WO2023202205A1 - 通信信号的传输方法、装置、电子设备和存储介质 - Google Patents

通信信号的传输方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023202205A1
WO2023202205A1 PCT/CN2023/077249 CN2023077249W WO2023202205A1 WO 2023202205 A1 WO2023202205 A1 WO 2023202205A1 CN 2023077249 W CN2023077249 W CN 2023077249W WO 2023202205 A1 WO2023202205 A1 WO 2023202205A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna paths
transmission
paths
channel quality
Prior art date
Application number
PCT/CN2023/077249
Other languages
English (en)
French (fr)
Inventor
李军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023202205A1 publication Critical patent/WO2023202205A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Definitions

  • the embodiments of the present application relate to the field of communication technology, and specifically relate to a communication signal transmission method, device, electronic equipment and storage medium.
  • routers can include multiple antennas.
  • the transmit power of the antenna path corresponding to each antenna is the same, and the data transmitted in the antenna path corresponding to each antenna is also the same. This can be achieved without increasing spectrum resources and antenna transmit power. Improve system channel capacity.
  • the transmission paths (such as refraction paths and/or reflection paths) that the electromagnetic waves pass through are also different. Therefore, the communication signal received by the terminal will have different degrees of signal fading.
  • the signal fading corresponding to the communication signals they carry is particularly obvious, which can easily cause the communication signals sent by the router to be unable to be received by the terminal, reducing the communication efficiency between the router and the terminal.
  • Embodiments of the present application provide a communication signal transmission method, device, electronic device, and storage medium.
  • Embodiments of the present application provide a communication signal transmission method.
  • the method includes: determining transmission parameters corresponding to each of the at least two antenna paths based on the obtained channel quality of at least two antenna paths; Transmission parameters corresponding to each antenna path in the transmitter are used to transmit communication signals to the terminal on at least two antenna paths.
  • Embodiments of the present application provide a communication signal transmission device.
  • the device includes: a determination module configured to determine the transmission parameters corresponding to each of the at least two antenna paths based on the acquired channel quality of the at least two antenna paths;
  • the transmission module is configured to transmit communication signals to the terminal on at least two antenna paths according to transmission parameters corresponding to each of the at least two antenna paths.
  • Embodiments of the present application provide an electronic device, including: one or more processors; and a memory on which one or more programs are stored. When one or more programs are executed by one or more processors, one or more A processor implements any communication signal transmission method in the embodiments of the present application.
  • Embodiments of the present application provide a readable storage medium that stores a computer program.
  • the computer program is executed by a processor, any communication signal transmission method in the embodiments of the present application is implemented.
  • FIG. 1 shows a schematic flowchart of a communication signal transmission method provided by an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of a method for updating transmission parameters corresponding to an antenna path provided by an embodiment of the present application.
  • Figure 3 shows a block diagram of a communication signal transmission device provided by an embodiment of the present application.
  • Figure 4 shows a block diagram of a communication signal transmission system provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of the working method of the communication signal transmission system provided by the embodiment of the present application.
  • FIG. 6 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing communication signal transmission methods and apparatuses according to embodiments of the present application.
  • Wi-Fi 6 The sixth generation wireless network technology (Wi-Fi 6) is a wireless LAN technology created by the Wi-Fi Alliance based on the IEEE 802.11 standard of the Institute of Electrical and Electronics Engineers (IEEE). Wi-Fi 6 can allow the device to communicate with up to 8 devices, and the highest theoretical communication rate can reach 9.6Gbps. In addition, Wi-Fi 6 routers support multi-antenna functions, which can increase the communication channel capacity of the router without increasing spectrum resources and antenna transmission power.
  • the shorter the wavelength of the electromagnetic wave the greater the signal loss during the transmission process, so that the attenuation of Wi-Fi 6 routers with short wavelength characteristics through obstacles becomes larger, and Wi-Fi 6
  • the router's wall penetration capability is far lower than that of routers in the 2.4G band.
  • each antenna path is compared to a "road”, some roads are smoother and some are more congested. If the router knows the real-time traffic conditions of these "roads", when the router needs to send data, it can send more data on the smooth "roads” and less on the congested "roads", thereby optimizing the data sending method and improving the data efficiency. Transmission rate.
  • FIG. 1 shows a schematic flowchart of a communication signal transmission method provided by an embodiment of the present application.
  • the communication signal transmission method can be applied to a communication signal transmission device, and the communication signal transmission device can be installed in a base station or a router.
  • the communication signal transmission method in the embodiment of the present application includes but is not limited to the following steps.
  • Step S101 Determine the transmission parameters corresponding to each of the at least two antenna paths based on the acquired channel quality of the at least two antenna paths.
  • Step S102 Transmit communication signals to the terminal on at least two antenna paths according to transmission parameters corresponding to each of the at least two antenna paths.
  • the channel quality of at least two antenna paths is monitored, and different adjustment methods can be quickly adopted for different antenna paths to adapt to different transmission paths ( (for example, refraction path and/or reflection path, etc.) transmission requirements; based on the obtained channel quality of at least two antenna paths, determine the transmission parameters corresponding to each of the at least two antenna paths, so that the corresponding transmission parameters of each antenna path can be
  • the transmission parameters are more in line with the transmission requirements of communication signals, thereby improving the transmission quality of communication signals; according to the transmission parameters corresponding to the antenna paths, transmitting communication signals to the terminal on at least two antenna paths can reduce the risk caused by the short wavelength of electromagnetic waves.
  • dynamically adjust the transmission parameters of each antenna path to improve the communication efficiency between communication devices.
  • transmitting communication signals to the terminal on at least two antenna paths may be using at least two antenna paths simultaneously.
  • Send communication signals to the terminal it can also use at least two antenna paths to repeatedly send communication signals to the terminal in sequence, that is, one antenna path takes over from one antenna path to transmit the communication signal in order.
  • the communication signal it transmits can be part of the communication signal to be transmitted, and multiple antenna paths jointly complete the transmission of the communication signal to be transmitted; it can also be the antenna path with the highest communication level among the multiple antenna paths. to transmit all communication signals to be transmitted, thereby improving the communication efficiency of communication equipment.
  • the same detection request message is sent on multiple antenna paths with fixed transmission power, so that different mobile terminals can determine the corresponding signals of different antenna paths based on the signal strength of the communication signals received in different antenna paths.
  • the channel quality the mobile terminal can generate a detection response message based on the channel quality corresponding to different antenna paths, the identification of the mobile terminal, and the real-time location information of the mobile terminal, and send the detection response message to the router.
  • the router obtains the channel quality corresponding to each antenna path fed back by different mobile terminals, it can learn the channel quality corresponding to the different antenna paths, and then adjust the transmission parameters corresponding to the different antenna paths so that the corresponding The adjusted transmission parameters are more in line with the transmission requirements of communication signals.
  • antenna paths with good channel quality can have better communication resources to improve the transmission quality and transmission rate of communication signals. It can also reduce the occupation of communication resources by antenna paths with poor channel quality and improve the utilization efficiency of communication resources.
  • the communication information carried by the communication signal includes: downlink service information.
  • the downlink service information may include: downloading at least one of video files, voice data, and image data.
  • the real-time location of the mobile terminal and the multiple antenna paths of the router are dynamically matched, thereby improving the downlink service of the mobile terminal.
  • the speed of information processing is
  • the embodiment of the present application also provides another implementation, in which the transmission parameters corresponding to each of the at least two antenna paths are determined based on the acquired channel quality of the at least two antenna paths in step S101, and the following method can be used accomplish.
  • the signal quality of one of the at least two antenna paths exceeds a preset channel quality threshold, it can be determined that the communication level corresponding to the antenna path is higher, that is, the communication quality corresponding to the antenna path is better.
  • the signal quality of one of the at least two antenna paths is lower than the preset channel quality threshold, it can be determined that the communication level corresponding to the antenna path is low, that is, the communication quality corresponding to the antenna path is poor.
  • the value of the transmission parameter is proportional to the communication level corresponding to the antenna path.
  • the larger the value of the transmission parameter the higher the communication level corresponding to the corresponding antenna path, which indicates that the communication quality corresponding to the antenna path is better.
  • the value of the transmission parameter is smaller, the communication level corresponding to the corresponding antenna path is lower, indicating that the communication quality corresponding to the antenna path is worse.
  • determining the transmission parameters corresponding to each of the at least two antenna paths based on the communication level of each of the at least two antenna paths includes: based on a preset parameter threshold and each of the at least two antenna paths.
  • the communication level corresponding to the antenna path adjusts the preset transmission parameters of each of the at least two antenna paths respectively, and generates target transmission parameters corresponding to each of the at least two antenna paths.
  • the preset transmission parameters are preset minimum standard parameters of transmission parameters corresponding to the antenna path.
  • Communication signals can also be transmitted in the antenna path through the preset transmission parameters, but different antenna paths (such as refraction paths and/or reflection paths, etc.) correspond to different channel attenuations. Therefore, based on the preset parameter threshold and at least two The communication level corresponding to each antenna path in the antenna path is adjusted respectively to the preset transmission parameters of each antenna path in at least two antenna paths, so that different antenna paths can obtain targets that match their refractive characteristics and/or reflection characteristics. Transmission parameters to improve the transmission performance of the antenna path.
  • an antenna path with a higher communication level can be matched with better transmission parameters, such as a wider transmission bandwidth, and/or higher transmit power, etc., so that the antenna path with a higher communication level can obtain More communication resources improve the transmission efficiency of communication signals through the antenna path.
  • the transmission parameters corresponding to the antenna path with a lower communication level can be reduced, for example, reducing the transmission bandwidth of the antenna path with a lower communication level to obtain the target transmission bandwidth; and/or reducing the antenna with a lower communication level.
  • the transmission power of the path can be obtained to obtain the target transmission power, so that communication resources can be reasonably utilized and communication efficiency can be improved.
  • the transmission parameters include: at least one of the number of modulation coding bits corresponding to the data symbols in the communication signal, the transmission power corresponding to the antenna path, and the transmission bandwidth corresponding to the at least two antenna paths.
  • the number of modulation encoding bits corresponding to the data symbols in the communication signal is the number of binary characters used by the router's radio frequency transceiver chip when adjusting and encoding the data symbols.
  • the transmit power corresponding to the antenna path can be stored in the router's memory to facilitate the call of the RF transceiver chip.
  • the transmission bandwidth is used to characterize the data transmission capability of the communication signal transmission corresponding to the antenna path, and can identify the amount of data passing through the communication link of the antenna path per unit time.
  • Characterizing transmission parameters through parameters in different dimensions can provide a more comprehensive measurement of the communication transmission performance of the antenna path, thereby adjusting the transmission parameters in different dimensions so that the adjusted transmission parameters can be more suitable for the transmission requirements of communication signals. , improve the transmission efficiency of the antenna path.
  • the modulation method for the data symbols in the communication signal can be implemented in the following manner: modulate the acquired communication signal to be transmitted according to a preset modulation algorithm to obtain a modulated communication signal; according to the preset modulation algorithm Transmit power and preset transmission bandwidth to transmit modulated communication signals on at least two antenna paths.
  • the preset modulation algorithm may include: an analog modulation algorithm and/or a digital modulation algorithm.
  • Analog modulation algorithms include: Amplitude Modulation (AM) algorithm and Frequency Modulation (FM) algorithm.
  • the digital modulation algorithm includes: at least one of an amplitude keying algorithm, a frequency shift keying algorithm, a phase shift keying algorithm and a quadrature amplitude modulation algorithm.
  • the communication signal to be transmitted can be modulated so that the adjusted communication signal is convenient for transmission; the modulated communication signal is transmitted on at least two antenna paths according to the preset transmission power and preset transmission bandwidth.
  • the adjusted communication signal can be quickly received by the terminal, so that the terminal can quickly obtain the information it needs.
  • the transmission parameters corresponding to each antenna path may also be configured according to the real-time location of the terminal.
  • the data is updated to make the updated transmission parameters more suitable for the transmission requirements of communication signals.
  • FIG. 2 shows a schematic flowchart of a method for updating transmission parameters corresponding to an antenna path provided by an embodiment of the present application.
  • the method for updating the transmission parameters corresponding to the antenna path can be applied to a communication signal transmission device, and the communication signal transmission device can be installed in a base station or a router.
  • the method for updating the transmission parameters corresponding to the antenna paths in the embodiment of the present application includes but is not limited to the following steps.
  • Step S201 Obtain location update information fed back by the terminal.
  • the location update information includes: channel quality of at least two antenna paths of the terminal at the updated location.
  • the updated location in the location update information may be latitude and longitude information, or location information of a certain landmark building, etc.
  • the real-time location information of the terminal can be obtained, which facilitates matching of a better antenna path for the terminal.
  • the location update information not only includes the updated location information of the terminal, but also includes the channel quality (for example, Signal to Interference plus Noise Ratio, SINR) of at least two antenna paths corresponding to the updated location information. , Reference Signal Receiving Power (RSRP) and other information) to determine whether each antenna path is suitable for the transmission of communication signals.
  • SINR Signal to Interference plus Noise Ratio
  • Step S202 Update the transmission parameters corresponding to each of the at least two antenna paths according to the location update information.
  • the update of the transmission parameters corresponding to each of the at least two antenna paths can be implemented by using any method of determining the transmission parameters corresponding to the antenna paths in the embodiments of the present application, for example, step S101 shown in Figure 1 The methods shown etc.
  • the antenna path between the terminal and the router will also change accordingly. For example, there are more corresponding refraction points in the refraction path, and/or there are more obstacles in the reflection path, etc.
  • the above-mentioned changes in the refraction path and/or reflection path cause the channel quality of the antenna path to also change. Therefore, it is necessary to adjust the transmission parameters corresponding to each of the at least two antenna paths according to the channel quality of at least two antenna paths of different terminals at the updated positions, so that the adjusted transmission parameters can be more accurate. Suitable for transmission of communication signals.
  • the transmit power corresponding to the antenna path can be increased, the transmission bandwidth corresponding to the antenna path can be increased, and a higher number of modulation coding bits can be used for transmission in the antenna path.
  • the communication signal is adjusted and encoded, etc., thereby improving the transmission quality of the communication signal.
  • At least one of the following adjustments can be made: reducing the transmission power corresponding to the antenna path, reducing the transmission bandwidth corresponding to the antenna path, and reducing the number of modulation coding bits. , to update the transmission parameters corresponding to the antenna path with poor channel quality, so that the antenna path with poor channel quality does not occupy too many communication resources, and improves the utilization efficiency of communication resources.
  • the terminal can still use the appropriate pair of at least two antenna paths even when the real-time location changes. Communication signals are transmitted, and the updated transmission parameters corresponding to at least two antenna paths are more closely matched with the real-time location of the terminal, so that the terminal can obtain better communication services and improve communication quality.
  • the method before performing step S101 according to the acquired channel quality of the at least two antenna paths, determining the transmission parameters corresponding to each of the at least two antenna paths, the method further includes: using at least two antenna paths. Send detection request messages to the terminal at the same time, or use at least two antenna paths to send detection request messages to the terminal in sequence; in response to the detection response message sent by the terminal, obtain the channel quality corresponding to each antenna path in the at least two antenna paths.
  • the detection request message is used to detect the transmission environment of the antenna path, so that the terminal receives the detection request.
  • different antenna paths can be measured to obtain the channel quality corresponding to different antenna paths.
  • the router may simultaneously send the detection request message in multiple different antenna paths with the same transmit power, so as to make the detection of multiple different antenna paths more accurate.
  • the terminal feeds back the channel quality corresponding to each of the at least two antenna paths to the router, so that the router can clarify the transmission status of each antenna path, such as channel attenuation, etc., to facilitate subsequent processing of the antenna paths differently.
  • the method before performing step S101 to determine the transmission parameters corresponding to each of the at least two antenna paths based on the obtained channel qualities of the at least two antenna paths, the method further includes: obtaining the parameters of the multiple antenna paths.
  • Channel quality select at least two antenna paths from the multiple antenna paths as the transmission paths to be used based on the preset channel quality threshold and the channel quality of the multiple antenna paths.
  • the transmission path to be used is used to transmit communication signals.
  • At least two antenna paths whose channel quality is greater than or equal to the preset channel quality threshold can be selected from multiple antenna paths as the transmission paths to be used, thereby eliminating antenna paths with different channel qualities and using at least two antenna paths with excellent channel quality.
  • the antenna path is used as the transmission path to be used to transmit communication signals, which can enable better allocation of communication resources and improve communication quality.
  • Figure 3 shows a block diagram of a communication signal transmission device provided by an embodiment of the present application. As shown in Figure 3.
  • the communication signal transmission device includes but is not limited to the following modules.
  • the determination module 301 is configured to determine the transmission parameters corresponding to each of the at least two antenna paths based on the acquired channel quality of the at least two antenna paths.
  • the transmission module 302 is configured to transmit communication signals to the terminal on at least two antenna paths according to the transmission parameters corresponding to each of the at least two antenna paths.
  • the communication signal transmission device is applied to a router.
  • the channel quality of at least two antenna paths is monitored, and different adjustment methods can be quickly adopted for different antenna paths to adapt to different transmission paths ( (for example, refraction path and/or reflection path, etc.) transmission requirements;
  • the determination module determines the transmission parameters corresponding to each of the at least two antenna paths based on the obtained channel quality of at least two antenna paths, so that each antenna path can The corresponding transmission parameters are more in line with the transmission requirements of communication signals, thereby improving the transmission quality of communication signals;
  • the transmission module transmits communication signals to the terminal on at least two antenna paths based on the transmission parameters corresponding to the antenna paths, which can reduce the risk of electromagnetic waves having very long wavelengths.
  • the problem of signal fading caused by this method is to dynamically adjust the transmission parameters of each antenna path to improve the communication efficiency between communication devices.
  • a logical unit can be a physical unit, or a part of a physical unit, or can be implemented as a combination of multiple physical units.
  • units that are not closely related to solving the technical problems raised by the embodiments of the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment. unit.
  • Figure 4 shows a block diagram of a communication signal transmission system provided by an embodiment of the present application. As shown in Figure 4.
  • the communication Signal transmission systems include but are not limited to the following equipment.
  • Router 410 and multiple mobile terminals located in different geographical locations eg, first mobile terminal 421, second mobile terminal 422, etc.
  • the router 410 includes N antennas, and N is an integer greater than or equal to 2.
  • FIG. 4 shows four antennas, such as a first antenna 411, a second antenna 412, a third antenna 413 and a fourth antenna 414.
  • the router 410 can establish multiple antenna paths with the first mobile terminal 421 through multiple antennas. For example, the router 410 establishes antenna path 1 with the first mobile terminal 421 through the first antenna 411, and the router 410 establishes antenna path 1 with the first mobile terminal 421 through the second antenna 412. Antenna path 2 is established between a mobile terminal 421, antenna path 3 is established between the router 410 and the first mobile terminal 421 through the third antenna 413, and an antenna path is established between the router 410 and the first mobile terminal 421 through the fourth antenna 414. 4.
  • the router 410 can also establish multiple antenna paths with the second mobile terminal 422 through multiple antennas; for example, the router 410 establishes the antenna path 5 between the first antenna 411 and the second mobile terminal 422, and the router 410 establishes the antenna path 5 with the second mobile terminal 422 through the second antenna 412. Antenna path 6 is established between the second mobile terminal 422, antenna path 7 is established between the router 410 and the second mobile terminal 422 through the third antenna 413, and a third antenna path 7 is established between the router 410 and the second mobile terminal 422 through the fourth antenna 414.
  • Four antenna paths8 are established.
  • communication signals are simultaneously transmitted on the first antenna 411, the second antenna 412, the third antenna 413 and the fourth antenna 414 respectively with fixed transmission power, or the first antenna 411, the second antenna 412, the third antenna 414 are used.
  • the three antennas 413 and the fourth antenna 414 sequentially send communication signals to the terminal, so that the first mobile terminal 421 and/or the second mobile terminal 422 can determine the corresponding signals of different antenna paths according to the signal strengths of the communication signals received in the different antenna paths. channel quality; and then feed back the channel quality corresponding to different antenna paths to the router 410.
  • the router 410 When the router 410 obtains the channel quality corresponding to each antenna path fed back by the terminal, it can adjust the transmission parameters such as the transmission power and data capacity of different antennas to make the transmission parameters corresponding to different antenna paths more consistent with the transmission requirements of communication signals. ; Router 410 can improve the transmission quality of communication signals by using at least two antenna paths with better channel quality to transmit communication signals.
  • the antenna path can be adjusted by increasing the transmission power and/or increasing data capacity; while for an antenna path whose channel quality is less than the preset channel quality threshold, the antenna path can be adjusted by increasing the transmission power and/or increasing the data capacity.
  • the antenna path can be adjusted by reducing transmit power and/or reducing data capacity.
  • the router 410 will obtain the first Location update information fed back by the mobile terminal 421 and/or the second mobile terminal 422, where the location update information includes: at least two antenna paths of the first mobile terminal 421 and/or the second mobile terminal 422 at the updated location.
  • the channel quality of It is more conducive to the transmission of communication signals; and on antenna paths with poor channel quality (for example, antenna paths with channel quality far less than the preset channel quality threshold), the communication signals transmitted are reduced.
  • the transmission parameters corresponding to each antenna path can be dynamically adjusted. At least one of the power and the transmission bandwidth corresponding to the at least two antenna paths) can dynamically match the router with different mobile terminals and improve the communication efficiency between communication devices.
  • FIG. 5 shows a schematic flowchart of the working method of the communication signal transmission system provided by the embodiment of the present application. As shown in Figure 5.
  • the working method of the communication signal transmission system includes but is not limited to the following steps.
  • Step S501 when the first mobile terminal 421 receives communication signals sent by the router 410 through different antenna paths, it measures the different antenna paths, obtains the channel quality corresponding to the different antenna paths, and feeds back the channel quality to the router 410 .
  • the router 410 first establishes communication connections with the first mobile terminal 421 and/or the second mobile terminal 422, and then the radio frequency chip of the router 410 modulates the communication signal that needs to be transmitted into a radio signal waveform, and passes it through a power amplifier (Power Amplifier). , PA) amplifies the modulated communication signal to obtain a processed communication signal; and then uses antenna resonance to send the processed communication signal to different mobile terminals.
  • a power amplifier Power Amplifier
  • Each antenna path corresponds to transmission power, transmission bandwidth, and transmission parameters such as the number of modulation coding bits corresponding to the data symbols in the communication signal it transmits. are different.
  • the transmission bandwidth corresponding to each antenna path is Y MHz
  • the transmit power is Adjustment provides basic parameters.
  • X and Y are real numbers
  • Z is an integer greater than or equal to 1.
  • the router 410 uses multiple antenna paths to transmit communication signals simultaneously to facilitate detection of the transmission environments corresponding to different antenna paths. That is, initially, the router uses a transmission bandwidth of Y MHz, a transmit power of X dBm, modulates each data symbol by encoding Z bits, and simultaneously transmits communication signals in multiple antenna paths.
  • the router 410 may also obtain the channel quality corresponding to different antenna paths by sending a probe request message.
  • the router 410 uses at least two antenna paths to send a detection request message to the first mobile terminal 421 and/or the second mobile terminal 422; in response to the detection response message sent by the first mobile terminal 421 and/or the second mobile terminal 422, Obtain the channel quality corresponding to each of the at least two antenna paths.
  • the channel quality it is clear that different antenna paths need to be adjusted in different ways to adapt to the transmission requirements of different transmission paths.
  • the channel quality includes: at least one of SINR, RSRP and received signal strength indicator (Received Signal Strength Indicator, RSSI).
  • the router 410 uses at least two antenna paths to send the detection request message to the first mobile terminal 421 and/or the second mobile terminal 422 at the same time; the router 410 can also use at least two antenna paths to send the detection request message to the first mobile terminal 421 and/or the second mobile terminal 422 in sequence.
  • the second mobile terminal 422 sends the detection request message so that the first mobile terminal 421 and/or the second mobile terminal 422 can obtain the detection request message as soon as possible and make a corresponding response to improve communication efficiency.
  • Step S502 The router 410 determines whether the transmission parameters of different antenna paths need to be adjusted according to the channel quality.
  • step S503 is executed; otherwise, if it is determined that the transmission parameters of different antenna paths do not need to be adjusted, step S501 is continued.
  • step S503 the router 410 adjusts the transmission parameters corresponding to the at least two antenna paths respectively, and generates the target transmission parameters corresponding to each of the at least two antenna paths.
  • the router 410 determines the communication level corresponding to each of the at least two antenna paths based on the channel quality of the at least two antenna paths and the preset channel quality threshold; The communication level determines the transmission parameters corresponding to each of the at least two antenna paths.
  • the transmission parameters include: at least one of the number of modulation coding bits corresponding to the data symbols in the communication signal, the transmission power corresponding to the antenna path, and the transmission bandwidth corresponding to the at least two antenna paths.
  • different communication levels corresponding to the antenna paths can be defined according to different threshold ranges.
  • the first level for example, having a communication signal strength of 1 bar, that is, the worst communication quality
  • the second level for example, having a communication signal strength of 2 bars
  • the third level for example, having a communication signal strength of 3 bars
  • the fourth level for example, having a full bar (4 bars) of communication signal strength, that is, the optimal communication quality.
  • the signal strength when RSPR is at a certain strong signal strength, the signal strength is defined as 4 bars; when RSPR is at a certain ordinary signal strength, the signal strength is defined as 3 bars; when RSPR is at a weak signal strength, the signal strength is defined as 3 bars. It is defined as 2 divisions; when RSPR has very weak signal strength, the intensity is defined as 1 division.
  • the communication quality corresponding to the antenna path can be characterized through different communication levels, and then the transmission parameters corresponding to each of the at least two antenna paths are adjusted according to the different communication levels, and a transmission parameter corresponding to each of the at least two antenna paths is generated.
  • the antenna paths can be adjusted in multiple dimensions so that the transmission parameters corresponding to each antenna path are more in line with the transmission requirements of communication signals, thereby improving the transmission quality of communication signals.
  • the target transmission parameters may include: at least one of the adjusted number K of modulation coding bits, the adjusted transmission power P, and the adjusted transmission bandwidth M.
  • n represents the communication level
  • n is an integer greater than 1
  • Z represents the number of preset modulation coding bits.
  • X represents the preset transmission power threshold.
  • Y represents the preset transmission bandwidth threshold.
  • the adjusted modulation coding bits corresponding to antenna path 1 can be determined
  • the number K is Z; the adjusted transmission power P is X dBm; the adjusted transmission bandwidth M is Y MHz.
  • the number of adjusted modulation coding bits corresponding to antenna path 2 can be determined K is 2Z; the adjusted transmission power P is (X+3)dBm; the adjusted transmission bandwidth M is 2YMHz.
  • the number of adjusted modulation coding bits corresponding to the antenna path 3 can be determined K is 4Z; the adjusted transmission power P is (X+6)dBm; the adjusted transmission bandwidth M is 4YMHz.
  • the number of adjusted modulation coding bits corresponding to antenna path 4 can be determined K is 8Z; the adjusted transmission power P is (X+9)dBm; the adjusted transmission bandwidth M is 8YMHz.
  • the corresponding transmission parameters of antenna paths 5 to 8 can also be calculated according to the above formulas (1) to (3).
  • At least two antenna paths can be selected from multiple antenna paths as the transmission paths to be used.
  • the communication level corresponding to the transmission path to be used is greater than or equal to a preset level threshold (e.g., the preset level threshold is 1 or 2, etc.), or the channel quality corresponding to the transmission path to be used exceeds the preset channel quality threshold; the transmission path to be used is used Transmit communication signals so that the antenna path with the best channel quality can be used to transmit communication signals and improve the transmission efficiency of communication signals.
  • a preset level threshold e.g., the preset level threshold is 1 or 2, etc.
  • the preset channel quality threshold can be a preset transmission bandwidth threshold (M, 2M, etc.), a preset transmission power threshold (X dBm, (X+3)dBm, etc.), or a preset number of modulation coding bits. Thresholds (Z, 2Z, etc.); the above preset channel quality thresholds are only examples and can be specifically set or combined according to actual needs. Other unspecified preset channel quality thresholds are also within the scope of protection of this application. Within, no further details will be given here.
  • Step S504 The router 410 transmits communication signals to the first mobile terminal 421 on at least two antenna paths according to the target transmission parameters corresponding to each of the at least two antenna paths.
  • the router 410 can also update the transmission parameters corresponding to different antenna paths according to the real-time location of the mobile terminal. For example, the router 410 obtains the location update information fed back by the first mobile terminal 421, where the location update information includes: the channel quality of at least two antenna paths of the first mobile terminal 421 at the updated location; according to the location update information, Update transmission parameters corresponding to each of the at least two antenna paths.
  • antenna paths with good channel quality for example, antenna paths whose channel quality exceeds the preset channel quality threshold
  • antenna paths with poor channel quality for example, the antenna path whose channel quality is less than the preset channel quality threshold
  • the transmission parameters corresponding to the antenna paths with poor channel quality are adjusted so that the antenna paths with poor channel quality do not occupy too many communication resources and improve the utilization efficiency of communication resources.
  • step S501 can be continued so that the router 410 can dynamically monitor the channel quality corresponding to each antenna path, thereby dynamically adjusting the transmission parameters of each antenna path to improve communication efficiency.
  • the transmission parameters such as the transmission power, transmission bandwidth, and number of modulation coding bits of each antenna path are dynamically adjusted, so that the adjusted antenna
  • the transmission parameters corresponding to the path are more in line with the transmission requirements of the communication signal, thereby improving the transmission quality of the communication signal; when the real-time position transmission of the first mobile terminal 421 and/or the second mobile terminal 422 changes, at least two antennas can be updated
  • the transmission parameters corresponding to each antenna path in the path enable dynamic matching between the router and different mobile terminals, improving the business processing efficiency of the mobile terminal.
  • FIG. 6 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing communication signal transmission methods and apparatuses according to embodiments of the present application.
  • computing device 600 includes an input device 601 , an input interface 602 , a central processing unit 603 , a memory 604 , an output interface 605 , and an output device 606 .
  • the input interface 602, the central processing unit 603, the memory 604, and the output interface 605 are connected to each other through the bus 607.
  • the input device 601 and the output device 606 are connected to the bus 607 through the input interface 602 and the output interface 605 respectively, and then to the computing device 600 to connect other components.
  • the input device 601 receives input information from the outside and transmits the input information to the central processor 603 through the input interface 602; the central processor 603 processes the input information based on computer-executable instructions stored in the memory 604. To generate output information, store the output information temporarily or permanently in the memory 604, and then transmit the output information to the output device 606 through the output interface 605; the output device 606 outputs the output information to the outside of the computing device 600 for use by the user.
  • the computing device shown in FIG. 6 may be implemented as an electronic device, and the electronic device may include: a memory configured to store a program; a processor configured to run the program stored in the memory to The communication signal transmission method described in the above embodiment is performed.
  • the computing device shown in FIG. 6 may be implemented as a communication signal transmission system.
  • the communication signal transmission system may include: a memory configured to store a program; a processor configured to run the memory program stored in the program to execute the communication signal transmission method described in the above embodiment.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or target code.
  • ISA instruction set architecture
  • Any block diagram of a logic flow in the drawings of the embodiments of this application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc DVD or CD), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, general purpose computers, special purpose computers, microprocessors, digital signal processors (DSP), application specific integrated circuits (ASIC), programmable logic devices (FGPA) and processors based on multi-core processor architecture.
  • DSP digital signal processors
  • ASIC application specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提出一种通信信号的传输方法、装置、电子设备和存储介质,涉及通信技术领域。该方法包括:依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数;依据至少两个天线路径中各天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号。

Description

通信信号的传输方法、装置、电子设备和存储介质
相关申请的交叉引用
本申请基于2022年4月19日提交的发明名称为“通信信号的传输方法、装置、电子设备和存储介质”的中国专利申请CN202210410949.3,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本申请。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种通信信号的传输方法、装置、电子设备和存储介质。
背景技术
目前,路由器可以包括多根天线,每根天线对应的天线路径的发送功率都相同,且每根天线对应的天线路径中传输的数据也一样,可以在不增加频谱资源和天线发射功率的条件下提高系统信道容量。
但是,在使用不同天线路径对携带有同一通信信号的电磁波进行传输时,该电磁波经过的传输路径(如,折射路径和/或反射路径等)也不同。因此,终端接收到的通信信号会有不同程度的信号衰落。而对于波长很短的电磁波,其携带的通信信号对应的信号衰落程度尤其明显,易导致路由器发送的通信信号无法被终端接收,降低了路由器与终端之间的通信效率。
发明内容
本申请实施例提供一种通信信号的传输方法、装置、电子设备和存储介质。
本申请实施例提供一种通信信号的传输方法,方法包括:依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数;依据至少两个天线路径中各天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号。
本申请实施例提供一种通信信号的传输装置,装置包括:确定模块,被配置为依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数;传输模块,被配置为依据至少两个天线路径中各天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号。
本申请实施例提供一种电子设备,包括:一个或多个处理器;存储器,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现本申请实施例中的任意一种通信信号的传输方法。
本申请实施例提供了一种可读存储介质,该可读存储介质存储有计算机程序,计算机程序被处理器执行时实现本申请实施例中的任意一种通信信号的传输方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1示出本申请实施例提供的通信信号的传输方法的流程示意图。
图2示出本申请实施例提供的天线路径对应的传输参数的更新方法的流程示意图。
图3示出本申请实施例提供的通信信号的传输装置的组成方框图。
图4示出本申请实施例提供的通信信号的传输系统的组成方框图。
图5示出本申请实施例提供的通信信号的传输系统的工作方法的流程示意图。
图6示出能够实现根据本申请实施例的通信信号的传输方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
第六代无线网络技术(Wi-Fi 6)是Wi-Fi联盟基于电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)的IEEE 802.11标准,创建的无线局域网技术。Wi-Fi 6可以允许设备与最多8个设备进行通信,且最高的理论通信速率可达9.6Gbps。并且,Wi-Fi 6路由器支持多天线功能,可以在不增加频谱资源和天线发射功率的条件下,提高路由器的通信信道容量。
但是,根据电磁波的物理特性,波长越短的电磁波在传输过程中的信号损耗越多,从而使具有短波长特性的Wi-Fi 6路由器对应的穿过障碍物的衰减变大,Wi-Fi 6路由器的穿墙能力远远低于2.4G频段的路由器。
如果把每个天线路径比做“公路”的话,有的公路畅通一些,有的公路拥堵一些。如果路由器知道这些“公路”的实时路况,在该路由器需要发送数据时,可以在畅通的“公路”上多发一些,在拥堵的“公路”少发一些,从而优化数据的发送方式,提升数据的传输速率。
图1示出本申请实施例提供的通信信号的传输方法的流程示意图。该通信信号的传输方法可应用于通信信号的传输装置,该通信信号的传输装置可以设置于基站或路由器中。如图1所示,本申请实施例中的通信信号的传输方法包括但不限于以下步骤。
步骤S101,依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数。
步骤S102,依据至少两个天线路径中各天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号。
在本实施例中,通过获取至少两个天线路径的信道质量,实现对至少两个天线路径的信道质量的监控,能够快速对不同的天线路径采取不同的调整方式,以适应不同的传输路径(如,折射路径和/或反射路径等)的传输要求;依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数,能够使各天线路径对应的传输参数更符合通信信号的传输需求,从而提升通信信号的传输质量;依据天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号,能够减少因电磁波的波长很短,所带来的信号衰落的问题,动态的调整各个天线路径的传输参数,提升通信设备之间通信效率。
其中,在至少两个天线路径上向终端传输通信信号,可以是使用至少两个天线路径同时 向终端发送通信信号;也可以是使用至少两个天线路径,周而复始的依次向终端发送通信信号,即按照次序周而复始地一个天线路径接替一个天线路径的传输通信信号。
对于任意一个天线路径而言,其传输的通信信号可以是待传输通信信号的一部分,由多个天线路径共同完成待传输通信信号的传输;也可以由多个天线路径中通信等级高的天线路径来传输全部的待传输通信信号,从而提升通信设备的通信效率。
在某一时刻,以固定发送功率分别在多个天线路径上发送相同的探测请求消息,以使不同的移动终端能够根据不同的天线路径中接收到的通信信号的信号强度,确定不同天线路径对应的信道质量;移动终端可以根据不同天线路径对应的信道质量、移动终端的标识以及该移动终端所处的实时位置信息等,生成探测响应消息,并发送该探测响应消息给路由器。当路由器获得不同的移动终端反馈的各个天线路径对应的信道质量时,可以获知不同的天线路径对应的信道质量,进而通过对不同的天线路径对应的传输参数进行调整,使不同的天线路径对应的调整后的传输参数更符合通信信号的传输需求。
例如,使信道质量好的天线路径可以拥有更好的通信资源,以提升通信信号的传输质量和传输速率。还能够使信道质量差的天线路径减少对通信资源的占用,提升通信资源的利用效率。
在一实施例中,通信信号承载的通信信息,包括:下行业务信息。例如,下行业务信息可以包括:下载视频文件、语音数据和图像数据中的至少一种信息。
通过动态的监控每个天线路径和移动终端的信道质量等信息,动态调整每个天线路径对应传输参数,实现移动终端的实时位置和路由器的多个天线路径的动态匹配,提升移动终端的下行业务信息的处理速度。
本申请实施例还提供另一种实施方式,其中,步骤S101中的依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数,可以采用如下方式实现。
依据至少两个天线路径的信道质量和预设信道质量阈值,确定至少两个天线路径中各天线路径对应的通信等级;依据至少两个天线路径中各天线路径的通信等级,确定至少两个天线路径中各天线路径对应的传输参数。
例如,若至少两个天线路径中的某个天线路径的信号质量超过预设信道质量阈值,可确定该天线路径对应的通信等级较高,即该天线路径对应的通信质量较好。反之,若至少两个天线路径中的某个天线路径的信号质量低于预设信道质量阈值,可确定该天线路径对应的通信等级较低,即该天线路径对应的通信质量较差。
通过依据至少两个天线路径的各天线路径的通信等级,确定至少两个天线路径中各天线路径对应的传输参数,对不同的天线路径采取不同的调整方式,以适应不同的传输路径的传输要求,能够使不同的天线路径(如,折射路径和/或反射路径等)对应的信道传输性能得到提升,从而使至少两个天线路径中各天线路径更适合传输特定的通信信号,提升通信效率。
在一实施例中,传输参数的数值与天线路径对应的通信等级成正比。
例如,传输参数的数值越大,则对应的天线路径对应的通信等级越高,表征该天线路径对应的通信质量越好。反之,若传输参数的数值越小,则对应的天线路径对应的通信等级越低,表征该天线路径对应的通信质量越差。
通过传输参数的数值与天线路径对应的通信等级之间的对应关系,能够准确方便的对不 同的天线路径对应的传输参数进行调整,以适应不同的通信信号的传输需求,提升通信信号的传输效率。
在一实施例中,依据至少两个天线路径中各天线路径的通信等级,确定至少两个天线路径中各天线路径对应的传输参数,包括:依据预设参数阈值和至少两个天线路径中各天线路径对应的通信等级,分别对至少两个天线路径中各天线路径的预设传输参数进行调整,生成至少两个天线路径中各天线路径对应的目标传输参数。
其中,预设传输参数是预先设置的、天线路径对应的传输参数的最低标准参数。
通过该预设传输参数也能够在天线路径中传输通信信号,但不同的天线路径(如,折射路径和/或反射路径等)对应的信道衰减不同,因此,基于预设参数阈值和至少两个天线路径中各天线路径对应的通信等级,分别对至少两个天线路径中各天线路径的预设传输参数进行调整,能够使不同的天线路径可以获得与其折射特性和/或反射特性相匹的目标传输参数,提升天线路径的传输性能。
例如,可以为通信等级较高的天线路径,匹配更优的传输参数,例如,更宽的传输带宽,和/或,更高的发射功率等,以使该通信等级较高的天线路径能够获得更多的通信资源,提升该天线路径对通信信号的传输效率。
对应的,可以降低通信等级较低的天线路径对应的传输参数,例如,减少该通信等级较低的天线路径的传输带宽,以获得目标传输带宽;和/或,降低该通信等级较低的天线路径的发射功率,以获得目标发射功率,使通信资源能够被合理利用,提升通信效率。
在一实施例中,传输参数,包括:通信信号中的数据符号对应的调制编码比特的数量、天线路径对应的发射功率和至少两个天线路径对应的传输带宽中的至少一种。
其中,通信信号中的数据符号对应的调制编码比特的数量是路由器的射频收发芯片在对数据符号进行调整编码时所使用的二进制字符的数量。天线路径对应的发射功率可以存储在路由器的存储器中,以方便射频收发芯片的调用。传输带宽用于表征天线路径对应的通信信号传输的数据传输能力,能够标识单位时间内通过该天线路径的通信链路的数据量。
通过不同维度的参数来表征传输参数,能够使天线路径的通信传输性能获得更全面的衡量,从而对不同维度的传输参数进行调整,以使调整后的传输参数可以更适用于通信信号的传输需求,提升天线路径的传输效率。
在一实施例中,针对通信信号中的数据符号的调制方式,可以采用如下方式实现:依据预设调制算法对获取到的待传输的通信信号进行调制,获得调制后的通信信号;依据预设发射功率和预设传输带宽,在至少两路天线路径上传输调制后的通信信号。
其中,预设调制算法可以包括:模拟调制算法和/或数字调制算法。模拟调制算法包括:幅度调制(Amplitude Modulation,AM)算法、频率调制(Frequency Modulation,FM)算法。数字调制算法包括:振幅键控算法、移频键控算法、移相键控算法和正交幅度调制算法中的至少一种。
通过不同的预设调整算法,能够对待传输的通信信号进行调制,使调整后的通信信号方便传输;依据预设发射功率和预设传输带宽在至少两路天线路径上传输调制后的通信信号,能够使调整后的通信信号快速被终端接收到,使终端可以快速获取其需要的信息。
在一实施例中,在执行步骤S102中的依据天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号之后,还可以根据终端的实时位置,对各个天线路径对应的传输参 数进行更新,以使更新后的传输参数更适应通信信号的传输需求。
图2示出本申请实施例提供的天线路径对应的传输参数的更新方法的流程示意图。该天线路径对应的传输参数的更新方法可应用于通信信号的传输装置,该通信信号的传输装置可以设置于基站或路由器中。如图2所示,本申请实施例中的天线路径对应的传输参数的更新方法包括但不限于以下步骤。
步骤S201,获取终端反馈的位置更新信息。
其中,位置更新信息包括:终端在更新后的位置上的至少两个天线路径的信道质量。
例如,位置更新信息中的更新后的位置可以是经纬度信息,也可以是某地标性建筑的位置信息等。通过该位置更新信息能够获知终端实时所处的位置信息,方便为终端匹配更优的天线路径。
位置更新信息不仅包括终端更新后的位置信息,还包括与该更新后的位置信息对应的至少两个天线路径的信道质量(例如,信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、参考信号接收功率(Reference Signal Receiving Power,RSRP)等信息),从而明确各个天线路径是否适合通信信号的传输。
步骤S202,依据位置更新信息,更新至少两个天线路径中各天线路径对应的传输参数。
其中,对于至少两个天线路径中各天线路径对应的传输参数的更新,可以采用本申请实施例中任一种确定天线路径对应的传输参数的方法来实现,例如,图1所示的步骤S101所示的方法等。
终端在位置变更的过程中,该终端与路由器之间的天线路径也会对应的发生变化,例如,折射路径中对应的折射点多了,和/或,反射路径中的障碍物增加等等。上述折射路径和/或反射路径的变更,使天线路径的信道质量也发生变化。因此,需要根据不同的终端在更新后的位置上的、至少两个天线路径的信道质量,对至少两个天线路径中各天线路径对应的传输参数进行调整,从而使调整后的传输参数能够更适用于通信信号的传输。
例如,对信道质量超过预设信道质量阈值的天线路径,可以提高该天线路径对应的发射功率、增加该天线路径对应的传输带宽,以及使用更高的调制编码比特的数量对该天线路径中传输的通信信号进行调整编码等,从而提升通信信号的传输质量。
又例如,还可以对信道质量小于预设信道质量阈值的天线路径,减少该天线路径对应的发射功率、降低该天线路径对应的传输带宽和降低调制编码比特的数量中的至少一种的调整方式,来对该信道质量差的天线路径对应的传输参数进行更新,使该信道质量差的天线路径不占用过多的通信资源,提升通信资源的利用效率。
在本实施例中,通过依据位置更新信息,更新至少两个天线路径中各天线路径对应的传输参数,能够使终端在实时位置发生变更的情况下,仍能够使用合适的至少两个天线路径对通信信号进行传输,并使至少两个天线路径对应的更新后的传输参数与终端所处的实时位置更匹配,使终端能够获得更有的通信服务,提升通信质量。
在一实施例中,在执行步骤S101中的依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数之前,还包括:使用至少两个天线路径同时向终端发送探测请求消息,或,使用至少两个天线路径依次向终端发送探测请求消息;响应于终端发送的探测响应消息,获取至少两个天线路径中各天线路径对应的信道质量。
其中,探测请求消息用于对天线路径的传输环境进行探测,以使终端在接收到该探测请 求消息后,能够对不同的天线路径进行测量,以获得不同的天线路径对应的信道质量。并且,路由器可以是以相同的发射功率,在多个不同的天线路径中同时发送该探测请求消息,以使对于多个不同的天线路径的探测更准确。终端将至少两个天线路径中各天线路径对应的信道质量反馈给路由器,使路由器可以明确各个天线路径的传输情况,例如,信道衰减情况等,方便后续对天线路径进行不同的处理。
在一实施例中,在执行步骤S101中的依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数之前,还包括:获取多个天线路径的信道质量;依据预设信道质量阈值和多个天线路径的信道质量,从多个天线路径中选择至少两个天线路径作为待使用传输路径。
其中,待使用传输路径用于传输通信信号。
例如,可以从多个天线路径中选择,信道质量大于或等于预设信道质量阈值的至少两个天线路径,作为待使用传输路径,从而剔除信道质量不同的天线路径,使用至少两个信道质量优异的天线路径作为待使用传输路径,对通信信号进行传输,能够使通信资源得到更优的配置,提升通信质量。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
下面结合附图,详细介绍根据本申请实施例的通信信号的传输装置。图3示出本申请实施例提供的通信信号的传输装置的组成方框图。如图3所示。该通信信号的传输装置包括但不限于如下模块。
确定模块301,被配置为依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数。
传输模块302,被配置为依据至少两个天线路径中各天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号。
在一实施例中,通信信号的传输装置应用于路由器。
在本实施例中,通过获取至少两个天线路径的信道质量,实现对至少两个天线路径的信道质量的监控,能够快速对不同的天线路径采取不同的调整方式,以适应不同的传输路径(如,折射路径和/或反射路径等)的传输要求;确定模块依据获取到的至少两个天线路径的信道质量,确定至少两个天线路径中各天线路径对应的传输参数,能够使各天线路径对应的传输参数更符合通信信号的传输需求,从而提升通信信号的传输质量;传输模块依据天线路径对应的传输参数,在至少两个天线路径上向终端传输通信信号,能够减少因电磁波的波长很短,所带来的信号衰落的问题,动态的调整各个天线路径的传输参数,提升通信设备之间通信效率。
本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请实施例的创新部分,本实施方式中并没有将与解决本申请实施例所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
图4示出本申请实施例提供的通信信号的传输系统的组成方框图。如图4所示。该通信 信号的传输系统包括但不限于如下设备。
路由器410和多个处于不同地理位置上的移动终端(如,第一移动终端421、第二移动终端422等)。其中,路由器410包括N根天线,N为大于或等于2的整数。例如,图4中示出了其中的四根天线,如,第一天线411、第二天线412、第三天线413和第四天线414。
路由器410可以通过多根天线与第一移动终端421建立多条天线路径,如,路由器410通过第一天线411与第一移动终端421之间建立天线路径1,路由器410通过第二天线412与第一移动终端421之间建立天线路径2,路由器410通过第三天线413与第一移动终端421之间建立天线路径3,以及路由器410通过第四天线414与第一移动终端421之间建立天线路径4。
路由器410还可以通过多根天线与第二移动终端422建立多条天线路径;如,路由器410通过第一天线411与第二移动终端422之间建立天线路径5,路由器410通过第二天线412与第二移动终端422之间建立天线路径6,路由器410通过第三天线413与第二移动终端422之间建立天线路径7,以及路由器410通过第四天线414与第二移动终端422之间建立第四天线路径8。
在某一时刻,以固定发送功率分别在第一天线411、第二天线412、第三天线413和第四天线414上同时发送通信信号,或,使用第一天线411、第二天线412、第三天线413和第四天线414依次向终端发送通信信号,以使第一移动终端421和/或第二移动终端422能够根据不同天线路径中接收到的通信信号的信号强度,确定不同天线路径对应的信道质量;进而将不同天线路径对应的信道质量反馈给路由器410。当路由器410获得终端反馈的各个天线路径对应的信道质量时,可以通过对不同的天线的发射功率、数据容量等传输参数进行调整,使不同的天线路径对应的传输参数更符合通信信号的传输需求;路由器410通过使用信道质量较优的至少两个天线路径进行通信信号的传输,能够提升通信信号的传输质量。
例如,对信道质量超过预设信道质量阈值的天线路径,可采用提高发射功率和/或增加数据容量的方式,对该天线路径进行调整;而对于信道质量小于预设信道质量阈值的天线路径,可采用减少发射功率和/或降低数据容量的方式,对该天线路径进行调整。
在第一移动终端421和/或第二移动终端422发生位置变更的情况下,其接收到的通过不同天线路径传输到不同终端的信号质量也会发生变化,此时,路由器410会获取第一移动终端421和/或第二移动终端422反馈的位置更新信息,其中,位置更新信息包括:第一移动终端421和/或第二移动终端422在更新后的位置上的、至少两个天线路径的信道质量;依据该位置更新信息,更新至少两个天线路径中各天线路径对应的传输参数,从而使信道质量较优的天线路径(如,信道质量超过预设信道质量阈值的天线路径)能够更有利于通信信号的传输;而在信道质量较差的天线路径(如,信道质量远小于预设信道质量阈值的天线路径)上,减少其传输的通信信号。
通过动态的对多个天线路径的信道质量进行监控,以使可以动态调整各个天线路径对应的传输参数(如,通信信号中的数据符号对应的调制编码比特的数量、所述天线路径对应的发射功率和所述至少两个天线路径对应的传输带宽中的至少一种),能够使路由器与不同的移动终端之间进行动态的匹配,提升通信设备之间通信效率。
图5示出本申请实施例提供的通信信号的传输系统的工作方法的流程示意图。如图5所示。该通信信号的传输系统的工作方法包括但不限于如下步骤。
步骤S501,第一移动终端421在通过不同的天线路径接收路由器410发送的通信信号时,对不同的天线路径进行测量,获得不同的天线路径对应的信道质量,并将该信道质量反馈给路由器410。
其中,路由器410先分别与第一移动终端421和/或第二移动终端422建立通信连接,然后该路由器410的射频芯片会将需要传输的通信信号调制为无线电信号波形,通过功率放大器(Power Amplifier,PA)将调制后的通信信号进行放大,获得处理后的通信信号;再使用天线谐振向不同的移动终端发送该处理后的通信信号。
因路由器410具有N个天线,则对应的有N个天线路径,每个天线路径对应的发射功率、传输带宽、以及对其传输的通信信号中的数据符号对应的调制编码比特的数量等传输参数均不同。
例如,初始化阶段,每个天线路径对应的传输带宽为Y MHz,发射功率为X dBm,并采用对每个数据符号编入Z个比特的方式进行调制,从而为后续对天线路径的传输参数的调整提供基础参数。其中,X和Y均为实数,Z为大于或等于1的整数。
并且,在初始进行通信信号的发送时,因不确定每个天线路径对应的信道衰减情况,路由器410采用多个天线路径同时传输通信信号,以方便对不同的天线路径对应的传输环境进行探测,即,初始时,路由器采用的传输带宽为Y MHz,发射功率为X dBm,并采用对每个数据符号编入Z个比特的方式进行调制的方式,同时在多个天线路径中传输通信信号。
在一实施例中,路由器410还可用采用发送探测请求消息的方式,来获取不同的天线路径对应的信道质量。例如,路由器410使用至少两个天线路径向第一移动终端421和/或第二移动终端422发送探测请求消息;响应于第一移动终端421和/或第二移动终端422发送的探测响应消息,获取至少两个天线路径中各天线路径对应的信道质量。可根据该信道质量,明确不同的天线路径需要进行对应的不同的调整方式,以适应不同的传输路径的传输要求。
其中,信道质量包括:SINR、RSRP和接收信号的强度指标(Received Signal Strength Indicator,RSSI)中的至少一种。
例如,路由器410使用至少两个天线路径同时向第一移动终端421和/或第二移动终端422发送探测请求消息;路由器410也可以使用至少两个天线路径依次向第一移动终端421和/或第二移动终端422发送探测请求消息,以使第一移动终端421和/或第二移动终端422可以尽快获得该探测请求消息,并做出对应的响应,提升通信效率。
步骤S502,路由器410根据信道质量判断是否需要对不同的天线路径的传输参数进行调整。
在确定需要对不同的天线路径的传输参数进行调整的情况下,执行步骤S503;否则,在确定不需要对不同的天线路径的传输参数进行调整的情况下,继续执行步骤S501。
步骤S503,路由器410分别对至少两个天线路径对应的传输参数进行调整,生成至少两个天线路径中各天线路径对应的目标传输参数。
在一实施例中,路由器410依据至少两个天线路径的信道质量和预设信道质量阈值,确定至少两个天线路径中各天线路径对应的通信等级;依据至少两个天线路径中各天线路径的通信等级,确定至少两个天线路径中各天线路径对应的传输参数。
其中,传输参数包括:通信信号中的数据符号对应的调制编码比特的数量、天线路径对应的发射功率和至少两个天线路径对应的传输带宽中的至少一种。
例如,可以根据不同的阈值范围,定义天线路径对应的不同的通信等级。如,第一等级(如,具有1格的通信信号强度,即最差的通信质量);第二等级(如,具有2格的通信信号强度);第三等级(如,具有3格的通信信号强度);第四等级(如,具有满格(4格)的通信信号强度,即最优的通信质量)。
例如,当RSPR在一定的较强的信号强度时,信号强度定义为4格;当RSPR在一定的普通的信号强度时,信号强度定义为3格;RSPR在较弱的信号强度时,信号强度定义为2格;RSPR在非常弱的信号强度时,强度定义为1格。
通过不同的通信等级能够表征天线路径对应的通信质量,进而根据不同的通信等级,对至少两个天线路径中各天线路径对应的传输参数进行调整,生成至少两个天线路径中各天线路径对应的目标传输参数。能够多维度的对天线路径进行调整,使各天线路径对应的传输参数更符合通信信号的传输需求,从而提升通信信号的传输质量。
其中,目标传输参数可以包括:调整后的调制编码比特的数量K、调整后的发射功率P和调整后的传输带宽M中的至少一种。
在一实施例中,调整后的调制编码比特的数量K可以采用如下公式(1)表示:
K=2(n-1)*Z        (1)
其中,n表示通信等级,n为大于1的整数,Z表示预设调制编码比特的数量。
调整后的发射功率P可以采用如下公式(2)表示:
P=X+3*(n-1)       (2)
其中,X表示预设发射功率阈值。
调整后的传输带宽M可以采用如下公式(3)表示:
M=2(n-1)*Y         (3)
其中,Y表示预设传输带宽阈值。
例如,若某个天线路径(如,天线路径1)对应的通信等级为第一等级,则根据上述公式(1)~(3)的计算,可确定天线路径1对应的调整后的调制编码比特的数量K为Z个;调整后的发射功率P为X dBm;调整后的传输带宽M为Y MHz.。
若某个天线路径(如,天线路径2)对应的通信等级为第二等级,则根据上述公式(1)~(3)的计算,可确定天线路径2对应的调整后的调制编码比特的数量K为2Z个;调整后的发射功率P为(X+3)dBm;调整后的传输带宽M为2YMHz。
若某个天线路径(如,天线路径3)对应的通信等级为第三等级,则根据上述公式(1)~(3)的计算,可确定天线路径3对应的调整后的调制编码比特的数量K为4Z个;调整后的发射功率P为(X+6)dBm;调整后的传输带宽M为4YMHz。
若某个天线路径(如,天线路径4)对应的通信等级为第四等级,则根据上述公式(1)~(3)的计算,可确定天线路径4对应的调整后的调制编码比特的数量K为8Z个;调整后的发射功率P为(X+9)dBm;调整后的传输带宽M为8YMHz。
类似的,天线路径5~天线路径8也可以根据上述公式(1)~(3)计算获得其对应的传输参数。
在一实施例中,还可以从多个天线路径中选择至少两个天线路径作为待使用传输路径,例如,待使用传输路径对应的通信等级大于或等于预设等级阈值(如,预设等级阈值为1或2等),或,待使用传输路径对应的信道质量超过预设信道质量阈值;该待使用传输路径用于 传输通信信号,以使可以采用信道质量最优的天线路径来传输通信信号,提升通信信号的传输效率。
预设信道质量阈值可以是预设传输带宽阈值(M、2M等),也可以是预设发射功率阈值(X dBm、(X+3)dBm等),还可以是预设调制编码比特的数量阈值(Z个、2Z个等);以上对于预设信道质量阈值仅是举例说明,可以根据实际需要进行具体设定或组合,其他未说明的预设信道质量阈值也在本申请的保护范围之内,在此不再赘述。
步骤S504,路由器410依据至少两个天线路径中各天线路径对应的目标传输参数,在至少两个天线路径上向第一移动终端421传输通信信号。
通过在至少两个天线路径上同时向第一移动终端421传输通信信号,或,使用至少两个天线路径依次向第一移动终端421传输通信信号,能够减少因电磁波的波长很短,所带来的信号衰落的问题,动态的调整各个天线路径的传输参数,提升通信设备之间通信效率。
在一实施例中,路由器410还可以根据移动终端所在的实时位置对不同的天线路径对应的传输参数进行更新。例如,路由器410获取第一移动终端421反馈的位置更新信息,其中,位置更新信息包括:第一移动终端421在更新后的位置上的、至少两个天线路径的信道质量;依据位置更新信息,更新至少两个天线路径中各天线路径对应的传输参数。
能够使信道质量好的天线路径(如,信道质量超过预设信道质量阈值的天线路径)可以有更高的发射功率、更宽的传输带宽,以及更高的调制编码比特的数量等,提升通信信号的传输质量。还能够使信道质量差的天线路径(如,信道质量小于预设信道质量阈值的天线路径)采用减少发射功率、降低传输带宽和降低调制编码比特的数量中的至少一种的调整方式,来对该信道质量差的天线路径对应的传输参数进行调整,使该信道质量差的天线路径不占用过多的通信资源,提升通信资源的利用效率。
在执行完步骤S504之后,还可以继续返回执行步骤S501,以使路由器410可以动态监控每个天线路径对应的信道质量,从而对各个天线路径的传输参数进行动态调整,提升通信效率。
在本实施例中,通过动态的监控多个天线路径中个天线路径对应的信道质量,动态调整每个天线路径的发射功率、传输带宽和调制编码比特的数量等传输参数,使调整后的天线路径对应的传输参数更符合通信信号的传输需求,从而提升通信信号的传输质量;在第一移动终端421和/或第二移动终端422的实时位置发送变化的情况下,能够更新至少两个天线路径中各天线路径对应的传输参数,使路由器和不同的移动终端之间能够动态匹配,提升移动终端的业务处理效率。
本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图6示出能够实现根据本申请实施例的通信信号的传输方法和装置的计算设备的示例性硬件架构的结构图。
如图6所示,计算设备600包括输入设备601、输入接口602、中央处理器603、存储器604、输出接口605、以及输出设备606。其中,输入接口602、中央处理器603、存储器604、以及输出接口605通过总线607相互连接,输入设备601和输出设备606分别通过输入接口602和输出接口605与总线607连接,进而与计算设备600的其他组件连接。
在一个实施例中,输入设备601接收来自外部的输入信息,并通过输入接口602将输入信息传送到中央处理器603;中央处理器603基于存储器604中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器604中,然后通过输出接口605将输出信息传送到输出设备606;输出设备606将输出信息输出到计算设备600的外部供用户使用。
在一个实施例中,图6所示的计算设备可以被实现为一种电子设备,该电子设备可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的通信信号的传输方法。
在一个实施例中,图6所示的计算设备可以被实现为一种通信信号的传输系统,该通信信号的传输系统可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的通信信号的传输方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请实施例附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请实施例的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (12)

  1. 一种通信信号的传输方法,所述方法包括:
    依据获取到的至少两个天线路径的信道质量,确定所述至少两个天线路径中各天线路径对应的传输参数;
    依据所述至少两个天线路径中各天线路径对应的传输参数,在所述至少两个天线路径上向终端传输通信信号。
  2. 根据权利要求1所述的方法,其中,所述依据获取到的至少两个天线路径的信道质量,确定所述至少两个天线路径中各天线路径对应的传输参数,包括:
    依据所述至少两个天线路径的信道质量和预设信道质量阈值,确定所述至少两个天线路径中各天线路径对应的通信等级;
    依据所述至少两个天线路径中各天线路径的通信等级,确定所述至少两个天线路径中各天线路径对应的传输参数。
  3. 根据权利要求2所述的方法,所述传输参数的数值与所述天线路径对应的通信等级成正比。
  4. 根据权利要求3所述的方法,其中,所述依据所述至少两个天线路径中各天线路径的通信等级,确定所述至少两个天线路径中各天线路径对应的传输参数,包括:
    依据预设参数阈值和所述至少两个天线路径中各天线路径对应的通信等级,分别对所述至少两个天线路径中各天线路径的预设传输参数进行调整,生成所述至少两个天线路径中各天线路径对应的目标传输参数。
  5. 根据权利要求1-4中任一项所述的方法,所述传输参数,包括:通信信号中的数据符号对应的调制编码比特的数量、所述天线路径对应的发射功率和所述至少两个天线路径对应的传输带宽中的至少一种。
  6. 根据权利要求1-4中任一项所述的方法,其中,所述依据所述至少两个天线路径中各天线路径对应的传输参数,在所述至少两个天线路径上向终端传输通信信号之后,还包括:
    获取所述终端反馈的位置更新信息,其中,所述位置更新信息包括:所述终端在更新后的位置上的所述至少两个天线路径的信道质量;
    依据所述位置更新信息,更新所述至少两个天线路径中各天线路径对应的传输参数。
  7. 根据权利要求1所述的方法,其中,所述依据获取到的至少两个天线路径的信道质量,确定所述至少两个天线路径中各天线路径对应的传输参数之前,还包括:
    使用所述至少两个天线路径同时向终端发送探测请求消息,或,使用所述至少两个天线路径依次向所述终端发送所述探测请求消息;
    响应于所述终端发送的探测响应消息,获取所述至少两个天线路径中各天线路径对应的 信道质量。
  8. 根据权利要求1所述的方法,其中,所述依据获取到的至少两个天线路径的信道质量,确定所述至少两个天线路径中各天线路径对应的传输参数之前,还包括:
    获取多个天线路径的信道质量;
    依据预设信道质量阈值和所述多个天线路径的信道质量,从所述多个天线路径中选择至少两个天线路径作为待使用传输路径;
    其中,所述待使用传输路径用于传输所述通信信号。
  9. 一种通信信号的传输装置,包括:
    确定模块,被配置为依据获取到的至少两个天线路径的信道质量,确定所述至少两个天线路径中各天线路径对应的传输参数;
    传输模块,被配置为依据所述至少两个天线路径中各天线路径对应的传输参数,在所述至少两个天线路径上向终端传输通信信号。
  10. 根据权利要求9所述的装置,所述通信信号的传输装置应用于基站或路由器。
  11. 一种电子设备,包括:
    一个或多个处理器;
    存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-8中任一项所述的通信信号的传输方法。
  12. 一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-8中任一项所述的通信信号的传输方法。
PCT/CN2023/077249 2022-04-19 2023-02-20 通信信号的传输方法、装置、电子设备和存储介质 WO2023202205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210410949.3 2022-04-19
CN202210410949.3A CN116961790A (zh) 2022-04-19 2022-04-19 通信信号的传输方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023202205A1 true WO2023202205A1 (zh) 2023-10-26

Family

ID=88419111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077249 WO2023202205A1 (zh) 2022-04-19 2023-02-20 通信信号的传输方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN116961790A (zh)
WO (1) WO2023202205A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245813A (zh) * 2018-11-02 2019-01-18 Oppo广东移动通信有限公司 信号发射方法、装置、设备及存储介质
US20210320697A1 (en) * 2020-04-09 2021-10-14 Qualcomm Incorporated Antenna management in dual connectivity
CN113852924A (zh) * 2020-06-28 2021-12-28 中兴通讯股份有限公司 天线确定方法、装置、终端、电子设备及存储介质
CN114095104A (zh) * 2021-10-14 2022-02-25 荣耀终端有限公司 一种通信方法及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245813A (zh) * 2018-11-02 2019-01-18 Oppo广东移动通信有限公司 信号发射方法、装置、设备及存储介质
US20210320697A1 (en) * 2020-04-09 2021-10-14 Qualcomm Incorporated Antenna management in dual connectivity
CN113852924A (zh) * 2020-06-28 2021-12-28 中兴通讯股份有限公司 天线确定方法、装置、终端、电子设备及存储介质
CN114095104A (zh) * 2021-10-14 2022-02-25 荣耀终端有限公司 一种通信方法及电子设备

Also Published As

Publication number Publication date
CN116961790A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
JP5666418B2 (ja) Wan信号伝送およびピアツーピア信号伝送をサポートする混在無線通信システムにおける電力制御および/または干渉処理に関する方法および装置
CN109150272B (zh) 通信方法、终端及网络设备
US8355748B2 (en) Multi-mode control station, radio communication system, radio station, and radio communication control method
JP5018838B2 (ja) 無線通信機
KR102059135B1 (ko) 무선 통신 시스템에서 장치 간 통신을 위한 송신 제어 장치 및 방법
KR101209017B1 (ko) 블루투스 802.11 교대식 mac/phy(amp) 송신 전력 제어를 위한 방법 및 시스템
CN110035518B (zh) 一种通信方法及装置
WO2022143350A1 (zh) 信道状态信息上报方法、资源配置方法、通信节点及存储介质
EP2664195A2 (en) Method and apparatus for transmitting management information frame in wireless local area network system
CN108810966B (zh) 一种通信方法及装置
CN104412683A (zh) 无线接入点装置和频带控制方法
KR20230008831A (ko) Str 능력 지시 방법 및 관련된 장치
US9577728B1 (en) Multiple user MIMO rate prediction based on single user SNR feedback
WO2020108475A1 (zh) 一种功率差信息的通知方法、设备及系统
CN108366418B (zh) 节点和功率控制方法
WO2023202205A1 (zh) 通信信号的传输方法、装置、电子设备和存储介质
US9277512B2 (en) Method and apparatus for distributed transmission power control in wireless networks
JP4238054B2 (ja) トラヒック負荷分散方法およびそれを利用した基地局装置、通信システム
RU2809982C1 (ru) Способ организации радиосвязи с пространственной адаптацией
CN112702152B (zh) 资源分配方法及资源分配系统
TWI835077B (zh) 無線通訊裝置與資料傳輸速率的決定方法
WO2024120252A1 (zh) 参数配置方法、装置、设备及可读存储介质
CN111417128B (zh) 一种载波管理方法、基站及终端
WO2023186176A1 (zh) 一种dpd参数信息的性能评估方法、装置及系统
WO2024031570A1 (zh) Csi-rs资源的配置方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790868

Country of ref document: EP

Kind code of ref document: A1