WO2023187505A1 - 자동차용 조명장치 - Google Patents
자동차용 조명장치 Download PDFInfo
- Publication number
- WO2023187505A1 WO2023187505A1 PCT/IB2023/052150 IB2023052150W WO2023187505A1 WO 2023187505 A1 WO2023187505 A1 WO 2023187505A1 IB 2023052150 W IB2023052150 W IB 2023052150W WO 2023187505 A1 WO2023187505 A1 WO 2023187505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- refractive
- refractive lens
- cut
- cutoff
- Prior art date
Links
- 238000009826 distribution Methods 0.000 claims abstract description 52
- 230000003287 optical effect Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 15
- 238000009792 diffusion process Methods 0.000 claims description 10
- 230000000903 blocking effect Effects 0.000 claims description 6
- 239000003086 colorant Substances 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 description 40
- 238000010586 diagram Methods 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000004907 flux Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/265—Composite lenses; Lenses with a patch-like shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
Definitions
- the present invention relates to vehicle lighting devices, such as headlights and fog lights mounted on vehicles such as cars, motorcycles, trains, and bicycles, which are used for lighting to secure the driver's field of vision.
- vehicle lighting devices such as headlights and fog lights mounted on vehicles such as cars, motorcycles, trains, and bicycles, which are used for lighting to secure the driver's field of vision.
- Patent No. 2419832 parallel light irradiated by a condenser lens that condenses light from a light source into parallel light
- An auxiliary reflector and an auxiliary lens part were used to utilize the lateral light of the light source while realizing a cut-off line without color separation in the cut-off refractive lens.
- JP Hei 7-118204 (Title of invention: Headlamp for dimming or non-lighting of automobiles)
- the projection-type optical structure mainly used in the passing beam of headlights does not solve the problem of color separation at the cut-off line, and requires the use of a blocking film, resulting in light loss of more than 50%. I'm doing it.
- the aforementioned patent No. 2419832 utilizes an auxiliary reflector and an auxiliary lens part to efficiently utilize the amount of light from the light source, so it is necessary to reduce the number of parts when considering assembly tolerances and costs, and in particular, the thick condenser lens is used for the top and bottom.
- the thick condenser lens is used for the top and bottom.
- Patent No. 2419832 did not suggest a method of producing a headlamp that realizes an asymmetric beam using only a cut-off refractive lens, but only disclosed a method of realizing an asymmetric beam using a reinforcing lens in the auxiliary lens part, so the cut-off refractive lens A method is needed to directly realize not only a symmetric beam but also an asymmetric beam with the cut-off line upward to the left or right.
- Patent No. 2419832 uses a lens that condenses parallel light when viewed from the side, so light with strong color separation reaches the top and bottom of the cutoff refractive lens, so to eliminate color separation at the maximum downward angle, the top and bottom
- the emitted light had to be combined, and in case color separation was not resolved, a method of overlapping with the scattered light emitted from the auxiliary lens part or the light refracted at the maximum downward angle from the reinforcement lens of the auxiliary lens was proposed. Therefore, a method is needed that does not fundamentally cause significant color separation in the vertical direction from the beginning until the maximum downward angle is reached when viewed from the side.
- Patent No. 2419832 does not provide a device that efficiently distributes the amount of light from the light source in the left and right or up and down directions from the beginning. , the auxiliary lens part had to be mainly used.
- the present invention relates to a lighting device for a vehicle, and according to one aspect, in a vehicle lighting device including a light source and a cut-off refractive lens disposed in front of the light source, the cut-off refractive lens A set light distribution of a symmetrical or asymmetric beam is realized, including an entrance surface that receives light and an exit surface that refracts and emits internal rays that pass through the incident surface, and the cutoff refractive lens is one or more cutoff refractors formed in the vertical direction.
- the lens cross-section is formed continuously, but one or more cutoff refractive lens cross-sections are created by continuing the path of internal rays on a horizontal plane that pass through the entrance plane and are refracted at the exit plane in the vertical direction, and are unrelated to the path of the internal ray.
- a cutoff refractive lens cross section formed on one or more of the vertical cross sections and unrelated to the path of the internal ray, a continuous surface that forms a cutoff refractive lens to realize exit light at a predetermined left and right angle from the cutoff refractive lens.
- the cutoff refractive lens cross section includes an entrance surface curve that is the intersection with the entrance surface and an exit surface curve that is the intersection with the exit surface, and the cutoff refractive lens cross section is an internal ray that passes through the entrance surface curve. They are refracted at the exit surface to satisfy the set vertical light distribution, and the entrance surface curve of the cross section of the cutoff refracting lens prevents internal rays passing through the entrance surface curve from being totally internally reflected at the exit surface, and each internal ray intersects vertically or horizontally with adjacent internal rays.
- a lighting device for a vehicle is proposed, which is characterized in that a continuous surface is formed by gradually moving each curve forward or backward in one or more of the entrance surface curves and the emission surface curves to continue.
- the left and right angles of incidence of the incident light can be adjusted by gradually moving the curve of the entrance surface of the cutoff refractive lens cross section and the adjacent cutoff refractive lens cross section forward or backward to change the left and right angles of the internal ray in the horizontal cross section of the cutoff refractive lens. .
- a predetermined left and right direction of the exit light from the cutoff refractive lens cross section can be formed by gradually moving forward or backward and continuing the exit surface curve of the cutoff refractive lens cross section adjacent to the cutoff refractive lens cross section.
- it may further include a left and right refractive lens disposed between the light source and the cutoff refractive lens and eccentrically distributing the light emitted from the light source symmetrically or asymmetrically in the left and right directions or up, down, left and right, and emitting the light in the direction of the cutoff refractive lens.
- a portion of the left and right refractive lenses may include a luminous flux reduction section in which light is emitted by reducing the density of light.
- left and right refractive lenses may be separate from the light source, or may be formed on the front side of the light source as part of the light source, but may be integrally formed with the light source and be separable from the light source.
- the cross section of the cutoff refractive lens is subdivided into one or more sub-regions, and a predetermined vertical light distribution may be assigned to each sub-region.
- one or more sub-regions and other sub-regions adjacent thereto may be formed by continuing the exit surface curves of the cross section of the cut-off refractive lens formed to emit light at different vertical angles from the contact point, so that one or more corners are formed on the exit surface of the cut-off refractive lens. You can.
- the emission surface curves of the cross section of the cutoff refractive lens which are formed as naturally continuous curves, are naturally continuous on the emission surface of the cutoff refractive lens so that one sub-area and the other adjacent sub-areas emit light at the same vertical angle from the contact point. sub-regions can be formed.
- the upper and lower light distribution of the cross sections of one or more cutoff refractive lenses forming a cutoff refractive lens forms a cutoff that varies in brightness and darkness at a predetermined vertical angle without a blocking film, and the cutoff refractive lens is formed by continuing the cross sections of the cutoff refractive lenses. Cut-off line can be realized.
- the upper and lower light distribution of the cross-sections of the cut-off refractive lens are formed to gradually vary the upper and lower cut-off angles, so that a cut-off angle transition zone in which the cut-off angle gradually changes can be formed in the cut-off refractive lens.
- the cut-off refractive lens can focus the light from the optical axis of the light source or the center close to the optical axis to the bright area of the cut-off line so that color separation does not occur or is minimized at the cut-off line.
- light is emitted at a maximum downward angle of the vertical light distribution set at a specific point on the vertical section above the exit surface of the cutoff refractive lens, and light is emitted at a maximum downward angle at a specific point on the vertical section below the exit surface of the cutoff refractive lens.
- the light emitted from a specific point on the upper part of the emission surface is separated into red on top and blue on the bottom, centered on yellow
- the light emitted from a specific point on the lower part of the emission surface is separated into blue on top and blue on the bottom, centered on yellow. It is color separated into red, but the color separation width of the light emitted from specific points above and below the emission surface is similar to each other, so color separation can be eliminated.
- the light emitted from the light source is eccentrically distributed symmetrically or asymmetrically in the up, down, left, and right directions and is emitted in the direction of the cutoff refractive lenses, or between the light source and the cutoff refractive lens.
- the light emitted from the light source can be emitted as close to parallel or parallel light when viewed from the side.
- the left and right refracting lenses or the upper and lower refracting lenses are farther away from the light source, the light that escapes to the outside of the left and right refracting lenses or the upper and lower refracting lenses is reflected to parallel light or close to parallel light when viewed from the side, and the outside or left and right of the cutoff refracting lenses. It is formed outside the refractive lens or the upper and lower refractive lens and may further include one or more supplementary lenses that refract, diffuse, or refract and diffuse the light reflected from the reflector in a set direction.
- color separation at the cut-off line which is a chronic problem of conventional projection type vehicle lighting devices, can be solved, and there is no loss of light amount caused by using a blocking film, so most of the light from the light source is absorbed. You can utilize it.
- the efficiency of light quantity is not important, according to one embodiment, even if the left and right refractive lenses are removed, about 71% of the light quantity can be utilized even when 45 degrees of light on one side is irradiated to the cutoff refractive lens. Even when 8% light loss occurs due to no anti-reflection coating on the cutoff refractive lens, it provides excellent light efficiency of 71 This is outstanding.
- the present invention does not use a lens that converges parallel light when viewed from the side, uses only a weak light convergence degree, or uses a left-right refractive lens that condenses parallel light on the upper side but does not converge parallel light on the lower side, thereby achieving color separation of the optical axis. It creates a sharp cut-off line by concentrating the missing light on the cut-off line, while retaining the rays of the maximum downward angle of the light source (for example, an arbitrary set angle of about D4° to about D15°) without any color separation from the beginning in the vertical direction. Since irradiation can be done at the maximum downward angle with a cut-off refractive lens, there is no color separation problem. Of course, since the diffused light from the light source is diffused to the left and right in a similar width in the left and right directions, there is no color separation problem.
- the left and right refractive lenses converge light when viewed from a plane, but include a luminous flux reduction section, and the cutoff angle conversion section of the cutoff refractive lens irradiates by lowering the luminous flux, including the luminous flux reduction section, so there are no side effects according to the above principle in the cutoff angle conversion section. It is possible to provide a vehicle lighting device that can reduce and at the same time facilitate processing.
- the effects according to one embodiment not only solve the problems of color separation and light loss, which are chronic problems of the conventional projection method, but also create a sharp cut-off line in an overall smaller size without a reflector or auxiliary lens part compared to Patent No. 2419832. It is possible to provide an efficient automotive lighting device without color separation.
- FIG. 1A is a diagram schematically showing the overall appearance of a vehicle lighting device according to an embodiment of the present invention.
- Figure 1b is a light distribution diagram of Figure 1a.
- FIG. 1C is an optical characteristic curve (Iv) along the center line of FIG. 1B.
- FIG. 2A is a diagram schematically showing the overall appearance of a vehicle lighting device according to another embodiment of the present invention. Compared to FIG. 1A, the tilt of the emission portion in the cut-off line direction of the left emission surface is corrected.
- Figure 2b is a light distribution diagram of Figure 2a.
- FIG. 2C is an optical characteristic curve (Iv) along the center line of FIG. 2B.
- FIG. 3A is a diagram schematically showing a cross section of a cutoff refractive lens formed along an internal light path in a vehicle lighting device according to another embodiment of the present invention.
- FIG. 3B is a plan view of FIG. 3A showing the path of internal rays in the cutoff refractive lens.
- FIG. 4 is a diagram illustrating an optical path through which left and right refractive lenses adjust light distribution asymmetrically to the left and right in a plane in a vehicle lighting device according to another embodiment of the present invention.
- FIG. 5 is a diagram showing a plurality of sub-regions emitting light with different vertical light distributions in the cross section of a cutoff refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- Figure 6 is a diagram illustrating an optical path that adjusts the amount of left and right light on the entrance surface of the cut-off refractive lens and distributes it to the exit surface of the cut-off refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- Figure 7 is a diagram schematically showing a vertical cross-section of a cutoff refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- Figure 8 is a diagram showing cross-emission in the cross section of a cutoff refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- the present invention relates to a lighting device for a vehicle.
- a lighting device for a vehicle including a light source and a cutoff refractive lens 30 disposed in front of the light source
- the cutoff refractive lens 30 transmits light.
- a set light distribution of a symmetrical or asymmetric beam is realized by including an incident surface (30a) that receives incident light and an exit surface (30b) that refracts and emits the internal rays that pass through the incident surface, and the cutoff refracting lens (30) is vertical.
- One or more cut-off refractive lens cross-sections 31 formed in a continuous direction are formed continuously, and the one or more cut-off refractive lens cross-sections 31 transmit the internal rays on the horizontal plane that pass through the incident surface 30a and are refracted at the exit surface 30b.
- the cut-off refractive lens 30 is moved and placed at a predetermined position on the continuous surface forming the cut-off refractive lens 30 to realize the exit light at a predetermined left and right angle, and the cut-off refractive lens end surface 31 is formed on the entrance surface 30a.
- an exit surface curve 31b that is an intersection with the entrance surface curve 31a and the exit surface 30b
- the cutoff refractive lens cross section 31 is an internal ray that passes through the entrance curve 31a.
- the set vertical light distribution is satisfied by refracting at the exit surface, and the entrance surface curve 31a of the cutoff refractive lens cross section 31 prevents the internal rays passing through the entrance surface curve 31a from being totally internally reflected at the exit surface 30b.
- Each internal ray is formed so as not to intersect vertically with adjacent internal rays or converge at one point on the emission surface, and to form a predetermined left and right light distribution of the light emitted from the cut-off refractive lens 30, a cut-off refractive lens 30 is formed. Forward each curve in one or more of the entrance surface curves 31a and the exit surface curves 31b in the adjacent cutoff refractive lens cross section 31 that is continuous with the predetermined cutoff refractive lens cross section 31 on the continuous plane. Alternatively, it is characterized by forming a continuous surface by gradually moving backward and continuing.
- a vehicle refers to any vehicle running on a road or track, such as a car, motorcycle, train, or bicycle. Therefore, there is no need to limit the present invention to only lighting devices for automobiles.
- the present invention can be applied to lighting devices such as work lights in the same manner without forming a cut-off line using the cut-off refractive lens of the present invention.
- the optical axis of the vehicle lighting device is aligned with the H-V center.
- the optical axis may be arbitrarily modified to deviate from the H-V center, and the manufactured vehicle lighting may be used. It should be understood that this excludes the fact that AIMING must be performed according to regulations when measuring a device.
- 'measuring screen' refers to a flat vertical screen set up at a predetermined distance in front of the lighting device when measuring a lighting device for a vehicle according to the regulations of each country. a distance of 10 m or 25 m), which is known to experts in this field.
- the front refers to the direction of the measurement screen
- the horizontal plane refers to the protruding plane of the H line (horizontal line) of the measurement screen, that is, the surface formed by the H line continuing forward and backward
- the plane refers to the plane parallel to the horizontal plane, the vertical plane.
- the side surface means the surface parallel to the vertical plane.
- the upper part of the cutoff refractive lens refers to the upper part of the horizontal plane, assuming that the optical axis is aligned with the horizontal plane, and the lower part refers to the lower part of the horizontal plane.
- 'up and down direction' refers to the direction of the up (or U) and down (or D) angles on the measurement screen
- 'left and right direction' refers to the direction of the left (or L) and right (or R) angles of the measurement screen. It is used with meaning.
- extrusion means creating a surface or solid by extending the shape of a curve (line), and sweep means creating a curved surface or solid with a cross-section curve according to a path curve.
- EXTRUDE creates a Accordingly, a protruding plane refers to a flat surface formed by extruding a straight line.
- internal rays formed on the horizontal plane of the cut-off refractive lens refers to internal rays formed in the process of realizing left and right light distribution in 2D before forming a 3D shape, and the 3D shape completed by the method described in this specification.
- the internal rays may be inconsistent with the horizontal plane and tilted in a certain vertical direction, and the "internal rays formed on the cross section of the cut-off refractive lens” also realize the vertical light distribution of the cut-off refractive lens in 2D before forming a 3D shape.
- the internal ray is formed by continuing the internal ray formed on the vertical projection plane, that is, the horizontal plane of the cutoff refractive lens, in the vertical direction. It should be understood that it may be further refracted left and right or up and down inconsistent with the formed surface. Furthermore, when internal rays from the completed 3D are projected onto the 2D surface, there may be slight discrepancy.
- cut-off line angle or maximum downward irradiation angle can be arbitrarily determined within the range permitted by the laws of each country, so it is not used in a sense limited to the angles exemplified in the specification.
- FIG. 1A is a diagram schematically showing the overall appearance of a vehicle lighting device according to an embodiment of the present invention
- FIG. 1B is a light distribution diagram of FIG. 1A
- FIG. 1C is an optical characteristic curve (Iv) along the center line of FIG. 1B.
- FIG. 2A is a diagram schematically showing the overall appearance of a vehicle lighting device according to another embodiment of the present invention. Compared to FIG. 1A, the tilt of the emission portion in the cut-off line direction of the left emission surface is corrected, and FIG. 2B is a diagram showing FIG. 2A. It is a light distribution diagram, and Figure 2c is an optical characteristic curve (Iv) along the center line of Figure 2b.
- FIG. 1A is a diagram schematically showing the overall appearance of a vehicle lighting device according to an embodiment of the present invention
- FIG. 1B is a light distribution diagram
- FIG. 1C is an optical characteristic curve along the center line of Figure 2b.
- FIG. 3A is a diagram schematically showing a cross-section of a cutoff refractive lens formed along an internal light path in a vehicle lighting device according to another embodiment of the present invention
- FIG. 3B is a plan view of FIG. 3A showing the inner section of the cutoff refractive lens.
- This is a diagram showing the path of light rays.
- FIG. 4 is a diagram illustrating an optical path through which left and right refractive lenses adjust light distribution asymmetrically to the left and right in a plane in a vehicle lighting device according to another embodiment of the present invention.
- FIG. 5 is a diagram showing a plurality of sub-regions emitting light with different vertical light distributions in the cross section of a cutoff refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- Figure 6 is a diagram illustrating an optical path that adjusts the amount of left and right light on the entrance surface of the cut-off refractive lens and distributes it to the exit surface of the cut-off refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- Figure 7 is a diagram schematically showing a vertical cross-section of a cutoff refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- Figure 8 is a diagram showing cross-emission in the cross section of a cutoff refractive lens in a vehicle lighting device according to another embodiment of the present invention.
- the vehicle lighting device of the present invention includes a light source 10 and a cutoff refractive lens 30 disposed in front of the light source 10. do.
- the light source 10 is anything that emits light and has a predetermined light distribution.
- the cutoff refractive lens 30 is disposed in front of the light source 10. At this time, the cutoff refractive lens 30 may convert the light emitted from the light source 10 into a symmetric or asymmetric beam and emit it. That is, the cutoff refractive lens 30 includes an incident surface 30a that receives light and an exit surface 30b that refracts the internal rays 32 that pass through the incident surface 30a and emits a symmetrical or asymmetric beam. A set light distribution can be realized.
- the cutoff refractive lens 30 may have one or more cutoff refractive lens cross sections 31 formed in a vertical direction.
- the one or more cutoff refractive lens cross sections 31 are cross sections created by continuing the path of the internal ray 32h on the horizontal plane that passes through the incident surface 30a and is refracted at the exit surface 30b in the vertical direction, that is, the internal It is formed in one or more of the vertical protruding cross section of the light ray 32h and the vertical cross section unrelated to the traveling path of the internal light ray 32h.
- the cut-off refractive lens 30 includes one or more cut-off refractive lens cross-sections 31 formed on the vertical protruding cross-section of the internal ray 32h and one or more cut-off refractive lenses formed on the vertical cross-section unrelated to the traveling path of the internal ray 32h. It is formed by continuously forming the lens cross-section 31, or by continuously forming one or more cut-off refractive lens cross-sections 31 formed on the vertical protruding cross-section of the internal ray 32h, or is vertically unrelated to the path of the internal ray 32h. It may be formed by continuously forming one or more cutoff refractive lens sections 31 formed on the section.
- FIG. 3A schematically shows a cutoff refractive lens 30 including a cutoff refractive lens cross section 31 formed along the internal light path.
- the cut-off refractive lens 30 is formed to realize light exiting from the cut-off refractive lens 30 at a predetermined left and right angle. It can be moved and placed at a predetermined location on the continuous surface.
- the cutoff refractive lens cross section 31 has an entrance surface curve 31a that is the intersection with the entrance surface 30a and an exit surface curve that is the intersection with the exit surface 30b. Includes (31b).
- the cutoff refractive lens cross section 31 satisfies the set vertical light distribution by refracting the internal rays 32v that have passed through the entrance surface curve 31a at the exit surface 30b.
- the emission surface curve 31b refracts the internal rays 32v in a set vertical light distribution and emits them.
- the entrance surface curve 31a of the cutoff refractive lens cross section 31 is such that the internal rays 32v that pass through the entrance surface curve 31a are not totally internally reflected at the exit surface 30b, and each internal ray 32v is adjacent to the inner ray 32v. It is formed so that it does not intersect vertically with the internal light ray 32v or converge at one point on the emission surface 30b.
- an adjacent cutoff refractive lens cross section 31 is continuous with a predetermined cutoff refractive lens cross section 31 on a continuous surface forming the cutoff refractive lens 30.
- a continuous surface can be formed by gradually moving each curve forward or backward in one or more of the entrance surface curves 31a and the exit surface curves 31b.
- the left and right incident angles of the incident light are adjusted by gradually moving the cutoff refractive lens cross section 31 and the incident surface curve 31a of the adjacent cutoff refractive lens cross section 31 forward or backward to continue the cutoff refractive lens 30.
- the left and right angles of the internal rays (32h) can be changed.
- the exit surface curve 31b of the cutoff refractive lens cross section 31 adjacent to the cutoff refractive lens cross section 31 is gradually moved forward or backward to continue, so that the exit light from the cutoff refractive lens cross section 31 can be adjusted to a predetermined right and left direction. direction can be formed.
- a plurality of cutoff refractive lens cross sections 31 may be formed continuously in the cutoff angle conversion region 30c, where one cutoff refractive lens cross section 31 and The exit surface curve 31b of the adjacent cutoff refractive lens end face 31 may be gradually moved forward or backward and continued to form the exit surface 30b.
- the cut-off refractive lens cross-section 31 and the exit surface curve 31b of the adjacent cut-off refractive lens cross-section 31 are continued by gradually moving forward or backward.
- the cutoff refractive lens cross section 31 and the entrance surface curve 31a in the adjacent cutoff refractive lens cross section 31 can be continued by gradually moving forward or backward, or both can be continued by gradually moving forward or backward. there is.
- the entrance surface curve 31a is gradually moved forward or backward to be continuous, and the exit surface curve 31b is gradually moved forward or backward. Moving and continuing can be performed together.
- the vehicle lighting device may further include a left and right refractive lens 20 between the light source 10 and the cutoff refractive lens 30. You can.
- the left and right refractive lenses 20 are disposed between the light source 10 and the cutoff refractive lenses 30.
- the left-right refractive lens 20 can eccentrically distribute the light emitted from the light source 10 symmetrically or asymmetrically in the left-right or up-down, left-right directions and emit it in the direction of the cut-off refractive lens 30.
- the left and right refractive lenses 20 converge the diffused light from the light source 10 at least in the left and right directions, while forming a luminous flux reduction section 20c in which the luminous flux is reduced and emitted in some parts. It can be included.
- the entrance surface 20a of the left and right refractive lenses 20 is shown as a straight line in the plan view, and the exit surface 20b of the left and right refractive lenses 20 is shown as convex in the plan view.
- Figure 4 is illustrative, and unlike In the plan view, the entrance surface 20a of the left and right refractive lenses 20 may be concave or convex, and if the entrance surface 20a is convex, the exit surface 20b may be formed as a straight line. Although the vertical cross-section is not shown in FIG. 4, at least one of the entrance surface 20a and the exit surface 20b in the vertical cross-section may be convex so that light can be collected not only in the left and right directions but also in the vertical direction.
- the left and right refractive lenses 20 may be a separate component from the light source 10, or, although not shown, may be formed on the front side of the light source 10 as a part of the light source 10, but be inseparably integrated with the light source 10. It can be mounted to be detachable from the light source 10.
- the cutoff refractive lens cross section 31 is divided into one or more sub-regions 31s, and a predetermined vertical light distribution may be assigned to each sub-region 31s.
- the exit surface 30b of the cutoff refractive lens 30 is composed of an upper exit surface 310b and a lower exit surface 330b, and the entrance surface 30a is an upper incidence surface 310a and a lower incidence surface (310a). 330a), it can be seen that the cutoff refractive lens cross section 31 is subdivided into a plurality of sub-regions 31s.
- the emission surface 30b of the cutoff refractive lens 30 is composed of an upper emission surface 310b, a middle emission surface 320b, and a lower emission surface 330b.
- the middle emission surface 320b is a section on the vertical section that focuses the emission light to the concentrated illumination area (Pbr) below the cut-off line (Pcf).
- the emission surface curve of the cutoff refractive lens cross section 31 is formed so that one or more sub-regions 31s and other sub-regions 31s adjacent thereto emit light at different vertical angles from the contact point (FIG.
- One or more edges 30d may be formed on the exit surface 30b of the cut-off refractive lens 30 by continuing 31b).
- the uppermost sub-area (31s) is a section where weak emitted light is emitted above the cut-off line
- the second sub-area (31s) from the top is a section where emitted light crosses emitted below the cut-off line.
- the sub-area 31s in the third position from the top diverts the light emitted from the light source in the downward direction of 15 degrees (D15), which is the set maximum downward angle, to the maximum downward angle below the cut-off line.
- the sub-area (31s) at the bottom is irradiated from the light source in a direction further downward than, for example, 15 degrees downward (D15), which is the maximum downward angle set. It shows that the irradiated light is incident and emitted from near the cut-off line down to 13 degrees (D13).
- Figure 5 is an example, and the concept in Figure 5 can be modified into various forms.
- the emission surface of the cutoff refractive lens cross section 31 is formed as a naturally continuous curve so that one sub-region 31s and the other adjacent sub-region 31s emit light at the same vertical angle at the contact point.
- the curves 31b naturally continuous sub-regions 31s can be formed on the exit surface 30b of the cutoff refractive lens 30. Referring to FIG. 5, the light is emitted from the same point at the intersection between the second and third sub-areas 31s from the top, forming a naturally continuous curve.
- the vertical light distribution of one or more cross sections 31 of the cutoff refractive lens 30 forming the cutoff refractive lens 30 may form a cutoff that varies in brightness and darkness at a predetermined vertical angle without a blocking film.
- the cut-off refractive lens 30 formed by continuing the cut-off refractive lens cross section 31 can realize the cut-off line. 5 and/or 8, it can be seen that the cut-off line is implemented by concentrating the emitted light below the cut-off line.
- the vertical light distribution of the cutoff refractive lens cross sections 31 is formed to gradually vary the upper and lower cutoff angles, thereby forming the cutoff A cutoff angle conversion zone 30c whose angle gradually changes may be formed in the cutoff refractive lens 30.
- 1B and/or 2B it is shown that the cutoff angle changes upward to the right at the beginning of the shoulder portion.
- the cutoff angle conversion zone 30c may be formed in the middle portion of the cutoff refractive lens 30, or in another example, not shown, the cutoff refractive lens 30. It may be formed on the outer part of the middle part.
- the cutoff angle conversion area 30c may be formed only in a section formed by a specific continuation of the sub-area 31s rather than the entire continuous section of the cutoff refractive lens cross section 31.
- the cut-off refractive lens 30 can focus the light from the optical axis of the light source 10 or the center close to the optical axis to the bright area of the cut-off line so that color separation does not occur or is minimized at the cut-off line.
- the light emitted from the middle emission surface 320b is shown to be focused on a bright area (focused illumination area) Pbr below the cut-off line.
- the light emitted from a portion (Upper) of the upper emitting surface (310b) of the emitting surface (30b) is emitted to the set maximum downward angle point (Plow), and the light emitted from a portion (Lower) of the lower emitting surface (330b) ) is emitted at the same set maximum downward angle point (Plow), and the color-separated light is combined complementary to solve the color separation problem.
- the light emitted from the light source 10 at an angle equal to the maximum downward angle to prevent color separation at the maximum downward angle of the set vertical light distribution can be emitted from the cutoff refractive lens 30 at a set maximum downward angle.
- light is emitted at the maximum downward angle of the vertical light distribution set at a specific point on the vertical cross section of the upper part of the exit surface 30b of the cutoff refractive lens 30, for example, a specific point in the upper area of FIG. 8.
- the light can be emitted at a maximum downward angle at a specific point on the vertical section below the emission surface 30b of the cutoff refractive lens 30, for example, at a specific point in the lower area of FIG. 8.
- the light emitted from a specific point on the upper part of the emission surface 30b is color-decomposed into red above and blue below, with yellow as the center, and the light emitted from a specific point below the emission surface 30b is centered on yellow.
- the colors are separated into blue above and red below, but the color separation widths of the light emitted from specific points above and below the emission surface 30b are similar to each other, so color separation can be eliminated.
- the cut-off refractive lens 30 may be formed in one part of an arbitrary lens.
- the remaining part is not the cut-off refractive lens 30 of the present invention, and the left and right refractive lenses 20 are also arbitrary. It may be formed in one part of the lens, and in this case, the remaining part is not the left and right refractive lens 20 of the present invention.
- a part of the composite lens formed integrally for example, the middle part, is formed as a cut-off refractive lens 30, and the outer part is formed as an auxiliary lens, or a part of the composite lens formed integrally, for example, the middle part, is formed as the left and right refractive lenses 20.
- the outer part can be configured as an auxiliary lens, but it is not limited to this.
- the light source 10 can be understood as any form that emits light, and includes those in which a lens is integrated into the light emitting part or in which a lens is added separately.
- the light source 10 is symmetrical or asymmetrical in the left-right and up-down directions compared to general LEDs and laser diodes that have light distribution that follows the cosine law. It also includes a form in which light is concentrated, and in this case, the function of the left and right refractive lenses 20 can be realized in the light source 10.
- the left and right refractive lenses 20 distribute the amount of light symmetrically or asymmetrically in the left and right directions when looking at the light emitted from the light source 10 in a plane view, so that the left and right refractive lenses 20 appear on the incident surface of the cutoff refractive lenses 30. It can be investigated with (30a). Although not shown, the left and right refractive lenses 20 can distribute the amount of light symmetrically or asymmetrically not only in the left and right directions but also in the up and down directions to irradiate the light onto the incident surface 30a of the cutoff refractive lens 30.
- the left and right refractive lenses 20 do not need to converge light in the up and down directions, so the performance of the cutoff refractive lens is proportional to the distance from the light source 10 so that the image of the light source becomes smaller in the cutoff refractive lens 30. Therefore, the cut-off refractive lens 30 can realize a relatively precise cut-off line and can be almost unaffected by the distance between the left and right refractive lenses 20 and the light source 10.
- the shoulder section that gradually rises in either the left or right direction does not rise gently at about 15 degrees, but moves only about 1.5 degrees to the left or right and moves about 1.5 degrees. It may be difficult to precisely manufacture the cutoff angle conversion section 30c, which rapidly increases to 45 degrees and then realizes a change in the cutoff line parallel to the horizon.
- the cutoff angle conversion Since the left and right width of the section 30c was only about 1.2 mm (d2), significant costs may be incurred for mold processing, and it is necessary to expand the width of the cutoff angle change section 30c to alleviate this.
- the luminous flux of the light emitted from the light source 10 that is, the density of the light is emitted small in a predetermined angle range and irradiated to the incident surface 30ca in the cutoff angle change section, thereby reducing the luminous flux.
- the section 20c may be included in the left and right refractive lenses 20.
- the cutoff angle conversion section incident surface 30ca creates a plurality of cutoff refractive lens cross sections 31 that realize the upper and lower cutoff angles corresponding to the left-right angle values of the predicted exit light, and these are continuous surfaces to form a cutoff refractive lens.
- the entrance and exit surfaces can be formed.
- the luminous flux reduction section 20c is formed by the cutoff angle conversion section 30c of the cutoff refractive lens 30.
- Figure 4 is a top view of the left and right refractive lenses 20 for realizing an asymmetric beam, including the luminous flux reduction section 20c.
- the light path from L0.62 degrees to R1.53 degrees is formed to be smaller than other light paths, and the cutoff refractive lens 30 injects the output light with a reduced luminous flux in the luminous flux reduction section 20c.
- the cutoff angle moves 1.5 degrees to the right and 1.5 degrees upward, and then can be assigned to a narrow area that is parallel to the horizon, that is, 45 degrees upward to the right.
- the left and right refractive lenses 20 can converge the light of the light source 10 at a free intensity in the left and right directions, and the left and right refractive lenses 30 can be adjusted according to the degree of condensation in the left and right directions of the left and right refractive lenses 20.
- the width can be formed very narrowly, and at the same time, the amount of light from the light source 10 can be efficiently concentrated by placing the small-sized left and right refractive lenses 20 right in front of the light source 10, Patent No.
- the left and right refractive lenses 20 are configured separately from the light source 10, or even when configured as part of the light source 10, they are provided as an inseparable integral with the light source 10 or are provided separably attached to the light source. It may also be implemented in a form that is
- the left and right refractive lenses 20 in the present invention function to converge or distribute light in the left and right directions, and condensing light in other directions is not required, and adding a light condensing function in the up and down directions is not necessary in the applied embodiment. It belongs.
- the left and right refractive lenses 20 it is excluded to add a function to the left and right refractive lenses 20 to collect the light emitted from the light source 10 from the side view, that is, from the up and down directions, and irradiate it to the incident surface 30a of the cutoff refractive lens 30. I never do that.
- the upper portion of the left and right refractive lenses 20 on the horizontal plane is set to irradiate light condensed as parallel light when viewed from the side, thereby reducing the size of the upper part of the cutoff refractive lens 30, and the portion below the horizontal plane is set to irradiate light condensed as parallel light when viewed from the side.
- the light emitted from the lower part of the cut-off refractive lens 30 realizes a sharp cut-off line.
- a lens that converges parallel light when viewed from the side is not used, only a weak condensation degree is used, or a left and right refractive lens 20 that condenses parallel light on the upper side but does not converge parallel light on the lower side can be used.
- the maximum downward angle of the light source that generates a sharp cut-off line by concentrating the light without color separation of the optical axis on the cut-off line and at the same time does not cause color separation from the beginning in the vertical direction (e.g., arbitrary setting angle of about D4° to about D 15°) Since the rays of light can be directly irradiated at the maximum downward angle through the cut-off refractive lens 30, there can be no color separation problem.
- the diffused light from the light source is diffused to the left and right in a similar width in the left and right directions, it is possible to avoid color separation problems.
- the cut-off refractive lens 30 refracts the incident surface 30a, which receives the light emitted from the left and right refractive lenses 20 or the light emitted from the light source 10, and the internal rays 32 passing through the incident surface 30a to emit the light. It includes an emission surface 30b.
- the cutoff refractive lens 30 may be formed by continuously forming one or more cutoff refractive lens cross sections 31. That is, the entrance surface 30a of the cut-off refractive lens 30 is formed by a continuous surface of the curves of the entrance surface portions of the cut-off refractive lens cross-sections 31, and the exit surface 30b of the cut-off refractive lens 30 is formed by the cut-off refractive lens 30.
- the exit surface portions of the cross-sections 31 are formed as continuous surfaces of curves 31b.
- the left and right refractive lenses 20 may be omitted, and the left and right refractive lenses 20 refract only a portion of the light emitted from the light source 10, forming a cutoff refractive lens. (30), and the light source 10 may irradiate some of the emitted light directly to the cutoff refractive lens 30.
- the entrance surface 30a of the cut-off refractive lens 30 can distribute the amount of light so that the internal ray 32h is symmetrical or asymmetrical to the exit surface 30b of the cut-off refractive lens 30 when viewed from a plan view.
- the left and right diffusion surfaces are formed on the incident surface of the cutoff refractive lens 30 in a method similar to that proposed in Patent No. 2419832. can be added, and the target left and right diffuse light distribution can also be realized by forming the exit surface of the cutoff refractive lens 30 to be concave when viewed from a plane.
- Figure 6 is an example of a plan view in which the entrance surface 30a of the cut-off refractive lens 30 is distributed to the exit surface 30b of the cut-off refractive lens 30 so that the left and right light amounts are asymmetrical without the left and right refractive lenses 20. .
- the cutoff refractive lens cross section 31 is created on the vertical projection plane of the randomly selected internal ray 32h, and the left and right direction angles of the internal ray 32h and the exit surface curve 31b of the cutoff refractive lens cross section 31 and the horizontal plane are
- the angle of the straight line connecting the intersection point of the horizontal plane and the exit surface curve 31b of the cross section 31 of the cutoff refractive lens adjacent to the intersection point, and the refractive index according to the medium of the cutoff refractive lens 30 are variables, and the exit light is emitted according to Snell's law.
- the left and right direction angles can be predicted.
- the left and right direction angles of the exit light from the cutoff refractive section 31 can be adjusted, and the cutoff refractive lens section 31 can be adjusted.
- Emission from the cutoff refractive lens cross section 31 is changed by changing the left and right angles of the internal ray 32h by moving the entrance surface curve 31a of the adjacent cutoff refractive lens cross section 31 of the cross section 31 forward or backward and continuing it.
- the left and right angles of light can be changed sequentially.
- the emission surface 30b of the cutoff refractive lens 30 can be freely transformed to be convex or concave when viewed from a plane, thereby distributing the emission light symmetrically or asymmetrically in the left and right directions.
- the cutoff refractive lens cross section 31 can realize light distribution in the vertical direction while forming a cutoff line without color separation with respect to the predicted left and right direction angles of the outgoing light without a blocking film.
- a plurality of cut-off refractive lens cross-sections 31 that realize the vertical light distribution assigned to each predetermined left and right angle are created on the vertical plane, not the vertical projection plane of the internal light ray 32, so that the exit light of the assigned left and right direction angles is generated. It is possible to form a cut-off refractive lens 30 by dispersing it in locations predicted to realize and using the incident surface 30a and exit surface 30b of the cut-off refractive lens to be created continuously.
- the cutoff angle change section 30c shown in Figure 1a or 2a is formed by this simplified method, and the light distribution shown in Figure 1b or 2b shows that a satisfactory cutoff angle change has been achieved.
- a plurality of cut-off refractive lens cross-sections are created on the vertical plane, concentrated in the cut-off angle conversion area 30c, and one cut-off refractive lens cross-section 31 forming a cut-off line is protruded below the horizontal line in the left direction
- a cut-off refractive lens cross-section 31 forming a cut-off line is protruded above the horizontal line
- a plurality of cut-off refractive cross-sections 31 with gradually increasing cut-off angles are intensively arranged.
- the horizontal area of the light distribution diagram in Figure 1b is only slightly tilted outward, and it can be seen that it forms a sharp cut-off line in the characteristic curve of the light intensity (Iv) at L1.5.
- Figure 2a shows that the left part of the light distribution diagram in Figure 1b is not parallel to the horizon and tilts downward, and the cross-section 31 of the cut-off refractive lens, which has been slightly corrected upward, is added to the left, and then the cross-section 31 of the existing cut-off refractive lens is added to the left side.
- This is an example in which the left portion of the cutoff refractive lens 30 is continuously corrected, and the vertical scanning area (L1.5, L2.5 according to ECE R112 Annex 9) verifies the quality of the cutoff line in the light distribution diagram of Figure 2b.
- the horizontality of L3.5 has been corrected and a sharp cut-off line is formed in the characteristic curve of luminous intensity (Iv) at L1.5.
- Figure 2c is an example in which a cutoff refractive lens cross section 31 is created on the vertical projection plane of the internal ray, resulting in a result similar to Figure 2a.
- FIG. 3A is an example in which the horizontal area is corrected by additionally creating a cutoff refractive lens cross section 31 matching the internal ray 31h in the left area of the drawings of FIGS. 1A to 2A.
- the present invention does not necessarily require that the cutoff refractive lens cross section 31 coincides with the vertical projection plane of the internal ray 32 projected on the horizontal plane, but rather depends on the change of the left and right (L / R) angles. Only for sections where the cutoff angle changes or the vertical light distribution changes rapidly, a plurality of cutoff refractive lens cross sections 31 that satisfy the vertical light distribution required for each L / R angle are generated and these are used for the predetermined L / R angle.
- the lens 30 is created by creating only one cutoff refractive lens cross section 31 that realizes a predetermined cutoff angle, or by adding a cutoff refractive lens cross section 31 with the cutoff angle corrected after the fact to create a cutoff refractive lens 30. ) can be formed.
- the exit angle can be adjusted in the left and right directions by adjusting the exit surface curve 31b of the cutoff refractive lens cross sections 31 forming the cutoff angle change section 30c forward or backward, so it is possible to adjust the exit angle in the left and right directions, which is one embodiment of FIG. 1A or FIG.
- the cutoff angle conversion section 30c may be placed at an arbitrary location on the outside.
- the internal rays 32v that pass through the entrance surface curve must be generated so that they are not totally internally reflected on the exit surface 30b of the cutoff refractive lens 30,
- the internal rays 32 generated by assuming that the light source 10 is an ideal point light source 10 one internal ray 32 passes through an arbitrary point of the entrance surface curve 31ca and a point below it.
- the exit surface curve 31cb there must be no intersection point between the top and bottom. The part that does not satisfy these conditions does not correspond to the part that functions as the cutoff refractive lens of the present invention.
- the entrance surface curve 31a of the cutoff refractive lens 30 may be a natural curved surface or an arbitrary surface including multiple edges or steps.
- the exit surface curve 31b and the entrance surface curve 31a of the “cutoff refractive lens cross section 31” are divided into one or more “sub-areas 31s” and each sub-area 31s has a predetermined vertical angle range.
- the adjacent upper and lower 'emission surface curves 31sb and the corresponding incident surface curves 31sa belonging to the sub-emission area' can be formed continuously or discontinuously.
- the cutoff angle conversion section 30c is also allocated to one or more sub-areas 31s that are part of the cutoff refractive lens cross section 31c shown in FIG. 5, unlike in FIG. 1A or FIG. 2A, which is an embodiment. can do.
- the light emitted from the 'sub area 31s' may be "cross-emitted vertically" at a direction angle in which the upper and lower emission angle at any point is lower than the upper and lower emission angle at the lower point.
- “top and bottom sequential emission” may be performed at a direction angle in which the upper and lower emission angle at a certain point is higher than the upper and lower emission angle at a lower point.
- Figure 5 divides the sub-areas into four sections, such as A (top), B (second), C (third), and D (bottom), and realizes a ray path in which B and C are tangentially continuous with each other.
- C is an example in which the ray path is set to intersect up and down, and A and B, and C and D are cornered at the focal point.
- color separation may not occur from the beginning, or color separation may be eliminated, not only at the cut-off line but also at the maximum downward angle.
- the sub-area ( 31s) and set the upper and lower range of the emission angle to be higher than the maximum downward angle in other sub-areas (31s).
- the maximum downward angle is set to D13 to cancel out each other's color separation
- the maximum downward angle is set to D15 and the light source This is an example in which the light ray emitted from D15 is emitted to D15, and the ray without color separation is emitted to D15.
- the entrance surface of the cutoff refractive lens can distribute the amount of light symmetrically or asymmetrically with the exit surface of the cutoff refractive lens with or without the left and right refractive lenses 20 when viewed from a plane. Accordingly, the present invention can be implemented without the left and right refractive lenses 20.
- the left and right refractive lenses 20 are disposed between the light source 10 and the cutoff refractive lens 30 to distribute the light emitted from the light source 10 symmetrically or asymmetrically eccentrically in the up, down, left, and right directions, thereby forming a cutoff refractive lens.
- the light emitted from the light source 10 is emitted in the direction of the refractive lens 30, or, although not shown, an upper and lower refractive lens (not shown) is additionally placed between the light source 10 and the cutoff refractive lens 30 to direct the light emitted from the light source 10 to the side.
- an upper and lower refractive lens (not shown) is additionally placed between the light source 10 and the cutoff refractive lens 30 to direct the light emitted from the light source 10 to the side.
- parallel light or close to parallel light can be emitted.
- it may be disposed without the left and right refractive lenses 20 or may be placed in front or behind the left and right refractive lenses 20.
- the lighting device may further include a reflector and one or more auxiliary lenses.
- the reflector converts the light that escapes the left and right refracting lenses 20 or the vertical refracting lenses into parallel light or close to parallel light when viewed from the side. It can be reflected.
- One or more auxiliary lenses are formed on the outside of the cut-off refracting lens 30, the left and right refracting lenses 20, or the top and bottom refracting lenses, and can refract, diffuse, or refract and diffuse the light reflected from the reflector in a set direction.
- the present invention relates to a lighting device for vehicles, and can be widely used in automotive lighting-related industrial fields as well as applicable to other fields of lighting technology.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
본 발명은 광원 및 광원의 전방에 배치된 컷오프굴절렌즈를 포함하는 차량용 조명장치에 관한 것으로, 컷오프굴절렌즈는 입사면 및 출사면을 포함하여 대칭 또는 비대칭 빔의 설정 배광분포를 실현하고, 하나 이상의 컷오프굴절렌즈 단면이 연속하여 형성되되, 하나 이상의 컷오프굴절렌즈 단면은 내부광선의 수직돌출단면과 내부광선의 진행경로와 무관한 수직 단면 중 어느 하나 이상에 형성되고, 컷오프굴절렌즈 단면은 입사면 커브를 투과한 내부광선들을 출사면에서 굴절시켜 설정된 상하배광분포를 만족시키고, 컷오프굴절렌즈 단면의 입사면 커브는 내부광선들이 출사면에서 내부전반사 되지 않고 각 내부광선은 인접 내부광선과 상하교차하거나 출사면에서 한 점에 모이지 않도록 형성되고, 컷오프굴절렌즈의 출사광의 소정의 좌우 배광분포를 형성하기 위해, 컷오프굴절렌즈를 형성하는 연속면 상의 소정의 컷오프굴절렌즈 단면과 연속되는 인접 컷오프굴절렌즈 단면에서의 입사면 커브들 및 출사면 커브들 중 어느 하나 이상에서 각 커브를 전방 또는 후방으로 점진적으로 이동하여 연속시킴으로써 연속면을 형성하는 것을 특징으로 한다.
Description
본 발명은 차량용 조명장치에 관한 것으로, 예컨대 자동차, 오토바이, 기차, 자전거 등의 차량에 장착되는 전조등과 안개등과 같이 차량 운전자의 시야를 확보하기 위한 조명에 사용되는 차량용 조명장치에 관한 것이다.
차량용 조명장치는 각국이 법령으로 장착위치와 조명의 배광분포, 빛의 색상을 규제하고 있어, 이에 적합하면서도 효율적인 자동차용 조명장치가 필요하다. 차량용 조명장치 중 자동차용 전조등, 안개등 등을 작은 크기로 제작하기 위해 프로젝션 방식의 광학구조를 사용할 경우 약 50%의 광량손실 뿐 아니라 컷오프 라인에 색분해가 형성되는 문제가 있어 이에 대한 연구가 진행되고 있으나, 이러한 문제를 완전히 해결하지 못하고 있다.
이러한 문제를 해결하기 위한 자동차용 조명장치가 본원 출원인의 대한민국 특허공보 등록번호 제10-2419832호에 개시되어 있는데, 특허 제2419832호에서는 광원의 빛을 평행광으로 집광하는 집광렌즈가 조사하는 평행광을 입사받아 컷오프굴절렌즈에서 색분해 없는 컷오프라인을 실현하면서도, 광원의 측방향의 빛을 활용하기 위해 보조반사경과 보조렌즈부분을 사용하였다.
[선행기술 특허문헌]
1. 대한민국 공개특허공보 제10-2019-0081690호(발명의 명칭: 차량용 램프)
2. 일본 등록특허공보 JP평7-118204 (발명의 명칭: 자동차의 감광등 또는 무등을 위한 전조등)
3. 일본 공개특허공보 JP2002-358806 (발명의 명칭: 헤드 램프)
대표적인 차량용 조명장치인 전조등의 변환빔(PASSING BEAM)에 주로 사용되는 프로젝션 방식의 광학구조는 컷오프라인에서 색분해가 발생하는 문제를 해결하지 못하였고, 차단막을 사용하여야 하므로 약50% 이상의 광손실이 발생하고 있다. 광효율이 낮아 높은 에너지를 소모하게 되고 방열판의 중량과 부피가 커지는 단점이 발생하는데, 이러한 문제는 일단 전술한 특허 제2419832호에서 해결되었다.
한편, 전술한 특허 제2419832호는 광원의 광량을 효율적으로 활용하기 위해 보조반사경과 보조렌즈부분을 활용하고 있어 조립공차나 원가 등을 감안할 때에 부품 수를 줄일 필요가 있고, 특히 두꺼운 집광렌즈가 상하방향에서 평행광으로 집광하는 기능을 컷오프굴절렌즈에 일체화 시켜, 정밀한 가공이 필요한 렌즈의 개수를 줄임과 동시에 1 개의 컷오프굴절렌즈 만으로 대칭빔, 비대칭빔을 모두 실현하는 차량용 조명장치를 제공할 필요가 있다.
그런데, 특허 제2419832호는 컷오프굴절렌즈만으로는 비대칭 빔을 실현하는 헤드램프를 제작하는 방법을 제시하지 못하였고, 보조렌즈부분의 보강렌즈를 사용하여 비대칭 빔을 실현하는 방법만을 개시하였으므로, 컷오프굴절렌즈에서 대칭 빔 뿐 아니라 컷오프라인이 좌측 또는 우측으로 상향하는 비대칭 빔을 직접 실현하는 방법이 필요하다.
또한, 특허 제2419832호는 측면에서 보아 평행광으로 집광하는 렌즈를 사용하므로 컷오프굴절렌즈의 상부와 하부에는 색분해가 강하게 발생한 빛이 도달하게 되므로, 최대하향각도에서 색분해를 제거하기 위해 상부와 하부의 출사광을 결합시켜야만 하였고, 색분해가 해결되지 않는 경우에 대비하여 보조렌즈부분에서 출사되는 산란광 또는 보조렌즈의 보강렌즈에서 최대하향각도로 굴절시킨 광선으로 오버랩하는 방법을 제시하였다. 따라서, 측면에서 보아 상하방향으로 처음부터 최대하향각도에 도달할 때까지 원천적으로 유의미한 색분해가 발생하지 않는 방법이 필요하다.
또한, 비대칭 빔의 좌우 비대칭의 배광분포를 실현하기 위해서는 효율적인 좌우 방향의 광량을 배분할 필요가 있는데, 특허 제2419832호에서는 광원의 광량을 처음부터 효율적으로 좌우 또는 상하 방향으로 배분하는 장치를 제공하지 못하여, 주로 보조렌즈부분을 활용하여야만 하였다.
전술한 문제를 해결하기 위하여, 본 발명은 차량(vehicle)용 조명장치에 관한 것으로서 하나의 모습에 따라, 광원 및 광원의 전방에 배치된 컷오프굴절렌즈를 포함하는 차량용 조명장치에서, 컷오프굴절렌즈는 빛을 입사 받는 입사면 및 상기 입사면을 투과한 내부광선들을 굴절시켜 출사하는 출사면을 포함하여 대칭 또는 비대칭 빔의 설정 배광분포를 실현하고, 컷오프굴절렌즈는 수직방향으로 형성되는 하나 이상의 컷오프굴절렌즈 단면이 연속하여 형성되되, 하나 이상의 컷오프굴절렌즈 단면은 입사면을 투과하여 출사면에서 굴절되는 수평면 상의 내부광선의 진행경로를 수직방향으로 연속시켜 생성된 단면과 내부광선의 진행경로와 무관한 수직 단면 중 어느 하나 이상에 형성되고, 내부광선의 진행경로와 무관한 수직 단면에 형성된 컷오프굴절렌즈 단면의 경우 컷오프굴절렌즈에서의 소정 좌우각도의 출사광을 실현하도록 컷오프굴절렌즈를 형성하는 연속면 상의 소정 위치에 이동시켜 배치되고, 컷오프굴절렌즈 단면은 입사면과의 교선인 입사면 커브 및 출사면과의 교선인 출사면 커브를 포함하고, 컷오프굴절렌즈 단면은 입사면 커브를 투과한 내부광선들을 출사면에서 굴절시켜 설정된 상하배광분포를 만족시키고, 컷오프굴절렌즈 단면의 입사면 커브는 입사면 커브를 투과한 내부광선들이 출사면에서 내부전반사 되지 않고 각 내부광선은 인접 내부광선과 상하교차하거나 출사면에서 한 점에 모이지 않도록 형성되고, 컷오프굴절렌즈의 출사광의 소정의 좌우 배광분포를 형성하기 위해, 컷오프굴절렌즈를 형성하는 연속면 상의 소정의 컷오프굴절렌즈 단면과 연속되는 인접 컷오프굴절렌즈 단면에서의 입사면 커브들 및 출사면 커브들 중 어느 하나 이상에서 각 커브를 전방 또는 후방으로 점진적으로 이동하여 연속시킴으로써 연속면을 형성하는 것을 특징으로 하는 차량용 조명장치가 제안된다.
이때, 컷오프굴절렌즈 단면과 인접한 컷오프굴절렌즈 단면의 입사면 커브를 점진적으로 전방 또는 후방으로 이동하여 연속시킴으로써 입사광의 좌우 입사각을 조절하여 컷오프굴절렌즈의 수평단면에서 내부광선의 좌우각도를 변경할 수 있다.
또한, 컷오프굴절렌즈 단면과 인접한 컷오프굴절렌즈 단면의 출사면 커브를 점진적으로 전방 또는 후방으로 이동하여 연속시킴으로써 컷오프굴절렌즈 단면에서의 출사광의 소정의 좌우방향을 형성할 수 있다.
하나의 예에서, 광원과 컷오프굴절렌즈의 사이에 배치되며 광원에서 출사한 빛을 좌우방향 또는 상하좌우 방향으로 대칭 또는 비대칭으로 편심되게 배분하여 컷오프굴절렌즈 방향으로 출사하는 좌우굴절렌즈를 더 포함할 수 있다.
이때, 좌우굴절렌즈의 일 부분에 빛의 밀도를 감소하여 출사하는 광속감소구간이 포함될 수 있다.
또한, 좌우굴절렌즈는 광원과 별개 구성이거나, 또는 광원의 일부로서 광원의 전면측에 형성되되 광원과 분리 불가능하게 일체로 형성되거나 광원으로부터 분리 가능하도록 장착될 수 있다.
또 하나의 예에서, 컷오프굴절렌즈 단면은 하나 이상의 서브 영역으로 세분되고, 각 서브 영역 마다 소정의 상하배광분포가 할당될 수 있다.
이때, 하나 이상의 서브 영역과 그와 인접한 다른 서브 영역이 접점에서 다른 상하방향 각도로 빛을 출사하도록 형성된 컷오프굴절렌즈 단면의 출사면 커브들을 연속시켜 컷오프굴절렌즈의 출사면에 하나 이상의 모서리가 형성될 수 있다.
또한, 어느 하나의 서브 영역과 인접한 다른 서브 영역이 접점에서 동일한 상하방향 각도로 빛을 출사하도록 자연스럽게 연속되는 커브로 형성된 컷오프굴절렌즈 단면의 출사면 커브들을 연속시켜 컷오프굴절렌즈의 출사면에서 자연스럽게 연속된 서브영역들을 형성시킬 수 있다.
또한 하나의 예에서, 컷오프굴절렌즈를 형성하는 하나 이상의 컷오프굴절렌즈 단면의 상하배광분포가 차단막 없이도 소정 상하 각도에서 명암을 달리하는 컷오프를 형성하고, 컷오프굴절렌즈 단면을 연속시켜 형성된 컷오프굴절렌즈가 컷오프라인을 실현할 수 있다.
이때, 컷오프굴절렌즈 단면의 연속구간 중 일부에서 컷오프굴절렌즈 단면들의 상하배광분포가 점진적으로 상하 컷오프각도를 달리하도록 형성되어 컷오프각도가 점진적으로 변하는 컷오프각도 변환구역이 컷오프굴절렌즈에 형성될 수 있다.
또한, 컷오프라인에서 색분해가 발생하지 않거나 최소화되도록 컷오프굴절렌즈가 광원의 광축 또는 광축에 가까운 중심부의 빛을 컷오프라인의 밝은 영역으로 집중 조사할 수 있다.
게다가, 설정된 상하배광분포의 최대하향각도에서 색분해가 발생하지 않거나 최소화되도록 광원에서 최대하향각도와 같은 각도로 출사된 빛을 컷오프굴절렌즈에서 설정 최대하향각도로 출사시킬 수 있다.
또한, 컷오프굴절렌즈의 출사면 상부의 수직단면 상 특정 지점에서 설정된 상하배광분포의 최대하향각으로 빛이 출사되고 컷오프굴절렌즈의 출사면 하부의 수직단면 상 특정 지점에서 최대하향각으로 빛이 출사되도록 하되, 출사면 상부의 특정 지점에서 출사된 빛은 노랑색을 중심으로 위에 빨강색, 아래에 파랑색으로 색분해되고, 출사면 하부의 특정 지점에서 출사된 빛은 노랑색을 중심으로 위에 파랑색, 아래에 빨강색으로 색분해되되, 출사면 상부 및 하부 각각의 특정 지점에서 출사된 빛의 색분해 폭이 서로 유사하여 색분해가 제거될 수 있다.
게다가, 광원과 컷오프굴절렌즈의 사이에 좌우굴절렌즈를 배치시켜 광원에서 출사한 빛을 상하좌우 방향으로 대칭 또는 비대칭으로 편심되게 배분하여 컷오프굴절렌즈 방향으로 출사시키나, 또는 광원과 컷오프굴절렌즈의 사이에 상하굴절렌즈를 추가 배치시켜 광원에서 출사한 빛을 측면에서 보아 평행광 또는 행광에 가깝게 출사시킬 수 있다.
이때, 좌우굴절렌즈 또는 상하굴절렌즈가 광원으로부터 멀리 떨어짐에 따라 좌우굴절렌즈 또는 상하굴절렌즈의 외측으로 벗어나는 빛을 측면에서 보아 평행광 내지 평행광에 가깝게 반사시키는 반사경 및 컷오프굴절렌즈의 외측 또는 좌우굴절렌즈 또는 상하굴절렌즈의 외측에 형성되며 반사경으로부터 반사된 빛을 설정된 방향으로 굴절, 확산 또는 굴절 및 확산시키는 하나 이상의 보충렌즈를 더 포함할 수 있다.
본 발명의 하나의 실시예에 따라, 종래의 프로젝션 방식의 차량용 조명장치의 고질적인 문제점인 컷오프 라인에서의 색분해를 해소할 수 있고, 차단막을 사용함으로써 발생하는 광량의 손실이 없어 광원의 빛을 대부분 활용할 수 있다.
하나의 실시예로서, 광원과의 거리가 상하 폭의 1/2인 컷오프굴절렌즈를 가정할 때에, 평면에서 좌우 방향으로만 약하게 굴절하는 좌우굴절렌즈를 광원의 근거리 또는 광원에 부착하는 것만으로도 평면에서 편측 약 60도의 좌우방향의 확산광을 컷오프굴절렌즈에 약하게 광원에서 편측 45도의 폭으로 집광하여 컷오프굴절렌즈에 조사하면 (87 %(좌우 편측 60도 광폭->45도로 집광) + 71 %(상하 45도 광폭을 그대로 투과) ) / 2 = 약 79 % 의 광량을 활용할 수 있게 되면서도, 날카로운 컷오프라인을 실현할 수 있게 된다.
또한, 광량의 효율성이 중요하지 않은 경우에, 하나의 실시예에 의하면, 좌우굴절렌즈를 제거하여도 편측 45도의 광량을 컷오프굴절렌즈에 조사하는 경우에도 약 71 % 의 광량을 활용할 수 있게 되므로, 컷오프굴절렌즈에서 반사방지 코팅을 실시하지 않아 8%의 광손실이 발생하는 경우에도 71 * ( 1 - 0.08) = 약 66%의 뛰어난 광효율을 제공하므로, 차단막을 사용하는 종래의 프로젝션 전조등에 비하여 광효율이 뛰어나다.
또한, 본 발명은 측면에서 보아 평행광으로 집광하는 렌즈를 사용하지 않거나 약한 집광도만을 사용하거나 상측에는 평행광으로 집광하되 하측에서는 평행광으로 집광하지 않는 좌우굴절렌즈를 사용할 수 있어, 광축의 색분해없는 빛을 컷오프라인에 집중하여 날카로운 컷오프라인을 생성하면서도 상하 방향에서도 처음부터 색분해가 발생하지 않은 광원의 최대하향각도(예컨대, 약 D4° ~ 약 D 15°의 임의의 설정각)의 광선을 그대로 컷오프굴절렌즈에서 최대하향각도로 조사할 수 있으므로 색분해 문제가 없다. 물론, 좌우 방향에서도 광원의 확산광을 유사한 폭으로 좌우 확산하여 출사하게 되므로 색분해 문제가 없다.
또한, 좌우굴절렌즈는 평면에서 보아 집광하되 광속감소구간을 포함하여, 컷오프굴절렌즈의 컷오프각도변환구간으로는 광속감소구간을 포함하여 광속을 낮추어 조사하는 것으로 컷오프각도변환구간에서 상의 원리에 따른 부작용을 감소시키고 동시에 가공을 용이하게 할 수 있는 차량용 조명장치를 제공할 수 있다.
하나의 실시예에 따른 효과들은 종래의 프로젝션 방식의 고질적인 문제인 색분해, 광손실의 문제를 해결함은 물론, 특허 제2419832호에 비하여 반사경, 보조렌즈부분 없이 전체적으로 더 작은 크기로도 날카로운 컷오프라인을 실현하면서도 색분해 없는 효율적인 차량용 조명장치를 제공할 수 있다.
본 발명의 명세서에서 직접적으로 언급되지 않은 효과라도, 본 발명의 다양한 실시 예 및 변형 예들에 포함되는 구성 내지 다양한 구성들의 특징으로부터 당해 기술분야에서 통상의 지식을 지닌 자의 이해 범위 내에서 다양한 특징적 효과가 도출될 수 있음은 자명하다.
도 1a는 본 발명의 하나의 실시예에 따른 차량용 조명장치의 전체적인 모습을 개략적으로 나타내는 도면이다.
도 1b는 도 1a의 광분포도이다.
도 1c는 도 1b의 중심선을 따르는 광특성곡선(Iv)이다.
도 2a는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치의 전체적인 모습을 개략적으로 나타내는 도면으로 도 1a에 비하여 좌측 출사면의 컷오프라인 방향 출사 부분의 기울기를 보정한 것이다.
도 2b는 도 2a의 광분포도이다.
도 2c는 도 2b의 중심선을 따르는 광특성곡선(Iv)이다.
도 3a는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 내부광로에 따라 형성된 컷오프굴절렌즈 단면을 포함하는 모습을 개략적으로 나타내는 도면이다.
도 3b는 도 3a의 평면도로 컷오프굴절렌즈에서 내부광선의 경로를 나타내는 도면이다.
도 4는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 좌우굴절렌즈가 평면에서 좌우 비대칭으로 광분포를 조절하는 광경로를 도시한 도면이다.
도 5는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈 단면에서 다수의 서브영역들이 다른 상하 방향의 배광분포로 빛을 출사하는 모습을 나타내는 도면이다.
도 6은 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈의 입사면에서 좌우 광량을 조절하여 컷오프굴절렌즈의 출사면으로 배분하는 광경로를 도시한 도면이다.
도 7은 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈의 수직단면 모습을 개략적으로 나타내는 도면이다.
도 8은 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈 단면에서 교차출사를 나타내는 도면이다.
본 발명은 차량(vehicle)용 조명장치에 관한 것으로, 하나의 예에 따라, 광원 및 광원의 전방에 배치된 컷오프굴절렌즈(30)를 포함하는 차량용 조명장치에서, 컷오프굴절렌즈(30)는 빛을 입사 받는 입사면(30a) 및 상기 입사면을 투과한 내부광선들을 굴절시켜 출사하는 출사면(30b)을 포함하여 대칭 또는 비대칭 빔의 설정 배광분포를 실현하고, 컷오프굴절렌즈(30)는 수직방향으로 형성되는 하나 이상의 컷오프굴절렌즈 단면(31)이 연속하여 형성되되, 하나 이상의 컷오프굴절렌즈 단면(31)은 입사면(30a)을 투과하여 출사면(30b)에서 굴절되는 수평면 상의 내부광선의 진행경로를 수직방향으로 연속시켜 생성된 단면과 내부광선의 진행경로와 무관한 수직 단면 중 어느 하나 이상에 형성되고, 내부광선의 진행경로와 무관한 수직 단면에 형성된 컷오프굴절렌즈 단면(31)의 경우 컷오프굴절렌즈(30)에서의 소정 좌우각도의 출사광을 실현하도록 컷오프굴절렌즈(30)를 형성하는 연속면 상의 소정 위치에 이동시켜 배치되고, 컷오프굴절렌즈 단면(31)은 입사면(30a)과의 교선인 입사면 커브(31a) 및 출사면(30b)과의 교선인 출사면 커브(31b)를 포함하고, 컷오프굴절렌즈 단면(31)은 입사면 커브(31a)를 투과한 내부광선들을 출사면에서 굴절시켜 설정된 상하배광분포를 만족시키고, 컷오프굴절렌즈 단면(31)의 입사면 커브(31a)는 입사면 커브(31a)를 투과한 내부광선들이 출사면(30b)에서 내부전반사 되지 않고 각 내부광선은 인접 내부광선과 상하교차하거나 출사면에서 한 점에 모이지 않도록 형성되고, 컷오프굴절렌즈(30)의 출사광의 소정의 좌우 배광분포를 형성하기 위해, 컷오프굴절렌즈(30)를 형성하는 연속면 상의 소정의 컷오프굴절렌즈 단면(31)과 연속되는 인접 컷오프굴절렌즈 단면(31)에서의 입사면 커브(31a)들 및 출사면 커브(31b)들 중 어느 하나 이상에서 각 커브를 전방 또는 후방으로 점진적으로 이동하여 연속시킴으로써 연속면을 형성하는 것을 특징으로 한다.
전술한 과제를 달성하기 위한 본 발명의 실시예들이 첨부된 도면을 참조하여 설명될 것이다. 본 명세서 및/또는 도면에서의 개시는 개시된 기술의 특정한 실시 형태에 대해 한정하려는 것이 아니며, 개시된 실시예들의 다양한 변경, 균등물 및/또는 대체물을 포함하는 것으로 이해되어야 한다. 본 명세서의 설명에서, 당해 분야의 통상의 지식을 가진 자에게 본 발명의 이해를 도모하기 위하여 부차적인 설명은 생략될 수도 있다.
또한, 본 명세서에서 사용된 용어들은 단지 특정한 실시예를 설명하기 위해 사용된 것이므로, 명시적 기재가 없는 한 함부로 다른 실시예의 범위를 한정하려는 것으로 해석되지 않아야 하고,예컨대, 단수의 표현은 복수의 구성들 전체를 대표하는 개념으로 사용될 수 있다는 점에 유의하여야 한다.
본 명세서에서 참조되는 도면들은 본 발명의 실시예를 설명하기 위한 예시로서, 모양, 크기 및/또는 두께 등은 기술적 특징의 효과적인 설명을 위해 과장되거나 축소되게 표현된 것일 수 있다.
본 명세서에서 차량은 도로나 선로를 달리는 모든 차(vehicle)로서, 자동차, 오토바이, 기차, 자전거 등의 탈것(vehicle)을 말한다. 따라서 본 발명을 자동차용 조명장치로만 한정해석할 필요는 없고, 예컨대, 본 발명의 컷오프굴절렌즈를 활용하여 컷오프라인을 형성하지 않으면서 동일한 방법으로 작업등과 같은 조명장치에도 응용하여 실시될 수도 있다.
본 명세서에서 이해의 편의를 위해, 차량용 조명장치의 광축을 H-V 중심에 일치시킨 것을 가정하여 설명하고 있음을 이해하여야 하고, 실무적으로 광축을 H-V 중심에서 벗어나도록 임의로 변형할 수도 있고, 제작된 차량용 조명장치를 측정시에 규정에 따라 AIMING을 실시하여야 하는 점을 논외로 하고 있음을 이해하여야 한다.
본 명세서에서 '측정스크린'(measuring screen)은 각국별 규정에 따라 차량(vehicle)용 조명장치를 측정할 때에 조명장치의 전방에 소정된 거리에 수직으로 설정되는 스크린(a flat vertical screen set up at a distance of 10 m or 25 m)으로서, 이 분야의 전문가들에게 공지되어 있다.
본 명세서에서 전방은 측정스크린 방향을 의미하고, 수평면은 측정스크린의 H 선(수평선)의 돌출평면, 즉 H선이 전후방으로 연속되어 형성되는 면을 의미하고, 평면은 수평면에 평행인 면, 수직면은 V 선(수직선)의 돌출평면, 즉 V선이 전후방으로 연속되어 형성되는 면을 의미하고, 측면은 수직면에 평행인 면을 의미한다.
본 명세서에서 컷오프굴절렌즈의 상부는 광축을 수평면에 일치시킨 경우를 가정할 때에 수평면의 위 부분을 의미하고, 하부는 수평면의 아래 부분을 의미한다.
본 명세서에서 ‘상하방향’은 측정스크린상의 상(또는 U), 하(또는 D) 각도의 방향으로, ‘좌우방향’은 측정스크린의 좌(또는 L), 우(또는 R) 각도의 방향의 의미로 사용된다.
본 명세서에서 돌출은 커브(선) 모양을 연장하여 서피스 또는 솔리드를 생성하는 것을 의미하고, 스윕(SWEEP)은 경로커브에 따라 단면커브로 곡면 또는 솔리드를 생성하는 것을 의미한다.(EXTRUDE : creates a solid or surface that extends the shape of a curve, SWEEP : create surface from a section curve positioned along a path) 따라서, 돌출평면은 직선을 돌출시켜 형성한 평평한 면을 의미한다.
본 명세서에서 광선경로들은 모두 이상적인 점 광원을 가정한 것으로서, 광원의 면적 또는 체적으로 인하여 발생하는 제반 문제, 즉 상의 크기에 따른 고려를 하여야 하는 것으로 이해하여야 한다.
본 명세서에서 "컷오프굴절렌즈의 수평면에 형성된 내부광선"은 3D 형태를 형성하기 이전에 2D 상에서 좌우배광분포를 실현하는 과정에서 형성되는 내부광선의 의미이고, 본 명세서에서 설명한 방법으로 완성된 3D 형태의 컷오프굴절렌즈에서 내부광선은 수평면과 불일치하여 소정 상하 방향으로 기울 수도 있고, "컷오프굴절렌즈 단면에 형성되는 내부광선"도 3D 형태를 형성하기 이전에 2D 상에서 컷오프굴절렌즈의 상하배광분포를 실현하는 과정에서 형성되는 내부광선"의 의미이고, 본 명세서에서 설명한 방법으로 완성된 3D 형태의 컷오프굴절렌즈에서 내부광선은 수직돌출평면, 즉 컷오프굴절렌즈의 수평면에 형성된 내부광선을 수직방향으로 연속시켜 형성된 면과 불일치하게 좌우 또는 상하로로 더 굴절 될 수 있는 점을 이해하여야 한다. 나아가, 완성된 3D에서의 내부광선들을 상기 2D 면에 투영시킬 경우에 미세하게 불일치 할 수 있다.
그럼에도 불구하고 이러한 방법으로 작성된 3D 형태의 컷오프굴절렌즈의 컴퓨터 시뮬레이션 광분포도는 본 발명의 취지대로, 만족스러운 배광분포를 실현하는 점을 감안하여야 한다.
본 명세어에서 컷오프라인 각도나 최대하방향 조사각도는 각국의 법령이 허용하는 범위내에서 임의로 정할 수 있으므로, 명세서에서 예시한 각도에 한정되는 의미로 사용되지 않는다.
이러한 설명을 전제로, 본 발명의 하나의 예에 따른 차량(vehicle)용 조명장치를 도면을 참조하여 살펴본다. 도면을 참조하여 설명함에 있어서, 해당 도면에 기재되지 않은 도면번호는 다른 도면에서 동일한 구성을 나타내는 도면번호일 수 있다.
도 1a는 본 발명의 하나의 실시예에 따른 차량용 조명장치의 전체적인 모습을 개략적으로 나타내는 도면이고, 도 1b는 도 1a의 광분포도이고, 도 1c는 도 1b의 중심선을 따르는 광특성곡선(Iv)이다. 도 2a는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치의 전체적인 모습을 개략적으로 나타내는 도면으로 도 1a에 비하여 좌측 출사면의 컷오프라인 방향 출사 부분의 기울기를 보정한 것이고, 도 2b는 도 2a의 광분포도이고, 도 2c는 도 2b의 중심선을 따르는 광특성곡선(Iv)이다. 도 3a는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 내부광로에 따라 형성된 컷오프굴절렌즈 단면을 포함하는 모습을 개략적으로 나타내는 도면이고, 도 3b는 도 3a의 평면도로 컷오프굴절렌즈에서 내부광선의 경로를 나타내는 도면이다. 도 4는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 좌우굴절렌즈가 평면에서 좌우 비대칭으로 광분포를 조절하는 광경로를 도시한 도면이다. 도 5는 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈 단면에서 다수의 서브영역들이 다른 상하 방향의 배광분포로 빛을 출사하는 모습을 나타내는 도면이다. 도 6은 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈의 입사면에서 좌우 광량을 조절하여 컷오프굴절렌즈의 출사면으로 배분하는 광경로를 도시한 도면이다. 도 7은 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈의 수직단면 모습을 개략적으로 나타내는 도면이다. 도 8은 본 발명의 또 하나의 실시예에 따른 차량용 조명장치에서 컷오프굴절렌즈 단면에서 교차출사를 나타내는 도면이다.
도 1a, 2a, 3a, 3b, 5, 6 및/또는 8을 참조하면, 본 발명의 차량용 조명장치는, 광원(10) 및 광원(10)의 전방에 배치된 컷오프굴절렌즈(30)를 포함한다. 광원(10)은 빛을 발산하는 일체의 것으로 소정의 광분포도를 가진다. 컷오프굴절렌즈(30)는 광원(10)의 전방에 배치된다. 이때, 컷오프굴절렌즈(30)는 광원(10)에서 출사된 출사광을 대칭 또는 비대칭 빔으로 변환하여 출사할 수 있다. 즉, 컷오프굴절렌즈(30)는 빛을 입사 받는 입사면(30a) 및 상기 입사면(30a)을 투과한 내부광선(32)들을 굴절시켜 출사하는 출사면(30b)을 포함하여 대칭 또는 비대칭 빔의 설정 배광분포를 실현할 수 있다.
도 1a, 2a 및/또는 3a를 참조하면, 컷오프굴절렌즈(30)는 수직방향으로 형성되는 하나 이상의 컷오프굴절렌즈 단면(31)이 연속하여 형성될 수 있다. 이때, 하나 이상의 컷오프굴절렌즈 단면(31)은 입사면(30a)을 투과하여 출사면(30b)에서 굴절되는 수평면 상의 내부광선(32h)의 진행 경로를 수직방향으로 연속시켜 생성된 단면, 즉 내부광선(32h)의 수직돌출단면과 내부광선(32h)의 진행 경로와 무관한 수직 단면 중 어느 하나 이상에 형성된다. 이에 따라, 컷오프굴절렌즈(30)는 내부광선(32h)의 수직돌출단면에 형성된 하나 이상의 컷오프굴절렌즈 단면(31)과 내부광선(32h)의 진행 경로와 무관한 수직 단면에 형성된 하나 이상의 컷오프굴절렌즈 단면(31)을 연속시켜 형성되거나, 내부광선(32h)의 수직돌출단면에 형성된 하나 이상의 컷오프굴절렌즈 단면(31)을 연속시켜 형성되거나, 또는 내부광선(32h)의 진행 경로와 무관한 수직 단면에 형성된 하나 이상의 컷오프굴절렌즈 단면(31)을 연속시켜 형성될 수도 있다. 도 3a는 내부광로에 따라 형성된 컷오프굴절렌즈 단면(31)을 포함하는 컷오프굴절렌즈(30)를 개략적으로 나타내고 있다.
내부광선(32h)의 진행경로와 무관한 수직 단면에 형성된 컷오프굴절렌즈 단면(31)의 경우 컷오프굴절렌즈(30)에서의 소정 좌우각도의 출사광을 실현하도록 컷오프굴절렌즈(30)를 형성하는 연속면 상의 소정 위치에 이동시켜 배치될 수 있다.
한편, 도 1a, 2a 및/또는 3a를 참조하면, 컷오프굴절렌즈 단면(31)은 입사면(30a)과의 교선인 입사면 커브(31a) 및 출사면(30b)과의 교선인 출사면 커브(31b)를 포함한다. 컷오프굴절렌즈 단면(31)은 입사면 커브(31a)를 투과한 내부광선(32v)들을 출사면(30b)에서 굴절시켜 설정된 상하배광분포를 만족시킨다. 출사면 커브(31b)는 내부광선(32v)들을 설정된 상하배광분포로 굴절시켜 출사한다.
이때, 컷오프굴절렌즈 단면(31)의 입사면 커브(31a)는 입사면 커브(31a)를 투과한 내부광선(32v)들이 출사면(30b)에서 내부전반사 되지 않고 각 내부광선(32v)은 인접 내부광선(32v)과 상하교차하거나 출사면(30b)에서 한 점에 모이지 않도록 형성된다.
컷오프굴절렌즈(30)의 출사광의 소정의 좌우 배광분포를 형성하기 위해, 컷오프굴절렌즈(30)를 형성하는 연속면 상의 소정의 컷오프굴절렌즈 단면(31)과 연속되는 인접 컷오프굴절렌즈 단면(31)에서의 입사면 커브(31a)들 및 출사면 커브(31b)들 중 어느 하나 이상에서 각 커브를 전방 또는 후방으로 점진적으로 이동하여 연속시킴으로써 연속면을 형성시킬 수 있다.
예컨대, 컷오프굴절렌즈 단면(31)과 인접한 컷오프굴절렌즈 단면(31)의 입사면 커브(31a)를 점진적으로 전방 또는 후방으로 이동하여 연속시킴으로써 입사광의 좌우 입사각을 조절하여 컷오프굴절렌즈(30)의 수평단면에서 내부광선(32h)의 좌우각도를 변경할 수 있다.
또한, 컷오프굴절렌즈 단면(31)과 인접한 컷오프굴절렌즈 단면(31)의 출사면 커브(31b)를 점진적으로 전방 또는 후방으로 이동하여 연속시킴으로써 컷오프굴절렌즈 단면(31)에서의 출사광의 소정의 좌우방향을 형성할 수 있다. 예컨대, 도 1a, 2a 및/또는 3a를 참조하면, 컷오프각도 변환구역(30c)에서 다수의 컷오프굴절렌즈 단면(31)들이 연속되게 형성될 수 있으며, 이때 하나의 컷오프굴절렌즈 단면(31)과 인접한 컷오프굴절렌즈 단면(31)에서의 출사면 커브(31b)를 점진적으로 전방 또는 후방으로 이동하여 연속시켜 출사면(30b)를 형성시킬 수 있다. 도시되지 않았으나, 컷오프각도 변환구역(30c) 외의 구간에서도 컷오프굴절렌즈 단면(31)과 인접한 컷오프굴절렌즈 단면(31)에서의 출사면 커브(31b)를 점진적으로 전방 또는 후방으로 이동하여 연속시키거나 컷오프굴절렌즈 단면(31)과 인접한 컷오프굴절렌즈 단면(31)에서의 입사면 커브(31a)를 점진적으로 전방 또는 후방으로 이동하여 연속시키거나 양자 모두를 점진적으로 전방 또는 후방으로 이동하여 연속시킬 수 있다.
예컨대, 컷오프굴절렌즈 단면(31)과 인접한 컷오프굴절렌즈 단면(31)에서 입사면 커브(31a)를 점진적으로 전방 또는 후방으로 이동하여 연속시키는 것과 출사면 커브(31b)를 점진적으로 전방 또는 후방으로 이동하여 연속시키는 것이 함께 수행될 수 있다.
예컨대 도 1a, 2a, 3a, 3b 및/또는 4를 참조하면, 하나의 예에서, 차량용 조명장치는 광원(10)과 컷오프굴절렌즈(30)의 사이에 좌우굴절렌즈(20)를 더 포함할 수 있다.
좌우굴절렌즈(20)는 광원(10)과 컷오프굴절렌즈(30)의 사이에 배치된다. 좌우굴절렌즈(20)는 광원(10)에서 출사한 빛을 좌우방향 또는 상하좌우 방향으로 대칭 또는 비대칭으로 편심되게 배분하여 컷오프굴절렌즈(30) 방향으로 출사시킬 수 있다.
예컨대 도 4를 참조하면, 하나의 예에서, 좌우굴절렌즈(20)는 광원(10)의 확산광을 적어도 좌우방향에서 집광하면서도, 일 부분에서는 광속을 감소하여 출사하는 광속감소구간(20c)을 포함할 수 있다. 도 4에서 좌우굴절렌즈(20)의 입사면(20a)은 평면도 상 직선으로 도시되고 좌우굴절렌즈(20의 출사면(20b)은 평면도상 볼록하게 도시되고 있다. 도 4는 예시적인 것으로 이와 달리 평면도 상 좌우굴절렌즈(20)의 입사면(20a)을 오목하게 하거나 또는 볼록하게 형성할 수도 있고, 입사면(20a)이 볼록한 경우 출사면(20b)이 직선으로 형성되도록 할 수도 있다. 또한, 도 4에서는 수직단면이 도시되지 않고 있으나, 수직단면상 입사면(20a) 및 출사면(20b) 중 적어도 어느 하나를 볼록하게 하여 좌우방향 뿐만 아니라 수직방향에서도 집광이 이루어지도록 할 수도 있다.
예컨대 좌우굴절렌즈(20)는 광원(10)과 별개 구성이거나, 또는 도시되지 않았으나 광원(10)의 일부로서 광원(10)의 전면측에 형성되되 광원(10)과 분리 불가능하게 일체로 형성되거나 광원(10)으로부터 분리 가능하도록 장착될 수 있다.
또 도 5를 참조하여 하나의 예를 살펴보면, 컷오프굴절렌즈 단면(31)은 하나 이상의 서브 영역(31s)으로 세분되고, 각 서브 영역(31s) 마다 소정의 상하배광분포가 할당될 수 있다. 도 7에서는 컷오프굴절렌즈(30)의 출사면(30b)이 상부출사면(310b)과 하부출사면(330b)으로 이루어지고, 입사면(30a)이 상부입사면(310a)과 하부입사면(330a)로 이루어지는 것이 도시되고 있어, 컷오프굴절렌즈 단면(31)이 다수의 서브 영역(31s)으로 세분됨을 알 수 있다. 도 8에서도 컷오프굴절렌즈(30)의 출사면(30b)이 상부출사면(310b), 중간출사면(320b) 및 하부출사면(330b)로 이루어지는 것이 도시되고 있다. 이때, 중간출사면(320b)은 컷오프라인(Pcf) 아래의 집중조명영역(Pbr)으로 출사광을 집중 출사시키는 수직단면 상의 구간이다.
이때, 도 5를 참조하면, 하나 이상의 서브 영역(31s)과 그와 인접한 다른 서브 영역(31s)이 접점에서 다른 상하방향 각도로 빛을 출사하도록 형성된 컷오프굴절렌즈 단면(31)의 출사면 커브(31b)들을 연속시켜 컷오프굴절렌즈(30)의 출사면(30b)에 하나 이상의 모서리(30d)가 형성될 수 있다.
도 5를 참조하면, 맨 위쪽의 서브 영역(31s)은 컷오프라인 상부로 약한 출사광을 출사시키는 구간이고, 위에서 두번째에서의 서브 영역(31s)은 출사광선이 교차출사되는 구간으로 컷오프라인 아래에서 아래쪽 13도(D13)까지 교차출사하는 것을 예시하고, 위에서 세번째에서의 서브 영역(31s)은 광원에서 예컨대 설정된 최대하향각도인 아래쪽 15도(D15) 방향으로 출사되는 출사광을 컷오프라인 아래쪽 최대하향각도로 출사시킴으로써 최대하향각도 부근에서 색분해 문제가 생기지 않도록 출사하는 것을 나타내고, 맨 아래쪽에서의 서브영역(31s)은 광원에서 예컨대 설정된 최대하향각도인 아래쪽 15도(D15)보다 더 아래쪽 방향으로 조사되는 조사광을 입사받아 컷오프라인 부근에서 아래쪽 13도(D13)까지 출사시키는 모습을 나타내고 있다.
도 5에서는 맨 위쪽과 두번째의 서브 영역(31s) 간 접점에서 그리고 세번째와 맨 아래의 서브 영역(31s) 간 접점에서 출사광이 동일지점을 향하지 않으므로, 모서리(30d)를 형성하고 있다.
또한, 도 5에서는 출사광의 설정된 최대하향각도 아래쪽 15도인 경우 광원(10)에서 동일한 각도로 조사되는 빛이 설정된 최대하향각도인 아래쪽 15도 방향으로 출사되도록 함으로써 색분해 문제를 해결하고 있다.
도 5는 예시적인 것으로, 도 5에서의 개념을 가지고 이와 달리 다양한 모습으로 변형이 가능하다.
또는, 다른 예에서, 어느 하나의 서브 영역(31s)과 인접한 다른 서브 영역(31s)이 접점에서 동일한 상하방향 각도로 빛을 출사하도록 자연스럽게 연속되는 커브로 형성된 컷오프굴절렌즈 단면(31)의 출사면 커브(31b)들을 연속시켜 컷오프굴절렌즈(30)의 출사면(30b)에서 자연스럽게 연속된 서브영역(31s)들을 형성시킬 수 있다. 도 5를 참조하면 위에서 두번째와 세번째의 서브 영역(31s) 간 접점에서는 동일한 지점으로 출사광이 출사되므로 자연스럽게 연속되는 커브로 형성되고 있다.
또 하나의 예를 살펴본다. 하나의 예에서, 컷오프굴절렌즈(30)를 형성하는 하나 이상의 컷오프굴절렌즈 단면(31)의 상하배광분포가 차단막 없이도 소정 상하 각도에서 명암을 달리하는 컷오프를 형성할 수 있다. 이때, 도 5 및/또는 8을 참조하면, 컷오프굴절렌즈 단면(31)을 연속시켜 형성된 컷오프굴절렌즈(30)가 컷오프라인을 실현할 수 있다. 도 5 및/또는 8에서는 출사광이 컷오프라인 아래쪽으로 집중되도록 하여 컷오프라인이 구현되는 것을 알 수 있다.
이때, 도 1a, 2a 및/또는 3을 참조하면, 컷오프굴절렌즈 단면(31)의 연속구간 중 일부에서 컷오프굴절렌즈 단면(31)들의 상하배광분포가 점진적으로 상하 컷오프각도를 달리하도록 형성되어 컷오프각도가 점진적으로 변하는 컷오프각도 변환구역(30c)이 컷오프굴절렌즈(30)에 형성될 수 있다. 도 1b 및/또는 2b에서는 어깨부분의 초입에서 컷오프각도가 우상향하며 변하는 것이 도시되고 있다.
예컨대, 도 1a, 2a 및/또는 3을 참조하면, 컷오프각도 변환구역(30c)은 컷오프굴절렌즈(30)의 중간부분에 형성될 수 있고, 또는 도시되지 않았으나 다른 예에서 컷오프굴절렌즈(30)의 중간부분을 벗어난 외측 부분에 형성될 수도 있다.
예컨대, 도시되지 않았으나, 컷오프각도 변환구역(30c)은 컷오프굴절렌즈 단면(31)의 연속구간 일부의 전체가 아닌 서브 영역(31s)의 특정 연속에 의해 형성된 구간에만 형성될 수도 있다.
예컨대 도 8을 참조하면, 컷오프라인에서 색분해가 발생하지 않거나 최소화되도록 컷오프굴절렌즈(30)가 광원(10)의 광축 또는 광축에 가까운 중심부의 빛을 컷오프라인의 밝은 영역으로 집중 조사할 수 있다. 도 8에서는 중간출사면(320b)에서 출사되는 출사광이 컷오프라인 아래의 밝은 영역(집중조명영역)(Pbr)으로 집중 조사되는 것이 도시되고 있다. 또한, 도 8에서는 출사면(30b) 중 상부출사면(310b)의 일부구간(Upper)에서의 출사광이 설정된 최대하향각도 지점(Plow)으로 출사되고 하부출사면(330b)의 일부구간(Lower)에서의 출사광이 동일한 설정된 최대하향각도 지점(Plow)으로 출사되며 색분해된 광이 상보적으로 결합되며 색분해 문제를 해소하는 것이 도시되고 있다.
예컨대, 도 5에서 위에서 세번째 서브영역(31s)의 맨 아래쪽 출사광을 참조하면, 설정된 상하배광분포의 최대하향각도에서 색분해가 발생하지 않도록 광원(10)에서 최대하향각도와 같은 각도로 출사된 빛을 컷오프굴절렌즈(30)에서 설정 최대하향각도로 출사시킬 수 있다.
예컨대, 도 8을 참조하면, 컷오프굴절렌즈(30)의 출사면(30b) 상부의 수직단면 상 특정 지점, 예컨대 도 8의 Upper 영역에서의 특정지점에서 설정된 상하배광분포의 최대하향각으로 빛이 출사되고 컷오프굴절렌즈(30)의 출사면(30b) 하부의 수직단면 상 특정 지점, 예컨대 도 8의 Lower 영역에서의 특정지점에서 최대하향각으로 빛이 출사되도록 할 수 있다. 이때, 출사면(30b) 상부의 특정 지점에서 출사된 빛은 노랑색을 중심으로 위에 빨강색, 아래에 파랑색으로 색분해되고, 출사면(30b) 하부의 특정 지점에서 출사된 빛은 노랑색을 중심으로 위에 파랑색, 아래에 빨강색으로 색분해되되, 출사면(30b) 상부 및 하부 각각의 특정 지점에서 출사된 빛의 색분해 폭이 서로 유사하여 색분해가 제거될 수 있다.
한편, 도시되지 않았으나, 컷오프굴절렌즈(30)는 임의의 렌즈의 일 부분에 형성될 수 있고, 이 경우 나머지 부분은 본원 발명의 컷오프굴절렌즈(30)가 아니고, 좌우굴절렌즈(20)도 임의의 렌즈의 일 부분에 형성될 수 있고, 이 경우 나머지 부분은 본원 발명의 좌우굴절렌즈(20)가 아니다. 예컨대 일체로 형성된 복합렌즈의 일부, 예컨대 중간부분을 컷오프굴절렌즈(30)로 하고 그 외곽 부분을 보조렌즈로 구성하거나 혹은 일체로 형성된 복합렌즈의 일부, 예컨대 중간부분을 좌우굴절렌즈(20)로 하고 그 외곽 부분을 보조렌즈로 구성할 수 있으며, 이에 한정되지 않는다.
광원(10)은 빛을 출사하는 모든 형태의 것으로 이해할 수 있고, 발광부에 렌즈가 일체화 되었거나, 렌즈가 별물로 추가된 형태의 것도 포함된다.
발광부에 렌즈가 일체화 되거나 렌즈가 별물로 추가된 형태의 경우, 광원(10)은 코사인(cosine) 법칙을 따르는 광분포도를 가지는 일반적인 LED, 레이저다이오드에 비하여, 좌우방향과 상하방향에서 대칭 또는 비대칭으로 집광된 형태도 포함하고, 이 경우에는 좌우굴절렌즈(20)의 기능은 광원(10)에서 실현될 수 있다.
한편, 코사인 법칙을 따르는 일반적인 LED 또는 레이저다이오드 형태의 광원(10)은 광축에서 cosine(0도)=1, 편측 60도에서 cosine(60도) = 1/2, 편측 90도에서 cosine(90) = 0의 비율에 근사한 분포의 확산광을 반구형으로 출사한다.
도 3b 및/또는 4를 참조하면, 좌우굴절렌즈(20)는 광원(10)의 출사광을 평면에서 보아, 즉 좌우방향에서 대칭 또는 비대칭으로 광량을 배분하여 컷오프굴절렌즈(30)의 입사면(30a)으로 조사할 수 있다. 도시되지 않았으나, 좌우굴절렌즈(20)가 좌우방향에서 뿐만 아니라 상하방향에서도 대칭 또는 비대칭으로 광량을 배분하여 컷오프굴절렌즈(30)의 입사면(30a)으로 조사할 수 있다.
예컨대, 실시예에 따라 좌우굴절렌즈(20)는 상하 방향에서는 집광할 필요가 없으므로, 컷오프굴절렌즈의 성능은 광원(10)과의 거리에 비례하여 광원의 상이 컷오프굴절렌즈(30)에 작아지게 생성되므로 상대적으로 컷오프굴절렌즈(30)는 정밀한 컷오프라인을 실현할 수 있게 되고, 좌우굴절렌즈(20)와 광원(10)의 거리에 거의 영향을 받지 않을 수 있다.
또한, 차량용 조명장치가 비대칭 빔을 실현하는 경우에, 좌측 또는 우측의 어느 한 방향으로 점진적으로 상향하는 어깨구간이 약 15도로 완만하게 상향하지 않고, 불과 좌 또는 우측으로 약 1.5 도를 이동하면서 약 45도로 급격하게 상향한 후 다시 수평선에 평행한 컷오프라인의 변화를 실현하는 컷오프각도변환구간(30c) 위해서는 컷오프각도변환구간(30c)의 정밀한 제작이 어려울 수 있다.
예컨대, 도 1a 또는 도 2a에 제시된 하나의 예에 의하면, 컷오프굴절렌즈(30)의 광원(10)까지의 거리가 18mm인 경우에(입사면의 외측 시작 점에서 광원까지의 거리) 컷오프각도변환구간(30c)의 좌우 폭이 약 1.2mm (d2)에 불과하였으므로, 금형가공에 상당한 비용이 투입될 수 있어, 이를 완화하기 위해 컷오프각도변환구간(30c)의 폭을 확대할 필요가 있다.
따라서, 도 1a, 2a 및/또는 3a를 참조하면, 광원(10)의 출사광의 광속, 즉 광선의 밀도를 소정 각도 범위에서 소하게 출사하여 컷오프각도변환구간 입사면(30ca)으로 조사하는 광속감소구간(20c)을 좌우굴절렌즈(20)에 포함할 수 있다. 이때, 컷오프각도변환구간 입사면(30ca)은 예측 출사광의 좌-우 각도 값에 해당하는 상-하 컷오프각도를 실현하는 컷오프굴절렌즈 단면(31)을 다수 생성하여 이들을 연속한 면으로 컷오프굴절렌즈(30)의 입사면과 출사면을 형성한 수 있다.
도 4를 참조하면, 좌우굴절렌즈(20)가 평면에서 보아 집광하되 광속감소구간(20c)을 포함하는 경우, 컷오프굴절렌즈(30)의 컷오프각도변환구간(30c)으로 광속감소구간(20c)이 대응되도록 하여 광속감소구간(20c)에서 광속을 낮추어 조사하는 것으로 컷오프각도변환구간(30c)에서 상의 원리에 따른 부작용을 감소시키고 동시에 가공을 용이하게 할 수 있다.
도 4는 비대칭 빔을 실현하기 위한 좌우굴절렌즈(20)의 평면도로서 광속감소구간(20c)를 포함한 좌우굴절렌즈(20)의 평면도이다. 도 4에서는 L0.62도에서 R1.53도까지의 광선경로가 다른 광선경로들에 비하여 소하게 형성되었고, 컷오프굴절렌즈(30)는 광속감소구간(20c)에서 감소된 광속의 출사광을 입사받아 출사함에 있어 컷오프각도가 우측으로 1.5 도 이동하면서 상측으로도 1.5도 이동한 후 수평선과 평행을 이루는, 즉 45도 우상향하는 좁은 영역에 할당할 수 있다.
대칭 빔, 비대칭 빔은 모두 좌우방향에서는 확산하므로 광원(10)의 상이 좌우로 확대되어도 문제가 되지 않는다. 따라서 좌우굴절렌즈(20)는 좌우방향에서는 광원(10)의 빛을 자유로운 강도로 집광할 수 있게 되고, 좌우굴절렌즈(20)의 좌우방향에서의 집광 정도에 따라 컷오프굴절렌즈(30)의 좌우 폭을 매우 좁게 형성할 수 있게 되고, 동시에 상기 광원(10)의 바로 앞에 작은 크기의 좌우굴절렌즈(20)을 배치하여 광원(10)의 광량을 효율적으로 집광할 수 있게 되므로, 특허 제2419832호에서 제시한 보조반사경, 보조렌즈부분 없이도 광원(10)의 광량을 효율적으로 활용할 수 있게 된다. 예컨대, 좌우굴절렌즈(20)는 광원(10)과 별개로 구성되거나, 또는 광원(10)의 일부로서 구성되는 경우에도 광원(10)과 분리 불가능한 일체로 제공되거나 광원에 분리 가능하도록 부착되어 제공되는 형태로 실시될 수도 있다.
따라서, 본 발명에서의 좌우굴절렌즈(20)는 좌우 방향에서의 집광 내지 배분 기능을 하면 충분하고, 다른 방향에서의 집광은 요구되지 않고, 상하방향의 집광기능을 추가하는 것은 응 용실시예에 속한다.
예컨대, 좌우굴절렌즈(20)에 측면에서 보아, 즉 상하방향에서 광원(10)의 출사광을 집광하여 컷오프굴절렌즈(30)의 입사면(30a)으로 조사하는 기능을 추가하여 실시하는 것을 배제하지 않는다.
또한, 좌우굴절렌즈(20)에 상하 방향에서의 집광기능을 추가하여 상하방향에서도 평행광에 가깝게 집광하도록 하는 경우에는 광원(10)과 좌우굴절렌즈(20) 사이의 거리에 비례하여 정밀한 컷오프라인을 실현할 수 있게 되는데, 이 때에도 상부와 하부의 어느 한 측에서만 평행광에 가깝게 집광하는 방법도 가능하다.
하나의 실시예로서, 좌우굴절렌즈(20)의 수평면 위 부분에서는 측면에서 보아 평행광으로 집광된 광선을 조사하도록 설정하여 컷오프굴절렌즈(30)의 상부의 크기를 줄이고, 수평면 아래 부분에서는 측면에서 보아 집광하지 않은 광선을 컷오프굴절렌즈(30)의 하부에 조사하면 컷오프굴절렌즈(30)의 하부의 출사광은 날카로운 컷오프라인을 실현하게 된다.
예컨대 실시예에 따라, 측면에서 보아 평행광으로 집광하는 렌즈를 사용하지 않거나 약한 집광도만을 사용하거나 상측에는 평행광으로 집광하되 하측에서는 평행광으로 집광하지 않는 좌우굴절렌즈(20)를 사용할 수 있어, 광축의 색분해없는 빛을 컷오프라인에 집중하여 날카로운 컷오프라인을 생성하면서도 상하 방향에서도 처음부터 색분해가 발생하지 않은 광원의 최대하향각도(예컨대, 약 D4° ~ 약 D 15°의 임의의 설정각)의 광선을 그대로 컷오프굴절렌즈(30)에서 최대하향각도로 조사할 수 있으므로 색분해 문제가 없도록 할 수 있다. 물론, 좌우 방향에서도 광원의 확산광을 유사한 폭으로 좌우 확산하여 출사하게 되므로 색분해 문제가 없도록 할 수 있다.
이러한 점에서, 좌우굴절렌즈(20)의 출사면 또는 입사면을 볼록, 오목의 <형상>으로 설명하는 것보다는 <기능>을 설명함으로써 당해 기술분야의 통상의 지식을 가진 자가 충분하고도 명확하게 그 범위를 이해할 수 있다.
컷오프굴절렌즈(30)는 좌우굴절렌즈(20)에서 출사광 또는 광원(10)의 출사광을 입사 받는 입사면(30a) 및 입사면(30a)을 투과한 내부광선(32)들을 굴절시켜 출사하는 출사면(30b)을 포함한다. 이때, 하나 이상의 컷오프굴절렌즈 단면(31)들을 연속하여 컷오프굴절렌즈(30)가 형성될 수 있다. 즉 컷오프굴절렌즈(30)의 입사면(30a)은 컷오프굴절렌즈 단면(31)들의 입사면부분 커브들의 연속한 면으로 형성하고, 컷오프굴절렌즈(30)의 출사면(30b)은 컷오프굴절렌즈 단면(31)들의 출사면부분 커브(31b)들의 연속한 면으로 형성한다.
도 4, 5 및/또는 8을 참조하면, 실시예에 따라, 좌우굴절렌즈(20)는 생략될 수 있고, 좌우굴절렌즈(20)는 광원(10)의 출사광의 일부만을 굴절하여 컷오프굴절렌즈(30)로 조사하고, 광원(10)은 일부의 출사광을 컷오프굴절렌즈(30)에 직접 조사할 수도 있다.
또한, 컷오프굴절렌즈(30)의 입사면(30a)은, 평면에서 보아, 내부광선(32h)를 컷오프굴절렌즈(30)의 출사면(30b)으로 대칭 또는 비대칭하도록 광량을 배분할 수 있다.
예컨대, 좌우굴절렌즈(20)가 평면에서 좌우방향으로 목표하는 좌후확산각도에 비하여 좁게 집광하게 되면, 컷오프굴절렌즈(30)의 입사면에는 특허 제2419832호에서 제시한 것과 유사한 방법으로 좌우 확산면을 추가할 수 있고, 컷오프굴절렌즈(30)의 출사면을 평면에서 보아 오목하게 형성하는 방법으로 목표하는 좌우확산 배광분포를 실현할 수도 있다.
도 6은 좌우굴절렌즈(20) 없이 컷오프굴절렌즈(30)의 입사면(30a)가 좌우 광량을 비대칭하도록 상기 컷오프굴절렌즈(30)의 출사면(30b)으로 배분하는 평면도의 하나의 예이다.
컷오프굴절렌즈 단면(31)는 임의로 선별된 내부광선(32h)의 수직돌출평면에 생성하되, 내부광선(32h)의 좌우 방향각과 컷오프굴절렌즈 단면(31)의 출사면 커브(31b)와 수평면의 교점과 인접한 컷오프굴절렌즈 단면(31)의 출사면 커브(31b)와 수평면의 교점을 서로 연결하는 직선의 각도, 컷오프굴절렌즈(30)의 매질에 따른 굴절율을 변수로 스넬의 법칙에 따라 출사광선의 좌우방향각을 예측할 수 있다. 이때, 인접한 컷오프굴절렌즈 단면(31)의 출사면 커브(31b)를 점진적으로 전방 또는 후방으로 이동하여 배치함으로써, 컷오프굴절단면(31)에서의 출사광의 좌우 방향각을 조절할 수 있고, 컷오프굴절렌즈 단면(31)의 인접한 컷오프굴절렌즈 단면(31)의 입사면 커브(31a)를 전방 또는 후방으로 이동하여 연속시킴으로써 내부광선(32h)의 좌우각도를 변경함으로써 컷오프굴절렌즈 단면(31)에서의 출사광의 좌우각도를 연쇄적으로 변경할 수 있다.
이러한 방법으로 컷오프굴절렌즈(30)의 출사면(30b)을 평면에서 보아 볼록하게 또는 오목하게 자유로이 변형함으로써, 출사광을 좌/우 방향으로 대칭 또는 비대칭으로 배분할 수 있다. 게다가, 컷오프굴절렌즈 단면(31)은, 예측된 출사광선의 좌우방향각에 대하여, 차단막 없이도 색분해 없는 컷오프 라인을 형성하면서 상하 방향의 배광분포를 실현할 수 있다.
또한, 소정 좌우 각도별로 할당된 상하방향의 배광분포를 실현하는 컷오프굴절렌즈 단면(31)들을, 내부광선(32)의 수직돌출평면이 아닌, 수직면에 다수 생성하여 할당된 좌우 방향각의 출사광을 실현하는 것으로 예측된는 위치에 분산 배치하고, 이를 연속하여 생성되는 컷오프굴절렌즈의 입사면(30a) 출사면(30b)으로 컷오프굴절렌즈(30)를 형성할 수 있다.
실무적으로는 컷오프라인이 수평을 이루는 영역에서는 법규상 필요로 하는 확산폭 이상의 충분한 확산폭을 실현하면 되므로, 좌우방향각의 계산이 사실상 불필요하고, 컷오프각도가 변하는 컷오프각도변환구간(30c)에서는 각도의 좌우변화폭이 좁으므로 좌우각도별로 정밀하게 배치하되, 임의로 다수의 컷오프굴절렌즈 단면(31)을 형성하고 이들을 연속하여 컷오프굴절렌즈(30)를 형성하는 것으로 충분하다.
도 1a 또는 도 2a 에 표현된 컷오프각도변환구간(30c)는 이러한 간소화된 방법으로 형성된 것으로서 도 1b 또는 도 2b에 표현된 광분포도는 만족할 만한 컷오프각도변화가 실현된 것을 보여준다.
즉 도 1a는 수직면에 컷오프굴절렌즈 단면들을 다수 생성하여 컷오프각도 변환구역(30c)에 집중 배치하고, 좌측 방향으로 수평선 아래에서 컷오프라인을 형성하는 하나의 컷오프굴절렌즈 단면(31)을 돌출시키고, 우측 방면으로는 수평선 위에서 컷오프라인을 형성하는 하나의 컷오프굴절렌즈 단면(31)을 돌출시키고, 컷오프각도변환구간에는 점진적으로 컷오프각도가 상항하는 다수의 컷오프굴절단면(31)들을 집중 배치한 하나의 실시예이다. 단순 돌출하였음에 불구하고 도 1b의 광분포도의 수평영역은 미세하게 외측으로 기울어져 있을 뿐이고, L1.5에서의 광도(Iv)의 특성곡선에서 날카로운 컷오프라인을 형성하고 있음을 알 수 있다.
도 2a는 도 1b의 광분포도에서 좌측부분이 수평선에 평행하지 못하고 아래로 기우는 것을 미세하게 상향하여 보정한 컷오프굴절렌즈 단면(31)을 좌측에 추가한 후 기존 컷오프굴절렌즈 단면(31)과 연속하여 컷오프굴절렌즈(30)의 좌측부분을 보정한 하나의 실시예이고, 도 2b의 광분포도에서 컷오프라인의 품질을 검증하는 vertical scanning 영역(ECE R112 Annex 9에 의하면 L1.5, L2.5, L3.5)의 수평도가 보정되었고 L1.5에서의 광도(Iv)의 특성곡선에서 날카로운 컷오프라인을 형성하고 있음을 알 수 있다.
도 2c는 내부광선의 수직돌출평면에 컷오프굴절렌즈 단면(31)을 생성한 하나의 실시예인데, 도 2a와 유사한 결과를 도출한다.
도 3a는 도 1a 내지 도 2a 의 도면에서 좌측 영역을 내부광선(31h)에 일치하는 컷오프굴절렌즈 단면(31)을 추가로 생성하여 수평영역을 보정한 하나의 실시예이다.
실시예에 따라, 본원 발명에서는, 컷오프굴절렌즈 단면(31)이 수평면에 투영된 내부광선(32)의 수직돌출평면에 반드시 일치할 것을 요구하지 않고, 좌우(L / R) 각도의 변화에 따라 컷오프각도가 변하거나 또는 상하배광분포가 급하게 변화하는 구간에 대하여서만 소정 L / R 각도별로 필요로 하는 상하배광분포를 만족하는 컷오프굴절렌즈 단면(31)을 다수 생성하여 이를 소정 L / R 각도의 출사광이 예측되는 컷오프굴절렌즈(30)를 형성할 소정 위치에 배치하고, 이들을 연속하여 컷오프굴절렌즈(30)의 컷오프각도변환구간(30c)를 형성하고, 컷오프각도가 변하지 않는 부분의 컷오프굴절렌즈(30)는 소정 컷오프각도를 실현하는 1 개의 컷오프굴절렌즈 단면(31)만을 생성하거나 사후적으로 컷오프각도를 보정한 컷오프굴절렌즈 단면(31)을 추가하여 연속하는 방법으로 컷오프굴절렌즈(30)를 형성할 수 있다.
또한, 컷오프각도변환구간(30c)를 형성하는 컷오프굴절렌즈단면(31)들의 출사면 커브(31b)를 전방 또는 후방으로 조절함으로써 좌우 방향으로 출사각을 조절할 수 있으므로 하나의 실시예인 도 1a 또는 도 2a에서와 달리 컷오프각도변환구간(30c)를 외측의 임의의 위치에 배치할 수도 있다.
컷오프굴절렌즈 단면(31)에 구비된 입사면 커브에 대하여, 입사면부분 커브를 투과한 내부광선(32v)들이 컷오프굴절렌즈(30)의 출사면(30b)에서 내부전반사되지 않도록 생성하여야 하고, 광원(10)을 이상적인 점광원(10)으로 가정하여 생성되는 내부광선(32)들에 있어서, 입사면 커브(31ca)의 임의의 지점을 투과한 일 내부광선(32)와 그 아래 지점을 투과한 일 내부광선(32)는 출사면 커브(31cb)에 도달함에 있어 상하 교차하는 교점이 없어야 한다. 이러한 조건을 만족하지 않는 부분은 본원 발명의 컷오프굴절렌즈의 기능을 하는 부분에 해당하지 않는다.
따라서, 이러한 조건을 만족하는 한 컷오프굴절렌즈(30)의 입사면 커브(31a)는 자연스러운 곡면일 수도 있고, 다수의 모서리 또는 단차를 포함하는 임의의 면일 수도 있다.
“컷오프굴절렌즈 단면(31)”의 출사면 커브(31b)와 입사면 커브(31a)는 하나 이상의 “서브영역(31s)”들로 분할하여 각 서브영역(31s)에 소정의 상하각도 범위의 배광분포를 할당함으로써, 인접한 상하의 ‘서브 출사영역에 속하는 출사면 커브(31sb)와 이에 상응하는 입사면 커브(31sa)’들을 서로 연속 또는 불연속하게 형성할 수 있다.
따라서, 컷오프각도변환구간(30c)도, 하나의 실시예인 도 1a 또는 도 2a에서와 달리, 도 5에 도시되고 있는 컷오프굴절렌즈단면(31c)의 일 부분인 하나 이상의 서브 영역(31s)에 할당할 수 있다.
이때, 도 5를 참조하면,‘서브영역(31s)’의 출사광은 임의의 지점에서의 상하 출사각이 그보다 하위지점에서의 상하 출사각에 비하여 낮은 방향각으로 “상하교차출사” 할 수도 있고, 반대로 임의의 지점에서의 상하 출사각이 그보다 하위지점에서의 상하 출사각에 비하여 높은 방향각으로 “상하순차출사” 할 수도 있다. 이때, 상하 인접한 두 개의 “서브영역(31s)”의 접점에서 동일한 상하방향각으로 출사하게 되면 두 ‘서브영역(31s)’은 서로 탄젠셜하게 연속하게 되고, 그렇지 않으면 접점은 불연속한 꼭지점을 형성하므로 이를 연속한 컷오프굴절렌즈(30)의 출사면(30b)은 서브영역(31s)들 사이에서 모서리지게 된다.
도 5는 서브영역들을 네 구간, 예컨대 A(맨 위), B(두번째), C(세번째), D(맨 아래)로 나누어, B, C 는 서로 탄젠셜하게 연속하도록 실시한 광선경로를 실현하였고, C는 상하 교차하도록 광선경로를 설정하였고, A와 B, 그리고 C와 D는 집점에서 모서리지도록 한 하나의 예이다.
실시예에 따라, 컷오프라인은 물론 최대하향각에서도 색분해가 처음부터 발생하지 않거나, 색분해를 제거할 수 있다.
예컨대, 도 5를 참조하면, 상하배광분포에서 실시하고자 하는 최대하향각이 예컨대 D15라면, 광원에서 D15로 출사하는 광선경로를 최대하향각 D15로 출사하도록 컷오프굴절렌즈 단면(31)의 서브영역(31s) 생성하고 다른 서브 영역(31s)들에는 출사각의 상하 범위를 최대하향각보다 높이 설정하면 충분하다.
이 경우에 색분해가 발생하지 않는 이유를 달리 설명할 필요가 없는 것은 광원(10)에서 좌우굴절렌즈(20)를 거쳐 컷오프굴절렌즈(30)을 투과하는 광선경로상에서 상하방향에서 색분해가 거의 발생하지 않거나, 상하 굴절과정에서 원래의 출사각으로 환원되었기 때문이고, 좌우방향도 이와 같기 때문이다.
다음으로, 도 8을 참조하면, 상측의 출사광선경로와 하측의 출사광선경로의 누적 굴절각의 절대값 내지 색분해의 폭이 유사한 지점들을 상부와 하부에 임의로 지정하여 그 지점에서 최해하향각의 출사광을 할당하는 방식으로 색분해를 제거할 수 있다.
하나의 예로서, 도 5에서 (B)(두번째) 는 광원(10)에서 U15도로 상향하는 출사광선을 컷오프굴절렌즈(30)의 상부에서 D15로 굴절시키면 D 방향으로 30도를 누적굴절시킨 것과 같고, (D)(맨 아래) 는 광원(10)에서 D45도로 하향하는 출사광선을 D15도로 컷오프굴절렌즈(30)의 하부에서 굴절시키면 U 방향으로 30도를 누적굴절시킨 것과 같으므로, 두 개의 광선경로를 최대하향각으로 결합시키면 상부에서 최대하향각으로 출사되는 광선은 노랑색을 중심으로 위에 빨강색, 아래에 파랑색으로 색분해되고, 하부에서 최대하항각으로 출사되는 광선은 노랑색을 중심으로 위에 파랑색, 아래에 빨강색으로 색분해되되, 두 광선경로의 누적줄걸각 내지 색분해의 폭이 거의 동일하므로 색분해가 제거될 수 있다.
도 5의 (B)(두번째), (D)(맨 아래)는 최대하향각을 동일하게 D13으로 하여 서로 색분해를 상쇄되도록 유도하였고, (C)(세번째)는 최대하향각을 D15로 하여 광원에서 D15로 출사한 광선을 D15에 출사하여 색분해없는 광선을 D 15로 출사한 하나의 예이다.
컷오프굴절렌즈의 입사면은, 평면에서 보아, 좌우굴절렌즈(20)와 함께 또는 좌우굴절렌즈(20) 없이 컷오프굴절렌즈의 출사면으로 대칭 또는 비대칭하도록 광량을 배분할 수 있다. 이에 따라, 본 발명은 좌우굴절렌즈(20) 없이도 실시될 수 있다.
또 하나의 예를 살펴본다. 하나의 예에서, 광원(10)와 컷오프굴절렌즈(30)의 사이에 좌우굴절렌즈(20)를 배치시켜 광원(10)에서 출사한 빛을 상하좌우 방향으로 대칭 또는 비대칭으로 편심되게 배분하여 컷오프굴절렌즈(30) 방향으로 출사시키나, 또는 도시되지 않았으나 광원(10)와 컷오프굴절렌즈(30)의 사이에 상하굴절렌즈(도시되지 않음)를 추가 배치시켜 광원(10)에서 출사한 빛을 측면에서 보아 평행광 또는 평행광에 가깝게 출사시킬 수 있다. 예컨대, 상하굴절렌즈를 추가 배치시키는 경우 좌우굴절렌즈(20) 없이 배치되거나 또는 좌우굴절렌즈(20)의 전방 또는 후방에 배치시킬 수 있다.
예컨대 이때, 도시되지 않았으나, 하나의 예에서, 조명장치는 반사경 및 하나 이상의 보조렌즈를 더 포함할 수 있다. 예컨대, 반사경은 좌우굴절렌즈(20) 또는 상하굴절렌즈가 광원(10)으로부터 멀리 떨어짐에 따라 좌우굴절렌즈(20) 또는 상하굴절렌즈의 외측으로 벗어나는 빛을 측면에서 보아 평행광 내지 평행광에 가깝게 반사시킬 수 있다.
하나 이상의 보조렌즈는 컷오프굴절렌즈(30)의 외측, 또는 좌우굴절렌즈(20) 또는 상하굴절렌즈의 외측에 형성되며 반사경으로부터 반사된 빛을 설정된 방향으로 굴절, 확산 또는 굴절 및 확산시킬 수 있다.
이상에서, 전술한 실시 예(들) 및/또는 첨부된 도면(들)은 본 발명에 대한 당해 기술분야에서 통상의 지식을 가진 자의 이해를 돕기 위해 예시적으로 설명된 것으로, 본 발명의 다양한 실시 예는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 전술한 구성요소들의 다양한 조합에 따라 다양한 변형된 형태로도 구현될 수 있고, 나아가 새로운 구성요소들이 추가된 형태로도 구현될 수 있다. 따라서, 본 발명의 범위는 전술된 실시 예들뿐만 아니라 당해 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변경, 대안, 균등 실시 예들을 포함하고 있는 것으로 해석되어야 한다.
본 발명은 차량용 조명장치에 관한 것으로, 차량의 조명관련 산업분야에서 널리 이용가능할 뿐만 아니라 다른 분야의 조명 기술분야에서 응용가능하다.
Claims (16)
- 자동차용 조명장치에 있어서,전원을 공급받아 설정 밝기의 광을 확산 조사하는 광원(10);상기 광원(10)의 전방에 배치되고, 상기 광원(10)으로부터 조사되는 확산광을 측면에서 보아 평행광 또는 평행광에 가까운 빛으로 출사되게 굴절시키는 집광렌즈(20); 및상기 집광렌즈(20)의 전방에 배치되고, 차단막 없이도 상기 집광렌즈(20)로부터 출사되는 빛을 컷오프라인 및 상하배광분포를 만족시켜 출사되게 굴절시키는 컷오프굴절렌즈(30)를 포함하여 이루어지는 것을 특징으로 하는 자동차용 조명장치.
- 청구항 1에 있어서,상기 집광렌즈(20)는,입사면과 출사면 중 어느 하나 이상이 볼록하게 형성되어 투과되는 확산광을 집광시켜 평행광 또는 평행광에 가까운 빛으로 출사되게 굴절시키는 것을 특징으로 하는 자동차용 조명장치.
- 청구항 2에 있어서,상기 집광렌즈(20)는,상기 입사면과 출사면 중 하나가 평면 또는 오목하게 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 1에 있어서,상기 집광렌즈(20)는,입사면과 출사면 중 어느 하나상기 집광바디(21)의 타면에 다수의 출사면(23a)들로 분할되어 돌출되고, 투과되는 확산광을 광원(10)의 광축과 평행하는 직진방향으로 출사되게 굴절시키는 집광돌부(23);로 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 1에 있어서,상기 컷오프굴절렌즈(30)는,상기 집광렌즈(20)를 포용하는 크기의 굴절바디(31);상기 집광렌즈(20)와 마주하는 굴절바디(31)의 일면에 돌출되고, 입사되는 빛을 좌우방향을 향해 소정각도로 확산되게 굴절시키는 확산돌부(32);상기 굴절바디(31)의 타면에 돌출되고, 투과된 빛을 컷오프선 아래방향으로 출사되게 굴절시키는 굴절돌부(33);로 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 5에 있어서,상기 확산돌부(32)는,상기 집광렌즈(20)로부터 입사되는 빛을 좌우방향으로만 더 확산되도록 상하 동일선상으로 오목하게 함몰되거나 볼록하게 돌출된 하나 이상의 확산면(32a);이 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 1에 있어서,상기 굴절돌부(33)는,상기 확산돌부(32)의 확산면(32a)으로 투과된 빛을 컷오프선 아래방향으로 굴절하여 출사시키도록 아래에서 위로 갈수록 두께가 점진적으로 얇아지는 각도로 경사지게 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 1에 있어서,상기 굴절돌부(33)는,중심을 기점으로 상부에 위치되고, 소정곡률로 볼록하게 돌출되어 투과되는 빛을 상하 교차되게 굴절하여 컷오프선에서부터 아랫방향을 향해 점진적으로 확산시키는 상부굴절면(33a);중심을 기점으로 하부에 위치되고, 소정곡률로 오목하게 함몰되어 투과되는 빛을 상하 교차하지 않도록 굴절하여 컷오프선에서부터 아랫방향을 향해 점진적으로 확산시키는 하부굴절면(33b)이 연결 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 8에 있어서,상기 굴절돌부(33)는,상기 상부굴절면(33a)과 하부굴절면(33b) 사이에 위치되고, 평면이나 평면에 가까운 소정의 곡면으로 형성되어 투과되는 빛을 컷오프선 내지 컷오프선 아래 소정의 방향으로 향해 집중적으로 출사되게 굴절시키는 중간굴절면(33c);이 더 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 9에 있어서상기 굴절돌부(33)는,상기 중간굴절면(33c) 위에 위치되고 소정의 곡률로 볼록면, 또는 소정 곡률로 오목면으로 형성되어 투과되는 빛을 컷오프선 아랫방향을 향해 점진적으로 확산하도록 굴절시키는 하나 이상의 상부굴절면(33a);상기 중간굴절면(33c) 아래에 위치되고 소정의 곡률로 볼록면, 또는 소정 곡률로 오목면으로 형성되어 투과되는 빛을 컷오프선 아랫방향을 향해 점진적으로 확산하도록 굴절시키는 하나 이상의 하부굴절면(33b);이 연결되어 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 10에 있어서,상기 상부굴절면(33a), 하부굴절면(33b)에 형성된 하나 이상의 볼록 또는 오목한 굴절면들은 컷오프선 아래 영역의 일부분을 각 할당하여 빛을 출사하는 것을 특징으로 하는 자동차용 조명장치.
- 청구항 11에 있어서,상기 상부굴절면(33a), 하부굴절면(33b)에 형성된 하나 이상의 볼록, 오목한 면으로 형성된 굴절면들 중 일부 굴절면은 컷오프선 위 부분으로 약한 빛을 보내도록 형성된 것을 특징으로 하는 자동차용 조명장치.
- 청구항 7 내지 12 중 어느 하나의 항에 있어서,상기 상부굴절면(33a), 하부굴절면(33b)에 형성된 하나 이상의 각 굴절면은 인근 굴절면들과 자연스럽게 연속한 면으로 연결하여 형성할 수 있거나 모서리지어 구분된 면으로 형성할 수도 있는 것을 특징으로 하는 자동차용 조명장치.
- 청구항 1 내지 12 중 어느 하나의 항에 있어서,상기 굴절돌부(33)는,상기 집광렌즈(20)의 중심에서 벗어난 빛은 색상별 굴절각 차이에 따라 빨강색, 파랑색, 노랑색으로 색분해 되어 상부굴절면(33a)에는 위에서 아래방향으로 빨강색, 노랑색, 파랑색의 순의 굴절각으로 투과되고, 하부굴절면(33b)에는 아래에서 위 방향으로 빨강색, 노랑색, 파랑색의 순의 굴절각으로 투과되어 상/하부굴절면(33a)(33b)을 투과한 굴절광은 상기 굴절돌부(33)의 전방에서 노랑색을 중심으로 빨강색과 파랑색이 결합하여 백색광을 실현하는 것을 특징으로 하는 자동차용 조명장치.
- 청구항 1에 있어서,상기 자동차용 조명장치는,상기 집광렌즈(20)로 입사되지 않은 광원(10)의 확산광을 집광렌즈(20)의 외측에 집광렌즈(20)에 부착 또는 일체로 형성된 보조렌즈부분으로 반사하는 반사경(40);을 포함하여,상기 컷오프굴절렌즈(30)의 외측에 부착되거나 일체로 형성된 보조렌즈부분에 형성되고, 상기 반사경(40)으로부터 반사되어 입사되는 빛을 소정의 확산각과 방향으로 굴절시키는 하나 이상의 보강렌즈(50)와 넓은 범위로 확산하는 산란패턴;을 구비하는 것을 특징으로 하는 자동차용 조명장치.
- 청구항 14에 있어서,상기 반사경(40)은,측면에서 보아 광원(10)을 초점으로 하는 포물선으로 형성되어 광원(10)의 확산광을 광축에 평행광 내지 평행광에 가까운 빛으로 반사하고, 평면에서 보아 광원(10)의 확산광을 임의의 확산각으로 반사하는 것을 특징으로 하는 자동차용 조명장치.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0028871 | 2022-03-07 | ||
KR1020220028871A KR102419832B1 (ko) | 2022-03-07 | 2022-03-07 | 자동차용 조명장치 |
KR1020230030249A KR20240136808A (ko) | 2023-03-07 | 2023-03-07 | 차량용 조명장치 |
KR10-2023-0030249 | 2023-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023187505A1 true WO2023187505A1 (ko) | 2023-10-05 |
Family
ID=88199530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2023/052150 WO2023187505A1 (ko) | 2022-03-07 | 2023-03-07 | 자동차용 조명장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023187505A1 (ko) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62502577A (ja) * | 1985-02-28 | 1987-10-01 | ロ−ベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 自動車の減光灯または霧灯のための前照灯 |
JP2002358806A (ja) * | 2001-03-27 | 2002-12-13 | Stanley Electric Co Ltd | ヘッドランプ |
KR101359815B1 (ko) * | 2012-06-08 | 2014-02-07 | 배수원 | 차량용 램프의 집광렌즈 |
KR20190081690A (ko) * | 2017-12-29 | 2019-07-09 | 에스엘 주식회사 | 차량용 램프 |
KR102297013B1 (ko) * | 2014-12-26 | 2021-09-02 | 에스엘 주식회사 | 적응형 드라이빙 빔 모듈 |
KR102419832B1 (ko) * | 2022-03-07 | 2022-07-11 | 손성근 | 자동차용 조명장치 |
-
2023
- 2023-03-07 WO PCT/IB2023/052150 patent/WO2023187505A1/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62502577A (ja) * | 1985-02-28 | 1987-10-01 | ロ−ベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 自動車の減光灯または霧灯のための前照灯 |
JP2002358806A (ja) * | 2001-03-27 | 2002-12-13 | Stanley Electric Co Ltd | ヘッドランプ |
KR101359815B1 (ko) * | 2012-06-08 | 2014-02-07 | 배수원 | 차량용 램프의 집광렌즈 |
KR102297013B1 (ko) * | 2014-12-26 | 2021-09-02 | 에스엘 주식회사 | 적응형 드라이빙 빔 모듈 |
KR20190081690A (ko) * | 2017-12-29 | 2019-07-09 | 에스엘 주식회사 | 차량용 램프 |
KR102419832B1 (ko) * | 2022-03-07 | 2022-07-11 | 손성근 | 자동차용 조명장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108253372B (zh) | 用于机动车前灯的光模块 | |
US8899806B2 (en) | Vehicle light | |
KR101172951B1 (ko) | 차량용 전조등 | |
CN1583465B (zh) | 车辆前照灯用光源装置和车辆前照灯 | |
EP2280214B1 (en) | Vehicular lighting equipment | |
US7563005B2 (en) | Light source module and lamp equipped with the same | |
US8752991B2 (en) | Vehicle lighting device | |
CN102032519A (zh) | 用于车辆的照明装置的发光模块 | |
KR20220095897A (ko) | 차량용 램프 | |
US11578849B2 (en) | Lamp for vehicle | |
WO2023187505A1 (ko) | 자동차용 조명장치 | |
CN115342323A (zh) | 车辆用灯具 | |
WO2024181837A1 (ko) | 램프 모듈 및 이를 포함하는 차량용 램프 | |
WO2024181838A1 (ko) | 램프 모듈 및 이를 포함하는 차량용 램프 | |
WO2024185945A1 (ko) | 자동차용 조명장치 | |
WO2024136235A1 (ko) | 차량용 램프 | |
WO2024128678A1 (ko) | 차량용 램프 | |
KR20240136808A (ko) | 차량용 조명장치 | |
CN217928591U (zh) | 用于车辆的灯和包括该灯的车辆 | |
US12117137B2 (en) | Low-beam primary optical element, vehicle lamp module, vehicle lamp, and vehicle | |
WO2020153643A1 (ko) | 차량용 헤드램프 렌즈 | |
US11662075B2 (en) | Lamp for vehicle and vehicle including the same | |
KR102697990B1 (ko) | 차량용 램프 | |
WO2024186188A1 (ko) | 차량용 램프 | |
US20240200745A1 (en) | Headlight module and headlight device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23778582 Country of ref document: EP Kind code of ref document: A1 |