material sheet 2.
  • the content of inorganic particles may be determined using elemental analysis. For example, acid is added to the composite material sheet 2, microwave irradiation is applied, and the composite material sheet 2 is subjected to pressure acid decomposition. Examples of acids that can be used include hydrofluoric acid, concentrated sulfuric acid, concentrated hydrochloric acid, and aqua regia.
  • the solution obtained by pressure acid decomposition is analyzed for elements using inductively coupled plasma optical emission spectroscopy (ICP-AES). Based on the results, the content of the inorganic particles 1a on a mass basis in the composite material sheet 2 can be determined.
  • ICP-AES inductively coupled plasma optical emission spectroscopy
  • the volume-based content of inorganic particles 1a in the composite material sheet 2 can be determined from the mass and density of the inorganic particles 1a contained in the composite material sheet 2, and the volume and porosity of the composite material sheet 2. Specifically, the volume A of the inorganic particles 1a in the composite material sheet 2 is calculated from the mass and density of the inorganic particles 1a. Separately from this, the volume B of the composite material sheet 2 excluding the volume of voids is calculated based on the porosity of the composite material sheet 2. The volume-based content of inorganic particles 1a in the composite material sheet 2 can be determined based on the relationship (A/B) ⁇ 100.
  • the density of the inorganic particles 1a can be determined, for example, by heating the composite material sheet 2 at high temperature in an electric furnace to burn off the organic material, and then determining the remaining inorganic particles 1a according to Japanese Industrial Standards (JIS) R 1628:1997 or JIS Z 2504:2012. You can ask for it in compliance.
  • JIS Japanese Industrial Standards
  • thermosetting resin 1b is not limited to a specific resin.
  • examples of the thermosetting resin 1b include phenol resin, urea resin, melamine resin, diallyl phthalate resin, polyester resin, epoxy resin, aniline resin, silicone resin, furan resin, polyurethane resin, alkylbenzene resin, guanamine resin, xylene resin, and It is an imide resin.
  • the curing temperature of the thermosetting resin 1b is, for example, 25°C to 160°C.
  • the method for preparing the fluid 1 is not limited to a specific method.
  • the fluid 1 is obtained by kneading the thermosetting resin 1b and the inorganic particles 1a.
  • the fluid 1 may be obtained by infiltrating the thermosetting resin 1b into the gaps between the inorganic particles 1a. Therefore, the inorganic particles 1a are uniformly dispersed in the fluid 1. Therefore, the thermal conductivity of the composite material sheet 2 is less likely to vary within the plane of the composite material sheet 2.
  • the fluid 1 contains, for example, a porosity agent 1p.
  • the porous agent 1p imparts a porous structure to the composite material sheet 2.
  • the composite material sheet 2 has, for example, voids 2h. Thereby, the composite material sheet 2 tends to be lighter. In addition, the composite material sheet 2 is easily deformed by a small external force.
  • the pore-forming agent 1p is not limited to a specific porosity-forming agent as long as it can impart a porous structure to the composite material sheet 2.
  • the porosity forming agent 1p is dissolved in a specific solvent.
  • the porosity agent 1p may be evaporated, softened, or thermally decomposed by heating.
  • the porosity agent 1p may be shrunk or removed.
  • the porosity agent 1p can be shrunk or removed by contact with a specific solvent or by heating. The shrunken porosity agent 1p may remain in the composite material sheet 2.
  • the porosity forming agent 1p may have a hollow structure or a solid structure.
  • the porosity forming agent 1p may be hollow resin particles.
  • the heat treatment softens the resin constituting the resin particles, causing the hollow portion to disappear or shrink, and voids 2h may be formed accordingly.
  • the porosity forming agent 1p may be solid resin particles. In this case, when the porosity-forming agent 1p comes into contact with a specific solvent, the porosity-forming agent 1p may be dissolved in the solvent, and voids 2h may be formed.
  • resins contained in hollow or solid resin particles include polystyrene (PS), polyethylene (PE), polymethyl methacrylate (PMMA), ethylene vinyl acetate copolymer (EVA), polyethylene (PE), These are polyvinyl chloride (PVC), polypropylene (PP), acrylonitrile-butadiene-styrene copolymer (ABS), ethylene-propylene-diene rubber (EPDM), thermoplastic elastomer (TPE), and polyvinyl alcohol (PVA).
  • PS polystyrene
  • PE polyethylene
  • PMMA polymethyl methacrylate
  • EVA ethylene vinyl acetate copolymer
  • PVC polyvinyl chloride
  • PP polypropylene
  • ABS acrylonitrile-butadiene-styrene copolymer
  • EPDM ethylene-propylene-diene rubber
  • TPE thermoplastic elastomer
  • PVA polyvinyl alcohol
  • the inorganic particles 1a form hollow aggregates in the fluid 1, for example.
  • pores 1h are formed inside the aggregate of inorganic particles 1a.
  • the inorganic particles 1a are aggregated around the pores 1h so as to cover the pores 1h. For example, a plurality of aggregates are dispersed in the fluid 1.
  • the inorganic particles 1a are aggregated around the pore-forming agent 1p so as to cover the outer surface of the porosity-forming agent 1p. Therefore, as shown in FIG. 2B, the inorganic particles 1a can be arranged along the periphery of the voids 2h in the composite material sheet 2.
  • the inorganic particles 1a may, for example, form a heat transfer path in the composite material sheet 2 that connects both ends of the composite material sheet 2 in the thickness direction of the composite material sheet 2.
  • the manufacturing apparatus 100 includes a pair of members 20.
  • the pair of members 20 are arranged at a predetermined interval.
  • the fluid 1 is sandwiched between a pair of members 20 and formed to have a second thickness t2.
  • the distance between the pair of members 20 may or may not be constant. As long as the fluid 1 can be formed to have the second thickness t2, the distance between the pair of members 20 may narrow or widen as the fluid 1 passes.
  • the fluid 1 is formed to have a second thickness t2 in a state where it can flow in the plane of the fluid 1 between the pair of members 20.
  • the thickness of the fluid 1 decreases while the fluid 1 flows in the plane of the fluid 1, so that the inorganic particles 1a aggregate along the flat surface in the surface layer 2k of the composite material sheet 2. It is easy to become in a state of
  • the pair of members 20 is not limited to a specific member as long as the fluid 1 can be formed so that the fluid 1 has the second thickness t2.
  • the manufacturing apparatus 100 includes, for example, a transport device 40.
  • the conveyance device 40 conveys the fluid 1 so that the fluid 1 passes between the pair of members 20 .
  • the fluid 1 is molded to have the second thickness t2 while being conveyed between the pair of members 20. Therefore, the productivity of the composite material sheet 2 tends to be high.
  • the manufacturing apparatus 100 includes, for example, a heater 30.
  • the heater 30 heats the fluid 1 when the fluid 1 is between the pair of members 20 or after the fluid 1 passes between the pair of members 20. Thereby, the fluid 1 is heated and the thermosetting resin 1b can be cured.
  • the pair of members 20 includes, for example, a conveying belt 22.
  • the fluid 1 can be heated by a belt 22, for example.
  • the heater 30 is placed in contact with the belt 22.
  • the belt 22 is heated by the heater 30, and the belt 22 further heats the fluid 1.
  • the heater 30 is arranged inside the belt 22, for example.
  • the belt 22 may be made of metal or resin.
  • the molding machine including the belt 22 is, for example, a double belt press machine.
  • the double belt press machine may be a sliding shoe type double belt press machine or a roller type double belt press machine.
  • a pressure block with a built-in heater is placed inside the belt. This pressurizes and heats the belt.
  • the pressure block is fixed and a belt slides on the pressure block.
  • a plurality of pressure blocks may be arranged inside the belt.
  • the temperatures of the plurality of pressurizing blocks may be the same or may be different from each other. For example, some pressurized blocks may be used for cooling.
  • pressure is applied from the inside of the belt using multiple rollers. In this case, the roller itself may have a built-in heater, or the belt may be indirectly heated by another heater.
  • the manufacturing apparatus 100 includes, for example, a supply device 10.
  • the supply device 10 supplies the fluid 1.
  • the fluid 1 having the first thickness t1 is supplied.
  • the fluid 1 is placed on the substrate 3.
  • the fluid 1 is conveyed together with the base material 3 between a pair of members 20 .
  • the feeder 10 feeds the fluid 1 toward the substrate 3, and the fluid 1 is placed on the substrate 3.
  • the pair of members 20 shape the fluid 1 so that it has a second thickness t2 that is smaller than the first thickness t1 when the fluid 1 is supplied from the supply device.
  • the fluid 1 is continuously placed on the base material 3 that is unwound from a rolled body (not shown). Thereby, continuous production of the composite material sheet 2 is possible, and the productivity of the composite material sheet 2 tends to be high.
  • a laminate 5 may be formed by disposing a fluid 1 between a base material 3 and a release sheet 4.
  • a laminate 5 is conveyed between a pair of members 20.
  • the composite material sheet 2 can be protected by the base material 3 and the release sheet 4.
  • the fluid 1 may be placed between the pair of members 20 in a state where it is in contact with at least one of the members 20 .
  • the feeder 10 is not limited to a specific feeder as long as it can feed the fluid 1.
  • the supply device 10 is, for example, a die coater.
  • the fluid 1 is placed on the substrate 3 by die coating. According to such a configuration, the fluid 1 can be placed on the base material 3 with a uniform thickness.
  • the manufacturing apparatus 100 can be modified from various viewpoints.
  • the fluid 1 having a first thickness t1 may be molded to have a second thickness t2 smaller than the first thickness t1, and then the fluid 1 may be heated to harden the thermosetting resin 1b.
  • the inorganic particles 1a tend to aggregate along the flat surface in the surface layer 2k of the composite material sheet 2, and the inorganic particles 1a tend to be arranged at a high density in the surface layer 2k of the composite material sheet 2. Therefore, the thermal conductivity of the surface layer 2k of the composite material sheet 2 tends to increase, and the thermal conductivity of the composite material sheet 2 also tends to increase.
  • the manufacturing apparatus 100 may further include a partition having a dimension equal to or larger than the distance between the pair of members 20, if necessary. Such a partition facilitates suppressing deformation of a portion of the fluid 1 along the gap between the pair of members 20.
  • the manufacturing apparatus 100 may be modified, for example, to a manufacturing apparatus 200 shown in FIG. 4.
  • the manufacturing apparatus 200 is configured in the same manner as the manufacturing apparatus 100 except for parts that are specifically explained. Components of the manufacturing apparatus 200 that are the same as or correspond to those of the manufacturing apparatus 100 are given the same reference numerals, and detailed description thereof will be omitted. The description regarding the manufacturing apparatus 200 also applies to the manufacturing apparatus 100 unless technically contradictory.
  • the pair of members 20 includes a first pair of rollers 24 and a second pair of rollers 25.
  • the fluid 1 is conveyed by a pair of members 20.
  • the second pair of rollers 25 is arranged downstream of the first pair of rollers 24 in the transport direction of the fluid 1.
  • the distance between the rollers in the second pair of rollers 25 is less than or equal to the distance between the rollers in the first pair of rollers 24.
  • the distance between the rollers is the shortest distance between the rollers.
  • the fluid 1 having the first thickness t1 is made to have the second thickness t2 by passing between the first pair of rollers 24 and between the second pair of rollers 25. molded.
  • the distance between the rollers in the second pair of rollers 25 may be smaller than the distance between the rollers in the first pair of rollers 24.
  • the heater 30 is arranged downstream of the second pair of rollers 25, for example. According to such a configuration, the fluid 1 is heated after passing between the pair of members 20.
  • the fluid 1 may be heated by at least one of the first pair of rollers 24 and the second pair of rollers 25, or may not be heated by the first pair of rollers 24 and the second pair of rollers 25. .
  • the composite material sheet 2 may be manufactured using a device other than the manufacturing device 100 and the manufacturing device 200.
  • the composite material sheet 2 may be manufactured, for example, by a method including the following (i), (ii), and (iii).
  • (ii) A predetermined plate is placed on the fluid 1 with a spacer placed between the plate and the base material, and a weight is placed on the plate so that the fluid 1 has the second thickness t2. Let it flow.
  • the laminate of the base material, fluid 1, plate, and weight prepared in (ii) is placed in a heating furnace to harden the thermosetting resin 1b of the fluid 1 to obtain a composite material sheet 2.
  • the reaction solution was heated to 120° C. over 30 minutes. Thereafter, the reaction solution was kept at 120° C. for 1 hour to prepare a styrene resin particle-containing solution. After the liquid containing styrene resin particles was cooled to 95° C., 2 parts by weight of cyclohexane and 7 parts by weight of butane were pressurized into the autoclave as blowing agents. Thereafter, the temperature of this solution was raised to 120°C again. Thereafter, the solution was kept at 120° C. for 1 hour, and then cooled to room temperature to obtain a slurry. Expandable styrene resin particles were obtained by dehydrating, washing, and drying this slurry.
  • the expandable styrene resin particles were sieved to obtain expandable styrene resin particles having a particle diameter of 0.2 mm to 0.3 mm.
  • the expandable styrene resin particles were foamed using a pressure foaming machine (BHP) manufactured by Daikai Kogyo Co., Ltd. to obtain spherical expanded polystyrene beads having an average diameter of 650 ⁇ m to 1200 ⁇ m.
  • the expanded polystyrene beads were passed through a JIS test sieve with nominal openings (JIS Z 8801-1:2019) of 1.18 mm and 1 mm.
  • Example 1 A silicone resin precursor was prepared by mixing agents A and B of DOWSIL SE 1896 FR A/B manufactured by Dow Corporation at a weight ratio of 1:1 as an impregnant. 11.3 parts by weight of this silicone resin precursor was prepared for 1 part by weight of expanded polystyrene beads. Separately, 20 parts by weight of scale-like boron nitride (aspect ratio 20) was prepared for 1 part by weight of expanded polystyrene beads.
  • the fluid according to Example 1 was obtained by adding the above thermosetting resin to a container containing the above composite particles and filling the spaces between the composite particles with the thermosetting resin.
  • a coating film of this fluid was formed by die coating on a base material which is a PET film SS4A (thickness: 50 ⁇ m) manufactured by Nipper Co., Ltd. The thickness of this coating film was 5.0 mm.
  • the above PET film was further layered on top of the coating film to obtain a laminate.
  • the fluid in the laminate was molded to a thickness of 3.0 mm using a sliding shoe type double belt press machine, and the temperature of the belt of the double belt press was adjusted to 100°C to form the thermosetting resin in the fluid. hardened.
  • the heating time of the fluid was 5 minutes. Peel the cured product of the fluid from the base material and release sheet, cut the cured product into predetermined dimensions, and immerse it in acetone for 30 minutes to dissolve the polyethylene beads in the composite particles and remove the polystyrene beads from the cured product. did. Thereafter, the cured product was heated at 90° C. to volatilize acetone to obtain a composite material sheet according to Example 1.
  • the thickness of the composite material sheet according to Example 1 was 3.05 mm.
  • Example 2 A composite material sheet according to Example 2 was produced in the same manner as in Example 1, except that a roller type double belt press machine was used instead of the sliding shoe type double belt press machine.
  • the fluid in the laminate was formed to have a thickness of 3.0 mm using a roller type double belt press machine.
  • the thickness of the composite material sheet according to Example 2 was 3.0 mm.
  • Example 3 Instead of a sliding shoe type double belt press machine, multiple pairs of rollers are used to form the fluid in the laminate to a thickness of 3.0 mm, and then the fluid is heated in a heating furnace to form the fluid.
  • a composite material sheet according to Example 3 was produced in the same manner as in Example 1, except that the thermosetting resin in Example 3 was cured. In molding using multiple pairs of rollers, the fluid passed between the rollers in the multiple pairs of rollers. The distance between the rollers in the most upstream pair of rollers was 3.5 mm, and the distance between the rollers in the most downstream pair of rollers was 3 mm. During heating in the heating furnace, the temperature inside the heating furnace was adjusted to 100°C. The heating time of the fluid was 5 minutes. The thickness of the composite material sheet according to Example 3 was 2.9 mm.
  • thermosetting resin was added to this plastic case and defoamed under reduced pressure.
  • the pressure at this time was -0.08 MPa to -0.09 MPa in gauge pressure.
  • This operation was repeated three times to impregnate the thermosetting resin between the polystyrene beads.
  • the silicone resin was cured by heating at 80° C. for 2 hours to obtain a resin molded product containing polystyrene beads.
  • This resin molded product was cut into predetermined dimensions. By immersing this in acetone for 30 minutes, the polystyrene beads were dissolved and removed from the resin molded product.
  • a composite material sheet according to Comparative Example 1 was produced by heating the resin molded product at 90° C. to volatilize acetone. In the composite material sheet according to Comparative Example 1, the surface layer (skin layer) was not cut.
  • the thickness of the composite material sheet according to Comparative Example 1 was 3.5 mm.
  • Comparative example 2 A composite material sheet according to Comparative Example 2 was produced in the same manner as Comparative Example 1, except that the surface layer (skin layer) of the resin molded product was cut so that the boron nitride was exposed.
  • the thickness of the composite material sheet according to Comparative Example 2 was 3.0 mm.
  • ⁇ Thermal conductivity> In accordance with the American Society for Testing and Materials standard (ASTM) D5470-01 (one-way steady heat flow method), a heat flow meter method was used using a single test specimen and a symmetric configuration method using a thermal conductivity measuring device TCM1001 manufactured by Resca. The thermal conductivity in the thickness direction of the composite material sheet according to each Example and each Comparative Example was measured. Each composite material sheet having a thickness t was cut into a square shape with a side length of 20 mm in plan view to obtain a test piece. Silicone grease SCH-20 manufactured by Sunhayato Co., Ltd. was applied to both main surfaces of the test piece so that the thickness of the silicone grease layer was 100 ⁇ m.
  • the thermal conductivity of the silicone grease was 0.84 W/(m ⁇ K).
  • an upper rod with a heating block adjusted to 110°C and a lower rod with a cooling block adjusted to 20°C was used.
  • a block made of oxygen-free copper was used as the test block.
  • a measurement sample was prepared by sandwiching the test piece between oxygen-free copper blocks with a silicone grease layer in between. This measurement sample was sandwiched between an upper rod and a lower rod. Heat was applied in the thickness direction of the test piece.
  • the temperature difference ⁇ T S between the upper and lower surfaces of the test piece was determined according to the following formulas (1) and (2).
  • ⁇ T C is the temperature difference between the top and bottom surfaces of the oxygen-free copper block (test block).
  • q 1 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at multiple temperature measurement points on the upper rod
  • q 2 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at multiple temperature measurement points on the upper rod. It is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at the temperature measurement point.
  • t b is the sum of the thicknesses of the oxygen-free copper blocks.
  • k b is the thermal conductivity of the block made of oxygen-free copper.
  • the thermal conductivity in the thickness direction of the composite material sheet according to Example was higher than the thermal conductivity in the thickness direction of the composite material sheet according to Comparative Example 1.
  • the ratio S1/S2 in the composite material sheet according to the example was higher than the ratio S1/S2 in the composite material sheet according to comparative example 1.
  • the first aspect of the present invention is A fluid containing a thermosetting resin and inorganic particles and having a first thickness is heated while being molded to have a second thickness smaller than the first thickness to form the thermosetting resin. or curing the thermosetting resin by heating the fluid after shaping the fluid having the first thickness to have a second thickness smaller than the first thickness. , A method of manufacturing a composite material sheet is provided.
  • the second aspect of the present invention is The fluid includes a porosity agent, imparting a porous structure to the composite material sheet with the porosity agent; A method of manufacturing a composite material sheet according to the first aspect is provided.
  • the third aspect of the present invention is the inorganic particles form hollow aggregates in the fluid; A method of manufacturing a composite material sheet according to the first aspect or the second aspect is provided.
  • the fourth aspect of the present invention is kneading the thermosetting resin and the inorganic particles to obtain the fluid; A method of manufacturing a composite material sheet according to any one of the first to third aspects is provided.
  • the fifth aspect of the present invention is The fluid is formed to have the second thickness by being sandwiched between a pair of members arranged at a predetermined interval.
  • a method of manufacturing a composite material sheet according to any one of the first to fourth aspects is provided.
  • the sixth aspect of the present invention is The fluid is formed to have the second thickness in a state where it can flow in the plane of the fluid between the pair of members.
  • a method for manufacturing a composite material sheet according to the fifth aspect is provided.
  • the seventh aspect of the present invention is The fluid is molded to have the second thickness while being conveyed between the pair of members.
  • a method for manufacturing a composite material sheet according to the fifth or sixth aspect is provided.
  • the eighth aspect of the present invention is The pair of members includes a conveyor belt, the fluid is heated by the belt; A method for manufacturing a composite material sheet according to the seventh aspect is provided.
  • the ninth aspect of the present invention is
  • the pair of members includes a first pair of rollers and a second pair of rollers disposed downstream of the first pair of rollers in the conveying direction of the fluid,
  • the distance between the rollers in the second pair of rollers is less than or equal to the distance between the rollers in the first pair of rollers,
  • a method for manufacturing a composite material sheet according to the seventh aspect is provided.
  • the tenth aspect of the present invention is disposing the fluid on a substrate; The fluid is transported between the pair of members together with the base material, A method of manufacturing a composite material sheet according to any one of the seventh to ninth aspects is provided.
  • the eleventh aspect of the present invention is the fluid is disposed on the substrate by die coating; A method for manufacturing a composite material sheet according to the tenth aspect is provided.
  • the twelfth aspect of the present invention is Continuously disposing the fluid on the base material unwound from the rolled body; A method for manufacturing a composite material sheet according to the tenth or eleventh aspect is provided.
  • the thirteenth aspect of the present invention is disposing the fluid between the base material and a release sheet to form a laminate; the laminate is conveyed between the pair of members, A method of manufacturing a composite material sheet according to any one of the tenth to twelfth aspects is provided.
  • the fourteenth aspect of the present invention is a supply device for supplying a fluid containing a thermosetting resin and inorganic particles; a pair of members arranged at a predetermined interval and shaping the fluid supplied from the supply device; a heater that heats the fluid when the fluid is between the pair of members or after the fluid passes between the pair of members, the pair of members shape the fluid so that it has a second thickness smaller than the first thickness when the fluid is supplied from the supply device;
  • a manufacturing device for composite material sheets is provided.
  • the fifteenth aspect of the present invention is comprising a conveyance device that conveys the fluid so as to pass between the pair of members; A manufacturing apparatus for a composite material sheet according to the fourteenth aspect is provided.
  • the sixteenth aspect of the present invention is The pair of members includes a conveyor belt, the heater is placed in contact with the belt; A manufacturing apparatus for a composite material sheet according to the fifteenth aspect is provided.
  • the seventeenth aspect of the present invention is
  • the pair of members includes a first pair of rollers and a second pair of rollers disposed downstream of the first pair of rollers in the conveying direction of the fluid,
  • the distance between the rollers in the second pair of rollers is less than or equal to the distance between the rollers in the first pair of rollers,
  • a manufacturing apparatus for a composite material sheet according to the fifteenth aspect is provided.
  • the eighteenth aspect of the present invention is the supply device is a die coater; A manufacturing apparatus for a composite material sheet according to any one of the fourteenth to seventeenth aspects is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

流動体1に所定の処理がなされて複合材料シート2が製造される。流動体1は、熱硬化性樹脂1b及び無機粒子1aを含んでいる。製造装置100において、第一の厚みt1を有する流動体1が第二の厚みt2を有するように成形されながら流動体1が加熱されて熱硬化性樹脂1bが硬化する。

Description

複合材料シートの製造方法及び複合材料シート用製造装置
 本発明は、複合材料シートの製造方法及び複合材料シート用製造装置に関する。
 従来、無機材料及び熱硬化性樹脂を含む複合材料が知られている。
 例えば、特許文献1には、フィラーと、結合樹脂とを備えた複合材料が記載されている。フィラーは、無機材料からなる鱗片状のフィラーである。結合樹脂は、そのフィラーを結合する熱硬化性樹脂である。この複合材料は、複数のボイドが分散するように形成された発泡材料である。ボイドの内壁には、フィラーの平坦面同士が重なるように、フィラーが集積されている。例えば、フィラー、ポリエステル系樹脂、及びエタノール等の発泡剤が混合されてスラリー状の混合物が調製され、その混合物が金型内に投入されている。金型内の混合物を硬化温度以上で加熱して、ポリエステル系樹脂を発泡させつつ発泡したポリエステル樹脂を硬化させることによって、複合材料が作製されている。
特開2018-109101号公報
 特許文献1に記載の複合材料の製造方法は、高い熱伝導率及び異物の発生防止の観点から再検討の余地を有する。
 そこで、本発明は、高い熱伝導率及び異物の発生防止の観点から有利な複合材料シートの製造方法を提供する。
 本発明は、
 熱硬化性樹脂及び無機粒子を含み、かつ、第一厚みを有する流動体を前記第一厚みよりも小さい第二厚みを有するように成形しながら前記流動体を加熱して前記熱硬化性樹脂を硬化させる、又は、前記第一厚みを有する前記流動体を前記第一厚みよりも小さい第二厚みを有するように成形した後に前記流動体を加熱して前記熱硬化性樹脂を硬化させることを含む、
 複合材料シートの製造方法を提供する。
 また、本発明は、
 熱硬化性樹脂及び無機粒子を含む流動体を供給する供給器と、
 所定の間隔で配置され、前記供給器から供給された前記流動体を成形する一対の部材と、
 前記流動体が前記一対の部材の間にあるとき又は前記流動体が前記一対の部材の間を通過した後に前記流動体を加熱する加熱器と、を備え、
 前記一対の部材は、前記流動体が前記供給器から供給されたときの第一厚みよりも小さい第二厚みを有するように前記流動体を成形する、
 複合材料シート用製造装置を提供する。
 本発明によれば、高い熱伝導率及び異物の発生防止の観点から有利な複合材料シートを製造できる。
図1は、本実施形態における複合材料シートの製造装置及び製造方法の一例を模式的に示す図である。 図2Aは、複合材料シートの表面を模式的に示す平面図である。 図2Bは、図2AのB-B線を切断線とする複合材料シートの断面図である。 図3は、参考例に係る複合材料シートの製造方法を模式的に説明する図面である。 図4は、本実施形態における複合材料シートの製造装置及び製造方法の別の一例を模式的に示す図である。 図5Aは、平面視における実施例1に係る複合材料シートの写真である。 図5Bは、実施例1に係る複合材料シートの断面の写真である。 図6Aは、平面視における比較例1に係る複合材料シートの写真である。 図6Bは、比較例1に係る複合材料シートの写真である。
 以下、本発明の実施形態について図面を参照しながら説明する。以下の説明は、本発明の例示であり、本発明は以下の実施形態に限定されない。
 図1に示す通り、複合材料シート2は、例えば、製造装置100によって製造される。製造装置100において、流動体1に所定の処理がなされて複合材料シート2が製造される。流動体1は、熱硬化性樹脂1b及び無機粒子1aを含んでいる。製造装置100において、第一の厚みt1を有する流動体1が第二の厚みt2を有するように成形されながら流動体1が加熱されて熱硬化性樹脂1bが硬化する。これにより、複合材料シート2が得られる。
 図2A及び図2Bに示す通り、複合材料シート2は、例えば、無機粒子1a及び骨格部2sを含む。骨格部2sは、熱硬化性樹脂1bの硬化物を含む。複合材料シート2の製造において、第一の厚みt1を有する流動体1が第二の厚みt2を有するように成形されるので、無機粒子1aが複合材料シート2の表層2kにおいて平坦面に沿って凝集した状態になりやすく、複合材料シート2の表層2kに無機粒子1aが高い密度で配置されやすい。このため、複合材料シート2の表層2kにおける熱伝導率が高くなりやすく、複合材料シート2の熱伝導率も高くなりやすい。
 複合材料シート2の平面視において、複合材料シート2の表層2kの面積S2に対する、その表層2kにおいて無機粒子1aが存在する部分の面積S1の比S1/S2は、特定の値に限定されない。例えば、比S1/S2は15%以上である。これにより、複合材料シート2の表層2kにおける熱伝導率が高くなりやすい。比S1/S2は、20%以上であってもよく、25%以上であってもよい。比S1/S2は、例えば80%以下である。
 図3は、参考例に係る複合材料シート7の製造方法を模式的に示す。複合材料シート7は、特に説明する部分を除き、複合材料シート2と同様に構成されている。複合材料シート7は、予備シート7aの表層を切断して無機粒子1aを露出させることによって得られる。予備シート7aは、例えば、所定の金型の内部に無機粒子1aが添着された複合粒子を敷き詰めた状態で複合粒子同士の隙間を熱硬化性樹脂1bで充填し、その熱硬化性樹脂1bを硬化することによって作製される。予備シート7aの表層の切断により、複合材料シート7の表面には無機粒子1aが高い密度で存在しやすく、複合材料シート7の表面における熱伝導率が高くなりやすい。しかし、このような製造方法によれば、複合材料シート7の表面における無機粒子1aが強固に固定されているとは言い難く、無機粒子1aが複合材料シート7の表面から脱離して異物が発生しやすい。
 一方、複合材料シート2の製造方法によれば、表層2kの切断を伴わずに、複合材料シート2の表層2kに無機粒子1aが高い密度で配置されやすい。このため、複合材料シート2の表層2kに無機粒子1aが高い密度で存在していても、複合材料シート2の表面から無機粒子1aが脱離しにくい。このため、複合材料シート2では、異物が発生しにくい。
 厚みt1及び厚みt2は、t1>t2の関係を満たす限り、特定の値に限定されない。厚みt1は、例えば0.5mm以上であり、1mm以上であってもよく、3mm以上であってもよい。厚みt1は、例えば30mm以下であり、20mm以下であってもよく、10mm以下であってもよい。厚みt2は、例えば0.1mm以上であり、0.5mm以上であってもよく、1mm以上であってもよい。厚みt2は、例えば20mm以下であり、10mm以下であってもよく、5mm以下であってもよい。複合材料シート2の厚みは、例えば、厚みt2と同じである。複合材料シート2の厚みは、厚みt2の90%~110%であってもよい。
 流動体1を加熱するときに、流動体1の周囲の温度は熱硬化性樹脂1bの硬化温度以上に保たれる。流動体1の加熱時間は、熱硬化性樹脂1bが硬化可能である限り特定の値に限定されない。流動体1の加熱時間は、熱硬化性樹脂1bの種類及び添加剤によって左右される。その加熱時間は、例えば10秒間以上1時間以下である。
 無機粒子1aは特定の粒子に限定されない。無機粒子1aは、例えば、熱硬化性樹脂1bの硬化物の熱伝導率よりも高い熱伝導率を有する。無機粒子1aに含まれる無機材料の例は、六方晶窒化ホウ素(h‐BN)、アルミナ、結晶性シリカ、非晶性シリカ、窒化アルミニウム、酸化マグネシウム、炭素繊維、銀、銅、アルミニウム、炭化ケイ素、黒鉛、酸化亜鉛、窒化ケイ素、炭化ケイ素、立方晶窒化ホウ素(c‐BN)、べリリア、ダイヤモンド、カーボンブラック、グラフェン、カーボンナノチューブ、カーボンファイバー、及び水酸化アルミニウムである。流動体1及び複合材料シート2における無機粒子1aの種類は1種類のみであってもよいし、流動体1及び複合材料シート2において2種類以上の無機粒子1aが組み合わせられて用いられてもよい。
 無機粒子1aの形状は、特定の形状に限定されない。その形状の例は、球形状、ロッド状(短繊維状を含む)、鱗片状、及び針状である。
 無機粒子1aのアスペクト比は特定の値に限定されない。無機粒子1aのアスペクト比は、例えば50未満であり、40以下であってもよく、30以下であってもよい。無機粒子1aのアスペクト比は、1であってもよく、2以上であってもよく、3以上であってもよい。アスペクト比は、無機粒子1aの投影面積が最大となる方向から無機粒子1aを見たときの、粒子の最小径に対する粒子の最大径の比(最大径/最小径)である。
 無機粒子1aの平均粒径は、特定の値に限定されない。無機粒子1aの平均粒径は、例えば0.05μm~100μmであり、0.1μm~50μmであってもよく、0.1μm~30μmであってもよく、0.5~10μmであってもよい。「平均粒径」は、例えば、レーザー回折散乱法によって求めることができる。平均粒径は、例えば、マイクロトラック・ベル社製の粒度分布計(マイクロトラックMT3300EXII)を用いて、頻度が体積基準の分率で示される粒度分布曲線より求められる、50%累積値(メディアン径)d50である。
 無機粒子1aの形状は、例えば、走査型電子顕微鏡(SEM)等を用いた観察によって決定できる。例えば、アスペクト比(最大径/最小径)が1.0以上1.7未満、特に1.0以上1.5以下、さらには1.0以上1.3以下であって、輪郭の少なくとも一部、特に実質的に全部が弧状の曲線である場合、無機粒子1aは、球形状であると判断できる。
 無機粒子1aが球形状である場合、無機粒子1aの平均粒径は、例えば0.1μm~50μmであり、0.1μm~10μmであってもよく、0.5μ~5μmであってもよい。無機粒子1aが鱗片状である場合、無機粒子1aの平均粒径は、例えば0.1μm~20μmであり、0.5μm~15μmであってもよい。加えて、無機粒子1aの平均厚さは、例えば0.05μm~1μmであり、0.08μm~0.5μmであってもよい。平均厚さは、SEMを用いて任意の50個の無機粒子1aの厚さを測定し、その算術平均値を求めることによって決定できる。無機粒子1aがロッド状である場合、無機粒子1aの最小径(通常は短軸長さ)は、例えば、0.01μm~10μmであり、0.05μm~1μmであってもよい。また、無機粒子1aの最大径(通常は長軸長さ)は、例えば、0.1μm~20μmであり、0.5μ~10μmであってもよい。無機粒子1aのサイズがこのような範囲であれば、複数の無機粒子1aによって複合材料シート2の厚み方向に伝熱路が形成されやすい。
 複合材料シート2における無機粒子1aの含有量は、特定の値に限定されない。複合材料シート2における無機粒子1aの含有量は、例えば10質量%~80質量%であり、10質量%~70質量%であってもよく、10質量%~55質量%であってもよい。複合材料シート2における無機粒子1aの含有量は、例えば1体積%~50体積%であり、2体積%~45体積%であってもよく、5体積%~40体積%であってもよく、5体積%~30体積%であってもよい。無機粒子1aの含有量の調節により、複合材料シート2は高い熱伝導性能及び所望の剛性を有しうる。
 複合材料シート2における無機粒子1aの質量基準の含有量は、例えば、複合材料シート2から無機粒子1a以外の材料を除去して求めることができる。例えば、複合材料シート2から無機粒子1a以外の材料を焼失させる。精度の高い測定とするために、無機粒子の含有量は、元素分析を用いて決定してもよい。例えば、複合材料シート2に酸を加え、マイクロ波を照射し、複合材料シート2を加圧酸分解する。酸は、例えば、フッ酸、濃硫酸、濃塩酸、及び王水等を使用できる。加圧酸分解して得られた溶液について、誘導結合プラズマ発光分光分析法(ICP‐AES)を用いて元素を分析する。その結果に基づいて、複合材料シート2における質量基準の無機粒子1aの含有量を求めることができる。
 複合材料シート2における体積基準の無機粒子1aの含有量は、複合材料シート2に含まれている無機粒子1aの質量及び密度と、複合材料シート2の体積及び空隙率とから求めることができる。具体的には、無機粒子1aの質量と密度とから、複合材料シート2における無機粒子1aの体積Aを算出する。これとは別に、複合材料シート2の空隙率に基づいて、空隙の体積を含まない複合材料シート2の体積Bを算出する。複合材料シート2における体積基準の無機粒子1aの含有量は、(A/B)×100の関係に基づいて決定できる。
 無機粒子1aの密度は、例えば、複合材料シート2を電気炉における高温加熱によって有機材料を焼失させ、残った無機粒子1aについて、日本産業規格(JIS) R 1628:1997又はJIS Z 2504:2012に準拠して求めることができる。
 熱硬化性樹脂1bは、特定の樹脂に限定されない。熱硬化性樹脂1bの例は、フェノール樹脂、尿素樹脂、メラミン樹脂、ジアリルフタレート樹脂、ポリエステル樹脂、エポキシ樹脂、アニリン樹脂、シリコーン樹脂、フラン樹脂、ポリウレタン樹脂、アルキルベンゼン樹脂、グアナミン樹脂、キシレン樹脂、及びイミド樹脂である。熱硬化性樹脂1bの硬化温度は、例えば、25℃~160℃である。
 複合材料シート2の製造において、流動体1を調製する方法は特定の方法に限定されない。例えば、熱硬化性樹脂1b及び無機粒子1aを混錬して流動体1が得られる。もしくは、無機粒子1a同士の隙間に熱硬化性樹脂1bを浸透させて、流動体1が得られてもよい。このため、流動体1において無機粒子1aが均一に分散している。このため、複合材料シート2の面内において複合材料シート2の熱伝導率がばらつきにくい。
 複合材料シート2の製造において、流動体1は、例えば、多孔化剤1pを含む。多孔化剤1pによって、複合材料シート2に多孔構造が付与される。例えば、図2Bに示す通り、複合材料シート2は、例えば空隙2hを有する。これにより、複合材料シート2が軽くなりやすい。加えて、複合材料シート2が少ない外力で変形しやすい。
 多孔化剤1pは、複合材料シート2に多孔構造を付与しうる限り、特定の多孔化剤に限定されない。多孔化剤1pは、例えば、特定の溶剤に溶解する。多孔化剤1pは、加熱によって蒸発、軟化、又は熱分解してもよい。複合材料シート2の製造において、多孔化剤1pは、収縮又は除去されてもよい。例えば、複合材料シート2の製造において、多孔化剤1pは、特定の溶媒との接触又は加熱によって収縮又は除去されうる。複合材料シート2において収縮した多孔化剤1pが残っていてもよい。
 多孔化剤1pは、中空構造を有していてもよいし、中実構造を有していてもよい。多孔化剤1pは、中空の樹脂粒子であってもよい。この場合、加熱処理により樹脂粒子を構成する樹脂が軟化して中空部が消失又は収縮し、それに応じて空隙2hが形成されうる。多孔化剤1pは、中実の樹脂粒子であってもよい。この場合、多孔化剤1pが特定の溶媒に接触することにより、多孔化剤1pが溶媒に溶解し、空隙2hが形成されうる。中空又は中実の樹脂粒子に含まれる樹脂の例は、例えば、ポリスチレン(PS)、ポリエチレン(PE)、ポリメタクリル酸メチル(PMMA)、エチレン酢酸ビニル共重合体(EVA)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、エチレン・プロピレン・ジエンゴム(EPDM)、熱可塑性エラストマー(TPE)、及びポリビニルアルコール(PVA)である。
 図1に示す通り、無機粒子1aは、例えば、流動体1において中空な凝集物をなしている。換言すると、無機粒子1aの凝集物の内部に空孔1hが形成されている。無機粒子1aは、空孔1hを覆うように空孔1hの周囲で凝集している。例えば、流動体1において複数の凝集物が分散している。
 無機粒子1aは、例えば、多孔化剤1pの外面を覆うように多孔化剤1pの周囲で凝集している。このため、図2Bに示す通り、複合材料シート2において空隙2hの周縁に沿って無機粒子1aが配置されうる。無機粒子1aは、例えば、複合材料シート2において、複合材料シート2の厚み方向において複合材料シート2の両端同士を連なる伝熱路を形成していてもよい。
 図1に示す通り、製造装置100は、一対の部材20を備えている。一対の部材20は、所定の間隔で配置されている。複合材料シート2の製造において、流動体1は、一対の部材20の間に挟まれることによって第二厚みt2を有するように成形される。一対の部材20の間隔は、一定であってもよいし、一定でなくてもよい。第二厚みt2を有するように流動体1を成形できる限り、一対の部材20の間隔は、流動体1の通過に伴って狭まってもよいし、広がってもよい。
 流動体1は、例えば、一対の部材20の間で流動体1の面内において流動可能な状態で第二厚みt2を有するように成形される。このような構成によれば、流動体1の面内において流動体1が流動しつつ流動体1の厚みが小さくなるので、無機粒子1aが複合材料シート2の表層2kにおいて平坦面に沿って凝集した状態になりやすい。
 一対の部材20は、流動体1が第二厚みt2を有するように流動体1を成形できる限り、特定の部材に限定されない。図1に示す通り、製造装置100は、例えば、搬送装置40を備えている。搬送装置40は、流動体1が一対の部材20の間を通過するように流動体1を搬送する。これにより、複合材料シート2の製造において、流動体1は一対の部材20の間を搬送されながら第二厚みt2を有するように成形される。このため、複合材料シート2の生産性が高くなりやすい。
 製造装置100は、例えば、加熱器30を備えている。加熱器30は、流動体1が一対の部材20の間にあるとき又は流動体1が一対の部材20の間を通過した後に流動体1を加熱する。これにより、流動体1が加熱され、熱硬化性樹脂1bが硬化しうる。
 図1に示す通り、一対の部材20は、例えば、搬送用のベルト22を含む。このような構成によれば、複合材料シート2の厚みが均一になりやすい。流動体1は、例えば、ベルト22によって加熱されうる。例えば、加熱器30は、ベルト22に接して配置されている。加熱器30によってベルト22が加熱され、ベルト22がさらに流動体1を加熱する。加熱器30は、例えば、ベルト22の内側に配置されている。ベルト22は、金属製であってもよいし、樹脂製であってもよい。
 製造装置100において、ベルト22を含む成形機は、例えば、ダブルベルトプレス機である。ダブルベルトプレス機は、スライディングシュー式のダブルベルトプレス機であってもよいし、ローラー式のダブルベルトプレス機であってもよい。スライディングシュー式のダブルベルトプレス機では、例えば、ベルトの内側にヒータ内蔵の加圧ブロックが配置されている。これにより、ベルトが加圧及び加熱される。加圧ブロックは固定されており、ベルトが加圧ブロックを摺動する。スライディングシュー式のダブルベルトプレス機において、ベルトの内側に複数の加圧ブロックが配置されていてもよい。複数の加圧ブロックの温度は、同じ温度であってもよいし、互いに異なる温度であってもよい。例えば、一部の加圧ブロックが冷却のために用いられてもよい。ローラー式のダブルベルトプレス機では、複数のローラーでベルトの内側から加圧がなされる。この場合、ローラー自体にヒータが内蔵されていてもよいし、別のヒータによってベルトが間接的に加熱されてもよい。
 図1に示す通り、製造装置100は、例えば、供給器10を備えている。供給器10は、流動体1を供給する。これにより、第一厚みt1を有する流動体1が供給される。複合材料シート2の製造において、例えば、流動体1が基材3上に配置される。流動体1は、基材3とともに一対の部材20の間に搬送される。例えば、供給器10は、流動体1を基材3に向かって供給し、流動体1が基材3上に配置される。
 図1に示す通り、一対の部材20は、流動体1が供給器から供給されたときの第一厚みt1よりも小さい第二厚みt2を有するように流動体1を成形する。
 複合材料シート2の製造において、巻回体(図示省略)から繰り出された基材3上に流動体1が連続的に配置される。これにより、複合材料シート2の連続的な製造が可能であり、複合材料シート2の生産性が高くなりやすい。
 図1に示す通り、例えば、複合材料シート2の製造において、基材3とはく離シート4との間に流動体1を配置して積層体5が形成されてもよい。積層体5が一対の部材20の間に搬送される。この場合、基材3及びはく離シート4によって複合材料シート2が保護されうる。
 複合材料シート2の製造において、基材3のみが用いられてもよいし、基材3及びはく離シート4の両方が用いられなくてもよい。この場合、流動体1は、一対の部材20の少なくとも一方に接触した状態で一対の部材20の間に配置されうる。
 供給器10は、流動体1を供給できる限り、特定の供給器に限定されない。供給器10は、例えば、ダイコーターである。この場合、複合材料シート2の製造において、流動体1はダイコーティングによって基材3上に配置される。このような構成によれば、流動体1が均一な厚みで基材3上に配置されうる。
 製造装置100は、様々な観点から変更可能である。例えば、第一厚みt1を有する流動体1を第一厚みt1よりも小さい第二厚みt2を有するように成形した後に流動体1を加熱して熱硬化性樹脂1bを硬化させてもよい。この場合も、無機粒子1aが複合材料シート2の表層2kにおいて平坦面に沿って凝集した状態になりやすく、複合材料シート2の表層2kに無機粒子1aが高い密度で配置されやすい。このため、複合材料シート2の表層2kにおける熱伝導率が高くなりやすく、複合材料シート2の熱伝導率も高くなりやすい。
 製造装置100は、必要に応じて、一対の部材20の間隔以上の寸法を有する仕切りをさらに備えていてもよい。このような仕切りにより、一対の部材20の間隙に沿って流動体1の一部が変形することを抑制しやすい。
 製造装置100は、例えば、図4に示す製造装置200のように変更されてもよい。製造装置200は、特に説明する部分を除き、製造装置100と同様に構成されている。製造装置100の構成要素と同一又は対応する製造装置200の構成要素には同一の符号を付し、詳細な説明を省略する。製造装置200に関する説明は、技術的に矛盾しない限り、製造装置100にも当てはまる。
 図4に示す通り、製造装置200において、一対の部材20は、第一対のローラー24と、第二対のローラー25とを含んでいる。製造装置200において、一対の部材20によって流動体1が搬送される。第二対のローラー25は、流動体1の搬送方向において第一対のローラー24の下流に配置されている。第二対のローラー25におけるローラー間の距離は、第一対のローラー24におけるローラー間の距離以下である。ローラー間の距離は、ローラー同士の最短距離である。このような構成によれば、第一厚みt1を有する流動体1は、第一対のローラー24の間及び第二対のローラー25の間を通過することによって、第二厚みt2を有するように成形される。第二対のローラー25におけるローラー間の距離は、第一対のローラー24におけるローラー間の距離よりも小さくてもよい。
 製造装置200において、加熱器30は、例えば、第二対のローラー25の下流に配置されている。このような構成によれば、流動体1は、一対の部材20の間を通過した後に加熱される。流動体1は、第一対のローラー24及び第二対のローラー25の少なくとも1つによって加熱されてもよいし、第一対のローラー24及び第二対のローラー25によって加熱されなくてもよい。
 複合材料シート2は、製造装置100及び製造装置200以外の装置を用いて製造されてもよい。複合材料シート2は、例えば、以下の(i)、(ii)、(iii)を含む方法によって製造されてもよい。
(i)所定の基材上に第一厚みt1で流動体1を供給する。
(ii)プレートと基材との間にスペーサーを配置した状態で流動体1上に所定のプレートを配置し、プレートの上に重しを載せて流動体1が第二厚みt2を有するように流動させる。
(iii)(ii)で準備した基材、流動体1、プレート、及び重しの積層物を加熱炉に入れて流動体1の熱硬化性樹脂1bを硬化させ、複合材料シート2を得る。
 実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。
 (ポリスチレンビーズの作製)
 純水100重量部、リン酸三カルシウム0.2重量部、及びドデシルベンゼンスルホン酸ナトリウム0.01重量部を、撹拌機が付属されているオートクレーブに加えた。このオートクレーブに、開始剤としてベンゾイルパーオキサイド0.15重量部及び1,1‐ビス(t‐ブチルパーオキシ)シクロヘキサン0.25重量部を加えて混合液を作製した。混合液を350回転/分で撹拌しながら、スチレンモノマー100重量部を加えた。その後、この溶液を98℃まで昇温させることによって重合反応を実施した。重合反応が約80%終了したとき、反応溶液を30分間かけて120℃まで昇温させた。その後、反応溶液を120℃で1時間保温して、スチレン樹脂粒子含有液を作製した。スチレン樹脂粒子含有液を95℃まで冷却した後、発泡剤としてシクロヘキサン2重量部及びブタン7重量部をオートクレーブに圧入した。その後、この溶液を再度120℃まで昇温させた。その後、溶液を120℃で1時間保温した後、室温まで冷却することによって、スラリーを得た。このスラリーを脱水、洗浄、及び乾燥させることによって、発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子をふるいにかけて、粒子径が0.2mm~0.3mmの発泡性スチレン樹脂粒子を得た。大開工業社製の加圧式発泡機(BHP)を用いてこの発泡性スチレン樹脂粒子を発泡させ、650μm~1200μmの平均径を有する球形状の発泡ポリスチレンビーズを得た。この発泡ポリスチレンビーズを、公称目開き(JIS Z 8801-1:2019)が1.18mm及び1mmであるJIS試験用ふるいにかけた。このとき、公称目開きが1.18mmのふるいを通過し、かつ、公称目開きが1mmのふるいを通過しなかった発泡ポリスチレンビーズを各複合材料シートの作製に用いた。この発泡ポリスチレンビーズの嵩密度は、0.025g/cm3であった。
 (実施例1)
 添着剤として、ダウ社製のDOWSIL SE 1896 FR A/BのA剤及びB剤を1:1の重量比で混合して、シリコーン樹脂前駆体を調製した。このシリコーン樹脂前駆体を、発泡ポリスチレンビーズ1重量部に対して11.3重量部準備した。これとは別に、発泡ポリスチレンビーズ1重量部に対して、鱗片状の窒化ホウ素(アスペクト比20)を20重量部準備した。
 カワタ社製の高速流動混合機(SMP-2)に、前述の球形状の発泡ポリスチレンビーズ1重量部を加えた。次に、上記したシリコーン樹脂前駆体を0.3重量部加えて混合物を1000回転/分で1分撹拌させた。この混合物に、残りのシリコーン樹脂前駆体と上記した窒化ホウ素とを同時に、かつシリコーン樹脂前駆体と窒化ホウ素とを均等な質量で30分間かけて添加しながら、上記した混合機を用いて、1000回転/分で撹拌を行った。この操作により、発泡ポリスチレンビーズが、シリコーン樹脂前駆体を介して窒化ホウ素で被覆された発泡ポリスチレンビーズを得た。このポリスチレンビーズを80℃の恒温槽にて2時間加熱して、シリコーン樹脂を硬化させることで、窒化ホウ素で被覆されたポリスチレンビーズ(複合粒子)を得た。
 熱硬化性樹脂として、ダウ社製のDOWSIL SE 1817 CV MのA剤及びB剤と、信越シリコーン社製のシリコーンオイルKF‐96‐10000CSと、信越シリコーン社製の反応促進剤CAT‐PL‐56を使用した。A剤、B剤、シリコーンオイル、及び反応促進剤を、A剤の質量:B剤の質量:シリコーンオイルの質量:反応促進剤の質量=35:35:29.5:0.5の関係が満たされるように混合して、熱硬化性樹脂を作製した。
 上記の複合粒子が入った容器に上記の熱硬化性樹脂を加え、複合粒子間に熱硬化性樹脂を充填することで、実施例1に係る流動体を得た。流動体における複合粒子と熱硬化性樹脂の配合は、複合粒子の嵩体積:熱硬化樹脂の体積=100:45の関係を満たしていた。ニッパ社製のPETフィルムSS4A(厚み50μm)である基材上にダイコーティングによってこの流動体の塗膜を形成した。この塗膜の厚みは5.0mmであった。塗膜の上に上記のPETフィルムをさらに重ねて積層体を得た。スライディングシュー式のダブルベルトプレス機によって積層体における流動体を3.0mmの厚みを有するように成形し、ダブルベルトプレス機のベルトの温度を100℃に調節して流動体における熱硬化性樹脂を硬化させた。流動体の加熱時間は5分間であった。基材及び剥離シートから流動体の硬化物を剥離させ、この硬化物を所定の寸法に切断して、アセトンに30分間浸漬させ、複合粒子におけるポリエチレンビーズを溶解させ、硬化物からポリスチレンビーズを除去した。その後、硬化物を90℃で加熱してアセトンを揮発させ、実施例1に係る複合材料シートを得た。実施例1に係る複合材料シートの厚みは3.05mmであった。
 (実施例2)
 スライディングシュー式のダブルベルトプレス機の代わりに、ローラー式のダブルベルトプレス機を用いた以外は、実施例1と同様にして実施例2に係る複合材料シートを作製した。ローラー式のダブルベルトプレス機によって積層体における流動体は3.0mmの厚みを有するように成形された。実施例2に係る複合材料シートの厚みは3.0mmであった。
 (実施例3)
 スライディングシュー式のダブルベルトプレス機の代わりに、複数対のローラーを用いて、積層体における流動体を3.0mmの厚みを有するように成形し、その後加熱炉において流動体を加熱して流動体における熱硬化性樹脂を硬化させたこと以外は、実施例1と同様にして実施例3に係る複合材料シートを作製した。複数対のローラーを用いた成形において、流動体は複数対のローラーにおけるローラー同士の間で通過した。最上流の一対のローラーにおけるローラー間の距離は3.5mmであり、最下流の別の対のローラーにおけるローラー間の距離は3mmであった。加熱炉における加熱において、加熱炉の内部の温度は100℃に調節された。流動体の加熱時間は5分間であった。実施例3に係る複合材料シートの厚みは2.9mmであった。
 (比較例1)
 上記の複合粒子を内径95mm×95mm×3.5mmのプラスチックケースに充填し、プラスチックケースに吉田隆ステンレス社製の平織金網(直径:0.18mm、50メッシュ)を敷き、さらにその上に、ステンレス製パンチングメタル(直径:5mm、厚さ:1mm、ピッチ:8mm)を敷き、ステンレス製パンチングメタルをクランプで固定した。
 このプラスチックケースに前述の熱硬化性樹脂を加え、減圧脱泡させた。このときの圧力は、ゲージ圧で、-0.08MPa~-0.09MPaであった。この操作を3回繰り返して、ポリスチレンビーズ間に、熱硬化性樹脂を含浸させた。次に80℃で2時間加熱することによってシリコーン樹脂を硬化させて、ポリスチレンビーズが内包された樹脂成形品を得た。この樹脂成形品を所定の寸法に切断した。これを30分、アセトンに浸漬させることで、ポリスチレンビーズを溶解させ、樹脂成形品からポリスチレンビーズを除去した。その後、樹脂成形品を90℃で加熱してアセトンを揮発させることで、比較例1に係る複合材料シートを作製した。比較例1に係る複合材料シートでは、表層(スキン層)のカットは行わなかった。比較例1に係る複合材料シートの厚みは3.5mmであった。
 (比較例2)
 窒化ホウ素が露出するように樹脂成型品の表層(スキン層)をカットした以外は、比較例1と同様にして、比較例2に係る複合材料シートを作製した。比較例2に係る複合材料シートの厚みは3.0mmであった。
 <熱伝導率>
 米国材料試験協会規格(ASTM) D5470-01(一方向熱流定常法)に準拠して、レスカ社製の熱伝導率測定装置TCM1001を用いて、試験体1枚及び対称構成方式にて熱流計法により各実施例及び各比較例に係る複合材料シートの厚さ方向の熱伝導率を測定した。厚さtを有する各複合材料シートを平面視で1辺の長さが20mmの正方形状に切断し、試験片を得た。試験片の主面の両面に、サンハヤト社製のシリコーングリース SCH-20を、シリコーングリース層の厚さが100μmになるように塗布した。、シリコーングリースの熱伝導率は0.84W/(m・K)であった。標準ロッドとして、110℃に調整される加熱ブロックを有する上部ロッド及び20℃に調整される冷却ブロックを有する下部ロッドを使用した。試験ブロックとして、無酸素銅製のブロックを使用した。試験片を、シリコーングリース層を介して無酸素銅製のブロックで挟んで測定試料を作製した。この測定試料を、上部ロッドと下部ロッドとの間に挟んだ。試験片の厚み方向に熱を流した。
 試験片の上面及び下面の間の温度差ΔTSを下記式(1)及び(2)に従って決定した。式(1)及び(2)において、ΔTCは、無酸素銅製のブロック(試験ブロック)の上面及び下面の間の温度差である。加えて、q1は、上部ロッドの複数の測温点における温度差に基づいて算出される温度勾配によって決定される熱流束[W/m2]であり、q2は、下部ロッドの複数の測温点における温度差に基づいて算出される温度勾配によって決定される熱流束[W/m2]である。tbは、無酸素銅製のブロックの厚みの和である。kbは、無酸素銅製のブロックの熱伝導率である。
 ΔTS=ΔTC-(qS×tb)/kb   式(1)
 qS=(q1+q2)/2   式(2)
 試験片の厚み方向における熱伝導率λ[W/(m・K)]を、下記式(3)に従って決定した。結果を表1に示す。なお、試験片の厚さtは、カメラを用いた測定により行った。
 λ=qS×t/ΔTS   式(3)
 <観察>
 各実施例及び各比較例に係る複合材料シートの一方の主面をカメラで撮影し、平面視における各複合材料シートの写真を得た。平面視における実施例1及び比較例1に係る複合材料シートの写真をそれぞれ図5A及び図6Aに示す。また、キーエンス社製の顕微鏡デジタルマイクロスコープVHX-7000を用いて、各実施例及び各比較例に係る複合材料シートの断面を観察した。実施例1に係る複合材料シートの断面の写真及び比較例1に係る複合材料シートの断面の写真を、それぞれ、図5B及び図6Bに示す。
 平面視における各複合材料シートの写真から、複合材料シートの表層の面積S2に対する、その表層において窒化ホウ素が占める面積S1の比S1/S2を求めた。結果を表1に示す。図5A及び図6Aに示す通り、複合材料シートの表層において窒化ホウ素が占める部分は、写真において白みがかっており、他の部分と明確に区別できた。
 <窒化ホウ素の剥離試験>
 各実施例及び各比較例に係る複合材料シートを大榮歯科産業社製の卓上バイブレーターAngel Vibrator Digitalを用いて、振動レベル6で振とうさせた。その後、複合材料シートから窒化ホウ素の粒子が剥離したか否かを目視にて確認した。複合材料シートから窒化ホウ素の粒子の剥離が確認できなかった場合「無」と評価した。複合材料シートから窒化ホウ素の粒子の剥離が確認できた場合「有」と評価した。結果を表1に示す。
 表1に示す通り、実施例に係る複合材料シートの厚み方向における熱伝導率は、比較例1に係る複合材料シートの厚み方向における熱伝導率よりも高かった。加えて、実施例に係る複合材料シートにおける比S1/S2は、比較例1に係る複合材料シートにおける比S1/S2より高かった。
 図5Bに示す通り、実施例1に係る複合材料シートの表層において、窒化ホウ素が平坦面に沿って凝集していることが確認された。他の実施例に係る複合材料シートにおいても同様の状態が確認された。一方、図6Bに示す通り、比較例1に係る複合材料シートの表層では、窒化ホウ素が丸みを帯びて凝集していた。このような、実施例及び比較例1に係る複合材料シートの複合材料シートの表層における窒化ホウ素の凝集の態様の違いが、両者の熱伝導率及び比S1/S2の相違につながったのではないかと考えられる。
 表1に示す通り、各実施例に係る複合材料シートにおいて窒化ホウ素の剥離は確認されなかった。一方、比較例2に係る複合材料シートでは、窒化ホウ素の剥離が確認された。
Figure JPOXMLDOC01-appb-T000001
 本発明の第1側面は、
 熱硬化性樹脂及び無機粒子を含み、かつ、第一厚みを有する流動体を前記第一厚みよりも小さい第二厚みを有するように成形しながら前記流動体を加熱して前記熱硬化性樹脂を硬化させる、又は、前記第一厚みを有する前記流動体を前記第一厚みよりも小さい第二厚みを有するように成形した後に前記流動体を加熱して前記熱硬化性樹脂を硬化させることを含む、
 複合材料シートの製造方法を提供する。
 本発明の第2側面は、
 前記流動体は多孔化剤を含み、
 前記多孔化剤によって前記複合材料シートに多孔構造を付与することを含む、
 第1側面に係る複合材料シートの製造方法を提供する。
 本発明の第3側面は、
 前記無機粒子は、前記流動体において中空な凝集物をなしている、
 第1側面又は第2側面に係る複合材料シートの製造方法を提供する。
 本発明の第4側面は、
 前記熱硬化性樹脂及び前記無機粒子を混錬して前記流動体を得ることを含む、
 第1側面~第3側面のいずれか1つに係る複合材料シートの製造方法を提供する。
 本発明の第5側面は、
 前記流動体は、所定の間隔で配置された一対の部材の間に挟まれることによって前記第二厚みを有するように成形される、
 第1側面~第4側面のいずれか1つに係る複合材料シートの製造方法を提供する。
 本発明の第6側面は、
 前記流動体は、前記一対の部材の間で前記流動体の面内において流動可能な状態で前記第二厚みを有するように成形される、
 第5側面に係る複合材料シートの製造方法を提供する。
 本発明の第7側面は、
 前記流動体は、前記一対の部材の間を搬送されながら前記第二厚みを有するように成形される、
 第5側面又は第6側面に係る複合材料シートの製造方法を提供する。
 本発明の第8側面は、
 前記一対の部材は、搬送用のベルトを含み、
 前記流動体は、前記ベルトによって加熱される、
 第7側面に係る複合材料シートの製造方法を提供する。
 本発明の第9側面は、
 前記一対の部材は、第一対のローラーと、前記流動体の搬送方向において前記第一対のローラーの下流に配置されている第二対のローラーとを含み、
 前記第二対のローラーにおけるローラー間の距離は、前記第一対のローラーにおけるローラー間の距離以下である、
 第7側面に係る複合材料シートの製造方法を提供する。
 本発明の第10側面は、
 前記流動体を基材上に配置することを含み、
 前記流動体は、前記基材とともに前記一対の部材の間を搬送される、
 第7側面~第9側面のいずれか1つに係る複合材料シートの製造方法を提供する。
 本発明の第11側面は、
 前記流動体はダイコーティングによって前記基材上に配置される、
 第10側面に係る複合材料シートの製造方法を提供する。
 本発明の第12側面は、
 巻回体から繰り出された前記基材上に前記流動体を連続的に配置する、
 第10側面又は第11側面に係る複合材料シートの製造方法を提供する。
 本発明の第13側面は、
 前記基材とはく離シートとの間に前記流動体を配置して積層体を形成し、
 前記積層体が前記一対の部材の間に搬送される、
 第10側面~第12側面のいずれか1つに係る複合材料シートの製造方法を提供する。
 本発明の第14側面は、
 熱硬化性樹脂及び無機粒子を含む流動体を供給する供給器と、
 所定の間隔で配置され、前記供給器から供給された前記流動体を成形する一対の部材と、
 前記流動体が前記一対の部材の間にあるとき又は前記流動体が前記一対の部材の間を通過した後に前記流動体を加熱する加熱器と、を備え、
 前記一対の部材は、前記流動体が前記供給器から供給されたときの第一厚みよりも小さい第二厚みを有するように前記流動体を成形する、
 複合材料シート用製造装置を提供する。
 本発明の第15側面は、
 前記一対の部材の間を通過するように前記流動体を搬送する搬送装置を備えた、
 第14側面に係る複合材料シート用製造装置を提供する。
 本発明の第16側面は、
 前記一対の部材は、搬送用のベルトを含み、
 前記加熱器は前記ベルトに接して配置されている、
 第15側面に係る複合材料シート用製造装置を提供する。
 本発明の第17側面は、
 前記一対の部材は、第一対のローラーと、前記流動体の搬送方向において前記第一対のローラーの下流に配置されている第二対のローラーとを含み、
 前記第二対のローラーにおけるローラー間の距離は、前記第一対のローラーにおけるローラー間の距離以下である、
 第15側面に係る複合材料シート用製造装置を提供する。
 本発明の第18側面は、
 前記供給器は、ダイコーターである、
 第14側面~第17側面のいずれか1つに係る複合材料シート用製造装置を提供する。

Claims (18)

  1.  熱硬化性樹脂及び無機粒子を含み、かつ、第一厚みを有する流動体を前記第一厚みよりも小さい第二厚みを有するように成形しながら前記流動体を加熱して前記熱硬化性樹脂を硬化させる、又は、前記第一厚みを有する前記流動体を前記第一厚みよりも小さい第二厚みを有するように成形した後に前記流動体を加熱して前記熱硬化性樹脂を硬化させることを含む、
     複合材料シートの製造方法。
  2.  前記流動体は多孔化剤を含み、
     前記多孔化剤によって前記複合材料シートに多孔構造を付与することを含む、
     請求項1に記載の複合材料シートの製造方法。
  3.  前記無機粒子は、前記流動体において中空な凝集物をなしている、
     請求項1に記載の複合材料シートの製造方法。
  4.  前記熱硬化性樹脂及び前記無機粒子を混錬して前記流動体を得ることを含む、
     請求項1に記載の複合材料シートの製造方法。
  5.  前記流動体は、所定の間隔で配置された一対の部材の間に挟まれることによって前記第二厚みを有するように成形される、
     請求項1に記載の複合材料シートの製造方法。
  6.  前記流動体は、前記一対の部材の間で前記流動体の面内において流動可能な状態で前記第二厚みを有するように成形される、
     請求項5に記載の複合材料シートの製造方法。
  7.  前記流動体は、前記一対の部材の間を搬送されながら前記第二厚みを有するように成形される、
     請求項5に記載の複合材料シートの製造方法。
  8.  前記一対の部材は、搬送用のベルトを含み、
     前記流動体は、前記ベルトによって加熱される、
     請求項7に記載の複合材料シートの製造方法。
  9.  前記一対の部材は、第一対のローラーと、前記流動体の搬送方向において前記第一対のローラーの下流に配置されている第二対のローラーとを含み、
     前記第二対のローラーにおけるローラー間の距離は、前記第一対のローラーにおけるローラー間の距離以下である、
     請求項7に記載の複合材料シートの製造方法。
  10.  前記流動体を基材上に配置することを含み、
     前記流動体は、前記基材とともに前記一対の部材の間を搬送される、
     請求項7に記載の複合材料シートの製造方法。
  11.  前記流動体はダイコーティングによって前記基材上に配置される、
     請求項10に記載の複合材料シートの製造方法。
  12.  巻回体から繰り出された前記基材上に前記流動体を連続的に配置する、
     請求項10に記載の複合材料シートの製造方法。
  13.  前記基材とはく離シートとの間に前記流動体を配置して積層体を形成し、
     前記積層体が前記一対の部材の間に搬送される、
     請求項10に記載の複合材料シートの製造方法。
  14.  熱硬化性樹脂及び無機粒子を含む流動体を供給する供給器と、
     所定の間隔で配置され、前記供給器から供給された前記流動体を成形する一対の部材と、
     前記流動体が前記一対の部材の間にあるとき又は前記流動体が前記一対の部材の間を通過した後に前記流動体を加熱する加熱器と、を備え、
     前記一対の部材は、前記流動体が前記供給器から供給されたときの第一厚みよりも小さい第二厚みを有するように前記流動体を成形する、
     複合材料シート用製造装置。
  15.  前記一対の部材の間を通過するように前記流動体を搬送する搬送装置を備えた、
     請求項14に記載の複合材料シート用製造装置。
  16.  前記一対の部材は、搬送用のベルトを含み、
     前記加熱器は前記ベルトに接して配置されている、
     請求項15に記載の複合材料シート用製造装置。
  17.  前記一対の部材は、第一対のローラーと、前記流動体の搬送方向において前記第一対のローラーの下流に配置されている第二対のローラーとを含み、
     前記第二対のローラーにおけるローラー間の距離は、前記第一対のローラーにおけるローラー間の距離以下である、
     請求項15に記載の複合材料シート用製造装置。
  18.  前記供給器は、ダイコーターである、
     請求項14に記載の複合材料シート用製造装置。
     
PCT/JP2023/010753 2022-03-29 2023-03-17 複合材料シートの製造方法及び複合材料シート用製造装置 WO2023189777A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053251 2022-03-29
JP2022053251 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189777A1 true WO2023189777A1 (ja) 2023-10-05

Family

ID=88200985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010753 WO2023189777A1 (ja) 2022-03-29 2023-03-17 複合材料シートの製造方法及び複合材料シート用製造装置

Country Status (2)

Country Link
TW (1) TW202402509A (ja)
WO (1) WO2023189777A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329086A (ja) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd 人工大理石板の連続成形方法
JP2002347047A (ja) * 2001-05-29 2002-12-04 Sekisui Chem Co Ltd 樹脂成形品の連続製造方法及び製造装置
JP2003238822A (ja) * 2001-12-12 2003-08-27 Mitsubishi Rayon Co Ltd 導電性樹脂組成物、積層体および積層体の製造方法
CN107722157A (zh) * 2017-10-10 2018-02-23 西安科技大学 一种轻质、导热绝缘聚合物硬质泡沫材料及其制备方法
JP2018109101A (ja) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 複合材料およびその製造方法
JP2021161417A (ja) * 2020-03-31 2021-10-11 日東電工株式会社 複合材料及び複合材料の製造方法
JP2021161422A (ja) * 2020-03-31 2021-10-11 日東電工株式会社 複合材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329086A (ja) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd 人工大理石板の連続成形方法
JP2002347047A (ja) * 2001-05-29 2002-12-04 Sekisui Chem Co Ltd 樹脂成形品の連続製造方法及び製造装置
JP2003238822A (ja) * 2001-12-12 2003-08-27 Mitsubishi Rayon Co Ltd 導電性樹脂組成物、積層体および積層体の製造方法
JP2018109101A (ja) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 複合材料およびその製造方法
CN107722157A (zh) * 2017-10-10 2018-02-23 西安科技大学 一种轻质、导热绝缘聚合物硬质泡沫材料及其制备方法
JP2021161417A (ja) * 2020-03-31 2021-10-11 日東電工株式会社 複合材料及び複合材料の製造方法
JP2021161422A (ja) * 2020-03-31 2021-10-11 日東電工株式会社 複合材料

Also Published As

Publication number Publication date
TW202402509A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
RU2744611C2 (ru) Получение композиционных материалов с керамической матрицей, содержащих углеродные нанотрубки и графен
JP7271591B2 (ja) 複合材料及び複合材料の製造方法
JP7271592B2 (ja) 複合材料
WO2023189777A1 (ja) 複合材料シートの製造方法及び複合材料シート用製造装置
JP2010179558A (ja) 熱伝導性成形体及びその製造方法
WO2023189778A1 (ja) 複合材料シート
JP7271593B2 (ja) 複合材料
WO2021200967A1 (ja) 複合体、及び放熱部材
WO2023189776A1 (ja) 温度調節モジュール
WO2022210805A1 (ja) 複合材料及び複合材料の製造方法
WO2023054414A1 (ja) 複合材料及び複合材料の製造方法
TW202142613A (zh) 複合材料
KR20120076889A (ko) 표면에 탄화규소가 형성된 탄소기반 알루미늄 복합재료 및 그 제조방법
TW202144481A (zh) 複合材料
JP7367088B2 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
JP7345517B2 (ja) 複合材料
JP2010248064A (ja) 鱗状黒鉛粉末成形体の製造方法および焼結成形体
WO2022163026A1 (ja) 押圧成形体及びその製造方法
JP2009057584A (ja) 吸水性に優れたアルミニウム多孔体とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511845

Country of ref document: JP

Kind code of ref document: A