WO2023186176A1 - 一种dpd参数信息的性能评估方法、装置及系统 - Google Patents

一种dpd参数信息的性能评估方法、装置及系统 Download PDF

Info

Publication number
WO2023186176A1
WO2023186176A1 PCT/CN2023/086035 CN2023086035W WO2023186176A1 WO 2023186176 A1 WO2023186176 A1 WO 2023186176A1 CN 2023086035 W CN2023086035 W CN 2023086035W WO 2023186176 A1 WO2023186176 A1 WO 2023186176A1
Authority
WO
WIPO (PCT)
Prior art keywords
end device
information
performance index
receiving end
dpd
Prior art date
Application number
PCT/CN2023/086035
Other languages
English (en)
French (fr)
Inventor
刘凤威
陈雷
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023186176A1 publication Critical patent/WO2023186176A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/50Circuit switching systems, i.e. systems in which the path is physically permanent during the communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of wireless communications, and in particular to a performance evaluation method, device and system for digital predistortion (DPD) parameter information.
  • DPD digital predistortion
  • the power amplifier is the core component of the transmitter to achieve long-distance signal transmission. It can amplify the low-power signal generated by the transmitter to a power level that can be transmitted over a long distance.
  • the PA will introduce nonlinear distortion, causing the performance of the transmitted signal to deteriorate.
  • Digital predistortion (DPD) technology is an effective means to improve the linearity of the PA output signal. Its basic principle is to The signal is digitally preprocessed to improve the linearity of the PA output signal.
  • the transmitter needs to adjust the signal output by the PA by obtaining the DPD parameters corresponding to the PA at the digital channel of the transmitter.
  • the transmitter can obtain DPD parameter information including DPD parameters in two ways. One way is to design a post-PA feedback loop at the transmitter and obtain the DPD parameter information through the feedback signal. The other way is for the receiving end device to obtain the DPD parameters. information and feed it back to the transmitter.
  • the performance corresponding to the DPD parameter information obtained by the transmitter may not be ideal.
  • the signal received by the receiver may suffer from deteriorating factors such as channel non-idealization and interference noise.
  • the performance of the DPD parameters fed back by the receiving end to the transmitting end is poor.
  • the transmitter has no effective means to determine the performance corresponding to the obtained DPD parameter information. Therefore, when the transmitter adjusts the transmit configuration based on the obtained DPD parameter information, the performance of the transmitter may be limited or even deteriorated.
  • Embodiments of the present application provide a method, device and system for performance evaluation of DPD parameter information, which are used to solve the problem that the transmitter cannot determine the performance corresponding to the obtained DPD parameter information.
  • the communication device (main body) that executes the method may be a sending device or a component of the sending device, such as a processor, a chip, or a device of the sending device. or system-on-a-chip.
  • the following description takes the execution subject as the transmitting end device as an example.
  • the method includes: the transmitting end device obtains the first DPD parameter information; the transmitting end device receives the performance index information from the first receiving end device, and the performance index information is used to characterize the first performance Index, the first performance index is a performance index obtained after executing DPD according to the first DPD parameter information.
  • the sending end device can learn the performance index that can be obtained if DPD is performed based on the first DPD parameter information based on the received performance index information, so that it can accurately determine the obtained first The performance or quality of DPD parameters.
  • the performance index information includes at least one of the following: first performance index information and second performance index information; the first performance index information is used to represent the value of the first performance index, The second performance index information is used to characterize the gain of the first performance index.
  • the transmitter device can directly determine the performance index that can be achieved if DPD compensation is performed based on the first DPD parameter information based on the first performance index information, thereby determining the first DPD The quality of parameter information.
  • the transmitting end device can determine, based on the second performance index information, the performance index improvement that can be brought about by performing DPD compensation based on the first DPD parameter information, thereby determining the first DPD parameter information. the quality of.
  • the second performance index information includes: numerical information of the first performance index and numerical information of the second performance index; or, the numerical information of the first performance index is compared with the numerical information of the second performance index.
  • Variable information of the numerical information of the second performance index; the second performance index is the performance index before DPD is performed on the first signal according to the first DPD parameter information.
  • the first performance indicator includes at least one of the following: error vector magnitude EVM, signal-to-interference and noise ratio SINR, signal-to-noise ratio SNR, supported modulation and coding scheme MCS, channel quality Indicates CQI, highest supported modulation order, mean square error MSE, normalized mean square error NMSE, adjacent channel leakage ratio ACLR and zero subcarrier power.
  • EVM error vector magnitude
  • SINR signal-to-interference and noise ratio
  • SNR signal-to-noise ratio
  • supported modulation and coding scheme MCS channel quality Indicates CQI, highest supported modulation order, mean square error MSE, normalized mean square error NMSE, adjacent channel leakage ratio ACLR and zero subcarrier power.
  • the method before the transmitting end device receives the performance index information from the first receiving end device, the method further includes: the transmitting end device sends the first configuration information to the first receiving end device; The first configuration information is used to indicate the first time-frequency resource; the first time-frequency resource is used for the first receiving end device to obtain performance index information. Based on this solution, the transmitting end device can indicate the time-frequency resources used by the first receiving end device to obtain performance index information.
  • the method before the transmitting end device receives the performance index information from the first receiving end device, the method further includes: the transmitting end device sends second configuration information to the first receiving end device; The second configuration information indicates configuration information used by the first receiving end device to send performance index information. Based on this solution, the transmitter device can instruct the reporting configuration of performance index information.
  • the second configuration information includes second time-frequency resource information; the second time-frequency resource is the time-frequency resource required by the first receiving end device to send the performance index information.
  • the transmitting end device can indicate the time-frequency resources used by the first receiving end device to send the performance index information.
  • the second configuration information includes first indication information; the first indication information is used to indicate the first performance index that the first receiving end device needs to send. Based on this solution, the transmitting end device can indicate the first performance index that the first receiving end device needs to send.
  • the performance index information is associated with at least one of the following information: first time-frequency resource information and first DPD parameter information; wherein the first time-frequency resource is used for the first
  • the receiving end device obtains the performance index information.
  • the performance index information associated with the first DPD parameter information can indicate that the reported performance index information is a performance index that is achieved or expected to be achieved after using the first DPD parameter information.
  • the association of the performance index information with the first time-frequency resource information may indicate that the reported performance index information is measured or obtained on the first time-frequency resource.
  • the method before the transmitting end device receives the first DPD parameter information from the first receiving end device, the method further includes: the transmitting end device sends a third configuration to the first receiving end device information; the third configuration information is used to indicate the third time-frequency resource; the third time-frequency resource is used for the first receiving end device to obtain the first DPD parameter information. Based on this solution, the transmitting end device can indicate the time-frequency resource used by the first receiving end device to obtain the first DPD parameter information.
  • the transmitting end device obtains the first DPD parameter information including: the transmitting end device receives the first DPD parameter information from the second receiving end device; or, the transmitting end device receives the first DPD parameter information from the second receiving end device; or, the transmitting end device obtains the first DPD parameter information according to the preset
  • the algorithm determines first DPD parameter information. Based on this solution, the device for determining the first DPD parameter information and the device for determining the performance index information may be different devices.
  • the method before the transmitting end device receives the performance index information from the first receiving end device, the method further includes: the transmitting end device sends the first DPD parameter information to the first receiving end device. ; The first DPD parameter information is used by the first receiving end device to determine performance index information. Based on this solution, the transmitting end device can send the first DPD parameter information to the first receiving end device, so that the first receiving end device obtains the first DPD parameter information and determines the performance index information based on the first DPD parameter information.
  • the first performance index is a performance index obtained by the first receiving end device after the transmitting end device performs DPD according to the first DPD parameter information.
  • the method before the transmitting end device receives the performance index information from the first receiving end device, the method further includes: the transmitting end device sends a second signal to the first receiving end device;
  • the second signal is a signal obtained after the transmitting end device performs DPD according to the first DPD parameter information; the second signal is used by the first receiving end device to determine the performance index information; or the transmitting end device sends the first signal and the first signal to the first receiving end device.
  • the second signal; the first signal is a signal before the transmitting end device performs DPD according to the first DPD parameter information; the first signal and the second signal are used by the first receiving end device to determine performance index information.
  • the transmitting end device can send the DPD compensated signal to the first receiving end device or send the signal before DPD compensation and the signal after DPD compensation, so that the first receiving end device can determine the performance index based on the received signal. information.
  • the first performance index is a performance index obtained after the first receiving end device performs DPD according to the first DPD parameter information.
  • the performance index information corresponding to at least one of the first performance indicators is calculated by the first receiving end device based on the first DPD parameter information and the preset algorithm; and/or , the performance index information corresponding to at least one of the first performance indicators is measured by the first receiving end device according to the first DPD parameter information and the first time-frequency resource.
  • the performance index information corresponding to at least one of the first performance indicators is measured by the first receiving end device according to the first DPD parameter information and the first time-frequency resource.
  • the performance index information corresponding to at least one of the first performance indicators is obtained by the first receiving end device measuring the third signal on the first time-frequency resource, and the third signal is obtained by the first receiving end device according to the first DPD parameter information.
  • the fourth signal is a signal obtained after performing DPD; the fourth signal is a signal received by the first receiving end device corresponding to the first signal. signal; the first signal is a signal before the transmitting end device performs DPD according to the first DPD parameter information.
  • the first receiving end device can measure the signal obtained after performing DPD on a specific time-frequency resource to obtain performance index information.
  • the method further includes: the transmitting end device determines the transmitting parameters of the transmitting end device according to the performance index information. Based on the technical solutions of the embodiments of this application, the transmitting end device can learn the performance of the first DPD parameter information based on the performance indicator information from the first receiving end device, thereby determining the adapted transmitting parameters, improving the performance of the transmitting end device, and obtaining to greater coverage capabilities or better signal transmission quality.
  • the transmitting end device determines the transmitting parameters of the transmitting end device according to the performance index information, including: the transmitting end device's transmitting power and the modulation coding scheme MCS that the transmitting end device can support. Based on this solution, the transmitting end device can determine appropriate transmit power and/or supportable modulation and coding methods based on the performance index information.
  • the transmitting end device determines the transmitting parameters of the transmitting end device based on the performance index information.
  • the transmitting end device determines whether the transmitting end device uses the first DPD parameter information based on the performance index information.
  • the transmitting end device can determine whether the transmitting end device uses the first DPD parameter information based on the performance index information, and can not perform DPD based on the first DPD parameter information when the quality of the first DPD parameter information is poor, thus avoiding the occurrence of the first DPD parameter information.
  • the transmitting end device determines the transmitting parameters of the transmitting end device according to the performance index information: the transmitting end device determines the transmitting end device according to the multiple performance index information. For performance index information, select target DPD parameter information from a plurality of first DPD parameter information respectively corresponding to a plurality of performance index information. Based on this solution, the transmitting end device can select the appropriate first DPD parameter information as the target DPD parameter information according to the first performance indicators respectively corresponding to the plurality of first DPD parameter information, so that the transmitting end device performs DPD according to the target DPD parameter information. Finally, the performance of the transmitter device can be improved.
  • a method for performance evaluation of DPD parameter information is provided.
  • the communication device (main body) executing the method may be the first receiving end device or a component of the first receiving end device, such as the first receiving end device. processor, chip, or chip system.
  • the following description takes the execution subject as the first sending end device as an example.
  • the method includes: the first receiving end device determines performance index information; the performance index information is used to characterize the first performance index, and the first performance index is based on the first DPD parameter information.
  • the sending end device can learn the performance index that can be obtained by performing DPD on the first signal based on the first DPD parameter information based on the received performance index information, so that it can accurately determine The performance or quality of the first DPD parameter obtained.
  • the performance index information includes at least one of the following: first performance index information and second performance index information; the first performance index information is used to characterize the value of the first performance index, The second performance index information is used to characterize the gain of the first performance index.
  • the transmitter device can directly determine the performance index that can be achieved if DPD compensation is performed based on the first DPD parameter information based on the first performance index information, thereby determining the first DPD The quality of parameter information.
  • the transmitting end device can information to determine the improvement in performance indicators that can be brought about by performing DPD compensation based on the first DPD parameter information, thereby judging the quality of the first DPD parameter information.
  • the second performance index information includes: numerical information of the first performance index and numerical information of the second performance index; or, the numerical information of the first performance index is compared with the numerical information of the second performance index.
  • the variable information of the numerical information of the second performance index; the second performance index is the performance index before executing DPD based on the first DPD parameter information.
  • the performance indicators include at least one of the following: error vector magnitude EVM, signal-to-interference and noise ratio SINR, signal-to-noise ratio SNR, supported modulation and coding method MCS, channel quality indicator CQI , the highest supported modulation order, mean square error MSE, normalized mean square error NMSE, adjacent channel leakage ratio ACLR and zero subcarrier power.
  • the transmitter device can judge the quality of the first DPD parameter information through the performance index information corresponding to multiple first performance indicators.
  • the method further includes: the first receiving end device determines the first DPD parameter information according to a preset algorithm; or the first receiving end device receives the first DPD from the transmitting end device. Parameter information. Based on this solution, two ways for the first receiving end device to obtain the first DPD parameter information are provided.
  • the first performance index is a performance index obtained after the first receiving device performs DPD according to the first DPD parameter information.
  • the first receiving end device determines the performance index information including: the first receiving end device calculates at least one of the first performance indexes according to the first DPD parameter information and the preset algorithm. Corresponding performance index information; and/or, the first receiving end device performs measurements according to the first DPD parameter information and the first time-frequency resource to obtain performance index information corresponding to at least one of the first performance indexes. Based on this solution, two ways for the first receiving end device to determine performance index information based on the first DPD parameter information are provided.
  • the first receiving end device performs measurements according to the first DPD parameter information and the first time-frequency resource to obtain performance index information corresponding to at least one of the first performance indexes, including: A receiving end device performs DPD on the fourth signal according to the first DPD parameter information and obtains a third signal; the fourth signal corresponds to the first signal sent by the transmitting end device to the first receiving end device and is received by the first receiving end device. signal; the first signal is the signal before the transmitting end device performs DPD according to the first DPD parameter information; the first receiving end device measures the third signal on the first time-frequency resource to obtain the performance corresponding to at least one of the first performance indicators. indicator information. Based on this solution, the first receiving end device can measure the signal obtained after performing DPD on a specific time-frequency resource to obtain performance index information.
  • the first performance index is a performance index obtained by the first receiving end device after the transmitting end device performs DPD according to the first DPD parameter information.
  • the first receiving end device determines the performance index information including: the first receiving end device receives a second signal from the transmitting end device; the second signal is the transmitting end device according to the first DPD parameter information is a signal obtained after performing DPD; the first receiving end device measures the second signal and determines the performance index information.
  • the first receiving end device receives the first signal and the second signal from the transmitting end device; the first signal is the signal before the transmitting end device performs DPD according to the first DPD parameter information; the first receiving end device measures the first signal and The second signal is to determine the performance indicator information. Based on this solution, the first receiving end device can measure the received signal after DPD compensation or measure the received signal before DPD compensation and the signal after DPD compensation, Determine performance indicator information.
  • the method before the first receiving end device determines the performance index information, the method further includes: the first receiving end device receiving the first configuration information from the transmitting end device; the first configuration information It is used to indicate the first time-frequency resource; the first time-frequency resource is used for the first receiving end device to obtain performance index information. Based on this solution, the transmitting end device can indicate the time-frequency resources used by the first receiving end device to obtain performance index information.
  • the method before the first receiving end device determines the performance index information, the method further includes: the first receiving end device receiving second configuration information from the transmitting end device; the second configuration information Indicates configuration information used by the first receiving end device to send performance index information. Based on this solution, the transmitter device can instruct the reporting configuration of performance index information.
  • the second configuration information includes second time-frequency resource information; the second time-frequency resource is the time-frequency resource required by the first receiving end device to send the performance index information.
  • the transmitting end device can indicate the time-frequency resources used by the first receiving end device to send the performance index information.
  • the second configuration information includes first indication information; and the first indication information is used to indicate the first performance index that the first receiving end device needs to send.
  • the transmitting end device can indicate the first performance index that the first receiving end device needs to send.
  • the first receiving end device sending performance index information to the transmitting end device includes: the first receiving end device sending a performance index associated with at least one of the following information to the transmitting end device Information: first time-frequency resource information and first DPD parameter information; wherein the first time-frequency resource is used by the first receiving end device to obtain performance index information.
  • the first receiving end device can associate the reported performance index information with the first DPD parameter information, which can indicate that the reported performance index information is a performance index that is achieved or expected to be achieved after using the first DPD parameter information.
  • the first receiving end device may associate the reported performance index information with the first time-frequency resource information, which may indicate that the reported performance index information is measured or obtained on the first time-frequency resource.
  • the method further includes: the first receiving end device sends the first DPD parameter information to the transmitting end device. DPD parameter information. Based on this solution, the first receiving end device can send the determined first DPD parameter information to the transmitting end device.
  • the method before the first receiving end device sends the first DPD parameter information to the transmitting end device, the method further includes: the first receiving end device receives the third configuration from the transmitting end device. information; the third configuration information is used to indicate the third time-frequency resource; the third time-frequency resource is used for the first receiving end device to obtain the first DPD parameter information. Based on this solution, the transmitting end device can indicate the time-frequency resource used by the first receiving end device to obtain the first DPD parameter information.
  • a communication device for implementing the various methods mentioned above.
  • the communication device may be the transmitting end device in the first aspect, or a device including the transmitting end device, or a device included in the transmitting end device, such as a chip; or the communication device may be the transmitting end device in the second aspect.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method.
  • the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, the processor is used to execute the instructions stored in the memory, and when the processor executes the instructions, the communication
  • the device performs the method described in any of the above aspects.
  • the communication device may be the transmitting end device in the first aspect, or a device including the transmitting end device, or a device included in the transmitting end device, such as a chip; or the communication device may be the transmitting end device in the second aspect.
  • the first receiving end device or a device including the above-mentioned first receiving end device, or a device included in the above-mentioned first receiving end device.
  • a communication device including: a processor and an interface circuit, the interface circuit being used to communicate with a module outside the communication device; the processor being used to run a computer program or instructions to perform any of the above aspects.
  • the communication device may be the transmitting end device in the first aspect, or a device including the transmitting end device, or a device included in the transmitting end device, such as a chip; or the communication device may be the transmitting end device in the second aspect.
  • the first receiving end device or a device including the above-mentioned first receiving end device, or a device included in the above-mentioned first receiving end device.
  • the interface circuit can be a code/data read-write interface circuit, which is used to receive computer execution instructions (computer execution instructions are stored in the memory, may be read directly from the memory, or may pass through other devices) and transmitted to the A processor, such that the processor executes computer execution instructions to perform the method described in any of the above aspects.
  • the communication device may be a chip or a system on a chip.
  • a sixth aspect provides a communication device, including: a processor; the processor is configured to be coupled to a memory, and after reading instructions in the memory, execute the method as described in any of the above aspects according to the instructions.
  • the communication device may be the transmitting end device in the first aspect, or a device including the transmitting end device, or a device included in the transmitting end device, such as a chip; or the communication device may be the transmitting end device in the second aspect.
  • a computer-readable storage medium Instructions are stored in the computer-readable storage medium, and when run on a communication device, the communication device can perform the method described in any of the above aspects.
  • the communication device may be the transmitting end device in the first aspect, or a device including the transmitting end device, or a device included in the transmitting end device, such as a chip; or the communication device may be the transmitting end device in the second aspect.
  • An eighth aspect provides a computer program product containing instructions that, when run on a communication device, enables the communication device to perform the method described in any of the above aspects.
  • the communication device may be the transmitting end device in the first aspect, or a device including the transmitting end device, or a device included in the transmitting end device, such as a chip; or the communication device may be the transmitting end device in the second aspect.
  • a ninth aspect provides a communication device (for example, the communication device may be a chip or a chip system).
  • the communication device includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory, which is used to store necessary program instructions and data.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • a communication system which includes a transmitting end device and a first receiving end device.
  • the transmitting end device may perform the method described in the first aspect
  • the first receiving end device may perform the method described in the second aspect.
  • Figure 1 is a schematic diagram of the principle of DPD technology
  • Figure 2 is a schematic diagram of a solution for obtaining DPD parameter information
  • Figure 3 is a schematic diagram of the transmitter end of an HBF architecture.
  • Figure 4 is a schematic diagram of another solution for obtaining DPD parameter information
  • Figure 5a is a schematic diagram 1 of the architecture of a communication system provided by an embodiment of the present application.
  • Figure 5b is a schematic diagram 2 of the architecture of a communication system provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a performance evaluation method for DPD parameter information provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a transmitter device sending a first signal according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of a transmitter device sending a first signal after DPD compensation according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of time-frequency resource distribution provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a transmitter device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a first receiving end device provided by an embodiment of the present application.
  • PA is the core component of wireless transmission transmitter to achieve long-distance signal transmission. It can amplify the low-power signal generated by the transmitter to a power level that can be transmitted over a long distance.
  • PA will introduce nonlinear distortion, causing the performance of the transmitted signal to deteriorate.
  • the nonlinear distortion introduced by PA can cause the performance degradation of the error vector magnitude (EVM) and adjacent channel leakage ratio (ACLR) of the transmitted signal.
  • EVM error vector magnitude
  • ACLR adjacent channel leakage ratio
  • DPD technology is an effective means to improve the linearity of the PA output signal. Its basic principle is to digitally preprocess the signal before power amplification to improve the linearity of the PA output signal and reduce the nonlinear distortion introduced by the PA, thereby improving the efficiency or output of the PA. power.
  • the DPD corresponding function should be the inverse function of the PA response function.
  • the basic principle of DPD technology is shown in Figure 1.
  • a DPD module is added in front of the PA.
  • the DPD module can perform DPD (or DPD processing) on the signal input to the DPD module to compensate for the nonlinear characteristics of the PA.
  • the signal output by the PA is linear.
  • the transmitter needs to perform DPD by obtaining the DPD parameter information (or DPD coefficient information) corresponding to the PA at the transmit digital channel.
  • the DPD parameter information can be used to characterize the characteristics of the agreed model (implementation agreement and/or protocol agreement and/or air interface interaction), and the transmitting end device can determine how to perform DPD through the agreed model and DPD parameter information.
  • the agreement stipulates that a polynomial model such as a polynomial model, a memory polynomial, or a generalized memory polynomial model is used to perform DPD
  • the DPD parameter information can be the coefficients of the polynomial model agreed above.
  • the protocol stipulates that a deep learning (DL) model such as a neural network (NN) model is used to perform DPD.
  • the DPD parameter information can be the depth, width, connection relationship, and weight of the neural network. .
  • c k,m represents the parameter information corresponding to the memory polynomial model
  • k is the order of the memory polynomial model
  • m is the memory depth of the memory polynomial model.
  • the value ranges of k and m can be agreed upon by the protocol and/or configured on the air interface.
  • the transmitter needs to obtain the signal before input to the PA (referred to as the pre-PA signal) and the signal output by the PA (referred to as the post-PA signal), and calculate or estimate the DPD parameter information based on the preset algorithm.
  • the transmitter can directly obtain the pre-PA signal at the digital channel (digital module), and for the post-PA signal, in some scenarios (such as low-frequency scenarios), the transmitter can collect the post-PA signal through the feedback channel corresponding to the PA.
  • each digital channel corresponds to a PA scenario.
  • PAs can have independent feedback channels.
  • the model extraction module can obtain the pre-PA signal before the input digital-to-analog converter (DAC), and obtain the post-PA signal from the independent feedback channel corresponding to the PA.
  • the model extraction module can calculate the DPD parameter information corresponding to the PA based on the acquired pre-PA signal and post-PA signal, as well as the preset algorithm, and then configure the corresponding DPD module based on the acquired DPD parameter information, and so on.
  • the transmitter can pass Each DPD module independently implements DPD compensation for each PA.
  • this method of independent DPD compensation is also applicable.
  • the transmitter may adopt an architecture in which one digital channel corresponds to multiple PAs, such as hybrid beamforming (HBF) architecture or analog beamforming (ABF) architecture, as shown in Figure 3 , is a schematic diagram of an exemplary transmitter using HBF architecture.
  • HBF hybrid beamforming
  • ABSF analog beamforming
  • a DPD parameter information acquisition scheme based on the receiving end is currently proposed.
  • This scheme is based on over the air-DPD (OTA-DPD) technology.
  • OTA-DPD air-DPD
  • the signal corresponding to a digital channel at the transmitting end passes through multiple
  • the composite signal of multiple PAs received can be equivalent to the signal output by one PA.
  • the nonlinear effect of the received composite signal of multiple PAs can be equivalent to the nonlinear effect of a single PA output signal. Therefore, the receiving end can obtain DPD parameter information based on the received signal.
  • the signal reconstruction module at the receiving end can recover the signal before the DAC (pre-PA signal) at the transmitting end, and the model extraction module can obtain the signal received by the receiving end (referred to as The digital signal after analog-to-digital conversion for the received signal), and the pre-PA signal obtained from the signal reconstruction module.
  • the model extraction module can determine the DPD parameter information based on the acquired received signals and pre-PA signals, as well as the preset algorithm, and the determined DPD parameter information can be used to compensate for the nonlinear effects of these multiple PAs, so that Non-linearities in the received signal are corrected.
  • the transmitter can compensate the nonlinear effects of all PAs corresponding to this single digital channel based on the DPD parameter information fed back by the receiver at a single digital channel, thereby ensuring the quality of the signal received by the receiver.
  • this solution can be applied not only to scenarios where one digital channel corresponds to multiple PAs, but also to scenarios where one digital channel corresponds to one PA.
  • this solution has the following problems: Since the signal received by the receiving end may be deteriorated by factors such as channel non-ideality and interference noise, the DPD parameter information determined by the receiving end based on the received signal may have unstable reliability. , in other words, the performance (or quality) of the DPD parameters fed back by the receiving end to the transmitting end may be poor. For example, when the receiving end encounters burst interference, there may be large errors in the DPD parameter information determined by it. The transmitter has no effective way to judge the performance corresponding to the DPD parameter information fed back by the receiver. Therefore, when the transmitter adjusts the transmit configuration (transmit parameters) based on the DPD parameters fed back by the receiver, the performance of the transmitter may be limited or even deteriorated. Sender performance. Based on this, embodiments of the present application provide a performance evaluation method for DPD parameter information to solve the problem that the transmitter cannot judge the quality of the acquired DPD parameters.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • the technical solutions of the embodiments of this application can be used in various communication systems.
  • the communication system can be a 3rd generation partnership project (3GPP) communication system, for example, a long term evolution (LTE) system, or Fifth generation (5th generation, 5G) mobile communication system, vehicle to everything (V2X) system, or LTE and 5G hybrid networking system, or device-to-device (D2D) communication system, Machine to machine (M2M) communication systems, Internet of things (IoT), and other next-generation communication systems.
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • 5G Fifth generation
  • 5th generation, 5G mobile communication system vehicle to everything (V2X) system
  • LTE and 5G hybrid networking system or device-to-device (D2D) communication system
  • D2D device-to-device
  • M2M Machine to machine
  • IoT Internet of things
  • the communication system can also be a non-3GPP communication system without limitation.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • MTC machine type communication
  • mMTC massive machine type communications
  • D2D V2X
  • IoT IoT and other communication scenarios.
  • this application provides a communication system to which this application is applicable.
  • the communication system may include one or more transmitting devices 20 and one or more receiving devices 30 wirelessly connected to the transmitting devices 20 .
  • the transmitting end device 20 obtains the first DPD parameter information; the receiving end device 30 determines Performance index information is sent to the transmitting end device 20.
  • the transmitting end device 20 receives the performance index information.
  • the performance index information is used to characterize the first performance index.
  • the first performance index is obtained after executing DPD according to the first DPD parameter information. performance indicators.
  • the sending end device 20 may be a network device or a chip or a chip system thereof, a terminal device or a chip or a chip system thereof, a relay device or a chip or a chip system thereof, and the receiving end device 30 may be a network device or a The chip or chip system therein, the terminal device or the chip or chip system therein, the relay device or the chip or chip system therein.
  • the sending device 20 and the receiving device may be different types of equipment.
  • one of the sending device 20 and the receiving device 30 is a network device, and the other is a terminal device.
  • the sending device 20 and the receiving device 30 may also be the same type of equipment.
  • the sending device 20 and the receiving device 30 are both terminal devices, which is not specifically limited in this embodiment of the present application.
  • the network device in the embodiment of this application is a device that connects a terminal device to a wireless network.
  • the network device 20 may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in a 5G mobile communication system, or a future
  • CU centralized unit
  • DU distributed unit
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • network equipment refers to wireless access network equipment.
  • the terminal device in the embodiment of the present application may be a device used to implement wireless communication functions.
  • the terminal can also be called user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in driverless driving, wireless terminals in remote surgery, and smart grids.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • the network equipment and terminal equipment in the embodiments of this application can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. On the star.
  • the embodiments of this application do not limit the application scenarios of network devices and terminal devices.
  • the network device and the terminal device in the embodiment of the present application can communicate through a licensed spectrum, a license-free spectrum, or a licensed spectrum and a license-free spectrum at the same time.
  • Network devices and terminal devices can communicate through spectrum below 6 gigahertz (GHz) or above 6 GHz, or they can communicate using spectrum below 6 GHz and above 6 GHz at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • the relevant functions of the sending device or the receiving device involved in this application can be implemented by one device, or can be implemented by multiple devices together, or can be implemented by one or more functional modules in one device, or can be one or
  • the multiple chips may also be a system on chip (SOC) or a chip system.
  • SOC system on chip
  • the chip system may be composed of chips or may include chips and other discrete devices. This is not specifically limited in the embodiments of the present application.
  • FIG. 6 shows a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 includes one or more processors 601, communication lines 602, and at least one communication interface (FIG. 6 is only an example of including a communication interface 604 and a processor 601 for illustration).
  • Optional may also include memory 603.
  • the processor 601 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication lines 602 may be used for communication between different components included in communication device 600 .
  • the communication interface 604 may be a transceiver module used to communicate with other devices or communication networks, such as Ethernet, wireless access networks (wireless access networks, RAN), wireless local area networks (WLAN), etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 604 may also be a transceiver circuit located in the processor 601 to implement signal input and signal output of the processor.
  • the memory 603 may be a device with a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of things that can store information and instructions. Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer. any other medium, but not limited to this.
  • the memory may exist independently and be connected to the processor through a communication line 602 . Memory can also be integrated with the processor.
  • the memory 603 is used to store computer execution instructions for executing the solution of the present application, and is used by the processor 601 to control execution.
  • the processor 601 is used to execute computer execution instructions stored in the memory 603, thereby implementing the method provided in the embodiment of the present application.
  • the processor 601 may also perform processing-related functions in the methods provided in the following embodiments of the present application, and the communication interface 604 is responsible for communicating with other devices or communication networks.
  • This application implements The example does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 601 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 6 .
  • the communication device 600 may include multiple processors, such as the processor 601 and the processor 608 in FIG. 6 .
  • processors can be a single-core processor or a multi-core processor.
  • the processor here may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller unit (MCU), or artificial intelligence
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller unit
  • computing devices such as processors that run software.
  • Each computing device may include one or more cores for executing software instructions to perform calculations or processing.
  • the communication device 600 may also include an output device 605 and an input device 606.
  • Output device 605 communicates with processor 601 and can display information in a variety of ways.
  • the output device 605 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • Input device 606 communicates with processor 601 and can receive user input in a variety of ways.
  • the input device 606 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • composition structure shown in Figure 6 does not constitute a limitation on the communication device.
  • the communication device may include more or less components than shown in the figure, or a combination of Certain parts, or different arrangements of parts.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the performance evaluation method of DPD parameter information includes S701-S702:
  • the transmitting end device obtains the first DPD parameter information.
  • the first receiving end device sends performance index information to the transmitting end device.
  • the transmitting end device receives performance index information from the first receiving end device.
  • the performance index information is used to characterize the first performance index.
  • the first performance index is obtained by performing DPD on the first signal according to the first DPD parameter information. Performance.
  • S701 can be executed before S702, or S701 can be executed at the same time as S702, or S701 can be executed after S702,
  • the transmitter device has one or more digital channels (or antenna ports, in the following digital channels can be replaced by antenna ports or ports), where each digital channel corresponds to one or more PAs, and each digital channel corresponds to one or more PAs.
  • PA corresponds to one or more transmit antennas.
  • Each digital channel corresponds to a transmission signal, and the transmitting end device can send the transmission signal to the first receiving end device.
  • the transmitted signal is a digital signal before passing through the DAC at the digital channel, and is an analog signal after passing through the DAC, and is input to one or more PAs corresponding to the analog channel for power amplification, and each PA output
  • the amplified signal is transmitted by the corresponding one or more transmitting antennas, and the first receiving end device can receive the signal transmitted by the transmitting antenna through the receiving antenna.
  • the transmit signal corresponding to the digital channel can also undergo phase shifting and other operations before being input to the PA for power amplification.
  • the technical solutions of the embodiments of the present application will be introduced below by taking a certain digital channel at the transmitter device as the first digital channel and the transmission signal corresponding to the first digital channel as the first signal.
  • the first digital channel corresponds to multiple PAs
  • the schematic diagram of the transmitter device sending the first signal can be As shown in Figure 8.
  • the first signal is input to a plurality of corresponding PAs.
  • the PA amplifies the power of the input first signal and outputs the PA-amplified first signal to the corresponding transmitting antenna, so that the transmitting antenna sends the PA-amplified first signal.
  • the first signal is input before the PA, which can also be called a pre-PA signal, and the first signal amplified by the PA can be called a post-PA signal, or a transmission signal.
  • the transmitting end device uses the DPD parameter information to perform DPD on the first signal and sends the first signal as shown in FIG. 9 .
  • the DPD-compensated first signal (which may also be called the DPD-processed first signal) is input to the corresponding multiple PAs, and the PA pairs
  • the input DPD-compensated first signal is power amplified, and the PA-amplified first signal is output to the corresponding transmitting antenna, so that the transmitting antenna sends the PA-amplified first signal.
  • the linearity of the first signal amplified by the PA can be improved.
  • the first signal after DPD compensation before being input to the PA can also be called a pre-PA signal, and the first signal amplified by the PA can be called a post-PA signal, or a transmission signal.
  • the first DPD parameter information includes the first DPP parameter, which can be used to perform DPD compensation on the first signal.
  • the transmitting end device can use the first DPD parameter to perform DPD on the first signal according to the first DPD parameter information. , thereby compensating for the nonlinear characteristics of the PA corresponding to the first digital channel and improving the linearity of the signal output by the PA.
  • the transmitting end device can obtain the first DPD parameter information in various ways.
  • Method 1 The transmitting end device receives the first DPD parameter information from the first receiving end device.
  • the transmitting end device sends the first signal to the first receiving end device, and the first receiving end device can determine the first DPD parameter information according to the received signal.
  • the first receiving end device determines the first DPD parameter information based on the received signal.
  • Method 2 The transmitting end device receives the first DPD parameter information from the second receiving end device.
  • the second receiving end device is another receiving end device different from the first receiving end device.
  • the transmitting end device sends the first signal to the second receiving end device, and the second receiving end device can determine the first DPD parameter information according to the received signal.
  • the second receiving end device determines the first DPD parameter based on the received signal.
  • the information please refer to the above introduction to the DPD parameter information acquisition scheme based on the receiving end, and will not be described again here.
  • Method 3 The transmitting end device determines the first DPD parameter information according to a preset algorithm.
  • the transmitter device itself can obtain the first signal and the signal output after the first signal is amplified by the PA, and calculate the first DPD parameter information according to a preset algorithm.
  • the specific implementation of the transmitter device determining the first DPD parameter information based on the first signal and the signal output after the first signal is amplified by the PA can refer to the above introduction to the traditional solution for the transmitter to obtain DPD parameter information. Here No longer.
  • Method 4 The transmitting end device synthesizes the DPD parameter information obtained through multiple methods to obtain the first DPD parameter information.
  • multiple methods can be the above-mentioned method 1 to method 3.
  • the transmitting end device may jointly process the DPD parameter information respectively reported by the first receiving end device and the second receiving end device, such as averaging, weighted averaging, or coefficient splicing, to obtain the first DPD parameter information.
  • the first signal involved in the above four methods is the first signal that has not been subjected to DPD processing according to the first DPD parameter information, and can also be called the first signal before DPD is performed according to the first DPD parameter information.
  • the first signal that is not DPD processed according to the first DPD parameter information may be the first signal that is not DPD processed.
  • the first signal may refer to the above. Description of Figure 8.
  • the first signal that has not undergone DPD processing according to the first DPD parameter information may be the first signal after DPD is performed according to the second DPD parameter information, and the second DPD parameter information is parameter information different from the first DPD parameter information.
  • the DPD module in Figure 9 performs DPD on the first signal based on the second DPD parameter information. If the transmitter device uses the above method three to obtain the first DPD parameter information, the transmitter device can obtain DPD compensation.
  • the first DPD parameter information can be calculated using the first signal after PA amplification and the first signal after PA amplification.
  • the first DPD parameter information can be used to update the second DPD parameter information, so that the DPD module can use the updated first DPD parameter information pair.
  • the first signal undergoes DPD processing.
  • the first signal is taken as an example to describe the possible situations without performing DPD processing based on the first DPD parameter information (or before performing DPD based on the first DPD parameter information), which will not be described again below.
  • the transmitting end device may instruct the other device to obtain and/or send the configuration of the first DPD parameter information.
  • the transmitting end device may send the third configuration information to the first receiving end device.
  • the third configuration information is used to indicate the third time-frequency resource and/or the fourth time-frequency resource. After receiving the third configuration information, the first receiving end device can determine the third time-frequency resource and obtain the third time-frequency resource on the third time-frequency resource.
  • the third time-frequency resource may be a time-frequency resource used by the first receiving end device to receive a signal.
  • the first receiving end device may receive a signal transmitted by the transmitting device on the third time-frequency resource and calculate the signal based on the received signal. Or obtain the first DPD parameter information.
  • the first receiving end device may determine the performance index information, and then send the performance index information to the sending end device.
  • the performance index information is used to characterize the first performance index
  • the first performance index is the performance index obtained after executing DPD according to the first DPD parameter information. Therefore, the sending end device can learn the performance indicators that can be obtained by performing DPD based on the first DPD parameter information based on the received performance indicator information, so that it can accurately determine the obtained performance information or quality information of the first DPD parameter, and achieve accurate configuration. with the first DPD Parameter-adapted transmission parameters to achieve greater transmission power or better signal transmission quality.
  • the performance indicator information is introduced.
  • the performance index information is information determined by the first receiving end device to characterize the first performance index.
  • the first performance index may be the performance index obtained by the first receiving end device after the transmitting end device performs DPD according to the first DPD parameter information, or the first performance index may be the first receiving end device. The performance index obtained after the terminal device performs DPD according to the first DPD parameter information.
  • the first performance index may be obtained by the first receiving end device after the transmitting end device performs DPD on the first signal according to the first DPD parameter information and the DPD compensated first signal is amplified by the corresponding one or more PAs. performance indicators.
  • the first performance index can be the performance of the PA amplified first signal determined by the first receiving end device. index.
  • the first performance index may be a performance index of the received signal after DPD compensation after the first receiving end device performs DPD on the received signal according to the first DPD parameter information.
  • the received signal corresponds to the PA-amplified first signal sent by the first receiving end device. It should be noted that in this case, the PA-amplified first signal sent by the first receiving end device is not DPD processed according to the first DPD parameter information.
  • the first performance indicator may be the performance of a specific signal (the PA amplified first signal or the DPD compensated received signal used to determine the first performance indicator introduced above) in a specific beam direction, angle or area. index.
  • the obtainable performance index may include at least one of the following information:
  • EMM Error vector magnitude
  • SINR signal to interference plus noise ratio
  • SNR signal to noise ratio
  • MCS modulation and coding schemes
  • CQI channel quality indicator
  • MSE mean squared error
  • NMSE normalized mean squared error
  • ACLR adjacent channel leakage ratio
  • the information included in the first performance index can be used to characterize signal or channel quality.
  • the embodiments of the present application do not limit the first performance indicator to be only the above information.
  • the first performance indicator may also include other information according to different needs or scenarios.
  • the first performance indicator may also include these newly defined information, and the technical solutions in the embodiments of the present application can still be applied.
  • the performance indicator information may include at least one of the following:
  • First performance index information and second performance index information are first performance index information and second performance index information.
  • the first performance index information is used to represent the numerical value of the first performance index.
  • the first performance index information is used to represent the numerical value of the performance index obtained after performing DPD according to the first DPD parameter information.
  • the value of the first performance index may be the value of the performance index of the first signal amplified by the PA, for example
  • the first performance index information may include numerical information of EVM, SNR, CQI and MSE of the first signal amplified by the PA.
  • the embodiment of the present application also defines second performance index information, and the second performance index information is used to characterize the first DPD parameter information. A gain in performance indicators. If the performance index information includes the second performance index information, the transmitting end device can determine, based on the second performance index information, the performance index improvement that can be brought about by performing DPD compensation based on the first DPD parameter information, thereby determining the first DPD parameter information. the quality of.
  • the second performance index information includes numerical information of the first performance index and numerical information of the second performance index.
  • the second performance index is before executing DPD based on the first DPD parameter information (or in other words, without basis).
  • the second performance index may be the first signal on which the transmitting end device does not perform DPD processing according to the first DPD parameter information (which may also be referred to as the first signal before DPD is performed according to the first DPD parameter) via the corresponding one or more Performance indicators after PA amplification.
  • the first performance index may be the performance index of the first signal amplified by the PA.
  • the second performance index may be a performance index of a signal received by the first receiving end device.
  • the signal received by the first receiving end device corresponds to the PA amplified first signal sent by the transmitting end device. It should be noted that in this case, the PA-amplified first signal sent by the transmitting end device is not DPD processed according to the first DPD parameter information.
  • the second performance index may be the performance index of a specific signal (the PA-amplified first signal or the received signal introduced above for determining the second performance index) in a specific beam direction, angle or area.
  • the information included in the second performance indicator has a one-to-one correspondence with the information included in the first performance indicator.
  • the transmitter device can compare the numerical information of the first performance index with the numerical information of the second performance index, thereby obtaining the variable information (including the amount of increase or decrease) of the performance index before and after DPD compensation based on the first DPD parameter information. amount), and then obtain the performance index gain that can be brought about by DPD compensation based on the first DPD parameter information.
  • the second performance index is the performance index obtained by performing DPD on the first signal according to the first DPD parameter information.
  • the previous performance index, the second performance index information may include the following information: before and after DPD compensation according to the first DPD parameter information, the numerical information of the EVM of the first signal amplified by the PA, before and after DPD compensation according to the first DPD parameter information, The numerical information of SNR of the first signal after PA amplification, the numerical information of CQI of the first signal after PA amplification before and after DPD compensation according to the first DPD parameter information, the numerical information of CQI of the first signal after PA amplification, before and after DPD compensation according to the first DPD parameter information, PA amplification The numerical information of the MSE of the first signal after.
  • the signal before DPD compensation refers to the signal that has not been processed by DPD using DPD parameter information
  • the signal after DPD compensation refers to the signal that has been processed by DPD using DPD parameter information
  • the second performance index information is variable information (including an increase or decrease) between the numerical information of the first performance index and the numerical information of the second performance index.
  • the transmitter device can intuitively determine the performance index that can be achieved by DPD compensation based on the first DPD parameter information based on the variable information of the numerical information of the first performance index compared to the numerical information of the second performance index. gain.
  • the increase in the numerical information of some first performance indicators compared to the numerical information of the second performance index can be used to characterize the gain of the performance index, and the numerical information of some first performance indicators is relatively small.
  • the reduction of the numerical information compared to the second performance index can be used to characterize the gain of the performance index.
  • the first performance index is EVM
  • the reduction in the value of EVM linear ratio or dB value
  • SINR or SNR linear ratio or dB value
  • the increase in SINR or SNR linear ratio or dB value
  • the increase (order increment) of CQI is the gain of the performance index.
  • the first performance index is MSE or NMSE
  • the reduction amount of MSE or NMSE linear ratio or dB value
  • the performance index information includes first performance index information and second performance index information
  • the second performance index information is variable information that compares the numerical information of the first performance index with the numerical information of the second performance index
  • the first performance index is the performance index obtained after DPD is performed on the first signal according to the first DPD parameter information.
  • the second performance index is the performance index before DPD is performed on the first signal according to the first DPD parameter information.
  • the performance index information may include the following Information: after DPD compensation is performed based on the first DPD parameter information, the numerical information of the EVM of the first signal amplified by the PA (compared to the first signal amplified by the PA before DPD compensation is performed based on the first DPD parameter information)
  • the reduction amount of EVM, the numerical information and SNR increase amount of the SNR of the first signal after DPD compensation is performed according to the first DPD parameter information
  • the CQI of the first signal amplified by the PA after DPD compensation is performed according to the first DPD parameter information.
  • the numerical information and the increase in CQI, after performing DPD compensation according to the first DPD parameter information, the numerical information of the MSE of the first signal amplified by the PA and the decrease in MSE, after performing DPD compensation according to the first DPD parameter information, the PA The numerical information of the NMSE of the amplified first DPD compensated signal and the reduction amount of the NMSE.
  • the performance index information includes second performance index information, and when the second performance index information is variable information in which the numerical information of the first performance index is compared with the numerical information of the second performance index, the performance index information may also include a third 2. Numerical information on performance indicators.
  • the transmitting end device can determine, based on the second performance index information and the numerical information of the second performance index, the numerical value of the performance index before performing DPD compensation based on the first DPD parameter and the performance that can be achieved if DPD compensation is performed based on the first DPD parameter information.
  • the improvement of the index is used to judge the quality of the first DPD parameter information.
  • the performance index information includes the variable information of the numerical information of the first performance index compared to the numerical information of the second performance index, and the numerical information of the second performance index
  • the first performance index is based on the first DPD parameter
  • the information is the performance index obtained after DPD is performed on the first signal.
  • the second performance index is the performance index before DPD is performed on the first signal based on the first DPD parameter information.
  • the performance index information may include the following information: performed based on the first DPD parameter information.
  • the numerical information of the EVM of the first signal amplified by the PA and after DPD compensation according to the first DPD parameter information, the first signal amplified by the PA (compared to the first signal according to the first DPD) is performed according to the parameter information
  • the numerical information of the SNR of the first signal amplified by the PA before DPD compensation is performed according to the first DPD parameter information
  • the SNR value of the first signal amplified by the PA according to the first DPD parameter is performed according to the first DPD parameter information.
  • the increase in SNR of the first signal amplified by the PA before DPD compensation is performed based on the first DPD parameter information, the numerical information of the CQI of the first signal amplified by the PA and based on the first DPD parameter information.
  • the increase in CQI of the first signal amplified by the PA before DPD compensation is performed based on the first DPD parameter information, the numerical information of MSE/NMSE of the first signal amplified by the PA and based on the first DPD parameter information.
  • the reduction in MSE/NMSE of the first signal amplified by the PA After DPD compensation, the reduction in MSE/NMSE of the first signal amplified by the PA.
  • the performance index information is introduced above. The following describes how the first receiving end device determines the performance index information in the embodiment of the present application.
  • the first receiving end device can calculate the performance index information corresponding to at least one of the first performance indexes according to the first DPD parameter information and the preset algorithm.
  • the first performance index can be understood as the performance index estimated by the first receiving end device that the transmitting end device can obtain after performing DPD based on the first DPD parameter information.
  • the first receiving end device can calculate, based on the first DPD parameter information and the preset algorithm, the signal that can be obtained if DPD is performed on the received signal according to the first DPD parameter information, and the calculated signal is inferred as the transmitting end device
  • the first signal amplified by the PA is the transmitted signal on the transmitting antenna, so that the numerical information of the calculated performance index of the signal is determined as the corresponding first signal.
  • the received signal corresponds to the PA amplified first signal sent by the transmitting end device. It should be noted that in this case, the PA amplified first signal sent by the transmitting end device is not DPD processed according to the first DPD parameter information. .
  • the first receiving end device calculates the signal that can be obtained by performing DPD processing on the received signal based on the first DPD parameter information. It can also be understood that the first receiving end device performs DPD processing on the received signal based on the first DPD parameter information. DPD processing in the mathematical sense, so in this implementation, the first performance index can also be understood as the performance index obtained after the first receiving end device performs DPD processing according to the first DPD parameter information.
  • the DPD equivalent function used to perform DPD is g( ⁇ )
  • the equivalent function corresponding to the multi-power amplifier at the transmitting end device is f( ⁇ )
  • the equivalent function at the transmitting end device is f( ⁇ ).
  • the performance index of y(t) is the estimated performance index that the transmitting end device can achieve after performing DPD based on the first DPD parameter information. For example, when the first performance index includes EVM, the first receiving end device may determine the EVM of y(t) as the numerical information of the first performance index.
  • EVM, ACLR and the highest supported modulation order may be applicable to this implementation.
  • the first receiving end device can perform measurements according to the first DPD parameter information and the first time-frequency resource to obtain performance index information corresponding to at least one of the first performance indexes.
  • the first receiving end device can perform DPD processing on the received signal on a certain time-frequency resource to obtain a specific signal according to the first DPD parameter information, and measure the specific signal to determine at least one of the first performance indicators.
  • Corresponding performance indicator information can be understood as the first receiving end The performance index obtained after the device performs DPD according to the first DPD parameter.
  • the time-frequency resource corresponding to the received signal used to obtain the performance index information may be called the first time-frequency resource.
  • the transmitting end device may send the first signal to the first receiving end device, and after the first receiving end device receives the fourth signal corresponding to the first signal, the first receiving end device may modify the received fourth signal according to the first DPD parameter information.
  • the signal is processed to obtain a third signal, and then the performance index corresponding to the third signal is obtained, and the obtained performance index is determined as the numerical information of the corresponding first performance index.
  • the first signal sent by the transmitting end device is a PA amplified first signal, and in this case, the PA amplified first signal sent by the transmitting end device is not DPD processed according to the first DPD parameter information.
  • the first receiving end device may equate the specific signal obtained in this implementation to a transmission signal obtained after the transmitting end device performs DPD on the first signal according to the first DPD parameter information. Therefore, in some scenarios, the performance index obtained by measuring the specific signal by the first receiving end device can be used to characterize (or implicitly characterize) the PA amplification after the transmitting end device performs DPD on the first signal according to the first DPD parameter information.
  • the performance index of the first signal after is the first performance index.
  • the DPD equivalent function used to perform DPD corresponding to the first DPD parameter information is g( ⁇ )
  • the transmitting end device sends the first signal to the receiving end device
  • the signal received by the first receiving end device is r(t)
  • the first receiving end device can obtain the performance index corresponding to u(t) to determine the corresponding performance index information.
  • the first performance index includes MSE, EVM, and SNR
  • the first receiving end device can obtain the performance index obtained by measuring u(t). MSE, EVM, and SNR are determined as numerical information of the first performance index.
  • a number of information that the first performance indicator introduced above may include (EVM, SINR, SNR, MCS, CQI, highest supported modulation order, MSE, NMSE, ACLR and zero subcarrier power) can be applied to this implementation Way.
  • the first and second implementation methods introduced above can be used to determine the numerical information of the first performance index.
  • the first receiving end device needs to determine the numerical information of the second performance index.
  • Numerical information, for example, performance index information includes second performance index information used to characterize the gain of the first performance index.
  • the first receiving end device needs to determine the numerical information of the first performance index and the numerical information of the second performance index.
  • the first receiving end device needs to determine the numerical information of the first performance index and the numerical information of the second performance index.
  • the implementation method of determining the numerical information of the second performance index by the terminal device can also refer to the above-mentioned implementation method 1 and implementation method 2.
  • the first receiving end device may obtain the numerical information of the second performance index according to the received signal. For example, in the scenario of the example of implementation mode 1, the first receiving end device may determine the numerical information of the performance index of the superimposed signal f(x(t)) after the first signal x(t) passes through multiple PAs as the second Numerical information about performance indicators.
  • the first receiving end device can obtain the numerical information of the second performance index according to the received signal (the fourth signal). For example, in the example scenario of implementation mode 2, the first receiving end device can measure the performance index of the received signal r(t) or r(n), and determine the value of the obtained performance index as the second performance index numerical information.
  • the first receiving end device can equate the fourth signal to the first signal amplified by the PA before the transmitting end device performs DPD according to the first DPD parameter information. Therefore, in some scenarios, , the performance index obtained by measuring the fourth signal by the first receiving end device can be used to characterize (or implicitly characterize) the transmitting end device.
  • the performance index of the first signal amplified by the PA before DPD is performed according to the first DPD parameter information.
  • the first receiving end device can obtain the numerical information of the first performance index and the numerical information of the second performance index on the same time-frequency resource.
  • the first receiving end device uses the same resources to obtain the numerical information of the performance index before and after DPD compensation, which can eliminate the influence of external factors such as channel fading and interference, and ensure that the gain information of the first performance index can be accurately reflected according to the first The gain brought by DPD compensation using DPD parameter information.
  • the first receiving end device may obtain the numerical information of the first performance index and the numerical information of the second performance index on different time-frequency resources respectively.
  • the first receiving end device uses different resources to obtain the numerical information of the performance index before and after DPD compensation, which can reduce the processing complexity of the first receiving end device.
  • implementation method one and implementation method two the first receiving end device needs to obtain the first DPD parameter information first to determine the performance index information.
  • the first receiving end device can determine the first DPD parameter information by itself according to a preset algorithm.
  • the first method for the transmitting end device to obtain the first DPD parameter information please refer to the above introduction to the first method for the transmitting end device to obtain the first DPD parameter information.
  • the first receiving end device may receive the first DPD parameter information from the transmitting end device.
  • the first DPD parameter information sent by the transmitting end device may be determined by the transmitting end device itself, or may be obtained by the transmitting end device from other devices (such as the second receiving end device). For details, please refer to the above description of the transmitting end device. An introduction to method 2, method 3 or method 4 for the device to obtain the first DPD parameter information.
  • the first performance index is the performance index obtained after the first receiving end device performs DPD according to the first DPD parameter.
  • the embodiment of the present application also provides a solution in which the first receiving end device can determine the performance index information without obtaining the first DPD parameter information, that is, the third implementation method introduced below:
  • the transmitting end device can send the second signal to the first receiving end device, and the first receiving end device receives the second signal, determines the performance index of the second signal as the first performance index, and measures the second signal, Thereby, the performance index information corresponding to at least one of the first performance indexes is determined.
  • the second signal is a signal obtained after the transmitting end device performs DPD on the first signal according to the first DPD parameter information, and the DPD compensated first signal is amplified by the corresponding PA.
  • the second signal sent by the transmitting end device may be the first signal amplified by the PA.
  • the first receiving end device determines the first performance index based on the received second signal, and the second signal is obtained after the transmitting end device performs DPD on the first signal based on the first DPD parameter information. Therefore, the first performance index The index can be understood as the performance index obtained by the first receiving end device after the transmitting end device performs DPD according to the first DPD parameter information.
  • the first receiving end device can measure the second signal on a certain time-frequency resource, and determine the value of the first performance index based on the measured value of the performance index, thereby determining the first Performance indicator information.
  • the transmitting end device may send the first signal and the second signal to the first receiving end device, and the first receiving end device receives the first signal and the second signal, and uses the performance index of the first signal as the third signal.
  • the second performance index is to use the performance index of the second signal as the first performance index, measure the first signal and the second signal, and thereby determine the performance index information corresponding to at least one of the first performance indexes.
  • the first message sent by the transmitting end device The signal is the first signal amplified by the PA before using the first DPD parameter for DPD compensation.
  • the first signal sent by the transmitting end device may be the first signal amplified by the PA.
  • the first receiving end device after receiving the first signal and the second signal, measures the first signal and the second signal on different time-frequency resources, and determines the value of the performance index obtained by measuring the first signal as The value of the second performance index is determined as the value of the first performance index by measuring the second signal, so that the second performance index information can be determined based on the value of the first performance index and the value of the first performance index.
  • a number of information that the first performance indicator introduced above may include (EVM, SINR, SNR, MCS, CQI, highest supported modulation order, MSE, NMSE, ACLR and zero subcarrier power) can be applied to this implementation Way.
  • the three implementation methods for the first receiving end device to determine the performance index information introduced above can be applied in combination with each other, or only one implementation method can be applied.
  • the first performance index includes EVM, ACLR, MSE, and SNR
  • the first receiving end device can obtain the performance index information corresponding to EVM and ACLR through implementation method 1, and obtain the performance index information corresponding to MSE and SNR through implementation method 2.
  • the first receiving end device may also obtain performance index information corresponding to EVM, ACLR, MSE, and SNR through implementation manner 3.
  • the time-frequency resource (which may be called the first time-frequency resource) used by the first receiving end device to obtain the performance index information may be It is a channel resource or a reference signal resource.
  • the first time-frequency resource may be a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), a channel status information reference signal (CSI-RS) ), synchronization signal (synchronization signal, SS) or physical broadcast channel (physical broadcast channel, PBCH) and other resources.
  • the first time-frequency resource may also be a dedicated channel or reference signal.
  • the configuration for obtaining the performance index information may be determined by the first receiving end device itself (for example, the configuration for obtaining the performance index information is preset in the first receiving end device), or the transmitting end device may also instruct the third receiving end device.
  • a receiving end device obtains the configuration of performance index information.
  • the configuration in which the transmitting end device instructs the first receiving end device to obtain performance index information may include:
  • the transmitting end device Before the transmitting end device receives the performance index information from the first receiving end device, the transmitting end device sends first configuration information to the first receiving end device.
  • the first configuration information is used to indicate the first time-frequency resource.
  • the first time-frequency resource Used by the first receiving end device to obtain performance index information.
  • the transmitting end device can indicate the time-frequency resource used by the first receiving end device to obtain the performance index information. For example, in the second implementation described above, the first receiving end device performs measurements to obtain the performance index information. A time-frequency resource.
  • the first configuration information may also be used to indicate the first performance index that the first receiving end device needs to obtain.
  • the first configuration information may indicate that the first performance indicators that the first receiving end device needs to obtain include EVM, SNR, MCS, and CQI.
  • the first receiving end device may determine that the first performance indicators include EVM, SNR based on the first configuration information. , MCS, CQI, to obtain the corresponding performance indicator information.
  • the first receiving end device after obtaining the performance index information, sends (reports) the performance index information to the transmitting end device through air interface resources (or wireless resources).
  • the first receiving device itself may determine the reporting configuration of the performance index information, or the transmitting device may instruct the reporting configuration of the performance index information.
  • the transmitting end device indicates the reporting configuration of the performance index information may include: before the transmitting end device receives the performance index information from the first receiving end device, the transmitting end device sends the second configuration information to the first receiving end device;
  • the second configuration information indicates configuration information used by the first receiving end device to send performance index information.
  • the first receiving end device determines how to send the performance index information based on the second configuration information.
  • the second configuration information may include second time-frequency resource information, and the second time-frequency resource is the time-frequency resource required by the first receiving end device to send the performance index information.
  • the first receiving end device may determine to send the performance index information on the second time-frequency resource according to the second configuration information.
  • the second configuration information may include first indication information, and the first indication information is used to indicate the first performance index that the first receiving end device needs to send.
  • the first indication information may indicate that the first performance indicators that need to be sent by the first receiving end device include EVM, SNR, and CQI.
  • the first receiving end device may select EVM, SNR from the obtained performance indicator information according to the first indication information.
  • the performance index information corresponding to the CQI is sent to the transmitting end device.
  • the resources used by the first receiving end device to obtain the first DPD parameter information and the resources used by the first receiving end device may be different resources or the same resource.
  • the resources used by the first receiving end device to send the performance index information and the resources used by the first receiving end device to send the performance index information may be different resources or may be the same resource.
  • the time-frequency resource used by the first receiving end device to obtain the performance index information is called the first time-frequency resource.
  • the time-frequency resources used by the first receiving end device to send performance index information are called second time-frequency resources, and the time-frequency resources used by the first receiving end device to obtain the first DPD parameter information are called third time-frequency resources.
  • the time-frequency resource used by the first receiving end device to send the first DPD parameter information is called the fourth time-frequency resource.
  • the first time-frequency resource and the third time-frequency resource may be the same time-frequency resource
  • the second time-frequency resource and the fourth time-frequency resource may be the same time-frequency resource.
  • the first time-frequency resource and the third time-frequency resource may be different time-frequency resources, and the second time-frequency resource and the fourth time-frequency resource may be the same time-frequency resource.
  • the first time-frequency resource and the third time-frequency resource may be the same time-frequency resource, and the second time-frequency resource and the fourth time-frequency resource may be different time-frequency resources.
  • the first time-frequency resource, the second time-frequency resource, the third time-frequency resource and the fourth time-frequency resource may be different time-frequency resources respectively.
  • the performance index information when the first receiving end device sends performance index information to the transmitting end device, can be associated with at least one of the following information and sent to the transmitting end device: for the first receiving end device.
  • the time-frequency resource information used by the device to obtain performance index information may be called first time-frequency resource information and first DPD parameter information.
  • the association of the performance index information with the first DPD parameter information may indicate that the reported performance index information is a performance index that is achieved or expected to be achieved after adopting the first DPD parameter information.
  • the association of the performance index information with the first time-frequency resource information may indicate that the reported performance index information is measured or obtained on the first time-frequency resource.
  • the performance evaluation method of DPD parameter information provided by the embodiment of the present application may also include S703: the transmitting end device determines the transmission parameters of the transmitting end device according to the performance index information.
  • the transmitting end device can learn the performance of the first DPD parameter information based on the performance indicator information from the first receiving end device, thereby determining the adapted transmission parameters and obtaining greater Coverage capability or better signal transmission quality.
  • the transmission parameters of the transmitting end device can be understood as the configuration parameter information of the signal transmitted by the transmitting end device.
  • the transmission parameters of the transmitter device determined by the transmitter device based on the performance index information may include:
  • the transmitter device determines at least one of the following information based on the performance index information:
  • the transmitting power of the transmitting end device and the modulation and coding methods that the transmitting end device can support Based on this solution, the transmitting end device can determine appropriate transmit power and/or supportable modulation and coding methods based on the performance index information.
  • these two pieces of information are exemplary transmission parameter information. According to actual needs, the transmitting end device can also determine other transmission parameter information based on the performance index information.
  • the transmitting end device determines the transmitting parameters of the transmitting end device based on the performance index information, which may include:
  • the transmitting end device determines whether the transmitting end device uses the first DPD parameter information based on the performance index information. For example, if the performance index information does not meet the preset condition, the transmitting end device does not perform DPD according to the first DPD parameter information. If the performance index information meets the preset condition, the transmitting end device performs DPD according to the first DPD parameter information.
  • the preset conditions can be configured according to needs.
  • the transmitting end device can determine whether the transmitting end device should perform DPD based on the first DPD parameter information based on the performance index information, and may not perform DPD based on the first DPD parameter information when the quality of the first DPD parameter information is poor, thus avoiding There may be a situation where performance improvement is small or even worsened due to poor information quality of the first DPD parameter.
  • the transmitting end device determines the transmission parameters of the transmitting end device according to the performance index information, including: :
  • the transmitting end device selects a target DPD parameter from a plurality of first DPD parameter information respectively corresponding to the plurality of performance index information according to the plurality of performance index information. Specifically, the transmitting end device can compare the first performance indicators respectively represented by the received multiple performance indicator information, and select one first DPD parameter information as the first DPD parameter information among the multiple first DPD parameter information respectively corresponding to the multiple performance indicator information. Target DPD parameter information, and execute DPD based on the target DPD parameter information. For example, the transmitting end device may select the first DPD parameter information with the best quality or performance as the target DPD parameter information based on the first performance indicators respectively corresponding to the plurality of first DPD parameter information. Therefore, the transmitter device can obtain the highest performance improvement after executing DPD according to the target DPD parameter information.
  • the methods and/or steps implemented by the transmitting end device can also be implemented by components (such as chips or circuits) that can be used in the transmitting end device.
  • the methods implemented by the first receiving end device and/or steps may also be implemented by components available for the first receiving end device.
  • embodiments of the present application also provide a communication device, which is used to implement the above various methods.
  • the communication device may be the transmitting end device in the above method embodiment, or a device including the above transmitting end device, or a component that can be used in the transmitting end device; or the communication device may be the first receiving device in the above method embodiment.
  • the end device is either a device that includes the above-mentioned first receiving end device, or is a component that can be used in the first receiving end device. It can be understood that, in order to implement the above functions, the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 11 shows a schematic structural diagram of a transmitter device 110.
  • the transmitter device 110 includes a processing module 1101 and a transceiver module 1102.
  • the transceiver module 1102 which may also be called a transceiver unit, is used to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the transceiver module 1102 may include a receiving module and a sending module, respectively configured to perform the steps of receiving and sending performed by the transmitting end device in the above method embodiment.
  • the processing module 1101 may be used to perform the steps performed by the transmitting end device in the above method embodiment. Steps other than receive and send type steps performed by the transmitting end device.
  • the processing module 1101 is used to obtain the first DPD parameter information.
  • the transceiver module 1102 is configured to receive performance index information from the first receiving end device.
  • the performance index information is used to characterize the first performance index.
  • the first performance index is the performance index obtained after executing DPD according to the first DPD parameter information.
  • the transmitter device 110 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that may provide the above functions.
  • the transmitter device 110 may take the form of the communication device 600 shown in FIG. 6 .
  • the processor 601 in the communication device 600 shown in FIG. 6 can cause the communication device 600 to execute the performance evaluation method of DPD parameter information in the above method embodiment by calling the computer execution instructions stored in the memory 603.
  • the functions/implementation processes of the processing module 1101 and the transceiver module 1102 in Figure 11 can be implemented by the processor 601 in the communication device 600 shown in Figure 6 calling the computer execution instructions stored in the memory 603.
  • the function/implementation process of the processing module 1101 in Figure 11 can be realized by the processor 601 in the communication device 600 shown in Figure 6 calling the computer execution instructions stored in the memory 603.
  • the function of the transceiver module 1102 in Figure 11 /The implementation process can be implemented through the communication interface 604 in the communication device 600 shown in FIG. 6 .
  • the transmitter device 110 provided in this embodiment can perform the above-mentioned performance evaluation method of DPD parameter information, the technical effects it can obtain can be referred to the above-mentioned method embodiments, which will not be described again here.
  • FIG. 12 shows A schematic structural diagram of the first receiving end device 120 is shown.
  • the first receiving end device 120 includes a processing module 1201 and a transceiver module 1202.
  • the transceiver module 1202 may also be called a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 1202 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the first receiving end device in the above method embodiment.
  • the processing module 1201 may be used to perform the above method embodiment. steps other than receiving and transmitting type steps performed by the first receiving end device.
  • the processing module 1201 is used to determine performance index information; the performance index information is used to characterize a first performance index, and the first performance index is a performance index obtained after executing DPD according to the first DPD parameter information.
  • the transceiver module 1202 is used to send performance index information to the transmitting end device.
  • the first receiving end device 120 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that may provide the above functions.
  • the first receiving end device 120 may take the form of the communication device 600 shown in FIG. 6 .
  • the processor 601 in the communication device 600 shown in FIG. 6 can cause the communication device 600 to execute the performance evaluation method of DPD parameter information in the above method embodiment by calling the computer execution instructions stored in the memory 603.
  • the functions/implementation processes of the processing module 1201 and the transceiver module 1202 in Figure 12 can be implemented by the processor 601 in the communication device 600 shown in Figure 6 calling the computer execution instructions stored in the memory 603.
  • the function/implementation process of the processing module 1201 in Figure 12 can be realized by the processor 601 in the communication device 600 shown in Figure 6 calling the computer execution instructions stored in the memory 603.
  • the function of the transceiver module 1202 in Figure 12 /The implementation process can be implemented through the communication interface 604 in the communication device 600 shown in FIG. 6 .
  • the first receiving end device 120 provided in this embodiment can perform the above-mentioned performance evaluation method of DPD parameter information, the technical effects it can obtain can be referred to the above-mentioned method embodiments, which will not be described again here.
  • the embodiment of the present application also provides a communication device (for example, the communication device may be a chip or a chip system).
  • the communication device includes a processor and is used to implement the method in any of the above method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data.
  • the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data reading and writing interface circuit.
  • the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in the memory, and may be directly from memory, or possibly through other devices) and transferred to the processor.
  • the communication device is a chip system, it may be composed of a chip or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • the embodiment of the present application also provides a communication device.
  • the communication device may include a processor and an interface circuit.
  • the interface circuit may be used to communicate with other modules other than the communication device.
  • the processor may be used to execute Computer programs or instructions to enable the communication device to implement the method in any of the above method embodiments.
  • the communication device may be a chip or a chip system.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,提供一种数字预失真DPD参数信息的性能评估方法、装置及系统,可以使发射端能够判断获取的DPD参数信息的质量。该方法中,发射端装置获取第一DPD参数信息,第一接收端装置确定性能指标信息并将性能指标信息发送给发射端装置,性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标。

Description

一种DPD参数信息的性能评估方法、装置及系统
本申请要求于2022年04月01日提交国家知识产权局、申请号为202210348914.1、申请名称为“一种DPD参数信息的性能评估方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种数字预失真(digital predistortion,DPD)参数信息的性能评估方法、装置及系统。
背景技术
在无线通信场景中,网络设备在很多情况下需要作为发射端,向作为接收端的终端设备远距离传输信号。而功率放大器(power amplifier,PA)是发射端实现远距离传输信号的核心器件,它可以将发射端产生的低功率信号放大至可进行远距离传输的功率水平。但是,在进行功率放大时,PA会引入非线性失真,导致发送信号的性能指标发生恶化,而数字预失真DPD技术是提升PA输出信号线性度的有效手段,其基本原理是在功率放大前对信号进行数字预处理,提升PA输出信号线性度。
目前,发射端需要在发射端的数字通道处通过获取PA对应的DPD参数来调节PA输出的信号。发射端可以通过两种方式获取到包含DPD参数的DPD参数信息,一种方式是在发射机设计PA后反馈回路,并通过反馈信号获取DPD参数信息,另外一种方式是接收端设备获取DPD参数信息,并将其反馈至发射端。
但是,发射端获取的DPD参数信息对应的性能可能并不理想,例如在获取接收端反馈的DPD参数信息的方案中,由于接收端接收到的信号可能遭受信道非理想以及干扰噪声等恶化因素,导致出现接收端计算得到的DPD参数存在较大误差,即接收端反馈给发射端的DPD参数的性能较差的情况。而目前发射端无有效手段判断获取的DPD参数信息对应的性能,因此发射端根据获取的DPD参数信息调整发射配置时,可能出现发射端性能的提升有限,甚至可能出现恶化发送端性能的情况。
发明内容
本申请实施例提供一种DPD参数信息的性能评估方法、装置及系统,用于解决发射端无法判断获取的DPD参数信息对应的性能的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种DPD参数信息的性能评估方法,执行该方法的通信装置(主体)可以为发送端装置,也可以为发送端装置的部件,例如发送端装置的处理器、芯片、或芯片系统。下面以执行主体为发送端装置为例描述,该方法包括:发射端装置获取第一DPD参数信息;发射端装置接收来自第一接收端装置的性能指标信息,性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标。基于本申请实施例提供的DPD参数信息的性能评估方法,发送端装置可以根据接收的性能指标信息,获知若根据第一DPD参数信息执行DPD可以得到的性能指标,从而可以准确判断获取的第一DPD参数的性能或者说质量。
结合上述第一方面,在一种可能的设计中,性能指标信息包括以下至少一项:第一性能指标信息和第二性能指标信息;第一性能指标信息用于表征第一性能指标的数值,第二性能指标信息用于表征第一性能指标的增益。基于本方案,若性能指标信息包括第一性能指标信息,发射端装置可以根据第一性能指标信息,直接确定若根据第一DPD参数信息进行DPD补偿所能达到的性能指标,从而判断第一DPD参数信息的质量。若性能指标信息包括第二性能指标信息,发射端装置可以根据第二性能指标信息,确定若根据第一DPD参数信息进行DPD补偿所能带来的性能指标的提升,从而判断第一DPD参数信息的质量。
结合上述第一方面,在一种可能的设计中,第二性能指标信息包括:第一性能指标的数值信息和第二性能指标的数值信息;或者,第一性能指标的数值信息相比于第二性能指标的数值信息的变量信息;第二性能指标为根据第一DPD参数信息对第一信号执行DPD前的性能指标。本方案提供了第二性能指标信息的两种可能的形式。
结合上述第一方面,在一种可能的设计中,第一性能指标包括以下至少一项:误差向量幅度EVM、信干噪比SINR、信噪比SNR、可支持的调制编码方式MCS、信道质量指示CQI、可支持的最高调制阶数、均方误差MSE、归一化均方误差NMSE、邻道泄露比ACLR和零子载波功率。基于本方案,发射端装置可以通过多项第一性能指标对应的性能指标信息,判断第一DPD参数信息的质量。
结合上述第一方面,在一种可能的设计中,在发射端装置接收来自第一接收端装置的性能指标信息之前,方法还包括;发射端装置向第一接收端装置发送第一配置信息;第一配置信息用于指示第一时频资源;第一时频资源用于第一接收端装置获取性能指标信息。基于本方案,发射端装置可以指示用于第一接收端装置获取性能指标信息的时频资源。
结合上述第一方面,在一种可能的设计中,在发射端装置接收来自第一接收端装置的性能指标信息之前,方法还包括;发射端装置向第一接收端装置发送第二配置信息;第二配置信息指示用于第一接收端装置发送性能指标信息的配置信息。基于本方案,可以由发射端装置指示性能指标信息的上报配置。
结合上述第一方面,在一种可能的设计中,第二配置信息包括第二时频资源信息;第二时频资源为第一接收端装置发送性能指标信息所需的时频资源。基于本方案,发射端装置可以指示用于第一接收端装置发送性能指标信息的时频资源。
结合上述第一方面,在一种可能的设计中,第二配置信息包括第一指示信息;第一指示信息用于指示第一接收端装置所需发送的第一性能指标。基于本方案,发射端装置可以指示第一接收端装置所需发送的第一性能指标。
结合上述第一方面,在一种可能的设计中,性能指标信息与以下至少一项信息相关联:第一时频资源信息和第一DPD参数信息;其中,第一时频资源用于第一接收端装置获取所述性能指标信息。基于本方案,性能指标信息关联于第一DPD参数信息可以表示该上报的性能指标信息是采用了该第一DPD参数信息后达到或者能期望达到的性能指标。性能指标信息关联于第一时频资源信息可以表示该上报的性能指标信息是在该第一时频资源上测量或获取到的。
结合上述第一方面,在一种可能的设计中,发射端装置获取第一DPD参数信息包 括:发射端装置接收来自第一接收端装置的第一DPD参数信息。基于本方案,第一接收端装置可以一并获取第一DPD参数信息和性能指标信息,且将获取的第一DPD参数信息和性能指标信息发送给发射端装置。
结合上述第一方面,在一种可能的设计中,在发射端装置接收来自第一接收端装置的第一DPD参数信息之前,方法还包括:发射端装置向第一接收端装置发送第三配置信息;第三配置信息用于指示第三时频资源;第三时频资源用于第一接收端装置获取第一DPD参数信息。基于本方案,发射端装置可以指示用于第一接收端装置获取第一DPD参数信息的时频资源。
结合上述第一方面,在一种可能的设计中,发射端装置获取第一DPD参数信息包括:发射端装置接收来自第二接收端装置的第一DPD参数信息;或者,发射端装置根据预设算法确定第一DPD参数信息。基于本方案,确定第一DPD参数信息的装置和确定性能指标信息的装置可以为不同的装置。
结合上述第一方面,在一种可能的设计中,在发射端装置接收来自第一接收端装置的性能指标信息之前,方法还包括:发射端装置向第一接收端装置发送第一DPD参数信息;第一DPD参数信息用于第一接收端装置确定性能指标信息。基于本方案,发射端装置可以向第一接收端装置发送第一DPD参数信息,以使第一接收端装置获取到第一DPD参数信息并根据第一DPD参数信息确定性能指标信息。
结合上述第一方面,在一种可能的设计中,第一性能指标为发射端装置根据第一DPD参数信息执行DPD后,第一接收端装置得到的性能指标。
结合上述第一方面,在一种可能的设计中,在发射端装置接收来自第一接收端装置的性能指标信息之前,方法还包括:发射端装置向第一接收端装置发送第二信号;第二信号为发射端装置根据第一DPD参数信息执行DPD后得到的信号;第二信号用于第一接收端装置确定性能指标信息;或者,发射端装置向第一接收端装置发送第一信号和第二信号;第一信号为发射端装置根据第一DPD参数信息执行DPD前的信号;第一信号和第二信号用于第一接收端装置确定性能指标信息。基于本方案,发射端装置可以向第一接收端装置发送DPD补偿后的信号或者发送DPD补偿前的信号和DPD补偿后的信号,以使第一接收端装置可以根据接收到的信号确定性能指标信息。
结合上述第一方面,在一种可能的设计中,第一性能指标为第一接收端装置根据第一DPD参数信息执行DPD后得到的性能指标。
结合上述第一方面,在一种可能的设计中,第一性能指标中至少一项对应的性能指标信息是第一接收端装置根据第一DPD参数信息和预设算法计算得到的;和/或,第一性能指标中至少一项对应的性能指标信息是第一接收端装置根据第一DPD参数信息和第一时频资源进行测量得到的。基于本方案,提供了两种第一接收端装置根据第一DPD参数信息确定性能指标信息的方式。
结合上述第一方面,在一种可能的设计中,第一性能指标中至少一项对应的性能指标信息是第一接收端装置根据第一DPD参数信息和第一时频资源进行测量得到的包括:第一性能指标中至少一项对应的性能指标信息是第一接收端装置在第一时频资源上测量第三信号得到的,第三信号是第一接收端装置根据第一DPD参数信息对第四信号执行DPD后得到的信号;第四信号为第一接收端装置接收到的与第一信号对应的 信号;第一信号为发射端装置根据第一DPD参数信息执行DPD前的信号。基于本方案,第一接收端装置可以在特定的时频资源上测量自身执行DPD后得到的信号,来获取性能指标信息。
结合上述第一方面,在一种可能的设计中,方法还包括:发射端装置根据性能指标信息,确定发射端装置的发射参数。基于本申请实施例的技术方案,发射端装置可以根据来自第一接收端装置的性能指标信息,获知第一DPD参数信息的性能,从而确定适配的发射参数,提升发射端装置的性能,获取到更大的覆盖能力或更好的信号发送质量。
结合上述第一方面,在一种可能的设计中,发射端装置根据性能指标信息确定发射端装置的发射参数包括:发射端装置的发射功率和发射端装置可支持的调制编码方式MCS。基于本方案,发射端装置可以根据性能指标信息确定合适的发射功率和/或可支持的调制编码方式。
结合上述第一方面,在一种可能的设计中,发射端装置根据性能指标信息确定发射端装置的发射参数包括:发射端装置根据性能指标信息,确定发射端装置是否采用第一DPD参数信息。基于本方案,发射端装置可以根据性能指标信息确定发射端装置是否采用第一DPD参数信息,可以在第一DPD参数信息质量不佳时不根据第一DPD参数信息来执行DPD,避免出现因为第一DPD参数信息质量差而导致的性能提升小甚至恶化的情况。
结合上述第一方面,在一种可能的设计中,在发射端装置接收多个性能指标信息的情况下,发射端装置根据性能指标信息确定发射端装置的发射参数包括:发射端装置根据多个性能指标信息,从多个性能指标信息分别对应的多个第一DPD参数信息中,选择目标DPD参数信息。基于本方案,发射端装置可以根据多个第一DPD参数信息分别对应的第一性能指标,选择合适的第一DPD参数信息作为目标DPD参数信息,从而使发射端装置根据目标DPD参数信息执行DPD后,可以提升发射端装置的性能。
第二方面,提供了一种DPD参数信息的性能评估方法,执行该方法的通信装置(主体)可以为第一接收端装置,也可以为第一接收端装置的部件,例如第一接收端装置的处理器、芯片、或芯片系统。下面以执行主体为第一发送端装置为例描述,该方法包括:第一接收端装置确定性能指标信息;性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标;第一接收端装置向发射端装置所述性能指标信息。基于本申请实施例提供的DPD参数信息的性能评估方法,发送端装置可以根据接收的性能指标信息,获知若根据第一DPD参数信息对第一信号执行DPD可以得到的性能指标,从而可以准确判断获取的第一DPD参数的性能或者说质量。
结合上述第二方面,在一种可能的设计中,性能指标信息包括以下至少一项:第一性能指标信息和第二性能指标信息;第一性能指标信息用于表征第一性能指标的数值,第二性能指标信息用于表征第一性能指标的增益。基于本方案,若性能指标信息包括第一性能指标信息,发射端装置可以根据第一性能指标信息,直接确定若根据第一DPD参数信息进行DPD补偿所能达到的性能指标,从而判断第一DPD参数信息的质量。若性能指标信息包括第二性能指标信息,发射端装置可以根据第二性能指标信 息,确定若根据第一DPD参数信息进行DPD补偿所能带来的性能指标的提升,从而判断第一DPD参数信息的质量。
结合上述第二方面,在一种可能的设计中,第二性能指标信息包括:第一性能指标的数值信息和第二性能指标的数值信息;或者,第一性能指标的数值信息相比于第二性能指标的数值信息的变量信息;第二性能指标为根据第一DPD参数信息执行DPD前的性能指标。本方案提供了第二性能指标信息的两种可能的形式。
结合上述第二方面,在一种可能的设计中,性能指标包括以下至少一项:误差向量幅度EVM、信干噪比SINR、信噪比SNR、可支持的调制编码方式MCS、信道质量指示CQI、可支持的最高调制阶数、均方误差MSE、归一化均方误差NMSE、邻道泄露比ACLR和零子载波功率。基于本方案,发射端装置可以通过多项第一性能指标对应的性能指标信息,判断第一DPD参数信息的质量。
结合上述第二方面,在一种可能的设计中,方法还包括:第一接收端装置根据预设算法确定第一DPD参数信息;或者,第一接收端装置接收来自发射端装置的第一DPD参数信息。基于本方案,提供了两种第一接收端装置获取第一DPD参数信息的方式。
结合上述第二方面,在一种可能的设计中,第一性能指标为第一接收端装置根据第一DPD参数信息执行DPD后得到的性能指标。
结合上述第二方面,在一种可能的设计中,第一接收端装置确定性能指标信息包括:第一接收端装置根据第一DPD参数信息和预设算法计算得到第一性能指标中至少一项对应的性能指标信息;和/或,第一接收端装置根据第一DPD参数信息和第一时频资源进行测量得到所述第一性能指标中至少一项对应的性能指标信息。基于本方案,提供了两种第一接收端装置根据第一DPD参数信息确定性能指标信息的方式。
结合上述第二方面,在一种可能的设计中,第一接收端装置根据第一DPD参数信息和第一时频资源进行测量得到第一性能指标中至少一项对应的性能指标信息包括:第一接收端装置根据第一DPD参数信息对第四信号执行DPD后得到第三信号;第四信号与发射端装置向第一接收端装置发送的第一信号对应,为第一接收端装置接收到的信号;第一信号为发射端装置根据第一DPD参数信息执行DPD前的信号;第一接收端装置在第一时频资源上测量第三信号得到第一性能指标中至少一项对应的性能指标信息。基于本方案,第一接收端装置可以在特定的时频资源上测量自身执行DPD后得到的信号,来获取性能指标信息。
结合上述第二方面,在一种可能的设计中,第一性能指标为发射端装置根据第一DPD参数信息执行DPD后,第一接收端装置得到的性能指标。
结合上述第二方面,在一种可能的设计中,第一接收端装置确定性能指标信息包括:第一接收端装置接收来自发射端装置的第二信号;第二信号为发射端装置根据第一DPD参数信息执行DPD后得到的信号;第一接收端装置测量第二信号,确定性能指标信息。或者,第一接收端装置接收来自发射端装置的第一信号和第二信号;第一信号为发射端装置根据第一DPD参数信息执行DPD前的信号;第一接收端装置测量第一信号和第二信号,确定性能指标信息。基于本方案,第一接收端装置可以测量接收到的DPD补偿后的信号或者测量接收到的DPD补偿前的信号和DPD补偿后的信号, 确定性能指标信息。
结合上述第二方面,在一种可能的设计中,在第一接收端装置确定性能指标信息之前,方法还包括;第一接收端装置接收来自发射端装置的第一配置信息;第一配置信息用于指示第一时频资源;第一时频资源用于第一接收端装置获取性能指标信息。基于本方案,发射端装置可以指示用于第一接收端装置获取性能指标信息的时频资源。
结合上述第二方面,在一种可能的设计中,在第一接收端装置确定性能指标信息之前,方法还包括;第一接收端装置接收来自发射端装置的第二配置信息;第二配置信息指示用于第一接收端装置发送性能指标信息的配置信息。基于本方案,可以由发射端装置指示性能指标信息的上报配置。
结合上述第二方面,在一种可能的设计中,第二配置信息包括第二时频资源信息;第二时频资源为第一接收端装置发送性能指标信息所需的时频资源。基于本方案,发射端装置可以指示用于第一接收端装置发送性能指标信息的时频资源。
结合上述第二方面,在一种可能的设计中,第二配置信息包括第一指示信息;第一指示信息用于指示第一接收端装置所需发送的第一性能指标。基于本方案,发射端装置可以指示第一接收端装置所需发送的第一性能指标。
结合上述第二方面,在一种可能的设计中,第一接收端装置向发射端装置发送性能指标信息包括:第一接收端装置向发射端装置发送与以下至少一项信息相关联的性能指标信息:第一时频资源信息和第一DPD参数信息;其中,第一时频资源用于第一接收端装置获取性能指标信息。基于本方案,第一接收端装置可以关联上报性能指标信息和第一DPD参数信息,其可以表示该上报的性能指标信息是采用了该第一DPD参数信息后达到或者能期望达到的性能指标。和/或,第一接收端装置可以关联上报性能指标信息和第一时频资源信息,其可以表示该上报的性能指标信息是在该第一时频资源上测量或获取到的
结合上述第二方面,在一种可能的设计中,在第一接收端装置根据预设算法确定第一DPD参数信息的情况下,方法还包括:第一接收端装置向发射端装置发送第一DPD参数信息。基于本方案,第一接收端装置可以将确定的第一DPD参数信息发送给发射端装置。
结合上述第二方面,在一种可能的设计中,在第一接收端装置向发射端装置发送第一DPD参数信息之前,方法还包括:第一接收端装置接收来自发射端装置的第三配置信息;第三配置信息用于指示第三时频资源;第三时频资源用于第一接收端装置获取第一DPD参数信息。基于本方案,发射端装置可以指示用于第一接收端装置获取第一DPD参数信息的时频资源。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的发射端装置,或者包含上述发射端装置的装置,或者上述发射端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接收端装置,或者包含上述第一接收端装置的装置,或者上述第一接收端装置中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,该处理器用于执行该存储器存储的指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的发射端装置,或者包含上述发射端装置的装置,或者上述发射端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接收端装置,或者包含上述第一接收端装置的装置,或者上述第一接收端装置中包含的装置。
第五方面,提供了一种通信装置,包括:处理器和接口电路,该接口电路用于与该通信装置之外的模块通信;该处理器用于运行计算机程序或指令以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的发射端装置,或者包含上述发射端装置的装置,或者上述发射端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接收端装置,或者包含上述第一接收端装置的装置,或者上述第一接收端装置中包含的装置。
或者,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器,以使该处理器运行计算机执行指令以执行上述任一方面所述的方法。
在一些可能的设计中,该通信装置可以为芯片或芯片系统。
第六方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的发射端装置,或者包含上述发射端装置的装置,或者上述发射端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接收端装置,或者包含上述第一接收端装置的装置,或者上述第一接收端装置中包含的装置。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的发射端装置,或者包含上述发射端装置的装置,或者上述发射端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接收端装置,或者包含上述第一接收端装置的装置,或者上述第一接收端装置中包含的装置。
第八方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的发射端装置,或者包含上述发射端装置的装置,或者上述发射端装置中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的第一接收端装置,或者包含上述第一接收端装置的装置,或者上述第一接收端装置中包含的装置。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一 方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供一种通信系统,该通信系统包括发射端装置和第一接收端装置。发射端装置可以执行上述第一方面所述的方法,第一接收端装置可以执行上述第二方面所述的方法。
附图说明
图1为一种DPD技术的原理示意图;
图2为一种获取DPD参数信息的方案的示意图;
图3为一种HBF架构的发射端的示意图
图4为另一种获取DPD参数信息的方案的示意图;
图5a为本申请实施例提供的一种通信系统的架构示意图一;
图5b为本申请实施例提供的一种通信系统的架构示意图二;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种DPD参数信息的性能评估方法的流程示意图;
图8为本申请实施例提供的一种发射端装置发送第一信号的示意图;
图9为本申请实施例提供的一种发射端装置发送DPD补偿后的第一信号的示意图;
图10为本申请实施例提供的一种时频资源分布示意图;
图11为本申请实施例提供的一种发射端装置的结构示意图;
图12为本申请实施例提供的一种第一接收端装置的结构示意图。
具体实施方式
为了便于理解本申请实施例的技术方案,首先给出本申请涉及的相关技术的简要介绍如下。
PA是无线传输发射机实现远距离信号传输的核心器件,它可以将发射端产生的低功率信号放大至可进行远距离传输的功率水平。但是,在进行功率放大时,PA会引入非线性失真,导致发送信号的性能指标发生恶化。例如,PA引入的非线性失真可导致发送信号的误差向量幅度(error vector magnitude,EVM)与邻道泄露比(adjacent channel leakage ratio,ACLR)的性能下降。DPD技术是提升PA输出信号线性度的有效手段,其基本原理是在功率放大前对信号进行数字预处理,提升PA输出信号线性度,减少PA引入的非线性失真,从而提高PA的效率或输出功率。理论上,DPD对应函数应为PA响应函数的反函数。为了便于理解,DPD技术的基本原理如图1所示,在PA前增加DPD模块,DPD模块可以对输入DPD模块的信号执行DPD(或者说进行DPD处理)来补偿PA的非线性特征,从而使PA输出的信号呈线性。
目前,发射端需要在发射数字通道处通过获取PA对应的DPD参数信息(或者说DPD系数信息)来执行DPD。其中,DPD参数信息可用来表征约定的模型(实现约定和/或协议约定和/或空口交互)的特征,发射端装置可以通过约定的模型以及DPD参数信息确定如何执行DPD。例如,协议规定采用多项式模型、记忆多项式或广义记忆多项式模型等多项式模型来执行DPD,则DPD参数信息可以是上述约定的多项式模型的系数。又例如,协议规定采用神经网络(neural network,NN)模型等深度学习(deep learning,DL)模型来执行DPD,则DPD参数信息可以是神经网络的深度,宽度,连接关系,以及权值等信息。
下面以约定的模型为记忆多项式模型为例,对DPD参数信息加以简要介绍。将输入DPD模块的信号记为s[n],DPD模块输出的信号记为x[n],假设配置在DPD模块中的用于执行DPD的约定模型为记忆多项式模型,则x[n]满足如下关系:
x[n]=∑mkck,m|s[n-m]|ks[n-m];                公式(1)
其中,ck,m表示对应该记忆多项式模型的参数信息,k为该记忆多项式模型的阶次数,m为该记忆多项式模型的记忆深度。k与m的取值范围可以由协议约定和/或空口配置。
以下介绍如何获取DPD参数信息。传统的方案中,发射端需要获取输入PA前的信号(简称为PA前信号)和PA输出的信号(简称为PA后信号),并根据预设的算法,计算或估计出DPD参数信息。具体地,发射端可以直接在数字通道(数字模块)处获取PA前信号,而对于PA后信号,在一些场景下(例如低频场景),发射端可以通过PA对应的反馈通道采集PA后信号。
以下以图2所示的场景为示例,对获取DPD参数信息的过程进行介绍,如图2所示,在发射端具有多个数字通道,每个数字通道分别对应一个PA的场景中,每个PA可以具有独立的反馈通道。在数字通道处,模型提取(model extraction)模块可以获取输入数模转换器(digital-to-analog converter,DAC)前的PA前信号,以及从PA对应的独立反馈通道处获取PA后信号。model extraction模块可以根据获取的PA前信号以及PA后信号,以及预设的算法计算得到PA对应的DPD参数信息,再根据获取的DPD参数信息配置对应的DPD模块,以此类推,发射端可以通过每个DPD模块独立地实现对每个PA的DPD补偿。当然,对于发射端具有单个数字通道的场景,且单个数字通道对应一个PA的场景,该独立进行DPD补偿的方法同样适用。
但是,在高频场景中,发射端可能会采用一个数字通道对应多个PA的架构,例如混合波束成型(hybridbeamforming,HBF)架构或者模拟波束成型(analog beamforming,ABF)架构,如图3所示,为一种示例性的采用HBF架构的发射端的示意图。在这种一个数字通道对应多个PA的场景中,发射端分别获取每个PA对应的独立DPD参数信息的代价较大,且即使可以获取各个PA对应的独立DPD参数信息,因为DPD需要在数字通道处实现(例如图3中的中频模块),一个数字通道上配置的一个DPD模块也无法实现分别补偿对应的多个PA。
因此,目前提出了一种基于接收端的DPD参数信息获取方案,该方案基于空口DPD(overthe air-DPD,OTA-DPD)技术,其基本原理为:发射端处一个数字通道对应的信号经过多个PA发射到接收端后,对于接收端而言,接收到的多个PA的合成信号可以等效为一个PA所输出的信号。换言之,对于接收端而言,接收到的多个PA的合成信号的非线性效应可以等效为单个PA输出信号的非线性效应。因此,接收端可以根据接收到的信号获取DPD参数信息。示例性地,如图4所示,接收端处的信号重建(signal reconstruction)模块可以恢复出发射端处DAC前的信号(PA前信号),model extraction模块可以获取接收端接收到的信号(简称为接收信号)进行模数转换后的数字信号,以及从signal reconstruction模块获取到的PA前信号。因为多个PA所对应的接收信号可以等效为一个PA所对应的接收信号,所以model extraction模块可以根据获取的接收信号以及PA前信号,以及预设的算法确定出DPD参数信息,且确定的DPD参数信息可以用于补偿这多个PA的非线性效应,使得 接收信号的非线性得到纠正。根据上述结论,发射端可以在单个数字通道处,根据接收端反馈的DPD参数信息,对这单个数字通道对应的所有PA的非线性效应进行补偿,从而保证接收端接收的信号的质量。当然,这种方案不仅可以应用于一个数字通道对应多个PA的场景中,在一个数字通道对应一个PA的场景中,该方案同样适用。
但是,这种方案存在以下问题:由于接收端接收到的信号可能遭受信道非理想以及干扰噪声等因素的恶化,因此接收端根据接收到的信号确定的DPD参数信息可能存在可靠度不稳定的情况,换言之,可能出现接收端反馈给发射端的DPD参数的性能(或者说质量)较差的情况。例如,当接收端遭受到突发干扰后,其确定的DPD参数信息可能存在较大误差。而发射端无有效手段判断接收端反馈的DPD参数信息对应的性能,因此发射端根据接收端反馈的DPD参数调整发射配置(发射参数)时,可能出现发射端性能的提升有限,甚至可能出现恶化发送端性能的情况。基于此,本申请实施例提供一种DPD参数信息的性能评估方法,用于解决发射端无法判断获取的DPD参数的质量的问题。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系。例如,A/B可以表示A或B。本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以为单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个以上(包括两个)。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或者a和b和c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,长期演进(long term evolution,LTE)系统,或者第五代(5th generation,5G)移动通信系统、车联网(vehicle to everything,V2X)系统,或者LTE和5G混合组网的系统,或者设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet ofthings,IoT),以及其他下一代通信系统。该通信系统也可以为非3GPP通信系统,不予限制。
本申请实施例的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low latency communication,URLLC)、机器类型通信(machine  type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、D2D、V2X、和IoT等通信场景。
其中,上述适用本申请的通信系统和通信场景仅是举例说明,适用本申请的通信系统和通信场景不限于此,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。在此统一说明,以下不再赘述。
作为一种可能的实现,本申请提供一种本申请适用的通信系统。如图5a和图5b所示,该通信系统可以包括一个或多个发射端装置20,以及与发射端装置20无线连接的一个或多个接收端装置30。
以图5a或图5b所示的发射端装置20与任一接收端装置30进行交互为例,在一种可能的实现方式中,发射端装置20获取第一DPD参数信息;接收端装置30确定性能指标信息,并向发射端装置20发送性能指标信息,发射端装置20接收性能指标信息,性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标。其中,该方案的具体实现以及技术效果将在后续方法实施例中详细描述,在此不予赘述。
可选的,发送端装置20可以为网络设备或其中的芯片或芯片系统、终端设备或其中的芯片或芯片系统、中继设备或其中的芯片或芯片系统,接收端装置30可以为网络设备或其中的芯片或芯片系统、终端设备或其中的芯片或芯片系统、中继设备或其中的芯片或芯片系统。可选的,发送端装置20和接收端装置可以为不同类型的设备,例如,发送端装置20和接收端装置30中的一个为网络设备,另一个为终端设备。或者,发送端装置20和接收端装置30也可以为相同类型的设备,例如,发送端装置20和接收端装置30均为终端设备,本申请实施例对此不做具体限定。
可选的,本申请实施例中的网络设备是一种将终端设备接入到无线网络的设备。网络设备20可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元。例如,集中式单元(central unit,CU),分布式单元(distributed unit,DU)等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的终端设备,可以是用于实现无线通信功能的设备。例如终端或者可用于终端中的芯片等。终端也可以称为用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选的,本申请实施例中的网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫 星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,本申请实施例中的网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
本申请涉及的发送端装置或接收端装置的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,或者可以为一个或多个芯片,也可以为片上系统(system on chip,SOC)或芯片系统,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件,本申请实施例对此不作具体限定。
可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请涉及的发送端装置或接收端装置的相关功能可以通过图6中的通信装置600来实现。图6所示为本申请实施例提供的通信装置600的结构示意图。该通信装置600包括一个或多个处理器601,通信线路602,以及至少一个通信接口(图6中仅是示例性的以包括通信接口604,以及一个处理器601为例进行说明),可选的,还可以包括存储器603。
处理器601可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路602可以用于通信装置600包括的不同组件之间的通信。
通信接口604,可以是收发模块用于与其他设备或通信网络通信,如以太网,无线接入网(wireless access networks,RAN),无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口604也可以是位于处理器601内的收发电路,用以实现处理器的信号输入和信号输出。
存储器603可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路602与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器603用于存储执行本申请方案的计算机执行指令,并由处理器601 来控制执行。处理器601用于执行存储器603中存储的计算机执行指令,从而实现本申请实施例中提供的方法。
或者,可选的,本申请实施例中,也可以是处理器601执行本申请下述实施例提供的方法中的处理相关的功能,通信接口604负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器601可以包括一个或多个CPU,例如图6中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置600可以包括多个处理器,例如图6中的处理器601和处理器608。这些处理器中的每一个可以是一个单核(single-core)处理器,也可以是一个多核(multi-core)处理器。这里的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。
在具体实现中,作为一种实施例,通信装置600还可以包括输出设备605和输入设备606。输出设备605和处理器601通信,可以以多种方式来显示信息。例如,输出设备605可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备606和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备606可以是鼠标、键盘、触摸屏设备或传感设备等。
需要说明的是,图6中示出的组成结构并不构成对该通信装置的限定,除图6所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图6,以图5a或图5b所示的发射端装置20与任一接收端装置30进行交互为例,对本申请实施例提供的DPD参数信息的性能评估方法进行展开说明,其中,为了展开说明时语义清楚,下文将该接收端装置30称为第一接收端装置。如图7所示,该DPD参数信息的性能评估方法包括S701-S702:
S701、发射端装置获取第一DPD参数信息。
S702、第一接收端装置向发射端装置发送性能指标信息。相对应的,发射端装置接收来自第一接收端装置的性能指标信息,性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息对第一信号执行DPD后得到的性能指标。
需要说明的是,本申请实施例并不限定S701和S702的时序顺序。S701可以在S702之前执行,或者,S701可以和S702在同一时间执行,或者,S701可以在S702之后执行,
图7所示的时序顺序仅为一种示例。
本申请实施例中,发射端装置具有一个或多个数字通道(或天线端口,下文中数字通道均可替换为天线端口或端口),其中每个数字通道对应一个或多个PA,每个 PA对应一个或多个发射天线。其中,每个数字通道对应一个发送信号,发射端装置可以向第一接收端装置发送该发送信号。具体地,发射端装置处,发送信号在经过数字通道处的DAC前为数字信号,经过DAC后为模拟信号,并通过模拟通道输入对应的一个或多个PA进行功率放大,每个PA输出的放大信号由对应的一个或多个发射天线发射,第一接收端装置可以通过接收天线接收到发射天线发射的信号。可选的,基于发射端装置可能的结构,数字通道对应的发送信号在输入PA进行功率放大前,还可以进行移相等操作。
为了便于理解,以下以发射端装置处的某一数字通道称为第一数字通道,该第一数字通道对应的发送信号称为第一信号为例,对本申请实施例的技术方案进行介绍。示例性的,假设第一数字通道对应多个PA,若发射端装置未对第一信号执行DPD(也可以称为没有对第一信号进行DPD处理),发射端装置发送第一信号的示意图可以如图8所示。第一信号输入对应的多个PA,PA对输入的第一信号进行功率放大,输出PA放大后的第一信号至对应的发射天线,从而使发射天线发送PA放大后的第一信号。其中,第一信号在输入PA在前,其也可以称为PA前信号,而PA放大后的第一信号则可以称为PA后信号,或者称为发射信号。
示例性的,假设第一数字通道对应多个PA,发射端装置采用DPD参数信息对第一信号执行DPD,并发送第一信号的示意图可以如图9所示。如图9所示,发射端装置根据DPD参数信息对第一信号执行DPD后,DPD补偿后的第一信号(也可以称为DPD处理后的第一信号)输入对应的多个PA,PA对输入的DPD补偿后的第一信号进行功率放大,输出PA放大后的第一信号至对应的发射天线,从而使发射天线发送PA放大后的第一信号。发射端装置根据DPD参数信息对第一信号执行DPD后,可以提升PA放大后的第一信号的线性度。其中,DPD补偿后的第一信号在输入PA前,其也可以称为PA前信号,而PA放大后的第一信号则可以称为PA后信号,或者称为发射信号。
对于S701,第一DPD参数信息包括第一DPP参数,可用于对第一信号进行DPD补偿,换言之,发射端装置可以根据第一DPD参数信息,采用其中的第一DPD参数对第一信号执行DPD,从而补偿第一数字通道对应的PA的非线性特征,提升PA输出的信号的线性度。
本申请实施例中,发射端装置可以通过多种方式获取第一DPD参数信息。以下为列举的示例性的四种方式。
方式一:发射端装置接收来自第一接收端装置的第一DPD参数信息。
方式一中,发射端装置将第一信号发送给第一接收端装置,第一接收端装置可以根据接收到的信号确定第一DPD参数信息。可选的,第一接收端装置根据接收到的信号确定第一DPD参数信息的具体实现可以参考上文对基于接收端的DPD参数信息获取方案的介绍,在此不再赘述。
方式二:发射端装置接收来自第二接收端装置的第一DPD参数信息。
方式二中,第二接收端装置是与第一接收端装置不同的另一接收端装置。发射端装置将第一信号发送给第二接收端装置,第二接收端装置可以根据接收到的信号确定第一DPD参数信息。可选的,第二接收端装置根据接收到的信号确定第一DPD参数 信息的具体实现可以参考上文对基于接收端的DPD参数信息获取方案的介绍,在此不再赘述。
方式三:发射端装置根据预设算法确定第一DPD参数信息。
方式三中,发射端装置自身可以获取第一信号以及第一信号经由PA放大后输出的信号,并根据预设的算法计算出第一DPD参数信息。可选的,发射端装置根据第一信号以及第一信号经由PA放大后输出的信号确定第一DPD参数信息的具体实现可以参考上文对发射端获取DPD参数信息的传统方案的介绍,在此不再赘述。
方式四:发射端装置综合通过多种方式获取到的DPD参数信息得到第一DPD参数信息。可选的,多种方式可以为上述方式一至方式三。
例如,发射端装置可以对第一接收端装置和第二接收端装置分别上报的DPD参数信息进行联合处理,例如进行平均、加权平均或系数拼接等操作,从而获取到第一DPD参数信息。
需要说明的是,上述四种方式中涉及的第一信号为没有根据第一DPD参数信息进行DPD处理的第一信号,也可以称为根据第一DPD参数信息执行DPD前的第一信号。本申请实施例中,可选的,没有根据第一DPD参数信息进行DPD处理的第一信号可以为没有经过DPD处理的第一信号,示例性的,该情况中,第一信号可参考上文对图8的说明。或者,没有根据第一DPD参数信息进行DPD处理的第一信号可以为根据第二DPD参数信息执行DPD后的第一信号,第二DPD参数信息为与第一DPD参数信息不同的参数信息。示例性的,参考图9,假设图9中的DPD模块根据第二DPD参数信息对第一信号执行DPD,若发射端装置采用上述方式三获取第一DPD参数信息,发射端装置可以获取DPD补偿后的第一信号和PA放大后的第一信号来计算第一DPD参数信息,第一DPD参数信息可以用于更新第二DPD参数信息,使DPD模块可以采用更新后的第一DPD参数信息对第一信号进行DPD处理。在此以第一信号为例,统一对没有根据第一DPD参数信息进行DPD处理(或者称为根据第一DPD参数信息执行DPD前)可能包括的情况进行说明,以下不再赘述。
可选的,若发射端装置需要从其他装置获取第一DPD参数信息,则发射端装置可以指示其他装置获取和/或发送第一DPD参数信息的配置。例如,若采用上述方式一获取第一DPD参数信息,在发射端装置接收来自第一接收端装置的第一DPD参数信息之前,发射端装置可以向第一接收端装置发送第三配置信息,第三配置信息用于指示第三时频资源和/或第四时频资源,第一接收端装置接收到第三配置信息后,可以确定第三时频资源并在第三时频资源上获取第一DPD参数信息,和/或确定第四时频资源并在第四时频资源上发送第一DPD参数信息。示例性的,第三时频资源可以为第一接收端装置接收信号的时频资源,第一接收端装置可以在第三时频资源上接收发射装置发射的信号,并根据接收到的信号计算或获取第一DPD参数信息。
对于S702,第一接收端装置可以确定性能指标信息,然后将性能指标信息发送给发送端装置。其中,性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标。因此,发送端装置可以根据接收的性能指标信息,获知若根据第一DPD参数信息执行DPD可以得到的性能指标,从而可以准确判断获取的第一DPD参数的性能信息或者说质量信息,实现准确配置与第一DPD 参数适配的发射参数,达成更大的发射功率或更好的信号发送质量。
以下对S702进行具体的解释说明。
首先,对性能指标信息进行展开介绍。S702中,性能指标信息是第一接收端装置确定的用于表征第一性能指标的信息。可选的,本申请实施例中,第一性能指标可以为发射端装置根据第一DPD参数信息执行DPD后,第一接收端装置得到的性能指标,或者,第一性能指标可以为第一接收端装置根据第一DPD参数信息执行DPD后得到的性能指标。
进一步地,第一性能指标可以为发射端装置根据第一DPD参数信息对第一信号执行DPD后,DPD补偿后的第一信号经由对应的一个或多个PA放大后,第一接收端装置得到的性能指标。示例性的,参考图9,假设图9中的DPD模块根据第一DPD参数信息对第一信号执行DPD,第一性能指标可以为第一接收端装置确定的PA放大后的第一信号的性能指标。
或者,第一性能指标可以为第一接收端装置根据第一DPD参数信息对接收信号执行DPD后,DPD补偿后的接收信号的性能指标。其中,接收信号与第一接收端装置发送的PA放大后的第一信号对应。需要说明的是,该情况中,第一接收端装置发送的PA放大后的第一信号没有根据第一DPD参数信息进行DPD处理。
本申请实施例中,上述第一性能指标的多种定义,将在下文结合确定性能指标信息的具体实现方式进行展开介绍,在此不再展开说明。
可选的,第一性能指标可以是特定信号(上文介绍的用于确定第一性能指标的PA放大后的第一信号或者DPD补偿后的接收信号)在特定波束方向、角度或区域的性能指标。
本申请实施例中,可以得到的性能指标(第一性能指标)可以包括以下信息中的至少一项:
误差向量幅度(error vector magnitude,EVM)、信号干扰噪声比(信干噪比)(signal to interference plus noise ratio,SINR)、信噪比(signal to noise ratio,SNR)、可支持的调制编码方式(modulation and coding scheme,MCS)、信道质量指示(channel quality indicator,CQI)、可支持的最高调制阶数、均方误差(mean squared error,MSE)、归一化均方误差(the normalized mean squared error,NMSE)、邻道泄露比(adjacent channel leakage ratio,ACLR)和零子载波功率。
可以看出,第一性能指标包括的信息可以表征用于表征信号或者信道质量。当然,本申请实施例并不限定第一性能指标仅能为上述信息,应理解,根据需求或者场景的不同,第一性能指标还可以包括其他信息。另外,若出现新定义的可用于表征信号或信道质量的信息,第一性能指标还可以包括这些新定义的信息,本申请实施例的技术方案依然可以应用。
本申请实施例中,性能指标信息可以包括以下至少一项:
第一性能指标信息和第二性能指标信息。
其中,第一性能指标信息用于表征第一性能指标的数值,换言之,第一性能指标信息用于表征根据第一DPD参数信息执行DPD后得到的性能指标的数值。基于本方案,若性能指标信息包括第一性能指标信息,发射端装置可以根据第一性能指标信息, 直接确定若根据第一DPD参数信息进行DPD补偿所能达到的性能指标的数值,从而判断第一DPD参数信息的质量。
示例性的,参考图9,假设图9中的DPD模块根据第一DPD参数信息对第一信号执行DPD,第一性能指标的数值可以为PA放大后的第一信号的性能指标的数值,例如第一性能指标信息可以包括PA放大后的第一信号的EVM、SNR、CQI和MSE的数值信息。
进一步地,为了使发射端装置可以更准确地确定根据第一DPD参数信息执行DPD所能得到的性能增益,本申请实施例还定义了第二性能指标信息,第二性能指标信息用于表征第一性能指标的增益。若性能指标信息包括第二性能指标信息,发射端装置可以根据第二性能指标信息,确定若根据第一DPD参数信息进行DPD补偿所能带来的性能指标的提升,从而判断第一DPD参数信息的质量。
一种可能的实现方式中,第二性能指标信息包括第一性能指标的数值信息和第二性能指标的数值信息,第二性能指标为根据第一DPD参数信息执行DPD前(或者说,没有根据第一DPD参数进行DPD处理)的性能指标。
进一步地,第二性能指标可以为发射端装置没有根据第一DPD参数信息进行DPD处理的第一信号(也可以称为根据第一DPD参数执行DPD前的第一信号)经由对应的一个或多个PA放大后的性能指标。示例性的,参考图8,第一性能指标可以为PA放大后的第一信号的性能指标。
或者,第二性能指标可以为第一接收端装置接收到的信号的性能指标。其中,第一接收端装置接收到的信号与发射端装置发送的PA放大后的第一信号对应。需要说明的是,该情况中,发射端装置发送的PA放大后的第一信号没有根据第一DPD参数信息进行DPD处理。
本申请实施例中,上述第二性能指标的多种定义,将在下文结合确定性能指标信息的具体实现方式进行展开介绍,在此不再展开说明。
可选的,第二性能指标可以是特定信号(上文介绍的用于确定第二性能指标的PA放大后的第一信号或者接收到的信号)在特定波束方向、角度或区域的性能指标。
本申请实施例中,第二性能指标包括的信息与第一性能指标包括的信息呈一一对应关系。该实现方式中,发射端装置可以比较第一性能指标的数值信息和第二性能指标的数值信息,从而得到根据第一DPD参数信息进行DPD补偿的前后性能指标的变量信息(包括增加量或者降低量),进而得到根据第一DPD参数信息进行DPD补偿所能带来的性能指标增益。
示例性的,该实现方式中,若第一性能指标为根据第一DPD参数信息对第一信号执行DPD后得到的性能指标,第二性能指标为根据第一DPD参数信息对第一信号执行DPD前的性能指标,第二性能指标信息可以包括以下信息:根据第一DPD参数信息进行DPD补偿前后,PA放大后的第一信号的EVM的数值信息、根据第一DPD参数信息进行DPD补偿前后,PA放大后的第一信号的SNR的数值信息、根据第一DPD参数信息进行DPD补偿前后,PA放大后的第一信号的CQI的数值信息、根据第一DPD参数信息进行DPD补偿前后,PA放大后的第一信号的MSE的数值信息。
需要说明的是,本申请实施例中,DPD补偿前或者DPD补偿后中的“前”或者“后”, 指时序上的前或者后,并不是指发射端装置的电路结构中信号所处的具体位置。例如DPD补偿前信号指未采用DPD参数信息进行DPD处理的信号,DPD补偿后信号指已采用DPD参数信息进行DPD处理的信号。
另一种可能的实现方式中,第二性能指标信息为第一性能指标的数值信息相比于第二性能指标的数值信息的变量信息(包括增加量或者降低量)。该实现方式中,发射端装置可以根据第一性能指标的数值信息相比于第二性能指标的数值信息的变量信息,直观确定出根据第一DPD参数信息进行DPD补偿所能带来的性能指标增益。
需要说明的是,根据性能指标的不同,有些第一性能指标的数值信息相比于第二性能指标的数值信息的增加量可以用于表征性能指标的增益,有些第一性能指标的数值信息相比于第二性能指标的数值信息的降低量可以用于表征性能指标的增益。示例性的,若第一性能指标为EVM,EVM的数值的降低量(线性比值或dB值)为性能指标的增益。若第一性能指标为SINR或SNR,SINR或SNR的增加量(线性比值或dB值)为性能指标的增益。若第一性能指标为CQI,CQI的增加量(阶数增量)为性能指标的增益。若第一性能指标为MSE或者NMSE,MSE或NMSE的降低量(线性比值或dB值)为性能指标的增益。
示例性的,性能指标信息包括第一性能指标信息和第二性能指标信息时,若第二性能指标信息为第一性能指标的数值信息相比于第二性能指标的数值信息的变量信息,第一性能指标为根据第一DPD参数信息对第一信号执行DPD后得到的性能指标,第二性能指标为根据第一DPD参数信息对第一信号执行DPD前的性能指标,性能指标信息可以包括以下信息:根据第一DPD参数信息进行DPD补偿后,PA放大后的第一信号的EVM的数值信息和(相比于根据第一DPD参数信息进行DPD补偿前,PA放大后的第一信号的)EVM的降低量、根据第一DPD参数信息进行DPD补偿后,第一信号的SNR的数值信息和SNR的增加量、根据第一DPD参数信息进行DPD补偿后,PA放大后的第一信号的CQI的数值信息和CQI的增加量、根据第一DPD参数信息进行DPD补偿后,PA放大后的第一信号的MSE的数值信息和MSE的降低量、根据第一DPD参数信息进行DPD补偿后,PA放大后的第一DPD补偿后信号的NMSE的数值信息和NMSE的降低量。
可选的,性能指标信息包括第二性能指标信息,且第二性能指标信息为第一性能指标的数值信息相比于第二性能指标的数值信息的变量信息时,性能指标信息还可以包括第二性能指标的数值信息。发射端装置可以根据第二性能指标信息和第二性能指标的数值信息,确定根据第一DPD参数进行DPD补偿前性能指标的数值和若根据第一DPD参数信息进行DPD补偿所能带来的性能指标的提升,从而判断第一DPD参数信息的质量。
示例性的,性能指标信息包括第一性能指标的数值信息相比于第二性能指标的数值信息的变量信息,以及第二性能指标的数值信息时,若第一性能指标为根据第一DPD参数信息对第一信号执行DPD后得到的性能指标,第二性能指标为根据第一DPD参数信息对第一信号执行DPD前的性能指标,性能指标信息可以包括以下信息:根据第一DPD参数信息进行DPD补偿前,PA放大后的第一信号的EVM的数值信息和根据第一DPD参数信息进行DPD补偿后,PA放大后的第一信号(相比于根据第一DPD 参数信息进行DPD补偿前,PA放大后的第一信号)的EVM的降低量、根据第一DPD参数信息进行DPD补偿前,PA放大后的第一信号的SNR的数值信息和根据第一DPD参数信息进行DPD补偿后,PA放大后的第一信号的SNR的增加量、根据第一DPD参数信息进行DPD补偿前,PA放大后的第一信号的CQI的数值信息和根据第一DPD参数信息进行DPD补偿后,PA放大后的第一信号的CQI的增加量、根据第一DPD参数信息进行DPD补偿前,PA放大后的第一信号的MSE/NMSE的数值信息和根据第一DPD参数信息进行DPD补偿后,PA放大后的第一信号的MSE/NMSE的降低量。
上文介绍了性能指标信息,以下介绍本申请实施例中,第一接收端装置如何确定性能指标信息。
实现方式一:第一接收端装置可以根据第一DPD参数信息和预设算法计算得到第一性能指标中至少一项对应的性能指标信息。
该实现方式中,第一性能指标可以理解为第一接收端装置推测的发射端装置若根据第一DPD参数信息执行DPD后可以得到的性能指标。具体地,第一接收端装置可以根据第一DPD参数信息和预设算法,计算出若根据第一DPD参数信息对接收信号执行DPD可以得到的信号,并将计算出的信号推测为发射端装置根据第一DPD参数信息对第一信号进行DPD补偿后,PA放大后的第一信号,即发射天线上的发射信号,从而将该计算出的信号的性能指标的数值信息确定为对应的第一性能指标的数值信息。其中,接收信号与发射端装置发送的PA放大后的第一信号对应,需要说明的是,该情况中,发射端装置发送的PA放大后的第一信号没有根据第一DPD参数信息进行DPD处理。
该实现方式中,第一接收端装置根据第一DPD参数信息,计算出若对接收信号执行DPD处理可以得到的信号,也可以理解为第一接收端装置根据第一DPD参数信息对接收信号执行数学意义上的DPD处理,所以该实现方式中,第一性能指标也可以理解为第一接收端装置根据第一DPD参数信息执行DPD处理后得到的性能指标。
示例性的,假设第一DPD参数信息对应的,用于执行DPD的DPD等效函数为g(·),发射端装置处多功放对应的等效函数为f(·),发射端装置处的第一信号为x(t),第一接收端装置接收到PA放大后的第一信号f(x(t)),则第一接收端装置可以根据DPD等效函数g(·)推测出,发射端装置对第一信号执行DPD后的得到的DPD补偿后的第一信号为z(t)=g(x(t)),DPD补偿后的第一信号经过多PA后的叠加信号为y(t)=f(z(t))=f(g(x(t)))。其中,y(t)的性能指标即为推测的发射端装置根据第一DPD参数信息执行DPD后可达到的性能指标。例如,第一性能指标包括EVM时,第一接收端装置可以将y(t)的EVM确定为第一性能指标的数值信息。
上文介绍的第一性能指标可能包括的多项信息中,EVM,ACLR以及可支持的最高调制阶数可适用于该实现方式。
实现方式二:第一接收端装置可以根据第一DPD参数信息和第一时频资源进行测量,得到第一性能指标中至少一项对应的性能指标信息。
该实现方式中,第一接收端装置可以根据第一DPD参数信息,在某一时频资源上对接收到的信号执行DPD处理得到特定信号,并测量该特定信号确定第一性能指标中至少一项对应的性能指标信息。该实现方式中,第一性能指标可以理解为第一接收端 装置根据第一DPD参数执行DPD后得到的性能指标。其中,用于获取性能指标信息的接收信号对应的时频资源可以称为第一时频资源。
具体地,发射端装置可以向第一接收端装置发送第一信号,而第一接收端装置接收到与第一信号对应的第四信号后,可以根据第一DPD参数信息对接收到的第四信号进行处理,得到第三信号,然后获取第三信号对应的性能指标,并将获取得到的性能指标确定为对应的第一性能指标的数值信息。其中,发射端装置发送的第一信号是PA放大后的第一信号,且该情况中,发射端装置发送的PA放大后的第一信号没有根据第一DPD参数信息进行DPD处理。
可选的,在某些场景中,第一接收端装置可以将该实现方式中得到的特定信号等效为发射端装置根据第一DPD参数信息对第一信号执行DPD后得到的发射信号。因此,在某些场景中,第一接收端装置测量该特定信号得到的性能指标可以用于表征(或者隐式表征)发射端装置根据第一DPD参数信息对第一信号执行DPD后,PA放大后的第一信号的性能指标,即第一性能指标。
示例性地,假设第一DPD参数信息对应的,用于执行DPD的DPD等效函数为g(·),发射端装置向接收端装置发送第一信号后,第一接收端装置接收到的信号为r(t),第一接收端装置根据DPD等效函数g(·),对r(t)进行处理得到信号u(t)=g(r(t))。第一接收端装置可获取u(t)对应的性能指标来确定对应的性能指标信息,例如第一性能指标包括MSE、EVM、SNR时,第一接收端装置可以将测量u(t)得到的MSE、EVM、SNR确定为第一性能指标的数值信息。在上述示例将接收信号以及对应的处理后信号记为模拟形式,即r(t)和u(t)。应理解,第一接收端装置也可以在数字域处理上述信号,则接收信号以及对应的处理后信号可记为r(n)和u(n),其中u(n)=g(r(n))。
上文介绍的第一性能指标可能包括的多项信息(EVM、SINR、SNR、MCS、CQI、可支持的最高调制阶数、MSE、NMSE、ACLR和零子载波功率)均可适用于该实现方式。
本申请实施例中,上文介绍的实现方式一和实现方式二可以用于确定第一性能指标的数值信息,而第一接收端装置在确定性能指标信息时,若需要确定第二性能指标的数值信息,例如性能指标信息包括用于表征第一性能指标的增益的第二性能指标信息,第一接收端装置需要确定第一性能指标的数值信息和第二性能指标的数值信息,第一接收端装置确定第二性能指标的数值信息的实现方式也可以参考上述实现方式一和实现方式二。
在实现方式一中,第一接收端装置可以根据接收信号获取第二性能指标的数值信息。例如,在实现方式一的示例的场景中,第一接收端装置可以将第一信号x(t)经过多PA后的叠加信号f(x(t))的性能指标的数值信息确定为第二性能指标的数值信息。
在实现方式二中,第一接收端装置可以根据接收信号(第四信号),获取第二性能指标的数值信息。例如,在实现方式二的示例场景中,第一接收端装置可以测量接收到的信号r(t)或者r(n)的性能指标,并将获取到的性能指标的数值确定为第二性能指标的数值信息。可选的,在某些场景中,第一接收端装置可以将第四信号等效为发射端装置根据第一DPD参数信息执行DPD前,PA放大后的第一信号,因此,在某些场景中,第一接收端装置测量第四信号得到的性能指标可以用于表征(或者隐式表征)发射端装置 根据第一DPD参数信息执行DPD前,PA放大后的第一信号的性能指标。
可选的,本申请实施例中,第一接收端装置可以在同一时频资源上获取第一性能指标的数值信息和第二性能指标的数值信息。该方案中第一接收端装置采用相同的资源获取DPD补偿前后性能指标的数值信息,可以排除信道衰落和干扰等外部因素的影响,保证得到的第一性能指标的增益信息可以准确体现根据第一DPD参数信息进行DPD补偿所能带来的增益。或者,第一接收端装置可以在不同的时频资源上分别获取第一性能指标的数值信息和第二性能指标的数值信息。该方案中第一接收端装置采用不同的资源获取DPD补偿前后性能指标的数值信息,可以降低第一接收端装置的处理复杂度。
另外,从上文的介绍可知,若采用上述两种实现方式:实现方式一和实现方式二,第一接收端装置均需要先获取第一DPD参数信息来确定性能指标信息。以下介绍第一接收端装置如何获取第一DPD参数信息:
可选的,第一接收端装置可以根据预设的算法,自身确定第一DPD参数信息,具体可以参考上文对发射端装置获取第一DPD参数信息的方式一的介绍。
或者,第一接收端装置可以接收来自发射端装置的第一DPD参数信息。其中,发射端装置发送的第一DPD参数信息可以是发射端装置自身确定的,也可以是发射端装置从其余装置(例如第二接收端装置)处获取的,具体可以参考上文对发射端装置获取第一DPD参数信息的方式二、方式三或方式四的介绍。
上文介绍的实现方式一和实现方式二中,第一性能指标为第一接收端装置根据第一DPD参数执行DPD后得到的性能指标。此外,本申请实施例还提供一种第一接收端装置无需获取第一DPD参数信息,也可以确定性能指标信息的方案,即下文介绍的实现方式三:
该实现方式中,发射端装置可以将第二信号发送给第一接收端装置,第一接收端装置接收第二信号,将第二信号的性能指标确定为第一性能指标,测量第二信号,从而确定第一性能指标中至少一项对应的性能指标信息。其中,第二信号为发射端装置根据第一DPD参数信息对第一信号执行DPD后,DPD补偿后的第一信号经由对应的PA放大后得到的信号。示例性的,参考图9,假设DPD模块根据第一DPD参数信息对第一信号进行DPD处理,发射端装置发送的第二信号可以为PA放大后的第一信号。该实现方式中,第一接收端装置根据接收的第二信号确定第一性能指标,而第二信号是发射端装置根据第一DPD参数信息对第一信号执行DPD后得到的,因此第一性能指标可以理解为发射端装置根据第一DPD参数信息执行DPD后,第一接收端装置得到的性能指标。
具体地,第一接收端装置在接收到第二信号后,可以在某一时频资源上测量第二信号,并根据测量得到的性能指标的数值确定为第一性能指标的数值,从而确定第一性能指标信息。
或者,该实现方式中,发射端装置可以将第一信号和第二信号发送给第一接收端装置,第一接收端装置接收第一信号和第二信号,将第一信号的性能指标作为第二性能指标,将第二信号的性能指标作为第一性能指标,测量第一信号和第二信号,从而确定第一性能指标中至少一项对应的性能指标信息。其中,发射端装置发送的第一信 号是采用第一DPD参数进行DPD补偿前,PA放大后的第一信号。示例性的,参考图8,发射端装置发送的第一信号可以为PA放大后的第一信号。
具体地,第一接收端装置接收到第一信号和第二信号后,分别在不同的时频资源上测量第一信号和第二信号,并将测量第一信号得到的性能指标的数值确定为第二性能指标的数值,将测量第二信号得到的性能指标的数值确定为第一性能指标的数值,从而可以根据第一性能指标的数值和第一性能指标的数值确定第二性能指标信息。
上文介绍的第一性能指标可能包括的多项信息(EVM、SINR、SNR、MCS、CQI、可支持的最高调制阶数、MSE、NMSE、ACLR和零子载波功率)均可适用于该实现方式。
可选的,上文介绍的第一接收端装置确定性能指标信息的三种实现方式可以相互结合应用,也可以仅应用一种实现方式。例如,第一性能指标包括EVM,ACLR、MSE、SNR时,第一接收端装置可以通过实现方式一获取EVM,ACLR对应的性能指标信息,并通过实现方式二获取MSE、SNR对应的性能指标信息。或者,第一接收端装置也可以通过实现方式三获取EVM,ACLR、MSE、SNR对应的性能指标信息。
可选的,上文介绍的第一接收端装置确定性能指标信息的三种实现方式中,用于第一接收端装置获取性能指标信息的时频资源(可以称为第一时频资源)可以为信道资源或者参考信号资源。例如,第一时频资源可以为物理下行共享信道(physical downlink shared channel,PDSCH),物理下行控制信道(physical downlink control channel,PDCCH),信道状态信息参考信号(channel status information reference signal,CSI-RS),同步信号(synchronization signal,SS)或者物理广播信道(physical broadcast channel,PBCH)等资源。第一时频资源还可以是专用的信道或参考信号。
以上介绍了第一接收端装置如何获取性能指标信息。其中,可选的,可以由第一接收端装置自身确定获取性能指标信息的配置(例如获取性能指标信息的配置预设在第一接收端装置中),或者,也可以由发射端装置指示第一接收端装置获取性能指标信息的配置。
可选的,发射端装置指示第一接收端装置获取性能指标信息的配置可以包括:
在发射端装置接收来自第一接收端装置的性能指标信息之前,发射端装置向第一接收端装置发送第一配置信息,第一配置信息用于指示第一时频资源,第一时频资源用于第一接收端装置获取性能指标信息。该方案中,发射端装置可以指示用于第一接收端装置获取性能指标信息的时频资源,例如上文介绍的实现方式二中,用于第一接收端装置进行测量得到性能指标信息的第一时频资源。
可选的,第一配置信息还可以用于指示第一接收端装置所需获取的第一性能指标。例如,第一配置信息可以指示第一接收端装置需要获取的第一性能指标包括EVM、SNR、MCS、CQI,第一接收端装置可以根据第一配置信息,确定第一性能指标包括EVM、SNR、MCS、CQI,从而获取对应的性能指标信息。
本申请实施例中,第一接收端装置获取到性能指标信息后,将性能指标信息通过空口资源(或者称为无线资源)发送(上报)给发射端装置。其中,可选的,可以由第一接收端装置自身确定性能指标信息的上报配置,或者,可以由发射端装置指示性能指标信息的上报配置。
可选的,发射端装置指示性能指标信息的上报配置可以包括:在发射端装置接收来自第一接收端装置的性能指标信息之前,发射端装置向第一接收端装置发送第二配置信息;第二配置信息指示用于第一接收端装置发送性能指标信息的配置信息。第一接收端装置根据第二配置信息,确定如何发送性能指标信息。
可选的,第二配置信息可以包括第二时频资源信息,第二时频资源为第一接收端装置发送性能指标信息所需的时频资源。第一接收端装置可以根据第二配置信息,确定在第二时频资源上发送性能指标信息。
可选的,第二配置信息可以包括第一指示信息,第一指示信息用于指示第一接收端装置所需发送的第一性能指标。例如,第一指示信息可以指示第一接收端装置需要发送的第一性能指标包括EVM、SNR、CQI,第一接收端装置可以根据第一指示信息,从获取性能指标信息中,选择EVM、SNR、CQI对应的性能指标信息发送给发射端装置。
需要说明的是,本申请实施例中,若均由第一接收端装置获取第一DPD参数信息以及性能指标信息,用于第一接收端装置获取第一DPD参数信息的资源和用于第一接收端装置获取性能指标信息的资源,可以为不同的资源,也可以为相同的资源。用于第一接收端装置发送性能指标信息的资源和用于第一接收端装置发送性能指标信息的资源,可以为不同的资源,也可以为相同的资源。
示例性的,如图10所示,假设均由第一接收端装置获取第一DPD参数信息以及性能指标信息,将用于第一接收端装置获取性能指标信息的时频资源称为第一时频资源,将用于第一接收端装置发送性能指标信息的时频资源称为第二时频资源,将用于第一接收端装置获取第一DPD参数信息的时频资源称为第三时频资源,将用于第一接收端装置发送第一DPD参数信息的时频资源称为第四时频资源。如情况一所示,第一时频资源和第三时频资源可以为同一时频资源,第二时频资源和第四时频资源可以为同一时频资源。如情况二所示,第一时频资源和第三时频资源可以为不同的时频资源,第二时频资源和第四时频资源可以为同一时频资源。如情况三所示,第一时频资源和第三时频资源可以为相同的时频资源,第二时频资源和第四时频资源可以为不同的时频资源。如情况四所示,第一时频资源、第二时频资源、第三时频资源和第四时频资源可以分别为不同的时频资源。
可选的,本申请实施例中,第一接收端装置在向发射端装置发送性能指标信息时,可以将性能指标信息与以下至少一项信息关联发送给发射端装置:用于第一接收端装置获取性能指标信息的时频资源的信息,可以称为第一时频资源信息,和第一DPD参数信息。其中,性能指标信息关联于第一DPD参数信息可以表示该上报的性能指标信息是采用了该第一DPD参数信息后达到或者能期望达到的性能指标。性能指标信息关联于第一时频资源信息可以表示该上报的性能指标信息是在该第一时频资源上测量或获取到的。
可选的,在S702之后,本申请实施例提供的DPD参数信息的性能评估方法还可以包括S703:发射端装置根据性能指标信息,确定发射端装置的发射参数。
基于本申请实施例的技术方案,发射端装置可以根据来自第一接收端装置的性能指标信息,获知第一DPD参数信息的性能,从而确定适配的发射参数,获取到更大的 覆盖能力或更好的信号发送质量。
本申请实施例中,发射端装置的发射参数可以理解为发射端装置发射信号的配置参数信息。
可选的,发射端装置根据性能指标信息确定的发射端装置的发射参数可以包括:
发射端装置根据性能指标信息,确定以下至少一项信息:
发射端装置的发射功率和发射端装置可支持的调制编码方式。基于本方案,发射端装置可以根据性能指标信息确定合适的发射功率和/或可支持的调制编码方式。当然,这两项信息为示例性的发射参数信息,根据实际需求,发射端装置还可以根据性能指标信息确定其他发射参数信息。
可选的,发射端装置根据性能指标信息确定发射端装置的发射参数可以包括:
发射端装置根据性能指标信息,确定发射端装置是否采用第一DPD参数信息。例如,如果性能指标信息不满足预设条件,则发射端装置不根据第一DPD参数信息执行DPD,如果性能指标信息满足预设条件,则发射端装置根据第一DPD参数信息执行DPD。其中,预设条件可以根据需求配置。基于本方案,发射端装置可以根据性能指标信息确定发射端装置是否应该根据第一DPD参数信息来执行DPD,可以在第一DPD参数信息质量不佳时不根据第一DPD参数信息执行DPD,避免出现因为第一DPD参数信息质量差而导致的性能提升小甚至恶化的情况。
可选的,在由多个第一接收端装置分别获取并发送性能指标信息,发射端装置接收到多个性能指标信息的情况下,发射端装置根据性能指标信息确定发射端装置的发射参数包括:
发射端装置根据多个性能指标信息,从多个性能指标信息分别对应的多个第一DPD参数信息中,选择目标DPD参数。具体地,发射端装置可以比较接收到的多个性能指标信息分别表征的第一性能指标,在多个性能指标信息分别对应的多个第一DPD参数信息中,选择一个第一DPD参数信息作为目标DPD参数信息,并根据目标DPD参数信息执行DPD。例如,发射端装置可以根据多个第一DPD参数信息分别对应的第一性能指标,选择质量或者说性能最好的第一DPD参数信息作为目标DPD参数信息。从而使发射端装置根据目标DPD参数信息执行DPD后,可以获取到最高的性能提升。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由发射端装置实现的方法和/或步骤,也可以由可用于发射端装置的部件(例如芯片或者电路)实现,由第一接收端装置实现的方法和/或步骤,也可以由可用于第一接收端装置的部件实现。
上述主要从各个装置之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的发射端装置,或者包含上述发射端装置的装置,或者为可用于发射端装置的部件;或者,该通信装置可以为上述方法实施例中的第一接收端装置,或者包含上述第一接收端装置的装置,或者为可用于第一接收端装置的部件。 可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的发射端装置为例。图11示出了一种发射端装置110的结构示意图。该发射端装置110包括处理模块1101和收发模块1102。所述收发模块1102,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1102,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由发射端装置执行的接收和发送类的步骤,处理模块1101,可以用于执行上述方法实施例中由发射端装置执行的除接收和发送类步骤之外的其他步骤。
例如,处理模块1101,用于获取第一DPD参数信息。收发模块1102,用于接收来自第一接收端装置的性能指标信息,性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该发射端装置110以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该发射端装置110可以采用图6所示的通信装置600的形式。
比如,图6所示的通信装置600中的处理器601可以通过调用存储器603中存储的计算机执行指令,使得通信装置600执行上述方法实施例中的DPD参数信息的性能评估方法。
具体的,图11中的处理模块1101和收发模块1102的功能/实现过程可以通过图6所示的通信装置600中的处理器601调用存储器603中存储的计算机执行指令来实现。或者,图11中的处理模块1101的功能/实现过程可以通过图6所示的通信装置600中的处理器601调用存储器603中存储的计算机执行指令来实现,图11中的收发模块1102的功能/实现过程可以通过图6所示的通信装置600中的通信接口604来实现。
由于本实施例提供的发射端装置110可执行上述的DPD参数信息的性能评估方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的第一接收端装置为例。图12示出 了一种第一接收端装置120的结构示意图。该第一接收端装置120包括处理模块1201和收发模块1202。所述收发模块1202,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块1202,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由第一接收端装置执行的接收和发送类的步骤,处理模块1201,可以用于执行上述方法实施例中由第一接收端装置执行的除接收和发送类步骤之外的其他步骤。
例如,处理模块1201,用于确定性能指标信息;性能指标信息用于表征第一性能指标,第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标。收发模块1202,用于向发射端装置发送性能指标信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一接收端装置120以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一接收端装置120可以采用图6所示的通信装置600的形式。
比如,图6所示的通信装置600中的处理器601可以通过调用存储器603中存储的计算机执行指令,使得通信装置600执行上述方法实施例中的DPD参数信息的性能评估方法。
具体的,图12中的处理模块1201和收发模块1202的功能/实现过程可以通过图6所示的通信装置600中的处理器601调用存储器603中存储的计算机执行指令来实现。或者,图12中的处理模块1201的功能/实现过程可以通过图6所示的通信装置600中的处理器601调用存储器603中存储的计算机执行指令来实现,图12中的收发模块1202的功能/实现过程可以通过图6所示的通信装置600中的通信接口604来实现。
由于本实施例提供的第一接收端装置120可执行上述的DPD参数信息的性能评估方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
可选的,本申请实施例还提供一种通信装置,该通信装置可以包括处理器和接口电路,该接口电路,用于与该通信装置之外的其他模块通信,该处理器可以用于执行计算机程序或指令,以使该通信装置实现上述任一方法实施例中的方法。在一些场景下,该通信装置可以为芯片或芯片系统。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种数字预失真DPD参数信息的性能评估方法,其特征在于,所述方法包括:
    发射端装置获取第一DPD参数信息;
    所述发射端装置接收来自第一接收端装置的性能指标信息,所述性能指标信息用于表征第一性能指标,所述第一性能指标为根据所述第一DPD参数信息执行DPD后得到的性能指标。
  2. 根据权利要求1所述的方法,其特征在于,所述性能指标信息包括以下至少一项:
    第一性能指标信息和第二性能指标信息;所述第一性能指标信息用于表征所述第一性能指标的数值,所述第二性能指标信息用于表征所述第一性能指标的增益。
  3. 根据权利要求2所述的方法,其特征在于,所述第二性能指标信息包括:
    所述第一性能指标的数值信息和第二性能指标的数值信息;
    或者,所述第一性能指标的数值信息相比于所述第二性能指标的数值信息的变量信息;所述第二性能指标为根据所述第一DPD参数信息执行DPD前的性能指标。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一性能指标包括以下至少一项:
    误差向量幅度EVM、信干噪比SINR、信噪比SNR、可支持的调制编码方式MCS、信道质量指示CQI、可支持的最高调制阶数、均方误差MSE、归一化均方误差NMSE、邻道泄露比ACLR和零子载波功率。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述发射端装置接收来自第一接收端装置的性能指标信息之前,所述方法还包括;
    所述发射端装置向所述第一接收端装置发送第一配置信息;所述第一配置信息用于指示第一时频资源;所述第一时频资源用于所述第一接收端装置获取所述性能指标信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在所述发射端装置接收来自第一接收端装置的性能指标信息之前,所述方法还包括;
    所述发射端装置向所述第一接收端装置发送第二配置信息;所述第二配置信息指示用于所述第一接收端装置发送所述性能指标信息的配置信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第二配置信息包括第二时频资源信息;所述第二时频资源为所述第一接收端装置发送所述性能指标信息所需的时频资源。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二配置信息包括第一指示信息;所述第一指示信息用于指示所述第一接收端装置所需发送的所述第一性能指标。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述性能指标信息与以下至少一项信息相关联:
    第一时频资源信息和所述第一DPD参数信息;其中,所述第一时频资源用于所述第一接收端装置获取所述性能指标信息。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述发射端装置获取第一DPD参数信息包括:
    所述发射端装置接收来自所述第一接收端装置的所述第一DPD参数信息。
  11. 根据权利要求10所述的方法,其特征在于,在所述发射端装置接收来自所述第一接收端装置的所述第一DPD参数信息之前,所述方法还包括:
    所述发射端装置向所述第一接收端装置发送第三配置信息;所述第三配置信息用于指示第三时频资源;所述第三时频资源用于所述第一接收端装置获取所述第一DPD参数信息。
  12. 根据权利要求1-9任一项所述的方法,其特征在于,所述发射端装置获取第一DPD参数信息包括:
    所述发射端装置接收来自第二接收端装置的所述第一DPD参数信息;
    或者,所述发射端装置根据预设算法确定所述第一DPD参数信息。
  13. 根据权利要求12所述的方法,其特征在于,在所述发射端装置接收来自第一接收端装置的性能指标信息之前,所述方法还包括:
    所述发射端装置向所述第一接收端装置发送所述第一DPD参数信息;所述第一DPD参数信息用于所述第一接收端装置确定所述性能指标信息。
  14. 根据权利要求12所述的方法,其特征在于,在所述发射端装置接收来自第一接收端装置的性能指标信息之前,所述方法还包括:
    所述发射端装置向所述第一接收端装置发送第二信号;所述第二信号为所述发射端装置根据所述第一DPD参数信息执行DPD后得到的信号;所述第二信号用于所述第一接收端装置确定所述性能指标信息;
    或者,所述发射端装置向所述第一接收端装置发送第一信号和所述第二信号;所述第一信号为所述发射端装置根据所述第一DPD参数信息执行DPD前的信号;所述第一信号和第二信号用于所述第一接收端装置确定所述性能指标信息。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,所述第一性能指标中至少一项对应的性能指标信息是所述第一接收端装置根据所述第一DPD参数信息和预设算法计算得到的;
    和/或,所述第一性能指标中至少一项对应的性能指标信息是所述第一接收端装置根据所述第一DPD参数信息和第一时频资源进行测量得到的。
  16. 根据权利要求15所述的方法,其特征在于,所述第一性能指标中至少一项对应的性能指标信息是所述第一接收端装置根据所述第一DPD参数信息和第一时频资源进行测量得到的包括:
    所述第一性能指标中至少一项对应的性能指标信息是所述第一接收端装置在所述第一时频资源上测量第三信号得到的,所述第三信号是所述第一接收端装置根据所述第一DPD参数信息对第四信号执行DPD后得到的信号;所述第四信号为所述第一接收端装置接收到的与第一信号对应的信号;所述第一信号为所述发射端装置根据所述第一DPD参数信息执行DPD前的信号。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述方法还包括:
    所述发射端装置根据所述性能指标信息,确定所述发射端装置的发射参数。
  18. 根据权利要求17所述的方法,其特征在于,所述发射端装置根据所述性能指标信息确定所述发射端装置的发射参数包括:
    所述发射端装置的发射功率和所述发射端装置可支持的调制编码方式MCS。
  19. 根据权利要求17或18所述的方法,其特征在于,所述发射端装置根据所述性能指标信息确定所述发射端装置的发射参数包括:
    所述发射端装置根据所述性能指标信息,确定所述发射端装置是否采用所述第一DPD参数信息。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,在所述发射端装置接收多个性能指标信息的情况下,所述发射端装置根据所述性能指标信息确定所述发射端装置的发射参数包括:
    所述发射端装置根据所述多个性能指标信息,从所述多个性能指标信息分别对应的多个第一DPD参数信息中,选择目标DPD参数信息。
  21. 一种数字预失真DPD参数信息的性能评估方法,其特征在于,所述方法包括:
    第一接收端装置确定性能指标信息;所述性能指标信息用于表征第一性能指标,所述第一性能指标为根据第一DPD参数信息执行DPD后得到的性能指标;
    所述第一接收端装置向发射端装置发送所述性能指标信息。
  22. 根据权利要求21所述的方法,其特征在于,所述性能指标信息包括以下至少一项:
    第一性能指标信息和第二性能指标信息;所述第一性能指标信息用于表征所述第一性能指标的数值,所述第二性能指标信息用于表征所述第一性能指标的增益。
  23. 根据权利要求22所述的方法,其特征在于,所述第二性能指标信息包括:
    所述第一性能指标的数值信息和第二性能指标的数值信息;
    或者,所述第一性能指标的数值信息相比于所述第二性能指标的数值信息的变量信息;所述第二性能指标为根据所述第一DPD参数信息执行DPD前的性能指标。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,所述第一性能指标包括以下至少一项:
    误差向量幅度EVM、信干噪比SINR、信噪比SNR、可支持的调制编码方式MCS、信道质量指示CQI、可支持的最高调制阶数、均方误差MSE、归一化均方误差NMSE、邻道泄露比ACLR和零子载波功率。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,所述方法还包括:
    所述第一接收端装置根据预设算法确定第一DPD参数信息;
    或者,所述第一接收端装置接收来自所述发射端装置的第一DPD参数信息。
  26. 根据权利要求25所述的方法,其特征在于,所述第一接收端装置确定性能指标信息包括:
    所述第一接收端装置根据所述第一DPD参数信息和预设算法计算得到所述第一性能指标中至少一项对应的性能指标信息;
    和/或,所述第一接收端装置根据所述第一DPD参数信息和第一时频资源进行测量得到所述第一性能指标中至少一项对应的性能指标信息。
  27. 根据权利要求26所述的方法,其特征在于,所述第一接收端装置根据所述第 一DPD参数信息和第一时频资源进行测量得到所述第一性能指标中至少一项对应的性能指标信息包括:
    所述第一接收端装置根据所述第一DPD参数信息对第四信号执行DPD后得到第三信号;所述第四信号与所述发射端装置向所述第一接收端装置发送的第一信号对应,为所述第一接收端装置接收到的信号;所述第一信号为所述发射端装置根据所述第一DPD参数信息执行DPD前的信号;
    所述第一接收端装置在所述第一时频资源上测量第三信号得到所述第一性能指标中至少一项对应的性能指标信息。
  28. 根据权利要求21-24任一项所述的方法,其特征在于,所述第一接收端装置确定性能指标信息包括:
    所述第一接收端装置接收来自所述发射端装置的第二信号;所述第二信号为所述发射端装置根据所述第一DPD参数信息执行DPD后得到的信号;
    所述第一接收端装置测量所述第二信号,确定所述性能指标信息;
    或者,所述第一接收端装置接收来自所述发射端装置的第一信号和所述第二信号;所述第一信号为所述发射端装置根据所述第一DPD参数信息执行DPD前的信号;
    所述第一接收端装置测量所述第一信号和所述第二信号,确定所述性能指标信息。
  29. 根据权利要求21-28任一项所述的方法,其特征在于,在所述第一接收端装置确定性能指标信息之前,所述方法还包括;
    所述第一接收端装置接收来自所述发射端装置的第一配置信息;所述第一配置信息用于指示第一时频资源;所述第一时频资源用于所述第一接收端装置获取所述性能指标信息。
  30. 根据权利要求21-29任一项所述的方法,其特征在于,在所述第一接收端装置确定性能指标信息之前,所述方法还包括;
    所述第一接收端装置接收来自所述发射端装置的第二配置信息;所述第二配置信息指示用于所述第一接收端装置发送所述性能指标信息的配置信息。
  31. 根据权利要求30所述的方法,其特征在于,所述第二配置信息包括第二时频资源信息;所述第二时频资源为所述第一接收端装置发送所述性能指标信息所需的时频资源。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第二配置信息包括第一指示信息;所述第一指示信息用于指示所述第一接收端装置所需发送的所述第一性能指标。
  33. 根据权利要求21-32任一项所述的方法,其特征在于,所述第一接收端装置向发射端装置发送所述性能指标信息包括:
    所述第一接收端装置向发射端装置发送与以下至少一项信息相关联的所述性能指标信息:第一时频资源信息和所述第一DPD参数信息;其中,所述第一时频资源用于所述第一接收端装置获取所述性能指标信息。
  34. 根据权利要求25所述的方法,其特征在于,在所述第一接收端装置根据预设算法确定第一DPD参数信息的情况下,所述方法还包括:
    所述第一接收端装置向所述发射端装置发送所述第一DPD参数信息。
  35. 根据权利要求34所述的方法,其特征在于,在所述第一接收端装置向所述发射端装置发送所述第一DPD参数信息之前,所述方法还包括:
    所述第一接收端装置接收来自所述发射端装置的第三配置信息;所述第三配置信息用于指示第三时频资源;所述第三时频资源用于所述第一接收端装置获取所述第一DPD参数信息。
  36. 一种通信装置,其特征在于,包括:处理器以及存储器,所述存储器用于存储计算机执行指令,所述处理器用于执行所述存储器存储的所述指令;当所述指令被所述处理器运行时,使得所述通信装置执行权利要求1-20中任一项所述的方法,或者,使得所述通信装置实现权利要求21-35中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时使得所述计算机执行权利要求1-20中任一项所述的方法,或者,使得所述计算机执行权利要求21-35中任一项所述的方法。
  38. 一种通信系统,其特征在于,所述通信系统包括发射端装置和第一接收端装置;所述发射端装置,用于执行权利要求1-20中任一项所述的方法;所述第一接收端装置,用于执行权利要求21-35中任一项所述的方法。
PCT/CN2023/086035 2022-04-01 2023-04-03 一种dpd参数信息的性能评估方法、装置及系统 WO2023186176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210348914.1 2022-04-01
CN202210348914.1A CN116939686A (zh) 2022-04-01 2022-04-01 一种dpd参数信息的性能评估方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023186176A1 true WO2023186176A1 (zh) 2023-10-05

Family

ID=88199515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086035 WO2023186176A1 (zh) 2022-04-01 2023-04-03 一种dpd参数信息的性能评估方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116939686A (zh)
WO (1) WO2023186176A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166007A (zh) * 2019-05-08 2019-08-23 东南大学 基于超前项模型的宽带功率放大器数字预失真系统及方法
US10581469B1 (en) * 2017-04-17 2020-03-03 DeepSig Inc. Machine learning-based nonlinear pre-distortion system
CN111656682A (zh) * 2018-02-12 2020-09-11 华为技术有限公司 功率调整的方法和装置
CN113098569A (zh) * 2019-12-23 2021-07-09 中兴通讯股份有限公司 数据传输方法及装置、存储介质
CN113949350A (zh) * 2021-10-20 2022-01-18 上海大学 基于基带-射频联合优化的数字预失真方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581469B1 (en) * 2017-04-17 2020-03-03 DeepSig Inc. Machine learning-based nonlinear pre-distortion system
CN111656682A (zh) * 2018-02-12 2020-09-11 华为技术有限公司 功率调整的方法和装置
CN110166007A (zh) * 2019-05-08 2019-08-23 东南大学 基于超前项模型的宽带功率放大器数字预失真系统及方法
CN113098569A (zh) * 2019-12-23 2021-07-09 中兴通讯股份有限公司 数据传输方法及装置、存储介质
CN113949350A (zh) * 2021-10-20 2022-01-18 上海大学 基于基带-射频联合优化的数字预失真方法及系统

Also Published As

Publication number Publication date
CN116939686A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN110035441B (zh) 确定波束的方法及通信装置
US8295335B2 (en) Techniques to control uplink power
US10334534B2 (en) Multiuser uplink power control with user grouping
WO2020063974A1 (zh) 功率指示方法及装置
US11564213B2 (en) Communication method and communications apparatus
US7869809B2 (en) Radio resource measurement and estimation
WO2019217688A1 (en) Range measurement with closed-loop feedback on rtt quality
CN114128198A (zh) 用于报告信号与干扰加噪声比的资源管理
KR20200101828A (ko) WiFi 송신기를 포함하는 시스템 및 WiFi 송신기 동작 방법
KR20160144167A (ko) 다중 사용자 다중 입력 다중 출력 방식을 지원하는 통신 시스템에서 송신 빔 정보 및 채널 품질 정보 송/수신 장치 및 방법
US20190058545A1 (en) Techniques for distortion correction at a receiver device
US20230209478A1 (en) Emission restricted transmission of reference signals
US9577728B1 (en) Multiple user MIMO rate prediction based on single user SNR feedback
CN102742165B (zh) 改进的直流偏移估计
KR102454033B1 (ko) 무선 통신 시스템에서 안테나의 정재파비 측정을 위한 장치 및 방법
US20240023056A1 (en) Positioning method and apparatus
WO2023186176A1 (zh) 一种dpd参数信息的性能评估方法、装置及系统
US11057850B1 (en) Transmit power control for null data packets
WO2021008353A1 (zh) 用于信道测量的接收参数的确定方法和装置
CN111355627B (zh) 资源上报的方法及装置
WO2023202205A1 (zh) 通信信号的传输方法、装置、电子设备和存储介质
US20240094381A1 (en) Station adaptive ranging
US11889335B2 (en) Downlink channel quality report for narrowband internet of things user equipment
US11595910B2 (en) Devices and methods for disconnection protection
WO2024016903A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778540

Country of ref document: EP

Kind code of ref document: A1