WO2023188031A1 - Polyurethane resin composition - Google Patents

Polyurethane resin composition Download PDF

Info

Publication number
WO2023188031A1
WO2023188031A1 PCT/JP2022/015669 JP2022015669W WO2023188031A1 WO 2023188031 A1 WO2023188031 A1 WO 2023188031A1 JP 2022015669 W JP2022015669 W JP 2022015669W WO 2023188031 A1 WO2023188031 A1 WO 2023188031A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane resin
resin composition
value
containing compound
plasticizer
Prior art date
Application number
PCT/JP2022/015669
Other languages
French (fr)
Japanese (ja)
Inventor
辰己 農宗
奈津美 葉狩
Original Assignee
サンユレック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=85277859&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023188031(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by サンユレック株式会社 filed Critical サンユレック株式会社
Priority to PCT/JP2022/015669 priority Critical patent/WO2023188031A1/en
Priority to JP2022550014A priority patent/JP7227675B1/en
Publication of WO2023188031A1 publication Critical patent/WO2023188031A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a polyurethane resin composition.
  • urethane resins used for sealing members have a problem in that their flexibility decreases and cracks occur due to long-term heat cycles, and there is a need to reduce the temperature dependence of the elastic modulus.
  • Patent Document 1 A polyurethane resin composition that exhibits the above-mentioned heat resistance and heat cycle properties has been proposed (see Patent Document 1). Although the polyurethane resin composition is also an excellent polyurethane resin composition, there is still room for further improvement. Patent Document 1 discloses the use of DUP (diundecyl phthalate) or DIDA (diisodecyl adipate) as a plasticizer used in a polyurethane resin composition.
  • DUP diundecyl phthalate
  • DIDA diisodecyl adipate
  • DIDA has room for consideration in terms of heat resistance.
  • DUP may not have sufficient compatibility with specific hydroxyl group-containing compounds such as polybutadiene polyols and polyester polyols, so there is room for consideration regarding the decrease in elastic modulus at -20°C to -30°C.
  • An object of the present invention is to provide a polyurethane resin composition that has excellent compatibility, heat resistance, and heat cycle properties.
  • the present invention relates to the following polyurethane resin compositions, sealing materials, and electrical and electronic components.
  • a polyurethane resin composition containing an isocyanate group-containing compound, a hydroxyl group-containing compound, and a plasticizer The SP value of the mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more.
  • the polyurethane resin composition according to Item 1 or 2 wherein the plasticizer contains a plasticizer A having an embrittlement temperature of less than -30°C and a plasticizer B having an embrittlement temperature of -30°C or higher and -20°C or lower. thing. 4.
  • Item 5 The polyurethane resin composition according to any one of Items 1 to 4, wherein the hydroxyl group-containing compound contains a polyolefin polyol. 6.
  • a sealing material comprising the polyurethane resin composition according to any one of Items 1 to 8. 10.
  • the polyurethane resin composition of the present invention has excellent compatibility, heat resistance, and heat cycle properties. Moreover, since the sealing material of the present invention is also made of the above polyurethane resin composition, it has excellent heat resistance and heat cycle properties. Furthermore, since the electrical/electronic component of the present invention has the above-mentioned sealing material, it can be sufficiently resin-sealed and exhibit high reliability.
  • the polyurethane resin composition of the present invention is a polyurethane resin composition containing an isocyanate group-containing compound, a hydroxyl group-containing compound, and a plasticizer, the composition comprising a mixture of the hydroxyl group-containing compound and the plasticizer. It is characterized by an SP value of 8.75 or more.
  • the elastic modulus of polyester polyols tends to increase in the low temperature range of -20°C to -30°C, and the heat cycleability tends to decrease.
  • Polyolefin polyols such as polybutadiene polyols are used in combination to improve heat cycle characteristics, but because the polybutadiene polyols have poor compatibility with polyester polyols, they can be used at a lower temperature of -20°C to -30°C than when polybutadiene polyols are used alone. There is a problem that the elastic modulus increases in the region.
  • the elastic modulus of polyurethane resin blended with polybutadiene polyol and polyester polyol increases in the -20°C to -30°C range, so the results of measuring the elastic modulus due to temperature changes in the -20°C to -30°C temperature range , a bump-like region with high elastic modulus appears.
  • polybutadiene polyol is used alone as the hydroxyl group-containing compound, the above region of high elastic modulus does not appear in the results of measuring the elastic modulus due to temperature changes, resulting in a smooth curve.
  • polyester polyol when polyester polyol is used alone as the hydroxyl group-containing compound, the elastic modulus increases from the temperature range of -20°C to -30°C because the glass transition temperature is not low enough.
  • the present inventors have determined that in a polyurethane resin composition, by setting the SP value of a mixture of a hydroxyl group-containing compound and a plasticizer within a specific range, the compatibility of these compounds is excellent, and the temperature between -20°C and -30°C is achieved. It has been found that the increase in the elastic modulus of polyurethane resin can be suppressed even in the range of Usually, when lowering the elastic modulus and glass transition temperature of polyurethane resin at low temperatures, a plasticizer with a brittle temperature of -30° C. or lower, such as DUP and DIDA, is used.
  • DIDA does not have sufficient heat resistance
  • a polyurethane resin composition containing DUP, polybutadiene polyol, and polyester polyol does not have sufficient compatibility when made into a polyurethane resin, resulting in -40%
  • the elastic modulus below °C decreases, but the elastic modulus between -20 °C and -30 °C does not decrease.
  • the polyurethane resin composition by adjusting the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer to 8.75 or more, it has excellent compatibility, and has excellent heat resistance and heat cycle property.
  • An excellent polyurethane resin composition can be provided.
  • the isocyanate group-containing compound is not particularly limited, and known isocyanate group-containing compounds used for polyurethane resins can be used. Examples of such isocyanate group-containing compounds include aliphatic polyisocyanate compounds, alicyclic polyisocyanate compounds, aromatic polyisocyanate compounds, and araliphatic polyisocyanate compounds. Moreover, in order to further improve the heat resistance of the polyurethane resin composition, an isocyanurate modified product of the above-mentioned isocyanate group-containing compound may be used.
  • aliphatic polyisocyanate compounds include tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2- Examples include methylpentane-1,5-diisocyanate and 3-methylpentane-1,5-diisocyanate.
  • HDI hexamethylene diisocyanate
  • 2- Examples include methylpentane-1,5-diisocyanate and 3-methylpentane-1,5-diisocyanate.
  • alicyclic polyisocyanate compounds include isophorone diisocyanate, hydrogenated xylylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis(isocyanatemethyl)cyclohexane, etc. can be mentioned.
  • Aromatic polyisocyanate compounds include tolylene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-dibenzyl diisocyanate, 1, Examples include 5-naphthylene diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, and the like.
  • aromatic aliphatic polyisocyanate compound examples include dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, ⁇ , ⁇ , ⁇ , ⁇ -tetramethylxylylene diisocyanate, and the like.
  • the above isocyanate group-containing compounds may be used alone or in combination of two or more.
  • the amount of the isocyanate group-containing compound used is not particularly limited, and is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass based on 100% by mass of the polyurethane resin composition. , more preferably 1 to 10% by mass.
  • the upper limit of the content of the isocyanate group-containing compound is within the above range, curing failure of the polyurethane resin composition is further suppressed.
  • the lower limit of the content of the isocyanate group-containing compound is within the above range, the heat resistance of the cured polyurethane resin composition is further improved.
  • the SP value of the isocyanate group-containing compound is preferably 8.70 or more, more preferably 9.00 or more, even more preferably 9.50 or more, particularly preferably 10.00 or more, and most preferably 10.50 or more. Further, the SP value of the isocyanate group-containing compound is preferably 14.00 or less, more preferably 13.50 or less, even more preferably 13.00 or less, and particularly preferably 12.00 or less.
  • the hydroxyl group-containing compound used in the polyurethane resin composition of the present invention is not particularly limited as long as the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer can be adjusted to 8.75 or more. It is possible to use various types of materials that are used as Examples of the polyol component include polyolefin polyols, castor oil polyols, polyester polyols, and hydrogenated products thereof.
  • polybutadiene polyol ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1 , 4-pentanediol, 1,5-pentanediol, 1,6-hexanediol, 1,5-hexanediol, 1,2-hexanediol, 2,5-hexanediol, octanediol, nonanediol, decanediol, Diethylene glycol, triethylene glycol, dipropylene glycol, cyclohexanediol, trimethylolpropane, glycerin, 2-methylpropane-1,2,3-triol, 1,2,6-hexanetriol, pentaerythritol, polylactone diol, poly Lactone dio
  • polyolefin polyols polyolefin polyols, polyester polyols, and hydrides thereof are preferred.
  • polybutadiene polyol and polyester polyol it is more preferable to contain polybutadiene polyol and polyester polyol, and it is even more preferable to use polybutadiene polyol, castor oil, and its hydrogenated product.
  • castor oil and its hydride examples include castor oil, castor oil derivatives, and the like.
  • the castor oil derivatives include castor oil fatty acids; hydrogenated castor oil obtained by hydrogenating castor oil or castor oil fatty acids; transesterified products of castor oil and other fats and oils; reaction products of castor oil and polyhydric alcohols; esterification of castor oil fatty acids and polyhydric alcohols.
  • Reactants Examples include addition polymerization of alkylene oxide to these.
  • the above hydroxyl group-containing compounds may be used alone or in combination of two or more.
  • the weight average molecular weight Mw of the hydroxyl group-containing compound is preferably 500 to 5,000, more preferably 800 to 4,800, even more preferably 900 to 4,000, and particularly preferably 1,000 to 3,000.
  • the number weight average molecular weight Mn of the hydroxyl group-containing compound is preferably 600 to 6,000, more preferably 900 to 5,000, even more preferably 1,000 to 4,000, and particularly preferably 1,200 to 3,500.
  • the average hydroxyl value of the hydroxyl group-containing compound is preferably 40 mgKOH/g or more, more preferably 70 mgKOH/g or more. Moreover, the average hydroxyl value is preferably 170 mgKOH/g or less, more preferably 120 mgKOH/g or less.
  • the average hydroxyl value of the above-mentioned hydroxyl group-containing compound is a value measured by the following measuring method.
  • the average hydroxyl value is the value of the hydroxyl group value of the single hydroxyl group-containing compound, and when two or more types are used together, the hydroxyl value of the multiple hydroxyl group-containing compounds is calculated as the blending ratio. This is the average value of the hydroxyl value calculated by multiplying and adding the results. Note that in this specification, the above hydroxyl value is a value measured by a measuring method based on method A of JIS K1557-1:2007.
  • the glass transition temperature of the hydroxyl group-containing compound is preferably -40°C or lower, more preferably -50°C or lower. Further, the glass transition temperature is preferably -90°C or higher, more preferably -85°C or higher.
  • the glass transition temperature is a value measured using a DSC (differential scanning calorimeter).
  • the content of the hydroxyl group-containing compound is preferably 3 to 40 mass%, more preferably 5 to 35 mass%, and 7 to 30 mass%, based on 100 mass% of the polyurethane resin composition. More preferably, 7 to 20% by mass is particularly preferred.
  • the upper limit of the content of the hydroxyl group-containing compound is within the above range, curing failure of the polyurethane resin composition is further suppressed.
  • the lower limit of the content of the hydroxyl group-containing compound is within the above range, the elastic modulus of the polyurethane resin composition can be further reduced, and an increase in the glass transition temperature can be further suppressed.
  • the SP value of the hydroxyl group-containing compound is preferably 8.70 or more, more preferably 8.75 or more, even more preferably 8.80 or more, and particularly preferably 8.85 or more. Further, the SP value of the hydroxyl group-containing compound is preferably 14.00 or less, more preferably 13.00 or less, even more preferably 12.00 or less, and particularly preferably 11.30 or less.
  • the SP value of the hydroxyl group-containing compound is measured by the Fedors method described in Examples below.
  • the NCO/OH ratio between the isocyanate group-containing compound and the hydroxyl group-containing compound is preferably 0.6 to 2.0, more preferably 0.7 to 1.5. is more preferable.
  • the heat resistance of the polyurethane resin composition is further improved.
  • the upper limit of the NCO/OH ratio is within the above range, curing failure of the polyurethane resin composition is further suppressed.
  • the plasticizer used in the polyurethane resin composition of the present invention is not particularly limited as long as the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer can be adjusted to 8.75 or more. It is possible to use a variety of conventional ones.
  • the above plasticizers include phthalic acid esters such as dioctyl phthalate, diisononyl phthalate, and diundecyl phthalate; adipic acid esters such as dioctyl adipate and diisononyl adipate; methyl acetyl ricinoleate, butylacetyl ricinoleate, acetylated ricinoleic acid triglyceride, and acetylated ricinoleic acid triglyceride.
  • phthalic acid esters such as dioctyl phthalate, diisononyl phthalate, and diundecyl phthalate
  • adipic acid esters such as dioctyl adipate and diisononyl adipate
  • methyl acetyl ricinoleate butylacetyl ricinoleate
  • Castor oil-based esters such as polyricinoleic triglyceride; tricresyl phosphate; trimellitic acid esters such as trioctyl trimellitate and triisononyl trimellitate; Examples include mellitic acid esters. It has a boiling point of 250°C or higher, a freezing point of -20°C or lower, a viscosity of 500 mPa ⁇ s or lower at room temperature, and excellent compatibility with hydroxyl group-containing compounds of various SP values. Mellitic acid ester and tricresyl phosphate are preferred.
  • the content of the plasticizer in the polyurethane resin composition of the present invention is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and even more preferably 15 to 30% by mass, based on 100% by mass of the polyurethane resin composition. , 20 to 25% by weight is particularly preferred.
  • the upper limit of the content of the plasticizer is within the above range, curing failure of the polyurethane resin composition is further suppressed.
  • the lower limit of the plasticizer content is within the above range, the heat resistance of the cured polyurethane resin composition is further improved.
  • the SP value of the plasticizer is preferably 8.70 or more, more preferably 8.75 or more, even more preferably 8.80 or more, and particularly preferably 8.90 or more. Further, the SP value of the plasticizer is preferably 12.00 or less, more preferably 11.00 or less, even more preferably 10.00 or less, and particularly preferably 9.70 or less.
  • the SP value of the plasticizer is measured by the Small method described in Examples below.
  • the content of the plasticizer having an SP value of 8.70 or more in the polyurethane resin composition of the present invention is preferably 5.3% by mass or more, more preferably 10% by mass or more, and 15% by mass or more. More preferably, it is at least % by mass. Further, the content in the polyurethane resin composition is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less.
  • the content of the plasticizer having an SP value of 8.75 or more in the polyurethane resin composition of the present invention is preferably 5.3% by mass or more, more preferably 6% by mass or more, and 8.7% by mass or more. More preferably, the amount is % by mass or more. Further, the above content is preferably 40% by mass or less in the polyurethane resin composition, more preferably 30% by mass or less, even more preferably 25% by mass or less, particularly preferably 20% by mass or less.
  • the content of the plasticizer having an SP value of 8.80 or more in the polyurethane resin composition of the present invention is preferably 3% by mass or more, more preferably 5% by mass or more. Further, the content in the polyurethane resin composition is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the above plasticizer preferably contains a plasticizer A whose embrittlement temperature is less than -30°C and a plasticizer B whose embrittlement temperature is between -30°C and 0°C as measured in accordance with JIS K7216.
  • a plasticizer A whose embrittlement temperature is less than -30°C
  • a plasticizer B whose embrittlement temperature is between -30°C and 0°C as measured in accordance with JIS K7216.
  • the polyurethane resin composition of the present invention may contain an inorganic filler.
  • the above-mentioned inorganic filler is not particularly limited, and conventionally known inorganic fillers can be used.
  • examples of such inorganic fillers include calcium carbonate, fused silica, amorphous silica, talc, alumina, aluminum hydroxide, aluminum nitride, boron nitride, magnesium hydroxide, and magnesium oxide.
  • metal hydrated compounds such as aluminum hydroxide and magnesium hydroxide are preferred because they have excellent flame retardancy and thermal conductivity.
  • examples of inorganic fillers with excellent thermal conductivity include alumina, magnesium hydroxide, aluminum hydroxide, and the like.
  • an inorganic filler with a low Mohs hardness is preferable.
  • the Mohs hardness of such an inorganic filler is preferably 4 or less, more preferably 3 or less.
  • examples of such inorganic fillers include aluminum hydroxide (Mohs hardness: 3), magnesium hydroxide (Mohs hardness: 2.5), and talc (Mohs hardness: 1).
  • the Mohs hardness of the inorganic filler is a value measured by a Mohs hardness test method using standard minerals. Specifically, the Mohs hardness of the inorganic filler is a value determined by relative comparison from the Mohs hardness of the standard mineral when scratches are created by rubbing the standard mineral and the sample material together.
  • the content of the inorganic filler is preferably 20 to 80% by mass, more preferably 50 to 80% by mass, based on 100% by mass of the polyurethane resin composition.
  • the flame retardancy of the polyurethane resin composition is further improved.
  • the upper limit of the inorganic filler content within the above range, the mixing viscosity during the production of the polyurethane resin composition is suppressed, the workability is further improved, and the fluidity and flexibility after mixing are not impaired.
  • the heat resistance, moisture resistance, strength, and flame retardance are further improved, and furthermore, the linear expansion coefficient is lowered, so the heat cycle property is further improved.
  • additives such as an antioxidant, a polymerization catalyst, a moisture absorbent, a fungicide, a silane coupling agent, and the like can be added to the polyurethane resin composition of the present invention as necessary.
  • the antioxidant is not particularly limited, but conventionally known antioxidants used in urethane resin compositions can be used.
  • the polymerization catalyst is not particularly limited, but conventionally known polymerization catalysts used in urethane resin compositions can be used.
  • Such polymerization catalysts include tin catalysts such as dioctyltin dilaurate, dibutyltin dilaurate, and dioctyltin diacetate; lead catalysts such as lead octylate, lead octenoate, and lead naphthenate; bismuth octylate, bismuth neodecanoate, etc.
  • Examples include bismuth catalysts and amine catalysts such as diethylenetriamine.
  • an organic metal compound, a metal complex compound, etc. may be used as the above-mentioned catalyst.
  • the amount of these additives to be used may be appropriately determined according to the purpose of use, from the usual addition amount and specified range, so as not to impede the desired properties of the polyurethane resin composition.
  • the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more. If the SP value of the mixture is less than 8.75, the heat resistance and heat cycle properties of the polyurethane resin composition will decrease.
  • the SP value of the above mixture is preferably 8.80 or more, more preferably 8.85 or more.
  • the SP value of the above mixture is preferably 10.80 or less, more preferably 10.70 or less, and even more preferably 9.20 or less.
  • the SP value of the above mixture is measured by the method described in Examples below.
  • the SP value of the mixture of the isocyanate group-containing compound, the hydroxyl group-containing compound, and the plasticizer is not particularly limited, and is preferably 8.76 or more, more preferably 8.80 or more, and 8. More preferably .85 or more. Further, the SP value of the above mixture is preferably 11.00 or less, more preferably 10.80 or less, and even more preferably 10.50 or less. When the SP value of the mixture is within the above range, the heat resistance and heat cycle properties of the polyurethane resin composition are further improved, and the adhesion to members constituting electrical and electronic components is further improved.
  • the SP value of the above mixture is measured by the method described in Examples below.
  • the polyurethane resin composition of the present invention When the polyurethane resin composition of the present invention is in a liquid state before curing, its viscosity is preferably 500 to 100,000 mPa ⁇ s, more preferably 1,000 to 10,000 mPa ⁇ s, and even more preferably 1,500 to 5,000 mPa ⁇ s.
  • the polyurethane resin composition of the present invention can exhibit higher workability, and also improves flow into components, improving adhesion with electrical and electronic components and eliminating voids. This makes it difficult for resin to occur, and resin strength, thermal conductivity, and waterproofness are further improved.
  • the upper limit of the viscosity is within the above range, a large amount of inorganic filler can be blended, which further improves flame retardancy, lowers the coefficient of linear expansion, and further improves heat cycle performance.
  • the viscosity of the polyurethane resin composition before curing is a value measured by a Brookfield BH type viscometer described in the Examples below.
  • the glass transition temperature of the polyurethane resin composition of the present invention which is calculated from the maximum peak point of the loss modulus (E'': 10Hz) measured by DMA (dynamic mechanical analysis), is preferably -40°C or lower. , -60°C or lower is more preferable. Further, the glass transition temperature is preferably as low as possible, and may be, for example, about -80°C.
  • the glass transition temperature (Tg) calculated from the maximum peak point of the loss modulus (E'': 10Hz) measured by DMA (dynamic mechanical analysis) is the same as that described in the Examples below. Measure by method. Note that tan ⁇ is normally used to determine Tg in DMA. However, since tan ⁇ tends to have a broad peak point and a large measurement error, it is more accurate to determine it using the loss modulus (E''). Therefore, in this specification, the glass transition temperature (Tg) is calculated from the maximum peak point of the loss modulus (E'': 10 Hz).
  • the method for producing the polyurethane resin composition of the present invention is not particularly limited, and it can be produced by any conventionally known method used as a method for producing polyurethane resin compositions.
  • a component containing an isocyanate group-containing compound is prepared as component A (polyisocyanate component), a component containing a hydroxyl group-containing compound is prepared as component B (polyol component), and component A and component A are prepared.
  • component A polyisocyanate component
  • component B polyol component
  • component A and component A are prepared.
  • a method of producing a polyurethane resin composition containing the polyurethane resin by reacting the polyurethane resin with component B can be mentioned.
  • the above-mentioned A component contains an isocyanate group-containing compound and the above-mentioned B component contains a hydroxyl group-containing compound
  • other components may be contained in either the A component or the B component.
  • a configuration in which the B component contains an inorganic filler is preferable. With such a configuration, it is possible to suppress curing failure of the polyurethane resin due to reaction between moisture contained in the inorganic filler and the polyisocyanate group-containing compound.
  • the blending ratio of component A and component B approaches 1:1, making it easier to mix the components A and B. Also, by converting a portion of the component into urethane, the blending ratio of component A and component B approaches 1:1. The difference between the SP value and the SP value of component B becomes smaller, the compatibility is further improved, and the reaction is faster.
  • component A contains only an isocyanate group-containing compound
  • component B contains a hydroxyl group-containing compound, a plasticizer, and, if necessary, an inorganic filler.
  • a configuration containing an antioxidant and a polymerization catalyst is preferred. With such a configuration, component A and component B have excellent liquid stability.
  • the polyurethane resin composition may be in a liquid state before curing or may be a cured product, and the cured product is also referred to as a polyurethane resin.
  • a method for curing the polyurethane resin composition by mixing the above A component and B component, an isocyanate group-containing compound and a hydroxyl group-containing compound are reacted to form a polyurethane resin, and the polyurethane resin composition is cured over time.
  • a method of curing may be mentioned, it may be hardened by heating. In this case, the heating temperature is preferably about 40° C. to 120° C., and the heating time is preferably about 0.1 hour to 24 hours.
  • the elastic modulus (E': 10 Hz) at -30°C of the polyurethane resin composition (cured product thereof) is preferably 40 MPa or less, more preferably 25 MPa or less. Further, the elastic modulus is preferably 5 MPa or more.
  • the difference between the elastic modulus at 120°C and the elastic modulus at -30°C of the polyurethane resin composition (cured product thereof) is preferably 25 MPa or less, more preferably 20 MPa or less.
  • the coefficient of linear expansion is constant, the heat cycle property is affected by the stress generated from the difference between the elastic modulus at high temperatures and the elastic modulus at low temperatures. For this reason, it is preferable that the difference between the elastic modulus at high temperature and the elastic modulus at low temperature is small.
  • the elastic modulus of (the cured product of) the polyurethane resin composition is measured by a measuring method using a dynamic viscoelasticity measuring device described in Examples below.
  • the polyurethane resin composition of the present invention has an SP value of a mixture of a hydroxyl group-containing compound and a plasticizer of 8.75 or more and 9.20 or less, and a modulus of elasticity at 120°C and a modulus of elasticity at -30°C. It is preferable that the difference is 25 MPa or less.
  • the hydroxyl group-containing compound contains a polyolefin polyol
  • the plasticizer contains a plasticizer a having an SP value of 8.75 or more and a plasticizer b having an SP value of less than 8.75. It is preferable to do so. With the above configuration, the glass transition temperature of the polyurethane resin composition is lowered and the heat cycle properties are further improved.
  • the present invention also provides an encapsulant made of the above-mentioned polyurethane resin composition.
  • the encapsulant made of the polyurethane resin composition has excellent compatibility, heat resistance, and heat cycle properties, and is therefore suitable for electrical and electronic components used in high-temperature environments and electrical and electronic components that generate heat. It can be used for.
  • the sealing material made of the polyurethane resin composition has excellent flexibility in a low temperature range, and therefore can be suitably used for electrical and electronic components used in low temperature environments. Examples of such electrical and electronic components include transformers such as transformer coils, choke coils, and reactor coils, equipment control boards, and various sensors. Such electrical and electronic components are also part of the present invention.
  • the electrical and electronic components of the present invention can be used in electric washing machines, toilet seats, water heaters, water purifiers, baths, dishwashers, power tools, automobiles, motorcycles, and the like.
  • the polyurethane resin composition of the present invention can be usefully used as an adhesive.
  • the polyurethane resin composition of the present invention can be usefully used as a gap filler used for the purpose of heat dissipation in electrical and electronic components.
  • Isocyanate group-containing compound TPA-100 HDI isocyanurate modified product, trade name: Duranate TPA-100, manufactured by Asahi Kasei Chemicals, molecular weight 546, specific gravity 1.16, SP value 11.74 (value calculated by Fedors method) )
  • A201H HDI allophanate modified product, trade name: Duranate A201H, manufactured by Asahi Kasei Chemicals, molecular weight 466, specific gravity 1.05, SP value 12.29 (value calculated by Fedors method)
  • HMDI Hydrogenated MDI, product name: WANNATE HMDI, manufactured by Wanka Chemical Japan Co., Ltd., molecular weight 262, specific gravity 1.08, SP value 10.74 (value calculated by Fedors method)
  • ⁇ MTL Carbodiimide modified MDI, trade name: Millionate MTL, manufactured by Tosoh Corporation, molecular weight 250, specific gravity 1.22, SP value 12.66 (value calculated by Fedors method)
  • (B) Hydroxyl group-containing compound /R-45HT polybutadiene polyol, trade name: Poly bd R-45 HT, manufactured by Idemitsu Petrochemical Co., Ltd., number average molecular weight 2800, SP value 8.86 (value calculated by Fedors method) ⁇ R-15HT: Polybutadiene polyol, trade name: Poly bd R-15 HT, manufactured by Idemitsu Petrochemical Co., Ltd., number average molecular weight 1200, SP value 9.16 (value calculated by Fedors method) ⁇ H-30: Polyester polyol (castor oil polyol), trade name: URIC H-30, manufactured by Fuji Oil Co., Ltd., number average molecular weight 933, SP value 10.86 (value calculated by Fedors method) ⁇ P-2050: Polyester polyol, trade name: Kuraray Polyol P-2050, manufactured by Kuraray Co., Ltd., number average molecular weight 2000, SP value 11.29 (value calculated by Fedors method) ⁇ Polyes
  • polyester polyol (X) was manufactured by the following method. That is, 1220 g (4 moles) of hydrogenated castor oil fatty acid with an acid value of 178 and 60 mL of xylene for reflux assistance were charged into a reactor equipped with a stirrer, a thermometer, a nitrogen inlet tube, and a reflux condenser with a test tube. The reaction was carried out for 6 hours at 180°C to 220°C under air flow. During this time, water produced by the condensation reaction was distilled out of the system by azeotropy. As a result, an oxycarboxylic acid oligomer having an acid value of 46 was obtained.
  • liquid polyester polyol (X) which was liquid at room temperature, had an acid value of 3.3, an OH value of 105, an iodine value of 3.2, and a viscosity of 2.1 Pa ⁇ s/23°C.
  • C Inorganic filler /H-32: Aluminum hydroxide, product name: Hygilite H-32, manufactured by Showa Denko K.K.
  • TCP Tricresyl phosphate
  • SP value 9.70 value calculated by Small method
  • freezing point -35°C molecular weight 368
  • IrganoX1010 manufactured by BASF
  • Polymerization catalyst /U-810 Dioctyltin dilaurate, trade name: Neostan U-810, manufactured by Nitto Kasei Co., Ltd.
  • the embrittlement temperature is a value measured by a measuring method based on JIS K7216. Specifically, the temperature at which 50% of the test piece breaks into two or more pieces at a certain temperature point is measured under the following conditions.
  • Test piece Size 38.0 ⁇ 2.0 ⁇ 6.0 ⁇ 0.4 ⁇ 2.0 ⁇ 0.2 (mm) The test piece is left at room temperature of 23°C ⁇ 2 and relative humidity 50 ⁇ 5% for 40 hours or more before use. Five levels of testing are carried out by changing the temperature for each sample. The number of tests at each level was 10 times.
  • Heat transfer solvent Ethanol Test method: After placing the test piece in the test atmosphere temperature for 3 minutes, impact it once with a hammer at a speed of 2 ⁇ 0.2 m/s from a moving distance of 5 mm to check for damage. and evaluate.
  • Measuring equipment Embrittlement temperature tester FS (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
  • SP values are values measured by the Fedors method for (A) isocyanate group-containing compounds and (B) hydroxyl group-containing compounds, and by the Small method for (D) plasticizers.
  • the SP value of the mixture ((1) SP value of (A) isocyanate group-containing compound + (B) hydroxyl group-containing compound + (D) plasticizer; 2) SP value of (B) hydroxyl group-containing compound + (D) plasticizer; (3) SP value of mixture of multiple (D) plasticizers) were calculated.
  • the SP value of the mixture was calculated using the following formula with reference to the calculation method of formula (3) described in paragraph 0020 of JP-A No. 2011-194508.
  • the isocyanate group-containing compound (A) was prepared as a polyisocyanate component.
  • a polyurethane resin composition was obtained by adding a polyisocyanate component to the above polyol component, stirring, defoaming, and mixing so that the blending amount was as shown in Table 1.
  • the polyol component and the polyisocyanate component were mixed by adjusting the polyol component to 23°C, then adding the polyisocyanate component adjusted to 23°C, and using a rotation/revolution mixer (Awatori Rentaro, manufactured by Shinky Co., Ltd.). The mixture was stirred for 1 minute at a rotational speed of 2000 rpm.
  • test piece A (Creation of test piece)
  • the prepared polyurethane resin composition was injected into a mold A with a size of 100 mm x 100 mm x 3 mm, a mold B with an inner diameter of 30 mm and a height of 10 mm, and a mold C with a size of 10 mm x 80 mm x 3 mm.
  • the polyurethane resin composition in the mold was heated at 80° C. for 16 hours, and then left at room temperature for one day to be cured.
  • test piece A (100 mm x 100 mm x 3 mm)
  • test piece B (inner diameter 30 mm, height 10 mm)
  • test piece C (10 mm x 80 mm x 3 mm) were prepared.
  • test piece A was cut into a No. 3 dumbbell test piece to prepare test piece A-1.
  • Viscosity The polyurethane resin composition was adjusted to 23° C., and the viscosity was measured using a Brookfield BH viscometer 3 minutes after mixing the polyol component, polyisocyanate component, inorganic filler, and plasticizer.
  • the temperature of the initial hardness test piece B was adjusted to 23 ° C., and the hardness (type A) was measured using a hardness meter (manufactured by Kobunshi Keiki Co., Ltd., Asker Rubber Hardness Meter Type A) according to a measurement method based on JIS K 6253. .
  • the volume resistivity of the volume resistivity test piece A was measured using a resistance measuring device (manufactured by HIOKI, DSM-8104). The measured value of the volume resistivity was taken as the volume resistivity value.
  • Elastic modulus (E'10Hz), glass transition temperature (E'') The elastic modulus E' (10 Hz) of the test piece C at each temperature of -40°C, -30°C, -20°C, 23°C, and 120°C was measured using a dynamic viscoelasticity measuring machine: DMA (manufactured by SII Nano Technology: DMS6100). ). Further, the glass transition temperature (° C.) was calculated from the peak point of the “loss modulus E'' (10 Hz).
  • the polyurethane resin composition of the present invention has excellent compatibility, heat resistance, and heat cycle properties. Therefore, it can be used in fields such as electrical products. Furthermore, the polyurethane resin composition of the present invention can be used in the fields of adhesives and gap fillers used for heat dissipation purposes in electrical and electronic components.

Abstract

The present invention provides a polyurethane resin composition which has excellent compatibility, while exhibiting excellent heat resistance and heat cycle properties. The present invention provides a polyurethane resin composition which contains an isocyanate group-containing compound, a hydroxyl group-containing compound and a plasticizer, and which is characterized in that the SP value of a mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more.

Description

ポリウレタン樹脂組成物Polyurethane resin composition
 本発明は、ポリウレタン樹脂組成物に関する。 The present invention relates to a polyurethane resin composition.
 従来、電子回路基板や電子部品等の部材の高密度化及び高集積化が進み、各部品に対して、信頼性の向上が要求されている。このため、上述の電気部品等は、部品等を保護するためにポリウレタン樹脂により封止されている。 Conventionally, members such as electronic circuit boards and electronic components have become denser and more highly integrated, and each component is required to have improved reliability. For this reason, the above-mentioned electrical components and the like are sealed with polyurethane resin to protect them.
 近年、電子回路基板や電子部品の進歩により、ヒートサイクルによる部材へのストレスが大きくなっており、長時間の加熱によっても硬度が変化しにくい、高い耐熱性が求められている。 In recent years, with advances in electronic circuit boards and electronic components, the stress on components due to heat cycles has increased, and there is a need for high heat resistance that does not easily change hardness even after long periods of heating.
 また、部材の封止に用いられるウレタン樹脂は、長期的なヒートサイクルにより柔軟性が低下してクラックが発生するという問題があり、弾性率の温度依存性の低減が求められている。 Additionally, urethane resins used for sealing members have a problem in that their flexibility decreases and cracks occur due to long-term heat cycles, and there is a need to reduce the temperature dependence of the elastic modulus.
 上述の耐熱性及びヒートサイクル性を示すポリウレタン樹脂組成物が提案されている(特許文献1参照)。当該ポリウレタン樹脂組成物も優れたポリウレタン樹脂組成物であるが、更に改善の余地がある。特許文献1では、ポリウレタン樹脂組成物に用いられる可塑剤として、DUP(フタル酸ジウンデシル)、又は、DIDA(アジピン酸ジイソデシル)を用いることが開示されている。 A polyurethane resin composition that exhibits the above-mentioned heat resistance and heat cycle properties has been proposed (see Patent Document 1). Although the polyurethane resin composition is also an excellent polyurethane resin composition, there is still room for further improvement. Patent Document 1 discloses the use of DUP (diundecyl phthalate) or DIDA (diisodecyl adipate) as a plasticizer used in a polyurethane resin composition.
 上述のDIDAは耐熱性に検討の余地がある。また、DUPは、ポリブタジエンポリオール、ポリエステルポリオール等の特定の水酸基含有化合物との相溶性が十分でない場合があるため-20℃~-30℃での弾性率の低下に検討の余地がある。 The above-mentioned DIDA has room for consideration in terms of heat resistance. In addition, DUP may not have sufficient compatibility with specific hydroxyl group-containing compounds such as polybutadiene polyols and polyester polyols, so there is room for consideration regarding the decrease in elastic modulus at -20°C to -30°C.
特開2019-183125号公報Japanese Patent Application Publication No. 2019-183125
 本発明は、相溶性に優れ、耐熱性及びヒートサイクル性に優れたポリウレタン樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a polyurethane resin composition that has excellent compatibility, heat resistance, and heat cycle properties.
 本発明は、以下のポリウレタン樹脂組成物、封止材及び電気電子部品に関する。
1.イソシアネート基含有化合物、水酸基含有化合物、及び、可塑剤を含有するポリウレタン樹脂組成物であって、
 前記水酸基含有化合物と、前記可塑剤との混合物のSP値が8.75以上である、
ことを特徴とするポリウレタン樹脂組成物。
2.前記水酸基含有化合物と、前記可塑剤との混合物のSP値が8.75以上9.20以下であり、且つ、120℃の弾性率と、-30℃の弾性率との差が25MPa以下である、項1に記載のポリウレタン樹脂組成物。
3.前記可塑剤は、脆化温度が-30℃未満の可塑剤Aと、脆化温度が-30℃以上-20℃以下の可塑剤Bとを含有する、項1又は2に記載のポリウレタン樹脂組成物。
4.更に、無機充填剤を含有し、前記無機充填剤の含有量が、前記ポリウレタン樹脂組成物を100質量%として、50~80質量%である、項1~3のいずれかに記載のポリウレタン樹脂組成物。
5.前記水酸基含有化合物は、ポリオレフィンポリオールを含有する、項1~4のいずれかに記載のポリウレタン樹脂組成物。
6.前記水酸基含有化合物は、平均水酸基価が80mgKOH/g以上である、項1~5のいずれかに記載のポリウレタン樹脂組成物。
7.前記水酸基含有化合物がポリオレフィンポリオールを含有し、前記可塑剤は、SP値が8.75以上の可塑剤aと、SP値が8.75未満の可塑剤bとを含有する、項1~6のいずれかに記載のポリウレタン樹脂組成物。
8.前記水酸基含有化合物は、ポリブタジエンポリオール及びポリエステルポリオールを含有する、項1~7のいずれかに記載のポリウレタン樹脂組成物。
9.項1~8のいずれかに記載のポリウレタン樹脂組成物からなる封止材。
10.項9に記載の封止材を有する電気電子部品。
The present invention relates to the following polyurethane resin compositions, sealing materials, and electrical and electronic components.
1. A polyurethane resin composition containing an isocyanate group-containing compound, a hydroxyl group-containing compound, and a plasticizer,
The SP value of the mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more.
A polyurethane resin composition characterized by:
2. The SP value of the mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more and 9.20 or less, and the difference between the elastic modulus at 120°C and the elastic modulus at -30°C is 25 MPa or less. , the polyurethane resin composition according to item 1.
3. Item 2. The polyurethane resin composition according to Item 1 or 2, wherein the plasticizer contains a plasticizer A having an embrittlement temperature of less than -30°C and a plasticizer B having an embrittlement temperature of -30°C or higher and -20°C or lower. thing.
4. The polyurethane resin composition according to any one of Items 1 to 3, further comprising an inorganic filler, and the content of the inorganic filler is 50 to 80% by mass, based on 100% by mass of the polyurethane resin composition. thing.
5. Item 5. The polyurethane resin composition according to any one of Items 1 to 4, wherein the hydroxyl group-containing compound contains a polyolefin polyol.
6. Item 6. The polyurethane resin composition according to any one of items 1 to 5, wherein the hydroxyl group-containing compound has an average hydroxyl value of 80 mgKOH/g or more.
7. Items 1 to 6, wherein the hydroxyl group-containing compound contains a polyolefin polyol, and the plasticizer contains a plasticizer a having an SP value of 8.75 or more and a plasticizer b having an SP value of less than 8.75. Any polyurethane resin composition.
8. Item 8. The polyurethane resin composition according to any one of items 1 to 7, wherein the hydroxyl group-containing compound contains a polybutadiene polyol and a polyester polyol.
9. Item 8. A sealing material comprising the polyurethane resin composition according to any one of Items 1 to 8.
10. Item 9. An electrical and electronic component comprising the sealing material according to item 9.
 本発明のポリウレタン樹脂組成物は、相溶性に優れ、耐熱性及びヒートサイクル性に優れている。また、本発明の封止材も、上記ポリウレタン樹脂組成物からなるので、耐熱性及びヒートサイクル性に優れている。更に、本発明の電気電子部品は、上記封止材を有するので、十分に樹脂封止がされ、高い信頼性を示すことができる。 The polyurethane resin composition of the present invention has excellent compatibility, heat resistance, and heat cycle properties. Moreover, since the sealing material of the present invention is also made of the above polyurethane resin composition, it has excellent heat resistance and heat cycle properties. Furthermore, since the electrical/electronic component of the present invention has the above-mentioned sealing material, it can be sufficiently resin-sealed and exhibit high reliability.
1.ポリウレタン樹脂組成物
 本発明のポリウレタン樹脂組成物は、イソシアネート基含有化合物、水酸基含有化合物、及び、可塑剤を含有するポリウレタン樹脂組成物であって、前記水酸基含有化合物と、前記可塑剤との混合物のSP値が8.75以上であることを特徴とする。
1. Polyurethane Resin Composition The polyurethane resin composition of the present invention is a polyurethane resin composition containing an isocyanate group-containing compound, a hydroxyl group-containing compound, and a plasticizer, the composition comprising a mixture of the hydroxyl group-containing compound and the plasticizer. It is characterized by an SP value of 8.75 or more.
 一般に、ポリエステルポリオールは、-20℃~-30℃の低温領域で弾性率が上昇しやすくヒートサイクル性が低下する傾向にある。ヒートサイクル特性を向上させるためにポリブタジエンポリオール等のポリオレフィンポリオールが併用されるが、当該ポリブタジエンポリオールはポリエステルポリオールとの相溶性が悪いため、ポリブタジエンポリオール単独で用いるよりも-20℃~-30℃の低温領域で弾性率が上昇するという問題がある。 In general, the elastic modulus of polyester polyols tends to increase in the low temperature range of -20°C to -30°C, and the heat cycleability tends to decrease. Polyolefin polyols such as polybutadiene polyols are used in combination to improve heat cycle characteristics, but because the polybutadiene polyols have poor compatibility with polyester polyols, they can be used at a lower temperature of -20°C to -30°C than when polybutadiene polyols are used alone. There is a problem that the elastic modulus increases in the region.
 ポリブタジエンポリオールとポリエステルポリオールとを配合したポリウレタン樹脂は、-20℃~-30℃の領域で弾性率が上昇するため、-20℃~-30℃の温度領域で温度変化による弾性率の測定結果において、コブの様に弾性率の高い領域が現れる。通常、水酸基含有化合物としてポリブタジエンポリオールを単独で用いた場合、温度変化による弾性率の測定結果において、上記弾性率の高い領域は現れず、なめらかな曲線となる。 The elastic modulus of polyurethane resin blended with polybutadiene polyol and polyester polyol increases in the -20°C to -30°C range, so the results of measuring the elastic modulus due to temperature changes in the -20°C to -30°C temperature range , a bump-like region with high elastic modulus appears. Normally, when polybutadiene polyol is used alone as the hydroxyl group-containing compound, the above region of high elastic modulus does not appear in the results of measuring the elastic modulus due to temperature changes, resulting in a smooth curve.
 また、水酸基含有化合物としてポリエステルポリオールを単独で用いた場合、ガラス転移温度が十分に低くないため、-20℃~-30℃の温度領域から弾性率が上昇する。 Furthermore, when polyester polyol is used alone as the hydroxyl group-containing compound, the elastic modulus increases from the temperature range of -20°C to -30°C because the glass transition temperature is not low enough.
 本発明者等は、ポリウレタン樹脂組成物において、水酸基含有化合物と、可塑剤との混合物のSP値を特定の範囲とすることで、これらの相溶性に優れ、-20℃~-30℃の温度領域でもポリウレタン樹脂の弾性率の上昇を抑制できることを見出した。通常、ポリウレタン樹脂の低温での弾性率とガラス転移温度を低下させる場合は、DUP、DIDAのように脆化温度が-30℃以下の可塑剤が用いられる。しかし、DIDAは耐熱性が十分でなく、また、DUPと、ポリブタジエンポリオール、及び、ポリエステルポリオールとを配合したポリウレタン樹脂組成物では、ポリウレタン樹脂とした際にこれらの相溶性が十分でなく、-40℃以下の弾性率は低下するが、-20℃~-30℃の弾性率は低下しない。 The present inventors have determined that in a polyurethane resin composition, by setting the SP value of a mixture of a hydroxyl group-containing compound and a plasticizer within a specific range, the compatibility of these compounds is excellent, and the temperature between -20°C and -30°C is achieved. It has been found that the increase in the elastic modulus of polyurethane resin can be suppressed even in the range of Usually, when lowering the elastic modulus and glass transition temperature of polyurethane resin at low temperatures, a plasticizer with a brittle temperature of -30° C. or lower, such as DUP and DIDA, is used. However, DIDA does not have sufficient heat resistance, and a polyurethane resin composition containing DUP, polybutadiene polyol, and polyester polyol does not have sufficient compatibility when made into a polyurethane resin, resulting in -40% The elastic modulus below ℃ decreases, but the elastic modulus between -20 ℃ and -30 ℃ does not decrease.
 これに対し、本発明では、ポリウレタン樹脂組成物において、水酸基含有化合物と、可塑剤との混合物のSP値を8.75以上に調整することにより、相溶性に優れ、耐熱性及びヒートサイクル性に優れたポリウレタン樹脂組成物を提供することができる。 In contrast, in the present invention, in the polyurethane resin composition, by adjusting the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer to 8.75 or more, it has excellent compatibility, and has excellent heat resistance and heat cycle property. An excellent polyurethane resin composition can be provided.
 以下、本発明のポリウレタン樹脂組成物について詳細に説明する。 Hereinafter, the polyurethane resin composition of the present invention will be explained in detail.
(イソシアネート基含有化合物)
 イソシアネート基含有化合物としては特に限定されず、ポリウレタン樹脂に用いられる公知のイソシアネート基含有化合物を用いることができる。このようなイソシアネート基含有化合物としては、脂肪族ポリイソシアネート化合物、脂環族ポリイソシアネート化合物、芳香族ポリイソシアネート化合物及び芳香脂肪族ポリイソシアネート化合物等が挙げられる。また、ポリウレタン樹脂組成物の耐熱性をより向上させるために、上記イソシアネート基含有化合物のイソシアヌレート変性体を用いてもよい。
(Isocyanate group-containing compound)
The isocyanate group-containing compound is not particularly limited, and known isocyanate group-containing compounds used for polyurethane resins can be used. Examples of such isocyanate group-containing compounds include aliphatic polyisocyanate compounds, alicyclic polyisocyanate compounds, aromatic polyisocyanate compounds, and araliphatic polyisocyanate compounds. Moreover, in order to further improve the heat resistance of the polyurethane resin composition, an isocyanurate modified product of the above-mentioned isocyanate group-containing compound may be used.
 脂肪族ポリイソシアネート化合物としては、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート等が挙げられる。 Examples of aliphatic polyisocyanate compounds include tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2- Examples include methylpentane-1,5-diisocyanate and 3-methylpentane-1,5-diisocyanate.
 脂環族ポリイソシアネート化合物としては、イソホロンジイソシアネート、水添キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等が挙げられる。 Examples of alicyclic polyisocyanate compounds include isophorone diisocyanate, hydrogenated xylylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis(isocyanatemethyl)cyclohexane, etc. can be mentioned.
 芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、4,4’-ジベンジルジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート等が挙げられる。 Aromatic polyisocyanate compounds include tolylene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 4,4'-dibenzyl diisocyanate, 1, Examples include 5-naphthylene diisocyanate, xylylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, and the like.
 芳香脂肪族ポリイソシアネート化合物としては、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、α,α,α,α-テトラメチルキシリレンジイソシアネート等が挙げられる。 Examples of the aromatic aliphatic polyisocyanate compound include dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, α,α,α,α-tetramethylxylylene diisocyanate, and the like.
 上記イソシアネート基含有化合物は、単独で用いてもよいし、2種以上を混合して用いてもよい。 The above isocyanate group-containing compounds may be used alone or in combination of two or more.
 本発明のポリウレタン樹脂組成物において、用いられるイソシアネート基含有化合物の量は特に限定されず、ポリウレタン樹脂組成物を100質量%として0.5~30質量%が好ましく、1~20質量%がより好ましく、1~10質量%更に好ましい。イソシアネート基含有化合物の含有量の上限が上記範囲であることにより、ポリウレタン樹脂組成物の硬化不良がより抑制される。イソシアネート基含有化合物の含有量の下限が上記範囲であることにより、硬化したポリウレタン樹脂組成物の耐熱性がより一層向上する。 In the polyurethane resin composition of the present invention, the amount of the isocyanate group-containing compound used is not particularly limited, and is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass based on 100% by mass of the polyurethane resin composition. , more preferably 1 to 10% by mass. When the upper limit of the content of the isocyanate group-containing compound is within the above range, curing failure of the polyurethane resin composition is further suppressed. When the lower limit of the content of the isocyanate group-containing compound is within the above range, the heat resistance of the cured polyurethane resin composition is further improved.
 イソシアネート基含有化合物のSP値は、8.70以上が好ましく、9.00以上がより好ましく、9.50以上が更に好ましく、10.00以上が特に好ましく、10.50以上が最も好ましい。また、イソシアネート基含有化合物のSP値は、14.00以下が好ましく、13.50以下がより好ましく、13.00以下が更に好ましく、12.00以下が特に好ましい。 The SP value of the isocyanate group-containing compound is preferably 8.70 or more, more preferably 9.00 or more, even more preferably 9.50 or more, particularly preferably 10.00 or more, and most preferably 10.50 or more. Further, the SP value of the isocyanate group-containing compound is preferably 14.00 or less, more preferably 13.50 or less, even more preferably 13.00 or less, and particularly preferably 12.00 or less.
(水酸基含有化合物)
 本発明のポリウレタン樹脂組成物において用いられる水酸基含有化合物としては、水酸基含有化合物と、可塑剤との混合物のSP値を8.75以上に調整できれば特に限定されず、ポリウレタン樹脂組成物において従来ポリオール成分として用いられているものを各種使用することが可能である。上記ポリオール成分としては、ポリオレフィンポリオール、ひまし油ポリオール、ポリエステルポリオール、又はこれらの水素化物等が挙げられる。具体的には、ポリブタジエンポリオール、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,2-ヘキサンジオール、2,5-ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、シクロヘキサンジオール、トリメチロールプロパン、グリセリン、2-メチルプロパン-1、2,3-トリオール、1,2,6-ヘキサントリオール、ペンタエリスリット、ポリラクトンジオール、ポリラクトントリオール、エステルグリコール、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、アクリルポリオール、シリコーンポリオール、フッ素ポリオール、ポリテトラメチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、ポリカプロラクトンポリオール、ひまし油、水素化ひまし油、水酸基含有液状ポリイソプレンの水素化物、水酸基含有液状ポリブタジエンの水素化物等が挙げられる。
(Hydroxy group-containing compound)
The hydroxyl group-containing compound used in the polyurethane resin composition of the present invention is not particularly limited as long as the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer can be adjusted to 8.75 or more. It is possible to use various types of materials that are used as Examples of the polyol component include polyolefin polyols, castor oil polyols, polyester polyols, and hydrogenated products thereof. Specifically, polybutadiene polyol, ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1 , 4-pentanediol, 1,5-pentanediol, 1,6-hexanediol, 1,5-hexanediol, 1,2-hexanediol, 2,5-hexanediol, octanediol, nonanediol, decanediol, Diethylene glycol, triethylene glycol, dipropylene glycol, cyclohexanediol, trimethylolpropane, glycerin, 2-methylpropane-1,2,3-triol, 1,2,6-hexanetriol, pentaerythritol, polylactone diol, poly Lactone triol, ester glycol, polyester polyol, polyether polyol, polycarbonate polyol, acrylic polyol, silicone polyol, fluorine polyol, polytetramethylene glycol, polypropylene glycol, polyethylene glycol, polycaprolactone polyol, castor oil, hydrogenated castor oil, hydroxyl group-containing liquid polyol Examples include hydrides of isoprene and hydrides of liquid polybutadiene containing hydroxyl groups.
 上記ポリオール成分の中でも、ポリオレフィンポリオール、ポリエステルポリオール及びそれらの水素化物が好ましい。また、ポリブタジエンポリオール、及び、ポリエステルポリオールを含有することがより好ましく、ポリブタジエンポリオール、並びに、ひまし油及びその水素化物を用いることが更に好ましい。 Among the above polyol components, polyolefin polyols, polyester polyols, and hydrides thereof are preferred. Moreover, it is more preferable to contain polybutadiene polyol and polyester polyol, and it is even more preferable to use polybutadiene polyol, castor oil, and its hydrogenated product.
 上記ひまし油及びその水素化物としては、ひまし油、又はひまし油誘導体等が挙げられる。上記ひまし油誘導体としては、ひまし油脂肪酸;ひまし油又はひまし油脂肪酸に水素付加した水素化ひまし油;ひまし油とその他の油脂のエステル交換物;ひまし油と多価アルコールの反応物;ひまし油脂肪酸と多価アルコールとのエステル化反応物;これらにアルキレンオキサイドを付加重合したもの等が挙げられる。 Examples of the castor oil and its hydride include castor oil, castor oil derivatives, and the like. The castor oil derivatives include castor oil fatty acids; hydrogenated castor oil obtained by hydrogenating castor oil or castor oil fatty acids; transesterified products of castor oil and other fats and oils; reaction products of castor oil and polyhydric alcohols; esterification of castor oil fatty acids and polyhydric alcohols. Reactants: Examples include addition polymerization of alkylene oxide to these.
 上記水酸基含有化合物は、単独で用いてもよいし、2種以上を混合して用いてもよい。 The above hydroxyl group-containing compounds may be used alone or in combination of two or more.
 上記水酸基含有化合物の重量平均分子量Mwは、500~5000が好ましく、800~4800がより好ましく、900~4000が更に好ましく、1000~3000が特に好ましい。 The weight average molecular weight Mw of the hydroxyl group-containing compound is preferably 500 to 5,000, more preferably 800 to 4,800, even more preferably 900 to 4,000, and particularly preferably 1,000 to 3,000.
 上記水酸基含有化合物の数重量平均分子量Mnは、600~6000が好ましく、900~5000がより好ましく、1000~4000が更に好ましく、1200~3500が特に好ましい。 The number weight average molecular weight Mn of the hydroxyl group-containing compound is preferably 600 to 6,000, more preferably 900 to 5,000, even more preferably 1,000 to 4,000, and particularly preferably 1,200 to 3,500.
 上記水酸基含有化合物の平均水酸基価は、40mgKOH/g以上が好ましく、70mgKOH/g以上がより好ましい。また、平均水酸基価は、170mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましい。 The average hydroxyl value of the hydroxyl group-containing compound is preferably 40 mgKOH/g or more, more preferably 70 mgKOH/g or more. Moreover, the average hydroxyl value is preferably 170 mgKOH/g or less, more preferably 120 mgKOH/g or less.
 本明細書において、上記水酸基含有化合物の平均水酸基価は、下記測定方法により測定される値である。 In this specification, the average hydroxyl value of the above-mentioned hydroxyl group-containing compound is a value measured by the following measuring method.
(平均水酸基化の測定方法)
 平均水酸基価は、水酸基含有化合物が単独である場合は、単独の水酸基含有化合物の水酸基価の値であり、2種以上を併用する場合は、それら複数の水酸基含有化合物の水酸基価をその配合比率を乗じて足し合わせて算出される水酸基価の平均値である。なお、本明細書において、上記水酸基価はJIS K1557-1:2007のA法に準拠した測定方法により測定される値である。
(Method for measuring average hydroxyl group)
When the hydroxyl group-containing compound is used alone, the average hydroxyl value is the value of the hydroxyl group value of the single hydroxyl group-containing compound, and when two or more types are used together, the hydroxyl value of the multiple hydroxyl group-containing compounds is calculated as the blending ratio. This is the average value of the hydroxyl value calculated by multiplying and adding the results. Note that in this specification, the above hydroxyl value is a value measured by a measuring method based on method A of JIS K1557-1:2007.
 上記水酸基含有化合物のガラス転移温度は、-40℃以下が好ましく、-50℃以下がより好ましい。また、上記ガラス転移温度は、-90℃以上が好ましく、-85℃以上がより好ましい。 The glass transition temperature of the hydroxyl group-containing compound is preferably -40°C or lower, more preferably -50°C or lower. Further, the glass transition temperature is preferably -90°C or higher, more preferably -85°C or higher.
 本明細書において、上記ガラス転移温度は、DSC(示差走査熱量計)を用いて測定される値である。 In this specification, the glass transition temperature is a value measured using a DSC (differential scanning calorimeter).
 本発明のポリウレタン樹脂組成物において、水酸基含有化合物の含有量は、ポリウレタン樹脂組成物を100質量%として、3~40質量%が好ましく、5~35質量%がより好ましく、7~30質量%が更に好ましく、7~20質量%が特に好ましい。水酸基含有化合物の含有量の上限が上記範囲であることにより、ポリウレタン樹脂組成物の硬化不良がより一層抑制される。水酸基含有化合物の含有量の下限が上記範囲であることにより、ポリウレタン樹脂組成物の弾性率がより低減され、また、ガラス転移温度の上昇をより抑制することができる。 In the polyurethane resin composition of the present invention, the content of the hydroxyl group-containing compound is preferably 3 to 40 mass%, more preferably 5 to 35 mass%, and 7 to 30 mass%, based on 100 mass% of the polyurethane resin composition. More preferably, 7 to 20% by mass is particularly preferred. When the upper limit of the content of the hydroxyl group-containing compound is within the above range, curing failure of the polyurethane resin composition is further suppressed. When the lower limit of the content of the hydroxyl group-containing compound is within the above range, the elastic modulus of the polyurethane resin composition can be further reduced, and an increase in the glass transition temperature can be further suppressed.
 水酸基含有化合物のSP値は、8.70以上が好ましく、8.75以上がより好ましく、8.80以上が更に好ましく、8.85以上が特に好ましい。また、水酸基含有化合物のSP値は、14.00以下が好ましく、13.00以下がより好ましく、12.00以下が更に好ましく、11.30以下が特に好ましい。 The SP value of the hydroxyl group-containing compound is preferably 8.70 or more, more preferably 8.75 or more, even more preferably 8.80 or more, and particularly preferably 8.85 or more. Further, the SP value of the hydroxyl group-containing compound is preferably 14.00 or less, more preferably 13.00 or less, even more preferably 12.00 or less, and particularly preferably 11.30 or less.
 水酸基含有化合物のSP値は、後述の実施例に記載のFedors法により測定する。 The SP value of the hydroxyl group-containing compound is measured by the Fedors method described in Examples below.
 本発明のポリウレタン樹脂組成物は、上記イソシアネート基含有化合物と、上記水酸基含有化合物とのNCO/OH比が0.6~2.0であることが好ましく、0.7~1.5であることがより好ましい。NCO/OH比の下限が上記範囲であることにより、ポリウレタン樹脂組成物の耐熱性がより一層向上する。NCO/OH比の上限が上記範囲であることにより、ポリウレタン樹脂組成物の硬化不良がより一層抑制される。 In the polyurethane resin composition of the present invention, the NCO/OH ratio between the isocyanate group-containing compound and the hydroxyl group-containing compound is preferably 0.6 to 2.0, more preferably 0.7 to 1.5. is more preferable. When the lower limit of the NCO/OH ratio is within the above range, the heat resistance of the polyurethane resin composition is further improved. When the upper limit of the NCO/OH ratio is within the above range, curing failure of the polyurethane resin composition is further suppressed.
(可塑剤)
 本発明のポリウレタン樹脂組成物において用いられる可塑剤としては、水酸基含有化合物と、可塑剤との混合物のSP値を8.75以上に調整できれば特に限定されず、ポリウレタン樹脂組成物において従来可塑剤として用いられているものを各種使用することが可能である。上記可塑剤としては、ジオクチルフタレート、ジイソノニルフタレート、ジウンデシルフタレート等のフタル酸エステル;ジオクチルアジペート、ジイソノニルアジペート等のアジピン酸エステル;メチルアセチルリシノレート、ブチルアセチルリシノレート、アセチル化リシノール酸トリグリセリド、アセチル化ポリリシノール酸トリグリセリド等のひまし油系エステル;トリクレジルフォスフェート;トリオクチルトリメリテート、トリイソノニルトリメリテート等のトリメリット酸エステル;テトラオクチルピロメリテート、テトライソノニルピロメリテート等のピロメリット酸エステル等が挙げられる。沸点が250℃以上であり、凝固点が-20℃以下で、常温で500mPa・s以下の粘度であり、様々なSP値の水酸基含有化合物との相容性に優れる点で、フタル酸エステル、トリメリット酸エステル、トリクレジルフォスフェートが好ましい。
(Plasticizer)
The plasticizer used in the polyurethane resin composition of the present invention is not particularly limited as long as the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer can be adjusted to 8.75 or more. It is possible to use a variety of conventional ones. The above plasticizers include phthalic acid esters such as dioctyl phthalate, diisononyl phthalate, and diundecyl phthalate; adipic acid esters such as dioctyl adipate and diisononyl adipate; methyl acetyl ricinoleate, butylacetyl ricinoleate, acetylated ricinoleic acid triglyceride, and acetylated ricinoleic acid triglyceride. Castor oil-based esters such as polyricinoleic triglyceride; tricresyl phosphate; trimellitic acid esters such as trioctyl trimellitate and triisononyl trimellitate; Examples include mellitic acid esters. It has a boiling point of 250°C or higher, a freezing point of -20°C or lower, a viscosity of 500 mPa・s or lower at room temperature, and excellent compatibility with hydroxyl group-containing compounds of various SP values. Mellitic acid ester and tricresyl phosphate are preferred.
 本発明のポリウレタン樹脂組成物中の可塑剤の含有量は、ポリウレタン樹脂組成物を100質量%として5~40質量%が好ましく、10~35質量%がより好ましく、15~30質量%が更に好ましく、20~25質量%が特に好ましい。可塑剤の含有量の上限が上記範囲であることにより、ポリウレタン樹脂組成物の硬化不良がより抑制される。可塑剤の含有量の下限が上記範囲であることにより、硬化したポリウレタン樹脂組成物の耐熱性がより一層向上する。 The content of the plasticizer in the polyurethane resin composition of the present invention is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and even more preferably 15 to 30% by mass, based on 100% by mass of the polyurethane resin composition. , 20 to 25% by weight is particularly preferred. When the upper limit of the content of the plasticizer is within the above range, curing failure of the polyurethane resin composition is further suppressed. When the lower limit of the plasticizer content is within the above range, the heat resistance of the cured polyurethane resin composition is further improved.
 可塑剤のSP値は、8.70以上が好ましく、8.75以上がより好ましく、8.80以上が更に好ましく、8.90以上が特に好ましい。また、可塑剤のSP値は、12.00以下が好ましく、11.00以下がより好ましく、10.00以下が更に好ましく、9.70以下が特に好ましい。 The SP value of the plasticizer is preferably 8.70 or more, more preferably 8.75 or more, even more preferably 8.80 or more, and particularly preferably 8.90 or more. Further, the SP value of the plasticizer is preferably 12.00 or less, more preferably 11.00 or less, even more preferably 10.00 or less, and particularly preferably 9.70 or less.
 可塑剤のSP値は、後述の実施例に記載のSmall法により測定する。 The SP value of the plasticizer is measured by the Small method described in Examples below.
 本発明のポリウレタン樹脂組成物中の、SP値が8.70以上である可塑剤の含有量は、ポリウレタン樹脂組成物中に5.3質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が更に好ましい。また、上記含有量は、ポリウレタン樹脂組成物中に40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下が更に好ましい。上記構成であることにより、本発明のポリウレタン樹脂組成物の耐熱性及びヒートサイクル性がより一層向上する。 The content of the plasticizer having an SP value of 8.70 or more in the polyurethane resin composition of the present invention is preferably 5.3% by mass or more, more preferably 10% by mass or more, and 15% by mass or more. More preferably, it is at least % by mass. Further, the content in the polyurethane resin composition is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less. By having the above structure, the heat resistance and heat cycle properties of the polyurethane resin composition of the present invention are further improved.
 本発明のポリウレタン樹脂組成物中の、SP値が8.75以上である可塑剤の含有量は、ポリウレタン樹脂組成物中に5.3質量%以上が好ましく、6質量%以上がより好ましく、8質量%以上が更に好ましい。また、上記含有量は、ポリウレタン樹脂組成物中に40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下が更に好ましく、20質量%以下が特に好ましい。上記構成であることにより、本発明のポリウレタン樹脂組成物の耐熱性及びヒートサイクル性がより一層向上する。 The content of the plasticizer having an SP value of 8.75 or more in the polyurethane resin composition of the present invention is preferably 5.3% by mass or more, more preferably 6% by mass or more, and 8.7% by mass or more. More preferably, the amount is % by mass or more. Further, the above content is preferably 40% by mass or less in the polyurethane resin composition, more preferably 30% by mass or less, even more preferably 25% by mass or less, particularly preferably 20% by mass or less. By having the above structure, the heat resistance and heat cycle properties of the polyurethane resin composition of the present invention are further improved.
 本発明のポリウレタン樹脂組成物中の、SP値が8.80以上である可塑剤の含有量は、ポリウレタン樹脂組成物中に3質量%以上が好ましく、5質量%以上がより好ましい。また、上記含有量は、ポリウレタン樹脂組成物中に25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下が更に好ましい。上記構成であることにより、本発明のポリウレタン樹脂組成物の耐熱性及びヒートサイクル性がより一層向上する。 The content of the plasticizer having an SP value of 8.80 or more in the polyurethane resin composition of the present invention is preferably 3% by mass or more, more preferably 5% by mass or more. Further, the content in the polyurethane resin composition is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less. By having the above structure, the heat resistance and heat cycle properties of the polyurethane resin composition of the present invention are further improved.
 上記可塑剤は、JIS K7216に準拠して測定した脆化温度が、-30℃未満の可塑剤Aと、-30℃~0℃の可塑剤Bとを含有することが好ましい。上記構成とすることにより、ポリウレタン樹脂のガラス転移温度(Tg)が低下し、耐寒性がより一層向上する。なお、上記脆化温度は、具体的には、後述の実施例に記載の測定方法により測定する。 The above plasticizer preferably contains a plasticizer A whose embrittlement temperature is less than -30°C and a plasticizer B whose embrittlement temperature is between -30°C and 0°C as measured in accordance with JIS K7216. By having the above structure, the glass transition temperature (Tg) of the polyurethane resin is lowered, and the cold resistance is further improved. In addition, the said embrittlement temperature is specifically measured by the measuring method described in the below-mentioned Example.
(無機充填剤)
 本発明のポリウレタン樹脂組成物は、無機充填剤を含んでいてもよい。上記無機充填剤としては特に限定されず、従来公知の無機充填剤を用いることができる。このような無機充填剤としては、例えば、炭酸カルシウム、溶融シリカ、非晶質シリカ、タルク、アルミナ、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、水酸化マグネシウム、酸化マグネシウムである。これらのうち、難燃性、熱伝導性に優れる点で、水酸化アルミニウム、水酸化マグネシウム等の金属水和化合物が好ましい。熱伝導性に優れる無機充填剤としては、アルミナ、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。
(Inorganic filler)
The polyurethane resin composition of the present invention may contain an inorganic filler. The above-mentioned inorganic filler is not particularly limited, and conventionally known inorganic fillers can be used. Examples of such inorganic fillers include calcium carbonate, fused silica, amorphous silica, talc, alumina, aluminum hydroxide, aluminum nitride, boron nitride, magnesium hydroxide, and magnesium oxide. Among these, metal hydrated compounds such as aluminum hydroxide and magnesium hydroxide are preferred because they have excellent flame retardancy and thermal conductivity. Examples of inorganic fillers with excellent thermal conductivity include alumina, magnesium hydroxide, aluminum hydroxide, and the like.
 本発明のポリウレタン樹脂組成物の弾性率の上昇を抑制するためにはモース硬度が低い無機充填剤が好ましい。このような無機充填剤のモース硬度は、4以下が好ましく、3以下がより好ましい。このような無機充填剤としては、例えば、水酸化アルミニウム(モース硬度3)、水酸化マグネシウム(モース硬度2.5)、タルク(モース硬度1)等が挙げられる。 In order to suppress an increase in the elastic modulus of the polyurethane resin composition of the present invention, an inorganic filler with a low Mohs hardness is preferable. The Mohs hardness of such an inorganic filler is preferably 4 or less, more preferably 3 or less. Examples of such inorganic fillers include aluminum hydroxide (Mohs hardness: 3), magnesium hydroxide (Mohs hardness: 2.5), and talc (Mohs hardness: 1).
 上記無機充填剤のモース硬度は、標準鉱物を用いたモース硬度試験の測定方法により測定される値である。具体的には、上記無機充填剤のモース硬度は、標準鉱物と試料物質を擦り合わせて傷が入った時の標準鉱物のモース硬度から相対比較で決定される値である。 The Mohs hardness of the inorganic filler is a value measured by a Mohs hardness test method using standard minerals. Specifically, the Mohs hardness of the inorganic filler is a value determined by relative comparison from the Mohs hardness of the standard mineral when scratches are created by rubbing the standard mineral and the sample material together.
 本発明のポリウレタン樹脂組成物において、無機充填剤の含有量は、ポリウレタン樹脂組成物100質量%に対して20~80質量%が好ましく、50~80質量%がより好ましい。無機充填剤の含有量の下限が上記範囲であることにより、ポリウレタン樹脂組成物の難燃性がより一層向上する。無機充填剤含有量の上限が上記範囲であることにより、ポリウレタン樹脂組成物の製造時の混合粘度が抑制され、作業性がより一層向上し、また、混合後の流動性、柔軟性を損なわずに耐熱性、耐湿性、強度、及び難燃性がより向上し、更に、線膨張係数が低くなるためヒートサイクル性がより向上する。 In the polyurethane resin composition of the present invention, the content of the inorganic filler is preferably 20 to 80% by mass, more preferably 50 to 80% by mass, based on 100% by mass of the polyurethane resin composition. When the lower limit of the content of the inorganic filler is within the above range, the flame retardancy of the polyurethane resin composition is further improved. By having the upper limit of the inorganic filler content within the above range, the mixing viscosity during the production of the polyurethane resin composition is suppressed, the workability is further improved, and the fluidity and flexibility after mixing are not impaired. The heat resistance, moisture resistance, strength, and flame retardance are further improved, and furthermore, the linear expansion coefficient is lowered, so the heat cycle property is further improved.
(添加剤)
 本発明のポリウレタン樹脂組成物には、酸化防止剤、重合触媒、吸湿剤、防黴剤、シランカップリング剤等、必要に応じて各種の添加剤を添加することができる。
(Additive)
Various additives such as an antioxidant, a polymerization catalyst, a moisture absorbent, a fungicide, a silane coupling agent, and the like can be added to the polyurethane resin composition of the present invention as necessary.
 酸化防止剤としては特に限定されないが、ウレタン樹脂組成物に用いられる従来公知の酸化防止剤を用いることができる。このような酸化防止剤としては、ペンタエリトリトール化合物等を好適に用いることができ、より具体的には、ペンタエリトリトール=テトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオナート]等が挙げられる。 The antioxidant is not particularly limited, but conventionally known antioxidants used in urethane resin compositions can be used. As such an antioxidant, a pentaerythritol compound etc. can be suitably used, and more specifically, pentaerythritol=tetrakis[3-(3',5'-di-tert-butyl-4'- hydroxyphenyl) propionate] and the like.
 重合触媒としては特に限定されないが、ウレタン樹脂組成物に用いられる従来公知の重合触媒を用いることができる。このような重合触媒としては、ジオクチル錫ジラウレート、ジブチル錫ジラウレート、ジオクチル錫ジアセテート等の錫触媒;オクチル酸鉛、オクテン酸鉛、ナフテン酸鉛等の鉛触媒;オクチル酸ビスマス、ネオデカン酸ビスマス等のビスマス触媒、ジエチレントリアミン等のアミン系触媒等が挙げられる。また、上記触媒としては、有機金属化合物、金属錯体化合物等を用いてもよい。 The polymerization catalyst is not particularly limited, but conventionally known polymerization catalysts used in urethane resin compositions can be used. Such polymerization catalysts include tin catalysts such as dioctyltin dilaurate, dibutyltin dilaurate, and dioctyltin diacetate; lead catalysts such as lead octylate, lead octenoate, and lead naphthenate; bismuth octylate, bismuth neodecanoate, etc. Examples include bismuth catalysts and amine catalysts such as diethylenetriamine. Further, as the above-mentioned catalyst, an organic metal compound, a metal complex compound, etc. may be used.
 これらの添加剤の使用量は、その使用目的に応じて、ポリウレタン樹脂組成物の所望の特性を阻害することのないように、通常の添加量と同定の範囲から適宜決定すればよい。 The amount of these additives to be used may be appropriately determined according to the purpose of use, from the usual addition amount and specified range, so as not to impede the desired properties of the polyurethane resin composition.
(ポリウレタン樹脂組成物)
 本発明のポリウレタン樹脂組成物は、水酸基含有化合物と、可塑剤との混合物のSP値が8.75以上である。上記混合物のSP値が8.75未満であると、ポリウレタン樹脂組成物の耐熱性及びヒートサイクル性が低下する。上記混合物のSP値は、8.80以上が好ましく、8.85以上がより好ましい。また、上記混合物のSP値は、10.80以下が好ましく、10.70以下がより好ましく、9.20以下が更に好ましい。
(Polyurethane resin composition)
In the polyurethane resin composition of the present invention, the SP value of the mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more. If the SP value of the mixture is less than 8.75, the heat resistance and heat cycle properties of the polyurethane resin composition will decrease. The SP value of the above mixture is preferably 8.80 or more, more preferably 8.85 or more. Moreover, the SP value of the above mixture is preferably 10.80 or less, more preferably 10.70 or less, and even more preferably 9.20 or less.
 上記混合物のSP値は、後述の実施例に記載の方法により測定する。 The SP value of the above mixture is measured by the method described in Examples below.
 本発明のポリウレタン樹脂組成物において、イソシアネート基含有化合物、水酸基含有化合物、及び、可塑剤との混合物のSP値は特に限定されず、8.76以上が好ましく、8.80以上がより好ましく、8.85以上が更に好ましい。また、上記混合物のSP値は、11.00以下が好ましく、10.80以下がより好ましく、10.50以下が更に好ましい。上記混合物のSP値が上記範囲であることにより、ポリウレタン樹脂組成物の耐熱性及びヒートサイクル性がより一層向上し、且つ、電気電子部品を構成する部材との接着性がより向上する。 In the polyurethane resin composition of the present invention, the SP value of the mixture of the isocyanate group-containing compound, the hydroxyl group-containing compound, and the plasticizer is not particularly limited, and is preferably 8.76 or more, more preferably 8.80 or more, and 8. More preferably .85 or more. Further, the SP value of the above mixture is preferably 11.00 or less, more preferably 10.80 or less, and even more preferably 10.50 or less. When the SP value of the mixture is within the above range, the heat resistance and heat cycle properties of the polyurethane resin composition are further improved, and the adhesion to members constituting electrical and electronic components is further improved.
 上記混合物のSP値は、後述の実施例に記載の方法により測定する。 The SP value of the above mixture is measured by the method described in Examples below.
 本発明のポリウレタン樹脂組成物が硬化前の液状である場合、その粘度は500~100000mPa・sが好ましく、1000~10000mPa・sがより好ましく、1500~5000mPa・sが更に好ましい。粘度を上記範囲とすることにより、本発明のポリウレタン樹脂組成物が、より高い作業性を示すことができ、また、部品への流れ込みが向上するため電気電子部品との密着性が向上し、ボイドが発生し難くなり、樹脂強度、熱伝導性、防水性がより向上する。更に、粘度の上限が上記範囲であることにより、無機充填剤を多く配合できるため、難燃性がより向上し、線膨張係数が下がり、且つ、ヒートサイクル性がより向上する。 When the polyurethane resin composition of the present invention is in a liquid state before curing, its viscosity is preferably 500 to 100,000 mPa·s, more preferably 1,000 to 10,000 mPa·s, and even more preferably 1,500 to 5,000 mPa·s. By setting the viscosity within the above range, the polyurethane resin composition of the present invention can exhibit higher workability, and also improves flow into components, improving adhesion with electrical and electronic components and eliminating voids. This makes it difficult for resin to occur, and resin strength, thermal conductivity, and waterproofness are further improved. Furthermore, since the upper limit of the viscosity is within the above range, a large amount of inorganic filler can be blended, which further improves flame retardancy, lowers the coefficient of linear expansion, and further improves heat cycle performance.
 本明細書において、硬化前のポリウレタン樹脂組成物の粘度は、後述の実施例に記載のブルックフィールドBH型粘度計により測定される値である。 In this specification, the viscosity of the polyurethane resin composition before curing is a value measured by a Brookfield BH type viscometer described in the Examples below.
 本発明のポリウレタン樹脂組成物の、DMA(動的粘弾性測定)により測定される損失弾性率(E’’:10Hz)の最大ピーク点から算出されるガラス転移温度は、-40℃以下が好ましく、-60℃以下がより好ましい。また、上記ガラス転移温度は、低い程好ましく、例えば、-80℃程度であってもよい。 The glass transition temperature of the polyurethane resin composition of the present invention, which is calculated from the maximum peak point of the loss modulus (E'': 10Hz) measured by DMA (dynamic mechanical analysis), is preferably -40°C or lower. , -60°C or lower is more preferable. Further, the glass transition temperature is preferably as low as possible, and may be, for example, about -80°C.
 本明細書において、DMA(動的粘弾性測定)により測定される損失弾性率(E’’:10Hz)の最大ピーク点から算出されるガラス転移温度(Tg)は、後述の実施例に記載の方法により測定する。なお、DMAでのTgの決定には通常tanδが用いられる。しかしながら、tanδはピークポイントがブロードし易く、測定誤差が大きい傾向があるため、損失弾性率(E’’)で決定する方が正確である。このため、本明細書では損失弾性率(E’’:10Hz)の最大ピーク点からガラス転移温度(Tg)を算出する。 In this specification, the glass transition temperature (Tg) calculated from the maximum peak point of the loss modulus (E'': 10Hz) measured by DMA (dynamic mechanical analysis) is the same as that described in the Examples below. Measure by method. Note that tan δ is normally used to determine Tg in DMA. However, since tan δ tends to have a broad peak point and a large measurement error, it is more accurate to determine it using the loss modulus (E''). Therefore, in this specification, the glass transition temperature (Tg) is calculated from the maximum peak point of the loss modulus (E'': 10 Hz).
 本発明のポリウレタン樹脂組成物を製造する方法としては特に限定されず、ポリウレタン樹脂組成物を製造する方法として用いられる従来公知の方法により製造することができる。 The method for producing the polyurethane resin composition of the present invention is not particularly limited, and it can be produced by any conventionally known method used as a method for producing polyurethane resin compositions.
 このような製造方法としては、例えば、イソシアネート基含有化合物を含む成分を調製してA成分(ポリイソシアネート成分)、水酸基含有化合物を含む成分を調製してB成分(ポリオール成分)とし、A成分とB成分とを混合することにより反応させてポリウレタン樹脂として、当該ポリウレタン樹脂を含有するポリウレタン樹脂組成物を製造する方法が挙げられる。 As such a manufacturing method, for example, a component containing an isocyanate group-containing compound is prepared as component A (polyisocyanate component), a component containing a hydroxyl group-containing compound is prepared as component B (polyol component), and component A and component A are prepared. A method of producing a polyurethane resin composition containing the polyurethane resin by reacting the polyurethane resin with component B can be mentioned.
 上記A成分がイソシアネート基含有化合物を含有し、上記B成分が水酸基含有化合物を含有していれば、他の成分は、A成分又はB成分のどちらに含有されていてもよい。中でも、B成分に無機充填剤が含まれている構成が好ましい。このような構成とすることにより、無機充填剤に含まれる水分とポリイソシアネート基含有化合物が反応することによるポリウレタン樹脂の硬化不良を抑制することができる。 As long as the above-mentioned A component contains an isocyanate group-containing compound and the above-mentioned B component contains a hydroxyl group-containing compound, other components may be contained in either the A component or the B component. Among these, a configuration in which the B component contains an inorganic filler is preferable. With such a configuration, it is possible to suppress curing failure of the polyurethane resin due to reaction between moisture contained in the inorganic filler and the polyisocyanate group-containing compound.
 イソシアネート基含有化合物の一部をB成分に添加するか、又は、水酸基含有化合物の一部をA成分に添加することにより、一部を予め反応させてイソシアネート末端ウレタンプレポリマー(水酸基末端ウレタンプレポリマー)としてもよい。上記構成とすることにより、A成分とB成分との配合比が1:1に近づき、A成分とB成分とをより混合し易くなり、また、一部をウレタン化することで、A成分のSP値とB成分のSP値との差が小さくなり、相容性がより向上し、反応がより速くなる。 By adding a part of the isocyanate group-containing compound to component B or by adding a part of the hydroxyl group-containing compound to component A, a part of the compound is reacted in advance to form an isocyanate-terminated urethane prepolymer (hydroxyl-terminated urethane prepolymer). ). With the above configuration, the blending ratio of component A and component B approaches 1:1, making it easier to mix the components A and B. Also, by converting a portion of the component into urethane, the blending ratio of component A and component B approaches 1:1. The difference between the SP value and the SP value of component B becomes smaller, the compatibility is further improved, and the reaction is faster.
 上記A成分及びB成分の構成の組み合わせとしては、具体的には、A成分がイソシアネート基含有化合物のみを含有し、B成分が水酸基含有化合物、可塑剤、並びに、必要に応じて無機充填剤、酸化防止剤、重合触媒を含有する構成が好ましい。このような構成とすることにより、A成分及びB成分が液安定性に優れる。 Specifically, the combination of the compositions of component A and component B is such that component A contains only an isocyanate group-containing compound, and component B contains a hydroxyl group-containing compound, a plasticizer, and, if necessary, an inorganic filler. A configuration containing an antioxidant and a polymerization catalyst is preferred. With such a configuration, component A and component B have excellent liquid stability.
 ポリウレタン樹脂組成物は、硬化前の液状であってもよいし、硬化物であってもよく、硬化物は、ポリウレタン樹脂とも称する。ポリウレタン樹脂組成物を硬化させる方法としては、上記A成分及びB成分を混合することにより、イソシアネート基含有化合物と水酸基含有化合物とを反応させてポリウレタン樹脂とすることによりポリウレタン樹脂組成物を経時的に硬化させる方法が挙げられるが、加熱により硬化させてもよい。この場合、加熱温度は40℃~120℃程度が好ましく、加熱時間は、0.1時間~24時間程度が好ましい。 The polyurethane resin composition may be in a liquid state before curing or may be a cured product, and the cured product is also referred to as a polyurethane resin. As a method for curing the polyurethane resin composition, by mixing the above A component and B component, an isocyanate group-containing compound and a hydroxyl group-containing compound are reacted to form a polyurethane resin, and the polyurethane resin composition is cured over time. Although a method of curing may be mentioned, it may be hardened by heating. In this case, the heating temperature is preferably about 40° C. to 120° C., and the heating time is preferably about 0.1 hour to 24 hours.
 ポリウレタン樹脂組成物(の硬化物)の-30℃での弾性率(E’:10Hz)は、40MPa以下が好ましく、25MPa以下がより好ましい。また、上記弾性率は、5MPa以上が好ましい。 The elastic modulus (E': 10 Hz) at -30°C of the polyurethane resin composition (cured product thereof) is preferably 40 MPa or less, more preferably 25 MPa or less. Further, the elastic modulus is preferably 5 MPa or more.
 ポリウレタン樹脂組成物(の硬化物)の120℃の弾性率と、-30℃の弾性率との差は25MPa以下が好ましく、20MPa以下がより好ましい。ヒートサイクル性は、線膨張係数が一定である場合、高温時での弾性率と低温時の弾性率との差から発生する応力が影響する。このため、高温の弾性率と低温時の弾性率との差が小さいことが好ましい。 The difference between the elastic modulus at 120°C and the elastic modulus at -30°C of the polyurethane resin composition (cured product thereof) is preferably 25 MPa or less, more preferably 20 MPa or less. When the coefficient of linear expansion is constant, the heat cycle property is affected by the stress generated from the difference between the elastic modulus at high temperatures and the elastic modulus at low temperatures. For this reason, it is preferable that the difference between the elastic modulus at high temperature and the elastic modulus at low temperature is small.
 上記ポリウレタン樹脂組成物(の硬化物)の弾性率は、後述の実施例に記載の動的粘弾性測定機を用いる測定方法により測定する。 The elastic modulus of (the cured product of) the polyurethane resin composition is measured by a measuring method using a dynamic viscoelasticity measuring device described in Examples below.
 本発明のポリウレタン樹脂組成物は、水酸基含有化合物と、可塑剤との混合物のSP値が8.75以上9.20以下であり、且つ、120℃の弾性率と、-30℃の弾性率との差が25MPa以下であることが好ましい。上記構成とすることで、ポリウレタン樹脂組成物の耐熱性がより向上し、温度変化による弾性率の変化が小さいことでポリウレタン樹脂組成物に発生する内部応力が小さくなるため、ヒートサイクル性がより向上する。 The polyurethane resin composition of the present invention has an SP value of a mixture of a hydroxyl group-containing compound and a plasticizer of 8.75 or more and 9.20 or less, and a modulus of elasticity at 120°C and a modulus of elasticity at -30°C. It is preferable that the difference is 25 MPa or less. With the above structure, the heat resistance of the polyurethane resin composition is further improved, and the internal stress generated in the polyurethane resin composition is reduced due to the small change in elastic modulus due to temperature changes, which further improves heat cycle performance. do.
 本発明のポリウレタン樹脂組成物は、水酸基含有化合物がポリオレフィンポリオールを含有し、可塑剤は、SP値が8.75以上の可塑剤aと、SP値が8.75未満の可塑剤bとを含有することが好ましい。上記構成とすることで、ポリウレタン樹脂組成物のガラス転移温度が下がりヒートサイクル性がより向上する。 In the polyurethane resin composition of the present invention, the hydroxyl group-containing compound contains a polyolefin polyol, and the plasticizer contains a plasticizer a having an SP value of 8.75 or more and a plasticizer b having an SP value of less than 8.75. It is preferable to do so. With the above configuration, the glass transition temperature of the polyurethane resin composition is lowered and the heat cycle properties are further improved.
2.封止材、電気電子部品
 本発明は、また、上記ポリウレタン樹脂組成物からなる封止材でもある。上記ポリウレタン樹脂組成物からなる封止材は、相溶性に優れ、耐熱性及びヒートサイクル性に優れているので、高温環境下で使用される電気電子部品や、発熱を伴う電気電子部品等に好適に使用することができる。また、上記ポリウレタン樹脂組成物からなる封止材は、低温領域での柔軟性にも優れているので、低温環境下で使用される電気電子部品等にも好適に使用することができる。このような電気電子部品としては、トランスコイル、チョークコイル及びリアクトルコイル等の変圧器や機器制御基盤、各種センサー等が挙げられる。このような電気電子部品も、本発明の一つである。本発明の電気電子部品は、電気洗濯機、便座、湯沸し器、浄水器、風呂、食器洗浄機、電動工具、自動車、バイク等に用いることができる。
2. Encapsulant, Electrical and Electronic Components The present invention also provides an encapsulant made of the above-mentioned polyurethane resin composition. The encapsulant made of the polyurethane resin composition has excellent compatibility, heat resistance, and heat cycle properties, and is therefore suitable for electrical and electronic components used in high-temperature environments and electrical and electronic components that generate heat. It can be used for. Furthermore, the sealing material made of the polyurethane resin composition has excellent flexibility in a low temperature range, and therefore can be suitably used for electrical and electronic components used in low temperature environments. Examples of such electrical and electronic components include transformers such as transformer coils, choke coils, and reactor coils, equipment control boards, and various sensors. Such electrical and electronic components are also part of the present invention. The electrical and electronic components of the present invention can be used in electric washing machines, toilet seats, water heaters, water purifiers, baths, dishwashers, power tools, automobiles, motorcycles, and the like.
 更に、本発明のポリウレタン樹脂組成物は、接着剤としても有用に用いることができる。接着剤は部材のSP値との差が小さい方が、接着性が高くなる。電気電子部品の部材等に用いられるプラスチックの多くはSP値が9以上であるため、本件特許発明目のポリウレタン樹脂組成物のSP値が8.75以上であることにより、高い接着性を示すことができる。また、本発明のポリウレタン樹脂組成物は、電気電子部品の放熱目的で使用されるギャップフィラーとしても有用に用いることができる。 Furthermore, the polyurethane resin composition of the present invention can be usefully used as an adhesive. The smaller the difference between the adhesive and the SP value of the member, the higher the adhesiveness. Since most of the plastics used for electrical and electronic components have an SP value of 9 or more, the polyurethane resin composition of the patented invention exhibits high adhesiveness by having an SP value of 8.75 or more. I can do it. Moreover, the polyurethane resin composition of the present invention can be usefully used as a gap filler used for the purpose of heat dissipation in electrical and electronic components.
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。 The present invention will be specifically explained below with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
 実施例、及び比較例に使用する原料を下記に示す。 The raw materials used in Examples and Comparative Examples are shown below.
(A)イソシアネート基含有化合物
・TPA-100:HDIイソシアヌレート変性体、商品名;デュラネートTPA-100、旭化成ケミカルズ社製、分子量546、比重1.16、SP値11.74(Fedors法による計算値)
・A201H:HDIアロファネート変性体、商品名;デュラネートA201H、旭化成ケミカルズ社製、分子量466、比重1.05、SP値12.29(Fedors法による計算値)
・HMDI:水添MDI、商品名;WANNATE HMDI、万華化学ジャパン株式会社製、分子量262、比重1.08、SP値10.74(Fedors法による計算値)
・MTL:カルボジイミド変性MDI、商品名;ミリオネートMTL、東ソー社製、分子量250、比重1.22、SP値12.66(Fedors法による計算値)
(A) Isocyanate group-containing compound TPA-100: HDI isocyanurate modified product, trade name: Duranate TPA-100, manufactured by Asahi Kasei Chemicals, molecular weight 546, specific gravity 1.16, SP value 11.74 (value calculated by Fedors method) )
・A201H: HDI allophanate modified product, trade name: Duranate A201H, manufactured by Asahi Kasei Chemicals, molecular weight 466, specific gravity 1.05, SP value 12.29 (value calculated by Fedors method)
・HMDI: Hydrogenated MDI, product name: WANNATE HMDI, manufactured by Wanka Chemical Japan Co., Ltd., molecular weight 262, specific gravity 1.08, SP value 10.74 (value calculated by Fedors method)
・MTL: Carbodiimide modified MDI, trade name: Millionate MTL, manufactured by Tosoh Corporation, molecular weight 250, specific gravity 1.22, SP value 12.66 (value calculated by Fedors method)
(B)水酸基含有化合物
・R-45HT:ポリブタジエンポリオール、商品名;Poly bd R-45 HT、出光石油化学社製、数平均分子量 2800、SP値8.86(Fedors法による計算値)
・R-15HT:ポリブタジエンポリオール、商品名:Poly bd R-15 HT 、出光石油化学社製、数平均分子量1200、SP値9.16(Fedors法による計算値)
・H-30:ポリエステルポリオール(ひまし油ポリオール)、商品名;URIC H-30、藤製油株式会社製、数平均分子量933、SP値10.86(Fedors法による計算値)
・P-2050:ポリエステルポリオール、商品名;クラレポリオールP-2050、株式会社クラレ製、数平均分子量2000、SP値11.29(Fedors法による計算値)
・ポリエステルポリオール(X)、分子量1300、SP値10.35(Fedors法による計算値)
(B) Hydroxyl group-containing compound /R-45HT: polybutadiene polyol, trade name: Poly bd R-45 HT, manufactured by Idemitsu Petrochemical Co., Ltd., number average molecular weight 2800, SP value 8.86 (value calculated by Fedors method)
・R-15HT: Polybutadiene polyol, trade name: Poly bd R-15 HT, manufactured by Idemitsu Petrochemical Co., Ltd., number average molecular weight 1200, SP value 9.16 (value calculated by Fedors method)
・H-30: Polyester polyol (castor oil polyol), trade name: URIC H-30, manufactured by Fuji Oil Co., Ltd., number average molecular weight 933, SP value 10.86 (value calculated by Fedors method)
・P-2050: Polyester polyol, trade name: Kuraray Polyol P-2050, manufactured by Kuraray Co., Ltd., number average molecular weight 2000, SP value 11.29 (value calculated by Fedors method)
・Polyester polyol (X), molecular weight 1300, SP value 10.35 (value calculated by Fedors method)
 なお、上記ポリエステルポリオール(X)は以下の方法により製造した。すなわち、撹拌機、温度計、窒素導入管、検水管付き還流コンデンサを備えた反応器に、酸価178の水添ひまし油脂肪酸1220g(4モル)と還流補助のためのキシレン60mLとを仕込み、窒素気流下180℃~220℃で6時間反応させた。この間、縮合反応により生成する水は共沸により系外に留去させた。これにより、酸価46のオキシカルボン酸オリゴマーが得られた。 Note that the above polyester polyol (X) was manufactured by the following method. That is, 1220 g (4 moles) of hydrogenated castor oil fatty acid with an acid value of 178 and 60 mL of xylene for reflux assistance were charged into a reactor equipped with a stirrer, a thermometer, a nitrogen inlet tube, and a reflux condenser with a test tube. The reaction was carried out for 6 hours at 180°C to 220°C under air flow. During this time, water produced by the condensation reaction was distilled out of the system by azeotropy. As a result, an oxycarboxylic acid oligomer having an acid value of 46 was obtained.
 次いで、反応器に、多価アルコールの一例としてヒンダードアルコールであるトリメチロールプロパン134g(1モル)及び触媒としてのパラトルエンスルホン酸 1.0gを加えて180℃~220℃で7時間反応させた。この間、縮合反応により生成する水は共沸により系外に留去させた。反応終了後、触媒及びキシレンを除去した。これにより、常温で液状で、酸価3.3、OH価105、ヨウ素価 3.2、粘度2.1Pa・s/23℃の液状のポリエステルポリオール(X) を調製した。
(C)無機充填剤
・H-32:水酸化アルミニウム、商品名;ハイジライト H-32、昭和電工株式会社製
(D)可塑剤
・DUP:フタル酸ジウンデシル、商品名;DUP、株式会社ジェイプラス製、SP値8.73(Small法による計算値)、脆化温度-32℃、凝固点-45℃、分子量475、比重0.95
・DIDA:アジピン酸ジイソデシル、商品名;DIDA、株式会社ジェイプラス製、SP値8.56(Small法による計算値)、脆化温度-46℃、凝固点-70℃、分子量427、比重0.92
・DINP:フタル酸ジイソノニル、商品名;DINP、株式会社ジェイプラス製、SP値8.93(Small法による計算値)、脆化温度-24℃、凝固点-45℃、分子量419、比重0.97
・TOTM:トリメリット酸エステル、商品名;TOTM、株式会社ジェイプラス製、SP値8.96(Small法による計算値)、脆化温度-17℃、凝固点-30℃、分子量547、比重0.98
・TCP:トリクレジルフォスフェート、商品名;TCP、大八化学工業製、SP値9.70(Small法による計算値)、凝固点-35℃、分子量368、比重1.17
(E)酸化防止剤
・イルガノックス1010:ペンタエリトリトール=テトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオナート]、商品名;IrganoX1010、BASF社製
(F)重合触媒
・U-810:ジオクチル錫ジラウレート、商品名;ネオスタンU-810、日東化成社製
Next, 134 g (1 mol) of trimethylolpropane, which is a hindered alcohol as an example of a polyhydric alcohol, and 1.0 g of para-toluenesulfonic acid as a catalyst were added to the reactor, and the mixture was reacted at 180° C. to 220° C. for 7 hours. . During this time, water produced by the condensation reaction was distilled out of the system by azeotropy. After the reaction was completed, the catalyst and xylene were removed. Thereby, a liquid polyester polyol (X) was prepared which was liquid at room temperature, had an acid value of 3.3, an OH value of 105, an iodine value of 3.2, and a viscosity of 2.1 Pa·s/23°C.
(C) Inorganic filler /H-32: Aluminum hydroxide, product name: Hygilite H-32, manufactured by Showa Denko K.K.
(D) Plasticizer /DUP: diundecyl phthalate, trade name: DUP, manufactured by J-Plus Co., Ltd., SP value 8.73 (value calculated by the Small method), embrittlement temperature -32°C, freezing point -45°C, molecular weight 475 , specific gravity 0.95
・DIDA: Diisodecyl adipate, trade name: DIDA, manufactured by J-Plus Co., Ltd., SP value 8.56 (value calculated by the Small method), embrittlement temperature -46°C, freezing point -70°C, molecular weight 427, specific gravity 0.92
・DINP: diisononyl phthalate, trade name: DINP, manufactured by J-Plus Co., Ltd., SP value 8.93 (value calculated by the Small method), embrittlement temperature -24°C, freezing point -45°C, molecular weight 419, specific gravity 0.97
・TOTM: Trimellitic acid ester, trade name: TOTM, manufactured by J-Plus Co., Ltd., SP value 8.96 (value calculated by the Small method), embrittlement temperature -17°C, freezing point -30°C, molecular weight 547, specific gravity 0. 98
・TCP: Tricresyl phosphate, trade name: TCP, manufactured by Daihachi Chemical Industry, SP value 9.70 (value calculated by Small method), freezing point -35°C, molecular weight 368, specific gravity 1.17
(E) Antioxidant /Irganox 1010: Pentaerythritol=tetrakis [3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate], trade name: IrganoX1010, manufactured by BASF
(F) Polymerization catalyst /U-810: Dioctyltin dilaurate, trade name: Neostan U-810, manufactured by Nitto Kasei Co., Ltd.
 なお、上記(A)イソシアネート基含有化合物、(B)水酸基含有化合物、(D)可塑剤の特性を表1~表3に示す。 The properties of the above (A) isocyanate group-containing compound, (B) hydroxyl group-containing compound, and (D) plasticizer are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3において、脆化温度は、JIS K7216に準拠した測定方法により測定した値である。具体的には、下記条件により、ある温度点で試験片の50%が2個又はそれ以上に破壊したときの温度を測定する。
試験片:サイズ 38.0±2.0×6.0±0.4×2.0±0.2 (mm)
試験片を23℃±2、相対湿度50±5%の室温で40時間以上置いて使用する。1試料につき温度を変えて5水準試験する。各水準での試験回数は10回である。
伝熱溶媒:エタノール
試験方法:試験雰囲気温度に試験片を3分間置いた後に打撃ハンマーにて5mmの移動距離から2±0.2m/sの速度で1回衝撃を与え、破壊の有無を確認し評価する。
測定機器:脆化温度試験機 FS((株)東洋精機製作所製)
In Table 3, the embrittlement temperature is a value measured by a measuring method based on JIS K7216. Specifically, the temperature at which 50% of the test piece breaks into two or more pieces at a certain temperature point is measured under the following conditions.
Test piece: Size 38.0±2.0×6.0±0.4×2.0±0.2 (mm)
The test piece is left at room temperature of 23°C ± 2 and relative humidity 50 ± 5% for 40 hours or more before use. Five levels of testing are carried out by changing the temperature for each sample. The number of tests at each level was 10 times.
Heat transfer solvent: Ethanol Test method: After placing the test piece in the test atmosphere temperature for 3 minutes, impact it once with a hammer at a speed of 2 ± 0.2 m/s from a moving distance of 5 mm to check for damage. and evaluate.
Measuring equipment: Embrittlement temperature tester FS (manufactured by Toyo Seiki Seisakusho Co., Ltd.)
 表1~表3において、SP値は、(A)イソシアネート基含有化合物、及び、(B)水酸基含有化合物はFedors法で、(D)可塑剤はSmall法で測定した値である。 In Tables 1 to 3, SP values are values measured by the Fedors method for (A) isocyanate group-containing compounds and (B) hydroxyl group-containing compounds, and by the Small method for (D) plasticizers.
 (A)イソシアネート基含有化合物、及び、(B)水酸基含有化合物のSP値をFedors法により測定する測定方法を以下に示す。これらのSP値は、下記式により算出した。
(SP値)=[ΣΔei/ΣΔvi]1/2
Δei:原子又は原子団の蒸発エネルギー
Δvi:原子又は原子団のモル体積
A measurement method for measuring the SP value of (A) the isocyanate group-containing compound and (B) the hydroxyl group-containing compound by the Fedors method is shown below. These SP values were calculated using the following formula.
(SP value) = [ΣΔei/ΣΔvi] 1/2
Δei: Evaporation energy of an atom or atomic group Δvi: Molar volume of an atom or atomic group
 なお、上記Δei及びΔviは、文献値(R.F.Fedors, Polymer Engineering and Science, 14,(2), 147(1974).を引用した。これらの数値を下記表4に示す。 Note that the above Δei and Δvi are cited from literature values (RF Fedors, Polymer Engineering and Science, 14, (2), 147 (1974). These values are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記Fedors法により下記化学式により示されるMDIイソシアネートのSP値を算出する方法を一例として示す。 An example of a method for calculating the SP value of MDI isocyanate represented by the chemical formula below using the Fedors method is shown below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記化学式から、各官能基等の種類と数は以下の通りである。
(NCO)×2+(CH)×1+(-CH=)×8+(=C<)×4
上記を考慮して、ΣΔei及びΣΔeiは、以下のように算出される。
ΣΔei=(6800)×2+(1180)×1+(1030)×8+(1030)×4
ΣΔvi=(35)×2+(16.1)×1+(13.5)×8+(-5.5)×4
以上より、SP値は以下のように算出される。
(SP値)=[ΣΔei/ΣΔvi]1/2=12.55
From the above chemical formula, the types and numbers of each functional group are as follows.
(NCO)×2+(CH 2 )×1+(-CH=)×8+(=C<)×4
Considering the above, ΣΔei and ΣΔei are calculated as follows.
ΣΔei=(6800)×2+(1180)×1+(1030)×8+(1030)×4
ΣΔvi=(35)×2+(16.1)×1+(13.5)×8+(-5.5)×4
From the above, the SP value is calculated as follows.
(SP value) = [ΣΔei/ΣΔvi] 1/2 = 12.55
 (D)可塑剤のSP値をSmall法により測定する測定方法を以下に示す。(D)可塑剤のSP値は、下記式により算出した。
(SP値)=dΣG/M
d:比重
G:分子引力恒数
M:分子量
(D) A method for measuring the SP value of a plasticizer using the Small method is shown below. (D) The SP value of the plasticizer was calculated using the following formula.
(SP value) = dΣG/M
d: Specific gravity G: Molecular attraction constant M: Molecular weight
 なお、上記Gは、文献値(P.A.Small:J.Appl.chem.,3,71(1953).)を引用した。これらの数値を下記表5に示す。 Incidentally, the above G refers to the literature value (P.A. Small: J. Appl. chem., 3, 71 (1953).). These values are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記Small法により下記化学式により示されるDUPのSP値を算出する方法を一例として示す。 An example of a method for calculating the SP value of DUP represented by the following chemical formula using the Small method described above is shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記化学式から、各官能基等の種類と数は以下の通りである。
(CH)×2+(CH)×20+(COO)×2+(フェニレン)×1
上記を考慮して、ΣG、d及びMは、以下のようになる。
ΣG=(214)×2+(133)×20+(310)×2+(658)×1
d=0.95、M=475
以上より、SP値は以下のように算出される。
(SP値)=dΣG/M=8.73
From the above chemical formula, the types and numbers of each functional group are as follows.
(CH 3 ) x 2 + (CH 2 ) x 20 + (COO) x 2 + (phenylene) x 1
Considering the above, ΣG, d and M are as follows.
ΣG=(214)×2+(133)×20+(310)×2+(658)×1
d=0.95, M=475
From the above, the SP value is calculated as follows.
(SP value)=dΣG/M=8.73
 上記のようにして得られた各成分のSP値を基に、混合物のSP値((1)(A)イソシアネート基含有化合物+(B)水酸基含有化合物+(D)可塑剤のSP値;(2)(B)水酸基含有化合物+(D)可塑剤のSP値;(3)複数の(D)可塑剤の混合物のSP値)を算出した。算出方法は、特開2011-194508号広報の0020段落に記載の式(3)の算出方法を参照し、下記式により混合物のSP値を算出した。
(混合物のSP値)=[ΣXn(モル分率)×Vn(モル容積)×σn(各材料のSP値)]/[ΣXn(モル分率)×Vn(モル容積)]
なお、上記式において、各成分のモル分率、モル容積は、(A)イソシアネート基含有化合物、(B)水酸基含有化合物、(D)可塑剤、各組成の配合部数、分子量、比重から算出した。
Based on the SP value of each component obtained as above, the SP value of the mixture ((1) SP value of (A) isocyanate group-containing compound + (B) hydroxyl group-containing compound + (D) plasticizer; 2) SP value of (B) hydroxyl group-containing compound + (D) plasticizer; (3) SP value of mixture of multiple (D) plasticizers) were calculated. For the calculation method, the SP value of the mixture was calculated using the following formula with reference to the calculation method of formula (3) described in paragraph 0020 of JP-A No. 2011-194508.
(SP value of mixture) = [ΣXn (mole fraction) × Vn (mole volume) × σn (SP value of each material)] / [ΣXn (mole fraction) × Vn (mole volume)]
In the above formula, the molar fraction and molar volume of each component were calculated from (A) isocyanate group-containing compound, (B) hydroxyl group-containing compound, (D) plasticizer, and the number of blended parts, molecular weight, and specific gravity of each composition. .
(ポリウレタン樹脂組成物の製造)
 表1に示す(B)~(F)の配合の原料を、加熱、冷却、減圧装置を備えた反応釜に投入し、100℃、10mmHg以下の圧力下で2時間かけて脱水し、ポリオール成分を調製した。
(Manufacture of polyurethane resin composition)
The raw materials (B) to (F) shown in Table 1 were put into a reaction vessel equipped with heating, cooling, and pressure reduction equipment, and dehydrated for 2 hours at 100°C and under a pressure of 10 mmHg or less. was prepared.
 ポリイソシアネート成分として、(A)のイソシアネート基含有化合物を用意した。 The isocyanate group-containing compound (A) was prepared as a polyisocyanate component.
 表1に示す配合量となるように、上記ポリオール成分にポリイソシアネート成分を加えて撹拌し、脱泡して混合することによりポリウレタン樹脂組成物を得た。ポリオール成分とポリイソシアネート成分との混合は、ポリオール成分を23℃に調整し、続いて23℃に調整したポリイソシアネート成分を添加し、自転・公転ミキサー(あわとり練太郎、シンキー社製)を用いて、回転数2000rpmで1分間撹拌することにより行った。 A polyurethane resin composition was obtained by adding a polyisocyanate component to the above polyol component, stirring, defoaming, and mixing so that the blending amount was as shown in Table 1. The polyol component and the polyisocyanate component were mixed by adjusting the polyol component to 23°C, then adding the polyisocyanate component adjusted to 23°C, and using a rotation/revolution mixer (Awatori Rentaro, manufactured by Shinky Co., Ltd.). The mixture was stirred for 1 minute at a rotational speed of 2000 rpm.
 以上のように調製した実施例及び比較例のポリウレタン樹脂組成物を用いて、下記の試験を行った。 The following tests were conducted using the polyurethane resin compositions of Examples and Comparative Examples prepared as described above.
 (試験片の作成)
 100mm×100mm×3mmの成形用型A、内径30mm、高さ10mmの成形用型B、10mm×80mm×3mmの成形用型Cに、調製したポリウレタン樹脂組成物を注入した。次いで、型内のポリウレタン樹脂組成物を80℃で16時間加熱した後、室温で1日放置して硬化させた。これにより、試験片A(100mm×100mm×3mm)、試験片B(内径30mm、高さ10mm)、及び、試験片C(10mm×80mm×3mm)を調製した。また、試験片Aを3号ダンベル試験片状にカットし、試験片A-1を調製した。
(Creation of test piece)
The prepared polyurethane resin composition was injected into a mold A with a size of 100 mm x 100 mm x 3 mm, a mold B with an inner diameter of 30 mm and a height of 10 mm, and a mold C with a size of 10 mm x 80 mm x 3 mm. Next, the polyurethane resin composition in the mold was heated at 80° C. for 16 hours, and then left at room temperature for one day to be cured. Thereby, test piece A (100 mm x 100 mm x 3 mm), test piece B (inner diameter 30 mm, height 10 mm), and test piece C (10 mm x 80 mm x 3 mm) were prepared. Further, test piece A was cut into a No. 3 dumbbell test piece to prepare test piece A-1.
 以上のように調製した実施例及び比較例のポリウレタン樹脂組成物、及び、試験片を用いて、下記の測定及び試験を行った。 The following measurements and tests were conducted using the polyurethane resin compositions of Examples and Comparative Examples and test pieces prepared as described above.
粘度
 ポリウレタン樹脂組成物を23℃に調整し、ポリオール成分とポリイソシアネート成分、無機充填剤、可塑剤とを混合してから3分後の粘度をブルックフィールドBH型粘度計にて測定した。
Viscosity The polyurethane resin composition was adjusted to 23° C., and the viscosity was measured using a Brookfield BH viscometer 3 minutes after mixing the polyol component, polyisocyanate component, inorganic filler, and plasticizer.
初期硬度
 試験片Bの温度を23℃に調整し、JIS K 6253に準拠した測定方法により、硬度計(高分子計器社製、アスカーゴム硬度計A型)を用いて硬度(タイプA)を測定した。
The temperature of the initial hardness test piece B was adjusted to 23 ° C., and the hardness (type A) was measured using a hardness meter (manufactured by Kobunshi Keiki Co., Ltd., Asker Rubber Hardness Meter Type A) according to a measurement method based on JIS K 6253. .
体積抵抗値
 試験片Aの体積抵抗率を、抵抗測定器(HIOKI社製、DSM-8104)を用いて測定した。体積抵抗率の測定値を体積抵抗値とした。
The volume resistivity of the volume resistivity test piece A was measured using a resistance measuring device (manufactured by HIOKI, DSM-8104). The measured value of the volume resistivity was taken as the volume resistivity value.
伸び率(柔軟性)
 試験片A-1の伸び率(柔軟性)をJIS K 6301に準拠した測定方法により、下記式に基づいて算出した。
伸び率(%)={[(破断時の標線間距離)(標線間距離)]÷(標線間距離)}×100
Elongation rate (flexibility)
The elongation rate (flexibility) of the test piece A-1 was calculated based on the following formula using a measuring method based on JIS K 6301.
Elongation rate (%) = {[(distance between gauge lines at break) (distance between gauge lines)] ÷ (distance between gauge lines)}×100
弾性率(E’10Hz)、ガラス転移温度(E’’)
 -40℃、-30℃、-20℃、23℃、120℃の各温度における試験片Cの弾性率E’(10Hz)を、動的粘弾性測定機:DMA(SII Nano Technology社製:DMS6100)を用いて測定した。また、「損失弾性率E’’(10Hz)」のピーク点からガラス転移温度(℃)を算出した。
Elastic modulus (E'10Hz), glass transition temperature (E'')
The elastic modulus E' (10 Hz) of the test piece C at each temperature of -40°C, -30°C, -20°C, 23°C, and 120°C was measured using a dynamic viscoelasticity measuring machine: DMA (manufactured by SII Nano Technology: DMS6100). ). Further, the glass transition temperature (° C.) was calculated from the peak point of the “loss modulus E'' (10 Hz).
弾性率の上昇率
 下記式に従って、弾性率の上昇率を算出した。
(弾性率の上昇率(1))=(-30℃の弾性率(MPa))/(-20℃の弾性率(MPa))
(弾性率の上昇率(2))=(-40℃の弾性率(MPa))/(-20℃の弾性率(MPa))
 下記評価基準に従って評価した。
A:弾性率の上昇率(1)が2未満である
B:AにもCにも該当しない
C:-40℃の弾性率が60MPa以上であるか、下記弾性率の上昇率(2)が5以上である。
Rate of increase in elastic modulus The rate of increase in elastic modulus was calculated according to the following formula.
(Rate of increase in elastic modulus (1)) = (Elastic modulus at -30°C (MPa)) / (Elastic modulus at -20°C (MPa))
(Rate of increase in elastic modulus (2)) = (Elastic modulus at -40°C (MPa)) / (Elastic modulus at -20°C (MPa))
Evaluation was made according to the following evaluation criteria.
A: The rate of increase in elastic modulus (1) is less than 2. B: Neither A nor C applies. C: The elastic modulus at -40°C is 60 MPa or more, or the rate of increase in elastic modulus (2) below is It is 5 or more.
弾性率変化量
 下記式に従って、硬度変化量を算出した。
(硬度変化量)=[-30℃の弾性率(MPa)]-[120℃の弾性率(MPa)]
 下記評価基準に従って評価した。
A:変化量25MPa未満
B:変化量25MPa以上40MPa未満
C:変化量40MPa以上
Change in elastic modulus The change in hardness was calculated according to the following formula.
(Hardness change amount) = [Elastic modulus at -30°C (MPa)] - [Elastic modulus at 120°C (MPa)]
Evaluation was made according to the following evaluation criteria.
A: Amount of change less than 25 MPa B: Amount of change 25 MPa or more and less than 40 MPa C: Amount of change 40 MPa or more
耐熱性(硬度変化率)
 試験片Bを用いて上述の初期硬度を測定後、当該試験片Bを100℃の乾燥機で500時間加熱し、室温(23℃)まで冷却してから試験片Bの硬度(最終硬度)を初期硬度と同様にして測定した。初期硬度と最終硬度から、下記式に基づいて硬度変化率を算出した。
(硬度変化率(%))=[(最終硬度-初期硬度)/初期硬度]×100
 下記評価基準に従って評価した。
A:硬度変化率20%未満
C:硬度変化率20%以上
Heat resistance (hardness change rate)
After measuring the above-mentioned initial hardness using test piece B, the test piece B was heated in a dryer at 100°C for 500 hours, cooled to room temperature (23°C), and then the hardness (final hardness) of test piece B was measured. It was measured in the same manner as the initial hardness. The hardness change rate was calculated from the initial hardness and final hardness based on the following formula.
(Hardness change rate (%)) = [(Final hardness - Initial hardness) / Initial hardness] x 100
Evaluation was made according to the following evaluation criteria.
A: Hardness change rate less than 20% C: Hardness change rate 20% or more
ヒートサイクル性
 弾性率の上昇率、弾性率変化量、硬度変化率の評価結果から、下記評価基準に従って評価した。
A:すべてA
B:すべてB以上で且つ、Aが2つ以下
C:Cがある
Based on the evaluation results of the rate of increase in heat cycle elastic modulus, the amount of change in elastic modulus, and the rate of change in hardness, evaluation was performed according to the following evaluation criteria.
A: All A
B: All B or more and 2 or less A C: There is C
 結果を表6に示す。 The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明のポリウレタン樹脂組成物は、相溶性に優れ、耐熱性及びヒートサイクル性に優れている。このため、電気製品等の分野で利用が可能である。また、本発明のポリウレタン樹脂組成物は、接着剤、電気電子部品の放熱目的で使用されるギャップフィラーの分野で利用が可能である。 The polyurethane resin composition of the present invention has excellent compatibility, heat resistance, and heat cycle properties. Therefore, it can be used in fields such as electrical products. Furthermore, the polyurethane resin composition of the present invention can be used in the fields of adhesives and gap fillers used for heat dissipation purposes in electrical and electronic components.

Claims (10)

  1.  イソシアネート基含有化合物、水酸基含有化合物、及び、可塑剤を含有するポリウレタン樹脂組成物であって、
     前記水酸基含有化合物と、前記可塑剤との混合物のSP値が8.75以上である、
    ことを特徴とするポリウレタン樹脂組成物。
    A polyurethane resin composition containing an isocyanate group-containing compound, a hydroxyl group-containing compound, and a plasticizer,
    The SP value of the mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more.
    A polyurethane resin composition characterized by:
  2.  前記水酸基含有化合物と、前記可塑剤との混合物のSP値が8.75以上9.20以下であり、且つ、120℃の弾性率と、-30℃の弾性率との差が25MPa以下である、請求項1に記載のポリウレタン樹脂組成物。 The SP value of the mixture of the hydroxyl group-containing compound and the plasticizer is 8.75 or more and 9.20 or less, and the difference between the elastic modulus at 120°C and the elastic modulus at -30°C is 25 MPa or less. , the polyurethane resin composition according to claim 1.
  3.  前記可塑剤は、脆化温度が-30℃未満の可塑剤Aと、脆化温度が-30℃以上-20℃以下の可塑剤Bとを含有する、請求項1又は2に記載のポリウレタン樹脂組成物。 The polyurethane resin according to claim 1 or 2, wherein the plasticizer contains a plasticizer A having a embrittlement temperature of less than -30°C and a plasticizer B having a embrittlement temperature of -30°C or more and -20°C or less. Composition.
  4.  更に、無機充填剤を含有し、前記無機充填剤の含有量が、前記ポリウレタン樹脂組成物を100質量%として、50~80質量%である、請求項1~3のいずれかに記載のポリウレタン樹脂組成物。 The polyurethane resin according to any one of claims 1 to 3, further comprising an inorganic filler, wherein the content of the inorganic filler is 50 to 80% by mass based on 100% by mass of the polyurethane resin composition. Composition.
  5.  前記水酸基含有化合物は、ポリオレフィンポリオールを含有する、請求項1~4のいずれかに記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to any one of claims 1 to 4, wherein the hydroxyl group-containing compound contains a polyolefin polyol.
  6.  前記水酸基含有化合物は、平均水酸基価が80mgKOH/g以上である、請求項1~5のいずれかに記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to any one of claims 1 to 5, wherein the hydroxyl group-containing compound has an average hydroxyl value of 80 mgKOH/g or more.
  7.  前記水酸基含有化合物は、ポリオレフィンポリオールを含有し、前記可塑剤は、SP値が8.75以上の可塑剤aと、SP値が8.75未満の可塑剤bとを含有する、請求項1~6のいずれかに記載のポリウレタン樹脂組成物。 The hydroxyl group-containing compound contains a polyolefin polyol, and the plasticizer contains a plasticizer a having an SP value of 8.75 or more and a plasticizer b having an SP value of less than 8.75. 6. The polyurethane resin composition according to any one of 6.
  8.  前記水酸基含有化合物は、ポリブタジエンポリオール及びポリエステルポリオールを含有する、請求項1~7のいずれかに記載のポリウレタン樹脂組成物。 The polyurethane resin composition according to any one of claims 1 to 7, wherein the hydroxyl group-containing compound contains a polybutadiene polyol and a polyester polyol.
  9.  請求項1~8のいずれかに記載のポリウレタン樹脂組成物からなる封止材。 A sealing material comprising the polyurethane resin composition according to any one of claims 1 to 8.
  10.  請求項9に記載の封止材を有する電気電子部品。 An electrical and electronic component comprising the sealing material according to claim 9.
PCT/JP2022/015669 2022-03-29 2022-03-29 Polyurethane resin composition WO2023188031A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/015669 WO2023188031A1 (en) 2022-03-29 2022-03-29 Polyurethane resin composition
JP2022550014A JP7227675B1 (en) 2022-03-29 2022-03-29 Polyurethane resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015669 WO2023188031A1 (en) 2022-03-29 2022-03-29 Polyurethane resin composition

Publications (1)

Publication Number Publication Date
WO2023188031A1 true WO2023188031A1 (en) 2023-10-05

Family

ID=85277859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015669 WO2023188031A1 (en) 2022-03-29 2022-03-29 Polyurethane resin composition

Country Status (2)

Country Link
JP (1) JP7227675B1 (en)
WO (1) WO2023188031A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098328A (en) * 2014-11-21 2016-05-30 サンユレック株式会社 Polyurethane resin composition
JP2016204577A (en) * 2015-04-27 2016-12-08 日本パーカライジング株式会社 Solid lubricant, lubrication film agent for metal material, surface-treated metal material, and formation method of lubrication film on metal material
JP2017137480A (en) * 2016-01-28 2017-08-10 三洋化成工業株式会社 Non-slip sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905135B1 (en) * 2020-09-29 2021-07-21 第一工業製薬株式会社 Polyurethane resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098328A (en) * 2014-11-21 2016-05-30 サンユレック株式会社 Polyurethane resin composition
JP2016204577A (en) * 2015-04-27 2016-12-08 日本パーカライジング株式会社 Solid lubricant, lubrication film agent for metal material, surface-treated metal material, and formation method of lubrication film on metal material
JP2017137480A (en) * 2016-01-28 2017-08-10 三洋化成工業株式会社 Non-slip sheet

Also Published As

Publication number Publication date
JP7227675B1 (en) 2023-02-22
JPWO2023188031A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
CN107041141B (en) Polyurethane resin composition
JP5535529B2 (en) Polyurethane resin composition
JP5550161B1 (en) Polyurethane resin composition
CN111699217B (en) Polyurethane resin composition
JP5568187B1 (en) Polyurethane resin composition
JP5863934B1 (en) Polyurethane resin composition
WO2019107199A1 (en) Curable resin composition and electrical component using this
JP6990999B2 (en) Polyurethane resin compositions, encapsulants, polyol compositions and isocyanate compositions
JP5854534B2 (en) Polyurethane resin composition
JP3805752B2 (en) Urethane polyol composition and polyurethane composition
JP6012821B1 (en) Polyurethane resin composition, sealing material and electric / electronic component
JP7227675B1 (en) Polyurethane resin composition
JP5946574B1 (en) Polyurethane resin composition
JP2015089941A (en) Polyurethane resin composition
JP5787425B2 (en) Polyurethane resin
JP5784210B1 (en) Polyurethane resin composition
WO2023053970A1 (en) Isocyanate-containing composition and two-pack type reactive polyurethane resin composition
JP5707197B2 (en) Polyol composition and polyurethane resin
JP5946555B1 (en) Polyurethane resin composition
JP5854533B2 (en) Polyurethane resin composition
JP7075735B2 (en) Resin composition and composition for resin production
JP5828950B1 (en) Polyurethane resin composition, sealing material and electric / electronic component
JP2005225959A (en) Connector sealing curable composition
JP6165204B2 (en) Electronic device sealing material and electronic device
JP2010254879A (en) Urethane elastomer-forming composition containing isocyanurate group

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022550014

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935179

Country of ref document: EP

Kind code of ref document: A1