WO2023188164A1 - Elevator system - Google Patents

Elevator system Download PDF

Info

Publication number
WO2023188164A1
WO2023188164A1 PCT/JP2022/016173 JP2022016173W WO2023188164A1 WO 2023188164 A1 WO2023188164 A1 WO 2023188164A1 JP 2022016173 W JP2022016173 W JP 2022016173W WO 2023188164 A1 WO2023188164 A1 WO 2023188164A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
car
floor
correction amount
tape
Prior art date
Application number
PCT/JP2022/016173
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 梶山
和則 鷲尾
英二 横山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/016173 priority Critical patent/WO2023188164A1/en
Publication of WO2023188164A1 publication Critical patent/WO2023188164A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels

Definitions

  • the present disclosure relates to an elevator system.
  • the elevator device described in Patent Document 1 includes a first tape for detecting the position of a car.
  • the first tape is placed above and below the hoistway.
  • the car is provided with a reading device for reading the positional information attached to the first tape.
  • the elevator device described in Patent Document 1 further includes a second tape for detecting the stop position of the car.
  • the second tape is placed in accordance with the stop position on each floor.
  • the stop position information attached to the second tape is read by the reading device.
  • An object of the present disclosure is to provide an elevator system that can correct the position of a car with a simple configuration.
  • the elevator system is an elevator system in which a car moves along a hoistway, the car stops at a plurality of stop floors, and some of the plurality of stop floors are set as reference floors.
  • This system consists of a tape that is installed in the hoistway and has a position code attached to it over a specific range in which the car can move, and a first sensor that is installed on the car and reads the position code attached to the tape.
  • the detection object provided in the hoistway in accordance with the position of the reference floor; a second sensor provided in the car for detecting the detection object; an operation control section for controlling movement of the car; a setting section that sets a reference correction amount for the reference position code based on a result of a second sensor detecting an object when the car stops at a reference floor under control of the control section; and a reference set by the setting section.
  • a first calculation unit that calculates a correction amount for each position code attached to the tape based on the correction amount.
  • the operation control section controls movement of the car based on the position code read by the first sensor and the correction amount calculated by the first calculation section.
  • the reference position code is a code set in advance as a code indicating the position of the reference floor among the position codes attached to the tape.
  • the position of the car can be corrected with a simple configuration.
  • FIG. 1 is a diagram showing an example of an elevator system in Embodiment 1.
  • FIG. FIG. 3 is a diagram for explaining the functions of a correction plate and a sensor. It is a figure for explaining the function of a control device.
  • 3 is a flowchart showing an example of the operation of the elevator system in Embodiment 1.
  • FIG. FIG. 3 is a diagram showing a state in which the car has stopped at a reference floor.
  • FIG. 7 is a diagram showing another state in which the car has stopped at a reference floor.
  • FIG. 7 is a diagram showing another state in which the car has stopped at a reference floor.
  • FIG. 3 is a diagram for explaining heat transfer in a hoistway. It is a figure for explaining temperature distribution of a hoistway.
  • FIG. 3 is a diagram for explaining an example of a correction function.
  • FIG. 12 is a diagram showing the difference between the curve shown in FIG. 11 and a straight line representing a correction function.
  • FIG. 7 is a diagram for explaining another example of a correction function.
  • 14 is a diagram showing the difference between the curve shown in FIG. 13 and a straight line showing a correction function.
  • FIG. It is a figure showing the temperature distribution of the hoistway measured in an actual elevator system.
  • 16 is a diagram showing the amount of expansion and contraction of the tape calculated from the temperature distribution shown in FIG. 15.
  • FIG. 3 is a diagram for explaining an example of a correction function.
  • FIG. 3 is a diagram illustrating an example of a correction error.
  • FIG. 3 is a diagram showing a relationship between a detection position by a sensor and a maximum absolute value of a correction error.
  • 14 is a diagram corresponding to FIG. 13.
  • 15 is a diagram corresponding to FIG. 14.
  • FIG. 3 is a diagram showing a relationship between a detection position by a sensor and a maximum absolute value of a correction error.
  • FIG. 3 is a diagram showing a relationship between a detection position by a sensor and a maximum absolute value of a correction error.
  • 14 is a diagram corresponding to FIG. 13.
  • 15 is a diagram corresponding to FIG. 14. It is a figure which shows the ratio of the correction error in each building. It is a figure which shows the calculation example of the correction amount when three reference floors are set.
  • FIG. 3 is a diagram for explaining a method of calculating delay time.
  • FIG. 3 is a diagram illustrating an example of hardware resources of a control device.
  • FIG. 7 is a diagram showing another example of hardware resources of the control device.
  • FIG. 1 is a diagram showing an example of an elevator system in the first embodiment.
  • the elevator system shown in FIG. 1 includes a car 1 and a counterweight 2.
  • the car 1 moves up and down the hoistway 3.
  • a car 1 and a counterweight 2 are suspended in a hoistway 3 by a rope 4.
  • the counterweight 2 moves up and down the hoistway 3 in a direction opposite to the direction in which the car 1 moves.
  • FIG. 1 shows an example of a 1:1 roping type elevator system.
  • FIG. 1 shows an example in which a hoist 5 and a control device 6 are provided in a machine room 7 above a hoistway 3.
  • the hoist 5 and the control device 6 may be provided in the hoistway 3.
  • the hoist 5 may be provided at the top of the hoistway 3 or may be provided in a pit of the hoistway 3.
  • a tape 8 is provided on the hoistway 3.
  • the tape 8 is an elongated band-shaped member. It is preferable that the tape 8 is arranged in a straight line across the top and bottom of the hoistway 3.
  • the upper end of the tape 8 is fixed to a support member 9 provided at the top of the hoistway 3.
  • a lower end portion of the tape 8 is supported by a support device 10 provided in a pit of the hoistway 3.
  • a downward force is applied to the tape 8 by a spring, a weight, or the like provided in the support device 10.
  • a position code is attached to the tape 8 over a specific range in which the car 1 can move. It is preferable that the position code be attached to the entire range in which the car 1 can move.
  • the position code may be a magnetic code or an optical code. Other types of codes may be recorded on the tape 8 as position codes.
  • a sensor 11 for reading the position code attached to the tape 8 is provided in the car 1.
  • the elevator system shown in FIG. 1 does not indirectly detect the position of the car 1 based on a signal from an encoder provided in the hoisting machine 5, etc., but uses a sensor 11 to detect the position code attached to the tape 8.
  • the position of car 1 is detected by direct reading. That is, the elevator system shown in FIG. 1 includes an absolute positioning system.
  • the sensor 11 transmits a signal to the control device 6 according to the read position code.
  • Table 1 shows an example of the table TA stored in the storage unit 20 (not shown in FIG. 1) of the control device 6.
  • a position code for a specific position within the hoistway 3 is registered in the table TA.
  • a stop position code is registered in table TA.
  • Car 1 stops at a plurality of stop floors.
  • the stop position code is a code set in advance as a code indicating the position of each stop floor among the position codes attached to the tape 8.
  • the stop position code indicating the position of the first floor is "5000”.
  • the stop position code indicating the position of the top floor is "100000".
  • the table TA is created by a professional engineer, for example, when the system is installed.
  • the engineer places the car 1 in accordance with the position of each stop floor by performing manual operation, and registers the position code read by the sensor 11 at that time in the table TA.
  • Table TA shows an example in which the sensor 11 reads the position code "5000" when the car 1 is placed in accordance with the position of the first floor in the manual operation.
  • the position code indicating the position of the bottom below the lowest floor may be calculated from the position code indicating the position of the first floor.
  • the position code indicating the bottom position may be a fixed value.
  • Table TA shows an example in which the sensor 11 reads the position code "100000" when the car 1 is placed in accordance with the position of the N floor in the manual operation.
  • the position code indicating the position of the top above the top floor may be calculated from the position code indicating the position of the N floor.
  • the position code indicating the position of the top may be a fixed value. Note that "car 1 is arranged in accordance with the position of the first floor” means that the floor surface of car 1 and the floor surface of the landing on the first floor are arranged at the same height. An engineer may perform manual operation during regularly performed maintenance to update the table TA.
  • a correction plate 12 is provided in the hoistway 3.
  • the car 1 is provided with a sensor 13 for detecting the correction plate 12.
  • the correction plate 12 is an example of a detected object detected by the sensor 13.
  • the correction plate 12 is arranged in accordance with the position of a specific reference floor.
  • the reference floor is a part of the stop floor where the car 1 stops.
  • the reference floor is one of the stop floors and is set in advance.
  • FIG. 2 is a diagram for explaining the functions of the correction plate 12 and the sensor 13.
  • a plurality of zones are set on the correction plate 12.
  • a zone is an area that the sensor 13 can distinguish and detect.
  • a preferred example in which three zones are set in the correction plate 12: a central zone 12a, a lower zone 12b directly below the central zone 12a, and an upper zone 12c directly above the central zone 12a will be described in detail.
  • the number of zones set on the correction plate 12 may be two. Four or more zones may be set on the correction plate 12.
  • the correction plate 12 is arranged so that the sensor 13 detects the central zone 12a when the car 1 is arranged in accordance with the position of the reference floor.
  • the correction plate 12 is arranged so that the detection position of the sensor 13 coincides with the center of the central zone 12a when the car 1 is arranged in alignment with the position of the reference floor.
  • the lower zone 12b extends downward in a straight line from the lower end of the central zone 12a.
  • the upper zone 12c extends straight upward from the upper end of the central zone 12a.
  • the method by which the sensor 13 detects the correction plate 12 may be magnetic, optical, or mechanical.
  • the sensor 13 is required to have a function that can distinguish and detect the center zone 12a, lower zone 12b, and upper zone 12c.
  • a plurality of plates for each zone may be provided as the correction plate 12.
  • Identification information that can be detected by the sensor 13 may be provided to each of the plurality of plates.
  • the plurality of plates may be arranged vertically or horizontally shifted.
  • the sensor 13 may include a plurality of detection elements arranged one above the other.
  • the sensor 13 transmits a signal according to the detected zone to the control device 6.
  • FIG. 3 is a diagram for explaining the functions of the control device 6.
  • the control device 6 in addition to the storage section 20, the control device 6 further includes a reception section 21, a reception section 22, a setting section 23, a calculation section 24, and an operation control section 25.
  • the receiving section 21, the receiving section 22, the setting section 23, and the calculating section 24 may be provided in this system as a device other than the control device 6, for example, as a safety control device.
  • the receiving unit 21 receives the signal from the sensor 11.
  • the receiving unit 22 receives the signal from the sensor 13.
  • the first floor which is the lowest stop floor
  • the reference position code is a code set in advance as a code indicating the position of the reference floor among the position codes attached to the tape 8.
  • the reference position code is the position code "5000" indicating the position on the first floor.
  • the setting unit 23 sets the amount of correction for the reference position code.
  • the correction amount for the reference position code is also referred to as the reference correction amount.
  • the calculation unit 24 calculates the correction amount for each position code attached to the tape 8 based on the reference correction amount set by the setting unit 23.
  • the operation control unit 25 controls the movement of the car 1 based on the position code read by the sensor 11 and the correction amount calculated by the calculation unit 24. Movement control of the car 1 includes at least speed control or position control of the car 1.
  • FIG. 4 is a flowchart showing an example of the operation of the elevator system in the first embodiment.
  • the reference correction amount is set to 0 (S101).
  • the operation control unit 25 controls the movement of the car 1 based on the position code read by the sensor 11 and the correction amount calculated by the calculation unit 24 (S102).
  • the operation control unit 25 calculates the current position of the car 1 using equation (1).
  • [Current position of car 1] [APS detection position] + [correction amount] ...
  • the "APS detection position” is the position indicated by the position code read by the sensor 11.
  • the “correction amount” is the correction amount calculated by the calculation unit 24, and is the correction amount for the position code read by the sensor 11.
  • the correction amount is calculated from a function f (APS detection position, reference correction amount) between the APS detection position and the reference correction amount.
  • the operation control unit 25 controls the movement of the car 1 by setting the position indicated by the position code read by the sensor 11 as the current position of the car 1. For example, if the car 1 is to be stopped on the second floor, the operation control unit 25 will stop the car 1 at the position where the sensor 11 reads the position code "9000".
  • the control device 6 determines whether the correction plate 12 is detected by the sensor 13 (S103). While the service is being performed, the operation control unit 25 controls the movement of the car 1 based on the position code read by the sensor 11, and causes the car 1 to respond to registered calls. Basically, when the car 1 stops at a reference floor, the correction plate 12 is detected by the sensor 13. Also, when the car 1 passes through the reference floor, the sensor 13 detects the correction plate 12. As a result, a determination of Yes is made in S103.
  • the code group CG is set in advance.
  • the code group CG includes a plurality of vertically consecutive position codes. Further, the code group CG includes a reference position code. As an example, position codes existing in the range of "position indicated by the reference position code ⁇ determination distance" are included in the code group CG. Regarding the determination distance, it is preferable that the following formula is satisfied when the total length of the correction plate 12 is L0. L0/2 ⁇ [judgment distance] ⁇ L0
  • the operation control unit 25 stops the service by car 1 in S106.
  • the stop condition is a condition for stopping a service, and is set in advance. That is, in the example shown in FIG. 4, the stop condition is satisfied when the determination in S104 is No. This shows an example in which the stop condition is satisfied because a signal indicating that the correction plate 12 has been detected is input from the sensor 13 even though the car 1 is located at a position far from the reference floor. Further, in the example shown in FIG. 4, the stop condition is satisfied when the determination in S105 is Yes. This shows an example in which the stop condition is satisfied because a signal indicating that the correction plate 12 has been detected is not input from the sensor 13 even though the car 1 is located sufficiently close to the reference floor.
  • S104 If the sensor 11 has read the position code included in the code group CG when the correction plate 12 is detected by the sensor 13, a determination of Yes is made in S104. If the determination is Yes in S104, it is determined whether the car 1 has stopped at the reference floor (S107). When the car 1 passes the reference floor, a negative determination is made in S107. If the determination in S107 is No, the process returns to S102.
  • a determination of Yes is made in S107. For example, if there is no change in the position code read by the sensor 11 for a certain period of time, or even if there is a change, the amount of change is minute, the determination is Yes in S107. If the determination in S107 is Yes, processing for setting the reference correction amount is started. Specifically, the setting unit 23 sets the reference correction amount based on the result of the sensor 13 detecting the correction plate 12 when the car 1 stops at the reference floor under the control of the operation control unit 25.
  • the setting unit 23 identifies the zone detected by the sensor 13 (S108). Next, the setting unit 23 determines whether the specified zone is the central zone 12a (S109).
  • the operation control unit 25 stops the car 1 at the position where the sensor 11 reads the position code "5000".
  • the floor surface of the car 1 and the floor surface of the landing on the first floor are not necessarily arranged at exactly the same height.
  • the tape 8 may stretch due to factors such as temperature changes.
  • the car 1 stops on the first floor under the control of the operation control unit 25 the floor surface of the car 1 is placed at a lower position than the floor surface of the landing on the first floor.
  • FIG. 5 is a diagram showing a state in which the car 1 has stopped at a reference floor.
  • FIG. 5 shows a state in which the car 1 is placed at a position slightly lower than the position of the first floor.
  • the setting unit 23 specifies in S108 that the sensor 13 has detected the central zone 12a. As a result, it is determined as Yes in S109. If the determination is Yes in S109, the setting unit 23 does not change the reference correction amount from the current value (S110). That is, if the sensor 13 detects the central zone 12a when the car 1 stops at the reference floor under the control of the operation control unit 25, the setting unit 23 does not change the reference correction amount.
  • FIG. 6 is a diagram showing another state in which the car 1 has stopped at the reference floor.
  • FIG. 6 shows a state in which the car 1 is placed at a lower position than the state shown in FIG.
  • the setting unit 23 specifies that the sensor 13 has detected the lower zone 12b in S108. As a result, a negative determination is made in S109. Note that the determination shown in S111 will be described later. When three zones, the center zone 12a, the lower zone 12b, and the upper zone 12c, are set on the correction plate 12, the determination in S111 is always Yes. If the determination in S109 is No, the setting unit 23 resets the reference correction amount (S112).
  • the setting unit 23 changes the reference correction value so that the stopping position of the car 1 on the reference floor is a distance L1 above the current stopping position. do.
  • the distance L1 is a distance according to the distance between the center zone 12a and the lower zone 12b.
  • the distance L1 is set to the distance between the center of the center zone 12a and the center of the lower zone 12b.
  • FIG. 7 is a diagram showing another state in which the car 1 has stopped at the reference floor.
  • FIG. 7 shows a state in which the car 1 is placed at a higher position than the first floor due to shrinkage of the tape 8 due to factors such as temperature changes.
  • the setting unit 23 specifies that the sensor 13 has detected the upper zone 12c in S108. As a result, a negative determination is made in S109.
  • the setting unit 23 changes the reference correction value so that the stopping position of the car 1 on the reference floor is a distance L2 below the current stopping position. do.
  • the distance L2 is a distance depending on the distance between the center zone 12a and the upper zone 12c.
  • the distance L2 is set to the distance between the center of the center zone 12a and the center of the upper zone 12c.
  • the distance L2 may be the same as or different from the distance L1.
  • the calculation unit 24 calculates the correction amount for each position code attached to the tape 8 based on the reset reference correction amount. Since each stop position code is also one of the position codes attached to the tape 8, the correction amount for each stop position code is also calculated by the calculation unit 24. As an example, the calculation unit 24 calculates each correction amount so that the correction amount for each position code is proportional to the distance from the upper end of the tape 8. Note that the correction amount at the top is 0, and the correction amount for the reference position code is the reference correction amount. Table 2 shows an example in which the car 1 is stopped at the reference floor in the state shown in FIG. 6, and the reference correction amount is set to "-100" in terms of the position code in S112.
  • the operation control unit 25 calculates the current position of the car 1 using equation (1). Therefore, when the sensor 11 reads the position code "5000", the operation control unit 25 changes the current position of the car 1 to the position indicated by the position code plus the correction amount "-100", that is, the position code "5000". 4900" is calculated. If the car 1 is to be stopped on the first floor, the motion control unit 25 sets the sensor 11 to the position code so that the position calculated from equation (1) matches the position indicated by the registered position code "5000". Car 1 is stopped near the position where "5100" is read.
  • the reference correction amount for the reference position code is set by the setting section 23, and the correction amount for each position code attached to the tape 8 is calculated by the calculation section 24. Therefore, in order to correct the position of the car 1, it is not necessary to install the correction plate 12 in accordance with the position of each stop floor.
  • the number of reference floors for installing the correction plate 12 may be one. Therefore, in the example shown in this embodiment, even if the tape 8 expands or contracts, the position of the car 1 can be corrected with a simple configuration. Furthermore, since it is not necessary to install the correction plate 12 in accordance with the position of each stop floor, accidents such as the rope 4 etc. getting caught in the correction plate 12 during an earthquake are unlikely to occur.
  • the elevator system may employ a combination of the following functions.
  • the operation control unit 25 forces car 1 to the reference floor when a certain period of time has elapsed since the last time car 1 stopped at the reference floor. It may be stopped temporarily.
  • the certain period of time is set in advance.
  • the determination is No in S109 of FIG. 4, it is determined in S111 whether the difference in the detection zone is less than or equal to the allowable value. As an example, if it is specified in S108 that the sensor 13 has detected the lower zone 12b or the upper zone 12c, it is determined as Yes in S111. If it is specified in S108 that the sensor 13 has detected the lowest zone or the highest zone, the determination is No in S111. If the determination is No in S111, the operation control unit 25 stops the service by car 1 in S106.
  • the first floor which is the lowest floor
  • the standard floor does not have to be the lowest floor.
  • the standard floor is 11 to 17 from the bottom of the tape 8, where the total length of the tape 8 is 100, among the floors where the car 1 stops. It has been found that it is preferable to set the stop floor within the range of . Furthermore, it has been found that when there is no stop floor in the range, it is preferable to set the reference floor to a stop floor that exists within the range of 0 to 21 from the bottom end of the tape 8. The reason for this will be explained below with reference to FIGS. 8 to 26.
  • the upper end of the tape 8 be placed slightly above the top floor position, and the lower end placed slightly below the bottom floor position. Compared to the distance from the top floor to the bottom floor, the distance that the tape 8 projects upward from the top floor position and the distance that the tape 8 projects downward from the bottom floor position are extremely small. Therefore, the total length of the tape 8 may be regarded as the distance from the top floor to the bottom floor. In the explanation regarding FIGS. 8 to 26, it is assumed that the total length of the tape 8 and the distance from the top floor to the bottom floor are synonymous.
  • FIG. 8 is a diagram for explaining heat transfer in the hoistway 3.
  • the building 40 is built on land 41.
  • the hoistway 3 is a vertically extending space formed inside the building 40.
  • the hoistway 3 is formed to extend below the ground.
  • the tape 8 is suspended from the top of the hoistway 3.
  • the building 40 is exposed to the outside air. Therefore, the temperature of the portion of the hoistway 3 formed inside the building 40 is affected by the temperature of the outside air.
  • the lowest part of the hoistway 3 touches the land 41.
  • the heat capacity of the land 41 is extremely large compared to the heat capacity of the building 40. Therefore, the temperature of this part of the hoistway 3 is not affected much by the temperature of the outside air and becomes close to the temperature of the land 41. Therefore, the temperature of the hoistway 3 has a gradient in the height direction depending on the temperature of the outside air.
  • the tape 8 expands and contracts depending on the temperature. For this reason, when detecting the position of the car 1 based on the position code attached to the tape 8, it is preferable that correction is performed in consideration of the expansion and contraction of the tape 8.
  • FIG. 9 is a diagram for explaining the temperature distribution of the hoistway 3.
  • the vertical axis in FIG. 9 indicates the temperature D of the hoistway 3.
  • the horizontal axis in FIG. 9 indicates the position P in the hoistway 3.
  • the lowest floor position is 0 and the highest floor position is 100.
  • the normalized numerical value is shown in parentheses.
  • position P[0] is the lowest floor position.
  • Position P[100] is the top floor position.
  • Position P[30] is the position 30th from the bottom floor, where the bottom floor position is 0 and the top floor position is 100.
  • the position of the top floor is shown on the left, and the position of the bottom floor is shown on the right.
  • the temperature D at the position P[0] is the temperature of the land 41.
  • the temperature D monotonically increases or decreases as it approaches the top floor. For example, when the temperature of the outside air is higher than the temperature of the land 41, the temperature D increases as it approaches the top floor, as shown by the solid arrow in FIG.
  • the temperature D becomes lower as it approaches the top floor, as shown by the two-dot chain arrow in FIG.
  • FIG. 10 is a diagram for explaining the amount of expansion and contraction of the tape 8.
  • the expansion and contraction characteristics of the tape 8 become as shown in FIG. Specifically, the amount of expansion and contraction of the tape 8 is 0 at position P[100].
  • the amount of expansion and contraction of the tape 8 increases as it approaches the lowest floor, as shown by the curve C1 in FIG. Note that the curve C1 is an upwardly convex curve, and the center of curvature exists below the curve C1.
  • FIG. 11 is a diagram for explaining an example of a correction function.
  • the curve C1 shown in FIG. 11 is the same as the curve C1 shown in FIG. FIG. 11 corresponds to the curve C1 shown in FIG. 10 with a correction function F1 added thereto.
  • FIG. 11 shows an example in which the amount of expansion and contraction of the tape 8 on the lowest floor is detected by a sensor.
  • the sensor is a sensor corresponding to sensor 13. That is, in the example shown in FIG. 11, the amount of expansion and contraction of the tape 8 on the top floor is 0, and the amount of expansion and contraction of the tape 8 on the bottom floor is a value detected by a sensor.
  • the correction function F1 is defined as a linear function by a line segment connecting the amount of expansion and contraction at the top floor and the amount of expansion and contraction at the bottom floor, that is, the value detected by the sensor.
  • FIG. 12 is a diagram showing the difference between the curve C1 shown in FIG. 11 and the straight line showing the correction function F1. In the following, this difference will also be referred to as a correction error.
  • the correction error is always a positive value. Further, the correction error on the top floor and the correction error on the bottom floor are zero.
  • the curve indicating the correction error is an upwardly convex curve, and the peak of the mountain is the maximum value of the correction error.
  • the correction error is directly linked to the error in the stopping position of the car 1, it is preferable that it be as small as possible. Furthermore, the polarity of the correction error does not need to be constant. An example will be described below in which the maximum value of the correction error is reduced by mixing positive values and negative values in the correction error.
  • FIG. 13 is a diagram for explaining another example of the correction function.
  • the curve C1 shown in FIG. 13 is the same as the curve C1 shown in FIG. FIG. 13 corresponds to the curve C1 shown in FIG. 10 with a correction function F2 added thereto.
  • the correction function F2 is defined as a linear function by a line segment connecting the amount of expansion and contraction at the top floor and the amount of expansion and contraction at position P[n], that is, the value detected by the sensor.
  • FIG. 14 is a diagram showing the difference between the curve C1 shown in FIG. 13 and the straight line showing the correction function F2.
  • the correction error of position P[n] is 0.
  • the correction error from position P[0] to position P[n] is a negative value.
  • the correction error from position P[100] to position P[n] is a positive value.
  • the detection position by the sensor is preferably set so that the absolute value of the maximum value on the positive side of the correction error is equal to the absolute value of the maximum value (minimum value) on the negative side.
  • FIG. 15 is a diagram showing the temperature distribution of the hoistway 3 measured in an actual elevator system.
  • the horizontal axis in FIG. 15 indicates a value expressed as a ratio of the length of the tape 8 from the top floor to the total length of the tape 8. For example, the value of the ratio at the top floor is 0, and the value of the ratio at the bottom floor is 100.
  • the notation of the horizontal axis in FIG. 15 is substantially the same as the notation of the horizontal axis in FIGS. 9 to 14.
  • the solid line indicates temperature data measured in summer in the hoistway 3 formed in the existing building ⁇ .
  • the range in which the car 1 can move in the building ⁇ is a little less than 200 m.
  • the dashed-dotted line indicates temperature data measured in summer in the hoistway 3 formed in the existing building ⁇ .
  • the range in which the car 1 can move in the building ⁇ is a little over 200 m.
  • the two-dot chain line indicates temperature data measured in winter in the hoistway 3 formed in the actual building ⁇ .
  • the range in which a car can move in building ⁇ is a little less than 40 m.
  • FIG. 16 is a diagram showing the amount of expansion and contraction of the tape 8 calculated from the temperature distribution shown in FIG. 15.
  • FIG. 16 shows the results of calculating the expansion/contraction amount ⁇ l[m] using equation (2).
  • ⁇ l l ⁇ G ⁇ T...(2)
  • l is the length of the tape 8
  • G[1/K] is the temperature expansion/contraction coefficient
  • ⁇ T[K] is the temperature difference.
  • the temperature data of the hoistway 3 was actually measured at a plurality of heights, and the temperature at each tape length ratio was determined using linear interpolation. Furthermore, regarding the temperature difference ⁇ T, the difference from 25 degrees Celsius was calculated.
  • the temperature at the lowest floor of the hoistway 3, that is, the tape length ratio is 100% is 19 to 26°C, which is approximately room temperature, in all buildings.
  • temperature data was acquired during the summer, so the temperature of the hoistway 3 tends to become higher as it approaches the top floor.
  • temperature data was acquired during winter, so the temperature of the hoistway 3 tends to become lower as it approaches the top floor.
  • FIG. 16 it can be seen that the amount of expansion and contraction of the tape 8 monotonically increases in the summer and monotonically decreases in the winter. Furthermore, since the tape 8 expands and contracts depending on the temperature of the hoistway 3, it is understood that correction is required in accordance with the expansion and contraction.
  • FIG. 17 is a diagram for explaining an example of a correction function.
  • the three curves shown in FIG. 17 are the same as the three curves shown in FIG. 16.
  • FIG. 17 corresponds to the three curves shown in FIG. 16 in which a correction function is added, similar to the example shown in FIG. 11.
  • the correction function F ⁇ is a correction function for a curve indicating the amount of expansion and contraction of the tape 8 provided on the building ⁇ .
  • the correction function F ⁇ is a correction function for a curve indicating the amount of expansion and contraction of the tape 8 provided on the building ⁇ .
  • the correction function F ⁇ is a correction function for a curve indicating the amount of expansion and contraction of the tape 8 provided on the building ⁇ .
  • FIG. 18 is a diagram showing an example of correction errors.
  • FIG. 18 corresponds to the correction error calculated based on the example shown in FIG. 17 in the same way as the example shown in FIG. That is, the solid curve shown in FIG. 18 represents the difference between the solid curve shown in FIG. 17 and the straight line representing the correction function F ⁇ .
  • the dashed-dotted curve shown in FIG. 18 represents the difference between the dashed-dotted curve shown in FIG. 17 and the straight line representing the correction function F ⁇ .
  • the two-dot chain curve shown in FIG. 18 represents the difference between the two-dot chain line curve shown in FIG. 17 and the straight line indicating the correction function F ⁇ .
  • the solid curve and the dashed-dotted curve shown in FIG. 18 are upwardly convex mountain-shaped curves, and the correction error always takes a positive value.
  • the two-dot chain line curve shown in FIG. 18 is a downwardly convex curve, and the correction error always takes a negative value. Therefore, by setting the detection position by the sensor above the lowest floor, it is possible to mix positive values and negative values in the correction error, thereby reducing the maximum absolute value of the correction error.
  • the appropriate range of detection positions by sensors will be discussed below for each building.
  • FIG. 19 is a diagram showing the relationship between the position detected by the sensor and the maximum absolute value of the correction error.
  • the maximum absolute value of the correction error is the minimum when the detection position by the sensor is 13 from the bottom end of the tape 8, where the total length of the tape 8 is 100. The minimum value is reduced to about 64% compared to the maximum value when the detection position by the sensor is on the lowest floor.
  • FIG. 20 is a diagram corresponding to FIG. 13.
  • FIG. 21 is a diagram corresponding to FIG. 14. That is, the curve shown in FIG. 20 is the same as the solid curve shown in FIG. 17.
  • FIG. 20 shows an example of a correction function when the position detected by the sensor is at a tape length ratio of 87%.
  • the curve shown in FIG. 21 represents the difference between the curve shown in FIG. 20 and the straight line showing the correction function.
  • the polarity of the correction error is reversed at the detection position by the sensor.
  • the absolute value of the maximum value and the absolute value of the minimum value of the correction error are the same value.
  • FIG. 22 is a diagram showing the relationship between the position detected by the sensor and the maximum absolute value of the correction error.
  • FIG. 22 is a diagram corresponding to FIG. 19.
  • the maximum absolute value of the correction error is the minimum when the detection position by the sensor is 15 from the bottom end of the tape 8, where the total length of the tape 8 is 100. The minimum value is reduced to about 66% compared to the maximum value when the detection position by the sensor is on the lowest floor.
  • a diagram corresponding to FIG. 20 and a diagram corresponding to FIG. 21 can be similarly obtained.
  • FIG. 23 is a diagram showing the relationship between the position detected by the sensor and the maximum absolute value of the correction error.
  • the maximum absolute value of the correction error is the minimum when the detection position by the sensor is 17 from the bottom end of the tape 8, where the total length of the tape 8 is 100. The minimum value is reduced to about 68% compared to the maximum value when the detection position by the sensor is on the lowest floor.
  • FIG. 24 is a diagram corresponding to FIG. 13.
  • FIG. 25 is a diagram corresponding to FIG. 14. That is, the curve shown in FIG. 24 is the same as the two-dot chain curve shown in FIG. FIG. 24 shows an example of a correction function when the detected position by the sensor is at a tape length ratio of 83%.
  • the curve shown in FIG. 25 represents the difference between the curve shown in FIG. 24 and the straight line representing the correction function. As shown in FIG. 25, the polarity of the correction error is reversed at the detection position by the sensor. Further, the absolute value of the maximum value and the absolute value of the minimum value of the correction error are the same value.
  • FIG. 26 is a diagram showing the ratio of correction errors in each building.
  • the correction error is 100 when the detected position by the sensor is at a tape length ratio of 100%, that is, when the detected position by the sensor is on the lowest floor.
  • the solid polygonal line shown in FIG. 26 is a polygonal line corresponding to the polygonal line shown in FIG. 19.
  • the broken line shown in FIG. 26 is a broken line corresponding to the broken line shown in FIG. 22.
  • the two-dot chain polygonal line shown in FIG. 26 is a polygonal line corresponding to the polygonal line shown in FIG. 23.
  • the correction error will be The correction error shall not be greater than the correction error. More preferably, if the position detected by the sensor is within the range of 11 to 17 from the bottom end of the tape 8, the correction error will be smaller than 80% of the correction error when the position detected by the sensor is on the lowest floor. Therefore, it is preferable that the reference floor is a stop floor that exists within the above range. Further, it is preferable that the reference floor is a stop floor existing in the above range, and that the calculation unit 24 calculates the correction amount using linear interpolation.
  • a plurality of stopping floors among the stopping floors where the car 1 stops may be set as the reference floor.
  • one of the plurality of reference floors is set to the lowest stop floor. It is preferable that the rest of the plurality of reference floors be set at the stop floor closest to each boundary position when the entire length of the tape 8 is equally divided by the number of reference floors.
  • the setting unit 23 sets the reference correction amount for the reference position code indicating the position of each of the plurality of reference floors.
  • the calculation unit 24 calculates the correction amount for each position code attached to the tape 8 based on the plurality of reference correction amounts set by the setting unit 23.
  • FIG. 27 is a diagram showing an example of calculating the correction amount when three reference floors are set. When a plurality of reference floors are set, it is preferable that the calculation unit 24 calculates the correction amount by quadratic function approximation. Note that when a plurality of reference floors are set, the correction amount may be calculated using linear interpolation.
  • control device 6 may perform control in consideration of the delay time of the signal from the sensor 11.
  • control device 6 further includes an assignment section 26 and a calculation section 27.
  • the signal from the sensor 13 is sent to the control device 6 by parallel transmission.
  • the signal from the sensor 11 is sent to the control device 6 by serial transmission. Therefore, a communication delay time ⁇ t occurs in the signal from the sensor 11.
  • the adding unit 26 adds time information to the signal from the sensor 11.
  • the adding unit 26 adds time information to the signal from the sensor 13.
  • the signal from the sensor 11 and the signal from the sensor 13 to which time information is added by the adding unit 26 are stored in the storage unit 20 for a certain period of time.
  • FIG. 28 is a diagram for explaining a method of calculating the delay time ⁇ t.
  • FIG. 28 shows an example in which car 1 moving downward stops at a reference floor.
  • the sensor 13 detects the end of the correction plate 12 before the car 1 stops at the reference floor.
  • a signal from the sensor 13 rises. That is, when the sensor 13 detects the edge of the correction plate 12, the receiving section 22 receives a signal to that effect.
  • the assigning unit 26 assigns time t1 to the signal from the sensor 13 when the sensor 13 detects the end of the correction plate 12.
  • the car 1 stops at the reference floor. Signals from the sensor 11 are sent to the control device 6 at regular intervals. Therefore, a signal indicating the position code read by the sensor 11 when the car 1 stops at the reference floor is also sent to the control device 6.
  • the assigning unit 26 assigns time t3 to the signal from the sensor 11 when the car 1 stops at the reference floor.
  • the calculation unit 27 calculates the delay time ⁇ t of the signal from the sensor 11 based on the time t1 and time t3 given by the provision unit 26. First, the calculation unit 27 calculates the approach distance L3 of the car 1.
  • the approach distance L3 is the distance that the car 1 has moved since the sensor 13 detected the end of the correction plate 12. If the sensor 13 detects the center zone 12a when the car 1 stops, the calculation unit 27 may calculate the distance from the end of the correction plate 12 to the center of the center zone 12a as the approach distance L3.
  • the calculation unit 27 estimates the position obtained by subtracting the approach distance L3 from the stop position of the car 1 based on the signal from the sensor 11 as the position of the end of the correction plate 12.
  • the calculation unit 27 specifies, among the signals from the sensor 11, a signal including a position code indicating the position closest to the estimated position, and specifies the time information given to the specified signal.
  • the calculation unit 27 specifies time t2 as the time information based on time t3 and approach distance L3.
  • the operation control unit 25 controls the movement of the car 1 based also on the delay time ⁇ t calculated by the calculation unit 27.
  • movement control of car 1 includes speed control and position control of car 1.
  • the speed V APS is the speed calculated based on the signal from the sensor 11.
  • Acceleration A APS is the acceleration calculated based on the signal from the sensor 11.
  • the position PAPS is a position based on the signal from the sensor 11.
  • the operation control unit 25 may simply estimate the current speed and position of the car 1 as shown in the following equation.
  • [Speed V] [Speed V APS ]
  • [Position P] [Position P APS ] + [Correction amount] + [Speed V APS ] x [Delay time ⁇ t]
  • the elevator device described above is referred to as elevator device A.
  • the elevator system further includes an elevator device B.
  • Elevator device A and elevator device B belong to the same bank and have similar configurations and functions. However, it is desirable that the reference floor in elevator device B is set to a different floor from the reference floor in elevator device A.
  • elevator device A includes a control device 6A
  • elevator device B includes a control device 6B
  • reference floor A is set
  • reference floor B is set
  • the reference floor B is set to a different floor from the reference floor A.
  • control device 6A further includes a communication section 28A as shown in FIG.
  • the communication unit 28A has a function of communicating with the control device 6B.
  • control device 6B further includes a communication section 28B.
  • the communication unit 28B has a function of communicating with the control device 6A.
  • the communication unit 28B transmits the reference correction amount B for the reference position code B set by the setting unit 23B to the control device 6A.
  • the communication unit 28A obtains the reference correction amount B from the elevator device B.
  • the calculation unit 24A calculates the correction amount for each position code attached to the tape 8 based not only on the reference correction amount A set by the setting unit 23A but also on the reference correction amount B acquired by the communication unit 28A. do.
  • the reference position code B is considered to be a code set in advance as a code indicating the position of the reference floor B among the position codes attached to the tape 8A.
  • the calculation unit 24A can calculate the correction amount in the same way as when a plurality of reference floors A are set.
  • the elevator system includes three elevator devices, it is possible to calculate the correction amount as shown in FIG. 27 even if only one reference floor is set for each elevator device.
  • the calculation unit 24A calculates the correction amount based on the reference correction amount A set by the setting unit 23A.
  • the calculation unit 24A may calculate the correction amount based on the reference correction amount B acquired by the communication unit 28A.
  • only some of the elevator devices belonging to the same bank may include the correction plate 12 and the sensor 13.
  • a reference correction amount is set for the reference position code based on the result of the sensor 13 detecting the correction plate 12, and the correction amount is calculated.
  • the control device 6 acquires information about a reference position code and a reference correction amount for the reference position code from the elevator device that includes the correction plate 12 and the sensor 13. , calculates the correction amount.
  • FIG. 29 is a diagram showing an example of hardware resources of the control device 6.
  • the control device 6 includes a processing circuit 30 including a processor 31 and a memory 32 as hardware resources.
  • the processing circuit 30 may include a plurality of processors 31.
  • the processing circuit 30 may include multiple memories 32.
  • each section indicated by reference numerals 20 to 28 indicates a function that the control device 6 has.
  • the functions of the storage unit 20 are realized by the memory 32.
  • the functions of each part shown by reference numerals 21 to 28 can be realized by software written as a program, firmware, or a combination of software and firmware.
  • the program is stored in the memory 32.
  • the control device 6 realizes the functions of each section indicated by reference numerals 21 to 28 by having the processor 31 (computer) execute a program stored in the memory 32.
  • the processor 31 is also called a CPU (Central Processing Unit), central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • a semiconductor memory a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be used.
  • Semiconductor memories that can be employed include RAM, ROM, flash memory, EPROM, EEPROM, and the like.
  • FIG. 30 is a diagram showing another example of the hardware resources of the control device 6.
  • the control device 6 includes a processing circuit 30 including a processor 31, a memory 32, and dedicated hardware 33.
  • FIG. 30 shows an example in which some of the functions of the control device 6 are realized by dedicated hardware 33. All the functions of the control device 6 may be realized by the dedicated hardware 33.
  • the dedicated hardware 33 can be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the elevator system according to the present disclosure can be applied to an elevator system equipped with an absolute positioning system.

Abstract

This elevator system comprises, for example, a tape (8), a sensor (11), a correction plate (12), a sensor (13), an operation control unit (25), a setting unit (23), and a calculation unit (24). The setting unit (23) sets a reference correction amount for a reference position code on the basis of the result of detection of the correction plate (12) by the sensor (13) when a car (1) stops at the reference floor under the control of the operation control unit (25). The calculation unit (24) calculates a correction amount for each position code attached to the tape (8), on the basis of the reference correction amount set by the setting unit (23). The operation control unit (25) controls movement of the car (1) on the basis of the position code read by the sensor (11) and the correction amount calculated by the calculation unit (24).

Description

エレベーターシステムelevator system
 本開示は、エレベーターシステムに関する。 The present disclosure relates to an elevator system.
 特許文献1に、エレベーター装置が記載されている。特許文献1に記載されたエレベーター装置は、かごの位置を検出するための第1テープを備える。第1テープは、昇降路の上下に亘って配置される。かごに、第1テープに付された位置情報を読み取るための読取装置が設けられる。 An elevator device is described in Patent Document 1. The elevator device described in Patent Document 1 includes a first tape for detecting the position of a car. The first tape is placed above and below the hoistway. The car is provided with a reading device for reading the positional information attached to the first tape.
 特許文献1に記載されたエレベーター装置は、かごの停止位置を検出するための第2テープを更に備える。第2テープは、各階の停止位置に合わせて配置される。第2テープに付された停止位置情報は、上記読取装置によって読み取られる。 The elevator device described in Patent Document 1 further includes a second tape for detecting the stop position of the car. The second tape is placed in accordance with the stop position on each floor. The stop position information attached to the second tape is read by the reading device.
日本特開2021-66567号公報Japanese Patent Application Publication No. 2021-66567
 特許文献1に記載されたエレベーター装置では、第2テープの停止位置情報に基づいてかごの位置が補正される。しかし、当該エレベーター装置では、かごの位置を補正するために、各階の停止位置に合わせて第2テープを設置しなければならない。このため、構成が複雑になるといった問題があった。 In the elevator device described in Patent Document 1, the position of the car is corrected based on the stop position information of the second tape. However, in this elevator system, in order to correct the position of the car, a second tape must be installed in accordance with the stop position of each floor. Therefore, there was a problem that the configuration became complicated.
 本開示は、上述のような課題を解決するためになされた。本開示の目的は、簡単な構成で、かごの位置を補正することができるエレベーターシステムを提供することである。 The present disclosure has been made to solve the problems described above. An object of the present disclosure is to provide an elevator system that can correct the position of a car with a simple configuration.
 本開示に係るエレベーターシステムは、かごが昇降路を移動し、かごが複数の停止階に停止し、複数の停止階の一部が基準階に設定されたエレベーターシステムである。本システムは、昇降路に設けられ、かごが移動することが可能な特定の範囲に亘って位置コードが付されたテープと、かごに設けられ、テープに付された位置コードを読み取る第1センサと、基準階の位置に合わせて昇降路に設けられた被検出体と、かごに設けられ、被検出体を検出するための第2センサと、かごの移動を制御する動作制御部と、動作制御部による制御によってかごが基準階に停止した際に第2センサが被検出体を検出した結果に基づいて、基準位置コードに対する基準補正量を設定する設定部と、設定部によって設定された基準補正量に基づいて、テープに付された各位置コードに対する補正量を算出する第1算出部と、を備える。動作制御部は、第1センサによって読み取られた位置コードと第1算出部によって算出された補正量とに基づいて、かごの移動を制御する。基準位置コードは、テープに付された位置コードのうち、基準階の位置を示すコードとして予め設定されたコードである。 The elevator system according to the present disclosure is an elevator system in which a car moves along a hoistway, the car stops at a plurality of stop floors, and some of the plurality of stop floors are set as reference floors. This system consists of a tape that is installed in the hoistway and has a position code attached to it over a specific range in which the car can move, and a first sensor that is installed on the car and reads the position code attached to the tape. a detection object provided in the hoistway in accordance with the position of the reference floor; a second sensor provided in the car for detecting the detection object; an operation control section for controlling movement of the car; a setting section that sets a reference correction amount for the reference position code based on a result of a second sensor detecting an object when the car stops at a reference floor under control of the control section; and a reference set by the setting section. A first calculation unit that calculates a correction amount for each position code attached to the tape based on the correction amount. The operation control section controls movement of the car based on the position code read by the first sensor and the correction amount calculated by the first calculation section. The reference position code is a code set in advance as a code indicating the position of the reference floor among the position codes attached to the tape.
 本開示に係るエレベーターシステムであれば、簡単な構成で、かごの位置を補正することができる。 With the elevator system according to the present disclosure, the position of the car can be corrected with a simple configuration.
実施の形態1におけるエレベーターシステムの例を示す図である。1 is a diagram showing an example of an elevator system in Embodiment 1. FIG. 補正プレートとセンサの機能を説明するための図である。FIG. 3 is a diagram for explaining the functions of a correction plate and a sensor. 制御装置の機能を説明するための図である。It is a figure for explaining the function of a control device. 実施の形態1におけるエレベーターシステムの動作例を示すフローチャートである。3 is a flowchart showing an example of the operation of the elevator system in Embodiment 1. FIG. かごが基準階に停止した状態を示す図である。FIG. 3 is a diagram showing a state in which the car has stopped at a reference floor. かごが基準階に停止した他の状態を示す図である。FIG. 7 is a diagram showing another state in which the car has stopped at a reference floor. かごが基準階に停止した他の状態を示す図である。FIG. 7 is a diagram showing another state in which the car has stopped at a reference floor. 昇降路の熱の伝達を説明するための図である。FIG. 3 is a diagram for explaining heat transfer in a hoistway. 昇降路の温度分布を説明するための図である。It is a figure for explaining temperature distribution of a hoistway. テープの伸縮量を説明するための図である。It is a figure for explaining the amount of expansion and contraction of a tape. 補正関数の例を説明するための図である。FIG. 3 is a diagram for explaining an example of a correction function. 図11に示す曲線と補正関数を示す直線との差を示す図である。FIG. 12 is a diagram showing the difference between the curve shown in FIG. 11 and a straight line representing a correction function. 補正関数の他の例を説明するための図である。FIG. 7 is a diagram for explaining another example of a correction function. 図13に示す曲線と補正関数を示す直線との差を示す図である。14 is a diagram showing the difference between the curve shown in FIG. 13 and a straight line showing a correction function. FIG. 実際のエレベーター装置において測定された昇降路の温度分布を示す図である。It is a figure showing the temperature distribution of the hoistway measured in an actual elevator system. 図15に示す温度分布から算出されたテープの伸縮量を示す図である。16 is a diagram showing the amount of expansion and contraction of the tape calculated from the temperature distribution shown in FIG. 15. FIG. 補正関数の例を説明するための図である。FIG. 3 is a diagram for explaining an example of a correction function. 補正誤差の例を示す図である。FIG. 3 is a diagram illustrating an example of a correction error. センサによる検出位置と補正誤差の絶対値の最大値との関係を示す図である。FIG. 3 is a diagram showing a relationship between a detection position by a sensor and a maximum absolute value of a correction error. 図13に相当する図である。14 is a diagram corresponding to FIG. 13. 図14に相当する図である。15 is a diagram corresponding to FIG. 14. センサによる検出位置と補正誤差の絶対値の最大値との関係を示す図である。FIG. 3 is a diagram showing a relationship between a detection position by a sensor and a maximum absolute value of a correction error. センサによる検出位置と補正誤差の絶対値の最大値との関係を示す図である。FIG. 3 is a diagram showing a relationship between a detection position by a sensor and a maximum absolute value of a correction error. 図13に相当する図である。14 is a diagram corresponding to FIG. 13. 図14に相当する図である。15 is a diagram corresponding to FIG. 14. 各建物における補正誤差の比を示す図である。It is a figure which shows the ratio of the correction error in each building. 3つの基準階が設定された場合の補正量の算出例を示す図である。It is a figure which shows the calculation example of the correction amount when three reference floors are set. 遅延時間の算出方法を説明するための図である。FIG. 3 is a diagram for explaining a method of calculating delay time. 制御装置のハードウェア資源の例を示す図である。FIG. 3 is a diagram illustrating an example of hardware resources of a control device. 制御装置のハードウェア資源の他の例を示す図である。FIG. 7 is a diagram showing another example of hardware resources of the control device.
 以下に、図面を参照して詳細な説明を行う。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。 A detailed explanation will be given below with reference to the drawings. Duplicate explanations will be simplified or omitted as appropriate. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、実施の形態1におけるエレベーターシステムの例を示す図である。図1に示すエレベーターシステムは、かご1、及びつり合いおもり2を備える。かご1は、昇降路3を上下に移動する。かご1及びつり合いおもり2は、ロープ4によって昇降路3に吊り下げられる。つり合いおもり2は、かご1が移動する方向とは逆の方向に昇降路3を上下に移動する。図1は、1:1ローピング方式のエレベーターシステムを一例として示す。
Embodiment 1.
FIG. 1 is a diagram showing an example of an elevator system in the first embodiment. The elevator system shown in FIG. 1 includes a car 1 and a counterweight 2. The car 1 moves up and down the hoistway 3. A car 1 and a counterweight 2 are suspended in a hoistway 3 by a rope 4. The counterweight 2 moves up and down the hoistway 3 in a direction opposite to the direction in which the car 1 moves. FIG. 1 shows an example of a 1:1 roping type elevator system.
 ロープ4は、巻上機5に巻き掛けられる。巻上機5は、かご1を駆動する。制御装置6は、巻上機5を制御する。即ち、かご1の移動は、制御装置6によって制御される。図1は、巻上機5及び制御装置6が昇降路3の上方の機械室7に設けられる例を示す。巻上機5及び制御装置6は、昇降路3に設けられても良い。巻上機5は、昇降路3の頂部に設けられても良いし、昇降路3のピットに設けられても良い。 The rope 4 is wound around the hoist 5. The hoist 5 drives the car 1. The control device 6 controls the hoisting machine 5. That is, the movement of the car 1 is controlled by the control device 6. FIG. 1 shows an example in which a hoist 5 and a control device 6 are provided in a machine room 7 above a hoistway 3. The hoist 5 and the control device 6 may be provided in the hoistway 3. The hoist 5 may be provided at the top of the hoistway 3 or may be provided in a pit of the hoistway 3.
 昇降路3に、テープ8が設けられる。テープ8は、細長い帯状の部材である。テープ8は、昇降路3の上下に亘って一直線状に配置されることが好ましい。例えば、昇降路3の頂部に設けられた支持部材9に、テープ8の上端部が固定される。昇降路3のピットに設けられた支持装置10に、テープ8の下端部が支持される。テープ8には、支持装置10に備えられたばね或いはおもり等によって下向きの力が与えられる。 A tape 8 is provided on the hoistway 3. The tape 8 is an elongated band-shaped member. It is preferable that the tape 8 is arranged in a straight line across the top and bottom of the hoistway 3. For example, the upper end of the tape 8 is fixed to a support member 9 provided at the top of the hoistway 3. A lower end portion of the tape 8 is supported by a support device 10 provided in a pit of the hoistway 3. A downward force is applied to the tape 8 by a spring, a weight, or the like provided in the support device 10.
 テープ8に、かご1が移動することが可能な特定の範囲に亘って位置コードが付される。位置コードは、かご1が移動することが可能な全範囲に亘って付されることが好ましい。位置コードは、磁気式のコードでも良いし、光学式のコードでも良い。テープ8に、位置コードとして他の方式のコードが記録されていても良い。 A position code is attached to the tape 8 over a specific range in which the car 1 can move. It is preferable that the position code be attached to the entire range in which the car 1 can move. The position code may be a magnetic code or an optical code. Other types of codes may be recorded on the tape 8 as position codes.
 かご1に、テープ8に付された位置コードを読み取るためのセンサ11が設けられる。図1に示すエレベーターシステムは、巻上機5等に備えられたエンコーダからの信号に基づいてかご1の位置を間接的に検出するのではなく、テープ8に付された位置コードをセンサ11によって直接読み取ることにより、かご1の位置を検出する。即ち、図1に示すエレベーターシステムは、絶対位置測位システムを備える。センサ11は、読み取った位置コードに応じた信号を制御装置6に送信する。 A sensor 11 for reading the position code attached to the tape 8 is provided in the car 1. The elevator system shown in FIG. 1 does not indirectly detect the position of the car 1 based on a signal from an encoder provided in the hoisting machine 5, etc., but uses a sensor 11 to detect the position code attached to the tape 8. The position of car 1 is detected by direct reading. That is, the elevator system shown in FIG. 1 includes an absolute positioning system. The sensor 11 transmits a signal to the control device 6 according to the read position code.
 表1は、制御装置6の記憶部20(図1では図示せず)に記憶されたテーブルTAの例を示す。テーブルTAには、昇降路3内の特定の位置に対する位置コードが登録されている。一例として、テーブルTAに停止位置コードが登録される。かご1は複数の停止階に停止する。停止位置コードは、テープ8に付された位置コードのうち、停止階のそれぞれの位置を示すコードとして予め設定されたコードである。テーブルTAに示す例では、1階の位置を示す停止位置コードは「5000」である。最上階の位置を示す停止位置コードは「100000」である。 Table 1 shows an example of the table TA stored in the storage unit 20 (not shown in FIG. 1) of the control device 6. A position code for a specific position within the hoistway 3 is registered in the table TA. As an example, a stop position code is registered in table TA. Car 1 stops at a plurality of stop floors. The stop position code is a code set in advance as a code indicating the position of each stop floor among the position codes attached to the tape 8. In the example shown in table TA, the stop position code indicating the position of the first floor is "5000". The stop position code indicating the position of the top floor is "100000".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 テーブルTAは、例えば当該システムの据付時に、専門の技術者によって作成される。技術者は、手動運転を行うことによってかご1を各停止階の位置に合わせて配置し、その時にセンサ11によって読み取られた位置コードをテーブルTAに登録する。テーブルTAは、当該手動運転において、かご1が1階の位置に合わせて配置された際にセンサ11が位置コード「5000」を読み取った例を示す。最下階より下方である底部の位置を示す位置コードは、1階の位置を示す位置コードから算出されても良い。他の例として、底部の位置を示す位置コードは、固定値でも良い。 The table TA is created by a professional engineer, for example, when the system is installed. The engineer places the car 1 in accordance with the position of each stop floor by performing manual operation, and registers the position code read by the sensor 11 at that time in the table TA. Table TA shows an example in which the sensor 11 reads the position code "5000" when the car 1 is placed in accordance with the position of the first floor in the manual operation. The position code indicating the position of the bottom below the lowest floor may be calculated from the position code indicating the position of the first floor. As another example, the position code indicating the bottom position may be a fixed value.
 テーブルTAは、当該手動運転において、かご1がN階の位置に合わせて配置された際にセンサ11が位置コード「100000」を読み取った例を示す。最上階より上方である頂部の位置を示す位置コードは、N階の位置を示す位置コードから算出されても良い。他の例として、頂部の位置を示す位置コードは、固定値でも良い。なお、「かご1が1階の位置に合わせて配置される」とは、かご1の床面と1階の乗場の床面とが同じ高さに配置されることを意味する。技術者は、定期的に行われる保守時に手動運転を行い、テーブルTAを更新しても良い。 Table TA shows an example in which the sensor 11 reads the position code "100000" when the car 1 is placed in accordance with the position of the N floor in the manual operation. The position code indicating the position of the top above the top floor may be calculated from the position code indicating the position of the N floor. As another example, the position code indicating the position of the top may be a fixed value. Note that "car 1 is arranged in accordance with the position of the first floor" means that the floor surface of car 1 and the floor surface of the landing on the first floor are arranged at the same height. An engineer may perform manual operation during regularly performed maintenance to update the table TA.
 昇降路3に、補正プレート12が設けられる。かご1に、補正プレート12を検出するためのセンサ13が設けられる。補正プレート12は、センサ13によって検出される被検出体の一例である。補正プレート12は、特定の基準階の位置に合わせて配置される。基準階は、かご1が停止する停止階の一部の階である。例えば、基準階は停止階の1つであり、予め設定される。 A correction plate 12 is provided in the hoistway 3. The car 1 is provided with a sensor 13 for detecting the correction plate 12. The correction plate 12 is an example of a detected object detected by the sensor 13. The correction plate 12 is arranged in accordance with the position of a specific reference floor. The reference floor is a part of the stop floor where the car 1 stops. For example, the reference floor is one of the stop floors and is set in advance.
 図2は、補正プレート12とセンサ13の機能を説明するための図である。補正プレート12に、複数のゾーンが設定される。ゾーンは、センサ13が区別して検出することが可能な領域である。以下においては、補正プレート12に、中央ゾーン12aと、中央ゾーン12aの直下の下ゾーン12bと、中央ゾーン12aの直上の上ゾーン12cとの3つのゾーンが設定される好適な例について詳しく説明する。なお、補正プレート12に設定されるゾーンの数は2つでも良い。補正プレート12に、4つ以上のゾーンが設定されても良い。 FIG. 2 is a diagram for explaining the functions of the correction plate 12 and the sensor 13. A plurality of zones are set on the correction plate 12. A zone is an area that the sensor 13 can distinguish and detect. In the following, a preferred example in which three zones are set in the correction plate 12: a central zone 12a, a lower zone 12b directly below the central zone 12a, and an upper zone 12c directly above the central zone 12a will be described in detail. . Note that the number of zones set on the correction plate 12 may be two. Four or more zones may be set on the correction plate 12.
 補正プレート12は、かご1が基準階の位置に合わせて配置された際にセンサ13が中央ゾーン12aを検出するように配置される。好適には、補正プレート12は、かご1が基準階の位置に合わせて配置された際にセンサ13の検出位置が中央ゾーン12aの中心と一致するように配置される。下ゾーン12bは、中央ゾーン12aの下端から下方に一直線状に延びる。上ゾーン12cは、中央ゾーン12aの上端から上方に一直線状に延びる。 The correction plate 12 is arranged so that the sensor 13 detects the central zone 12a when the car 1 is arranged in accordance with the position of the reference floor. Preferably, the correction plate 12 is arranged so that the detection position of the sensor 13 coincides with the center of the central zone 12a when the car 1 is arranged in alignment with the position of the reference floor. The lower zone 12b extends downward in a straight line from the lower end of the central zone 12a. The upper zone 12c extends straight upward from the upper end of the central zone 12a.
 センサ13が補正プレート12を検出する方式は、磁気式でも、光学式でも、機械式でも良い。センサ13には、中央ゾーン12aと下ゾーン12bと上ゾーン12cとを区別して検出できる機能が要求される。 The method by which the sensor 13 detects the correction plate 12 may be magnetic, optical, or mechanical. The sensor 13 is required to have a function that can distinguish and detect the center zone 12a, lower zone 12b, and upper zone 12c.
 当該機能を実現するため、補正プレート12として、ゾーン別の複数のプレートが備えられても良い。当該複数のプレートのそれぞれに、センサ13が検出可能な識別情報が付与されても良い。当該識別情報を付与する代わりに、当該複数のプレートが、上下方向或いは水平方向にずらして配置されても良い。他の例として、センサ13は、上下に並べられた複数の検出素子を備えても良い。 In order to realize this function, a plurality of plates for each zone may be provided as the correction plate 12. Identification information that can be detected by the sensor 13 may be provided to each of the plurality of plates. Instead of providing the identification information, the plurality of plates may be arranged vertically or horizontally shifted. As another example, the sensor 13 may include a plurality of detection elements arranged one above the other.
 センサ13は、検出したゾーンに応じた信号を制御装置6に送信する。 The sensor 13 transmits a signal according to the detected zone to the control device 6.
 図3は、制御装置6の機能を説明するための図である。図3に示すように、制御装置6は、記憶部20に加え、受信部21、受信部22、設定部23、算出部24、及び動作制御部25を更に備える。受信部21、受信部22、設定部23、及び算出部24は、制御装置6とは別の装置、例えば安全制御装置として本システムに備えられても良い。 FIG. 3 is a diagram for explaining the functions of the control device 6. As shown in FIG. 3, in addition to the storage section 20, the control device 6 further includes a reception section 21, a reception section 22, a setting section 23, a calculation section 24, and an operation control section 25. The receiving section 21, the receiving section 22, the setting section 23, and the calculating section 24 may be provided in this system as a device other than the control device 6, for example, as a safety control device.
 受信部21は、センサ11からの信号を受信する。受信部22は、センサ13からの信号を受信する。 The receiving unit 21 receives the signal from the sensor 11. The receiving unit 22 receives the signal from the sensor 13.
 以下においては、記憶部20にテーブルTAが記憶された例について詳しい説明を行う。即ち、テーブルTAに示すように、最下の停止階である1階が基準階に設定される。基準位置コードは、テープ8に付された位置コードのうち、基準階の位置を示すコードとして予め設定されたコードである。以下に示す例では、基準位置コードは、1階の位置を示す位置コード「5000」である。 In the following, an example in which the table TA is stored in the storage unit 20 will be described in detail. That is, as shown in table TA, the first floor, which is the lowest stop floor, is set as the reference floor. The reference position code is a code set in advance as a code indicating the position of the reference floor among the position codes attached to the tape 8. In the example shown below, the reference position code is the position code "5000" indicating the position on the first floor.
 設定部23は、基準位置コードに対する補正量を設定する。以下においては、基準位置コードに対する補正量を基準補正量ともいう。算出部24は、設定部23によって設定された基準補正量に基づいて、テープ8に付された各位置コードに対する補正量を算出する。動作制御部25は、センサ11によって読み取られた位置コードと算出部24によって算出された補正量とに基づいて、かご1の移動を制御する。かご1の移動制御には、少なくともかご1の速度制御又は位置制御が含まれる。 The setting unit 23 sets the amount of correction for the reference position code. In the following, the correction amount for the reference position code is also referred to as the reference correction amount. The calculation unit 24 calculates the correction amount for each position code attached to the tape 8 based on the reference correction amount set by the setting unit 23. The operation control unit 25 controls the movement of the car 1 based on the position code read by the sensor 11 and the correction amount calculated by the calculation unit 24. Movement control of the car 1 includes at least speed control or position control of the car 1.
 以下に、図4から図7も参照し、本システムの動作について詳しく説明する。図4は、実施の形態1におけるエレベーターシステムの動作例を示すフローチャートである。 Below, the operation of this system will be described in detail with reference to FIGS. 4 to 7. FIG. 4 is a flowchart showing an example of the operation of the elevator system in the first embodiment.
 技術者による手動運転が行われ、テーブルTAが新規作成或いは更新されると、基準補正量は0に設定される(S101)。 When a manual operation is performed by an engineer and the table TA is newly created or updated, the reference correction amount is set to 0 (S101).
 上述したように、動作制御部25は、センサ11によって読み取られた位置コードと算出部24によって算出された補正量とに基づいて、かご1の移動を制御する(S102)。動作制御部25は、かご1の現在位置を式(1)から算出する。
 [かご1の現在位置]=[APS検出位置]+[補正量] ・・・(1)
 式(1)において、「APS検出位置」は、センサ11によって読み取られた位置コードが示す位置である。「補正量」は、算出部24によって算出された補正量であって、センサ11によって読み取られた位置コードに対する補正量である。一例として、補正量は、APS検出位置と基準補正量との関数f(APS検出位置,基準補正量)から算出される。
As described above, the operation control unit 25 controls the movement of the car 1 based on the position code read by the sensor 11 and the correction amount calculated by the calculation unit 24 (S102). The operation control unit 25 calculates the current position of the car 1 using equation (1).
[Current position of car 1] = [APS detection position] + [correction amount] ... (1)
In equation (1), the "APS detection position" is the position indicated by the position code read by the sensor 11. The “correction amount” is the correction amount calculated by the calculation unit 24, and is the correction amount for the position code read by the sensor 11. As an example, the correction amount is calculated from a function f (APS detection position, reference correction amount) between the APS detection position and the reference correction amount.
 なお、基準補正量が0であれば、補正量は0である。かかる場合、動作制御部25は、センサ11によって読み取られた位置コードが示す位置をかご1の現在位置として、かご1の移動制御を行う。例えば、かご1を2階に停止させるのであれば、動作制御部25は、センサ11が位置コード「9000」を読み取る位置で、かご1を停止させる。 Note that if the reference correction amount is 0, the correction amount is 0. In such a case, the operation control unit 25 controls the movement of the car 1 by setting the position indicated by the position code read by the sensor 11 as the current position of the car 1. For example, if the car 1 is to be stopped on the second floor, the operation control unit 25 will stop the car 1 at the position where the sensor 11 reads the position code "9000".
 動作制御部25によってかご1によるサービスが行われている間、制御装置6では、センサ13によって補正プレート12が検出されたか否かが判定される(S103)。当該サービスが行われている間、動作制御部25は、センサ11によって読み取られた位置コードに基づいてかご1の移動を制御し、かご1を登録された呼びに応答させる。基本的に、かご1が基準階に停止する時、センサ13によって補正プレート12が検出される。また、かご1が基準階を通過する時にも、センサ13によって補正プレート12が検出される。これにより、S103でYesと判定される。 While the car 1 is being serviced by the operation control unit 25, the control device 6 determines whether the correction plate 12 is detected by the sensor 13 (S103). While the service is being performed, the operation control unit 25 controls the movement of the car 1 based on the position code read by the sensor 11, and causes the car 1 to respond to registered calls. Basically, when the car 1 stops at a reference floor, the correction plate 12 is detected by the sensor 13. Also, when the car 1 passes through the reference floor, the sensor 13 detects the correction plate 12. As a result, a determination of Yes is made in S103.
 S103でYesと判定されると、センサ11によって読み取られた位置コードが特定のコード群CGに含まれるか否かが判定される(S104)。コード群CGは、予め設定される。コード群CGには、上下に連続する複数の位置コードが含まれる。また、コード群CGには、基準位置コードが含まれる。一例として、「基準位置コードが示す位置±判定距離」の範囲に存在する位置コードがコード群CGに含まれる。判定距離に関しては、補正プレート12の全長をL0とした場合に、次式が満たされることが好ましい。
 L0/2≦[判定距離]≦L0
If it is determined Yes in S103, it is determined whether the position code read by the sensor 11 is included in a specific code group CG (S104). The code group CG is set in advance. The code group CG includes a plurality of vertically consecutive position codes. Further, the code group CG includes a reference position code. As an example, position codes existing in the range of "position indicated by the reference position code±determination distance" are included in the code group CG. Regarding the determination distance, it is preferable that the following formula is satisfied when the total length of the correction plate 12 is L0.
L0/2≦[judgment distance]≦L0
 センサ13によって補正プレート12が検出されているにも関わらずコード群CGに含まれていない位置コードがセンサ11によって読み取られると、S104でNoと判定される。S104でNoと判定されると、動作制御部25は、かご1を最寄り階又は目的階に停止させた後、かご1によるサービスを停止する(S106)。これにより、かご1は、呼びに応答しなくなる。動作制御部25は、S106においてサービスを停止するために、安全回路を遮断し、巻上機5への電力供給を停止しても良い。 If the sensor 11 reads a position code that is not included in the code group CG even though the correction plate 12 has been detected by the sensor 13, the determination is No in S104. If the determination in S104 is No, the operation control unit 25 stops the car 1 at the nearest floor or the destination floor, and then stops the service provided by the car 1 (S106). This causes car 1 to stop responding to calls. The operation control unit 25 may cut off the safety circuit and stop the power supply to the hoisting machine 5 in order to stop the service in S106.
 センサ13によって補正プレート12が検出されていなければ、S103でNoと判定される。S103でNoと判定されると、センサ11によって読み取られた位置コードがコード群CGに含まれるか否かが判定される(S105)。S105でNoと判定されると、かご1によるサービスは継続され、処理はS102に戻る。 If the correction plate 12 is not detected by the sensor 13, the determination in S103 is No. If it is determined No in S103, it is determined whether the position code read by the sensor 11 is included in the code group CG (S105). If the determination in S105 is No, the service by car 1 is continued, and the process returns to S102.
 センサ13によって補正プレート12が検出されていないにも関わらずコード群CGに含まれる位置コードがセンサ11によって読み取られると、S105でYesと判定される。S105でYesと判定されると、動作制御部25は、S106においてかご1によるサービスを停止する。 If the position code included in the code group CG is read by the sensor 11 even though the correction plate 12 is not detected by the sensor 13, it is determined as Yes in S105. If the determination is Yes in S105, the operation control unit 25 stops the service by car 1 in S106.
 S103からS105は、特定の停止条件が成立するか否かを判定するための処理を示す。停止条件は、サービスを停止するための条件であり、予め設定される。即ち、図4に示す例では、S104でNoと判定された場合に停止条件が成立する。これは、基準階から離れた位置にかご1があるにも関わらず、補正プレート12を検出したことを示す信号がセンサ13から入力されることによって停止条件が成立する例を示す。また、図4に示す例では、S105でYesと判定された場合に停止条件が成立する。これは、基準階に十分接近した位置にかご1があるにも関わらず、補正プレート12を検出したことを示す信号がセンサ13から入力されないことによって停止条件が成立する例を示す。 S103 to S105 show processing for determining whether a specific stop condition is satisfied. The stop condition is a condition for stopping a service, and is set in advance. That is, in the example shown in FIG. 4, the stop condition is satisfied when the determination in S104 is No. This shows an example in which the stop condition is satisfied because a signal indicating that the correction plate 12 has been detected is input from the sensor 13 even though the car 1 is located at a position far from the reference floor. Further, in the example shown in FIG. 4, the stop condition is satisfied when the determination in S105 is Yes. This shows an example in which the stop condition is satisfied because a signal indicating that the correction plate 12 has been detected is not input from the sensor 13 even though the car 1 is located sufficiently close to the reference floor.
 センサ13によって補正プレート12が検出された際に、コード群CGに含まれる位置コードをセンサ11が読み取っていれば、S104でYesと判定される。S104でYesと判定されると、かご1が基準階に停止したか否かが判定される(S107)。かご1が基準階を通過すると、S107でNoと判定される。S107でNoと判定されると、処理はS102に戻る。 If the sensor 11 has read the position code included in the code group CG when the correction plate 12 is detected by the sensor 13, a determination of Yes is made in S104. If the determination is Yes in S104, it is determined whether the car 1 has stopped at the reference floor (S107). When the car 1 passes the reference floor, a negative determination is made in S107. If the determination in S107 is No, the process returns to S102.
 かご1が基準階で停止すると、S107でYesと判定される。例えば、センサ11によって読み取られた位置コードに一定時間変化がない、或いは変化があったとしてもその変化の量が微小であれば、S107でYesと判定される。S107でYesと判定されると、基準補正量を設定するための処理が開始される。具体的に、設定部23は、動作制御部25による制御によってかご1が基準階に停止した際にセンサ13が補正プレート12を検出した結果に基づいて、基準補正量を設定する。 When the car 1 stops at the reference floor, a determination of Yes is made in S107. For example, if there is no change in the position code read by the sensor 11 for a certain period of time, or even if there is a change, the amount of change is minute, the determination is Yes in S107. If the determination in S107 is Yes, processing for setting the reference correction amount is started. Specifically, the setting unit 23 sets the reference correction amount based on the result of the sensor 13 detecting the correction plate 12 when the car 1 stops at the reference floor under the control of the operation control unit 25.
 先ず、設定部23は、センサ13が検出したゾーンを特定する(S108)。次に、設定部23は、特定したゾーンが中央ゾーン12aであるか否かを判定する(S109)。 First, the setting unit 23 identifies the zone detected by the sensor 13 (S108). Next, the setting unit 23 determines whether the specified zone is the central zone 12a (S109).
 上述したように、基準補正量が0であれば、補正量は0である。かかる場合、動作制御部25は、センサ11が位置コード「5000」を読み取る位置でかご1を停止させる。動作制御部25による制御によってかご1が基準階、即ち1階に停止した場合、かご1の床面と1階の乗場の床面とが全く同じ高さに配置されるとは限らない。例えば、温度変化等の要因により、テープ8に伸びが発生することがある。このような場合、動作制御部25による制御によってかご1が1階に停止すると、かご1の床面は、1階の乗場の床面よりも低い位置に配置される。図5は、かご1が基準階に停止した状態を示す図である。図5は、かご1が1階の位置よりも僅かに低い位置に配置された状態を示す。 As mentioned above, if the reference correction amount is 0, the correction amount is 0. In such a case, the operation control unit 25 stops the car 1 at the position where the sensor 11 reads the position code "5000". When the car 1 is stopped at the reference floor, ie, the first floor, under the control of the operation control unit 25, the floor surface of the car 1 and the floor surface of the landing on the first floor are not necessarily arranged at exactly the same height. For example, the tape 8 may stretch due to factors such as temperature changes. In such a case, when the car 1 stops on the first floor under the control of the operation control unit 25, the floor surface of the car 1 is placed at a lower position than the floor surface of the landing on the first floor. FIG. 5 is a diagram showing a state in which the car 1 has stopped at a reference floor. FIG. 5 shows a state in which the car 1 is placed at a position slightly lower than the position of the first floor.
 図5に示す例では、設定部23は、S108において、センサ13が中央ゾーン12aを検出したことを特定する。これにより、S109でYesと判定される。S109でYesと判定されると、設定部23は、基準補正量を現在の値から変更しない(S110)。即ち、動作制御部25による制御によってかご1が基準階に停止した際にセンサ13が中央ゾーン12aを検出していれば、設定部23は、基準補正量を変更しない。 In the example shown in FIG. 5, the setting unit 23 specifies in S108 that the sensor 13 has detected the central zone 12a. As a result, it is determined as Yes in S109. If the determination is Yes in S109, the setting unit 23 does not change the reference correction amount from the current value (S110). That is, if the sensor 13 detects the central zone 12a when the car 1 stops at the reference floor under the control of the operation control unit 25, the setting unit 23 does not change the reference correction amount.
 図6は、かご1が基準階に停止した他の状態を示す図である。図6は、図5に示す状態よりかご1が更に低い位置に配置された状態を示す。図6に示す例では、設定部23は、S108において、センサ13が下ゾーン12bを検出したことを特定する。これにより、S109でNoと判定される。なお、S111に示す判定に関しては後述する。補正プレート12に、中央ゾーン12a、下ゾーン12b、及び上ゾーン12cの3つのゾーンが設定されている場合、S111では常にYesと判定される。S109でNoと判定されると、設定部23は、基準補正量を再設定する(S112)。 FIG. 6 is a diagram showing another state in which the car 1 has stopped at the reference floor. FIG. 6 shows a state in which the car 1 is placed at a lower position than the state shown in FIG. In the example shown in FIG. 6, the setting unit 23 specifies that the sensor 13 has detected the lower zone 12b in S108. As a result, a negative determination is made in S109. Note that the determination shown in S111 will be described later. When three zones, the center zone 12a, the lower zone 12b, and the upper zone 12c, are set on the correction plate 12, the determination in S111 is always Yes. If the determination in S109 is No, the setting unit 23 resets the reference correction amount (S112).
 例えば、設定部23は、S108でセンサ13が下ゾーン12bを検出したことを特定すると、基準階におけるかご1の停止位置が現在の停止位置より距離L1だけ上方となるように基準補正値を変更する。距離L1は、中央ゾーン12aと下ゾーン12bとの距離に応じた距離である。一例として、距離L1は、中央ゾーン12aの中心と下ゾーン12bの中心との距離に設定される。 For example, when determining that the sensor 13 has detected the lower zone 12b in S108, the setting unit 23 changes the reference correction value so that the stopping position of the car 1 on the reference floor is a distance L1 above the current stopping position. do. The distance L1 is a distance according to the distance between the center zone 12a and the lower zone 12b. As an example, the distance L1 is set to the distance between the center of the center zone 12a and the center of the lower zone 12b.
 図7は、かご1が基準階に停止した他の状態を示す図である。図7は、温度変化等の要因によってテープ8に縮みが発生したことにより、かご1が1階の位置よりも高い位置に配置された状態を示す。図7に示す例では、設定部23は、S108において、センサ13が上ゾーン12cを検出したことを特定する。これにより、S109でNoと判定される。例えば、設定部23は、S108でセンサ13が上ゾーン12cを検出したことを特定すると、基準階におけるかご1の停止位置が現在の停止位置より距離L2だけ下方となるように基準補正値を変更する。距離L2は、中央ゾーン12aと上ゾーン12cとの距離に応じた距離である。一例として、距離L2は、中央ゾーン12aの中心と上ゾーン12cの中心との距離に設定される。距離L2は、距離L1と同じでも良いし、異なっても良い。 FIG. 7 is a diagram showing another state in which the car 1 has stopped at the reference floor. FIG. 7 shows a state in which the car 1 is placed at a higher position than the first floor due to shrinkage of the tape 8 due to factors such as temperature changes. In the example shown in FIG. 7, the setting unit 23 specifies that the sensor 13 has detected the upper zone 12c in S108. As a result, a negative determination is made in S109. For example, when determining that the sensor 13 has detected the upper zone 12c in S108, the setting unit 23 changes the reference correction value so that the stopping position of the car 1 on the reference floor is a distance L2 below the current stopping position. do. The distance L2 is a distance depending on the distance between the center zone 12a and the upper zone 12c. As an example, the distance L2 is set to the distance between the center of the center zone 12a and the center of the upper zone 12c. The distance L2 may be the same as or different from the distance L1.
 S112で基準補正量が再設定されると、算出部24は、再設定された基準補正量に基づいて、テープ8に付された各位置コードに対する補正量を算出する。各停止位置コードもテープ8に付された位置コードの一つであるため、停止位置コードのそれぞれに対する補正量も算出部24によって算出される。一例として、算出部24は、各位置コードに対する補正量がテープ8の上端からの距離に比例するように、各補正量を算出する。なお、頂部の補正量は0であり、基準位置コードに対する補正量は基準補正量である。表2は、かご1が基準階で図6に示す状態で停止し、S112において基準補正量が位置コード換算で「-100」に設定された例を示す。 When the reference correction amount is reset in S112, the calculation unit 24 calculates the correction amount for each position code attached to the tape 8 based on the reset reference correction amount. Since each stop position code is also one of the position codes attached to the tape 8, the correction amount for each stop position code is also calculated by the calculation unit 24. As an example, the calculation unit 24 calculates each correction amount so that the correction amount for each position code is proportional to the distance from the upper end of the tape 8. Note that the correction amount at the top is 0, and the correction amount for the reference position code is the reference correction amount. Table 2 shows an example in which the car 1 is stopped at the reference floor in the state shown in FIG. 6, and the reference correction amount is set to "-100" in terms of the position code in S112.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述したように、動作制御部25は、かご1の現在位置を式(1)から算出する。したがって、センサ11が位置コード「5000」を読み取った場合、動作制御部25は、かご1の現在位置を、当該位置コードが示す位置に補正量「-100」を加算した位置、即ち位置コード「4900」が示す位置と算出する。かご1を1階に停止させるのであれば、動作制御部25は、式(1)から算出される位置が既登録の位置コード「5000」が示す位置に一致するように、センサ11が位置コード「5100」を読み取る位置の近傍にかご1を停止させる。 As described above, the operation control unit 25 calculates the current position of the car 1 using equation (1). Therefore, when the sensor 11 reads the position code "5000", the operation control unit 25 changes the current position of the car 1 to the position indicated by the position code plus the correction amount "-100", that is, the position code "5000". 4900" is calculated. If the car 1 is to be stopped on the first floor, the motion control unit 25 sets the sensor 11 to the position code so that the position calculated from equation (1) matches the position indicated by the registered position code "5000". Car 1 is stopped near the position where "5100" is read.
 本実施の形態に示す例では、基準位置コードに対する基準補正量が設定部23によって設定され、テープ8に付された各位置コードに対する補正量が算出部24によって算出される。このため、かご1の位置を補正するために、各停止階の位置に合わせて補正プレート12を設置する必要がない。補正プレート12を設置するための基準階は1つでも良い。したがって、本実施の形態に示す例であれば、テープ8に伸縮が発生した場合でも、簡単な構成でかご1の位置を補正することができる。また、各停止階の位置に合わせて補正プレート12を設置する必要がないため、地震時にロープ4等が補正プレート12に引っ掛かってしまうような事故も発生し難い。 In the example shown in this embodiment, the reference correction amount for the reference position code is set by the setting section 23, and the correction amount for each position code attached to the tape 8 is calculated by the calculation section 24. Therefore, in order to correct the position of the car 1, it is not necessary to install the correction plate 12 in accordance with the position of each stop floor. The number of reference floors for installing the correction plate 12 may be one. Therefore, in the example shown in this embodiment, even if the tape 8 expands or contracts, the position of the car 1 can be corrected with a simple configuration. Furthermore, since it is not necessary to install the correction plate 12 in accordance with the position of each stop floor, accidents such as the rope 4 etc. getting caught in the correction plate 12 during an earthquake are unlikely to occur.
 以下に、本エレベーターシステムが採用可能な他の機能について説明する。エレベーターシステムは、可能であれば、以下に示す複数の機能を組み合わせて採用しても良い。 Below, other functions that can be adopted by this elevator system will be explained. If possible, the elevator system may employ a combination of the following functions.
 基準補正量を設定するための処理が定期的に行われるようにするため、動作制御部25は、かご1が基準階に前回停止してから一定時間が経過すると、かご1を基準階に強制的に停止させても良い。当該一定時間は、予め設定される。 In order to ensure that the process for setting the reference correction amount is performed periodically, the operation control unit 25 forces car 1 to the reference floor when a certain period of time has elapsed since the last time car 1 stopped at the reference floor. It may be stopped temporarily. The certain period of time is set in advance.
 本実施の形態では、補正プレート12に3つのゾーンが設定される例について説明した。上述したように、補正プレート12に4つ以上のゾーンが設定されても良い。例えば、補正プレート12に5つのゾーンが設定される場合は、中央ゾーン12a、下ゾーン12b、及び上ゾーン12cに加え、下ゾーン12bの直下の最下ゾーンと上ゾーン12cの直上の最上ゾーンとが補正プレート12に更に設定される。 In this embodiment, an example in which three zones are set on the correction plate 12 has been described. As described above, four or more zones may be set on the correction plate 12. For example, when five zones are set on the correction plate 12, in addition to the center zone 12a, the lower zone 12b, and the upper zone 12c, the lowermost zone immediately below the lower zone 12b and the uppermost zone immediately above the upper zone 12c. is further set on the correction plate 12.
 かかる場合、図4のS109でNoと判定されると、S111において、検出ゾーンの差分が許容値以下であるか否かが判定される。一例として、センサ13が下ゾーン12b或いは上ゾーン12cを検出したことがS108で特定されていれば、S111でYesと判定される。センサ13が最下ゾーン或いは最上ゾーンを検出したことがS108で特定されていれば、S111でNoと判定される。S111でNoと判定されると、動作制御部25は、S106においてかご1によるサービスを停止する。 In such a case, if the determination is No in S109 of FIG. 4, it is determined in S111 whether the difference in the detection zone is less than or equal to the allowable value. As an example, if it is specified in S108 that the sensor 13 has detected the lower zone 12b or the upper zone 12c, it is determined as Yes in S111. If it is specified in S108 that the sensor 13 has detected the lowest zone or the highest zone, the determination is No in S111. If the determination is No in S111, the operation control unit 25 stops the service by car 1 in S106.
 本実施の形態では、最下階である1階が基準階に設定される例について説明した。基準階は、最下階でなくても良い。 In this embodiment, an example has been described in which the first floor, which is the lowest floor, is set as the reference floor. The standard floor does not have to be the lowest floor.
 出願人による調査の結果、基準階を1つだけ設定する場合、当該基準階は、かご1が停止する停止階のうち、テープ8の全長を100とした場合にテープ8の下端から11から17の範囲に存在する停止階に設定することが好ましいことが分かった。また、当該範囲に停止階が存在しない場合、基準階は、テープ8の下端から0から21の範囲に存在する停止階に設定することが好ましいことが分かった。以下に、図8から図26も参照し、その理由を説明する。 As a result of the applicant's investigation, if only one standard floor is set, the standard floor is 11 to 17 from the bottom of the tape 8, where the total length of the tape 8 is 100, among the floors where the car 1 stops. It has been found that it is preferable to set the stop floor within the range of . Furthermore, it has been found that when there is no stop floor in the range, it is preferable to set the reference floor to a stop floor that exists within the range of 0 to 21 from the bottom end of the tape 8. The reason for this will be explained below with reference to FIGS. 8 to 26.
 なお、テープ8は、上端が最上階の位置の僅か上方に配置され、下端が最下階の位置の僅か下方に配置されることが好ましい。最上階から最下階までの距離と比較して、テープ8が最上階の位置から上方に突出する距離とテープ8が最下階の位置から下方に突出する距離とは極めて小さい。このため、テープ8の全長は、最上階から最下階までの距離とみなしても良い。図8から図26に関する説明では、テープ8の全長と最上階から最下階までの距離とは同義であるものとする。 Note that it is preferable that the upper end of the tape 8 be placed slightly above the top floor position, and the lower end placed slightly below the bottom floor position. Compared to the distance from the top floor to the bottom floor, the distance that the tape 8 projects upward from the top floor position and the distance that the tape 8 projects downward from the bottom floor position are extremely small. Therefore, the total length of the tape 8 may be regarded as the distance from the top floor to the bottom floor. In the explanation regarding FIGS. 8 to 26, it is assumed that the total length of the tape 8 and the distance from the top floor to the bottom floor are synonymous.
 図8は、昇降路3の熱の伝達を説明するための図である。図8に示すように、建物40は土地41に建つ。昇降路3は、建物40の内部に形成された、縦に延びる空間である。昇降路3は、地面よりも下方に延びるように形成される。テープ8は、昇降路3の頂部から吊られる。 FIG. 8 is a diagram for explaining heat transfer in the hoistway 3. As shown in FIG. 8, the building 40 is built on land 41. The hoistway 3 is a vertically extending space formed inside the building 40. The hoistway 3 is formed to extend below the ground. The tape 8 is suspended from the top of the hoistway 3.
 建物40は外気に晒される。このため、昇降路3のうち建物40の内部に形成された部分の温度は、外気の温度に影響を受ける。一方、昇降路3の最下の部分は、土地41に接する。土地41の熱容量は、建物40の熱容量と比較すると極めて大きい。このため、昇降路3の当該部分の温度は、外気の温度にあまり影響されず、土地41の温度に近い温度になる。したがって、昇降路3の温度には、外気の温度に応じた勾配が高さ方向に生じる。テープ8は、温度によって伸縮する。このため、テープ8に付された位置コードに基づいてかご1の位置を検出する場合は、テープ8の伸縮を考慮した補正が行われることが好ましい。 The building 40 is exposed to the outside air. Therefore, the temperature of the portion of the hoistway 3 formed inside the building 40 is affected by the temperature of the outside air. On the other hand, the lowest part of the hoistway 3 touches the land 41. The heat capacity of the land 41 is extremely large compared to the heat capacity of the building 40. Therefore, the temperature of this part of the hoistway 3 is not affected much by the temperature of the outside air and becomes close to the temperature of the land 41. Therefore, the temperature of the hoistway 3 has a gradient in the height direction depending on the temperature of the outside air. The tape 8 expands and contracts depending on the temperature. For this reason, when detecting the position of the car 1 based on the position code attached to the tape 8, it is preferable that correction is performed in consideration of the expansion and contraction of the tape 8.
 図9は、昇降路3の温度分布を説明するための図である。図9の縦軸は、昇降路3の温度Dを示す。図9の横軸は、昇降路3内の位置Pを示す。位置Pについては、最下階の位置を0、最上階の位置を100とする。また、位置Pの表記については、正規化した数値を括弧内に示す。例えば、位置P[0]は、最下階の位置である。位置P[100]は、最上階の位置である。位置P[30]は、最下階の位置を0、最上階の位置を100とした場合に、最下階から30の位置である。図9の横軸では、最上階の位置を左側に、最下階の位置を右側に示している。 FIG. 9 is a diagram for explaining the temperature distribution of the hoistway 3. The vertical axis in FIG. 9 indicates the temperature D of the hoistway 3. The horizontal axis in FIG. 9 indicates the position P in the hoistway 3. Regarding the position P, the lowest floor position is 0 and the highest floor position is 100. Further, regarding the notation of the position P, the normalized numerical value is shown in parentheses. For example, position P[0] is the lowest floor position. Position P[100] is the top floor position. Position P[30] is the position 30th from the bottom floor, where the bottom floor position is 0 and the top floor position is 100. On the horizontal axis of FIG. 9, the position of the top floor is shown on the left, and the position of the bottom floor is shown on the right.
 図9に示すように、位置P[0]の温度Dは、土地41の温度である。一方、建物40の熱容量は土地41の熱容量より小さいため、温度Dは、最上階に近づくほど単調増加或いは単調減少する。例えば、外気の温度が土地41の温度より高い場合、温度Dは、図9の実線の矢印で示すように最上階に近づくほど高くなる。外気の温度が土地41の温度より低い場合、温度Dは、図9の二点鎖線の矢印で示すように最上階に近づくほど低くなる。 As shown in FIG. 9, the temperature D at the position P[0] is the temperature of the land 41. On the other hand, since the heat capacity of the building 40 is smaller than the heat capacity of the land 41, the temperature D monotonically increases or decreases as it approaches the top floor. For example, when the temperature of the outside air is higher than the temperature of the land 41, the temperature D increases as it approaches the top floor, as shown by the solid arrow in FIG. When the temperature of the outside air is lower than the temperature of the land 41, the temperature D becomes lower as it approaches the top floor, as shown by the two-dot chain arrow in FIG.
 図10は、テープ8の伸縮量を説明するための図である。昇降路3の温度Dが位置Pに対して図9に示すように線形に変化する場合、テープ8の伸縮特性は、図10に示すようになる。具体的に、テープ8の伸縮量は、位置P[100]で0である。外気の温度が土地41の温度より高い場合、テープ8の伸縮量は、図10の曲線C1で示すように最下階に近づくに従って大きくなる。なお、曲線C1は上に凸の曲線であり、曲線C1の下側に曲率中心が存在する。外気の温度が土地41の温度より低い場合、テープ8の伸縮量は、図10の曲線C2で示すように最下階に近づくに従って小さくなる。曲線C2は下に凸の曲線であり、曲線C2の上側に曲率中心が存在する。 FIG. 10 is a diagram for explaining the amount of expansion and contraction of the tape 8. When the temperature D of the hoistway 3 changes linearly with respect to the position P as shown in FIG. 9, the expansion and contraction characteristics of the tape 8 become as shown in FIG. Specifically, the amount of expansion and contraction of the tape 8 is 0 at position P[100]. When the temperature of the outside air is higher than the temperature of the land 41, the amount of expansion and contraction of the tape 8 increases as it approaches the lowest floor, as shown by the curve C1 in FIG. Note that the curve C1 is an upwardly convex curve, and the center of curvature exists below the curve C1. When the temperature of the outside air is lower than the temperature of the land 41, the amount of expansion and contraction of the tape 8 decreases as it approaches the lowest floor, as shown by curve C2 in FIG. The curve C2 is a downwardly convex curve, and the center of curvature exists above the curve C2.
 図11は、補正関数の例を説明するための図である。図11に示す曲線C1は、図10に示す曲線C1と同じである。図11は、図10に示す曲線C1に対して補正関数F1を追記したものに相当する。図11は、最下階におけるテープ8の伸縮量がセンサによって検出された例を示す。当該センサは、センサ13に対応するセンサである。即ち、図11に示す例では、最上階のテープ8の伸縮量は0であり、最下階のテープ8の伸縮量はセンサによる検出値である。補正関数F1は、最上階における伸縮量と最下階における伸縮量、即ちセンサによる検出値とを結んだ線分を一次関数として定義したものである。 FIG. 11 is a diagram for explaining an example of a correction function. The curve C1 shown in FIG. 11 is the same as the curve C1 shown in FIG. FIG. 11 corresponds to the curve C1 shown in FIG. 10 with a correction function F1 added thereto. FIG. 11 shows an example in which the amount of expansion and contraction of the tape 8 on the lowest floor is detected by a sensor. The sensor is a sensor corresponding to sensor 13. That is, in the example shown in FIG. 11, the amount of expansion and contraction of the tape 8 on the top floor is 0, and the amount of expansion and contraction of the tape 8 on the bottom floor is a value detected by a sensor. The correction function F1 is defined as a linear function by a line segment connecting the amount of expansion and contraction at the top floor and the amount of expansion and contraction at the bottom floor, that is, the value detected by the sensor.
 曲線C1からも分かるように、テープ8の伸縮量は、最下階で最大となる。このため、図11に示す例では、伸縮量が最大となる位置でテープ8の伸縮量が検出されることになる。図12は、図11に示す曲線C1と補正関数F1を示す直線との差を示す図である。以下においては、当該差を補正誤差ともいう。図12に示す例では、補正誤差は常に正の値である。また、最上階の補正誤差及び最下階の補正誤差は0である。補正誤差を示す曲線は上に凸の曲線であり、当該山のピークが補正誤差の最大値となる。 As can be seen from the curve C1, the amount of expansion and contraction of the tape 8 is maximum at the lowest floor. Therefore, in the example shown in FIG. 11, the amount of expansion and contraction of the tape 8 is detected at the position where the amount of expansion and contraction is maximum. FIG. 12 is a diagram showing the difference between the curve C1 shown in FIG. 11 and the straight line showing the correction function F1. In the following, this difference will also be referred to as a correction error. In the example shown in FIG. 12, the correction error is always a positive value. Further, the correction error on the top floor and the correction error on the bottom floor are zero. The curve indicating the correction error is an upwardly convex curve, and the peak of the mountain is the maximum value of the correction error.
 補正誤差は、かご1の停止位置の誤差に直結するため、可能な限り小さい方が好ましい。また、補正誤差の極性は一定である必要はない。以下に、補正誤差に正の値と負の値とを混在させることによって、補正誤差の最大値を小さくする例について説明する。 Since the correction error is directly linked to the error in the stopping position of the car 1, it is preferable that it be as small as possible. Furthermore, the polarity of the correction error does not need to be constant. An example will be described below in which the maximum value of the correction error is reduced by mixing positive values and negative values in the correction error.
 図13は、補正関数の他の例を説明するための図である。図13に示す曲線C1は、図10に示す曲線C1と同じである。図13は、図10に示す曲線C1に対して補正関数F2を追記したものに相当する。図13は、位置P[n]におけるテープ8の伸縮量がセンサによって検出された例を示す。nは、0より大きく100より小さい。例えばn=15である。図13に示す例では、最上階のテープ8の伸縮量は0であり、位置P[n]のテープ8の伸縮量はセンサによる検出値である。補正関数F2は、最上階における伸縮量と位置P[n]における伸縮量、即ちセンサによる検出値とを結んだ線分を一次関数として定義したものである。 FIG. 13 is a diagram for explaining another example of the correction function. The curve C1 shown in FIG. 13 is the same as the curve C1 shown in FIG. FIG. 13 corresponds to the curve C1 shown in FIG. 10 with a correction function F2 added thereto. FIG. 13 shows an example in which the amount of expansion and contraction of the tape 8 at position P[n] is detected by a sensor. n is greater than 0 and less than 100. For example, n=15. In the example shown in FIG. 13, the amount of expansion and contraction of the tape 8 on the top floor is 0, and the amount of expansion and contraction of the tape 8 at position P[n] is a value detected by a sensor. The correction function F2 is defined as a linear function by a line segment connecting the amount of expansion and contraction at the top floor and the amount of expansion and contraction at position P[n], that is, the value detected by the sensor.
 図14は、図13に示す曲線C1と補正関数F2を示す直線との差を示す図である。図14に示す例では、位置P[n]の補正誤差は0である。位置P[0]から位置P[n]までの補正誤差は負の値である。位置P[100]から位置P[n]までの補正誤差は正の値である。このように、センサによる検出位置を最下階より上方にすることにより、補正誤差の絶対値の最大値を小さくすることができる。センサによる検出位置は、補正誤差の正側最大値の絶対値と負側最大値(最小値)の絶対値とが等しくなるように設定されることが好ましい。 FIG. 14 is a diagram showing the difference between the curve C1 shown in FIG. 13 and the straight line showing the correction function F2. In the example shown in FIG. 14, the correction error of position P[n] is 0. The correction error from position P[0] to position P[n] is a negative value. The correction error from position P[100] to position P[n] is a positive value. In this way, by setting the detection position by the sensor above the lowest floor, the maximum absolute value of the correction error can be reduced. The detection position by the sensor is preferably set so that the absolute value of the maximum value on the positive side of the correction error is equal to the absolute value of the maximum value (minimum value) on the negative side.
 次に、出願人が実際のエレベーター装置から取得したデータに基づいて調査した結果について説明する。 Next, the results of an investigation conducted by the applicant based on data acquired from actual elevator equipment will be explained.
 図15は、実際のエレベーター装置において測定された昇降路3の温度分布を示す図である。図15の横軸は、最上階からのテープ8の長さを、テープ8の全長に対する比で表した値を示す。例えば、最上階における当該比の値は0であり、最下階における当該比の値は100である。図15における横軸の表記は、図9から図14における横軸の表記と実質的に同じである。 FIG. 15 is a diagram showing the temperature distribution of the hoistway 3 measured in an actual elevator system. The horizontal axis in FIG. 15 indicates a value expressed as a ratio of the length of the tape 8 from the top floor to the total length of the tape 8. For example, the value of the ratio at the top floor is 0, and the value of the ratio at the bottom floor is 100. The notation of the horizontal axis in FIG. 15 is substantially the same as the notation of the horizontal axis in FIGS. 9 to 14.
 図15において、実線は、実在する建物αに形成された昇降路3において夏季に測定された温度データを示す。建物αにおいてかご1が移動できる範囲は200m弱である。一点鎖線は、実在する建物βに形成された昇降路3において夏季に測定された温度データを示す。建物βにおいてかご1が移動できる範囲は200m強である。二点鎖線は、実在する建物γに形成された昇降路3において冬季に測定された温度データを示す。建物γにおいてかごが移動できる範囲は40m弱である。 In FIG. 15, the solid line indicates temperature data measured in summer in the hoistway 3 formed in the existing building α. The range in which the car 1 can move in the building α is a little less than 200 m. The dashed-dotted line indicates temperature data measured in summer in the hoistway 3 formed in the existing building β. The range in which the car 1 can move in the building β is a little over 200 m. The two-dot chain line indicates temperature data measured in winter in the hoistway 3 formed in the actual building γ. The range in which a car can move in building γ is a little less than 40 m.
 図16は、図15に示す温度分布から算出されたテープ8の伸縮量を示す図である。図16は、式(2)を用いて伸縮量Δl[m]を算出した結果を示す。
 Δl=l×G×ΔT  ・・・(2)
 ここで、lはテープ8の長さ、G[1/K]は温度伸縮係数、ΔT[K]は温度差である。図16に示す結果を得るために、実際には、昇降路3の温度データを複数の高さにおいて測定し、1次線形補間を用いて各テープ長さ比における温度を求めた。また、温度差ΔTに関しては、摂氏25度との差を算出した。
FIG. 16 is a diagram showing the amount of expansion and contraction of the tape 8 calculated from the temperature distribution shown in FIG. 15. FIG. 16 shows the results of calculating the expansion/contraction amount Δl[m] using equation (2).
Δl=l×G×ΔT...(2)
Here, l is the length of the tape 8, G[1/K] is the temperature expansion/contraction coefficient, and ΔT[K] is the temperature difference. In order to obtain the results shown in FIG. 16, the temperature data of the hoistway 3 was actually measured at a plurality of heights, and the temperature at each tape length ratio was determined using linear interpolation. Furthermore, regarding the temperature difference ΔT, the difference from 25 degrees Celsius was calculated.
 図15に示すように、昇降路3の最下階、即ちテープ長さ比100%における温度は、いずれの建物でも19~26℃とほぼ常温である。建物α及び建物βでは、夏季に温度データを取得したため、昇降路3の温度は、最上階に近づくほど高温になる傾向がある。建物γでは、冬季に温度データを取得したため、昇降路3の温度は、最上階に近づくほど低温になる傾向がある。図16から、テープ8の伸縮量は、夏季には単調増加し、冬季には単調減少することが分かる。また、テープ8は昇降路3の温度によって伸縮するため、当該伸縮に応じた補正が必要になることが分かる。 As shown in FIG. 15, the temperature at the lowest floor of the hoistway 3, that is, the tape length ratio is 100%, is 19 to 26°C, which is approximately room temperature, in all buildings. In buildings α and β, temperature data was acquired during the summer, so the temperature of the hoistway 3 tends to become higher as it approaches the top floor. In the building γ, temperature data was acquired during winter, so the temperature of the hoistway 3 tends to become lower as it approaches the top floor. From FIG. 16, it can be seen that the amount of expansion and contraction of the tape 8 monotonically increases in the summer and monotonically decreases in the winter. Furthermore, since the tape 8 expands and contracts depending on the temperature of the hoistway 3, it is understood that correction is required in accordance with the expansion and contraction.
 先ず、最下階におけるテープ8の伸縮量をセンサによって検出する場合を考える。図17は、補正関数の例を説明するための図である。図17に示す3つの曲線は、図16に示す3つの曲線と同じである。図17は、図16に示す3つの曲線のそれぞれに対して、図11に示す例と同様に補正関数を追記したものに相当する。補正関数Fαは、建物αに設けられたテープ8の伸縮量を示す曲線に対する補正関数である。補正関数Fβは、建物βに設けられたテープ8の伸縮量を示す曲線に対する補正関数である。補正関数Fγは、建物γに設けられたテープ8の伸縮量を示す曲線に対する補正関数である。 First, consider the case where the amount of expansion and contraction of the tape 8 on the lowest floor is detected by a sensor. FIG. 17 is a diagram for explaining an example of a correction function. The three curves shown in FIG. 17 are the same as the three curves shown in FIG. 16. FIG. 17 corresponds to the three curves shown in FIG. 16 in which a correction function is added, similar to the example shown in FIG. 11. The correction function Fα is a correction function for a curve indicating the amount of expansion and contraction of the tape 8 provided on the building α. The correction function Fβ is a correction function for a curve indicating the amount of expansion and contraction of the tape 8 provided on the building β. The correction function Fγ is a correction function for a curve indicating the amount of expansion and contraction of the tape 8 provided on the building γ.
 図18は、補正誤差の例を示す図である。図18は、図17に示す例に基づいて、図12に示す例と同様に補正誤差を算出したものに相当する。即ち、図18に示す実線の曲線は、図17に示す実線の曲線と補正関数Fαを示す直線との差を表す。図18に示す一点鎖線の曲線は、図17に示す一点鎖線の曲線と補正関数Fβを示す直線との差を表す。図18に示す二点鎖線の曲線は、図17に示す二点鎖線の曲線と補正関数Fγを示す直線との差を表す。 FIG. 18 is a diagram showing an example of correction errors. FIG. 18 corresponds to the correction error calculated based on the example shown in FIG. 17 in the same way as the example shown in FIG. That is, the solid curve shown in FIG. 18 represents the difference between the solid curve shown in FIG. 17 and the straight line representing the correction function Fα. The dashed-dotted curve shown in FIG. 18 represents the difference between the dashed-dotted curve shown in FIG. 17 and the straight line representing the correction function Fβ. The two-dot chain curve shown in FIG. 18 represents the difference between the two-dot chain line curve shown in FIG. 17 and the straight line indicating the correction function Fγ.
 図18に示す実線の曲線及び一点鎖線の曲線は上に凸の山形の曲線であり、補正誤差が常に正の値となる。一方、図18に示す二点鎖線の曲線は下に凸の曲線であり、補正誤差が常に負の値となる。このため、センサによる検出位置を最下階より上方にすることにより、補正誤差に正の値と負の値とを混在させて、補正誤差の絶対値の最大値を小さくすることができる。以下に、センサによる検出位置の適切な範囲について、建物毎に検討する。 The solid curve and the dashed-dotted curve shown in FIG. 18 are upwardly convex mountain-shaped curves, and the correction error always takes a positive value. On the other hand, the two-dot chain line curve shown in FIG. 18 is a downwardly convex curve, and the correction error always takes a negative value. Therefore, by setting the detection position by the sensor above the lowest floor, it is possible to mix positive values and negative values in the correction error, thereby reducing the maximum absolute value of the correction error. The appropriate range of detection positions by sensors will be discussed below for each building.
[建物α]
 図19は、センサによる検出位置と補正誤差の絶対値の最大値との関係を示す図である。図19に示すように、補正誤差の絶対値の最大値は、テープ8の全長を100とした場合にセンサによる検出位置がテープ8の下端から13である場合に最小となる。当該最小の値は、センサによる検出位置が最下階である場合の最大値と比較して、約64%に低減されている。
[Building α]
FIG. 19 is a diagram showing the relationship between the position detected by the sensor and the maximum absolute value of the correction error. As shown in FIG. 19, the maximum absolute value of the correction error is the minimum when the detection position by the sensor is 13 from the bottom end of the tape 8, where the total length of the tape 8 is 100. The minimum value is reduced to about 64% compared to the maximum value when the detection position by the sensor is on the lowest floor.
 図20は、図13に相当する図である。図21は、図14に相当する図である。即ち、図20に示す曲線は、図17に示す実線の曲線と同じである。図20は、センサによる検出位置がテープ長さ比87%である時の補正関数の例を示す。図21に示す曲線は、図20に示す曲線と補正関数を示す直線との差を表す。図21に示すように、補正誤差は、センサによる検出位置を境に極性が反転する。また、補正誤差の最大値の絶対値と最小値の絶対値とは同じ値である。 FIG. 20 is a diagram corresponding to FIG. 13. FIG. 21 is a diagram corresponding to FIG. 14. That is, the curve shown in FIG. 20 is the same as the solid curve shown in FIG. 17. FIG. 20 shows an example of a correction function when the position detected by the sensor is at a tape length ratio of 87%. The curve shown in FIG. 21 represents the difference between the curve shown in FIG. 20 and the straight line showing the correction function. As shown in FIG. 21, the polarity of the correction error is reversed at the detection position by the sensor. Furthermore, the absolute value of the maximum value and the absolute value of the minimum value of the correction error are the same value.
[建物β]
 図22は、センサによる検出位置と補正誤差の絶対値の最大値との関係を示す図である。図22は、図19に相当する図である。図22に示すように、補正誤差の絶対値の最大値は、テープ8の全長を100とした場合にセンサによる検出位置がテープ8の下端から15である場合に最小となる。当該最小の値は、センサによる検出位置が最下階である場合の最大値と比較して、約66%に低減されている。建物βに関しても、図20に相当する図と図21に相当する図とを同様に得ることができる。
[Building β]
FIG. 22 is a diagram showing the relationship between the position detected by the sensor and the maximum absolute value of the correction error. FIG. 22 is a diagram corresponding to FIG. 19. As shown in FIG. 22, the maximum absolute value of the correction error is the minimum when the detection position by the sensor is 15 from the bottom end of the tape 8, where the total length of the tape 8 is 100. The minimum value is reduced to about 66% compared to the maximum value when the detection position by the sensor is on the lowest floor. Regarding the building β, a diagram corresponding to FIG. 20 and a diagram corresponding to FIG. 21 can be similarly obtained.
[建物γ]
 図23は、センサによる検出位置と補正誤差の絶対値の最大値との関係を示す図である。図23に示すように、補正誤差の絶対値の最大値は、テープ8の全長を100とした場合にセンサによる検出位置がテープ8の下端から17である場合に最小となる。当該最小の値は、センサによる検出位置が最下階である場合の最大値と比較して、約68%に低減されている。
[Building γ]
FIG. 23 is a diagram showing the relationship between the position detected by the sensor and the maximum absolute value of the correction error. As shown in FIG. 23, the maximum absolute value of the correction error is the minimum when the detection position by the sensor is 17 from the bottom end of the tape 8, where the total length of the tape 8 is 100. The minimum value is reduced to about 68% compared to the maximum value when the detection position by the sensor is on the lowest floor.
 図24は、図13に相当する図である。図25は、図14に相当する図である。即ち、図24に示す曲線は、図17に示す二点鎖線の曲線と同じである。図24は、センサによる検出位置がテープ長さ比83%である時の補正関数の例を示す。図25に示す曲線は、図24に示す曲線と補正関数を示す直線との差を表す。図25に示すように、補正誤差は、センサによる検出位置を境に極性が反転する。また、補正誤差の最大値の絶対値と最小値の絶対値とは同じ値である。 FIG. 24 is a diagram corresponding to FIG. 13. FIG. 25 is a diagram corresponding to FIG. 14. That is, the curve shown in FIG. 24 is the same as the two-dot chain curve shown in FIG. FIG. 24 shows an example of a correction function when the detected position by the sensor is at a tape length ratio of 83%. The curve shown in FIG. 25 represents the difference between the curve shown in FIG. 24 and the straight line representing the correction function. As shown in FIG. 25, the polarity of the correction error is reversed at the detection position by the sensor. Further, the absolute value of the maximum value and the absolute value of the minimum value of the correction error are the same value.
 図26は、各建物における補正誤差の比を示す図である。図26の縦軸では、センサによる検出位置がテープ長さ比100%の時、即ちセンサによる検出位置が最下階の時の補正誤差を100としている。図26に示す実線の折れ線は、図19に示す折れ線に対応する折れ線である。図26に示す一点鎖線の折れ線は、図22に示す折れ線に対応する折れ線である。図26に示す二点鎖線の折れ線は、図23に示す折れ線に対応する折れ線である。 FIG. 26 is a diagram showing the ratio of correction errors in each building. On the vertical axis of FIG. 26, the correction error is 100 when the detected position by the sensor is at a tape length ratio of 100%, that is, when the detected position by the sensor is on the lowest floor. The solid polygonal line shown in FIG. 26 is a polygonal line corresponding to the polygonal line shown in FIG. 19. The broken line shown in FIG. 26 is a broken line corresponding to the broken line shown in FIG. 22. The two-dot chain polygonal line shown in FIG. 26 is a polygonal line corresponding to the polygonal line shown in FIG. 23.
 図26に示すように、テープ8の全長を100とした場合にセンサによる検出位置がテープ8の下端から0から21の範囲であれば、補正誤差は、センサによる検出位置が最下階の場合の補正誤差より大きくならない。より好ましくは、センサによる検出位置がテープ8の下端から11から17の範囲であれば、補正誤差は、センサによる検出位置が最下階の場合の補正誤差の80%の値より小さくなる。したがって、基準階は、上記範囲に存在する停止階であることが好ましい。また、基準階を上記範囲に存在する停止階とし、算出部24は、線形補間を用いて補正量を算出することが好ましい。 As shown in FIG. 26, if the total length of the tape 8 is 100, and the detection position by the sensor is in the range of 0 to 21 from the bottom end of the tape 8, the correction error will be The correction error shall not be greater than the correction error. More preferably, if the position detected by the sensor is within the range of 11 to 17 from the bottom end of the tape 8, the correction error will be smaller than 80% of the correction error when the position detected by the sensor is on the lowest floor. Therefore, it is preferable that the reference floor is a stop floor that exists within the above range. Further, it is preferable that the reference floor is a stop floor existing in the above range, and that the calculation unit 24 calculates the correction amount using linear interpolation.
 他の例として、かご1が停止する停止階のうち複数の停止階が基準階に設定されても良い。複数の基準階の1つは、最下の停止階に設定されることが好ましい。複数の基準階の残りは、テープ8の全長を基準階の数で等分した時の各境界の位置に最も近い停止階に設定されることが好ましい。かかる場合、設定部23は、複数の基準階のそれぞれの位置を示す基準位置コードに対する基準補正量を設定する。算出部24は、設定部23によって設定された複数の基準補正量に基づいて、テープ8に付された各位置コードに対する補正量を算出する。図27は、3つの基準階が設定された場合の補正量の算出例を示す図である。複数の基準階が設定された場合、算出部24は、二次関数近似によって補正量の算出を行うことが好ましい。なお、複数の基準階が設定された場合に、線形補間を用いて補正量の算出が行われても良い。 As another example, a plurality of stopping floors among the stopping floors where the car 1 stops may be set as the reference floor. Preferably, one of the plurality of reference floors is set to the lowest stop floor. It is preferable that the rest of the plurality of reference floors be set at the stop floor closest to each boundary position when the entire length of the tape 8 is equally divided by the number of reference floors. In such a case, the setting unit 23 sets the reference correction amount for the reference position code indicating the position of each of the plurality of reference floors. The calculation unit 24 calculates the correction amount for each position code attached to the tape 8 based on the plurality of reference correction amounts set by the setting unit 23. FIG. 27 is a diagram showing an example of calculating the correction amount when three reference floors are set. When a plurality of reference floors are set, it is preferable that the calculation unit 24 calculates the correction amount by quadratic function approximation. Note that when a plurality of reference floors are set, the correction amount may be calculated using linear interpolation.
 他の例として、制御装置6では、センサ11からの信号の遅延時間を考慮した制御が行われても良い。かかる場合、図3に示すように、制御装置6は、付与部26及び算出部27を更に備える。 As another example, the control device 6 may perform control in consideration of the delay time of the signal from the sensor 11. In such a case, as shown in FIG. 3, the control device 6 further includes an assignment section 26 and a calculation section 27.
 一例として、センサ13からの信号は、制御装置6にパラレル伝送によって送られる。一方、センサ11からの信号は、制御装置6にシリアル伝送によって送られる。このため、センサ11からの信号には、通信における遅延時間Δtが発生する。 As an example, the signal from the sensor 13 is sent to the control device 6 by parallel transmission. On the other hand, the signal from the sensor 11 is sent to the control device 6 by serial transmission. Therefore, a communication delay time Δt occurs in the signal from the sensor 11.
 付与部26は、センサ11からの信号に時刻情報を付与する。付与部26は、センサ13からの信号に時刻情報を付与する。付与部26によって時刻情報が付与されたセンサ11からの信号及びセンサ13からの信号は、記憶部20に一定期間保存される。 The adding unit 26 adds time information to the signal from the sensor 11. The adding unit 26 adds time information to the signal from the sensor 13. The signal from the sensor 11 and the signal from the sensor 13 to which time information is added by the adding unit 26 are stored in the storage unit 20 for a certain period of time.
 図28は、遅延時間Δtの算出方法を説明するための図である。図28は、下方に移動しているかご1が基準階に停止する例を示す。センサ13は、かご1が基準階に停止する前に、補正プレート12の端を検出する。センサ13が補正プレート12の端を検出することにより、センサ13からの信号が立ち上がる。即ち、センサ13が補正プレート12の端を検出すると、受信部22はその旨の信号を受信する。図28に示す例では、付与部26は、センサ13が補正プレート12の端を検出した時のセンサ13からの信号に対して時刻t1を付与する。 FIG. 28 is a diagram for explaining a method of calculating the delay time Δt. FIG. 28 shows an example in which car 1 moving downward stops at a reference floor. The sensor 13 detects the end of the correction plate 12 before the car 1 stops at the reference floor. When the sensor 13 detects the edge of the correction plate 12, a signal from the sensor 13 rises. That is, when the sensor 13 detects the edge of the correction plate 12, the receiving section 22 receives a signal to that effect. In the example shown in FIG. 28, the assigning unit 26 assigns time t1 to the signal from the sensor 13 when the sensor 13 detects the end of the correction plate 12.
 センサ13が補正プレート12の端を検出した後、かご1は基準階に停止する。センサ11からの信号は、一定の周期で制御装置6に送られる。このため、かご1が基準階に停止した時にセンサ11が読み取った位置コードを示す信号も制御装置6に送られる。図28に示す例では、付与部26は、かご1が基準階に停止した時のセンサ11からの信号に対して時刻t3を付与する。 After the sensor 13 detects the end of the correction plate 12, the car 1 stops at the reference floor. Signals from the sensor 11 are sent to the control device 6 at regular intervals. Therefore, a signal indicating the position code read by the sensor 11 when the car 1 stops at the reference floor is also sent to the control device 6. In the example shown in FIG. 28, the assigning unit 26 assigns time t3 to the signal from the sensor 11 when the car 1 stops at the reference floor.
 算出部27は、付与部26によって付与された時刻t1及び時刻t3に基づいて、センサ11からの信号の遅延時間Δtを算出する。先ず、算出部27は、かご1の進入距離L3を算出する。進入距離L3は、センサ13が補正プレート12の端を検出してからかご1が移動した距離である。かご1が停止した時にセンサ13が中央ゾーン12aを検出している場合、算出部27は、補正プレート12の端から中央ゾーン12aの中央までの距離を進入距離L3として算出しても良い。算出部27は、センサ11からの信号に基づくかご1の停止位置から進入距離L3を引いた位置を、補正プレート12の端の位置と推定する。 The calculation unit 27 calculates the delay time Δt of the signal from the sensor 11 based on the time t1 and time t3 given by the provision unit 26. First, the calculation unit 27 calculates the approach distance L3 of the car 1. The approach distance L3 is the distance that the car 1 has moved since the sensor 13 detected the end of the correction plate 12. If the sensor 13 detects the center zone 12a when the car 1 stops, the calculation unit 27 may calculate the distance from the end of the correction plate 12 to the center of the center zone 12a as the approach distance L3. The calculation unit 27 estimates the position obtained by subtracting the approach distance L3 from the stop position of the car 1 based on the signal from the sensor 11 as the position of the end of the correction plate 12.
 上述したように、センサ11からの信号は、一定の周期で制御装置6に送られる。このため、上記推定された位置にかご1が配置されたタイミングと同じタイミングで、センサ11から信号が送られるとは限らない。そこで、算出部27は、センサ11からの信号のうち、上記推定された位置に最も近い位置を示す位置コードを含む信号を特定し、その特定した信号に付与されている時刻情報を特定する。図28に示す例では、算出部27は、時刻t3と進入距離L3とに基づいて、当該時刻情報として時刻t2を特定する。算出部27は、次式から遅延時間Δtを算出する。
 Δt=t2-t1
As described above, the signal from the sensor 11 is sent to the control device 6 at regular intervals. Therefore, the signal is not necessarily sent from the sensor 11 at the same timing as when the car 1 is placed at the estimated position. Therefore, the calculation unit 27 specifies, among the signals from the sensor 11, a signal including a position code indicating the position closest to the estimated position, and specifies the time information given to the specified signal. In the example shown in FIG. 28, the calculation unit 27 specifies time t2 as the time information based on time t3 and approach distance L3. The calculation unit 27 calculates the delay time Δt from the following equation.
Δt=t2-t1
 動作制御部25は、算出部27によって算出された遅延時間Δtにも基づいて、かご1の移動を制御する。例えば、かご1の移動制御には、かご1の速度制御と位置制御とが含まれる。例えば、現在のかご1の速度及び位置は、次式から推定できる。
 [速度V]=[速度VAPS]+[加速度AAPS]×[遅延時間Δt]
 [位置P]=[位置PAPS]+[補正量]+([速度VAPS]+1/2×[加速度AAPS])×[遅延時間Δt])×[遅延時間Δt]
 ここで、速度VAPSは、センサ11からの信号に基づいて算出した速度である。加速度AAPSは、センサ11からの信号に基づいて算出した加速度である。位置PAPSは、センサ11からの信号に基づく位置である。
The operation control unit 25 controls the movement of the car 1 based also on the delay time Δt calculated by the calculation unit 27. For example, movement control of car 1 includes speed control and position control of car 1. For example, the current speed and position of car 1 can be estimated from the following equation.
[Speed V] = [Speed V APS ] + [Acceleration A APS ] x [Delay time Δt]
[Position P] = [Position P APS ] + [Correction amount] + ([Velocity V APS ] + 1/2 × [Acceleration A APS ]) × [Delay time Δt]) × [Delay time Δt]
Here, the speed V APS is the speed calculated based on the signal from the sensor 11. Acceleration A APS is the acceleration calculated based on the signal from the sensor 11. The position PAPS is a position based on the signal from the sensor 11.
 動作制御部25は、次式に示すように、現在のかご1の速度及び位置を簡易的に推定しても良い。
 [速度V]=[速度VAPS
 [位置P]=[位置PAPS]+[補正量]+[速度VAPS]×[遅延時間Δt]
The operation control unit 25 may simply estimate the current speed and position of the car 1 as shown in the following equation.
[Speed V] = [Speed V APS ]
[Position P] = [Position P APS ] + [Correction amount] + [Speed V APS ] x [Delay time Δt]
 本実施の形態では、エレベーターシステムに備えられた1台のエレベーター装置において全ての処理が完結する例について説明した。エレベーターシステムが複数台のエレベーター装置を備える場合、当該複数台のエレベーター装置において、必要な情報を融通し合っても良い。 In the present embodiment, an example has been described in which all processing is completed in one elevator device included in the elevator system. When the elevator system includes a plurality of elevator devices, necessary information may be exchanged among the plurality of elevator devices.
 一例として、上述したエレベーター装置をエレベーター装置Aとする。エレベーターシステムは、エレベーター装置Aに加え、エレベーター装置Bを更に備える。エレベーター装置Aとエレベーター装置Bとは、同一バンクに属し、同様の構成及び機能を有する。但し、エレベーター装置Bにおける基準階は、エレベーター装置Aにおける基準階とは異なる階に設定されるのが望ましい。 As an example, the elevator device described above is referred to as elevator device A. In addition to the elevator device A, the elevator system further includes an elevator device B. Elevator device A and elevator device B belong to the same bank and have similar configurations and functions. However, it is desirable that the reference floor in elevator device B is set to a different floor from the reference floor in elevator device A.
 以下においては、エレベーター装置Aとエレベーター装置Bとを区別するため、エレベーター装置Aに関する説明においては英字Aを付し、エレベーター装置Bに関する説明においては英字Bを付す。例えば、エレベーター装置Aは制御装置6Aを備え、エレベーター装置Bは制御装置6Bを備える。エレベーター装置Aでは基準階Aが設定され、エレベーター装置Bでは基準階Bが設定される。一例として、基準階Bは、基準階Aとは異なる階に設定される。 In the following, in order to distinguish between elevator device A and elevator device B, the alphabetical letter A is added to the explanation regarding elevator device A, and the alphabetic character B is attached to the explanation about elevator device B. For example, elevator device A includes a control device 6A, and elevator device B includes a control device 6B. For elevator device A, reference floor A is set, and for elevator device B, reference floor B is set. As an example, the reference floor B is set to a different floor from the reference floor A.
 この例では、制御装置6Aは、図3に示すように通信部28Aを更に備える。通信部28Aは、制御装置6Bと通信する機能を有する。同様に、制御装置6Bは通信部28Bを更に備える。通信部28Bは、制御装置6Aと通信する機能を有する。通信部28Bは、設定部23Bによって設定された、基準位置コードBに対する基準補正量Bを制御装置6Aに送信する。 In this example, the control device 6A further includes a communication section 28A as shown in FIG. The communication unit 28A has a function of communicating with the control device 6B. Similarly, the control device 6B further includes a communication section 28B. The communication unit 28B has a function of communicating with the control device 6A. The communication unit 28B transmits the reference correction amount B for the reference position code B set by the setting unit 23B to the control device 6A.
 通信部28Aは、エレベーター装置Bから基準補正量Bを取得する。算出部24Aは、設定部23Aによって設定された基準補正量Aだけでなく、通信部28Aによって取得された基準補正量Bにも基づいて、テープ8に付された各位置コードに対する補正量を算出する。基準位置コードBは、テープ8Aに付された位置コードのうち基準階Bの位置を示すコードとして予め設定されたコードであるとみなされる。この例では、算出部24Aは、複数の基準階Aが設定された場合と同じように、補正量の算出を行うことができる。 The communication unit 28A obtains the reference correction amount B from the elevator device B. The calculation unit 24A calculates the correction amount for each position code attached to the tape 8 based not only on the reference correction amount A set by the setting unit 23A but also on the reference correction amount B acquired by the communication unit 28A. do. The reference position code B is considered to be a code set in advance as a code indicating the position of the reference floor B among the position codes attached to the tape 8A. In this example, the calculation unit 24A can calculate the correction amount in the same way as when a plurality of reference floors A are set.
 エレベーターシステムが3台のエレベーター装置を備えていれば、各エレベーター装置において1つの基準階しか設定されていなくても、図27に示すような補正量の算出が可能になる。 If the elevator system includes three elevator devices, it is possible to calculate the correction amount as shown in FIG. 27 even if only one reference floor is set for each elevator device.
 また、通常時は、1台のエレベーター装置において全ての処理を完結し、センサ13が故障した場合等に他のエレベーター装置から必要な情報を取得しても良い。例えば、センサ13Aが正常に機能していれば、算出部24Aは、設定部23Aによって設定された基準補正量Aに基づいて補正量を算出する。センサ13Aが故障すると、算出部24Aは、通信部28Aによって取得された基準補正量Bに基づいて補正量を算出しても良い。 Additionally, during normal times, all processing may be completed in one elevator device, and necessary information may be acquired from other elevator devices in the event that the sensor 13 fails, etc. For example, if the sensor 13A is functioning normally, the calculation unit 24A calculates the correction amount based on the reference correction amount A set by the setting unit 23A. When the sensor 13A fails, the calculation unit 24A may calculate the correction amount based on the reference correction amount B acquired by the communication unit 28A.
 他の例として、同一バンクに属する複数台のエレベーター装置のうちの一部のエレベーター装置のみが、補正プレート12とセンサ13とを備えても良い。補正プレート12とセンサ13とを備えるエレベーター装置では、センサ13が補正プレート12を検出した結果に基づいて基準位置コードに対する基準補正量の設定が行われ、補正量の算出が行われる。補正プレート12とセンサ13とを備えていないエレベーター装置では、制御装置6が、補正プレート12とセンサ13とを備えるエレベーター装置から基準位置コードと当該基準位置コードに対する基準補正量との情報を取得し、補正量の算出を行う。 As another example, only some of the elevator devices belonging to the same bank may include the correction plate 12 and the sensor 13. In the elevator apparatus including the correction plate 12 and the sensor 13, a reference correction amount is set for the reference position code based on the result of the sensor 13 detecting the correction plate 12, and the correction amount is calculated. In an elevator device that does not include the correction plate 12 and the sensor 13, the control device 6 acquires information about a reference position code and a reference correction amount for the reference position code from the elevator device that includes the correction plate 12 and the sensor 13. , calculates the correction amount.
 図29は、制御装置6のハードウェア資源の例を示す図である。制御装置6は、ハードウェア資源として、プロセッサ31とメモリ32とを含む処理回路30を備える。処理回路30に複数のプロセッサ31が含まれても良い。処理回路30に複数のメモリ32が含まれても良い。 FIG. 29 is a diagram showing an example of hardware resources of the control device 6. The control device 6 includes a processing circuit 30 including a processor 31 and a memory 32 as hardware resources. The processing circuit 30 may include a plurality of processors 31. The processing circuit 30 may include multiple memories 32.
 本実施の形態において、符号20~28に示す各部は、制御装置6が有する機能を示す。記憶部20の機能は、メモリ32によって実現される。符号21~28に示す各部の機能は、プログラムとして記述されたソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせによって実現できる。当該プログラムは、メモリ32に記憶される。制御装置6は、メモリ32に記憶されたプログラムをプロセッサ31(コンピュータ)によって実行することにより、符号21~28に示す各部の機能を実現する。 In this embodiment, each section indicated by reference numerals 20 to 28 indicates a function that the control device 6 has. The functions of the storage unit 20 are realized by the memory 32. The functions of each part shown by reference numerals 21 to 28 can be realized by software written as a program, firmware, or a combination of software and firmware. The program is stored in the memory 32. The control device 6 realizes the functions of each section indicated by reference numerals 21 to 28 by having the processor 31 (computer) execute a program stored in the memory 32.
 プロセッサ31は、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、或いはDSPともいわれる。メモリ32として、半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、或いはDVDを採用しても良い。採用可能な半導体メモリには、RAM、ROM、フラッシュメモリ、EPROM、及びEEPROM等が含まれる。 The processor 31 is also called a CPU (Central Processing Unit), central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP. As the memory 32, a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD may be used. Semiconductor memories that can be employed include RAM, ROM, flash memory, EPROM, EEPROM, and the like.
 図30は、制御装置6のハードウェア資源の他の例を示す図である。図30に示す例では、制御装置6は、プロセッサ31、メモリ32、及び専用ハードウェア33を含む処理回路30を備える。図30は、制御装置6が有する機能の一部を専用ハードウェア33によって実現する例を示す。制御装置6が有する機能の全部を専用ハードウェア33によって実現しても良い。専用ハードウェア33として、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらの組み合わせを採用できる。 FIG. 30 is a diagram showing another example of the hardware resources of the control device 6. In the example shown in FIG. 30, the control device 6 includes a processing circuit 30 including a processor 31, a memory 32, and dedicated hardware 33. FIG. 30 shows an example in which some of the functions of the control device 6 are realized by dedicated hardware 33. All the functions of the control device 6 may be realized by the dedicated hardware 33. The dedicated hardware 33 can be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 本開示に係るエレベーターシステムは、絶対位置測位システムを備えるエレベーターシステムに適用できる。 The elevator system according to the present disclosure can be applied to an elevator system equipped with an absolute positioning system.
 1 かご、 2 つり合いおもり、 3 昇降路、 4 ロープ、 5 巻上機、 6 制御装置、 7 機械室、 8 テープ、 9 支持部材、 10 支持装置、 11 センサ、 12 補正プレート、 12a 中央ゾーン、 12b 下ゾーン、 12c 上ゾーン、 13 センサ、 20 記憶部、 21 受信部、 22 受信部、 23 設定部、 24 算出部、 25 動作制御部、 26 付与部、 27 算出部、 28 通信部、 30 処理回路、 31 プロセッサ、 32 メモリ、 33 専用ハードウェア、 40 建物、 41 土地 1. Car, 2. Counterweight, 3. Hoistway, 4. Rope, 5. Hoisting machine, 6. Control device, 7. Machine room, 8. Tape, 9. Support member, 10. Support device, 11. Sensor, 12. Correction Plate, 12a Central zone, 12b Lower zone, 12c Upper zone, 13 Sensor, 20 Storage unit, 21 Receiving unit, 22 Receiving unit, 23 Setting unit, 24 Calculating unit, 25 Operation control unit, 26 Giving unit, 27 Calculating unit, 28 Communication department, 30 processing circuit , 31 Processor, 32 Memory, 33 Dedicated hardware, 40 Building, 41 Land

Claims (8)

  1.  かごが昇降路を移動し、前記かごが複数の停止階に停止し、前記複数の停止階の一部が基準階に設定されたエレベーターシステムであって、
     前記昇降路に設けられ、前記かごが移動することが可能な特定の範囲に亘って位置コードが付されたテープと、
     前記かごに設けられ、前記テープに付された位置コードを読み取る第1センサと、
     前記基準階の位置に合わせて前記昇降路に設けられた被検出体と、
     前記かごに設けられ、前記被検出体を検出するための第2センサと、
     前記かごの移動を制御する動作制御部と、
     前記動作制御部による制御によって前記かごが前記基準階に停止した際に前記第2センサが前記被検出体を検出した結果に基づいて、基準位置コードに対する基準補正量を設定する設定部と、
     前記設定部によって設定された前記基準補正量に基づいて、前記テープに付された各位置コードに対する補正量を算出する第1算出部と、
    を備え、
     前記動作制御部は、前記第1センサによって読み取られた位置コードと前記第1算出部によって算出された補正量とに基づいて、前記かごの移動を制御し、
     前記基準位置コードは、前記テープに付された位置コードのうち、前記基準階の位置を示すコードとして予め設定されたコードであるエレベーターシステム。
    An elevator system in which a car moves along a hoistway, the car stops at a plurality of stop floors, and some of the plurality of stop floors are set as reference floors,
    a tape provided in the hoistway and having a position code attached thereto over a specific range in which the car can move;
    a first sensor provided on the car and reading a position code attached to the tape;
    a detected object provided in the hoistway in accordance with the position of the reference floor;
    a second sensor provided in the cage and for detecting the detected object;
    an operation control unit that controls movement of the car;
    a setting unit that sets a reference correction amount for the reference position code based on a result of the detection of the detected object by the second sensor when the car stops at the reference floor under the control of the operation control unit;
    a first calculation unit that calculates a correction amount for each position code attached to the tape based on the reference correction amount set by the setting unit;
    Equipped with
    The operation control unit controls movement of the car based on the position code read by the first sensor and the correction amount calculated by the first calculation unit,
    The reference position code is a code set in advance as a code indicating the position of the reference floor among the position codes attached to the tape.
  2.  前記被検出体に、第1ゾーン、前記第1ゾーンの直下の第2ゾーン、及び前記第1ゾーンの直上の第3ゾーンが設定され、
     前記設定部は、前記かごが前記基準階に停止した際に、
     前記第2センサが前記第1ゾーンを検出すると、前記基準補正量を変更せず、
     前記第2センサが前記第2ゾーンを検出すると、前記基準階における前記かごの停止位置が現在の停止位置より第1距離だけ上方となるように前記基準補正量を設定し、
     前記第2センサが前記第3ゾーンを検出すると、前記基準階における前記かごの停止位置が現在の停止位置より第2距離だけ下方となるように前記基準補正量を設定し、
     前記第1距離は、前記第1ゾーンと前記第2ゾーンとの距離に応じた距離であり、
     前記第2距離は、前記第1ゾーンと前記第3ゾーンとの距離に応じた距離である請求項1に記載のエレベーターシステム。
    A first zone, a second zone immediately below the first zone, and a third zone immediately above the first zone are set in the detected object,
    The setting unit is configured to set, when the car stops at the reference floor,
    When the second sensor detects the first zone, the reference correction amount is not changed;
    When the second sensor detects the second zone, setting the reference correction amount so that the stopping position of the car on the reference floor is a first distance above the current stopping position;
    When the second sensor detects the third zone, setting the reference correction amount so that the stopping position of the car on the reference floor is a second distance below the current stopping position;
    The first distance is a distance depending on the distance between the first zone and the second zone,
    The elevator system according to claim 1, wherein the second distance is a distance depending on a distance between the first zone and the third zone.
  3.  上下に連続する複数の位置コードを含むコード群が予め設定され、
     前記コード群に、前記基準位置コードが含まれ、
     前記動作制御部は、特定の停止条件が成立すると前記かごによるサービスを停止し、
     前記停止条件は、
     前記第2センサによって前記被検出体が検出されているにも関わらず前記コード群に含まれない位置コードが前記第1センサによって読み取られた場合に成立し、
     前記第2センサによって前記被検出体が検出されていないにも関わらず前記コード群に含まれる位置コードが前記第1センサによって読み取られた場合に成立する請求項1又は請求項2に記載のエレベーターシステム。
    A code group including multiple vertically consecutive position codes is set in advance,
    the code group includes the reference position code;
    The operation control unit stops the service provided by the car when a specific stop condition is met;
    The stopping conditions are:
    Established when a position code not included in the code group is read by the first sensor even though the detected object is detected by the second sensor,
    The elevator according to claim 1 or 2, which is established when a position code included in the code group is read by the first sensor even though the detected object is not detected by the second sensor. system.
  4.  前記動作制御部は、前記かごが前記基準階に前回停止してから一定時間が経過すると、前記かごを前記基準階に停止させる請求項1から請求項3の何れか一項に記載のエレベーターシステム。 The elevator system according to any one of claims 1 to 3, wherein the operation control unit causes the car to stop at the reference floor when a certain period of time has passed since the car last stopped at the reference floor. .
  5.  前記第1センサからの信号及び前記第2センサからの信号に時刻情報を付与する付与部と、
     前記第2センサが前記被検出体の端を検出した時の前記第2センサからの信号に対して付与された時刻情報と前記かごが前記基準階に停止した時の前記第1センサからの信号に対して付与された時刻情報とに基づいて、前記第1センサからの信号の遅延時間を算出する第2算出部と、
    を更に備え、
     前記動作制御部は、前記第2算出部によって算出された遅延時間にも基づいて、前記かごの移動を制御する請求項1から請求項4の何れか一項に記載のエレベーターシステム。
    an adding unit that adds time information to the signal from the first sensor and the signal from the second sensor;
    Time information given to a signal from the second sensor when the second sensor detects the end of the detected object and a signal from the first sensor when the car stops at the reference floor. a second calculation unit that calculates the delay time of the signal from the first sensor based on the time information provided to the second sensor;
    further comprising;
    The elevator system according to any one of claims 1 to 4, wherein the operation control unit controls movement of the car based also on the delay time calculated by the second calculation unit.
  6.  前記基準階は、前記複数の停止階のうち、前記テープの全長を100とした場合に前記テープの下端から11から17の範囲に存在する停止階であり、
     前記第1算出部は、線形補間を用いて補正量を算出する請求項1から請求項5の何れか一項に記載のエレベーターシステム。
    The reference floor is a stop floor that exists within a range of 11 to 17 from the bottom end of the tape when the total length of the tape is 100 among the plurality of stop floors,
    The elevator system according to any one of claims 1 to 5, wherein the first calculation unit calculates the correction amount using linear interpolation.
  7.  複数の前記基準階が設定され、
     前記複数の基準階は、最下の停止階と前記テープの全長を前記基準階の数で等分した時の各境界の位置に最も近い停止階とであり、
     前記設定部は、前記複数の基準階のそれぞれの位置を示す基準位置コードに対する基準補正量を設定し、
     前記第1算出部は、前記設定部によって設定された複数の前記基準補正量に基づいて補正量を算出する請求項1から請求項5の何れか一項に記載のエレベーターシステム。
    A plurality of the standard floors are set,
    The plurality of reference floors are the lowest stop floor and the stop floor closest to each boundary position when the entire length of the tape is equally divided by the number of reference floors,
    The setting unit sets a reference correction amount for a reference position code indicating the position of each of the plurality of reference floors,
    The elevator system according to any one of claims 1 to 5, wherein the first calculation unit calculates the correction amount based on the plurality of reference correction amounts set by the setting unit.
  8.  同一バンクの他のエレベーター装置から、第2基準位置コードに対する第2基準補正量を取得するための通信部を更に備え、
     前記第2基準位置コードは、前記テープに付された位置コードのうち、第2基準階の位置を示すコードとして予め設定されたコードであり、
     前記第1算出部は、前記設定部によって設定された前記基準補正量と前記通信部によって取得された前記第2基準補正量とに基づいて補正量を算出する請求項1から請求項7の何れか一項に記載のエレベーターシステム。
    Further comprising a communication unit for acquiring a second reference correction amount for the second reference position code from another elevator device of the same bank,
    The second reference position code is a code set in advance as a code indicating the position of the second reference floor among the position codes attached to the tape,
    Any one of claims 1 to 7, wherein the first calculation unit calculates the correction amount based on the reference correction amount set by the setting unit and the second reference correction amount acquired by the communication unit. The elevator system described in item (1) above.
PCT/JP2022/016173 2022-03-30 2022-03-30 Elevator system WO2023188164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016173 WO2023188164A1 (en) 2022-03-30 2022-03-30 Elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016173 WO2023188164A1 (en) 2022-03-30 2022-03-30 Elevator system

Publications (1)

Publication Number Publication Date
WO2023188164A1 true WO2023188164A1 (en) 2023-10-05

Family

ID=88199743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016173 WO2023188164A1 (en) 2022-03-30 2022-03-30 Elevator system

Country Status (1)

Country Link
WO (1) WO2023188164A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083158A (en) * 2002-08-23 2004-03-18 Mitsubishi Electric Corp Remote rescue operation control device for elevator
JP2014162640A (en) * 2013-02-28 2014-09-08 Toshiba Elevator Co Ltd Elevator controller
JP2016172601A (en) * 2015-03-16 2016-09-29 フジテック株式会社 Elevator device
WO2020065788A1 (en) * 2018-09-26 2020-04-02 株式会社日立製作所 Elevator control device and elevator using same
EP3640179A1 (en) * 2018-08-30 2020-04-22 Otis Elevator Company Determining elevator car location using radio frequency identification
WO2021002107A1 (en) * 2019-07-02 2021-01-07 株式会社日立製作所 Elevator device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083158A (en) * 2002-08-23 2004-03-18 Mitsubishi Electric Corp Remote rescue operation control device for elevator
JP2014162640A (en) * 2013-02-28 2014-09-08 Toshiba Elevator Co Ltd Elevator controller
JP2016172601A (en) * 2015-03-16 2016-09-29 フジテック株式会社 Elevator device
EP3640179A1 (en) * 2018-08-30 2020-04-22 Otis Elevator Company Determining elevator car location using radio frequency identification
WO2020065788A1 (en) * 2018-09-26 2020-04-02 株式会社日立製作所 Elevator control device and elevator using same
WO2021002107A1 (en) * 2019-07-02 2021-01-07 株式会社日立製作所 Elevator device

Similar Documents

Publication Publication Date Title
EP2751004B1 (en) Determining the parameters connected to the run times of elevators
CN110606417B (en) Elevator sensor system floor mapping
JP5191743B2 (en) Prevention of interference in the hoistway where two elevators travel
JP5138864B2 (en) Energy-saving elevator control method and elevator equipment
EP2925653B1 (en) Position recovery via dummy landing patterns
US20200180910A1 (en) Method and an elevator system for defining an elongation of an elevator car suspension means
JPWO2005049468A1 (en) Elevator equipment
CN109153537B (en) Elevator device
WO2023188164A1 (en) Elevator system
JP6583510B2 (en) Elevator group management system, elevator control device
JP5738948B2 (en) Elevator control device
JPH08133611A (en) Elevator control device
JP2007055692A (en) Single shaft multi-car elevator system and its group supervisory operation system
JP6313492B1 (en) Elevator maintenance work support system
CN101139059A (en) Elevator group management control device
JP3744271B2 (en) Elevator position detection device
CN112209188B (en) Group management system for elevator
KR102182981B1 (en) System for detecting position of an elevator car
WO2023144985A1 (en) Elevator control system
JPH0725501B2 (en) Elevator control equipment
JPS5842115B2 (en) elevator control device
WO2023135648A1 (en) Position computation device and elevator system
JP7121139B2 (en) elevator controller
JP7289360B2 (en) elevator system
KR100638754B1 (en) Device for detecting position of elevator car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935309

Country of ref document: EP

Kind code of ref document: A1