WO2023188095A1 - 走路推定装置 - Google Patents

走路推定装置 Download PDF

Info

Publication number
WO2023188095A1
WO2023188095A1 PCT/JP2022/015931 JP2022015931W WO2023188095A1 WO 2023188095 A1 WO2023188095 A1 WO 2023188095A1 JP 2022015931 W JP2022015931 W JP 2022015931W WO 2023188095 A1 WO2023188095 A1 WO 2023188095A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
vehicle
estimated
driving
travel
Prior art date
Application number
PCT/JP2022/015931
Other languages
English (en)
French (fr)
Inventor
善光 村橋
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2022/015931 priority Critical patent/WO2023188095A1/ja
Publication of WO2023188095A1 publication Critical patent/WO2023188095A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a route estimation device that estimates a route on which a vehicle having an automatic driving function or a driving support function should travel.
  • Patent Document 1 devices for automatically driving a vehicle are known (see, for example, Patent Document 1).
  • three-dimensional point cloud data acquired while driving is compared with a pre-established three-dimensional point cloud map that includes information on roads, etc., and two-dimensional image data acquired while driving is compared.
  • 3D point cloud data of a static object such as a road is obtained from the 3D image data generated by fusing and 3D point cloud data.
  • a driving route estimation device that is one aspect of the present invention is mounted on a vehicle and includes an external situation detection section that detects an external situation around the vehicle, a driving state detection section that detects a driving state of the vehicle, and a controller. .
  • the controller stores map information, estimates the route on which the vehicle should travel at predetermined intervals based on the external environment detected by the external environment detection section, and estimates the route on which the vehicle should travel based on the traveling state detected by the traveling state detection section.
  • the actual travel trajectory is specified, it is determined whether the estimated travel route matches the specified trajectory, and the determination result is stored in association with the map information.
  • FIG. 1 is a block diagram schematically showing the configuration of a running route estimation device according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a running route when an estimated running route and an actual trajectory match.
  • FIG. 7 is a diagram showing an example of determination results stored in association with map information.
  • FIG. 3 is a diagram for explaining whether automatic driving or driving support is possible based on a determination result.
  • FIG. 3 is a diagram for explaining exclusion of a running route estimated at a specific time.
  • FIG. 3 is a diagram for explaining generation of a route map.
  • FIG. 3 is a diagram for explaining calculation of reliability based on determination results.
  • the driving route estimation device is applied to a vehicle having a driving support function that provides driving support to a vehicle driver or controls a driving actuator to automatically drive the vehicle, Estimate the route.
  • Driving support in this embodiment includes driving support that supports the driver's driving operations and automatic driving that automatically drives the vehicle without depending on the driver's driving operations, and includes levels 1 to 2 defined by SAE.
  • Autonomous Driving corresponds to Level 4 Autonomous Driving
  • Autonomous Driving corresponds to Level 5 Autonomous Driving.
  • steering support which assists with steering, has a large effect in reducing the burden on the driver.
  • Continuing support is required even at intersections on general roads that are not well maintained.
  • high-precision maps used for autonomous driving and driving assistance are created for areas with high traffic volume such as expressways and urban areas, they have not been created for areas with low traffic volume such as residential areas and suburbs.
  • the road structure may change due to construction work after the latest high-definition map is created.
  • each vehicle should use its own on-board sensors when driving. It is necessary to estimate the route. Therefore, in this embodiment, by estimating the route on which the vehicle should travel using on-board sensors, etc., it is possible to increase the continuity of automatic vehicle driving and driving support even in areas where there is no pre-established map information.
  • the route estimating device is configured as follows.
  • FIG. 1 is a block diagram schematically showing the configuration of a travel route estimation device 10 according to an embodiment of the present invention.
  • the driving route estimation device 10 includes an external environment detection section 2, a driving state detection section 3, a driving actuator 4, and a controller 5, which are mounted on a vehicle 1.
  • the controller 5 is connected to the external situation detection section 2 , the running state detection section 3 , and the running actuator 4 .
  • the external environment detection unit 2 is mounted on the vehicle 1 and detects the external environment around the vehicle 1, particularly in front of the vehicle 1.
  • the external situation detection unit 2 is configured by a camera that has an imaging device such as a CCD or CMOS, and captures an image of the surroundings of the vehicle 1, for example.
  • the external environment detection unit 2 may be configured with a millimeter wave radar that irradiates millimeter waves (radio waves) and measures the distance and direction to the object based on the time it takes for the irradiated waves to hit the object and return.
  • the external environment detection unit 2 may be configured with a lidar (LiDAR) that irradiates a laser beam and measures the distance and direction to the object based on the time it takes for the irradiated light to hit the object and return.
  • LiDAR lidar
  • the road surface on which the vehicle can drive Based on the external environment detected by the external environment detection unit 2, the road surface on which the vehicle can drive, the driving lane defined by division lines and structures, and the road including surrounding vehicles and traffic participants such as pedestrians are detected. Obstacles and the like can be recognized and the running route EL on which the vehicle 1 should travel can be estimated. More specifically, it is possible to estimate the running route EL(t) from the current position P(t) of the vehicle 1 at the predetermined time t to at least a predetermined distance detectable by the external environment detection unit 2.
  • the running state detection unit 3 detects the running state of the vehicle 1, such as the running speed and direction of travel.
  • the driving state detection unit 3 is, for example, an inertial measurement unit (IMU) that detects the rotational angular velocity around three axes of the center of gravity of the vehicle 1, the traveling direction, and the vehicle width direction, and the acceleration in the three axes. Consisted of.
  • the running state detection unit 3 may be configured with a wheel speed sensor that detects the rotational speed of each wheel of the vehicle 1.
  • the driving state detection unit 3 may include a positioning unit that measures the current position (latitude, longitude) of the vehicle 1 based on a positioning signal from a positioning satellite.
  • the amount of movement of the vehicle 1 for each predetermined time period can be calculated, and the trajectory AL traveled by the vehicle 1 can be specified.
  • the actual trajectory AL(t) traveled by the vehicle 1 may be specified by connecting vehicle positions at predetermined time intervals.
  • the driving actuator 4 includes a steering mechanism such as a steering gear that steers the vehicle 1, a drive mechanism such as an engine or a motor that drives the vehicle 1, and a braking mechanism such as a brake that brakes the vehicle 1.
  • a steering mechanism such as a steering gear that steers the vehicle 1
  • a drive mechanism such as an engine or a motor that drives the vehicle 1
  • a braking mechanism such as a brake that brakes the vehicle 1.
  • the controller 5 includes a computer having a processing unit 6 such as a CPU, a storage unit 7 such as RAM and ROM, an I/O interface, and other peripheral circuits.
  • the controller 5 is configured, for example, as part of a group of multiple electronic control units (ECUs) that are mounted on the vehicle 1 and control operations of the vehicle 1.
  • ECUs electronice control units
  • general map information used for route guidance from the current location of the vehicle 1 to the destination by the navigation device is stored in advance.
  • the storage unit 7 also stores high-precision maps for automatic driving.
  • FIGS. 3A and 3B are diagrams showing an example of a case where the travel route EL(t) estimated at a predetermined time t and the actual trajectory AL(t) match
  • FIGS. 3A and 3B are diagrams showing an example where the travel route EL ( t) and the trajectory AL(t) do not match.
  • the processing unit 6 of the controller 5 estimates the running route EL on which the vehicle 1 should travel based on the external environment detected by the external environment detecting unit 2. More specifically, the running route EL(t) from the current position P(t) of the vehicle 1 at a predetermined time t to a predetermined distance ahead is estimated. Such estimation of the running route EL is performed at a predetermined cycle (for example, the detection cycle of the external world situation detection unit 2, the control cycle of the controller 5, the communication cycle between the external world situation detection unit 2 and the controller 5, etc.).
  • a predetermined cycle for example, the detection cycle of the external world situation detection unit 2, the control cycle of the controller 5, the communication cycle between the external world situation detection unit 2 and the controller 5, etc.
  • Information on the estimated running route EL(t) is stored in the storage unit 7 in association with the map information. More specifically, it is added to the map information in association with the position information of the current position P(t) of the vehicle 1 at the time t when the route EL(t) is estimated.
  • the processing unit 6 of the controller 5 determines the actual trajectory AL when the vehicle 1 travels with the involvement of the driver, based on the driving state detected by the driving state detection unit 3. is specified, and it is determined whether the specified trajectory AL matches the estimated running route EL. More specifically, when the vehicle 1 travels a predetermined distance from the current position P(t) of the vehicle 1 at the time t when the route EL(t) is estimated, the actual The trajectory AL(t) is specified, and it is determined whether it falls within the range of the estimated travel route EL(t).
  • the driving in which the driver is involved includes driving when the driver manually drives the vehicle without receiving driving assistance, and driving when the driver manually drives the vehicle with driving assistance.
  • the estimated trajectory AL(t) it is determined that the running route EL(t) matches the specified locus AL(t). Alternatively, it is determined that the route estimation was appropriate.
  • the estimated traveling route EL(t) when the actual trajectory AL(t) when the vehicle 1 travels with the involvement of the driver does not fall within the range of the estimated traveling route EL(t), the estimated It is determined that the determined running route EL(t) does not match the specified locus AL(t). In this way, if the estimated route EL does not match the trajectory AL when the driver is actually driving, there is a high possibility that the route estimation was not appropriate, so the external situation detection unit This is treated as a scene where route estimation is difficult based on 2.
  • Such a determination result is stored in the storage unit 7 together with the information on the estimated running route EL(t) in association with the map information. More specifically, the route EL(t) is associated with the position information of the current position P(t) of the vehicle 1 at the time point t when the route EL(t) is estimated, and added to the map information together with the information on the estimated route EL(t). be done.
  • the external environment detection unit detects the external environment at or around the time t when such a route EL(t) is estimated.
  • the detection results obtained in step 2 may be transmitted to an external analysis device or the like. In this case, it is possible to efficiently collect data from a large number of vehicles 1 only for scenes in which the external situation detecting unit 2 is not good at estimating the running route, and to analyze the factors that make the estimation of the running route inappropriate.
  • FIG. 4 is a diagram showing an example of determination results stored in association with map information.
  • the map information stored in the storage unit 7 of the controller 5 includes external situation detection corresponding to the vehicle position at predetermined intervals in the area where the vehicle 1 actually traveled with the involvement of the driver. Information on the result of determination as to whether the scene is a difficult scene for route estimation by unit 2 is added.
  • FIG. 5 is a diagram for explaining whether automatic driving or driving assistance is possible based on the determination result. 1 is running.
  • the processing unit 6 of the controller 5 estimates the travel route EL based on the external environment detected by the external environment detection unit 2, and also estimates the running route EL based on the past determination results on the route of the vehicle 1. Decide whether to continue or suspend automatic driving or driving assistance that is currently in use. In other words, it is determined whether or not to permit control of the travel actuator 4 based on the travel route EL estimated based on the external world situation detected by the external world situation detection unit 2 at each point on the course.
  • a predetermined section on the course of the vehicle 1 for example, a section up to about 300 m from the current position of the vehicle 1.
  • Suspension of automated driving or driving assistance currently in use includes downgrading from automated driving to driving assistance, and downgrading of driving assistance.
  • auxiliary steering torque in an inappropriate direction is applied to the steering wheel held by the driver, and the driver needs to correct it. This places a burden on the driver.
  • the system When approaching a point where an inappropriate route EL is likely to be estimated, the system notifies the driver before the point and interrupts automatic driving and driving assistance, placing an unnecessary burden on the driver. This can be prevented.
  • the length of the predetermined section for determining whether automatic driving or driving assistance is possible may be changed depending on the shape of the road on the route, the speed limit, etc.
  • FIG. 6A is a diagram for explaining the exclusion of the route EL estimated at specific times t1 to t4, and FIG. 6B is a diagram for explaining the generation of the route map MAP.
  • the processing unit 6 of the controller 5 allows generation of a route map MAP based on the estimated route EL based on the determination result stored in the storage unit 7 in association with the map information. Decide whether or not to do so.
  • the driver participates and determines whether or not each point where the vehicle 1 has traveled in the past is a weak scene, and the route EL estimated from other than the weak scenes is used to generate the route map MAP.
  • the route EL estimated in the weak scene is prohibited from being used.
  • the route EL(t3) estimated at time t3 at a point determined to be a weak scene is excluded, and the route EL(t3) estimated at time t1, t2, and t4 at other points is excluded.
  • a route map MAP is generated based on t1), EL(t2), and EL(t4).
  • the generated route map MAP is stored in the storage unit 7 in association with the map information.
  • the processing unit 6 of the controller 5 checks the consistency of shape between the latest route EL and the route EL on the route map MAP (or high-precision map), and then allows the vehicle 1 to travel within the estimated route EL.
  • the driving actuator 4 is controlled as follows.
  • FIG. 7 is a diagram for explaining calculation of reliability based on determination results, and shows an example of reliability calculated after traveling the same location multiple times (four times in FIG. 7).
  • the processing unit 6 of the controller 5 calculates the reliability of the estimated course EL based on the determination result stored in association with the map information, and converts the calculated reliability into the map information. Store in association.
  • the reliability can be calculated, for example, as a ratio of the actual number of times the appropriate course EL was estimated to the number of past trips.
  • the reliability of the point where an appropriate course EL has been estimated four times out of the past four times is 100%, and the reliability of the point where an appropriate course EL has been estimated three times is 75%.
  • the reliability of a point where an appropriate course EL has not been estimated is calculated as 0%.
  • the route estimated using a highly reliable driving scene will be determined. It will be available as an EL. As a result, it is possible to reduce the number of missing (interrupted) areas in which route estimation can be used, and increase the continuity of automatic driving and driving support.
  • the running route estimating device 10 is mounted on the vehicle 1 and includes an external environment detection unit 2 that detects the external environment around the vehicle 1, a running state detection unit 3 that detects the running state of the vehicle 1, and a controller 5. ( Figure 1).
  • the controller 5 stores map information, estimates the running route EL on which the vehicle 1 should travel at a predetermined period based on the external environment detected by the external environment detection unit 2, and estimates the running route EL on which the vehicle 1 should travel based on the external environment detected by the external environment detection unit 2.
  • the trajectory AL that the vehicle 1 actually traveled is determined based on the trajectory AL, and it is determined whether the estimated travel route EL matches the identified trajectory AL, and the determination result is stored in association with the map information (FIG. 4 ).
  • the travel route estimating device 10 further includes a travel actuator 4 mounted on the vehicle 1 (FIG. 1). Based on the determination result stored in association with the map information, the controller 5 determines whether or not to permit control of the travel actuator 4 based on the estimated travel path EL on the course of the vehicle 1 (FIG. ). In other words, it becomes possible to actively use the route EL estimated in scenes other than weak scenes for automatic driving and driving support, and it is possible to improve continuity. In addition, if there is a difficult scene on the route, the driver is notified in advance and automatic driving or driving assistance is interrupted, thereby reducing the burden on the driver of inappropriate steering assistance and correcting it. can be avoided.
  • the controller 5 determines whether to permit generation of a route map MAP based on the estimated route EL (FIGS. 6A and 6B). That is, by excluding the route EL estimated in a weak scene, an accurate route map MAP can be generated. Further, by being able to actively use the route EL estimated in scenes other than the weak scenes for generating the route map MAP, it is possible to improve the continuity of automatic driving and driving support as a result.
  • the controller 5 calculates the reliability of the estimated course EL based on the determination result stored in association with the map information, and stores the calculated reliability in association with the map information (FIG. 7) . That is, based on a plurality of determination results obtained when driving in the same driving scene, the reliability of the route estimation in that driving scene is calculated. This makes it possible to use, for example, only the route EL estimated in a highly reliable driving scene in which the route estimation has been determined to be appropriate many times. In addition, even if a scene is determined to be a weak scene due to special circumstances, if the number of times the route estimation is determined to be appropriate increases, the route EL can be used as estimated with a highly reliable driving scene. , it is possible to further enhance the continuity of autonomous driving and driving support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

走路推定装置(10)は、車両(1)に搭載され、車両(1)の周辺の外界状況を検出する外界状況検出部(2)と、車両(1)の走行状態を検出する走行状態検出部(3)と、コントローラ(5)と、を備える。コントローラ(5)は、地図情報を記憶し、外界状況検出部(2)により検出された外界状況に基づいて所定周期で車両(1)が走行すべき走路を推定し、走行状態検出部(3)により検出された走行状態に基づいて車両(1)が実際に走行した軌跡を特定し、推定された走路が特定された軌跡と一致するか否かを判定し、判定結果を地図情報に関連付けて記憶する。

Description

走路推定装置
 本発明は、自動運転機能や運転支援機能を有する車両が走行すべき走路を推定する走路推定装置に関する。
 従来、車両を自動運転するようにした装置が知られている(例えば特許文献1参照)。特許文献1記載の装置では、走行中に取得された三次元ポイントクラウドデータを、道路等の情報を含む予め確立された三次元ポイントクラウド地図と照合し、走行中に取得された二次元画像データと三次元ポイントクラウドデータとを融合して生成された三次元画像データから、道路等の静的オブジェクトの三次元ポイントクラウドデータを取得する。
 自動運転機能や運転支援機能を有する車両が普及することで、交通社会全体の安全性や利便性が向上し、持続可能な輸送システムを実現することができる。また、輸送の効率性や円滑性が向上することで、CO2排出量が削減され、環境への負荷を軽減することができる。
特開2020-85886号公報
 予め確立された地図情報のないエリアでも車両の自動運転や運転支援を継続できることが好ましいが、上記特許文献1記載の装置のように予め確立された地図情報を用いる場合、このようなエリアで自動運転や運転支援を継続することが難しい。
 本発明の一態様である走路推定装置は、車両に搭載され、車両の周辺の外界状況を検出する外界状況検出部と、車両の走行状態を検出する走行状態検出部と、コントローラと、を備える。コントローラは、地図情報を記憶し、外界状況検出部により検出された外界状況に基づいて所定周期で車両が走行すべき走路を推定し、走行状態検出部により検出された走行状態に基づいて車両が実際に走行した軌跡を特定し、推定された走路が特定された軌跡と一致するか否かを判定し、判定結果を地図情報に関連付けて記憶する。
 本発明によれば、予め確立された地図情報のないエリアでも車両の自動運転や運転支援の継続性を高めることができる。
本発明の実施形態に係る走路推定装置の構成を模式的に示すブロック図。 推定された走路と実際の軌跡とが一致する場合の走路の一例を示す図。 推定された走路と実際の軌跡とが一致する場合の軌跡の一例を示す図。 推定された走路と実施の軌跡とが一致しない場合の走路の一例を示す図。 推定された走路と実際の軌跡とが一致しない場合の軌跡の一例を示す図。 地図情報に関連付けて記憶された判定結果の一例を示す図。 判定結果に基づく自動運転や運転支援の可否について説明するための図。 特定の時刻に推定された走路の除外について説明するための図。 走路地図の生成について説明するための図。 判定結果に基づく信頼度の算出について説明するための図。
 以下、図1~図7を参照して本発明の実施形態について説明する。本発明の実施形態に係る走路推定装置は、車両の運転者に対する運転支援を行うないし車両を自動運転するように走行用アクチュエータを制御する運転支援機能を有する車両に適用され、車両が走行すべき走路を推定する。本実施形態における「運転支援」は、運転者の運転操作を支援する運転支援と、運転者の運転操作によらず車両を自動運転する自動運転とを含み、SAEにより定義されるレベル1~レベル4の自動運転に相当し、「自動運転」は、レベル5の自動運転に相当する。
 自動運転や運転支援の中でも、操舵を支援する操舵支援は、運転者の負担を軽減する効果が大きいため、走行車線を規定する区画線が整備されている高速道路等だけでなく、区画線が整備されていない一般道の交差点等でも、支援を継続することが求められている。しかしながら、自動運転や運転支援に用いられる高精度地図は、高速道路や都市部等の交通量が多いエリアでは作成されているものの、住宅地や郊外などの交通量が少ないエリアでは作成されていない。また、最新の高精度地図を作成した後に工事等で道路構造が変化することがある。
 したがって、予め確立された高精度地図が作成されていないエリアでも自動運転や運転支援の継続性を高めるには、各車両が走行するときに車両側で独自に車載センサ等を用いて走行すべき走路を推定することが必要となる。そこで本実施形態では、車載センサ等を用いて車両が走行すべき走路を推定することで、予め確立された地図情報のないエリアでも車両の自動運転や運転支援の継続性を高めることができるよう、以下のように走路推定装置を構成する。
 図1は、本発明の実施形態に係る走路推定装置10の構成を模式的に示すブロック図である。図1に示すように、走路推定装置10は、車両1に搭載された外界状況検出部2と、走行状態検出部3と、走行用アクチュエータ4と、コントローラ5とを有する。コントローラ5には、外界状況検出部2と、走行状態検出部3と、走行用アクチュエータ4とが接続される。
 外界状況検出部2は、車両1に搭載され、車両1の周辺、特に前方の外界状況を検出する。外界状況検出部2は、例えば、CCDやCMOS等の撮像素子を有し、車両1の周辺を撮像するカメラにより構成される。外界状況検出部2は、ミリ波(電波)を照射し、照射波が物体に当たって戻ってくるまでの時間から、その物体までの距離や方向を測定するミリ波レーダにより構成されてもよい。外界状況検出部2は、レーザ光を照射し、照射光が物体に当たって戻ってくるまでの時間から、その物体までの距離や方向を測定するライダ(LiDAR)により構成されてもよい。
 外界状況検出部2により検出された外界状況に基づいて、車両が走行可能な道路面、区画線や構造物により規定された走行車線、周辺車両や歩行者等の交通参加者を含む道路上の障害物等を認識し、車両1が走行すべき走路ELを推定することができる。より具体的には、所定時点tにおける車両1の現在位置P(t)から少なくとも外界状況検出部2により検出可能な所定距離先までの走路EL(t)を推定することができる。
 走行状態検出部3は、車両1の走行速度や進行方向等の走行状態を検出する。走行状態検出部3は、例えば、車両1の重心の鉛直方向、進行方向、および車幅方向の3軸回りの回転角速度および3軸方向の加速度を検出する慣性計測装置(IMU;Inertial Measurement Unit)により構成される。走行状態検出部3は、車両1の各車輪の回転速度をそれぞれ検出する車輪速センサにより構成されてもよい。走行状態検出部3には、測位衛星からの測位信号に基づいて車両1の現在位置(緯度、経度)を測定する測位ユニット等が含まれてもよい。
 走行状態検出部3により検出された走行状態に基づいて、所定時間毎の車両1の移動量を算出し、車両1が走行した軌跡ALを特定することができる。例えば、車両1の走路ELを推定した所定時点tから現時点までに車両1が走行した実際の軌跡AL(t)を特定することができる。車両1が走行した実際の軌跡ALは、所定時間毎の車両位置を接続することで特定してもよい。
 走行用アクチュエータ4には、車両1を転舵させるステアリングギアなどの転舵機構、車両1を駆動するエンジンやモータなどの駆動機構、車両1を制動するブレーキなどの制動機構が含まれる。
 コントローラ5は、CPU等の処理部6、RAM,ROM等の記憶部7、I/Oインタフェース、その他の周辺回路を有するコンピュータを含んで構成される。コントローラ5は、例えば車両1に搭載されて車両1の動作を制御する複数の電子制御ユニット(ECU)群の一部として構成される。コントローラ5の記憶部7には、ナビゲーション装置による車両1の現在地から目的地までの経路案内に用いられる一般的な地図情報が予め記憶される。記憶部7には自動運転用の高精度地図も記憶される。
 図2Aおよび図2Bは、所定時点tに推定された走路EL(t)と実際の軌跡AL(t)とが一致する場合の一例を示す図であり、図3Aおよび図3Bは、走路EL(t)と軌跡AL(t)とが一致しない場合の一例を示す図である。
 図2Aおよび図3Aに示すように、コントローラ5の処理部6は、外界状況検出部2により検出された外界状況に基づいて、車両1が走行すべき走路ELを推定する。より具体的には、所定時点tにおける車両1の現在位置P(t)から所定距離先までの走路EL(t)を推定する。このような走路ELの推定は、所定周期(例えば外界状況検出部2の検出周期、コントローラ5の制御周期、外界状況検出部2とコントローラ5との間の通信周期等)で行われる。
 推定された走路EL(t)の情報は、地図情報に関連付けられて記憶部7に記憶される。より具体的には、走路EL(t)が推定された時点tにおける車両1の現在位置P(t)の位置情報に関連付けられて地図情報に付加される。
 図2Bおよび図3Bに示すように、コントローラ5の処理部6は、走行状態検出部3により検出された走行状態に基づいて、運転者が関与して車両1が走行したときの実際の軌跡ALを特定し、特定された軌跡ALが推定された走路ELと一致するか否かを判定する。より具体的には、走路EL(t)が推定された時点tにおける車両1の現在位置P(t)から所定距離先までの区間を運転者が関与して車両1が走行したときの実際の軌跡AL(t)を特定し、推定された走路EL(t)の範囲内に収まっているか否かを判定する。
 なお、運転者が関与する走行には、運転支援を受けずに運転者が手動運転する場合の走行と、運転支援を受けて運転者が手動運転する場合の走行とが含まれる。
 図2Bに示すように、運転者が関与して車両1が走行したときの実際の軌跡AL(t)が、推定された走路EL(t)の範囲内に収まっているときは、推定された走路EL(t)が特定された軌跡AL(t)と一致すると判定される。あるいは、走路推定が適切であったと判定される。
 一方、図3Bに示すように、運転者が関与して車両1が走行したときの実際の軌跡AL(t)が、推定された走路EL(t)の範囲内に収まっていないときは、推定された走路EL(t)が特定された軌跡AL(t)と一致しないと判定される。このように、推定された走路ELと運転者が関与して実際に走行したときの軌跡ALとが一致しなかった場合は、走路推定が適切ではなかった可能性が高いため、外界状況検出部2による走路推定の苦手シーンとして扱われる。
 このような判定結果は、推定された走路EL(t)の情報とともに、地図情報に関連付けられて記憶部7に記憶される。より具体的には、走路EL(t)が推定された時点tにおける車両1の現在位置P(t)の位置情報に関連付けられて、推定された走路EL(t)の情報とともに地図情報に付加される。
 推定された走路ELと運転者が関与して実際に走行したときの軌跡ALとが一致しなかった場合、そのような走路EL(t)が推定された時点tまたはその前後の外界状況検出部2による検出結果を外部の解析装置等に送信してもよい。この場合、多数の車両1から外界状況検出部2による走路推定の苦手シーンのデータのみを効率的に収集し、走路推定が不適切となる要因を解析することができる。
 図4は、地図情報に関連付けて記憶された判定結果の一例を示す図である。図4に示すように、コントローラ5の記憶部7に記憶された地図情報には、運転者が関与して車両1が実際に走行したエリアにおける所定周期ごとの車両位置に対応して外界状況検出部2による走路推定の苦手シーンであるか否かの判定結果の情報が付加されている。
 図5は、判定結果に基づく自動運転や運転支援の可否について説明するための図であり、運転者が関与して車両1が過去に走行したエリアを、自動運転または運転支援を使用して車両1が走行している状況を示す。
 図5に示すように、コントローラ5の処理部6は、外界状況検出部2により検出された外界状況に基づいて走路ELを推定するとともに、車両1の進路上における過去の判定結果に基づいて、使用中の自動運転や運転支援を継続するか中断するかを決定する。換言すると、進路上の各地点において外界状況検出部2により検出された外界状況に基づいて推定された走路ELに基づく走行用アクチュエータ4の制御を許可するか否かを決定する。
 より具体的には、車両1の進路上の所定区間(例えば車両1の現在位置から300m程度先までの区間)内に、過去に走路ELを推定し、苦手シーンであると判定された地点があるか否かを判定する。所定区間内に苦手シーンであると判定された地点がある場合は、運転者に通知した上で、現在使用中の自動運転または運転支援を中断する。現在使用中の自動運転または運転支援の中断には、自動運転から運転支援へのレベルダウンや、運転支援のレベルダウンも含まれる。
 例えば、不適切な走路ELに基づいて操舵支援が行われると、運転者が把持するステアリングホイールに対し、不適切な方向への補助操舵トルクが印加され、それを運転者が修正する必要が生じることで、かえって運転者の負担となる。不適切な走路ELが推定される可能性の高い地点が近づくと、その地点の手前で運転者に通知した上で、自動運転や運転支援を中断することで、運転者に無用な負担を与えることを防止することができる。なお、自動運転や運転支援の可否を判定する所定区間の長さは、進路上の道路の形状や制限速度等に応じて変更されてもよい。
 外界状況検出部2による外界状況の検出には、周辺環境等の要因により限界があるため、地点によっては常に適切な走路ELを推定することが難しい。このような地点を苦手シーンとして登録しておくことで、苦手シーン以外では外界状況検出部2による走路推定を積極的に利用することができる。例えばDNN(Deep Neural Network)を用いて外界状況検出部2による検出結果に基づいて走路ELを認識する場合、走路ELのみを認識するような厳しい閾値を設定すると、地点によっては走路ELの認識自体ができず、走路推定を利用できなくなる。地点によっては走路EL以外も認識してしまうことを許容するような緩やかな閾値を設定するとともに、不適切な走路認識が行われる可能性の高い地点を苦手シーンとして登録しておくことで、装置全体として走路推定の可用性を高めることができる。
 図6Aは、特定の時刻t1~t4に推定された走路ELの除外について説明するための図であり、図6Bは、走路地図MAPの生成について説明するための図である。図6Aおよび図6Bに示すように、コントローラ5の処理部6は、地図情報に関連付けて記憶部7に記憶された判定結果に基づいて、推定された走路ELに基づく走路地図MAPの生成を許可するか否かを決定する。
 より具体的には、運転者が関与して車両1が過去に走行した各地点について苦手シーンであるか否かを判定し、苦手シーン以外で推定された走路ELは走路地図MAPの生成に利用することを許可し、苦手シーンで推定された走路ELは利用することを禁止する。図6Aおよび図6Bの例では、苦手シーンと判定された地点で時点t3に推定された走路EL(t3)が除外され、それ以外の地点で時点t1,t2,t4に推定された走路EL(t1),EL(t2),EL(t4)に基づいて走路地図MAPが生成される。生成された走路地図MAPは、地図情報に関連付けられて記憶部7に記憶される。
 車両1の自動運転中は、走行中に随時推定される最新の走路ELの形状と、記憶部7に走路地図MAP(または高精度地図)として記憶された走路ELの形状との一致性が確認される。コントローラ5の処理部6は、最新の走路ELと走路地図MAP(または高精度地図)上の走路ELとの形状の一致性を確認した上で、車両1が推定された走路EL内を走行するように走行用アクチュエータ4を制御する。
 図7は、判定結果に基づく信頼度の算出について説明するための図であり、同一の場所を複数回(図7では4回)走行した後に算出される信頼度の一例を示す。図7に示すように、コントローラ5の処理部6は、地図情報に関連付けて記憶された判定結果に基づいて、推定された走路ELの信頼度を算出し、算出された信頼度を地図情報に関連付けて記憶する。
 信頼度は、例えば、過去の走行回数に対する、適切な走路ELが推定された実績回数の割合として算出することができる。図7の例では、過去4回のうち4回とも適切な走路ELが推定された地点の信頼度は100%、3回適切な走路ELが推定された地点の信頼度は75%、一度も適切な走路ELが推定されなかった地点の信頼度は0%のように算出される。
 特に自動運転を行う場合には、信頼性の高い走路推定を行う必要がある。自動運転によらず運転者が関与して複数回走行したときの実績に基づいて走路推定の信頼度を算出し、信頼度が適宜な閾値を超える場合に限って走路推定の結果を利用することで、信頼性の高い走路推定に基づく適切な自動運転を行うことができる。
 また、何らかの事情により過去に苦手シーンと判定された場合でも、複数回の走行の中で走路推定が適切であったと判定された回数が多くなれば、信頼性の高い走行シーンで推定された走路ELとして利用できるようになる。これにより、走路推定を利用できるエリアの欠損(中断)箇所を減らし、自動運転や運転支援の継続性を高めることができる。
 本実施形態によれば以下のような作用効果を奏することができる。
(1)走路推定装置10は、車両1に搭載され、車両1の周辺の外界状況を検出する外界状況検出部2と、車両1の走行状態を検出する走行状態検出部3と、コントローラ5と、を備える(図1)。コントローラ5は、地図情報を記憶し、外界状況検出部2により検出された外界状況に基づいて所定周期で車両1が走行すべき走路ELを推定し、走行状態検出部3により検出された走行状態に基づいて車両1が実際に走行した軌跡ALを特定し、推定された走路ELが特定された軌跡ALと一致するか否かを判定し、判定結果を地図情報に関連付けて記憶する(図4)。
 すなわち、推定された走路ELと運転者が関与して実際に走行したときの軌跡ALとが一致しなかった場合は、外界状況検出部2による走路推定が適切ではなかった可能性が高い苦手シーンとして識別可能に登録される。これにより、苦手シーン以外で推定された走路ELを積極的に利用できるようになり、予め確立された地図情報のないエリアでも車両1の自動運転や運転支援の継続性を高めることができる。
(2)走路推定装置10は、車両1に搭載された走行用アクチュエータ4をさらに備える(図1)。コントローラ5は、地図情報に関連付けて記憶された判定結果に基づいて、車両1の進路上における、推定された走路ELに基づく走行用アクチュエータ4の制御を許可するか否かを決定する(図5)。すなわち、苦手シーン以外で推定された走路ELを自動運転や運転支援に積極的に利用できるようになり、継続性を高めることができる。また、進路上に苦手シーンがある場合には、予め運転者に通知し、自動運転や運転支援を中断することで、不適切な操舵支援の発生とその修正に係る運転者の負担の発生を回避することができる。
(3)コントローラ5は、地図情報に関連付けて記憶された判定結果に基づいて、推定された走路ELに基づく走路地図MAPの生成を許可するか否かを決定する(図6A、図6B)。すなわち、苦手シーンで推定された走路ELを除外することで、正確な走路地図MAPを生成することができる。また、苦手シーン以外で推定された走路ELを走路地図MAPの生成に積極的に利用できるようになることで、結果として自動運転や運転支援の継続性を高めることができる。
(4)コントローラ5は、地図情報に関連付けて記憶された判定結果に基づいて、推定された走路ELの信頼度を算出し、算出された信頼度を地図情報に関連付けて記憶する(図7)。すなわち、同じ走行シーンを走行したときの複数の判定結果に基づいて、その走行シーンにおける走路推定の信頼度を算出する。これにより、例えば走路推定が適切であったと判定された回数が多い、信頼性の高い走行シーンで推定された走路ELのみを利用することができる。また、特殊な事情により苦手シーンと判定された場合でも、走路推定が適切であったと判定された回数が多くなれば、信頼性の高い走行シーンで推定された走路ELとして利用できるようになるため、自動運転や運転支援の継続性を一層高めることができる。
 以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
1 車両、2 外界状況検出部、3 走行状態検出部、4 走行用アクチュエータ、5 コントローラ、6 処理部、7 記憶部、10 走路推定装置、AL 軌跡、EL 走路、P 現在位置

Claims (4)

  1.  車両に搭載され、前記車両の周辺の外界状況を検出する外界状況検出部と、
     前記車両の走行状態を検出する走行状態検出部と、
     コントローラと、を備え、
     前記コントローラは、
     地図情報を記憶し、
     前記外界状況検出部により検出された外界状況に基づいて所定周期で前記車両が走行すべき走路を推定し、
     前記走行状態検出部により検出された走行状態に基づいて前記車両が実際に走行した軌跡を特定し、
     推定された前記走路が特定された前記軌跡と一致するか否かを判定し、
     判定結果を前記地図情報に関連付けて記憶することを特徴とする走路推定装置。
  2.  請求項1に記載の走路推定装置において、
     前記車両に搭載された走行用アクチュエータをさらに備え、
     前記コントローラは、前記地図情報に関連付けて記憶された前記判定結果に基づいて、前記車両の進路上における、推定された前記走路に基づく前記走行用アクチュエータの制御を許可するか否かを決定することを特徴とする走路推定装置。
  3.  請求項1または2に記載の走路推定装置において、
     前記コントローラは、前記地図情報に関連付けて記憶された前記判定結果に基づいて、推定された前記走路に基づく走路地図の生成を許可するか否かを決定することを特徴とする走路推定装置。
  4.  請求項1~3のいずれか1項に記載の走路推定装置において、
     前記コントローラは、
     前記地図情報に関連付けて記憶された前記判定結果に基づいて、推定された前記走路の信頼度を算出し、
     算出された信頼度を前記地図情報に関連付けて記憶することを特徴とする走路推定装置。
PCT/JP2022/015931 2022-03-30 2022-03-30 走路推定装置 WO2023188095A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015931 WO2023188095A1 (ja) 2022-03-30 2022-03-30 走路推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015931 WO2023188095A1 (ja) 2022-03-30 2022-03-30 走路推定装置

Publications (1)

Publication Number Publication Date
WO2023188095A1 true WO2023188095A1 (ja) 2023-10-05

Family

ID=88200227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015931 WO2023188095A1 (ja) 2022-03-30 2022-03-30 走路推定装置

Country Status (1)

Country Link
WO (1) WO2023188095A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019064562A (ja) * 2017-10-05 2019-04-25 トヨタ自動車株式会社 車両の運転支援及び/又は走行制御のための地図情報提供システム
WO2019176083A1 (ja) * 2018-03-16 2019-09-19 株式会社日立製作所 移動体制御装置
JP2020154623A (ja) * 2019-03-19 2020-09-24 株式会社Subaru 交通制御システム
WO2022054712A1 (ja) * 2020-09-09 2022-03-17 株式会社デンソー 地図サーバ、地図配信方法、地図データ構造、車両用装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019064562A (ja) * 2017-10-05 2019-04-25 トヨタ自動車株式会社 車両の運転支援及び/又は走行制御のための地図情報提供システム
WO2019176083A1 (ja) * 2018-03-16 2019-09-19 株式会社日立製作所 移動体制御装置
JP2020154623A (ja) * 2019-03-19 2020-09-24 株式会社Subaru 交通制御システム
WO2022054712A1 (ja) * 2020-09-09 2022-03-17 株式会社デンソー 地図サーバ、地図配信方法、地図データ構造、車両用装置

Similar Documents

Publication Publication Date Title
TWI674984B (zh) 自動駕駛車輛之行駛軌跡規劃系統及方法
US10310508B2 (en) Vehicle control apparatus
US10754347B2 (en) Vehicle control device
US9550496B2 (en) Travel control apparatus
CN108688660B (zh) 运行范围确定装置
CN110473416B (zh) 车辆控制装置
US11900812B2 (en) Vehicle control device
EP2942687A2 (en) Automated driving safety system
US11631257B2 (en) Surroundings recognition device, and surroundings recognition method
JP2019128614A (ja) 予測装置、予測方法、およびプログラム
JP7216699B2 (ja) 車両制御システム及び自車線特定方法
JP6892887B2 (ja) 車両制御装置及び車両
JP2020050108A (ja) 車両制御装置、車両制御方法、及びプログラム
JP2020147139A (ja) 車両制御装置、車両制御方法、およびプログラム
WO2016194168A1 (ja) 走行制御装置及び方法
CN111348043A (zh) 用于确定理想化超车过程的方法和设备
JP2021127002A (ja) 車両制御装置、車両制御方法、およびプログラム
CN118235180A (zh) 预测可行驶车道的方法和装置
JP7276112B2 (ja) 車線変更決定装置
JP6964062B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021149390A (ja) 車両制御装置、車両制御方法、およびプログラム
JP6917842B2 (ja) 周辺監視装置、周辺監視方法、およびプログラム
JP6841737B2 (ja) 車両制御装置、車両制御方法、およびプログラム
US20220262252A1 (en) Division line recognition apparatus
WO2023188095A1 (ja) 走路推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935241

Country of ref document: EP

Kind code of ref document: A1