WO2023187898A1 - Nuclear power system and control method therefor - Google Patents

Nuclear power system and control method therefor Download PDF

Info

Publication number
WO2023187898A1
WO2023187898A1 PCT/JP2022/014989 JP2022014989W WO2023187898A1 WO 2023187898 A1 WO2023187898 A1 WO 2023187898A1 JP 2022014989 W JP2022014989 W JP 2022014989W WO 2023187898 A1 WO2023187898 A1 WO 2023187898A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
hydrogen
power generation
hydrogen production
generation system
Prior art date
Application number
PCT/JP2022/014989
Other languages
French (fr)
Japanese (ja)
Inventor
肇 古市
岳 光安
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2022/014989 priority Critical patent/WO2023187898A1/en
Publication of WO2023187898A1 publication Critical patent/WO2023187898A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D9/00Arrangements to provide heat for purposes other than conversion into power, e.g. for heating buildings

Definitions

  • the nuclear power generation system of this embodiment includes a nuclear reactor 1, a turbine 2 that rotates with the steam generated in the reactor 1, and a turbine 2 that rotates with the driving force accompanying the rotation of the turbine 2 and generates electricity.
  • a generator 3 outputs electricity (A) to the power grid, and a part of the electricity (electricity (B)) generated by this generator 3 is stored, and this stored electricity (electricity (C)) is used as electricity.
  • a storage battery 6 that outputs to the grid, a hydrogen production machine 4 that produces hydrogen using part of the steam (steam (D)) generated in the reactor 1 as a heat source, and a hydrogen production machine 4 that stores the hydrogen produced by this hydrogen production machine 4.
  • a hydrogen storage device 5 (the hydrogen stored in the hydrogen storage device 5 is traded on the market or transported to a purchaser); a condenser 7 that cools the steam from the turbine 2 and returns it to water; It is generally composed of a feed water heater 8 in which water from the condenser 7 is supplied, heated, and circulated to the nuclear reactor 1. Note that the condenser 7 is supplied with heat from the hydrogen production machine 4.
  • the hydrogen producing machine 4 of this embodiment shown in FIG. 5 is a further improvement of the hydrogen producing machine 4 of the third embodiment shown in FIG.

Abstract

In order to maintain constant reactor-core output while also supplying electrical output that responds to long-period and short-period fluctuations in demand, the present invention is characterized in being provided with: a nuclear reactor; a turbine that rotates under steam generated in the nuclear reactor; a generator that rotates under drive force accompanying the rotation of the turbine to generate electricity and output same to a power grid; a storage battery that stores a portion of the electricity generated by the generator and that outputs the stored electricity to the power grid; a hydrogen production machine that produces hydrogen utilizing as a heat source a portion of the steam generated in the nuclear reactor; a hydrogen storage container that stores hydrogen produced by the hydrogen production machine; and a control device that, in response to fluctuations in demand, controls how the use of the steam generated in the nuclear reactor is allocated to power generation in the generator, hydrogen production in the hydrogen production machine, and electricity storage in the storage battery.

Description

原子力発電システム及びその制御方法Nuclear power generation system and its control method
 本発明は原子力発電システム及びその制御方法に係り、特に、原子炉で発生した蒸気の一部を熱源として用いて水素を製造するものに好適な原子力発電システム及びその制御方法に関する。 The present invention relates to a nuclear power generation system and its control method, and in particular to a nuclear power generation system and its control method suitable for producing hydrogen using a portion of steam generated in a nuclear reactor as a heat source.
 原子力発電システムにおいて、原子炉で発生した蒸気の一部を熱源として用いて水素を製造する先行技術文献として特許文献1がある。 In a nuclear power generation system, there is Patent Document 1 as a prior art document in which hydrogen is produced using a portion of steam generated in a nuclear reactor as a heat source.
 この特許文献1には、原子炉の冷却材が導管を経て蒸気発生器に導かれ、この蒸気発生器内で間接的な熱交換により蒸気を発生させ、この発生した蒸気を蒸気タービンに導くが、一部の蒸気は蒸気導管を介して水素精製ユニットに導入されて水素を製造する発電設備が記載されている。 In this Patent Document 1, coolant of a nuclear reactor is guided to a steam generator through a conduit, steam is generated by indirect heat exchange within the steam generator, and the generated steam is guided to a steam turbine. , a power generation facility is described in which some steam is introduced via a steam conduit to a hydrogen purification unit to produce hydrogen.
特開平4-217819号公報Japanese Patent Application Publication No. 4-217819
 近年原子力発電システムにおいて負荷追従運転に対応することが求められている。さらに今後は炉心出力を一定に保持しながら、異なる2つの周期の需要変動(長周期的、短周期的)に対応する電気出力を供給する高度な負荷追従運転が要求される可能性がある。 In recent years, nuclear power generation systems have been required to support load following operation. Furthermore, in the future, there is a possibility that sophisticated load-following operation will be required to maintain a constant core output while supplying electrical output that corresponds to two different cycles of demand fluctuations (long-cycle and short-cycle).
 ところが、短周期的な需要変動に対しては、炉心の熱出力制御は、燃料棒の伝熱特性に支配されるため、応答速度に限界があり、また、長周期的な需要変動に対しては、蓄電池では、蓄電池の放電ロスにより調整力を維持することが困難となる、といった課題がある。 However, in response to short-term demand fluctuations, core thermal output control is governed by the heat transfer characteristics of the fuel rods, so there is a limit to response speed; The problem with storage batteries is that it becomes difficult to maintain adjustment power due to discharge loss of the storage batteries.
 しかしながら、上述した特許文献1に記載されている発電設備には、短周期的な需要変動及び長周期的な需要変動に対しての課題に対する解決策に関しては何も記載されていない。 However, the power generation equipment described in Patent Document 1 mentioned above does not describe any solutions to the problems of short-period demand fluctuations and long-period demand fluctuations.
 本発明は上述の点に鑑みなされたもので、その目的とするところは、炉心出力を一定に保持しながら長周期的、短周期的の需要変動に対応する電気出力を供給することができる原子力発電システム及びその制御方法を提供することにある。 The present invention has been made in view of the above points, and its purpose is to provide a nuclear power plant capable of supplying electrical output corresponding to long-period and short-period demand fluctuations while maintaining a constant core output. An object of the present invention is to provide a power generation system and a control method thereof.
 本発明の原子力発電システムは、上記目的を達成するために、原子炉と、該原子炉で発生した蒸気で回転するタービンと、該タービンの回転に伴う駆動力で回転して発電し電力系統へ出力する発電機と、該発電機で発電した電気の一部を蓄電し、この蓄電した電力を電力系統へ出力する蓄電池と、前記原子炉で発生した蒸気の一部を熱源として用いて水素を製造する水素製造機と、該水素製造機で製造した水素を貯蔵する水素貯蔵器と、前記原子炉での発生蒸気の用途を前記発電機での発電、前記水素製造機での水素製造、前記蓄電池での電気の蓄電に、どのように配分するかを需要変動に応じて制御する制御装置と、を備えていることを特徴とする。 In order to achieve the above object, the nuclear power generation system of the present invention includes a nuclear reactor, a turbine that rotates using steam generated in the nuclear reactor, and a driving force generated by the rotation of the turbine that rotates to generate electricity and send it to the power grid. A generator that outputs electricity, a storage battery that stores a part of the electricity generated by the generator and outputs this stored electricity to the power grid, and a part of the steam generated in the reactor that is used as a heat source to produce hydrogen. A hydrogen production machine to produce hydrogen, a hydrogen storage device to store the hydrogen produced by the hydrogen production machine, and uses of the steam generated in the nuclear reactor to generate electricity in the generator, hydrogen production in the hydrogen production machine, and The present invention is characterized by comprising a control device that controls how to allocate electricity stored in a storage battery according to demand fluctuations.
 また、本発明の原子力発電システムの制御方法は、上記目的を達成するために、原子炉と、該原子炉で発生した蒸気で回転するタービンと、該タービンの回転に伴う駆動力で回転して発電し電力系統へ出力する発電機と、該発電機で発電した電気の一部を蓄電し、この蓄電した電力を電力系統へ出力する蓄電池と、前記原子炉で発生した蒸気の一部を熱源として用いて水素を製造する水素製造機と、該水素製造機で製造した水素を貯蔵する水素貯蔵器と、制御装置とを備えた原子力発電システムを制御するに当たって、前記原子炉での発生蒸気の用途を前記発電機での発電、前記水素製造機での水素製造、前記蓄電池での電気の蓄電に、どのように配分するかを需要変動に応じて、前記制御装置で制御することを特徴とする。 Furthermore, in order to achieve the above object, the method for controlling a nuclear power generation system of the present invention includes a nuclear reactor, a turbine that rotates with the steam generated in the nuclear reactor, and a turbine that rotates with the driving force accompanying the rotation of the turbine. A generator that generates electricity and outputs it to the power grid, a storage battery that stores a portion of the electricity generated by the generator and outputs the stored power to the power grid, and a heat source that uses some of the steam generated in the reactor. In controlling a nuclear power generation system equipped with a hydrogen production machine that produces hydrogen using hydrogen as a hydrogen generator, a hydrogen storage device that stores the hydrogen produced by the hydrogen production machine, and a control device, The control device controls how the usage is distributed among power generation by the generator, hydrogen production by the hydrogen production machine, and storage of electricity by the storage battery, according to demand fluctuations. do.
 本発明によれば、炉心出力を一定に保持しながら長周期的、短周期的の需要変動に対応する電気出力を供給することができる。 According to the present invention, it is possible to supply electrical output corresponding to long-period and short-period demand fluctuations while keeping core output constant.
本発明の原子力発電システムの実施例1を示すシステム構成図である。1 is a system configuration diagram showing a first embodiment of a nuclear power generation system of the present invention. 本発明の原子力発電システムの実施例2を示すシステム構成図である。FIG. 2 is a system configuration diagram showing a second embodiment of the nuclear power generation system of the present invention. 本発明の原子力発電システムの実施例2に採用される水素製造機の一例を示す図である。It is a figure which shows an example of the hydrogen production machine employ|adopted to Example 2 of the nuclear power generation system of this invention. 本発明の原子力発電システムの実施例3であり、水素製造機の他の例を示す図である。It is Example 3 of the nuclear power generation system of this invention, and is a figure which shows another example of a hydrogen production machine. 本発明の原子力発電システムの実施例4であり、水素製造機の更に他の例を示す図である。It is Example 4 of the nuclear power generation system of this invention, and is a figure which shows yet another example of a hydrogen production machine.
 以下、図示した実施例に基づいて、本発明の原子力発電システム及びその制御方法を説明する。なお、各図において、同一構成部品には同一符号を使用する。 Hereinafter, the nuclear power generation system and its control method of the present invention will be explained based on the illustrated embodiments. In each figure, the same reference numerals are used for the same components.
 また、下記はあくまでも実施の例であり、発明の内容を下記具体的態様に限定することを意図する趣旨ではない。 Furthermore, the following is merely an example of implementation, and is not intended to limit the content of the invention to the specific embodiments below.
 以下で説明する各実施例は、異なる2つの周期の需要変動(長周期的、短周期的)に対応する電気出力を供給することを目的とする。なお、どれほどの周期であれば長周期であり、どれほどの周期であれば短周期であるかについては限定するものではない。例えば、周期が1時間以上のものを長周期、1時間未満のものを短周期と定義しても良い。また、周期が2時間以上のものを長周期、2時間未満のものを短周期と定義しても良い。また、周期が24時間以上のものを長周期、24時間未満のものを短周期と定義しても良い。 Each of the embodiments described below aims to supply electrical output that corresponds to demand fluctuations of two different cycles (long cycle and short cycle). Note that there is no limitation on how long a period is a long period and how long a period is a short period. For example, a period of one hour or more may be defined as a long period, and a period of less than one hour may be defined as a short period. Further, a period of 2 hours or more may be defined as a long period, and a period of less than 2 hours may be defined as a short period. Further, a period of 24 hours or more may be defined as a long period, and a period of less than 24 hours may be defined as a short period.
 図1に、本発明の原子力発電システムの実施例1を示すシステム構成を示す。 FIG. 1 shows a system configuration showing a first embodiment of the nuclear power generation system of the present invention.
 図1に示すように、本実施例の原子力発電システムは、原子炉1と、この原子炉1で発生した蒸気で回転するタービン2と、このタービン2の回転に伴う駆動力で回転して発電し、電気(A)を電力系統へ出力する発電機3と、この発電機3で発電した電気の一部(電気(B))を蓄電し、この蓄電した電力(電気(C))を電力系統へ出力する蓄電池6と、原子炉1で発生した蒸気の一部(蒸気(D))を熱源として用いて水素を製造する水素製造機4と、この水素製造機4で製造した水素を貯蔵する水素貯蔵器5(水素貯蔵器5で貯蔵されている水素は、市場取引されたり、購入者へ輸送される)と、タービン2からの蒸気を冷却して水に戻す復水器7と、この復水器7の水が給水されて加熱され原子炉1へ循環する給水加熱器8とから概略構成されている。なお、復水器7には、水素製造機4からの熱が供給されている。 As shown in FIG. 1, the nuclear power generation system of this embodiment includes a nuclear reactor 1, a turbine 2 that rotates with the steam generated in the reactor 1, and a turbine 2 that rotates with the driving force accompanying the rotation of the turbine 2 and generates electricity. A generator 3 outputs electricity (A) to the power grid, and a part of the electricity (electricity (B)) generated by this generator 3 is stored, and this stored electricity (electricity (C)) is used as electricity. A storage battery 6 that outputs to the grid, a hydrogen production machine 4 that produces hydrogen using part of the steam (steam (D)) generated in the reactor 1 as a heat source, and a hydrogen production machine 4 that stores the hydrogen produced by this hydrogen production machine 4. a hydrogen storage device 5 (the hydrogen stored in the hydrogen storage device 5 is traded on the market or transported to a purchaser); a condenser 7 that cools the steam from the turbine 2 and returns it to water; It is generally composed of a feed water heater 8 in which water from the condenser 7 is supplied, heated, and circulated to the nuclear reactor 1. Note that the condenser 7 is supplied with heat from the hydrogen production machine 4.
 また、発電機3で発電して蓄電池6へ蓄電される電気の一部(電気(B))は、原子力発電で使わない(電力系統へ出力しない)電力を、蓄電池6の充電に利用していることになる。 In addition, some of the electricity generated by the generator 3 and stored in the storage battery 6 (electricity (B)) is used to charge the storage battery 6, which is not used in nuclear power generation (not output to the power grid). There will be.
 そして、本実施例の原子力発電システムでは、原子炉1での発生蒸気の用途を発電機3での発電、水素製造機4での水素製造、蓄電池6での電気の蓄電に、どのように配分するかを需要変動に応じて制御する制御装置9を備えていることを特徴としている。 In the nuclear power generation system of this embodiment, how is the use of the steam generated in the reactor 1 allocated to power generation in the generator 3, hydrogen production in the hydrogen production machine 4, and storage of electricity in the storage battery 6? It is characterized in that it is equipped with a control device 9 that controls whether or not the vehicle is operated in accordance with demand fluctuations.
 上記した制御装置9における原子炉1での発生蒸気の用途を発電機3での発電、水素製造機4での水素製造、蓄電池6での電気の蓄電に、どのように配分するかを需要変動に応じて制御する具体例について、以下に説明する。 The above-mentioned control device 9 determines how to allocate the use of the steam generated in the reactor 1 to power generation by the generator 3, hydrogen production by the hydrogen generator 4, and storage of electricity in the storage battery 6 based on demand fluctuations. A specific example of controlling according to the following will be described below.
 本実施例の制御装置9は、原子炉1の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を増やす場合には、水素製造機4での水素製造量と蓄電池6での蓄電量を減らすか、又は蓄電池6からの電力系統への電気出力(電気(C))を増やし、原子炉1の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を減らす場合には、水素製造機4での水素製造量と蓄電池6での蓄電量を増やすか、又は蓄電池6からの電力系統への電気出力(電気(C))を減らすように制御する。 The control device 9 of this embodiment controls the amount of hydrogen produced by the hydrogen generator 4 and the amount of hydrogen produced by the storage battery 6 when increasing the amount of power generation by taking into consideration the power supply and demand situation without changing the amount of steam generated by the reactor 1. When reducing the amount of power generation by reducing the amount of stored electricity or increasing the electrical output (electricity (C)) from the storage battery 6 to the power grid, taking into account the power supply and demand situation without changing the amount of steam generated by the reactor 1. In this case, control is performed to increase the amount of hydrogen produced by the hydrogen generator 4 and the amount of electricity stored in the storage battery 6, or to reduce the electrical output (electricity (C)) from the storage battery 6 to the power system.
 また、本実施例の制御装置9は、原子炉1の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を長周期で変化させる場合には、水素製造機4での水素製造量、又は蓄電池6での蓄電量を変化させ、原子炉1の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を短周期で変化させる場合には、蓄電池6から電力系統への電気出力(電気(C))を変化させるように制御する。 In addition, the control device 9 of this embodiment controls the hydrogen production in the hydrogen production machine 4 when changing the amount of power generation in a long period in consideration of the power supply and demand situation without changing the amount of steam generated in the reactor 1. When changing the amount of electricity stored in the storage battery 6 and changing the amount of power generation in a short period taking into consideration the supply and demand state of electricity without changing the amount of steam generated in the reactor 1, the amount of electricity stored in the storage battery 6 is changed in a short period. control to change the electrical output (electricity (C)) of the
 また、本実施例の制御装置9は、原子力発電システムの長周期の需要変動に対応するために、発電機3からの蓄電池6の蓄電のための電気出力(電気(B))を変化させ、蓄電池6の蓄電量を変化させることで、発電機3から電力系統への電気出力(電気(A))を変化させると共に、水素製造機4での水素製造に用いる原子炉1で発生した蒸気の一部(蒸気(D))の蒸気量を変化させ、タービン2を回転させるための原子炉1から導入される蒸気量を変化させて発電機3における発電量を変化させることで、発電機3から電力系統への電気出力(電気(A))を変化させ、かつ、原子力発電システムの短周期の需要変動に対応するために、蓄電池6から電力系統への電気出力(電気(C))を変化させるように制御し、これらを同時に実施することで、原子炉1で発生する蒸気を変えることなく、長周期、短周期の需要変動に対応することができる。 In addition, the control device 9 of this embodiment changes the electrical output (electricity (B)) for storing power in the storage battery 6 from the generator 3 in order to respond to long-cycle demand fluctuations of the nuclear power generation system. By changing the amount of electricity stored in the storage battery 6, the electrical output (electricity (A)) from the generator 3 to the power grid can be changed, and the steam generated in the nuclear reactor 1 used for hydrogen production in the hydrogen production machine 4 can be changed. By changing the amount of steam (steam (D)) and changing the amount of steam introduced from the reactor 1 to rotate the turbine 2, the amount of power generated in the generator 3 is changed. In order to change the electrical output (electricity (A)) from the storage battery 6 to the power grid and to respond to short-term demand fluctuations of the nuclear power generation system, the electrical output (electricity (C)) from the storage battery 6 to the power grid is changed. By controlling to change and performing these simultaneously, it is possible to respond to long-cycle and short-cycle demand fluctuations without changing the steam generated in the reactor 1.
 また、本実施例の制御装置9は、水素貯蔵器5に貯蔵した水素の需要が高い場合には、水素製造機4での水素製造に用いる原子炉1で発生した蒸気の一部(蒸気(D))の蒸気量を増加させて水素製造機4での水素製造を増加させ、その分、発電機3からの蓄電池6の蓄電のための電気出力(電気(B))を減少させ、水素貯蔵器5に貯蔵した水素の需要が低い場合には、水素製造機4での水素製造に用いる原子炉1で発生した蒸気の一部(蒸気(D))の蒸気量を減少させて水素製造機4での水素製造を減少させ、その分、発電機3からの蓄電池6の蓄電のための電気出力(電気(B))を増加させるよう制御する。 Furthermore, when the demand for hydrogen stored in the hydrogen storage device 5 is high, the control device 9 of this embodiment controls a portion of the steam (steam) generated in the reactor 1 used for hydrogen production in the hydrogen production machine 4. D)) increases the amount of steam produced in the hydrogen production machine 4, and correspondingly decreases the electrical output (electricity (B)) from the generator 3 for storing electricity in the storage battery 6, When the demand for hydrogen stored in the storage device 5 is low, the amount of steam (steam (D)) generated in the reactor 1 used for hydrogen production in the hydrogen production machine 4 is reduced to produce hydrogen. Control is performed to reduce hydrogen production in the generator 4 and increase the electric output (electricity (B)) from the generator 3 for storing electricity in the storage battery 6 accordingly.
 また、本実施例の制御装置9は、蓄電池6の蓄電量が必要な場合には、水素製造機4での水素製造に用いる原子炉1で発生した蒸気の一部(蒸気(D))の蒸気量を減少させて水素製造機4での水素製造を減少させ、その分、発電機3からの蓄電池6の蓄電のための電気出力(電気(B))を増加させ、蓄電池6の蓄電量が不要な場合には、水素製造機4での水素製造に用いる原子炉1で発生した蒸気の一部(蒸気(D))の蒸気量を増加させて水素製造機4での水素製造を増加させ、その分、発電機3からの蓄電池6の蓄電のための電気出力(電気(B))を減少させるように制御する。 In addition, when the amount of electricity stored in the storage battery 6 is required, the control device 9 of this embodiment controls a portion of the steam (steam (D)) generated in the reactor 1 used for hydrogen production in the hydrogen production machine 4. The amount of steam is reduced to reduce hydrogen production in the hydrogen generator 4, and the electric output (electricity (B)) from the generator 3 for storing electricity in the storage battery 6 is increased accordingly, thereby reducing the amount of electricity stored in the storage battery 6. If it is not necessary, increase the amount of steam of a part of the steam (steam (D)) generated in the reactor 1 used for hydrogen production in the hydrogen production machine 4 to increase hydrogen production in the hydrogen production machine 4. control is performed so that the electrical output (electricity (B)) from the generator 3 for storing electricity in the storage battery 6 is reduced accordingly.
 更に、本実施例の制御装置9は、原子力発電システムの短周期の需要変動に対応するために、蓄電池6から電力系統への電気出力(電気(C))を常に調整して、蓄電池6の蓄電量を常に確保するように制御する。 Furthermore, the control device 9 of this embodiment constantly adjusts the electrical output (electricity (C)) from the storage battery 6 to the power grid in order to respond to short-term demand fluctuations of the nuclear power generation system. Control is performed to always ensure the amount of stored electricity.
 このような本実施例によれば、炉心出力を一定に保持しながら長周期的、短周期的の需要変動に対応する電気出力を供給することができる。 According to this embodiment, it is possible to supply electrical output corresponding to long-period and short-period demand fluctuations while keeping the core output constant.
 また、原子炉1の熱源を利用するため、水素製造効率が向上すると共に、発電機3で発電して蓄電池6へ蓄電される電気の一部(電気(B))である原子力発電で使わない(電力系統へ出力しない)電力を、蓄電池6の充電に利用しているため、システムとしての効率向上が図れる効果がある。 In addition, since the heat source of the nuclear reactor 1 is used, hydrogen production efficiency is improved, and some of the electricity generated by the generator 3 and stored in the storage battery 6 (electricity (B)) is not used in nuclear power generation. Since electric power (which is not output to the power grid) is used to charge the storage battery 6, the efficiency of the system can be improved.
 図2に、本発明の原子力発電システムの実施例2を示すシステム構成を示し、図3に、本発明の原子力発電システムの実施例2に採用される水素製造機の一例を示す。 FIG. 2 shows a system configuration showing a second embodiment of the nuclear power generation system of the present invention, and FIG. 3 shows an example of a hydrogen production machine employed in the second embodiment of the nuclear power generation system of the present invention.
 図3に示すように、本実施例の原子力発電システムに採用される水素製造機4は、原子炉1で発生した蒸気の一部(蒸気(D))を熱交換して水を放出する第1の熱交換器4aと、この第1の熱交換器4aで熱交換された水をさらに温めるヒータ4bと、このヒータ4bからの水を水電解し水素及び酸素を生成して水素貯蔵器5へ送る電解装置4cと、酸素貯蔵器4gとから成る。熱交換器4aでは、蒸気(D)と水(HO)が直接混合せず、伝熱管を介して熱交換を行い、蒸気(D)によって水(HO)の温度が上昇する。ヒータ4bは、外部電力または発電機3からの電力によって駆動し、水(HO)の温度を上昇させる。熱交換器4aとヒータ4bは電解装置4cの作動温度に応じて水(HO)の温度を上昇させるものであり、熱交換器4aまたはヒータ4bにおいて水(HO)が沸騰して水蒸気となる場合もある。電解装置4cでは、水電解方式により水または水蒸気から水素と酸素を得る装置であり、例えば、固体高分子形電解や固体酸化物形電解による方式である。電解装置4cから得られた水素は水素貯蔵器5に貯留され、電解装置4cから得られた酸素は酸素貯蔵器4gに貯蔵される。 As shown in FIG. 3, the hydrogen production machine 4 adopted in the nuclear power generation system of this embodiment is a hydrogen generator that heat-exchanges a part of the steam (steam (D)) generated in the nuclear reactor 1 and releases water. 1 heat exchanger 4a, a heater 4b that further warms the water heat exchanged with this first heat exchanger 4a, and a hydrogen storage device 5 that electrolyzes the water from this heater 4b to generate hydrogen and oxygen. It consists of an electrolytic device 4c for supplying oxygen to the oxygen tank, and an oxygen storage device 4g. In the heat exchanger 4a, steam (D) and water (H 2 O) are not directly mixed, but are exchanged via heat exchanger tubes, and the temperature of water (H 2 O) is increased by the steam (D). The heater 4b is driven by external power or power from the generator 3, and raises the temperature of water (H 2 O). The heat exchanger 4a and the heater 4b raise the temperature of water (H 2 O) according to the operating temperature of the electrolyzer 4c, and the water (H 2 O) is boiled in the heat exchanger 4a or the heater 4b. Sometimes it becomes water vapor. The electrolyzer 4c is a device that obtains hydrogen and oxygen from water or steam using a water electrolysis method, such as a method using solid polymer type electrolysis or solid oxide type electrolysis. Hydrogen obtained from the electrolysis device 4c is stored in the hydrogen storage device 5, and oxygen obtained from the electrolysis device 4c is stored in the oxygen storage device 4g.
 そして、本実施例では、第1の熱交換器4aからの水(E)を復水器7に送ると共に、第1の熱交換器4aから復水器7に送る水(E)の量を流量調整弁10によって制御し、復水器7の温度を一定に保持するようにしたものである。流量調整弁10による水(E)の量の制御のみで復水器7の温度を一定に保持できない場合、熱交換器11を用いて復水器7の温度を制御することができる。熱交換11では、冷却材12、13の流量を流量調整弁14により調整し、熱交換器11の出口での水(E)の温度を調整する。冷却材12はタンク16に貯留され、ポンプ15によってタンク16と熱交換器11の間を循環する構造である。 In this embodiment, the water (E) from the first heat exchanger 4a is sent to the condenser 7, and the amount of water (E) sent from the first heat exchanger 4a to the condenser 7 is The temperature of the condenser 7 is maintained constant by controlling the flow rate regulating valve 10. When the temperature of the condenser 7 cannot be kept constant only by controlling the amount of water (E) using the flow rate regulating valve 10, the temperature of the condenser 7 can be controlled using the heat exchanger 11. In the heat exchanger 11, the flow rates of the coolants 12 and 13 are adjusted by the flow rate adjustment valve 14, and the temperature of the water (E) at the outlet of the heat exchanger 11 is adjusted. The coolant 12 is stored in a tank 16 and circulated between the tank 16 and the heat exchanger 11 by a pump 15.
 このような本実施例によれば、実施例1と同様な効果が得られることは勿論、水素製造機4の第1の熱交換器4aから水(E)を復水器7に戻し、流入する水(E)の量及び温度を制御することで、復水器7の温度を一定に保つ助けとなる。 According to this embodiment, not only can the same effects as in embodiment 1 be obtained, but also the water (E) is returned to the condenser 7 from the first heat exchanger 4a of the hydrogen generator 4, and the water (E) is returned to the condenser 7. Controlling the amount and temperature of the water (E) used helps keep the temperature of the condenser 7 constant.
 復水器7では、通常、タービンで仕事をした蒸気が冷却され、凝縮水となって放出される。復水器7に流入した水(E)は、凝縮水と混合して原子炉1に戻る。流入した水(E)が一定量かつ一定温度であれば、復水器7から放出される水の温度変化を低減することができ、原子炉1に流入する水の温度を一定に保つことができる。 In the condenser 7, the steam that has done work in the turbine is usually cooled and released as condensed water. The water (E) flowing into the condenser 7 mixes with condensed water and returns to the reactor 1. If the inflow water (E) has a constant amount and temperature, it is possible to reduce the temperature change of the water discharged from the condenser 7, and it is possible to maintain the temperature of the water flowing into the reactor 1 constant. can.
 これにより、原子炉1内で核燃料により沸騰する蒸気を安定的に生成することができる。従って、原子力発電システムの安定化(原子炉1の一定出力の確保)を図ることができる効果がある。 Thereby, steam boiling from the nuclear fuel can be stably generated within the nuclear reactor 1. Therefore, it is possible to stabilize the nuclear power generation system (ensuring a constant output of the nuclear reactor 1).
 図4に、本発明の原子力発電システムの実施例3として、水素製造機4の他の例を示す。 FIG. 4 shows another example of the hydrogen production machine 4 as Embodiment 3 of the nuclear power generation system of the present invention.
 図4に示す本実施例の水素製造機4は、図3に示した実施例2の水素製造機4を、更に改良したものである。 The hydrogen producing machine 4 of this embodiment shown in FIG. 4 is a further improvement of the hydrogen producing machine 4 of the second embodiment shown in FIG.
 即ち、本実施例の水素製造機4は、第1の熱交換器4aとヒータ4bとの間に第2の熱交換器4dを設置すると共に、電解装置4cと水素貯蔵器5との間に第3の熱交換器4eを設置し、電解装置4cから水素貯蔵器5へ送る水素の熱を第3の熱交換器4eで回収し、この第3の熱交換器4eで回収した熱を第2の熱交換器4dにおいて水または蒸気に放出するようにしたものである。 That is, in the hydrogen production machine 4 of this embodiment, a second heat exchanger 4d is installed between the first heat exchanger 4a and the heater 4b, and a second heat exchanger 4d is installed between the electrolyzer 4c and the hydrogen storage device 5. A third heat exchanger 4e is installed, and the heat of hydrogen sent from the electrolyzer 4c to the hydrogen storage device 5 is recovered by the third heat exchanger 4e, and the heat recovered by this third heat exchanger 4e is transferred to a third heat exchanger 4e. In the second heat exchanger 4d, the heat is released into water or steam.
 本実施例の第3の熱交換器4eは、電解装置4cで生成される水素の放出系統から熱を回収するが、これが酸素の放出系統でも、両方でも良い。第3の熱交換器4eにおいて水素または酸素の放出系統から熱を回収するため、水素貯蔵器5または酸素貯蔵器4gに流入する気体の温度が低下する。 The third heat exchanger 4e of this embodiment recovers heat from the hydrogen release system produced by the electrolyzer 4c, but this may be the oxygen release system or both. Since heat is recovered from the hydrogen or oxygen release system in the third heat exchanger 4e, the temperature of the gas flowing into the hydrogen storage device 5 or the oxygen storage device 4g decreases.
 このような本実施例によれば、実施例2と同様な効果が得られることは勿論、製造された水素は高温であるが、水素貯蔵器5に貯蔵する前に第3の熱交換器4eで熱を回収することにより、熱損失が減少し、ヒータ4bの消費電力を抑えることができるため効率が増加する効果がある。 According to this embodiment, the same effects as in embodiment 2 can be obtained, and the produced hydrogen is at a high temperature, but before being stored in the hydrogen storage device 5, the hydrogen is heated in the third heat exchanger 4e. By recovering heat, heat loss is reduced and power consumption of the heater 4b can be suppressed, which has the effect of increasing efficiency.
 また、水素貯蔵器5または酸素貯蔵器4gに貯蔵する気体の温度を下げることができるため、気体の容積を減らすことで水素貯蔵器5または酸素貯蔵器4gの加圧破損を防止することができる効果がある。 Furthermore, since the temperature of the gas stored in the hydrogen storage device 5 or the oxygen storage device 4g can be lowered, it is possible to prevent pressure damage to the hydrogen storage device 5 or the oxygen storage device 4g by reducing the volume of the gas. effective.
 図5に、本発明の原子力発電システムの実施例4として、水素製造機4の更に他の例を示す。 FIG. 5 shows still another example of the hydrogen production machine 4 as Embodiment 4 of the nuclear power generation system of the present invention.
 図5に示す本実施例の水素製造機4は、図4に示した実施例3の水素製造機4を、更に改良したものである。 The hydrogen producing machine 4 of this embodiment shown in FIG. 5 is a further improvement of the hydrogen producing machine 4 of the third embodiment shown in FIG.
 即ち、本実施例の水素製造機4は、図4に示した実施例3の水素製造機4に加え、原子炉1と第1の熱交換器4aとの途中(原子炉1と水素製造機4との間)に第4の熱交換器4fを配置し、第4の熱交換器4fと第1の熱交換器4aとの熱交換を冷却材4iを介して行い、冷却材4iを循環させるためのポンプ4hを設置し、原子炉1で発生した蒸気の一部を第4の熱交換器4fで熱交換して熱を放出した蒸気を第1の熱交換器4aに送ると共に、第4の熱交換器4fからの水を復水器7に送るようにしたものである。 That is, in addition to the hydrogen producing machine 4 of the third embodiment shown in FIG. A fourth heat exchanger 4f is disposed between the fourth heat exchanger 4f and the first heat exchanger 4a, and heat exchange between the fourth heat exchanger 4f and the first heat exchanger 4a is performed via the coolant 4i, and the coolant 4i is circulated. A pump 4h is installed to heat a part of the steam generated in the reactor 1 through a fourth heat exchanger 4f, and the steam that releases heat is sent to the first heat exchanger 4a. Water from heat exchanger 4f of No. 4 is sent to condenser 7.
 このような本実施例によれば、実施例3と同様な効果が得られることは勿論、沸騰水型原子炉の場合には、原子炉1からの蒸気は原子炉1内部の核燃料からの放射性物質を含むため、原子炉1と第1の熱交換器4aとの途中(原子炉1と水素製造機4との間)に第4の熱交換器4fを追設することで、万が一、伝熱管の破損等によって第4の熱交換器4f内部で蒸気と冷却材4iが混合することが生じても、第1の熱交換器4aが存在するため、水素製造機4で生成される水素及び酸素に放射性物質が混入し、外部に放出されることを防ぐ効果がある。 According to this embodiment, not only can the same effects as in embodiment 3 be obtained, but also in the case of a boiling water reactor, the steam from the reactor 1 is radioactive from the nuclear fuel inside the reactor 1. Because it contains substances, by adding a fourth heat exchanger 4f between the reactor 1 and the first heat exchanger 4a (between the reactor 1 and the hydrogen production machine 4), it is possible to prevent Even if steam and coolant 4i mix inside the fourth heat exchanger 4f due to breakage of a heat tube, etc., the presence of the first heat exchanger 4a prevents the hydrogen produced by the hydrogen generator 4 and It has the effect of preventing radioactive substances from mixing with oxygen and being released to the outside.
 なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換える事が可能であり、また、ある実施例の構成に他の実施例の構成を加える事も可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をする事が可能である。 Note that the present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace a part of the configuration of each embodiment with other configurations.
 1…原子炉、2…タービン、3…発電機、4…水素製造機、4a…第1の熱交換器、4b…ヒータ、4c…電解装置、4d…第2の熱交換器、4e…第3の熱交換器、4f…第4の熱交換器、4g…酸素貯蔵器、4h、15…ポンプ、4i…冷却材、5…水素貯蔵器、6…蓄電池、7…復水器、8…給水加熱器、9…制御装置、10、14…流量調整弁、11…熱交換器、12、13…冷却材、16…タンク。 DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 2... Turbine, 3... Generator, 4... Hydrogen production machine, 4a... First heat exchanger, 4b... Heater, 4c... Electrolyzer, 4d... Second heat exchanger, 4e... First 3 heat exchanger, 4f... fourth heat exchanger, 4g... oxygen storage, 4h, 15... pump, 4i... coolant, 5... hydrogen storage, 6... storage battery, 7... condenser, 8... Feed water heater, 9...control device, 10, 14...flow rate adjustment valve, 11...heat exchanger, 12, 13...coolant, 16...tank.

Claims (16)

  1.  原子炉と、該原子炉で発生した蒸気で回転するタービンと、該タービンの回転に伴う駆動力で回転して発電し電力系統へ出力する発電機と、該発電機で発電した電気の一部を蓄電し、この蓄電した電力を電力系統へ出力する蓄電池と、前記原子炉で発生した蒸気の一部を熱源として用いて水素を製造する水素製造機と、該水素製造機で製造した水素を貯蔵する水素貯蔵器と、前記原子炉での発生蒸気の用途を前記発電機での発電、前記水素製造機での水素製造、前記蓄電池での電気の蓄電に、どのように配分するかを需要変動に応じて制御する制御装置と、を備えていることを特徴とする原子力発電システム。 A nuclear reactor, a turbine that rotates with the steam generated in the reactor, a generator that rotates with the driving force accompanying the rotation of the turbine to generate electricity and output it to the power grid, and a portion of the electricity generated by the generator a storage battery that stores electricity and outputs the stored electricity to the power grid; a hydrogen production machine that produces hydrogen using part of the steam generated in the reactor as a heat source; and a hydrogen production machine that produces hydrogen using the hydrogen production machine. Demand is made on how to allocate the use of the hydrogen storage device for storage and the steam generated in the nuclear reactor to power generation in the generator, hydrogen production in the hydrogen production machine, and electricity storage in the storage battery. A nuclear power generation system characterized by comprising: a control device that controls according to fluctuations.
  2.  請求項1に記載の原子力発電システムであって、
     前記制御装置は、前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を増やす場合には、前記水素製造機での水素製造量と前記蓄電池での蓄電量を減らすか、又は前記蓄電池からの前記電力系統への電気出力を増やし、
     前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を減らす場合には、前記水素製造機での水素製造量と前記蓄電池での蓄電量を増やすか、又は前記蓄電池からの前記電力系統への電気出力を減らすように制御することを特徴とする原子力発電システム。
    The nuclear power generation system according to claim 1,
    The control device reduces the amount of hydrogen produced by the hydrogen production machine and the amount of electricity stored in the storage battery when increasing the amount of power generation in consideration of the power supply and demand state without changing the amount of steam generated by the reactor. or increasing the electrical output from the storage battery to the power grid;
    If the amount of power generation is to be reduced in consideration of the power supply and demand situation without changing the amount of steam generated by the reactor, the amount of hydrogen produced by the hydrogen generator and the amount of electricity stored in the storage battery are increased, or the amount of electricity stored in the storage battery is increased. A nuclear power generation system characterized in that the electric power output from the electric power system is controlled to be reduced.
  3.  請求項1に記載の原子力発電システムであって、
     前記制御装置は、前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を長周期で変化させる場合には、前記水素製造機での水素製造量、又は前記蓄電池での蓄電量を変化させ、前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を短周期で変化させる場合には、前記蓄電池から前記電力系統への電気出力を変化させるように制御することを特徴とする原子力発電システム。
    The nuclear power generation system according to claim 1,
    In the case where the amount of power generation is changed over a long period in consideration of the power supply and demand state without changing the amount of steam generated by the reactor, the control device is configured to When changing the amount of electricity stored in the reactor and changing the amount of power generation in a short period in consideration of the supply and demand state of electricity without changing the amount of steam generated by the reactor, change the electrical output from the storage battery to the power grid. A nuclear power generation system characterized by being controlled so as to
  4.  請求項3に記載の原子力発電システムであって、
     前記制御装置は、前記原子力発電システムの長周期の需要変動に対応するために、前記発電機からの前記蓄電池の蓄電のための電気出力を変化させ、前記蓄電池の蓄電量を変化させることで前記発電機から前記電力系統への電気出力を変化させると共に、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を変化させ、前記タービンを回転させるための前記原子炉から導入される蒸気量を変化させて前記発電機における発電量を変化させることで前記発電機から前記電力系統への電気出力を変化させ、かつ、前記原子力発電システムの短周期の需要変動に対応するために、前記蓄電池から前記電力系統への電気出力を変化させるように制御することを特徴とする原子力発電システム。
    The nuclear power generation system according to claim 3,
    In order to respond to long-term demand fluctuations of the nuclear power generation system, the control device changes the electrical output from the generator for storing electricity in the storage battery, and changes the amount of electricity stored in the storage battery. The method for rotating the turbine by changing the electric output from the generator to the power system and changing the amount of steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine. Changing the amount of steam introduced from the nuclear reactor to change the amount of power generated in the generator, thereby changing the electrical output from the generator to the power grid, and short-term demand fluctuations of the nuclear power generation system. A nuclear power generation system characterized in that the electric power output from the storage battery to the electric power system is controlled to be changed in order to cope with the above.
  5.  請求項4に記載の原子力発電システムであって、
     前記制御装置は、前記水素貯蔵器に貯蔵した水素の需要が高い場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を増加させて前記水素製造機での水素製造を増加させると共に、前記発電機からの前記蓄電池の蓄電のための電気出力を減少させ、かつ、
     前記水素貯蔵器に貯蔵した水素の需要が低い場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を減少させて前記水素製造機での水素製造を減少させると共に、前記発電機からの前記蓄電池の蓄電のための電気出力を増加させるように制御することを特徴とする原子力発電システム。
    The nuclear power generation system according to claim 4,
    When the demand for hydrogen stored in the hydrogen storage device is high, the control device increases the amount of steam of a part of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine, and increasing hydrogen production in a production machine and decreasing electrical output from the generator for storing electricity in the storage battery, and
    When the demand for hydrogen stored in the hydrogen storage device is low, the amount of steam generated in a part of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine is reduced, and the hydrogen production in the hydrogen production machine is reduced. A nuclear power generation system characterized in that control is performed to reduce production and increase electrical output from the generator for storing electricity in the storage battery.
  6.  請求項4又は5に記載の原子力発電システムであって、
     前記制御装置は、前記蓄電池の蓄電量が必要な場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を減少させて前記水素製造機での水素製造を減少させると共に、前記発電機からの前記蓄電池の蓄電のための電気出力を増加させ、かつ、
     前記蓄電池の蓄電量が不要な場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を増加させて前記水素製造機での水素製造を増加させると共に、前記発電機からの前記蓄電池の蓄電のための電気出力を減少させるように制御することを特徴とする原子力発電システム。
    The nuclear power generation system according to claim 4 or 5,
    When the amount of electricity stored in the storage battery is required, the control device reduces the amount of steam of a part of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine, and increases the amount of electricity stored in the hydrogen production machine. reducing hydrogen production and increasing electrical output from the generator for storage of the battery; and
    When the amount of electricity stored in the storage battery is not required, increasing the amount of some of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine to increase hydrogen production in the hydrogen production machine. A nuclear power generation system characterized in that the electric power output from the generator for storing electricity in the storage battery is controlled to be reduced.
  7.  請求項4乃至6のいずれか1項に記載の原子力発電システムであって、
     前記制御装置は、前記原子力発電システムの短周期の需要変動に対応するために、前記蓄電池から前記電力系統への電気出力を常に調整して、前記蓄電池の蓄電量を常に確保するように制御することを特徴とする原子力発電システム。
    The nuclear power generation system according to any one of claims 4 to 6,
    In order to respond to short-term demand fluctuations of the nuclear power generation system, the control device constantly adjusts the electrical output from the storage battery to the power grid, and performs control so as to always ensure the amount of electricity stored in the storage battery. A nuclear power generation system characterized by:
  8.  請求項1乃至7のいずれか1項に記載の原子力発電システムであって、
     前記原子力発電システムは、前記タービンからの蒸気を冷却して水に戻し、この水を給水加熱器へ給水する復水器を備えており、一方、前記水素製造機は、前記原子炉で発生した蒸気の一部を熱交換して水を放出する第1の熱交換器と、該第1の熱交換器で熱交換された水をさらに温めるヒータと、該ヒータからの水を水電解し水素及び酸素を生成して前記水素貯蔵器へ送る電解装置と、酸素貯蔵器4gとから成り、
     前記第1の熱交換器からの前記水を前記復水器に送ると共に、前記第1の熱交換器から前記復水器に送る前記水の量を制御し、前記復水器の温度を一定に保持することを特徴とする原子力発電システム。
    The nuclear power generation system according to any one of claims 1 to 7,
    The nuclear power generation system includes a condenser that cools the steam from the turbine and returns it to water, and supplies this water to the feed water heater, while the hydrogen production machine is configured to cool steam generated in the nuclear reactor. A first heat exchanger that heat exchanges part of the steam and releases water; a heater that further warms the water heat exchanged with the first heat exchanger; and a heater that electrolyzes the water from the heater to produce hydrogen. and an electrolytic device that generates oxygen and sends it to the hydrogen storage device, and an oxygen storage device 4g,
    The water from the first heat exchanger is sent to the condenser, and the amount of water sent from the first heat exchanger to the condenser is controlled to keep the temperature of the condenser constant. A nuclear power generation system characterized by being maintained at
  9.  請求項8に記載の原子力発電システムであって、
     前記第1の熱交換器と前記ヒータとの間に第2の熱交換器を設置すると共に、前記電解装置と前記水素貯蔵器との間に第3の熱交換器を設置し、前記電解装置から前記水素貯蔵器へ送る前記水素の熱を前記第3の熱交換器で回収し、前記第3の熱交換器で回収した前記熱を前記第2の熱交換器へ放出することを特徴とする原子力発電システム。
    The nuclear power generation system according to claim 8,
    A second heat exchanger is installed between the first heat exchanger and the heater, and a third heat exchanger is installed between the electrolyzer and the hydrogen storage device, and the electrolyzer The third heat exchanger recovers the heat of the hydrogen sent from the hydrogen to the hydrogen storage device, and the heat recovered by the third heat exchanger is released to the second heat exchanger. nuclear power generation system.
  10.  請求項9に記載の原子力発電システムであって、
     前記原子炉と前記第1の熱交換器との途中に第4の熱交換器を配置し、前記原子炉で発生した蒸気の一部を前記第4の熱交換器で熱交換して熱を放出した蒸気を前記第1の熱交換器に送ると共に、前記第4の熱交換器からの水を前記復水器に送ることを特徴とする原子力発電システム。
    The nuclear power generation system according to claim 9,
    A fourth heat exchanger is disposed between the nuclear reactor and the first heat exchanger, and a part of the steam generated in the nuclear reactor is heat exchanged with the fourth heat exchanger to generate heat. A nuclear power generation system characterized in that released steam is sent to the first heat exchanger, and water from the fourth heat exchanger is sent to the condenser.
  11.  原子炉と、該原子炉で発生した蒸気で回転するタービンと、該タービンの回転に伴う駆動力で回転して発電し電力系統へ出力する発電機と、該発電機で発電した電気の一部を蓄電し、この蓄電した電力を電力系統へ出力する蓄電池と、前記原子炉で発生した蒸気の一部を熱源として用いて水素を製造する水素製造機と、該水素製造機で製造した水素を貯蔵する水素貯蔵器と、制御装置とを備えた原子力発電システムを制御するに当たって、
     前記原子炉での発生蒸気の用途を前記発電機での発電、前記水素製造機での水素製造、前記蓄電池での電気の蓄電に、どのように配分するかを需要変動に応じて、前記制御装置で制御することを特徴とする原子力発電システムの制御方法。
    A nuclear reactor, a turbine that rotates with the steam generated in the reactor, a generator that rotates with the driving force accompanying the rotation of the turbine to generate electricity and output it to the power grid, and a portion of the electricity generated by the generator a storage battery that stores electricity and outputs the stored electricity to the power grid; a hydrogen production machine that produces hydrogen using part of the steam generated in the reactor as a heat source; and a hydrogen production machine that produces hydrogen using the hydrogen production machine. In controlling a nuclear power generation system equipped with a hydrogen storage device and a control device,
    The control method determines how to allocate the use of steam generated in the nuclear reactor to power generation in the generator, hydrogen production in the hydrogen production machine, and storage of electricity in the storage battery according to demand fluctuations. A method for controlling a nuclear power generation system, characterized in that it is controlled by a device.
  12.  請求項11に記載の原子力発電システムの制御方法であって、
     前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を増やす場合には、前記水素製造機での水素製造量と前記蓄電池での蓄電量を減らすか、又は前記蓄電池からの前記電力系統への電気出力を増やし、
     前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を減らす場合には、前記水素製造機での水素製造量と前記蓄電池での蓄電量を増やすか、又は前記蓄電池からの前記電力系統への電気出力を減らすように前記制御装置で制御することを特徴とする原子力発電システムの制御方法。
    A method for controlling a nuclear power generation system according to claim 11,
    In order to increase the amount of power generated by taking into consideration the power supply and demand situation without changing the amount of steam generated by the reactor, the amount of hydrogen produced by the hydrogen generator and the amount of electricity stored in the storage battery should be reduced, or the amount of electricity stored in the storage battery should be reduced. increasing the electrical output to said power system from
    If the amount of power generation is to be reduced in consideration of the power supply and demand situation without changing the amount of steam generated by the reactor, the amount of hydrogen produced by the hydrogen generator and the amount of electricity stored in the storage battery should be increased, or the amount of electricity stored in the storage battery should be increased. A method for controlling a nuclear power generation system, characterized in that the control device performs control so as to reduce the electrical output from the nuclear power generation system to the power system.
  13.  請求項11に記載の原子力発電システムの制御方法であって、
     前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を長周期で変化させる場合には、前記水素製造機での水素製造量、又は前記蓄電池での蓄電量を変化させ、前記原子炉の発生蒸気量を変えることなく電力の需給状態を考慮して発電量を短周期で変化させる場合には、前記蓄電池から前記電力系統への電気出力を変化させるように前記制御装置で制御することを特徴とする原子力発電システムの制御方法。
    A method for controlling a nuclear power generation system according to claim 11,
    When changing the power generation amount over a long period of time without changing the amount of steam generated by the reactor, taking into account the power supply and demand situation, the amount of hydrogen produced by the hydrogen production machine or the amount of electricity stored in the storage battery may be changed. and when changing the amount of power generation in a short period in consideration of the power supply and demand state without changing the amount of steam generated by the reactor, the control is performed so as to change the electrical output from the storage battery to the power grid. A method for controlling a nuclear power generation system, characterized in that it is controlled by a device.
  14.  請求項13に記載の原子力発電システムの制御方法であって、
     前記原子力発電システムの長周期の需要変動に対応するために、前記発電機からの前記蓄電池の蓄電のための電気出力を変化させ、前記蓄電池の蓄電量を変化させることで前記発電機から前記電力系統への電気出力を変化させると共に、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を変化させ、前記タービンを回転させるための前記原子炉から導入される蒸気量を変化させて前記発電機における発電量を変化させることで前記発電機から前記電力系統への電気出力を変化させ、かつ、前記原子力発電システムの短周期の需要変動に対応するために、前記蓄電池から前記電力系統への電気出力を変化させるように前記制御装置で制御することを特徴とする原子力発電システムの制御方法。
    A method for controlling a nuclear power generation system according to claim 13,
    In order to respond to long-term demand fluctuations in the nuclear power generation system, the electrical output from the generator for storing electricity in the storage battery is changed, and the amount of electricity stored in the storage battery is changed, thereby reducing the electricity from the generator. In addition to changing the electric output to the grid, the amount of steam generated in a part of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine is changed, and the steam introduced from the nuclear reactor is used to rotate the turbine. In order to change the electric output from the generator to the power grid by changing the amount of steam generated in the generator to change the amount of power generated in the generator, and to respond to short-term demand fluctuations of the nuclear power generation system. . A method of controlling a nuclear power generation system, characterized in that the control device performs control to change the electrical output from the storage battery to the power system.
  15.  請求項14に記載の原子力発電システムの制御方法であって、
     前記水素貯蔵器に貯蔵した水素の需要が高い場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を増加させて前記水素製造機での水素製造を増加させると共に前記発電機からの前記蓄電池の蓄電のための電気出力を減少させ、かつ、
     前記水素貯蔵器に貯蔵した水素の需要が低い場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を減少させて前記水素製造機での水素製造を減少させると共に、前記発電機からの前記蓄電池の蓄電のための電気出力を増加させるように前記制御装置で制御することを特徴とする原子力発電システムの制御方法。
    15. The method for controlling a nuclear power generation system according to claim 14,
    When the demand for hydrogen stored in the hydrogen storage device is high, the amount of steam generated in a part of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine is increased, and the hydrogen production in the hydrogen production machine is increased. increasing production and decreasing electrical output from the generator for storage of the battery; and
    When the demand for hydrogen stored in the hydrogen storage device is low, the amount of steam generated in a part of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine is reduced, and the hydrogen production in the hydrogen production machine is reduced. A method for controlling a nuclear power generation system, comprising controlling the control device to reduce production and increase electrical output from the generator for storing electricity in the storage battery.
  16.  請求項14又は15に記載の原子力発電システムの制御方法であって、
     前記蓄電池の蓄電量が必要な場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を減少させて前記水素製造機での水素製造を減少させると共に、前記発電機からの前記蓄電池の蓄電のための電気出力を増加させ、かつ、
     前記蓄電池の蓄電量が不要な場合には、前記水素製造機での水素製造に用いる前記原子炉で発生した蒸気の一部の蒸気量を増加させて前記水素製造機での水素製造を増加させると共に、前記発電機からの前記蓄電池の蓄電のための電気出力を減少させるように前記制御装置で制御することを特徴とする原子力発電システムの制御方法。
    A method for controlling a nuclear power generation system according to claim 14 or 15,
    When the amount of electricity stored in the storage battery is required, the amount of steam generated in part of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine is reduced to reduce hydrogen production in the hydrogen production machine. At the same time, increasing the electrical output from the generator for storing electricity in the storage battery, and
    When the amount of electricity stored in the storage battery is not required, increasing the amount of some of the steam generated in the nuclear reactor used for hydrogen production in the hydrogen production machine to increase hydrogen production in the hydrogen production machine. A method for controlling a nuclear power generation system, characterized in that the control device performs control to reduce an electrical output from the generator for storing electricity in the storage battery.
PCT/JP2022/014989 2022-03-28 2022-03-28 Nuclear power system and control method therefor WO2023187898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014989 WO2023187898A1 (en) 2022-03-28 2022-03-28 Nuclear power system and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014989 WO2023187898A1 (en) 2022-03-28 2022-03-28 Nuclear power system and control method therefor

Publications (1)

Publication Number Publication Date
WO2023187898A1 true WO2023187898A1 (en) 2023-10-05

Family

ID=88199659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014989 WO2023187898A1 (en) 2022-03-28 2022-03-28 Nuclear power system and control method therefor

Country Status (1)

Country Link
WO (1) WO2023187898A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948696A (en) * 1982-09-13 1984-03-19 株式会社東芝 Steam distributing device of reactor plant
JP2004092399A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Stand-alone energy supply system
JP2007218604A (en) * 2006-02-14 2007-08-30 Japan Atomic Energy Agency Nuclear power generation system adaptable to load fluctuations
US20110131991A1 (en) * 2007-12-17 2011-06-09 Battelle Energy Alliance, Llc Methods and systems for the production of hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948696A (en) * 1982-09-13 1984-03-19 株式会社東芝 Steam distributing device of reactor plant
JP2004092399A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Stand-alone energy supply system
JP2007218604A (en) * 2006-02-14 2007-08-30 Japan Atomic Energy Agency Nuclear power generation system adaptable to load fluctuations
US20110131991A1 (en) * 2007-12-17 2011-06-09 Battelle Energy Alliance, Llc Methods and systems for the production of hydrogen

Similar Documents

Publication Publication Date Title
KR102158356B1 (en) Power plant load-following operation system based on hydrogen production
JP5528451B2 (en) Fuel cell device
US11923100B2 (en) Power plant system
KR101911873B1 (en) Integrated hydrogen power system
WO2004004041A1 (en) Fuel cell cooling system for low coolant flow rate
WO2023187898A1 (en) Nuclear power system and control method therefor
JP7334480B2 (en) HTGR system
JP2010090425A (en) Hydrogen producing apparatus and method thereof
JP2003105577A (en) Gas generator and fuel cell hybrid system
CN111816901A (en) Nuclear power generation system and nuclear power device
JP5855955B2 (en) Energy management equipment
JPH04349356A (en) Electric power storage system by hydrogen energy
KR100780200B1 (en) A system for fuel cell stack cooling and hot water supply
JP2010113885A (en) Fuel cell power generation system and its operation method
JP2013016354A (en) Fuel cell system and method for operating the same
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
JP2000113900A (en) Solid polymer fuel cell system
JP7312207B2 (en) Hydrogen production system
CN219548934U (en) Flexible power system based on transformation of retired thermal power plant
KR20180010607A (en) Hydrogen supplying system and mehod of underwater moving body
KR20230123175A (en) Water electrolysis system linked to nuclear power plant
JP2023076833A (en) Nuclear power plant and method for operating the same
JPH065297A (en) Fuel cell power generating system
CN114754409A (en) High-efficiency combined heat and power supply system of hydrogen generator
CN102859773B (en) Fuel cell electric power generator and management method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935052

Country of ref document: EP

Kind code of ref document: A1