WO2023189736A1 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
WO2023189736A1
WO2023189736A1 PCT/JP2023/010624 JP2023010624W WO2023189736A1 WO 2023189736 A1 WO2023189736 A1 WO 2023189736A1 JP 2023010624 W JP2023010624 W JP 2023010624W WO 2023189736 A1 WO2023189736 A1 WO 2023189736A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
lead frame
layer
conductive
laminate
Prior art date
Application number
PCT/JP2023/010624
Other languages
French (fr)
Japanese (ja)
Inventor
順一 粕谷
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023189736A1 publication Critical patent/WO2023189736A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Definitions

  • the present invention relates to an electrolytic capacitor.
  • Patent Document 1 discloses a solid electrolytic capacitor.
  • Embodiment 2 of the solid electrolytic capacitor disclosed in Patent Document 1 describes a structure in which three chip-type solid electrolytic capacitors are stacked. A structure is described in which an anode lead-out body is exposed from each capacitor element, and an anode terminal is joined to the anode lead-out body by laser welding.
  • the anode lead-out body of the solid electrolytic capacitor of Patent Document 1 is made of a valve metal. Furthermore, a member called a lead frame is used as the anode terminal.
  • a valve metal serving as an anode lead-out body and a lead frame serving as an anode terminal are welded as in Patent Document 1, the joint is hard and there is no flexibility at the joint. Therefore, stress caused by thermal expansion of each member during reflow may cause the lead frame and the valve metal to become disconnected, resulting in an increase in LC (leakage current) in the electrolytic capacitor.
  • the present invention has been made to solve the above-mentioned problems, and provides an electrolytic capacitor in which a lead frame and a valve metal are electrically connected to relieve stress such as thermal stress.
  • the purpose is to
  • the electrolytic capacitor of the present invention includes a valve metal base having a core portion and a porous portion formed along the surface thereof, a dielectric layer formed on the porous portion, and a dielectric layer formed on the dielectric layer.
  • an electrolytic capacitor in which a lead frame and a valve metal are electrically connected, and stress such as thermal stress is relaxed.
  • FIG. 1 is a perspective view schematically showing an example of an electrolytic capacitor of the present invention.
  • FIG. 2 is a side view of the electrolytic capacitor shown in FIG. 1 viewed from the first end surface.
  • FIG. 3 is a bottom view of the electrolytic capacitor shown in FIG. 1.
  • FIG. 4 is a cross-sectional view taken along line AA of the electrolytic capacitor shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing the vicinity of the valve metal base on the first surface of the laminate.
  • FIG. 6 is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 7 is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 8A is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 8B is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 9A is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 9B is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 9C is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 10 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment.
  • FIG. 11 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment.
  • FIG. 12 is a process diagram schematically showing a part of the manufacturing process of the electrolytic capacitor shown in FIG. 11.
  • the solid electrolytic capacitor of the present invention will be explained below.
  • the present invention is not limited to the following configuration, and can be modified and applied as appropriate without changing the gist of the present invention.
  • the present invention also includes a combination of two or more of the individual desirable configurations of the present invention described below.
  • the electrolytic capacitor of the present invention includes a valve metal base having a core portion and a porous portion formed along the surface thereof, a dielectric layer formed on the porous portion, and a dielectric layer formed on the dielectric layer.
  • FIG. 1 is a perspective view schematically showing an example of the electrolytic capacitor of the present invention
  • FIG. 2 is a side view of the electrolytic capacitor shown in FIG.
  • FIG. 3 is a bottom view of an electrolytic capacitor.
  • the electrolytic capacitor 1 has a rectangular parallelepiped shape as a whole, and has a length direction (L direction), a width direction (W direction), and a thickness direction (T direction).
  • the electrolytic capacitor 1 has, as its outer surface, a first end surface 1a and a second end surface 1b that face each other in the length direction.
  • the electrolytic capacitor 1 has, as its outer surfaces, a bottom surface 1c and a top surface 1d that face each other in the thickness direction.
  • the electrolytic capacitor 1 includes, as its outer surface, a first side surface 1e and a second side surface 1f that face each other in the width direction.
  • the surface along the length direction (L direction) and thickness direction (T direction) of the electrolytic capacitor is referred to as the LT surface
  • the surface along the length direction (L direction) and width direction (W direction) is referred to as the LT surface.
  • the plane along the width direction (W direction) and the thickness direction (T direction) is called the WT plane.
  • a first lead frame 11 is formed on the first end surface 1a of the electrolytic capacitor 1, and a second lead frame 13 is formed on the second end surface 1b. Further, the first lead frame 11 is formed continuously from the first end surface 1a to the bottom surface 1c of the electrolytic capacitor 1, and the second lead frame 13 is formed continuously from the second end surface 1b to the bottom surface 1c of the electrolytic capacitor 1. It is formed by
  • the periphery of a stacked body (not shown in FIG. 1) in which a plurality of capacitor elements are stacked is sealed with a sealing resin 8, and the surface of the sealing resin 8 and the first lead frame 11 are sealed.
  • a rectangular parallelepiped-shaped resin molded body 9 is constituted by the front surface and the surface of the second lead frame 13 serving as the outer surface.
  • the surface of the first lead frame 11 and the surface of the sealing resin 8 constitute the first end surface 1a of the electrolytic capacitor 1 (see FIG. 2). Further, the surface of the second lead frame 13 constitutes the second end surface 1b of the electrolytic capacitor 1 together with the surface of the sealing resin 8. Furthermore, the surface of the first lead frame 11, the surface of the sealing resin 8, and the surface of the second lead frame 13 together constitute the bottom surface 1c of the electrolytic capacitor 1 (see FIG. 3).
  • the periphery of the laminate is sealed with a sealing resin, and a rectangular parallelepiped-shaped resin molded body is formed in which the surface of the sealing resin and the surface of the first lead frame are the outer surfaces. is preferred.
  • the periphery of the laminate is sealed with a sealing resin, and the surface of the sealing resin, the surface of the first lead frame, and the surface of the second lead frame are the outer surfaces. It is preferable to construct a rectangular parallelepiped-shaped resin molded body.
  • the shape of the electrolytic capacitor of the present invention and the shape of the resin molded body constituting the electrolytic capacitor of the present invention are not particularly limited, and any three-dimensional shape can be adopted.
  • the shape of the electrolytic capacitor and the shape of the resin molding are preferably rectangular parallelepipeds.
  • the term "cuboid shape" does not mean a perfect rectangular parallelepiped; the surfaces forming the electrolytic capacitor and the resin molded body may not be orthogonal to other surfaces and may have a taper, or may have an angular shape.
  • the shape may be chamfered.
  • FIG. 4 is a cross-sectional view taken along line AA of the electrolytic capacitor shown in FIG.
  • the capacitor element 20 includes a valve metal base 4 having a core portion and a porous portion formed along the surface thereof, a dielectric layer 5 formed on the porous portion, and a dielectric layer 5 formed on the dielectric layer 5.
  • the conductive layer 7b (carbon layer 7b1 and metal layer 7b2) is formed on the solid electrolyte layer 7a.
  • a plurality of capacitor elements 20 are stacked to form a laminate 30, and the periphery of the laminate 30 is sealed with a sealing resin 8 to form a resin molded body 9.
  • the stacked capacitor elements 20 may be bonded to each other via a conductive adhesive (not shown).
  • valve metal that constitutes the valve metal base examples include simple metals such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, and silicon, and alloys containing these metals. Among these, aluminum or aluminum alloy is preferred.
  • valve metal base is not particularly limited, it is preferably flat, and more preferably foil-like.
  • the porous portion is preferably an etched layer etched with hydrochloric acid or the like.
  • the thickness of the valve metal base before etching is preferably 60 ⁇ m or more, and preferably 180 ⁇ m or less. Further, the thickness of the valve metal base (core portion) that is not etched after the etching treatment is preferably 10 ⁇ m or more, and preferably 70 ⁇ m or less.
  • the thickness of the porous portion is designed in accordance with the withstand voltage and capacitance required of the electrolytic capacitor, but it is preferable that the total thickness of the porous portions on both sides of the valve metal base is 10 ⁇ m or more, and 120 ⁇ m or less. It is preferable that
  • the dielectric layer is preferably made of an oxide film of the valve metal.
  • aluminum foil when aluminum foil is used as a valve metal base, it is anodized to form a dielectric layer by anodizing in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or their sodium salts, ammonium salts, etc. A film can be formed.
  • the dielectric layer is formed along the surface of the porous portion to form pores (recesses).
  • the thickness of the dielectric layer is designed according to the withstand voltage and capacitance required of the electrolytic capacitor, and is preferably 3 nm or more, and preferably 200 nm or less.
  • a mask layer 40 is provided around the valve metal base 4 and the dielectric layer 5. A part of the surface of the mask layer 40 constitutes the first surface 30a of the laminate 30 together with the surfaces of the core and porous portion of the valve metal base 4.
  • the first surface 30a of the laminate 30 corresponds to the first end surface 1a of the electrolytic capacitor 1.
  • the first surface 30a of the laminate 30 is the anode side end surface of the laminate.
  • a first conductive resin part 21 to which each core part of the capacitor element 20 is connected is provided on the first surface 30a of the laminate 30. Since the first conductive resin part 21 to which each core part of the capacitor element 20 is connected is integrated, the anodes of the plurality of capacitor elements 20 are collected by the first conductive resin part 21. .
  • the first conductive resin part 21 is further connected to the first lead frame 11. Since the first conductive resin part 21 is connected to the core part of the capacitor element 20 and the first lead frame 11, the first lead frame 11 is connected to the core part of the capacitor element 20 and the first conductive resin part. This means that they are connected via 21.
  • the first lead frame and the core of the capacitor element are not welded but are connected via the first conductive resin part. Since the connection using the first conductive resin part is a connection using resin, it is a joining form in which the joint portion is more flexible than welding. Therefore, problems caused by the first lead frame and the core becoming disconnected due to stress due to thermal expansion of each member during reflow can be prevented. Further, since the first conductive resin part is made of a conductive material, electrical connection between the first lead frame and the core part is also ensured. From the above, the electrolytic capacitor of the present invention is an electrolytic capacitor in which the first lead frame and the valve metal are electrically connected, and stress such as thermal stress is relaxed.
  • the first lead frame aluminum, copper, nickel, chromium, cobalt, or an alloy containing them can be used.
  • the first conductive resin portion is preferably a conductive resin electrode layer containing a conductive component and a resin component.
  • the conductive component preferably contains Ag, Cu, Ni, Sn, etc. as a main component, and the resin component preferably contains an epoxy resin, phenol resin, etc. as a main component.
  • the first conductive resin portion contains Ag.
  • a conductive resin electrode layer containing Ag can reduce ESR because Ag has a low specific resistance.
  • the first conductive resin part is a printed resin electrode layer formed by screen printing an electrode paste. When the first conductive resin part is a printed resin electrode layer, the first conductive resin part can be made flat compared to a case where the electrode layer is formed by dipping into electrode paste.
  • the first conductive resin portion may be formed by applying electrode paste using a dispenser.
  • the electrode paste for forming the first conductive resin portion may contain an organic solvent, and it is preferable to use a glycol ether solvent as the organic solvent.
  • a glycol ether solvent examples include diethylene glycol monobutyl ether and diethylene glycol monophenyl ether. Additionally, additives may be used as necessary. Additives are useful in adjusting the rheology of the electrode paste, especially the thixotropy.
  • a contact layer in direct contact with the core is provided on the first surface of the laminate, and the core is connected to the first conductive resin part via the contact layer.
  • a mode in which the core portion is connected to the first conductive resin portion via a contact layer will be described.
  • FIG. 5 is a cross-sectional view schematically showing the vicinity of the valve metal base on the first surface of the laminate.
  • FIG. 5 is also a sectional view schematically showing a region surrounded by a dotted line B in the lower right portion of FIG.
  • the valve metal base 4 has a core portion 4a and a porous portion 4b formed along the surface of the core portion 4a. The end portion of the valve metal base 4 is exposed on the first surface 30a of the laminate 30.
  • a dielectric layer 5 is formed on the surface of the porous portion 4b.
  • FIG. 5 shows a contact layer 31 that is in direct contact with the core portion 4a.
  • the first conductive resin portion 21 exists around the contact layer 31, and the core portion 4a is connected to the first conductive resin portion 21 via the contact layer 31.
  • the contact layer 31 is preferably an electrode layer containing at least one selected from the group consisting of Cu, Ni, Sn, Ag, Zn, and Au, and is preferably an electrode layer made of Cu.
  • the connectivity between the core part and the first conductive resin part can be improved.
  • the core is aluminum and the main conductive component contained in the first conductive resin part is Ag, it is better to connect aluminum and Ag through another material than to connect them directly. may increase connectivity.
  • the connectivity between the core made of aluminum and the first conductive resin part containing Ag can be improved. I can do it.
  • the thickness of the contact layer 31 at the portion formed in the core portion 4a is thicker than the thickness at the portion where the contact layer 31 is formed in the porous portion 4b.
  • the thickness of the contact layer 31 is determined as the thickness of the contact layer 31 in the normal direction of the first surface 30a of the stacked body 30. Further, the thickness of the contact layer 31 formed in the core portion 4a of the valve metal base 4 and the porous portion 4b of the valve metal base 4 is determined as the thickness at the thickest point at each location.
  • the thicknesses of the contact layers 31 formed in the core portion 4a of the valve metal base 4 and the porous portion 4b of the valve metal base 4 are indicated by double arrows T 1 and T 2 , respectively.
  • the direction indicated by the double-headed arrows T 1 and T 2 is the normal direction of the first surface 30 a of the laminate 30 .
  • the contact layer 31 When forming the contact layer 31 on the first surface 30a of the laminate 30, the contact layer 31 is easily formed in the core part 4a, and the contact layer 31 is not formed in the porous part 4b, which is more fragile than the core part 4a. Hateful. Therefore, the thickness of the contact layer 31 becomes thicker in the core portion 4a. If the contact layer is thicker in the core, the contact area with the first conductive resin part formed on the contact layer increases compared to when the contact layer is flat, and the contact layer becomes thicker in the core. Since the adhesion with the conductive resin portion is improved, the ESR can be sufficiently lowered. Furthermore, since the connection strength between the contact layer and the first conductive resin portion is high, the terminal fixing strength when an electrolytic capacitor is mounted can also be increased.
  • the thickness of the contact layer formed on the core portion is preferably 0.3 ⁇ m or more and 30 ⁇ m or less.
  • the ESR can be lowered, and the terminal fixing strength when an electrolytic capacitor is mounted can be increased.
  • the contact layer is preferably a layer formed by an aerosol deposition method.
  • fine metal particles are injected from a nozzle provided at the tip of an aerosol generator, and collide with the first surface of the laminate to form a contact layer.
  • the oxide film on the surface of the metal forming the core is removed by the collision of an aerosol with the core, the metal is exposed, and the contact layer is bonded to the exposed metal.
  • the removal of the oxide film and the bonding of the contact layer are performed successively in a non-oxidizing atmosphere, so it is possible to prevent the formation of an oxide film at the bonding interface between the contact layer and the core. can.
  • the ESR of the electrolytic capacitor can be lowered.
  • the valve metal base is made of aluminum, an oxide film is likely to form on the surface of the core, so the effect of providing the contact layer by the aerosol deposition method is suitably exhibited.
  • methods such as sputtering and vapor deposition can also be used as a method for providing the contact layer.
  • the capacitor element 20 includes a solid electrolyte layer 7a formed on the dielectric layer 5 and a conductive layer 7b formed on the solid electrolyte layer 7a.
  • An electrolytic capacitor in which a solid electrolyte layer is provided as part of the cathode can be said to be a solid electrolytic capacitor.
  • valve metal base 4 constituting the capacitor element 20 is covered with a dielectric layer 5 or otherwise insulated, so that the core 4a of the valve metal base 4 and the solid electrolyte are It is not in direct contact with layer 7a or conductive layer 7b.
  • Examples of the material constituting the solid electrolyte layer include conductive polymers having skeletons such as pyrroles, thiophenes, and anilines.
  • Examples of conductive polymers with thiophene skeletons include PEDOT [poly(3,4-ethylenedioxythiophene)], and PEDOT:PSS complexed with polystyrene sulfonic acid (PSS) as a dopant. It may be.
  • the solid electrolyte layer is formed by forming a polymer film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene.
  • the dielectric layer is formed by applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer and drying it. Note that after forming the solid electrolyte layer for the inner layer that fills the pores (recesses), it is preferable to form the solid electrolyte layer for the outer layer that covers the entire dielectric layer.
  • the solid electrolyte layer can be formed in a predetermined area by applying the above-mentioned treatment liquid or dispersion onto the dielectric layer by sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like.
  • the thickness of the solid electrolyte layer is preferably 2 ⁇ m or more, and preferably 20 ⁇ m or less.
  • the conductive layer is preferably a carbon layer, a graphene layer, or a silver layer formed by applying a conductive paste such as carbon paste, graphene paste, or silver paste. Further, it may be a composite layer in which a silver layer is provided on a carbon layer or a graphene layer, or a mixed layer in which carbon paste, graphene paste, and silver paste are mixed.
  • the conductive layer can be formed by forming a conductive paste such as carbon paste on the solid electrolyte layer by sponge transfer, screen printing, spray coating, dispenser printing, inkjet printing, or the like.
  • FIG. 4 shows a carbon layer 7b1 and a metal layer 7b2 as the conductive layer 7b.
  • the electrolytic capacitor of the present invention includes a second conductive resin part provided on the second surface of the laminate to which the conductive layer of the capacitor element is connected, and a second lead connected to the second conductive resin part.
  • the device further includes a frame.
  • a second conductive resin portion 23 is formed on the second surface 30b of the laminate 30, and the second conductive resin portion 23 is connected to the conductive layer 7b of the capacitor element 20. has been done. Since the second conductive resin part 23 to which the conductive layer 7b of the capacitor element 20 is connected is integrated, the cathodes of the plurality of capacitor elements 20 are collected by the second conductive resin part 23.
  • the second surface 30b of the laminate 30 is the end surface of the laminate on the cathode side.
  • the second conductive resin part 23 is further connected to the second lead frame 13. Since the second conductive resin portion 23 is connected to the conductive layer 7b of the capacitor element 20 and the second lead frame 13, the second lead frame 13 is connected to the conductive layer 7b of the capacitor element 20 and the second conductive layer 7b. This means that they are connected via the resin portion 23.
  • connection between the second lead frame and the conductive layer of the capacitor element can also be made by directly bonding the second lead frame and the conductive layer of the capacitor element without using the second conductive resin part.
  • the bonding area may be insufficient and the resistance between the second lead frame and the conductive layer of the capacitor element may become high.
  • the second conductive resin part may enter the gap between the capacitor elements. This increases the connection area between the second conductive resin portion and the conductive layer of the capacitor element. Furthermore, the connection area between the second conductive resin portion and the second lead frame also increases.
  • connection using the second conductive resin portion is a connection using resin
  • the connection is a joining form in which the joint portion is more flexible than welding. Therefore, problems caused by the second lead frame and the conductive layer becoming disconnected due to stress due to thermal expansion of each member during reflow can be prevented.
  • the materials and shapes exemplified for the first lead frame can be used.
  • the material and shape of the second lead frame and the first lead frame may be the same or different.
  • a conductive resin electrode layer containing a conductive component and a resin component which is exemplified as a form of the first conductive resin part, can be used.
  • the material and shape of the second conductive resin part and the first conductive resin part may be the same or different.
  • the method for drawing out the cathode from the capacitor element in the electrolytic capacitor of the present invention is not limited to the method using the second conductive resin part and the second lead frame, and may be any other conventionally known drawing method.
  • a method may also be used.
  • a method may be used in which a metal foil is used as a conductive layer and drawn out to the end face of a resin molded body, and then a cathode external electrode consisting of a resin electrode layer and a plating layer is formed.
  • a first conductive resin part and a first lead frame are provided on the first surface of the laminate in which a plurality of capacitor elements are laminated, and if necessary, a second conductive resin part and a first lead frame are provided on the second surface of the laminate. It is preferable that a second lead frame is provided and the periphery of the second lead frame is further sealed with a sealing resin, so that the entire resin molded body has a rectangular parallelepiped shape.
  • the sealing resin constituting the resin molded article contains at least a resin, and preferably contains a resin and a filler.
  • a resin it is preferable to use insulating resins such as epoxy resins, phenol resins, polyimide resins, silicone resins, polyamide resins, and liquid crystal polymers.
  • insulating resins such as epoxy resins, phenol resins, polyimide resins, silicone resins, polyamide resins, and liquid crystal polymers.
  • the form of the sealing resin both solid resin and liquid resin can be used.
  • the filler it is preferable to use inorganic particles such as silica particles, alumina particles, and metal particles. It is more preferable to use a material containing silica particles in the solid epoxy resin and phenol resin.
  • a resin mold such as a compression mold or a transfer mold
  • a compression mold it is preferable to use a compression mold.
  • a molding method such as a dispensing method or a printing method.
  • the first lead frame in a cross section (LT plane cross section) obtained by cutting the electrolytic capacitor along the length direction and thickness direction, the first lead frame is located at the first end surface (anode side end surface) of the electrolytic capacitor.
  • the first lead frame in a cross section (LT plane cross section) obtained by cutting the electrolytic capacitor along the length direction and thickness direction, the first lead frame is located at the first end surface (anode side end surface) of the electrolytic capacitor.
  • ) preferably has an L-shape with the long sides.
  • the short side of the L shape becomes the bottom surface of the electrolytic capacitor.
  • the bottom surface of the electrolytic capacitor becomes the mounting surface when mounting the electrolytic capacitor on a board or the like. It is preferable that the length of the short side of the L-shape is long enough to ensure that the area of the first lead frame on the bottom surface of the electrolytic capacitor is large enough for mounting.
  • the second lead frame in a cross section (LT cross section) obtained by cutting the electrolytic capacitor along the length direction and the thickness direction, has an L-shape in which the second end surface (cathode side end surface) of the electrolytic capacitor is the long side. It is preferable to have.
  • FIG. 4 shows a LT plane cross-sectional view of the electrolytic capacitor.
  • FIG. 4 shows that the first lead frame 11 and the second lead frame 13 each have an L-shape in the LT cross section of the electrolytic capacitor.
  • the L-shaped short side portion of the first lead frame 11 is drawn so as to be in contact with the first conductive resin portion 21, the mask layer 40, and the sealing resin 8.
  • the sealing resin 8 may enter between the mask layer 40 and the first lead frame 11 and the mask layer 40 and the first lead frame 11 may be bonded together via the sealing resin 8.
  • the first lead frame 11 has an inverted L shape with the short side facing left, but this shape is also included in the L shape.
  • FIG. 7 FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9B, and FIG. 9C are process diagrams schematically showing a part of the manufacturing process of an electrolytic capacitor.
  • FIG. 6 shows a series of lead frames for use in manufacturing three electrolytic capacitors. The right side is the first lead frame series 110, and the left side is the second lead frame series 120.
  • the first lead frame series 110 is provided with a plate-like part 111 that becomes a first lead frame of an electrolytic capacitor, and a connecting part 112 that connects the plate-like part 111.
  • each plate-like part 111 is coated with a conductive paste 113 that becomes a first conductive resin part.
  • the second lead frame series 120 is provided with a plate-like part 121 that becomes a second lead frame of the electrolytic capacitor, and a connecting part 122 that connects the plate-like part 121.
  • FIG. 7 shows a state in which the laminate 30 is placed on the first lead frame series 110 and the second lead frame series 120.
  • the laminate 30 is placed between the plate-like part 111 that becomes the first lead frame and the plate-like part 121 that becomes the second lead frame.
  • the first surface 30a of the laminate 30 is provided with a contact layer that is in direct contact with the core. Illustration of the contact layer is omitted.
  • FIG. 8A the plate-like part 111 of the first lead frame series 110 and the plate-like part 121 of the second lead frame series 120 are bent toward the first surface 30a and the second surface 30b of the laminate 30, respectively. It shows the condition.
  • FIG. 8B is a side view of the state shown in FIG. 8A viewed from the side of the laminate 30. Since a conductive paste is applied to each plate-like part, the end face of the laminate and the plate-like part are connected with the conductive paste.
  • the plate-shaped portion 111 of the first lead frame series 110 becomes the first lead frame 11, and the conductive paste 113 becomes the first conductive resin portion 21.
  • the plate-shaped portion 121 of the second lead frame series 120 becomes the second lead frame 13, and the conductive paste 123 becomes the second conductive resin portion 23.
  • FIG. 9A shows a state in which the periphery of the laminate 30 is sealed with a sealing resin 8 to form a resin molded body 9.
  • 9B is a side view of the state shown in FIG. 9A viewed from the side surface of the resin molded body 9
  • FIG. 9C is an end view of the state shown in FIG. 9A viewed from the first end surface side of the resin molded body 9.
  • the stacked body 30 inside the sealing resin 8 is simplified and shown by a dotted line.
  • the first lead frame 11 is exposed on the first end surface of the resin molded body 9.
  • FIG. 10 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment.
  • the mask layer 240 of the capacitor element 220 located furthest to the bottom among the capacitor elements 20 constituting the laminate 30 is thick.
  • a cathode spacer 250 is provided below (on the bottom side) the capacitor element 220 located closest to the bottom side.
  • the cathode spacer 250 is preferably made of an insulating resin material.
  • the connection between the capacitor element 220 located at the bottom side and the bottom surface 1c of the electrolytic capacitor 201 is The distance between them becomes longer. In this way, the first lead frame 11 located on the bottom surface 1c of the electrolytic capacitor 201 and the conductive layer 7b of the capacitor element 220 located on the bottom side are prevented from coming into contact and causing a short circuit.
  • the length of the L-shaped short side of the first lead frame 11 can be increased, and the first lead frame 11 on the bottom surface 1c of the electrolytic capacitor 201 can be The area of the lead frame 11 can be made large enough for mounting.
  • the conductive layer 7b of the capacitor element 20 can be provided as close to the first surface 30a of the laminate 30 as possible, the capacitance of the electrolytic capacitor can be increased.
  • the cathode side spacer 250 is provided to match the height with the anode side.
  • FIG. 11 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment.
  • a cathode-side spacer 250 is provided near the second surface 30b of the laminate 30 for the capacitor element 220 located at the bottom side of the capacitor elements 20 constituting the laminate 30.
  • an anode side spacer 260 is provided near the first surface 30a of the laminate 30.
  • the cathode spacer 250 and the anode spacer 260 are preferably made of an insulating resin material.
  • FIG. 12 is a process diagram schematically showing a part of the manufacturing process of the electrolytic capacitor shown in FIG. 11.
  • FIG. 12 shows a series of lead frames for use in manufacturing three electrolytic capacitors.
  • the first lead frame series 110 is on the right side
  • the second lead frame series 120 is on the left side
  • the lead frame series is similar to the lead frame series shown in FIG.
  • a spacer paste 270 is applied to the connecting portions 112 of the first lead frame series 110 and the connecting portions 122 of the second lead frame series 120 at positions where the laminate is to be placed.
  • the cathode spacer 250 and the anode spacer 260 can be provided.
  • the steps after placing the laminate can be the same as the steps described above to manufacture an electrolytic capacitor.
  • the cathode side spacer 250 can be provided by applying the spacer paste 270 only to the connecting portion 122 of the second lead frame series 120.
  • the composition of the spacer paste is preferably insulating and contains a resin material having adhesive properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

This electrolytic capacitor 1 comprises: a laminate 30 which has a first surface 30a and in which a plurality of capacitor elements 20 are laminated, each capacitor element including a valve action metal substrate 4 having a core portion 4a and a porous portion 4b formed along the surface of the core portion, a dielectric layer 5 formed on the porous portion 4b, a solid electrolyte layer 7a formed on the dielectric layer 5, and a conductive layer 7b formed on the solid electrolyte layer 7a; a first conductive resin part 21 which is provided on the first surface 30a of the laminate 30, and to which the core portion 4a of the capacitor element 20 is connected; and a first lead frame 11 connected to the core portion 4a with the first conductive adhesive part 21 therebetween.

Description

電解コンデンサElectrolytic capacitor
 本発明は、電解コンデンサに関する。 The present invention relates to an electrolytic capacitor.
 特許文献1には、固体電解コンデンサが開示されている。
 特許文献1に開示された固体電解コンデンサの実施の形態2には、チップ型固体電解コンデンサを3枚積層して構成したものが記載されている。各コンデンサ素子からは陽極導出体が表出し、陽極導出体に陽極端子がレーザー溶接により接合される構造が記載されている。
Patent Document 1 discloses a solid electrolytic capacitor.
Embodiment 2 of the solid electrolytic capacitor disclosed in Patent Document 1 describes a structure in which three chip-type solid electrolytic capacitors are stacked. A structure is described in which an anode lead-out body is exposed from each capacitor element, and an anode terminal is joined to the anode lead-out body by laser welding.
特開2001-85273号公報Japanese Patent Application Publication No. 2001-85273
 特許文献1の固体電解コンデンサの陽極導出体は弁作用金属からなる。また、陽極端子としてはリードフレームと呼ばれる部材が使用される。特許文献1のように陽極導出体としての弁作用金属と陽極端子としてのリードフレームを溶接した場合、その接合が硬く、接合箇所に柔軟性が無い。そのため、リフロー時の各部材の熱膨張による応力によりリードフレームと弁作用金属の接合が外れて、電解コンデンサにLC(漏れ電流)の上昇が生じるといった問題が生じることがあった。 The anode lead-out body of the solid electrolytic capacitor of Patent Document 1 is made of a valve metal. Furthermore, a member called a lead frame is used as the anode terminal. When a valve metal serving as an anode lead-out body and a lead frame serving as an anode terminal are welded as in Patent Document 1, the joint is hard and there is no flexibility at the joint. Therefore, stress caused by thermal expansion of each member during reflow may cause the lead frame and the valve metal to become disconnected, resulting in an increase in LC (leakage current) in the electrolytic capacitor.
 本発明は、上記の問題を解決するためになされたものであり、リードフレームと弁作用金属の電気的な接続がされており、熱応力等の応力に対する応力緩和がされている電解コンデンサを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides an electrolytic capacitor in which a lead frame and a valve metal are electrically connected to relieve stress such as thermal stress. The purpose is to
 本発明の電解コンデンサは、芯部とその表面に沿って形成される多孔質部とを有する弁作用金属基体と、前記多孔質部上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された導電層と、を含むコンデンサ素子が複数積層され、第1面を有する積層体と、前記積層体の前記第1面に設けられ、前記コンデンサ素子の前記芯部が接続される第1の導電性樹脂部と、前記第1の導電性樹脂部を介して前記芯部と接続された第1のリードフレームと、を備える。 The electrolytic capacitor of the present invention includes a valve metal base having a core portion and a porous portion formed along the surface thereof, a dielectric layer formed on the porous portion, and a dielectric layer formed on the dielectric layer. a laminate in which a plurality of capacitor elements including a formed solid electrolyte layer and a conductive layer formed on the solid electrolyte layer are stacked and have a first surface; , a first conductive resin part to which the core part of the capacitor element is connected, and a first lead frame connected to the core part via the first conductive resin part.
 本発明によれば、リードフレームと弁作用金属の電気的な接続がされており、熱応力等の応力に対する応力緩和がされている電解コンデンサを提供することができる。 According to the present invention, it is possible to provide an electrolytic capacitor in which a lead frame and a valve metal are electrically connected, and stress such as thermal stress is relaxed.
図1は、本発明の電解コンデンサの一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of an electrolytic capacitor of the present invention. 図2は、図1に示す電解コンデンサを第1端面からみた側面図である。FIG. 2 is a side view of the electrolytic capacitor shown in FIG. 1 viewed from the first end surface. 図3は、図1に示す電解コンデンサの底面図である。FIG. 3 is a bottom view of the electrolytic capacitor shown in FIG. 1. 図4は、図1に示す電解コンデンサのA-A線断面図である。FIG. 4 is a cross-sectional view taken along line AA of the electrolytic capacitor shown in FIG. 図5は、積層体の第1面における弁作用金属基体の近傍を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the vicinity of the valve metal base on the first surface of the laminate. 図6は、電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 6 is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor. 図7は、電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 7 is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor. 図8Aは、電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 8A is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor. 図8Bは、電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 8B is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor. 図9Aは、電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 9A is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor. 図9Bは、電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 9B is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor. 図9Cは、電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 9C is a process diagram schematically showing a part of the manufacturing process of an electrolytic capacitor. 図10は、別の実施形態に係る電解コンデンサのLT面断面図である。FIG. 10 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment. 図11は、別の実施形態に係る電解コンデンサのLT面断面図である。FIG. 11 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment. 図12は、図11に示す電解コンデンサの製造工程の一部を模式的に示す工程図である。FIG. 12 is a process diagram schematically showing a part of the manufacturing process of the electrolytic capacitor shown in FIG. 11.
 以下、本発明の固体電解コンデンサについて説明する。
 しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
The solid electrolytic capacitor of the present invention will be explained below.
However, the present invention is not limited to the following configuration, and can be modified and applied as appropriate without changing the gist of the present invention. Note that the present invention also includes a combination of two or more of the individual desirable configurations of the present invention described below.
 本発明の電解コンデンサは、芯部とその表面に沿って形成される多孔質部とを有する弁作用金属基体と、前記多孔質部上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された導電層と、を含むコンデンサ素子が複数積層され、第1面を有する積層体と、前記積層体の前記第1面に設けられ、前記コンデンサ素子の前記芯部が接続される第1の導電性樹脂部と、前記第1の導電性樹脂部を介して前記芯部と接続された第1のリードフレームと、を備える。 The electrolytic capacitor of the present invention includes a valve metal base having a core portion and a porous portion formed along the surface thereof, a dielectric layer formed on the porous portion, and a dielectric layer formed on the dielectric layer. a laminate in which a plurality of capacitor elements including a formed solid electrolyte layer and a conductive layer formed on the solid electrolyte layer are stacked and have a first surface; , a first conductive resin part to which the core part of the capacitor element is connected, and a first lead frame connected to the core part via the first conductive resin part.
 図1は、本発明の電解コンデンサの一例を模式的に示す斜視図であり、図2は、図1に示す電解コンデンサを第1端面からみた側面図であり、図3は、図1に示す電解コンデンサの底面図である。 FIG. 1 is a perspective view schematically showing an example of the electrolytic capacitor of the present invention, FIG. 2 is a side view of the electrolytic capacitor shown in FIG. FIG. 3 is a bottom view of an electrolytic capacitor.
 図1、図2及び図3には電解コンデンサ1を示している。
 電解コンデンサ1は、全体として直方体状となっており、長さ方向(L方向)、幅方向(W方向)、厚さ方向(T方向)を有している。
 電解コンデンサ1はその外表面として、長さ方向に対向する第1端面1a及び第2端面1bを備えている。電解コンデンサ1はその外表面として、厚さ方向に対向する底面1c及び上面1dを備えている。また、電解コンデンサ1はその外表面として、幅方向に対向する第1側面1e及び第2側面1fを備えている。
An electrolytic capacitor 1 is shown in FIGS. 1, 2, and 3. As shown in FIG.
The electrolytic capacitor 1 has a rectangular parallelepiped shape as a whole, and has a length direction (L direction), a width direction (W direction), and a thickness direction (T direction).
The electrolytic capacitor 1 has, as its outer surface, a first end surface 1a and a second end surface 1b that face each other in the length direction. The electrolytic capacitor 1 has, as its outer surfaces, a bottom surface 1c and a top surface 1d that face each other in the thickness direction. Further, the electrolytic capacitor 1 includes, as its outer surface, a first side surface 1e and a second side surface 1f that face each other in the width direction.
 なお、本明細書においては、電解コンデンサの長さ方向(L方向)及び厚さ方向(T方向)に沿う面をLT面といい、長さ方向(L方向)及び幅方向(W方向)に沿う面をLW面といい、幅方向(W方向)及び厚さ方向(T方向)に沿う面をWT面という。 In this specification, the surface along the length direction (L direction) and thickness direction (T direction) of the electrolytic capacitor is referred to as the LT surface, and the surface along the length direction (L direction) and width direction (W direction) is referred to as the LT surface. The plane along the width direction (W direction) and the thickness direction (T direction) is called the WT plane.
 電解コンデンサ1の第1端面1aには第1のリードフレーム11が形成され、第2端面1bには第2のリードフレーム13が形成されている。また、第1のリードフレーム11は電解コンデンサ1の第1端面1aから底面1cにわたって連続して形成されており、第2のリードフレーム13は電解コンデンサ1の第2端面1bから底面1cにわたって連続して形成されている。 A first lead frame 11 is formed on the first end surface 1a of the electrolytic capacitor 1, and a second lead frame 13 is formed on the second end surface 1b. Further, the first lead frame 11 is formed continuously from the first end surface 1a to the bottom surface 1c of the electrolytic capacitor 1, and the second lead frame 13 is formed continuously from the second end surface 1b to the bottom surface 1c of the electrolytic capacitor 1. It is formed by
 電解コンデンサ1では、コンデンサ素子が複数積層されている積層体(図1には図示せず)の周囲が封止樹脂8で封止され、封止樹脂8の表面、第1のリードフレーム11の表面及び第2のリードフレーム13の表面が外表面となる直方体状の樹脂成形体9を構成している。 In the electrolytic capacitor 1, the periphery of a stacked body (not shown in FIG. 1) in which a plurality of capacitor elements are stacked is sealed with a sealing resin 8, and the surface of the sealing resin 8 and the first lead frame 11 are sealed. A rectangular parallelepiped-shaped resin molded body 9 is constituted by the front surface and the surface of the second lead frame 13 serving as the outer surface.
 第1のリードフレーム11の表面は、封止樹脂8の表面と共に電解コンデンサ1の第1端面1aを構成している(図2参照)。また、第2のリードフレーム13の表面は、封止樹脂8の表面と共に電解コンデンサ1の第2端面1bを構成している。
 さらに、第1のリードフレーム11の表面、封止樹脂8の表面及び第2のリードフレーム13の表面は、共に電解コンデンサ1の底面1cを構成している(図3参照)。
The surface of the first lead frame 11 and the surface of the sealing resin 8 constitute the first end surface 1a of the electrolytic capacitor 1 (see FIG. 2). Further, the surface of the second lead frame 13 constitutes the second end surface 1b of the electrolytic capacitor 1 together with the surface of the sealing resin 8.
Furthermore, the surface of the first lead frame 11, the surface of the sealing resin 8, and the surface of the second lead frame 13 together constitute the bottom surface 1c of the electrolytic capacitor 1 (see FIG. 3).
 なお、本発明の電解コンデンサでは、積層体の周囲が封止樹脂で封止され、封止樹脂の表面及び第1のリードフレームの表面が外表面となる直方体状の樹脂成形体を構成することが好ましい。また、本発明の電解コンデンサでは、積層体の周囲が封止樹脂で封止され、封止樹脂の表面、第1のリードフレームの表面、及び、第2のリードフレームの表面が外表面となる直方体状の樹脂成形体を構成することが好ましい。 In addition, in the electrolytic capacitor of the present invention, the periphery of the laminate is sealed with a sealing resin, and a rectangular parallelepiped-shaped resin molded body is formed in which the surface of the sealing resin and the surface of the first lead frame are the outer surfaces. is preferred. Further, in the electrolytic capacitor of the present invention, the periphery of the laminate is sealed with a sealing resin, and the surface of the sealing resin, the surface of the first lead frame, and the surface of the second lead frame are the outer surfaces. It is preferable to construct a rectangular parallelepiped-shaped resin molded body.
 本発明の電解コンデンサの形状、及び、本発明の電解コンデンサを構成する樹脂成形体の形状は特に限定されるものではなく、任意の立体形状を採用することができる。電解コンデンサの形状及び樹脂成形体の形状は直方体状であることが好ましい。また、直方体状とは完全な直方体であることを意味する語ではなく、電解コンデンサ及び樹脂成形体を形成する面が他の面と直交せずにテーパーを有していてもよく、また、角が面取りされている形状であってもよい。 The shape of the electrolytic capacitor of the present invention and the shape of the resin molded body constituting the electrolytic capacitor of the present invention are not particularly limited, and any three-dimensional shape can be adopted. The shape of the electrolytic capacitor and the shape of the resin molding are preferably rectangular parallelepipeds. In addition, the term "cuboid shape" does not mean a perfect rectangular parallelepiped; the surfaces forming the electrolytic capacitor and the resin molded body may not be orthogonal to other surfaces and may have a taper, or may have an angular shape. The shape may be chamfered.
 図4は、図1に示す電解コンデンサのA-A線断面図である。
 コンデンサ素子20は、芯部とその表面に沿って形成される多孔質部とを有する弁作用金属基体4と、多孔質部上に形成された誘電体層5と、誘電体層5上に形成された固体電解質層7aと、固体電解質層7a上に形成された導電層7b(カーボン層7b1及び金属層7b2)と、を含む。
 コンデンサ素子20が複数積層されて積層体30となり、積層体30の周囲が封止樹脂8で封止されて樹脂成形体9となっている。積層体30において、積層されたコンデンサ素子20の間は、導電性接着剤(図示しない)を介して互いに接合されていてもよい。
FIG. 4 is a cross-sectional view taken along line AA of the electrolytic capacitor shown in FIG.
The capacitor element 20 includes a valve metal base 4 having a core portion and a porous portion formed along the surface thereof, a dielectric layer 5 formed on the porous portion, and a dielectric layer 5 formed on the dielectric layer 5. The conductive layer 7b (carbon layer 7b1 and metal layer 7b2) is formed on the solid electrolyte layer 7a.
A plurality of capacitor elements 20 are stacked to form a laminate 30, and the periphery of the laminate 30 is sealed with a sealing resin 8 to form a resin molded body 9. In the laminate 30, the stacked capacitor elements 20 may be bonded to each other via a conductive adhesive (not shown).
 弁作用金属基体を構成する弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、ケイ素等の金属単体、又は、これらの金属を含む合金等が挙げられる。これらの中では、アルミニウム又はアルミニウム合金が好ましい。 Examples of the valve metal that constitutes the valve metal base include simple metals such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, and silicon, and alloys containing these metals. Among these, aluminum or aluminum alloy is preferred.
 弁作用金属基体の形状は特に限定されないが、平板状であることが好ましく、箔状であることがより好ましい。また、多孔質部は塩酸等によりエッチング処理されたエッチング層であることが好ましい。
 エッチング前の弁作用金属基体の厚さが60μm以上であることが好ましく、180μm以下であることが好ましい。また、エッチング処理後にエッチングされていない弁作用金属基体(芯部)の厚さが10μm以上であることが好ましく、70μm以下であることが好ましい。多孔質部の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、弁作用金属基体の両側の多孔質部を合わせて10μm以上であることが好ましく、120μm以下であることが好ましい。
Although the shape of the valve metal base is not particularly limited, it is preferably flat, and more preferably foil-like. Further, the porous portion is preferably an etched layer etched with hydrochloric acid or the like.
The thickness of the valve metal base before etching is preferably 60 μm or more, and preferably 180 μm or less. Further, the thickness of the valve metal base (core portion) that is not etched after the etching treatment is preferably 10 μm or more, and preferably 70 μm or less. The thickness of the porous portion is designed in accordance with the withstand voltage and capacitance required of the electrolytic capacitor, but it is preferable that the total thickness of the porous portions on both sides of the valve metal base is 10 μm or more, and 120 μm or less. It is preferable that
 誘電体層は、上記弁作用金属の酸化皮膜からなることが好ましい。例えば、弁作用金属基体としてアルミニウム箔が用いられる場合、ホウ酸、リン酸、アジピン酸、又は、それらのナトリウム塩、アンモニウム塩等を含む水溶液中で陽極酸化することにより、誘電体層となる酸化皮膜を形成することができる。
 誘電体層は多孔質部の表面に沿って形成されることにより細孔(凹部)が形成されている。誘電体層の厚さは電解コンデンサに要求される耐電圧、静電容量に合わせて設計されるが、3nm以上であることが好ましく、200nm以下であることが好ましい。
The dielectric layer is preferably made of an oxide film of the valve metal. For example, when aluminum foil is used as a valve metal base, it is anodized to form a dielectric layer by anodizing in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or their sodium salts, ammonium salts, etc. A film can be formed.
The dielectric layer is formed along the surface of the porous portion to form pores (recesses). The thickness of the dielectric layer is designed according to the withstand voltage and capacitance required of the electrolytic capacitor, and is preferably 3 nm or more, and preferably 200 nm or less.
 コンデンサ素子20の陽極側端部では、弁作用金属基体4及び誘電体層5の周囲にマスク層40が設けられている。マスク層40の表面の一部は、弁作用金属基体4の芯部及び多孔質部の表面と共に積層体30の第1面30aを構成している。積層体30の第1面30aは電解コンデンサ1の第1端面1aに対応する。積層体30の第1面30aは積層体の陽極側端面である。 At the anode side end of the capacitor element 20, a mask layer 40 is provided around the valve metal base 4 and the dielectric layer 5. A part of the surface of the mask layer 40 constitutes the first surface 30a of the laminate 30 together with the surfaces of the core and porous portion of the valve metal base 4. The first surface 30a of the laminate 30 corresponds to the first end surface 1a of the electrolytic capacitor 1. The first surface 30a of the laminate 30 is the anode side end surface of the laminate.
 積層体30の第1面30aにはコンデンサ素子20のそれぞれの芯部が接続される第1の導電性樹脂部21が設けられている。コンデンサ素子20のそれぞれの芯部が接続される第1の導電性樹脂部21は一体化していることから、複数のコンデンサ素子20の陽極が第1の導電性樹脂部21で集電されている。 A first conductive resin part 21 to which each core part of the capacitor element 20 is connected is provided on the first surface 30a of the laminate 30. Since the first conductive resin part 21 to which each core part of the capacitor element 20 is connected is integrated, the anodes of the plurality of capacitor elements 20 are collected by the first conductive resin part 21. .
 第1の導電性樹脂部21はさらに第1のリードフレーム11と接続されている。第1の導電性樹脂部21はコンデンサ素子20の芯部及び第1のリードフレーム11と接続されているので、第1のリードフレーム11はコンデンサ素子20の芯部と第1の導電性樹脂部21を介して接続されていることになる。 The first conductive resin part 21 is further connected to the first lead frame 11. Since the first conductive resin part 21 is connected to the core part of the capacitor element 20 and the first lead frame 11, the first lead frame 11 is connected to the core part of the capacitor element 20 and the first conductive resin part. This means that they are connected via 21.
 本発明の電解コンデンサでは、第1のリードフレームとコンデンサ素子の芯部とが溶接されておらず第1の導電性樹脂部を介して接続されている。第1の導電性樹脂部による接続は、樹脂による接続であるので溶接に比べて接合部分が柔軟となる接合形態である。そのためリフロー時の各部材の熱膨張による応力により第1のリードフレームと芯部の接合が外れることに起因する不具合の発生が防止される。
 また、第1の導電性樹脂部は導電性のある材料からなるので第1のリードフレームと芯部との電気的な接続も確保される。以上のことから、本発明の電解コンデンサは第1のリードフレームと弁作用金属の電気的な接続がされており、熱応力等の応力に対する応力緩和がされている電解コンデンサとなる。
In the electrolytic capacitor of the present invention, the first lead frame and the core of the capacitor element are not welded but are connected via the first conductive resin part. Since the connection using the first conductive resin part is a connection using resin, it is a joining form in which the joint portion is more flexible than welding. Therefore, problems caused by the first lead frame and the core becoming disconnected due to stress due to thermal expansion of each member during reflow can be prevented.
Further, since the first conductive resin part is made of a conductive material, electrical connection between the first lead frame and the core part is also ensured. From the above, the electrolytic capacitor of the present invention is an electrolytic capacitor in which the first lead frame and the valve metal are electrically connected, and stress such as thermal stress is relaxed.
 第1のリードフレームとしては、アルミニウム、銅、ニッケル、クロム、コバルト又はそれらを含む合金などを使用することができる。 As the first lead frame, aluminum, copper, nickel, chromium, cobalt, or an alloy containing them can be used.
 第1の導電性樹脂部は、導電成分と樹脂成分とを含む導電性樹脂電極層であることが好ましい。
 導電成分としてはAg、Cu、Ni、Snなどを主成分として含むことが好ましく、樹脂成分としては、エポキシ樹脂、フェノール樹脂などを主成分として含むことが好ましい。
 特に、第1の導電性樹脂部がAgを含むことが好ましい。Agを含む導電性樹脂電極層であるとAgの比抵抗が小さいためESRを低減させることができる。
 また、第1の導電性樹脂部は、電極ペーストのスクリーン印刷により形成された印刷樹脂電極層であることが好ましい。第1の導電性樹脂部が印刷樹脂電極層であると、電極ペーストへのディップにより電極層を形成する場合と比べて、第1の導電性樹脂部を平坦にすることができる。
 また、スクリーン印刷に代えて、電極ペーストをディスペンサを用いて塗布することにより第1の導電性樹脂部を形成してもよい。
The first conductive resin portion is preferably a conductive resin electrode layer containing a conductive component and a resin component.
The conductive component preferably contains Ag, Cu, Ni, Sn, etc. as a main component, and the resin component preferably contains an epoxy resin, phenol resin, etc. as a main component.
In particular, it is preferable that the first conductive resin portion contains Ag. A conductive resin electrode layer containing Ag can reduce ESR because Ag has a low specific resistance.
Moreover, it is preferable that the first conductive resin part is a printed resin electrode layer formed by screen printing an electrode paste. When the first conductive resin part is a printed resin electrode layer, the first conductive resin part can be made flat compared to a case where the electrode layer is formed by dipping into electrode paste.
Furthermore, instead of screen printing, the first conductive resin portion may be formed by applying electrode paste using a dispenser.
 第1の導電性樹脂部を形成するための電極ペーストは有機溶媒を含んでいてもよく、有機溶媒としてはグリコールエーテル系の溶媒を使用することが好ましい。例えばジエチレングリコールモノブチルエーテル、ジエチレングリコールモノフェニルエーテル等が挙げられる。
 また、必要に応じて添加剤を用いてもよい。添加剤は電極ペーストのレオロジー、特にチクソ性の調整に有用である。
The electrode paste for forming the first conductive resin portion may contain an organic solvent, and it is preferable to use a glycol ether solvent as the organic solvent. Examples include diethylene glycol monobutyl ether and diethylene glycol monophenyl ether.
Additionally, additives may be used as necessary. Additives are useful in adjusting the rheology of the electrode paste, especially the thixotropy.
 積層体の第1面には、芯部と直接接するコンタクト層が設けられ、芯部はコンタクト層を介して第1の導電性樹脂部と接続されることが好ましい。
 以下、芯部がコンタクト層を介して第1の導電性樹脂部と接続される形態について説明する。
Preferably, a contact layer in direct contact with the core is provided on the first surface of the laminate, and the core is connected to the first conductive resin part via the contact layer.
Hereinafter, a mode in which the core portion is connected to the first conductive resin portion via a contact layer will be described.
 図5は、積層体の第1面における弁作用金属基体の近傍を模式的に示す断面図である。
 図5は、図4の右下部分に点線Bで囲った領域を模式的に示す断面図でもある。
 弁作用金属基体4は、芯部4aと芯部4aの表面に沿って形成される多孔質部4bとを有している。弁作用金属基体4の端部は積層体30の第1面30aに露出している。
 多孔質部4bの表面に誘電体層5が形成されている。
FIG. 5 is a cross-sectional view schematically showing the vicinity of the valve metal base on the first surface of the laminate.
FIG. 5 is also a sectional view schematically showing a region surrounded by a dotted line B in the lower right portion of FIG.
The valve metal base 4 has a core portion 4a and a porous portion 4b formed along the surface of the core portion 4a. The end portion of the valve metal base 4 is exposed on the first surface 30a of the laminate 30.
A dielectric layer 5 is formed on the surface of the porous portion 4b.
 図5には、芯部4aと直接接するコンタクト層31を示している。コンタクト層31の周囲には第1の導電性樹脂部21が存在しており、芯部4aがコンタクト層31を介して第1の導電性樹脂部21と接続される。
 コンタクト層31は、Cu、Ni、Sn、Ag、Zn及びAuからなる群から選ばれる少なくとも1種を含む電極層であることが好ましく、Cuからなる電極層であることが好ましい。
FIG. 5 shows a contact layer 31 that is in direct contact with the core portion 4a. The first conductive resin portion 21 exists around the contact layer 31, and the core portion 4a is connected to the first conductive resin portion 21 via the contact layer 31.
The contact layer 31 is preferably an electrode layer containing at least one selected from the group consisting of Cu, Ni, Sn, Ag, Zn, and Au, and is preferably an electrode layer made of Cu.
 コンタクト層を設けることにより、芯部と第1の導電性樹脂部の接続性を高めることができる。例えば、芯部がアルミニウムであり、第1の導電性樹脂部に含まれる導電成分の主成分がAgである場合、アルミニウムとAgを直接接続させるよりも、他の材料を介して接続させた方が接続性が高まる場合がある。例えば、コンタクト層にCuやZnを用いて、アルミニウムとAgの間をCuやZnを介して接続させると、アルミニウムからなる芯部とAgを含む第1の導電性樹脂部の接続性を高めることができる。 By providing the contact layer, the connectivity between the core part and the first conductive resin part can be improved. For example, if the core is aluminum and the main conductive component contained in the first conductive resin part is Ag, it is better to connect aluminum and Ag through another material than to connect them directly. may increase connectivity. For example, if Cu or Zn is used in the contact layer and aluminum and Ag are connected through Cu or Zn, the connectivity between the core made of aluminum and the first conductive resin part containing Ag can be improved. I can do it.
 また、コンタクト層31が芯部4aに形成された部分での厚さが、コンタクト層31が多孔質部4bに形成された部分での厚さよりも厚いことが好ましい。
 コンタクト層31の厚さは、コンタクト層31の、積層体30の第1面30aの法線方向における厚さとして定める。また、弁作用金属基体4の芯部4a、弁作用金属基体4の多孔質部4bにそれぞれ形成されたコンタクト層31の厚さは、それぞれの箇所において最も厚いところでの厚さとして定める。図5において、弁作用金属基体4の芯部4a、弁作用金属基体4の多孔質部4bにそれぞれ形成されたコンタクト層31の厚さを両矢印T、Tで示している。
 両矢印T、Tで示す方向は、積層体30の第1面30aの法線方向である。
Further, it is preferable that the thickness of the contact layer 31 at the portion formed in the core portion 4a is thicker than the thickness at the portion where the contact layer 31 is formed in the porous portion 4b.
The thickness of the contact layer 31 is determined as the thickness of the contact layer 31 in the normal direction of the first surface 30a of the stacked body 30. Further, the thickness of the contact layer 31 formed in the core portion 4a of the valve metal base 4 and the porous portion 4b of the valve metal base 4 is determined as the thickness at the thickest point at each location. In FIG. 5, the thicknesses of the contact layers 31 formed in the core portion 4a of the valve metal base 4 and the porous portion 4b of the valve metal base 4 are indicated by double arrows T 1 and T 2 , respectively.
The direction indicated by the double-headed arrows T 1 and T 2 is the normal direction of the first surface 30 a of the laminate 30 .
 積層体30の第1面30aにコンタクト層31を形成する際に、芯部4aにはコンタクト層31が形成されやすく、芯部4aに比べて脆い多孔質部4bにはコンタクト層31が形成されにくい。そのため、芯部4aにおいてコンタクト層31の厚さが厚くなる。
 芯部においてコンタクト層の厚さが厚くなっていると、コンタクト層が平坦な場合と比較して、コンタクト層の上に形成する第1の導電性樹脂部との密着面積が増大し、第1の導電性樹脂部との密着性が向上するためESRを充分に低くすることができる。
 また、コンタクト層と第1の導電性樹脂部との接続強度が高いので、電解コンデンサを実装した際の端子固着強度も高くすることができる。
When forming the contact layer 31 on the first surface 30a of the laminate 30, the contact layer 31 is easily formed in the core part 4a, and the contact layer 31 is not formed in the porous part 4b, which is more fragile than the core part 4a. Hateful. Therefore, the thickness of the contact layer 31 becomes thicker in the core portion 4a.
If the contact layer is thicker in the core, the contact area with the first conductive resin part formed on the contact layer increases compared to when the contact layer is flat, and the contact layer becomes thicker in the core. Since the adhesion with the conductive resin portion is improved, the ESR can be sufficiently lowered.
Furthermore, since the connection strength between the contact layer and the first conductive resin portion is high, the terminal fixing strength when an electrolytic capacitor is mounted can also be increased.
 芯部に形成されたコンタクト層の厚さは、0.3μm以上、30μm以下であることが好ましい。コンタクト層の厚さが上記範囲であると、ESRをより低くすることができ、電解コンデンサを実装した際の端子固着強度をより高くすることができる。 The thickness of the contact layer formed on the core portion is preferably 0.3 μm or more and 30 μm or less. When the thickness of the contact layer is within the above range, the ESR can be lowered, and the terminal fixing strength when an electrolytic capacitor is mounted can be increased.
 コンタクト層は、エアロゾルデポジション法により形成された層であることが好ましい。エアロゾルデポジション法では、金属微粒子がエアロゾル発生器の先端に設けられたノズルから噴射され、積層体の第1面に衝突することによりコンタクト層となる。
 エアロゾルデポジション法では、芯部へのエアロゾルの衝突により芯部を構成する金属表面の酸化膜が除去され、金属が露出して、露出した金属に対してコンタクト層が接合する。エアロゾルデポジション法では酸化膜の除去とコンタクト層の接合が、非酸化性雰囲気下で連続して行われるので、コンタクト層と芯部の間の接合界面に酸化膜が生じることを防止することができる。そして、コンタクト層と芯部の間の接合界面での抵抗が低いので電解コンデンサのESRを低くすることができる。
 特に弁作用金属基体がアルミニウムであると芯部の表面に酸化膜が生じやすいため、エアロゾルデポジション法によりコンタクト層を設ける効果が好適に発揮される。
The contact layer is preferably a layer formed by an aerosol deposition method. In the aerosol deposition method, fine metal particles are injected from a nozzle provided at the tip of an aerosol generator, and collide with the first surface of the laminate to form a contact layer.
In the aerosol deposition method, the oxide film on the surface of the metal forming the core is removed by the collision of an aerosol with the core, the metal is exposed, and the contact layer is bonded to the exposed metal. In the aerosol deposition method, the removal of the oxide film and the bonding of the contact layer are performed successively in a non-oxidizing atmosphere, so it is possible to prevent the formation of an oxide film at the bonding interface between the contact layer and the core. can. Furthermore, since the resistance at the bonding interface between the contact layer and the core is low, the ESR of the electrolytic capacitor can be lowered.
In particular, when the valve metal base is made of aluminum, an oxide film is likely to form on the surface of the core, so the effect of providing the contact layer by the aerosol deposition method is suitably exhibited.
 また、コンタクト層を設ける方法として、エアロゾルデポジション法の他には、スパッタリングや蒸着といった方法を用いることもできる。 In addition to the aerosol deposition method, methods such as sputtering and vapor deposition can also be used as a method for providing the contact layer.
 ここまで電解コンデンサの陽極に関連する構成を説明したが、続いて電解コンデンサの陰極に関連する構成及び電解コンデンサを構成するその他の構成について図4を参照して説明する。 Up to this point, the structure related to the anode of the electrolytic capacitor has been described. Next, the structure related to the cathode of the electrolytic capacitor and other structures constituting the electrolytic capacitor will be described with reference to FIG. 4.
 コンデンサ素子20は、誘電体層5上に形成される固体電解質層7aと、固体電解質層7a上に形成される導電層7bとを含む。陰極の一部として固体電解質層が設けられている電解コンデンサは、固体電解コンデンサであるといえる。 The capacitor element 20 includes a solid electrolyte layer 7a formed on the dielectric layer 5 and a conductive layer 7b formed on the solid electrolyte layer 7a. An electrolytic capacitor in which a solid electrolyte layer is provided as part of the cathode can be said to be a solid electrolytic capacitor.
 コンデンサ素子20を構成する弁作用金属基体4の陰極側の端部は誘電体層5で覆われているなど、絶縁処理が施されているため、弁作用金属基体4の芯部4aと固体電解質層7a又は導電層7bとは直接接触していない。 The cathode side end of the valve metal base 4 constituting the capacitor element 20 is covered with a dielectric layer 5 or otherwise insulated, so that the core 4a of the valve metal base 4 and the solid electrolyte are It is not in direct contact with layer 7a or conductive layer 7b.
 固体電解質層を構成する材料としては、例えば、ピロール類、チオフェン類、アニリン類等を骨格とした導電性高分子等が挙げられる。チオフェン類を骨格とする導電性高分子としては、例えば、PEDOT[ポリ(3,4-エチレンジオキシチオフェン)]が挙げられ、ドーパントとなるポリスチレンスルホン酸(PSS)と複合化させたPEDOT:PSSであってもよい。 Examples of the material constituting the solid electrolyte layer include conductive polymers having skeletons such as pyrroles, thiophenes, and anilines. Examples of conductive polymers with thiophene skeletons include PEDOT [poly(3,4-ethylenedioxythiophene)], and PEDOT:PSS complexed with polystyrene sulfonic acid (PSS) as a dopant. It may be.
 固体電解質層は、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体層の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体層の表面に塗布して乾燥させる方法等によって形成される。なお、細孔(凹部)を充填する内層用の固体電解質層を形成した後、誘電体層全体を被覆する外層用の固体電解質層を形成することが好ましい。
 固体電解質層は、上記の処理液または分散液を、スポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって誘電体層上に塗布することにより、所定の領域に形成することができる。固体電解質層の厚さは2μm以上であることが好ましく、20μm以下であることが好ましい。
For example, the solid electrolyte layer is formed by forming a polymer film of poly(3,4-ethylenedioxythiophene) or the like on the surface of the dielectric layer using a treatment liquid containing a monomer such as 3,4-ethylenedioxythiophene. The dielectric layer is formed by applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric layer and drying it. Note that after forming the solid electrolyte layer for the inner layer that fills the pores (recesses), it is preferable to form the solid electrolyte layer for the outer layer that covers the entire dielectric layer.
The solid electrolyte layer can be formed in a predetermined area by applying the above-mentioned treatment liquid or dispersion onto the dielectric layer by sponge transfer, screen printing, spray coating, dispenser, inkjet printing, or the like. The thickness of the solid electrolyte layer is preferably 2 μm or more, and preferably 20 μm or less.
 導電層は、例えば、カーボンペースト、グラフェンペースト、銀ペーストのような導電性ペーストを付与することによって形成されてなるカーボン層、グラフェン層又は銀層であることが好ましい。また、カーボン層やグラフェン層の上に銀層が設けられた複合層や、カーボンペーストやグラフェンペーストと銀ペーストを混合する混合層であってもよい。 The conductive layer is preferably a carbon layer, a graphene layer, or a silver layer formed by applying a conductive paste such as carbon paste, graphene paste, or silver paste. Further, it may be a composite layer in which a silver layer is provided on a carbon layer or a graphene layer, or a mixed layer in which carbon paste, graphene paste, and silver paste are mixed.
 導電層は、カーボンペースト等の導電性ペーストをスポンジ転写、スクリーン印刷、スプレー塗布、ディスペンサ、インクジェット印刷等によって固体電解質層上に形成することにより形成することができる。
 図4には、導電層7bとしてのカーボン層7b1及び金属層7b2を示している。
The conductive layer can be formed by forming a conductive paste such as carbon paste on the solid electrolyte layer by sponge transfer, screen printing, spray coating, dispenser printing, inkjet printing, or the like.
FIG. 4 shows a carbon layer 7b1 and a metal layer 7b2 as the conductive layer 7b.
 本発明の電解コンデンサは、積層体の第2面に設けられ、コンデンサ素子の導電層が接続される第2の導電性樹脂部と、第2の導電性樹脂部と接続される第2のリードフレームをさらに備えることが好ましい。 The electrolytic capacitor of the present invention includes a second conductive resin part provided on the second surface of the laminate to which the conductive layer of the capacitor element is connected, and a second lead connected to the second conductive resin part. Preferably, the device further includes a frame.
 図4に示す電解コンデンサ1では、積層体30の第2面30bに第2の導電性樹脂部23が形成されていて、第2の導電性樹脂部23はコンデンサ素子20の導電層7bと接続されている。コンデンサ素子20の導電層7bが接続される第2の導電性樹脂部23は一体化していることから、複数のコンデンサ素子20の陰極が第2の導電性樹脂部23で集電されている。積層体30の第2面30bは積層体の陰極側端面である。 In the electrolytic capacitor 1 shown in FIG. 4, a second conductive resin portion 23 is formed on the second surface 30b of the laminate 30, and the second conductive resin portion 23 is connected to the conductive layer 7b of the capacitor element 20. has been done. Since the second conductive resin part 23 to which the conductive layer 7b of the capacitor element 20 is connected is integrated, the cathodes of the plurality of capacitor elements 20 are collected by the second conductive resin part 23. The second surface 30b of the laminate 30 is the end surface of the laminate on the cathode side.
 第2の導電性樹脂部23はさらに第2のリードフレーム13と接続されている。第2の導電性樹脂部23はコンデンサ素子20の導電層7b及び第2のリードフレーム13と接続されているので、第2のリードフレーム13はコンデンサ素子20の導電層7bと第2の導電性樹脂部23を介して接続されていることになる。 The second conductive resin part 23 is further connected to the second lead frame 13. Since the second conductive resin portion 23 is connected to the conductive layer 7b of the capacitor element 20 and the second lead frame 13, the second lead frame 13 is connected to the conductive layer 7b of the capacitor element 20 and the second conductive layer 7b. This means that they are connected via the resin portion 23.
 第2のリードフレームとコンデンサ素子の導電層との接続は、第2の導電性樹脂部を介さずに第2のリードフレームとコンデンサ素子の導電層を直接接着することによって行うことも可能である。しかしながら、第2のリードフレームとコンデンサ素子の導電層を直接接着する場合、接着面積が不足することがあって第2のリードフレームとコンデンサ素子の導電層の間の抵抗が高くなることがある。一方、第2のリードフレームとコンデンサ素子の導電層との接続を、第2の導電性樹脂部を介した接続により行うと、第2の導電性樹脂部が、コンデンサ素子間の隙間に入り込むことができるために第2の導電性樹脂部とコンデンサ素子の導電層との接続面積が大きくなる。また、第2の導電性樹脂部と第2のリードフレームとの接続面積も大きくなる。そのため、第2のリードフレームとコンデンサ素子の導電層の間の抵抗を小さくすることができる。さらに、第2の導電性樹脂部による接続は、樹脂による接続であるので溶接に比べて接合部分が柔軟となる接合形態である。そのためリフロー時の各部材の熱膨張による応力により第2のリードフレームと導電層の接合が外れることに起因する不具合の発生が防止される。 The connection between the second lead frame and the conductive layer of the capacitor element can also be made by directly bonding the second lead frame and the conductive layer of the capacitor element without using the second conductive resin part. . However, when directly bonding the second lead frame and the conductive layer of the capacitor element, the bonding area may be insufficient and the resistance between the second lead frame and the conductive layer of the capacitor element may become high. On the other hand, if the second lead frame and the conductive layer of the capacitor element are connected through the second conductive resin part, the second conductive resin part may enter the gap between the capacitor elements. This increases the connection area between the second conductive resin portion and the conductive layer of the capacitor element. Furthermore, the connection area between the second conductive resin portion and the second lead frame also increases. Therefore, the resistance between the second lead frame and the conductive layer of the capacitor element can be reduced. Furthermore, since the connection using the second conductive resin portion is a connection using resin, the connection is a joining form in which the joint portion is more flexible than welding. Therefore, problems caused by the second lead frame and the conductive layer becoming disconnected due to stress due to thermal expansion of each member during reflow can be prevented.
 第2のリードフレームとしては、第1のリードフレームとして例示した材質、形状のものを使用することができる。第2のリードフレームと第1のリードフレームの材質及び形状は同じであってもよく、異なっていてもよい。 As the second lead frame, the materials and shapes exemplified for the first lead frame can be used. The material and shape of the second lead frame and the first lead frame may be the same or different.
 第2の導電性樹脂部としては、第1の導電性樹脂部の形態として例示した、導電成分と樹脂成分とを含む導電性樹脂電極層を使用することができる。第2の導電性樹脂部と第1の導電性樹脂部の材質及び形状は同じであってもよく、異なっていてもよい。 As the second conductive resin part, a conductive resin electrode layer containing a conductive component and a resin component, which is exemplified as a form of the first conductive resin part, can be used. The material and shape of the second conductive resin part and the first conductive resin part may be the same or different.
 また、積層体の第2面にはコンタクト層を設けなくてもよい。コンタクト層を設けなくても、導電層と第2の導電性樹脂部の接続性を充分に確保することができる場合が多いためである。 Furthermore, it is not necessary to provide a contact layer on the second surface of the laminate. This is because, in many cases, sufficient connectivity between the conductive layer and the second conductive resin portion can be ensured even without providing a contact layer.
 なお、本発明の電解コンデンサにおけるコンデンサ素子からの陰極の引き出し方法については、第2の導電性樹脂部及び第2のリードフレームを使用した方法に限定されるものではなく、従来公知の他の引き出し方法を用いてもよい。例えば、導電層として金属箔を使用して樹脂成形体の端面に引き出したのち、樹脂電極層及びめっき層からなる陰極外部電極を形成する方法等が挙げられる。 Note that the method for drawing out the cathode from the capacitor element in the electrolytic capacitor of the present invention is not limited to the method using the second conductive resin part and the second lead frame, and may be any other conventionally known drawing method. A method may also be used. For example, a method may be used in which a metal foil is used as a conductive layer and drawn out to the end face of a resin molded body, and then a cathode external electrode consisting of a resin electrode layer and a plating layer is formed.
 コンデンサ素子が複数積層されている積層体の第1面に第1の導電性樹脂部及び第1のリードフレームを設け、更に必要に応じ積層体の第2面に第2の導電性樹脂部及び第2のリードフレームを設けて、さらにその周囲を封止樹脂で封止して、全体が直方体状の樹脂成形体となっていることが好ましい。 A first conductive resin part and a first lead frame are provided on the first surface of the laminate in which a plurality of capacitor elements are laminated, and if necessary, a second conductive resin part and a first lead frame are provided on the second surface of the laminate. It is preferable that a second lead frame is provided and the periphery of the second lead frame is further sealed with a sealing resin, so that the entire resin molded body has a rectangular parallelepiped shape.
 樹脂成形体を構成する封止樹脂は、少なくとも樹脂を含み、好ましくは樹脂及びフィラーを含む。樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等の絶縁性樹脂を用いることが好ましい。封止樹脂の形態は、固形樹脂、液状樹脂いずれも使用可能である。また、フィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等の無機粒子を用いることが好ましい。固形エポキシ樹脂とフェノール樹脂にシリカ粒子を含む材料を用いることがより好ましい。
 樹脂成形体の成形方法としては、固形封止材を用いる場合は、コンプレッションモールド、トランスファーモールド等の樹脂モールドを用いることが好ましく、コンプレッションモールドを用いることがより好ましい。また、液状封止材を用いる場合は、ディスペンス法や印刷法等の成形方法を用いることが好ましい。
The sealing resin constituting the resin molded article contains at least a resin, and preferably contains a resin and a filler. As the resin, it is preferable to use insulating resins such as epoxy resins, phenol resins, polyimide resins, silicone resins, polyamide resins, and liquid crystal polymers. As for the form of the sealing resin, both solid resin and liquid resin can be used. Further, as the filler, it is preferable to use inorganic particles such as silica particles, alumina particles, and metal particles. It is more preferable to use a material containing silica particles in the solid epoxy resin and phenol resin.
As a method for molding the resin molded body, when a solid sealing material is used, it is preferable to use a resin mold such as a compression mold or a transfer mold, and it is more preferable to use a compression mold. Moreover, when using a liquid sealant, it is preferable to use a molding method such as a dispensing method or a printing method.
 このようにして得られた電解コンデンサは、電解コンデンサを長さ方向及び厚さ方向に沿って切断した断面(LT面断面)において、第1のリードフレームが電解コンデンサの第1端面(陽極側端面)が長辺となるL字状を有することが好ましい。
 L字状の短辺は、電解コンデンサの底面となる。電解コンデンサの底面は電解コンデンサを基板等に実装する際の実装面となる。電解コンデンサの底面における第1のリードフレームの面積が実装に充分な広さとなる程度に、L字状の短辺の長さが長いことが好ましい。
In the thus obtained electrolytic capacitor, in a cross section (LT plane cross section) obtained by cutting the electrolytic capacitor along the length direction and thickness direction, the first lead frame is located at the first end surface (anode side end surface) of the electrolytic capacitor. ) preferably has an L-shape with the long sides.
The short side of the L shape becomes the bottom surface of the electrolytic capacitor. The bottom surface of the electrolytic capacitor becomes the mounting surface when mounting the electrolytic capacitor on a board or the like. It is preferable that the length of the short side of the L-shape is long enough to ensure that the area of the first lead frame on the bottom surface of the electrolytic capacitor is large enough for mounting.
 また、電解コンデンサを長さ方向及び厚さ方向に沿って切断した断面(LT断面)において、第2のリードフレームが電解コンデンサの第2端面(陰極側端面)が長辺となるL字状を有することが好ましい。 In addition, in a cross section (LT cross section) obtained by cutting the electrolytic capacitor along the length direction and the thickness direction, the second lead frame has an L-shape in which the second end surface (cathode side end surface) of the electrolytic capacitor is the long side. It is preferable to have.
 図4には、電解コンデンサのLT面断面図を示している。図4には、第1のリードフレーム11及び第2のリードフレーム13が、電解コンデンサのLT断面においてそれぞれL字状を有していることが示されている。
 第1のリードフレーム11のL字状の短辺の部分は、図4では第1の導電性樹脂部21、マスク層40及び封止樹脂8に接するように描かれている。マスク層40と第1のリードフレーム11の間に封止樹脂8が入り込んでマスク層40と第1のリードフレーム11が封止樹脂8を介して接着されていてもよい。
 なお、図4では第1のリードフレーム11は短辺が左向きの逆L字状であるが、この形状もL字状に含める。
FIG. 4 shows a LT plane cross-sectional view of the electrolytic capacitor. FIG. 4 shows that the first lead frame 11 and the second lead frame 13 each have an L-shape in the LT cross section of the electrolytic capacitor.
In FIG. 4, the L-shaped short side portion of the first lead frame 11 is drawn so as to be in contact with the first conductive resin portion 21, the mask layer 40, and the sealing resin 8. The sealing resin 8 may enter between the mask layer 40 and the first lead frame 11 and the mask layer 40 and the first lead frame 11 may be bonded together via the sealing resin 8.
In FIG. 4, the first lead frame 11 has an inverted L shape with the short side facing left, but this shape is also included in the L shape.
 続いて、電解コンデンサの製造方法の一例について説明する。
 図6、図7、図8A、図8B、図9A、図9B及び図9Cは、電解コンデンサの製造工程の一部を模式的に示す工程図である。
 図6には、3つの電解コンデンサの製造に使用するためのリードフレーム連を示している。右側が第1のリードフレーム連110、左側が第2のリードフレーム連120である。
 第1のリードフレーム連110には、電解コンデンサの第1のリードフレームとなる板状部111と、板状部111を連結する連結部112が設けられている。板状部111は3つあり、各板状部111には第1の導電性樹脂部となる導電性ペースト113が塗布されている。
 第2のリードフレーム連120には、電解コンデンサの第2のリードフレームとなる板状部121と、板状部121を連結する連結部122が設けられている。板状部121は3つあり、各板状部121には第2の導電性樹脂部となる導電性ペースト123が塗布されている。
Next, an example of a method for manufacturing an electrolytic capacitor will be described.
6, FIG. 7, FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9B, and FIG. 9C are process diagrams schematically showing a part of the manufacturing process of an electrolytic capacitor.
FIG. 6 shows a series of lead frames for use in manufacturing three electrolytic capacitors. The right side is the first lead frame series 110, and the left side is the second lead frame series 120.
The first lead frame series 110 is provided with a plate-like part 111 that becomes a first lead frame of an electrolytic capacitor, and a connecting part 112 that connects the plate-like part 111. There are three plate-like parts 111, and each plate-like part 111 is coated with a conductive paste 113 that becomes a first conductive resin part.
The second lead frame series 120 is provided with a plate-like part 121 that becomes a second lead frame of the electrolytic capacitor, and a connecting part 122 that connects the plate-like part 121. There are three plate-like parts 121, and each plate-like part 121 is coated with a conductive paste 123 that becomes a second conductive resin part.
 図7には、第1のリードフレーム連110及び第2のリードフレーム連120に積層体30を載置した状態を示している。
 第1のリードフレームとなる板状部111と、第2のリードフレームとなる板状部121の間に、積層体30を載置する。
 積層体30の第1面30aには、芯部と直接接するコンタクト層が設けられていることが好ましい。コンタクト層の図示は省略している。
FIG. 7 shows a state in which the laminate 30 is placed on the first lead frame series 110 and the second lead frame series 120.
The laminate 30 is placed between the plate-like part 111 that becomes the first lead frame and the plate-like part 121 that becomes the second lead frame.
It is preferable that the first surface 30a of the laminate 30 is provided with a contact layer that is in direct contact with the core. Illustration of the contact layer is omitted.
 図8Aには、第1のリードフレーム連110の板状部111と、第2のリードフレーム連120の板状部121をそれぞれ積層体30の第1面30a及び第2面30bに向けて折り曲げた状態を示している。図8Bは、図8Aの状態を積層体30の側面側から見た側面図である。
 各板状部には導電性ペーストが塗布されているので、積層体の端面と板状部が導電性ペーストで接続される。
 第1のリードフレーム連110の板状部111は第1のリードフレーム11となり、導電性ペースト113は第1の導電性樹脂部21となる。
 第2のリードフレーム連120の板状部121は第2のリードフレーム13となり、導電性ペースト123は第2の導電性樹脂部23となる。
In FIG. 8A, the plate-like part 111 of the first lead frame series 110 and the plate-like part 121 of the second lead frame series 120 are bent toward the first surface 30a and the second surface 30b of the laminate 30, respectively. It shows the condition. FIG. 8B is a side view of the state shown in FIG. 8A viewed from the side of the laminate 30.
Since a conductive paste is applied to each plate-like part, the end face of the laminate and the plate-like part are connected with the conductive paste.
The plate-shaped portion 111 of the first lead frame series 110 becomes the first lead frame 11, and the conductive paste 113 becomes the first conductive resin portion 21.
The plate-shaped portion 121 of the second lead frame series 120 becomes the second lead frame 13, and the conductive paste 123 becomes the second conductive resin portion 23.
 図9Aには、積層体30の周囲を封止樹脂8で封止して樹脂成形体9とした状態を示している。図9Bは、図9Aの状態を樹脂成形体9の側面側から見た側面図であり、図9Cは、図9Aの状態を樹脂成形体9の第1端面側から見た端面図である。
 図9Bには封止樹脂8の内部の積層体30を簡略化して点線で示している。
 図9Cに示すように、樹脂成形体9の第1端面には第1のリードフレーム11が露出している。
 ここまでの工程を経て、電解コンデンサがリードフレーム連の連結部で連結された状態となるので、連結部を切断することにより個片化して電解コンデンサを得ることができる。
FIG. 9A shows a state in which the periphery of the laminate 30 is sealed with a sealing resin 8 to form a resin molded body 9. 9B is a side view of the state shown in FIG. 9A viewed from the side surface of the resin molded body 9, and FIG. 9C is an end view of the state shown in FIG. 9A viewed from the first end surface side of the resin molded body 9.
In FIG. 9B, the stacked body 30 inside the sealing resin 8 is simplified and shown by a dotted line.
As shown in FIG. 9C, the first lead frame 11 is exposed on the first end surface of the resin molded body 9.
Through the steps up to this point, the electrolytic capacitors are connected by the connecting portions of the lead frame series, so that the electrolytic capacitors can be obtained by cutting the connecting portions into individual pieces.
(電解コンデンサの別の実施形態)
 図10は、別の実施形態に係る電解コンデンサのLT面断面図である。
 図10に示す電解コンデンサ201では、積層体30を構成するコンデンサ素子20のうち、最も底面側に位置するコンデンサ素子220のマスク層240が厚くなっている。
 また、積層体30の第2面30bの近傍には、最も底面側に位置するコンデンサ素子220の下(底面側)に陰極側スペーサー250が設けられている。
 陰極側スペーサー250は絶縁性の樹脂材料からなることが好ましい。
(Another embodiment of electrolytic capacitor)
FIG. 10 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment.
In the electrolytic capacitor 201 shown in FIG. 10, the mask layer 240 of the capacitor element 220 located furthest to the bottom among the capacitor elements 20 constituting the laminate 30 is thick.
Further, in the vicinity of the second surface 30b of the laminate 30, a cathode spacer 250 is provided below (on the bottom side) the capacitor element 220 located closest to the bottom side.
The cathode spacer 250 is preferably made of an insulating resin material.
 最も底面側に位置するコンデンサ素子220の下(底面側)にマスク層240と陰極側スペーサー250が設けられていることにより、最も底面側に位置するコンデンサ素子220と電解コンデンサ201の底面1cとの間の距離が長くなる。このようにすると、電解コンデンサ201の底面1cに位置する第1のリードフレーム11と、最も底面側に位置するコンデンサ素子220の導電層7bが接触して短絡することが防止される。 By providing the mask layer 240 and the cathode side spacer 250 under the capacitor element 220 located at the bottom side (on the bottom side), the connection between the capacitor element 220 located at the bottom side and the bottom surface 1c of the electrolytic capacitor 201 is The distance between them becomes longer. In this way, the first lead frame 11 located on the bottom surface 1c of the electrolytic capacitor 201 and the conductive layer 7b of the capacitor element 220 located on the bottom side are prevented from coming into contact and causing a short circuit.
 また、このように短絡を防止するための構造をとることにより、第1のリードフレーム11のL字状の短辺の長さを長くすることができ、電解コンデンサ201の底面1cにおける第1のリードフレーム11の面積を実装に充分な広さとすることができる。同時に、コンデンサ素子20の導電層7bをできるだけ積層体30の第1面30aに近いところまで設けることができるので、電解コンデンサの容量を高くすることができる。
 陰極側スペーサー250は、陽極側との高さを合わせるために設けられる。
Further, by adopting the structure for preventing short circuits in this way, the length of the L-shaped short side of the first lead frame 11 can be increased, and the first lead frame 11 on the bottom surface 1c of the electrolytic capacitor 201 can be The area of the lead frame 11 can be made large enough for mounting. At the same time, since the conductive layer 7b of the capacitor element 20 can be provided as close to the first surface 30a of the laminate 30 as possible, the capacitance of the electrolytic capacitor can be increased.
The cathode side spacer 250 is provided to match the height with the anode side.
 図11は、別の実施形態に係る電解コンデンサのLT面断面図である。
 図11に示す電解コンデンサ202では、積層体30を構成するコンデンサ素子20のうち、最も底面側に位置するコンデンサ素子220に対して、積層体30の第2面30bの近傍には陰極側スペーサー250が設けられ、積層体30の第1面30aの近傍には陽極側スペーサー260が設けられている。
 陰極側スペーサー250及び陽極側スペーサー260は絶縁性の樹脂材料からなることが好ましい。
FIG. 11 is a LT plane cross-sectional view of an electrolytic capacitor according to another embodiment.
In the electrolytic capacitor 202 shown in FIG. 11, a cathode-side spacer 250 is provided near the second surface 30b of the laminate 30 for the capacitor element 220 located at the bottom side of the capacitor elements 20 constituting the laminate 30. is provided, and an anode side spacer 260 is provided near the first surface 30a of the laminate 30.
The cathode spacer 250 and the anode spacer 260 are preferably made of an insulating resin material.
 図10に示す電解コンデンサ201と同様に、最も底面側に位置するコンデンサ素子220の下(底面側)に陰極側スペーサー250と陽極側スペーサー260が設けられていることにより、第1のリードフレーム11と、最も底面側に位置するコンデンサ素子220の導電層7bが接触して短絡することが防止される。その他の効果も同様である。 Like the electrolytic capacitor 201 shown in FIG. This prevents the conductive layer 7b of the capacitor element 220 located closest to the bottom surface from coming into contact with each other and causing a short circuit. The same applies to other effects.
 図11に示す電解コンデンサ202の場合、最も底面側に位置するコンデンサ素子220として他のコンデンサ素子20と同じ仕様(同じマスク層の仕様)のものを使用することができるので、マスク層の厚さが厚いコンデンサ素子を準備する必要が無い点で、図10に示す電解コンデンサ201に対してメリットがある。 In the case of the electrolytic capacitor 202 shown in FIG. 11, it is possible to use a capacitor element 220 located at the bottom side with the same specifications (same mask layer specifications) as the other capacitor elements 20, so that the thickness of the mask layer This has an advantage over the electrolytic capacitor 201 shown in FIG. 10 in that there is no need to prepare a thick capacitor element.
 図12は、図11に示す電解コンデンサの製造工程の一部を模式的に示す工程図である。
 図12には、3つの電解コンデンサの製造に使用するためのリードフレーム連を示している。右側が第1のリードフレーム連110、左側が第2のリードフレーム連120であり、リードフレーム連は図6に示すリードフレーム連と同様である。
 第1のリードフレーム連110の連結部112及び第2のリードフレーム連120の連結部122のうち、積層体を載置する位置にスペーサー用ペースト270が塗布されている。スペーサー用ペースト270が塗布された位置に積層体の底面を載置することで、陰極側スペーサー250と陽極側スペーサー260を設けることができる。
 積層体を載置した後の工程は、上述した工程と同様にして、電解コンデンサを製造することができる。
FIG. 12 is a process diagram schematically showing a part of the manufacturing process of the electrolytic capacitor shown in FIG. 11.
FIG. 12 shows a series of lead frames for use in manufacturing three electrolytic capacitors. The first lead frame series 110 is on the right side, and the second lead frame series 120 is on the left side, and the lead frame series is similar to the lead frame series shown in FIG.
A spacer paste 270 is applied to the connecting portions 112 of the first lead frame series 110 and the connecting portions 122 of the second lead frame series 120 at positions where the laminate is to be placed. By placing the bottom surface of the laminate at the position where the spacer paste 270 is applied, the cathode spacer 250 and the anode spacer 260 can be provided.
The steps after placing the laminate can be the same as the steps described above to manufacture an electrolytic capacitor.
 また、図10に示す電解コンデンサ201を製造する場合には、第2のリードフレーム連120の連結部122のみにスペーサー用ペースト270を塗布しておくことにより、陰極側スペーサー250を設けることができる。
 なお、スペーサー用ペーストの組成は、絶縁性であり、接着性を有する樹脂材料を含む組成とすることが好ましい。
Furthermore, when manufacturing the electrolytic capacitor 201 shown in FIG. 10, the cathode side spacer 250 can be provided by applying the spacer paste 270 only to the connecting portion 122 of the second lead frame series 120. .
The composition of the spacer paste is preferably insulating and contains a resin material having adhesive properties.
1 電解コンデンサ
1a 電解コンデンサの第1端面
1b 電解コンデンサの第2端面
1c 電解コンデンサの底面
1d 電解コンデンサの上面
1e 電解コンデンサの第1側面
1f 電解コンデンサの第2側面
4 弁作用金属基体
4a 芯部
4b 多孔質部
5 誘電体層
7a 固体電解質層
7b 導電層
7b1 カーボン層
7b2 金属層
8 封止樹脂
9 樹脂成形体
11 第1のリードフレーム
13 第2のリードフレーム
20 コンデンサ素子
21 第1の導電性樹脂部
23 第2の導電性樹脂部
30 積層体
30a 積層体の第1面
30b 積層体の第2面
31 コンタクト層
40 マスク層
110 第1のリードフレーム連
111 板状部
112 連結部
113 導電性ペースト
120 第2のリードフレーム連
121 板状部
122 連結部
123 導電性ペースト
201、202 電解コンデンサ
220 最も底面側に位置するコンデンサ素子
240 最も底面側に位置するコンデンサ素子のマスク層
250 陰極側スペーサー
260 陽極側スペーサー
270 スペーサー用ペースト

 
1 Electrolytic capacitor 1a First end face 1b of electrolytic capacitor Second end face 1c of electrolytic capacitor Bottom face 1d of electrolytic capacitor Upper face 1e of electrolytic capacitor First side face 1f of electrolytic capacitor Second side face 4 of electrolytic capacitor Valve action metal base 4a Core portion 4b Porous part 5 Dielectric layer 7a Solid electrolyte layer 7b Conductive layer 7b1 Carbon layer 7b2 Metal layer 8 Sealing resin 9 Resin molded body 11 First lead frame 13 Second lead frame 20 Capacitor element 21 First conductive resin Part 23 Second conductive resin part 30 Laminated body 30a First surface 30b of the laminated body Second surface 31 of the laminated body Contact layer 40 Mask layer 110 First lead frame series 111 Plate-shaped portion 112 Connecting portion 113 Conductive paste 120 Second lead frame series 121 Plate part 122 Connecting part 123 Conductive paste 201, 202 Electrolytic capacitor 220 Capacitor element located at the bottom side 240 Mask layer of the capacitor element located at the bottom side 250 Cathode side spacer 260 Anode Side spacer 270 Spacer paste

Claims (10)

  1.  芯部とその表面に沿って形成される多孔質部とを有する弁作用金属基体と、前記多孔質部上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された導電層と、を含むコンデンサ素子が複数積層され、第1面を有する積層体と、
     前記積層体の前記第1面に設けられ、前記コンデンサ素子の前記芯部が接続される第1の導電性樹脂部と、
     前記第1の導電性樹脂部を介して前記芯部と接続された第1のリードフレームと、を備える、電解コンデンサ。
    A valve metal base having a core portion and a porous portion formed along the surface thereof, a dielectric layer formed on the porous portion, and a solid electrolyte layer formed on the dielectric layer. , a conductive layer formed on the solid electrolyte layer, and a laminate including a plurality of capacitor elements stacked and having a first surface;
    a first conductive resin portion provided on the first surface of the laminate and to which the core portion of the capacitor element is connected;
    An electrolytic capacitor comprising: a first lead frame connected to the core portion via the first conductive resin portion.
  2.  前記積層体の前記第1面には、前記芯部と直接接するコンタクト層が設けられ、前記芯部は前記コンタクト層を介して前記第1の導電性樹脂部と接続される、請求項1に記載の電解コンデンサ。 The first surface of the laminate is provided with a contact layer that is in direct contact with the core, and the core is connected to the first conductive resin part via the contact layer. Electrolytic capacitors listed.
  3.  前記コンタクト層はCu、Ni、Sn、Ag、Zn及びAuからなる群から選ばれる少なくとも1種を含む電極層である請求項2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 2, wherein the contact layer is an electrode layer containing at least one selected from the group consisting of Cu, Ni, Sn, Ag, Zn, and Au.
  4.  前記コンタクト層はCuからなる電極層である請求項2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 2, wherein the contact layer is an electrode layer made of Cu.
  5.  前記コンタクト層が前記芯部に形成された部分での厚さが、前記コンタクト層が前記多孔質部に形成された部分での厚さよりも厚い、請求項2~4のいずれかに記載の電解コンデンサ。 The electrolysis method according to any one of claims 2 to 4, wherein the contact layer is thicker in a portion where the contact layer is formed in the core portion than in a portion where the contact layer is formed in the porous portion. capacitor.
  6.  前記複数のコンデンサ素子のそれぞれの前記芯部が接続された前記第1の導電性樹脂部は一体化している請求項1~5のいずれかに記載の電解コンデンサ。 The electrolytic capacitor according to any one of claims 1 to 5, wherein the first conductive resin portion to which the core portions of each of the plurality of capacitor elements are connected is integrated.
  7.  前記電解コンデンサをその長さ方向及び厚さ方向に沿って切断した断面において、前記第1のリードフレームが、前記電解コンデンサの第1端面が長辺となるL字状を有する請求項1~6のいずれかに記載の電解コンデンサ。 7. In a cross section of the electrolytic capacitor taken along the length direction and the thickness direction, the first lead frame has an L-shape in which the first end surface of the electrolytic capacitor is the long side. An electrolytic capacitor according to any of the above.
  8.  前記積層体の周囲が封止樹脂で封止され、前記封止樹脂の表面及び前記第1のリードフレームの表面が外表面となる直方体状の樹脂成形体を構成する請求項1~7のいずれかに記載の電解コンデンサ。 Any one of claims 1 to 7, wherein the periphery of the laminate is sealed with a sealing resin, forming a rectangular parallelepiped-shaped resin molded body whose outer surface is the surface of the sealing resin and the surface of the first lead frame. Electrolytic capacitor described in the above.
  9.  前記積層体の第2面に設けられ、前記コンデンサ素子の前記導電層が接続される第2の導電性樹脂部と、前記第2の導電性樹脂部と接続される第2のリードフレームをさらに備える請求項1~7のいずれかに記載の電解コンデンサ。 A second conductive resin part provided on the second surface of the laminate and to which the conductive layer of the capacitor element is connected; and a second lead frame connected to the second conductive resin part. An electrolytic capacitor according to any one of claims 1 to 7.
  10.  前記積層体の周囲が封止樹脂で封止され、前記封止樹脂の表面、前記第1のリードフレームの表面、及び、前記第2のリードフレームの表面が外表面となる直方体状の樹脂成形体を構成する請求項9に記載の電解コンデンサ。 Rectangular parallelepiped resin molding in which the periphery of the laminate is sealed with a sealing resin, and the outer surface is the surface of the sealing resin, the surface of the first lead frame, and the surface of the second lead frame. The electrolytic capacitor according to claim 9, which constitutes a body.
PCT/JP2023/010624 2022-03-28 2023-03-17 Electrolytic capacitor WO2023189736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052016 2022-03-28
JP2022052016 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189736A1 true WO2023189736A1 (en) 2023-10-05

Family

ID=88201085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010624 WO2023189736A1 (en) 2022-03-28 2023-03-17 Electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2023189736A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164308A (en) * 1990-10-29 1992-06-10 Nec Corp Chip type solid electrolytic tantalum capacitor
JP2001338840A (en) * 2000-05-26 2001-12-07 Matsuo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2007318056A (en) * 2006-05-26 2007-12-06 Taiyo Yuden Co Ltd Laminated solid electrolytic capacitor and method for manufacturing laminate chip therefor
JP2020096066A (en) * 2018-12-12 2020-06-18 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2020107884A (en) * 2018-12-26 2020-07-09 株式会社村田製作所 Electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164308A (en) * 1990-10-29 1992-06-10 Nec Corp Chip type solid electrolytic tantalum capacitor
JP2001338840A (en) * 2000-05-26 2001-12-07 Matsuo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2007318056A (en) * 2006-05-26 2007-12-06 Taiyo Yuden Co Ltd Laminated solid electrolytic capacitor and method for manufacturing laminate chip therefor
JP2020096066A (en) * 2018-12-12 2020-06-18 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2020107884A (en) * 2018-12-26 2020-07-09 株式会社村田製作所 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
CN111383844B (en) Electrolytic capacitor
US11145467B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US9053866B2 (en) Solid electrolytic capacitor and method of manufacture
JPWO2018074408A1 (en) Solid electrolytic capacitor
JP7259407B2 (en) Electrolytic capacitors and mounting structure of electrolytic capacitors
WO2021049056A1 (en) Electrolytic capacitor
US20230368980A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
US20230368978A1 (en) Method for manufacturing electronic component
WO2021172236A1 (en) Electrolytic capacitor and method for producing same
WO2021210367A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
CN115917686A (en) Solid electrolytic capacitor
WO2023189736A1 (en) Electrolytic capacitor
JP6919732B2 (en) Electrolytic capacitor
CN114365249A (en) Capacitor, connection structure, and method for manufacturing capacitor
WO2022163644A1 (en) Electrolytic capacitor
JP7200912B2 (en) Electrolytic capacitor
WO2021200197A1 (en) Electrolytic capacitor
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
CN114556506A (en) Electrolytic capacitor
US20230038003A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
WO2021038900A1 (en) Electrolytic capacitor
WO2021038901A1 (en) Electrolytic capacitor and manufacturing method of electrolytic capacitor
US20240087818A1 (en) Solid electrolytic capacitor
JP5754179B2 (en) Manufacturing method of solid electrolytic capacitor
WO2023090141A1 (en) Electrolytic capacitor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779752

Country of ref document: EP

Kind code of ref document: A1