WO2023186095A1 - 一种生化分析仪 - Google Patents

一种生化分析仪 Download PDF

Info

Publication number
WO2023186095A1
WO2023186095A1 PCT/CN2023/085482 CN2023085482W WO2023186095A1 WO 2023186095 A1 WO2023186095 A1 WO 2023186095A1 CN 2023085482 W CN2023085482 W CN 2023085482W WO 2023186095 A1 WO2023186095 A1 WO 2023186095A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
calibration
electrode
calibration liquid
biochemical analyzer
Prior art date
Application number
PCT/CN2023/085482
Other languages
English (en)
French (fr)
Inventor
王伟
郁琦
杨理想
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2023186095A1 publication Critical patent/WO2023186095A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the invention relates to the field of medical devices, and in particular to a biochemical analyzer.
  • Biochemical analyzers are common equipment in hospital laboratory departments and are used to conduct various tests on patients' blood, such as liver function tests, kidney function tests, blood lipid tests, blood sugar tests, etc. As people pay more and more attention to life and health, the demand for testing is increasing. For example, the detection of ion concentration in blood is becoming more and more common.
  • laboratory departments usually use electrolyte analyzers to detect the ion concentration in the patient's blood.
  • the same patient's blood sample needs to be sent to multiple devices for testing, which results in the patient needing to collect blood multiple times to meet the needs of biochemical analysis and ion detection.
  • the hospital laboratory department also needs to manage various equipment such as biochemical analyzers and electrolyte analyzers. It can be seen that the existing biochemical analyzers have relatively single functions and cannot meet the needs of patients and laboratory departments.
  • the current electrode assembly has the problem of unstable ion concentration detection results, and practitioners are still exploring the source of this problem. This is also one of the problems that need to be solved or improved in current electrolyte measurement equipment.
  • the present invention mainly provides a biochemical analyzer, aiming to increase the ion concentration detection function of the biochemical analyzer and make the detection of ion concentration more stable.
  • An embodiment of the present application provides a biochemical analyzer, including a sample carrying component, a first sample dispensing component, a second sample dispensing component, a reagent carrying component, a reagent dispensing component, a first measurement component, and An electrolyte measurement module, the electrolyte measurement module includes a sample container, an electrode assembly and a second determination assembly, wherein:
  • the sample carrying component is used to carry the sample to be tested
  • the first sample dispensing component is used to dispense the first sample to be tested in the sample carrying component to the first measurement component;
  • the reagent carrying component is used to carry reagents
  • the reagent dispensing component is used to transfer the reagent in the reagent carrying component to the first measurement component;
  • the first measurement component is used to perform light detection on the reaction solution formed by mixing at least the first sample to be tested and the reagent to obtain the results of the light detection project;
  • the second sample dispensing component dispenses the second sample to be tested in the sample carrying component to the sample container;
  • the electrode assembly includes a plurality of electrodes, each electrode is provided with a channel and a sensitive film is provided in the channel of each electrode, and the channels of each electrode are connected to form a sample for the second sample to be measured to flow through. flow channel, the output end of each electrode is electrically connected to the second measurement component, wherein when the second sample to be measured flows through the sample flow channel, the angle between the axis of the sample flow channel and the horizontal plane Less than or equal to 10°;
  • the detection outlet of the sample container is connected to the sample flow channel, so that the second sample to be measured in the sample container flows through the sensitive membrane of each electrode of the electrode assembly in sequence;
  • the second measuring component is used to obtain the ion concentration detection result of the second sample to be measured based on the electrical signal output by the electrode when the second sample to be measured flows through the sensitive membrane.
  • the biochemical analyzer in addition to being able to detect biochemical items, it also has an electrolyte measurement module that can detect the K, Cl and Na ion concentrations of the sample to be tested. This increases the ion detection function of the biochemical analyzer, which is both necessary For patients who need ion detection for biochemical projects, the number of blood collections is reduced. In addition, by slightly tilting or setting the sample flow channel horizontally, the stability of ion concentration detection is improved.
  • Figure 1 is a structural block diagram of a biochemical analyzer according to an embodiment
  • Figure 2 is a schematic structural diagram of a functional module in the biochemical analyzer according to an embodiment
  • Figure 3 is a structural block diagram of an electrolyte measurement module in a biochemical analyzer according to an embodiment
  • Figure 4 is a partial structural diagram of a sample container according to an embodiment
  • Figure 5 is a physical diagram of a Cl ion electrode according to an embodiment
  • Figure 6 is a statistical graph of Cl ion electrode slope and usage time according to an embodiment
  • Figure 7 is a statistical diagram of the slope of the existing Cl ion electrode
  • Figure 8 is a statistical diagram of the slope of the Cl ion electrode using the present application according to an embodiment
  • Figure 9 is a front view of an electrolyte measurement module according to an embodiment
  • Figure 10 is a side view of the reference electrode of the electrolyte measurement module shown in Figure 9;
  • Figure 11 is a cross-sectional view of the reference electrode shown in Figure 10 along the A-A direction;
  • Figure 12 is a side view of the detection electrode of the electrolyte measurement module shown in Figure 9;
  • Figure 13 is a cross-sectional view of the detection electrode shown in Figure 12 along the B-B direction;
  • Figure 14 is a partial enlarged view of the X position of the electrolyte measurement module shown in Figure 9;
  • Figure 15 is a schematic structural diagram of an electrolyte measurement module according to an embodiment
  • Figure 16 is a schematic structural diagram of a biochemical analyzer according to an embodiment
  • Sample container 10a. Accommodation chamber; 10b. First calibration solution inlet; 10c, second calibration solution inlet; 11. Overflow port; 12. Overflow tank; 13. Overflow pipeline;
  • Reference electrode 23.
  • First accommodation chamber 232.
  • First housing 233.
  • First ion-sensitive membrane 234.
  • First electrode core 2341.
  • First end face 235.
  • Detection electrode 241. Second accommodation chamber; 242. Second housing; 243. Second ion-sensitive membrane; 244. Second electrode core; 2441. Second end face; 245. Second flow channel; 246. The third mounting hole; 247, the second elastic seal;
  • Second measuring component 31. Conductive member; 311. Third end face;
  • 52a first calibration liquid container
  • 52b second calibration liquid container
  • 53a first calibration liquid pipeline
  • 53b second calibration liquid pipeline
  • Electrolyte measurement module 100. Electrolyte measurement module
  • connection and “connection” mentioned in this application include direct and indirect connections (connections) unless otherwise specified.
  • the sensitive film of the electrode referred to in this application is a selective penetration film, which determines the selectivity, sensitivity, stability, detection range, service life and other characteristics of the electrode.
  • the most important idea of the present invention is to discover the impact of the vertical setting of the sample flow channel on ion concentration detection, and set the sample flow channel slightly inclined or horizontally to make the ion concentration detection results more stable.
  • the biochemical analyzer provided by the present invention can not only detect biochemical items, but also detect ions. As shown in Figure 1, it includes an electrolyte measurement module 100 and at least one functional module 200 (or one or more functional modules 200 ), input module 300, display module 400, memory 500, processor 600 and alarm module 700, respectively described below.
  • Each functional module 200 is used to complete at least one function required in the sample analysis process. These functional modules 200 cooperate together to complete the sample analysis and obtain the results of the sample analysis.
  • FIG. 2 is a biochemical analyzer according to an embodiment, in which some examples of the functional module 200 are given.
  • the functional module 200 may include a sample carrying component 201, a first sample dispensing component 202, a second sample dispensing component (not shown in the figure), a reagent carrying component 203, a reagent dispensing component 204, a mixing mechanism 205, Reaction component 206 and first measurement component 207 and so on.
  • the sample carrying component 201 is used to carry the sample to be tested.
  • the specific type of sample to be tested is not limited. It can be serum, blood, plasma, marrow fluid, urine, gastric juice, intestinal juice, bile, saliva, tears and other body fluids or solutions from living organisms such as cell extracts. It can also be dialysate, Solutions used in medical treatments such as infusions, nutritional supplements, and pharmaceuticals.
  • the sample carrying component 201 may include a sample distribution module (SDM, Sample Delivery Module) and a front-end track; in other examples, the sample carrying component 201 may also be a sample tray, and the sample tray includes a plurality of components that can be placed such as sample tubes. At the sample position, the sample disk can move the sample to a corresponding position by rotating its disk structure, such as a position for the first sample dispensing component 202 to absorb the first sample to be tested.
  • SDM sample distribution module
  • the sample carrying component 201 may also be a sample tray, and the sample tray includes a plurality of
  • the first sample dispensing component 202 is used to dispense the first sample to be tested in the sample carrying component 201 to the first measurement component 207 .
  • the first sample dispensing assembly 202 includes a first sampling needle.
  • the first sampling needle moves two-dimensionally or three-dimensionally in space through a two-dimensional or three-dimensional driving mechanism, so that the first sampling needle can move to aspirate.
  • the first sample to be tested is carried by the sample carrying component 201 .
  • the reagent carrying component 203 is used to carry reagents.
  • the reagent carrying component 203 can be a reagent disk.
  • the reagent disk is arranged in a disc-shaped structure and has multiple positions for carrying reagent containers.
  • the reagent carrying component 203 can rotate and drive the reagent containers it carries to rotate. It is used to rotate the reagent container to a specific position, such as the position where the reagent is sucked by the reagent dispensing assembly 204 .
  • the number of reagent carrying components 203 may be one or more.
  • the reagent dispensing assembly 204 is used to transfer the reagent in the reagent carrying assembly 203 to the first measurement assembly 207 .
  • the reagent dispensing assembly 204 may include a reagent needle, and the reagent needle moves two-dimensionally or three-dimensionally in space through a two-dimensional or three-dimensional driving mechanism.
  • the mixing mechanism 205 is used to mix the reaction liquid that needs to be mixed in the reaction cup.
  • the number of mixing mechanisms 205 may be one or more.
  • the reaction solution is obtained by mixing at least the first sample to be tested and the reagent.
  • the reaction component 206 has at least one placement position, which is used to place the reaction cup and incubate the reaction liquid in the reaction cup.
  • the reaction assembly 206 can be a reaction plate, which is arranged in a disk-shaped structure and has one or more placement positions for placing reaction cups. The reaction plate can rotate and drive the reaction cups in its placement positions to rotate. Arrange reaction cups in the reaction plate and incubate the reaction solution in the reaction cups.
  • the first measurement component 207 is used to perform light detection on the reaction solution to obtain the results of the light detection project, such as performing light measurement on the incubated reaction solution to obtain reaction data of the sample.
  • the first measurement component 207 includes a light source and a light detection module.
  • the light source is used to emit light to illuminate the first sample to be measured.
  • the light detection module is used to receive the light after the light source illuminates the first sample to be measured to obtain the light detection items. result.
  • the input module 300 is used to receive user input.
  • the input module 300 can be a mouse, a keyboard, etc., and in some cases, it can also be a touch screen.
  • the touch screen brings functions for the user to input and display content. Therefore, in this example, the input module 300 and The display module 400 is integrated.
  • the input module 300 may even be a voice input device capable of recognizing voice, or the like.
  • Display module 400 may be used to display information.
  • the biochemical analyzer itself can integrate the display module 400.
  • the biochemical analyzer can also be connected to a computer device (such as a computer), and the display module 400 can be displayed through the display unit (such as a display screen) of the computer device. Display information, these all belong to the scope defined and protected by the display module 400 in this article.
  • the biochemical analyzer also includes a waste liquid tank 800 for collecting at least one of the sample dispensing assembly, the reagent dispensing assembly, and the cleaning waste liquid of the reaction cup carrying the reaction solution. It can be understood that the waste liquid tank 800 can also be used to collect the cleaning waste liquid after the stirring rod is cleaned.
  • the electrolyte measurement module 100 (ISE) is used to detect the ion concentration of the second sample to be measured. As shown in FIG. 3 , the electrolyte measurement module 100 includes a sample container 10 , an electrode assembly 20 and a second measurement assembly 30 .
  • the second sample dispensing component is used to dispense the second sample to be tested in the sample carrying component 201 to the sample container 10 .
  • the first sample to be tested and the second sample to be tested are from the same subject.
  • the first sample to be tested and the second sample to be tested come from different subjects. That is to say, the first measurement component 207 and the second measurement component 30 can obtain relevant detection results of different subjects. .
  • the second sample dispensing assembly includes a second sampling needle, and the second sampling needle moves two-dimensionally or three-dimensionally in space through a two-dimensional or three-dimensional driving mechanism, so that the second sampling needle can move to The second sample to be tested carried by the sample carrying component 201 is sucked.
  • the first sample dispensing assembly 202 and the second sample dispensing assembly are the same sample dispensing assembly.
  • the first sampling needle and the second sampling needle are the same sampling needle, that is, the electrolyte measurement module 100 and Other functional modules 200 share the sample dispensing component, which can save both analyzer volume and cost.
  • the first sample dispensing component 202 and the second sample dispensing component are different sample dispensing components.
  • the sample container 10 includes a receiving cavity 10 a.
  • the top of the receiving cavity 10 a has an opening for the second sampling needle to inject the second sample to be measured into the sample container 10 .
  • the bottom of the sample container 10 is provided with an opening.
  • the detection outlet (not shown in the figure) is for the second sample to be tested to flow out.
  • the second sampling needle adds the second sample to be tested or other liquid to the sample container 10
  • the liquid will flow through a certain flow in the sample container 10 and then be discharged from the detection outlet.
  • the flow of the liquid can stabilize the flow rate, thereby reducing the occurrence of bubbles. Create or reduce the resulting bubbles.
  • the sample container 10 also has an overflow opening 11 that runs through the side wall of the sample container 10 and an overflow groove 12 that collects liquid overflowing from the overflow opening 11 .
  • the overflow groove 12 is connected to the waste through an overflow pipe 13 .
  • Liquid tank 800 Liquid tank 800.
  • the liquid overflowing from the overflow port 11 first enters the overflow tank 12 and then enters the overflow pipe 13.
  • the overflow tank 12 has the function of buffering the liquid and can also facilitate the flexible arrangement of the overflow pipe. Road 13.
  • the liquid overflowing from the sample container 10 is collected using a separate overflow bottle, which requires operators to regularly check and promptly pour the liquid in the overflow bottle, which increases the maintenance workload of the biochemical analyzer.
  • the probability of overflow itself is relatively small, and the amount of overflow is also relatively small, the volume of the overflow bottle is not large. Therefore, the operator easily forgets to check the overflow bottle, and the liquid in the overflow bottle may overflow. risks; when overflow occurs when the operator is not present, biological risks are still unavoidable and may cause electrical safety risks in severe cases.
  • the overflow pipe 13 guides away the overflowing liquid from the sample container 10 in time, thereby playing a safety protection role and improving the electrical safety and biological safety of the biochemical analyzer.
  • the overflow pipe 13 guides the overflowing liquid to the waste liquid tank 800, the operator only needs to maintain the waste liquid tank 800 of the entire machine, and the maintenance workload of the biochemical analyzer will not be additionally increased.
  • the waste liquid tank 800 is an indispensable object for the maintenance of the whole machine and an important maintenance object of the biochemical analyzer. On the one hand, it has a large capacity. On the other hand, it is almost impossible to forget to maintain it. The risk of the waste liquid tank 800 overflowing is low.
  • the overflow port 11 is a hole that penetrates the side wall of the accommodation cavity 10a, and the shape of the hole may be a round hole, a polygonal hole, an elliptical hole, etc.
  • the overflow port 11 is configured as a gap that runs through the top surface of the side wall of the accommodation cavity 10 a.
  • the shape of the overflow tank 12 is not limited.
  • the overflow groove 12 may surround the side wall of the accommodation cavity 10a, or may be located on one side of the side wall of the accommodation cavity 10a.
  • the discharge height of the second sampling needle that discharges the sample to the accommodation chamber 10a is lower than the bottom wall of the overflow port 11 .
  • the discharge height of the second sampling needle is lower, which reduces the probability of introducing bubbles when discharging the sample.
  • the discharge height refers to the height of the sample in the second sampling needle when it leaves the second sampling needle.
  • the height at which the tip of the second sampling needle is located is the liquid discharge height.
  • the second sampling needle if the accommodation chamber 10a overflows, when the second sampling needle extends into the accommodation chamber 10a to discharge liquid, the second sampling needle will contact the liquid surface, based on some impedance characteristics of the second sampling needle. It is detected that overflow has occurred in the accommodation chamber 10a.
  • the electrolyte measurement module 100 includes a detection circuit, the second sampling needle is connected to the detection circuit as a variable impedance, and the detection circuit is used to detect whether there is residual liquid in the accommodation chamber 10a according to the impedance change of the second sampling needle.
  • the second sampling pin is connected to the detection circuit as a generalized impedance.
  • the detection circuit can calculate the current capacitance of the second sampling pin through the working voltage.
  • the second sampling needle contacts the liquid surface, its capacitance will change greatly.
  • the working voltage will also change. In this way, it can be judged whether the second sampling needle touches the liquid based on the change in the working voltage. noodle.
  • the biochemical analyzer can suspend the detection step according to the detection results of the detection circuit and output alarm information.
  • the electrolyte measurement module 100 includes a sensor, which is disposed on the sample container 10 and used to detect whether there is liquid in the holding chamber 10a. It can be understood that, before the second sampling needle discharges the sample, under normal circumstances, there will be no residual liquid in the accommodation chamber 10a. At this time, the sensor detects that there is no liquid in the accommodation chamber 10a. If a blockage or other situation occurs, resulting in residual liquid in the accommodation chamber 10a, and the sensor detects that there is liquid in the accommodation chamber 10a before the second sampling needle is about to discharge the sample, it indicates that there is a risk of overflow, and the sensor emits a signal indicating that there is a risk of overflow. Overflow signal.
  • the biochemical analyzer can pause the detection step according to the overflow signal of the sensor and output alarm information.
  • the sample container 10 and the light source are respectively arranged at opposite corners or both sides of the biochemical analyzer, thereby preventing the light source from affecting the second component in the sample container 10 .
  • the sample under test causes interference.
  • the electrode assembly 20 includes a plurality of electrodes. Each electrode is provided with a channel and a sensitive membrane is provided in the channel of each electrode. The channels of each electrode are connected to form a sample flow channel 21 for the second sample to be measured to flow. The output end of each electrode is It is electrically connected to the second measurement component 30 .
  • the sample flow channel 21 has a liquid inlet 22a and a liquid outlet 22b.
  • the liquid inlet 22a of the sample flow channel 21 is connected to the detection outlet of the sample container 10.
  • the liquid outlet 22b of the sample flow channel 21 is connected to the waste liquid tank 800.
  • the second sample to be tested injected into the sample container 10 flows into the sample flow channel 21 through the detection outlet, and then flows from the sample flow channel 21 to the waste liquid tank 800 .
  • the electrolyte measurement module 100 further includes a sample hydrodynamic device 40 connected to the sample flow channel 21 .
  • the sample hydrodynamic device 40 is used to provide power for the second sample to be measured to flow through the sample flow channel 21 .
  • the angle between the axis of the sample flow channel 21 and the horizontal plane is less than or equal to 10°. In some embodiments, when the second sample to be tested flows through the sample When the flow channel 21 is used, the angle between the axis of the sample flow channel 21 and the horizontal plane is 0°.
  • the existing electrolyte measurement module 100 has the problem of unstable measurement results caused by liquid fluctuations. After in-depth observation and analysis, the inventor found that although the current ISE module sets the inner diameter of the sample flow channel 21 to be very small to reduce the impact of the second sample to be measured.
  • the sample flow channel 21 has a smaller angle with the horizontal plane or is arranged parallel to the horizontal plane, so that the detection process is more stable and the sealing performance is better.
  • the internal reference solution in each electrode will be lost.
  • the internal reference solution in each electrode in the electrode assembly 20 can still be mixed with the internal reference solution in the electrode after it is used.
  • the inner diameter of the sample flow channel 21 can also be made larger, for example, the inner diameter can be greater than or equal to 0.9 mm, thereby reducing the manufacturing difficulty of the electrode assembly 20 and making it less likely to be blocked.
  • the horizontal setting of the sample flow channel 21 is easy to install, especially when integrated in a biochemical instrument (there are more instrument components, and the operating space for the electrolyte measurement module 100 is smaller), and the electrolyte measurement module 100 needs to be operated on the biochemical instrument. If the sample flow channel 21 is arranged vertically, if the lower electrode needs to be replaced, the entire electrode assembly 20 needs to be completely disassembled. If the sample flow channel 21 is arranged horizontally, only a single electrode to be replaced needs to be disassembled, making it easier to install and replace.
  • each electrode of the electrode assembly 20 is electrically connected to the second measurement component 30 . That is, each electrode outputs the electrical signal generated by detection to the second measurement component 30 , and the second measurement component 30 obtains the ion concentration detection result of the second sample to be measured based on the electrical signal output by each electrode of the electrode component 20 .
  • the plurality of electrodes in the electrode assembly 20 include K ion electrodes, Cl ion electrodes, and Na ion electrodes.
  • K ion electrodes, Cl ion electrodes, and Na ion electrodes all have specified lifespans and need to be replaced regularly. Among them, by setting the angle between the sample flow channel 21 and the horizontal plane to be less than or equal to 10°, the K ion electrode and the Na ion electrode can be The life span is extended to more than 9 months.
  • the sensitive membranes of chloride ion electrodes on the market generally use alkyl ammonium chloride as the ion exchanger. Due to the limitations of the electrode materials used, the sensitive membranes of chloride ion electrodes currently on the domestic and foreign markets generally have shortcomings such as poor selectivity, poor stability, and short life.
  • the Cl ion electrode of the present invention uses a sensitive film L whose color is different from that of the conventional sensitive film.
  • the L color of the sensitive film is: R (red) has a numerical range of [50, 99], G (green) has a numerical range of [10, 100], and B (blue) has a numerical range of not limit.
  • the selectivity, stability, life and other properties of the sensitive film of this color have been improved.
  • the service life of the electrode has been extended to more than 6 months.
  • the sensitive membrane L of the Cl ion electrode is a polyvinyl chloride (PVC) membrane
  • the color of the sensitive membrane L of the Cl ion electrode is tan/maroon.
  • the color of the sensitive film L of the Cl ion electrode is: the colors with RGB values of 96, 40, and 30 respectively.
  • the values are 37, 82, 82, and 52 colors respectively.
  • the color of the sensitive membrane L of the Cl ion electrode is: the color in which the HEX value (hexadecimal integer) in the CSS color is #60281e.
  • the main component of the cleaning solution of the electrolyte measurement module 100 is sodium hypochlorite, which has strong oxidizing properties. Excessive cleaning will destroy the sensitive membrane structure of the electrode, causing the electrode to fail.
  • the existing chloride ion electrode has weak resistance to sodium hypochlorite cleaning. After daily cleaning/weekly cleaning and maintenance, the slope needs to be calibrated multiple times to return to normal. The electrode slope is shown in Figure 7.
  • the above-mentioned color chloride ion electrode used in the present invention has enhanced resistance to cleaning, which is also a factor in extending the life of the electrode. It can be clearly seen from Figure 8 that the chloride ion electrode used in the present invention has a more stable slope under frequent cleaning.
  • the electrolyte measurement module 100 further includes a mounting base 60 for placing the electrode assembly 20 .
  • the mounting base 60 includes a movable adjusting member 61, two abutting members 62 oppositely arranged in the horizontal direction, and a mounting platform 63. Multiple electrodes of the electrode assembly 20 are arranged on the mounting platform 63, and multiple electrodes are arranged on the mounting platform 63.
  • An electrode is fixed between two abutting members 62. At least one of the two abutting members 62 can move horizontally according to the activity of the adjusting member 61 to adjust the distance between the two abutting members 62 to install multiple electrodes. , when the angle between the axis of the sample flow channel and the horizontal plane is small, the user can complete the installation of the electrode with one hand, which is very convenient.
  • the second measurement component 30 also includes a plurality of conductive parts 31 arranged on the mounting base 60.
  • Each electrode of the electrode assembly 20 has a corresponding conductive part 31, and each electrode is electrically connected to its corresponding conductive part 31.
  • the conductive member 31 can be understood as an electrical contact used for wiring the electrodes mounted to the mounting base 60, thereby receiving electrical signals output by each electrode.
  • each electrode can contact the second sample to be measured to form an electric potential.
  • the potential formed is also different.
  • the multiple electrodes include There is at least one detection electrode 24 and a reference electrode 23. Each detection electrode 24 can form a membrane potential, and the reference electrode 23 can form a reference potential.
  • Figure 10 is a side view of the reference electrode 23 of the electrolyte measurement module 100 shown in Figure 9.
  • Figure 11 is a cross-sectional view of the reference electrode 23 shown in Figure 10 along the A-A direction. It can be understood that the reference electrode 23 can be regarded as a consumable material in the electrolyte measurement module 100 .
  • the reference electrode 23 has a first accommodation cavity 231 inside, and the first accommodation cavity 231 is used to accommodate the first internal reference solution to form the above-mentioned reference potential.
  • the greater the capacity of the first internal reference solution the longer the service life of the reference electrode 23 .
  • the service life of the reference electrode 23 can be increased by increasing the volume of the first accommodation cavity 231 so that more first internal reference solution can be accommodated inside the reference electrode 23 .
  • a plurality of conductive members 31 are arranged at intervals along the first direction (the left-right direction shown in FIG. 9 ).
  • the reference electrode 23 is provided on one side of its corresponding conductive member 31 along the second direction (the vertical direction shown in FIG. 9 ).
  • the second direction is different from the first direction, and the reference electrode 23 and several detection electrodes 24 are arranged in an array along the first direction.
  • the first receiving cavity 231 at least partially coincides with the orthographic projection of the at least two conductive members 31 in the second direction.
  • the first accommodation cavity 231 may at least partially coincide with the orthographic projections of two, three, four or five conductive members 31 in the second direction, which is not limited in the embodiment of the present application.
  • the first direction may be a vertical direction and the second direction may be a horizontal direction, or the first direction may be a substantially vertical direction and the second direction may be an inclined downward direction.
  • This application does not limit this.
  • the first direction as the horizontal direction and the second direction as the vertical direction relative to the horizontal direction as an example, several specific implementations are enumerated to arrange the above-mentioned first accommodation cavity 231 and at least two conductive members 31 in the third
  • the orthographic projections in the two directions at least partially overlap for explanation and explanation. Possible situations include:
  • the orthographic projection of one conductive member 31 and the first accommodating cavity 231 in the vertical direction completely overlaps, and the orthographic projection of the other conductive member 31 and the first accommodating cavity 231 in the vertical direction partially overlaps; Either the two conductive members 31 completely overlap with the orthographic projection area of the first accommodation cavity 231 in the vertical direction; or, among the four conductive members 31 , three conductive members 31 all overlap with the first accommodation cavity 231 .
  • the orthographic projection area of 231 in the vertical direction completely overlaps, and the remaining conductive member 31 partially overlaps the orthographic projection area of the first accommodation cavity 231 in the vertical direction.
  • the embodiment of the present application can be understood as the reference electrode 23
  • the width of the first accommodating cavity 231 in the first direction is wider, thereby making the volume of the first accommodating cavity 231 of the reference electrode 23 larger to accommodate more third electrodes.
  • An internal reference solution; ultimately, the service life of the reference electrode 23 can be increased to reduce the replacement frequency of the reference electrode 23.
  • the installation base 60 can also be preset with an installation space to accommodate the installation of five detection electrodes 24 and a smaller one. reference electrode 23.
  • the volume of the originally smaller reference electrode 23 can be increased to form the larger volume of the reference electrode 23 in the embodiment of the present application.
  • the reference electrode 23 in the embodiment of the present application can be enlarged to occupy a position reserved for a smaller reference electrode 23 in the installation space and at least one infrequently used position reserved in the installation space.
  • the position of the detection electrode 24 Based on this, the volume of the first accommodating cavity 231 of the reference electrode 23 can also be made larger, so that the orthographic projections of the first accommodating cavity 231 and the at least two conductive members 31 in the second direction at least partially overlap. Purpose.
  • FIG. 12 is a side view of the detection electrode 24 of the electrolyte measurement module 100 shown in FIG. 9
  • FIG. 13 is a cross-sectional view of the detection electrode 24 shown in FIG. 12 along the B-B direction.
  • a plurality of conductive members 31 are arranged on the mounting base 60 at intervals along the first direction.
  • the reference electrode 23 and several detection electrodes 24 are arranged in an array along the first direction.
  • the detection electrode 24 has a second accommodation cavity 241, and the second accommodation cavity 241 is used to accommodate the second internal reference solution to form the above-mentioned membrane potential.
  • the width of the first accommodation cavity 231 in the first direction (the left-right direction shown in FIG. 9 ) is twice the width of the second accommodation cavity 241 in the first direction or More than twice, thereby allowing the first accommodation cavity 231 of the reference electrode 23 to have a larger width in the first direction.
  • the width of the first accommodating cavity 231 in the first direction is equal to the width of the second accommodating cavity 241 in the first direction.
  • the width of the first accommodating cavity 231 in the first direction is twice, 2.6 times, three times, 3.5 times or four times the width of the second accommodating cavity 241 in the first direction.
  • the width of the first accommodation cavity 231 in the first direction is twice or twice the width of the second accommodation cavity 241 in the first direction
  • the first accommodation cavity 231 may at least partially coincide with the orthographic projections of the at least two conductive members 31 in the above-mentioned second direction.
  • the conductive member 31 is placed directly above the cavity 231.
  • only the rightmost conductive member 31 is in contact with the reference electrode 23 to form an electrical connection.
  • the mounting base 60 has a mounting cavity 64 , and a plurality of conductive members 31 , a plurality of detection electrodes 24 and a reference electrode 23 are at least partially disposed in the mounting cavity 64 .
  • a plurality of conductive members 31 are arranged in an array along the left-right direction and are provided at the upper part of the installation cavity 64 .
  • Three detection electrodes 24 and one reference electrode 23 are arranged in a left-right direction on the mounting platform 63 , and the mounting platform 63 is located at the lower part of the mounting cavity 64 .
  • the width of the three detection electrodes 24 in the left and right direction is between 12 mm and 13 mm, and the width of the reference electrode 23 in the left and right direction is between 45 mm and 46 mm.
  • the electrodes 23 can be locked in the installation cavity 64 after being arranged along the left and right directions.
  • the width of the reference electrode 23 in the first direction may be 46 mm, and the width of the first accommodation cavity 231 in the first direction may be 45 mm.
  • only one conductive member 31 may be located directly above the first accommodation cavity 231 , and the reference electrode 23 is electrically connected to the conductive member 31 .
  • the three conductive members 31 are located directly above the first accommodation cavity 231 , and the reference electrode 23 is only electrically connected to one of the conductive members 31 .
  • one structure of the reference electrode 23 is taken as an example to further explain and describe the technical solution of the embodiment of the present application.
  • the reference electrode 23 includes a first shell 232, a first ion-sensitive membrane 233, a first electrode core 234 and the above-mentioned first internal reference solution (not shown in the figure).
  • the first housing 232 and the mounting base 60 can be detachably installed, such as snapping, socketing, screwing, magnetic attraction, etc., which are not limited in the embodiment of the present application.
  • the first housing 232 has a first accommodation cavity 231 and a first flow channel 235 connected with the first accommodation cavity 231.
  • the first flow channel 235 is used to accommodate the second sample to be measured.
  • the first ion-sensitive membrane 233 is disposed on the first housing 232 , and the first ion-sensitive membrane 233 separates the first accommodation chamber 231 and the first flow channel 235 .
  • the first electrode core 234 is disposed in the first housing 232 .
  • One end of the first electrode core 234 is located in the first receiving cavity 231 , and the other end of the first electrode core 234 is in contact with the corresponding conductive member 31 to form an electrical connection.
  • the first internal reference solution is accommodated in the first accommodation chamber 231, and the first internal reference solution immerses the first ion-sensitive membrane 233 and at least part of the first electrode core 234, so that the first internal reference solution is in contact with the first electrode core 234.
  • the interface of an electrode core 234 forms the above-mentioned reference potential.
  • the second sample to be measured flows through the first flow channel 235 and contacts the first ion-sensitive membrane 233, the first electrode core 234 of the reference electrode 23 sequentially passes through the first internal reference solution and the first internal reference solution.
  • An ion-sensitive membrane 233 is electrically connected to the second sample to be measured.
  • the detection electrode 24 is also in contact with the second sample to be measured at the same time to form a membrane potential, the second measurement component 30, the reference electrode 23, the second sample to be measured and the detection electrode 24 can form a loop. This enables the second measuring component 30 to detect the ion concentration of the second sample to be measured through the reference potential and membrane potential.
  • the first housing 232 may also be provided with a first mounting hole 236 that communicates with the first accommodation cavity 231 .
  • the first mounting hole 236 faces the first ion-sensitive membrane 233, and the first ion-sensitive membrane 233 can pass through the first mounting hole 236.
  • the operator can install the first ion-sensitive membrane 233 into the first accommodation chamber 231 through the first installation hole 236 to isolate the first accommodation chamber 231 and the first flow channel 235, or remove the first ion-sensitive membrane 233 that needs to be replaced.
  • the sensitive film 233 is taken out through the first installation hole 236 .
  • the first mounting hole 236 can also be used to inject the first internal reference solution into the first accommodation chamber 231 or to pour out the first internal reference solution in the first accommodation chamber 231. This is the case in the embodiment of the present application. No restrictions.
  • the reference electrode 23 may also include a first cover 237 , and the first cover 237 is used to open or close the first installation hole 236 .
  • the first mounting hole 236 is a threaded hole, and the first cover 237 can be screwed into the first mounting hole 236.
  • the embodiment of the present application does not make a structure in which the first cover 237 closes or opens the first mounting hole 236. limited.
  • the first housing 232 may also be provided with a second mounting hole 238 communicating with the first receiving cavity 231 .
  • the second mounting hole 238 is used to install the first electrode core 234 , and the first electrode core 234 is detachably provided on the first housing 232 through the second mounting hole 238 .
  • the second mounting hole 238 may be a threaded hole, and the side wall of the first electrode core 234 may have external threads to be threadably connected to the second mounting hole 238 .
  • the second mounting hole 238 is opened, and the second mounting hole 238 can be used to inject the first internal reference solution into the first containing cavity 231, or to The first internal reference solution in the first receiving chamber 231 is poured out, which is not limited in the embodiment of the present application.
  • the first internal reference solution may be potassium chloride solution.
  • the potassium chloride solution is a saturated solution, or the first internal reference solution is a saturated potassium chloride solution.
  • the potassium ions in the saturated potassium chloride solution easily pass through the first ion-sensitive membrane 233 and precipitate crystals, eventually causing the surface of the first ion-sensitive membrane 233 facing the first flow channel 235 to be blocked by the precipitated crystals.
  • the first internal reference solution is an unsaturated potassium chloride solution. It can be understood that compared with the saturated potassium chloride solution, the unsaturated potassium chloride solution is less likely to precipitate and crystallize during use, thereby reducing the risk of the first ion-sensitive membrane 233 being blocked to improve the efficiency of the reference electrode 23 reliability and service life.
  • the unsaturated potassium chloride solution may be a potassium chloride solution with a concentration lower than 15% w/v.
  • the unsaturated potassium chloride solution may be a potassium chloride solution with a concentration of 14% w/v, a potassium chloride solution with a concentration of 7.6% w/v, or a potassium chloride solution with a concentration of 1% w/v.
  • one structure of the detection electrode 24 is taken as an example to further explain and describe the technical solution of the embodiment of the present application.
  • the detection electrode 24 may include a second housing 242, a second ion-sensitive membrane 243, a second electrode core 244, and a second internal reference solution (not shown in the figure).
  • the second housing 242 and the mounting base 60 can be detachably installed, such as snapping, socketing, screwing, magnetic attraction, etc., which are not limited in the embodiment of the present application.
  • the second housing 242 has a second accommodation cavity 241 and a second flow channel 245 connected with the second accommodation cavity 241.
  • the second flow channel 245 is used to accommodate the second sample to be measured.
  • the second ion-sensitive membrane 243 is connected to the second housing 242, and the second ion-sensitive membrane 243 separates the second accommodation chamber 241 and the second flow channel 245.
  • the second electrode core 244 is connected to the second housing 242 .
  • One end of the second electrode core 244 is located in the second accommodation cavity 241 , and the other end of the second electrode core 244 is in contact with the corresponding conductive member 31 to form an electrical connection.
  • the second internal reference solution is accommodated in the second accommodation chamber 241, and the second internal reference solution immerses the ion-sensitive membrane and at least part of the second electrode core 244, so that the second internal reference solution can be accommodated in the second flow channel 245.
  • the second sample to be measured forms the above-mentioned membrane potential at the ion-sensitive membrane.
  • the second measuring component 30 can measure the second sample to be measured through the membrane potential and the reference potential. Measurement of ion concentration.
  • each second flow channel 245 may be provided with a second elastic seal 247 .
  • at least one end of the first flow channel 235 may be provided with a second elastic seal 247 .
  • the first elastic seal 239 is so that the connection between the two second flow channels 245 can be sealed by at least one second elastic seal 247, and the connection between the first flow channel 235 and the second flow channel 245 can be sealed by at least one second elastic seal 247.
  • a first elastic seal 239 and/or a second elastic seal 247 seal the pair. It is easy to understand that when the sample flow channel 21 is arranged horizontally, good sealing can be achieved by relying on the elastic seal, but if the sample flow channel 21 is arranged vertically, more expensive and/or complicated sealing means are required.
  • the second housing 242 may also be provided with a third mounting hole 246 that communicates with the second accommodation cavity 241 .
  • the third mounting hole 246 is used to install the second electrode core 244 , and the second electrode core 244 is detachably disposed on the second housing 242 through the third mounting hole 246 .
  • the third mounting hole 246 may be a threaded hole, and the side wall of the second electrode core 244 has external threads to be threadably connected to the third mounting hole 246 .
  • the third installation hole 246 is opened, and the third installation hole 246 can be used to inject the second internal reference solution into the second accommodation cavity 241, or to The second internal reference solution in the second accommodation chamber 241 is poured out, which is not limited in the embodiment of the present application.
  • the conductive member 31 includes a third end surface 311 that is in contact with the corresponding detection electrode 24 or the reference electrode 23 to form an electrical connection.
  • the third end surface 311 of each conductive member 31 may be a flat surface, a convex surface, or a concave surface.
  • the embodiment of the present application is suitable for This is not limited.
  • the third end surface 311 of at least one conductive member 31 may be configured as a convex surface. It can be understood that repeated disassembly and assembly of the reference electrode 23 and the detection electrode 24 may easily cause the third end surface 311 to be worn or contaminated with other stains.
  • the third end surface 311 is set as a convex surface, so that the operator can directly observe whether there are stains or wear on the third end surface 311, and then form the conductive member 31 and the corresponding detection electrode 24 or reference electrode. 23 electrical connections between hidden dangers. It can be seen that the conductive member 31 in the embodiment of the present application improves the safety of the electrolyte measurement module 100 and makes the electrolyte measurement module 100 easier to maintain and inspect.
  • the above-mentioned third end surface 311 which is a convex surface may be spherical, or it can also be understood that the third end surface 311 of at least one conductive member 31 is a spherical surface. Setting the third end surface 311 as a spherical surface can prevent the third end surface 311 from having sharp corners, which will cause the reference electrode 23 , the detection electrode 24 and the conductive member 31 to correspond to each other during the disassembly and assembly of the reference electrode 23 or the detection electrode 24 . parts are scratched or worn, thereby improving the safety and service life of the electrolyte measurement module 100.
  • the reference electrode 23 may have a first end surface 2341 that is in contact with the third end surface 311 of the conductive member 31 to form an electrical connection.
  • the first electrode core 234 may be provided with a first end surface 2341 at one end facing the conductive member 31 .
  • the first end surface 2341 may be a convex surface, a flat surface, or a concave surface matching the third end surface 311, which is not limited in the embodiment of the present application.
  • the third end surface 311 is a spherical surface and the first end surface 2341 is also a spherical surface
  • the lower vertex of the third end surface 311 and the upper vertex of the first end surface 2341 are accurately located at the preset position to form point contact, so as to form a point contact.
  • the conductive member 31 and the reference electrode 23 are electrically connected.
  • the conductive member 31 and the reference electrode 23 inevitably have manufacturing tolerances and assembly tolerances, and when the electrolyte measurement module 100 vibrates, the conductive member 31 and the reference electrode 23 are prone to jitter and displacement.
  • the first end surface 2341 may be a flat surface or a concave surface matching the third end surface 311 .
  • the first end surface 2341 is flat, even if there is a certain position error between the conductive member 31 and the first electrode core 234 , the lower vertex of the third end surface 311 can still contact different positions of the first end surface 2341 , thereby improving the conductive member 31 The stability of the electrical connection with the first electrode core 234 .
  • the first end surface 2341 is a concave surface, the first end surface 2341 can wrap the third end surface 311 to position the conductive member 31 and the first electrode core 234, thereby improving the distance between the conductive member 31 and the first electrode core 234. Stability of electrical connections.
  • the detection electrode 24 may have a second end surface 2441 that abuts the third end surface 311 of the conductive member 31 to form an electrical connection.
  • the second electrode core 244 may be provided with a second end surface 2441 at one end facing the conductive member 31 .
  • the second end surface 2441 may be a convex surface, a flat surface, or a concave surface matching the third end surface 311, which is not limited in the embodiment of the present application.
  • the third end surface 311 is a spherical surface and the second end surface 2441 is also a spherical surface
  • the lower vertex of the third end surface 311 and the upper vertex of the second end surface 2441 are both accurately located at the preset position. position to form point contact, so that the detection electrode 24 and the conductive member 31 are electrically connected.
  • the conductive member 31 and the detection electrode 24 must have manufacturing tolerances and assembly tolerances, and when the electrolyte measurement module 100 vibrates, the conductive member 31 and the reference electrode 23 are prone to jitter.
  • the upper vertex of the second end surface 2441 and the lower vertex of the third end surface 311 are misaligned in the horizontal direction, and the electrical contact between the first end surface 2341 and the third end surface 311 is broken. It can be seen that if the third end surface 311 is a spherical surface and the second end surface 2441 is also a spherical surface, the electrical connection formed between the conductive member 31 and the detection electrode 24 is not stable.
  • the second end surface 2441 may be a flat surface or a concave surface matching the third end surface 311 .
  • the second end surface 2441 is flat, even if there is a certain position error between the conductive member 31 and the second electrode core 244, the lower vertex of the third end surface 311 can contact different positions of the second end surface 2441, thereby improving the connection between the conductive member 31 and the second electrode core 244.
  • the second end surface 2441 is a concave surface, the second end surface 2441 can wrap the third end surface 311 to position the conductive member 31 and the second electrode core 244, thereby improving the distance between the conductive member 31 and the second electrode core 244. Stability of electrical connections.
  • the third end surface 311 of at least one conductive member 31 may have a metal conductive layer (not labeled in the figure).
  • the metal conductive layer may be formed of a metal material with better conductivity such as gold or copper plated on the conductive member 31 to improve the conductive performance of the conductive member 31 .
  • the electrolyte measurement module 100 also includes a calibration liquid module.
  • the calibration liquid module includes a calibration liquid bin 51 for placing a calibration liquid container carrying the calibration liquid, a calibration liquid pipeline, and a calibration liquid pipeline connected to the calibration liquid pipeline to provide power.
  • Calibration liquid power device the inlet end of the calibration liquid pipeline is connected to the calibration liquid container, and the outlet end of the calibration liquid pipeline is connected to the sample container 10, so that the calibration liquid passes through the sample container 10 and is transported to the sample flow channel 21, and the second measurement
  • the component 30 is also used to perform calibration based on the electrical signal generated by the electrode assembly 20 when the calibration solution flows through the sample flow channel 21 .
  • the outlet end of the calibration liquid pipeline can also be directly connected to the sample flow channel 21. The following description takes the connection between the calibration liquid pipeline and the sample container 10 as an example.
  • the calibration liquid chamber 51 is used to detachably install a calibration liquid package 51a.
  • the calibration liquid package 51a includes a calibration liquid container and a chip component for recording at least calibration liquid information.
  • the calibration liquid information includes But it is not limited to the type of calibration fluid, the remaining amount of calibration fluid, etc.
  • the calibration liquid chamber 51 is also provided with an information reading component that reads the calibration fluid information recorded in the chip assembly. For example, the information reading component reads the calibration fluid information through near field communication.
  • the calibration liquid pack 51a needs to be replaced when the calibration liquid in the calibration liquid pack 51a is exhausted or insufficient. Reading the remaining amount of calibration liquid through near field communication can reduce the plug-in and unplug loss of the electrolyte measurement module 100 caused by the wired connection. Thereby, the service life of the electrolyte measurement module 100 is improved.
  • the calibration liquid chamber 51 also includes an in-position detection component, and the in-position detection component is between the calibration liquid container and the calibration liquid pipeline.
  • the biochemical analyzer also includes an indicator light.
  • the indicator light Based on the status change generated by the in-position detection component, it switches from off to on.
  • the indicator light switches from on based on the status change generated by the in-position detection component. Switch to off.
  • the calibration liquid container includes a first calibration liquid container 52a carrying the first calibration liquid and a second calibration liquid container 52b carrying the second calibration liquid.
  • the calibration liquid pipeline includes an inlet end and a third calibration liquid container.
  • a first calibration liquid pipeline 53a connected with a calibration liquid container 52a and a second calibration liquid pipeline 53b with an inlet connected to a second calibration liquid container 52b.
  • the sample container 10 has a calibration liquid pipeline 53a connected with an outlet end of the first calibration liquid pipeline 53a.
  • the first calibration liquid inlet 10b and the second calibration liquid inlet 10c are connected to the outlet end of the second calibration liquid pipeline 53b.
  • the biochemical analyzer is turned on, you can go through the testing process with the first calibration solution and the second calibration solution in order to perform calibration together, and then you can start sample testing.
  • the first calibration solution is allowed to flow through each electrode in sequence.
  • Each electrode outputs the detection signal of the first calibration solution to the second measurement component 30, and the second measurement component 30 measures the detection signal accordingly.
  • the ion concentration detection result of the second sample to be tested is corrected to improve detection accuracy. It can also be seen from the above description that the frequency of use of the first calibration solution is higher than the frequency of use of the second calibration solution. For example, the K ion concentration of the first calibration solution is smaller than the K ion concentration of the second calibration solution.
  • the first calibration solution inlet 10b is disposed below the second calibration solution inlet 10c in the height direction of the sample container 10, so that the use of the second calibration solution is minimally affected.
  • the first calibration liquid is easy to clean.
  • the lower the inlet on the side wall of the sample container 10 is, the fewer or smaller the bubbles generated by the liquid entering the sample container 10 from the inlet will have an impact on the ion concentration detection results. Therefore, the first calibration solution inlet 10b corresponding to the first calibration solution that is used more frequently is set closer to the bottom of the sample container 10, so that fewer or smaller bubbles are generated during calibration.
  • the calibration fluid power device includes a first power device 54a disposed on the first calibration fluid pipeline 53a to provide power, and a second power device 54b disposed on the second calibration fluid pipeline 53b to provide power.
  • the first power device 54a is used to transport the first calibration solution in the first calibration solution container 52a to the sample container 10.
  • the first power device 54a may be a pump or a syringe, or the like.
  • the second power device 54b is used to transport the second calibration solution in the second calibration solution container 52b to the sample container 10.
  • the second power device 54b may also be a pump or a syringe.
  • the sample fluid power device 40 is also used to provide power for the first calibration liquid and the second calibration liquid to flow through the sample flow channel 21 . That is to say, the first calibration liquid, the second calibration liquid and the second sample to be tested all flow from the detection outlet at the bottom of the sample container 10 into the sample flow channel 21, and then enter the waste liquid tank 800, and these three liquids flow from the sample container 10 to the sample flow channel 21.
  • the container 10 to the sample flow channel 21 share a power device.
  • the first calibration liquid and the second calibration liquid can also flow into the sample flow channel 21 through a power device different from the sample liquid power device 40 .
  • the calibration solution module and the light source are respectively arranged at opposite corners or both sides of the biochemical analyzer, thereby preventing the light source from damaging the calibration solution in the calibration solution module. cause interference.
  • the biochemical analyzer further includes a frame 70
  • the electrolyte measurement module 100 further includes a first mounting bracket 70a, a second mounting bracket 70b respectively installed on the frame 70.
  • Third mounting bracket 70c The above-mentioned sample container 10, electrode assembly 20 and second measurement assembly 30 are all installed on the first mounting bracket 70a, that is, the mounting base 60 is also installed on the first mounting bracket 70a; the first power device 54a, the second power device 54b, the sample liquid The power unit 40 is installed on the second installation bracket 70b; the calibration liquid tank 51 is installed on the third installation bracket 70c.
  • the calibration liquid chamber 51 of the electrolyte measurement module 100 is located on the operating side of the biochemical analyzer. The operating side is generally the side relative to the biochemical analyzer when the user operates the biochemical analyzer. By installing the calibration liquid chamber 51 on On the operation side, the user can easily replace the calibration fluid pack 51a.
  • the electrolyte measurement module 100 further includes a controller, which is configured to collect the working status information of the electrolyte measurement module 100 and/or the ion concentration detection results of the second sample to be measured, and collect the information when the electrolyte measurement module 100 meets the predetermined requirements.
  • the working status information of the electrolyte measurement module 100 and/or the ion concentration detection result of the second sample to be measured is sent to the processor 600 of the biochemical analyzer, where the working status information of the electrolyte measurement module 100 includes but is not limited to electrolyte The operation status of the measurement module 100, whether the electrolyte measurement module 100 is abnormal, whether each component is working normally, etc.
  • the preset conditions include: the operation of the electrolyte measurement module 100 meets the preset time, and the electrolyte measurement module 100 detects the second sample to be measured meets the preset conditions. At least one of setting the number of times, receiving a power-on command, and receiving a power-off command. That is to say, the electrolyte measurement module 100 has the function of monitoring or collecting information. The collected information is not always stored in the electrolyte measurement module 100, but will be automatically sent to the processor 600 of the biochemical analyzer under certain conditions. For example, when When turning on or off, the electrolyte measurement module 100 automatically sends the collected information to the processor 600 of the biochemical analyzer.
  • the electrolyte measurement module 100 runs for a certain period of time or detects a certain number of second samples to be tested.
  • the collected information is automatically sent to the processor 600 of the biochemical analyzer.
  • the hardware standards for the electrolyte measurement module 100 are relatively high.
  • the inventor found that one of the reasons is that the information collected by the electrolyte measurement module 100 is sent to the processor 600 of the biochemical analyzer in response to the user's request. , this results in that the information collected by the electrolyte measurement module 100 is usually stored locally, and the memory capacity of the memory chip of the electrolyte measurement module 100 is required to be relatively high.
  • the electrolyte is stored when the preset conditions are met.
  • the measurement module 100 automatically sends information to the processor 600 of the biochemical analyzer, which can reduce the hardware requirements for the controller of the electrolyte measurement module 100 itself.
  • the electrolyte measurement module 100 also includes a power supply interface and a communication interface.
  • the biochemical analyzer also includes a power supply module.
  • the power supply module supplies power to the electrolyte measurement module 100 through the power supply interface.
  • the processor 600 sends control instructions to the controller through the communication interface.
  • the controller controls the work of the electrolyte measurement module 100 according to the control instructions. That is, the entire electrolyte measurement module 100 and the biochemical analyzer can achieve electrical connection and communication connection through only two interfaces.
  • the electrolyte measurement module 100 can be used as a module in different biochemical analyses. replacement between instruments.
  • the biochemical analyzer may also include an information transmission device.
  • the information transmission device is used to connect to the LIS system signal [Laboratory (Laboratory Department) Information System].
  • the processor 600 is used to transmit the first patient to be processed through the information transmission device.
  • the light detection item results of the measured sample are sent to the LIS system;
  • the controller is connected to the information transmission device through the communication interface, and the controller is used to send the ion concentration detection result of the second sample to be measured to the LIS system through the information transmission device.
  • the controller is connected to the processor 600 through a communication interface, and the controller sends the ion concentration detection result of the second sample to be tested to the processor 600.
  • the processor 600 is configured to transmit the first sample to be tested through an information transmission device.
  • the light detection item results of the measured sample and the ion concentration detection results of the second sample to be measured are sent to the LIS system. It is convenient for users to view and collect statistics on the information of the first sample to be tested and the second sample to be tested on other devices.
  • the first power device 54a, the second power device 54b and the sample fluid power device 40 receive electrical energy and communication signals through the same interface.
  • the interface can be connected to the power supply interface of the electrolyte measurement module 100, thereby receiving
  • the advantage of using one interface to receive power from three power devices is that it can effectively reduce the required wire data to reduce mutual interference between wires.
  • the interface can also be electrically connected to the controller to receive control instructions from the controller. The control instructions can control the first power unit 54a, the second power unit 54b and the sample hydraulic power unit 40 to work in a certain time sequence.
  • the term “comprises” and any other variations thereof are intended to be non-exclusively inclusive such that a process, method, article, or apparatus that includes a list of elements includes not only those elements but also those not expressly listed or otherwise not part of the process , methods, systems, articles or other elements of equipment.
  • the term “coupled” and any other variations thereof as used herein refers to physical connection, electrical connection, magnetic connection, optical connection, communication connection, functional connection and/or any other connection.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种生化分析仪,该生化分析仪包括样本承载组件(201)、第一样本分注组件(202)、第二样本分注组件、试剂承载组件(203)、试剂分注组件(204)、第一测定组件(207)以及电解质测量模块(100),电解质测量模块(100)包括样本容器(10)、电极组件(20)以及第二测定组件(30);电极组件(20)包括多个电极,电极组件(20)的各个电极依次排列设置形成用于第二待测样本流通各个电极的样本流道(21),样本流道(21)与水平面的夹角小于或等于10°,样本流道(21)与电极组件(20)的各个电极的敏感膜连通。生化分析仪将电解质测量模块(100)作为一个完全独立的模块,且样本流道(21)略微倾斜或水平设置,使得离子浓度检测结果更加稳定。

Description

一种生化分析仪 技术领域
本发明涉及医疗器械领域,具体涉及一种生化分析仪。
背景技术
生化分析仪是医院检验科的常见设备,用于对病人的血液进行各项检测,如进行肝功能的检测、肾功能的检测、血脂检测、血糖检测等。随着人们对生命健康越来越重视,检测需求越来越多。如对血液中的离子浓度检测也越来越普遍。现有技术中,检验科通常采用电解质分析仪对病人血液中的离子浓度进行检测。同一个病人的血样需要给到多种设备做检测,这样导致病人需要多次采血才能满足生化分析和离子检测的需要。而医院检验科也需要管理生化分析仪、电解质分析仪等多种设备。可见,现有的生化分析仪功能还较为单一,无法满足病人和检验科的需求。
此外,目前电极组件存在离子浓度检测结果不稳定的问题,且该问题的源头从业人员也在探索中,这也是当前电解质测量设备待解决或待改进的问题之一。
技术问题
本发明主要是提供一种生化分析仪,旨在增加生化分析仪的离子浓度检测功能,且离子浓度的检测更加稳定。
技术解决方案
本申请的一种实施例中提供了一种生化分析仪,包括样本承载组件、第一样本分注组件、第二样本分注组件、试剂承载组件、试剂分注组件、第一测定组件以及电解质测量模块,所述电解质测量模块包括样本容器、电极组件以及第二测定组件,其中:
所述样本承载组件,用于承载待测样本;
所述第一样本分注组件,用于将所述样本承载组件中的第一待测样本分注至所述第一测定组件;
所述试剂承载组件,用于承载试剂;
所述试剂分注组件,用于将所述试剂承载组件中的试剂移送至所述第一测定组件;
所述第一测定组件,用于对至少由第一待测样本和所述试剂混合形成的反应液进行光检测,以获得光检测项目结果;
所述第二样本分注组件将所述样本承载组件中的第二待测样本分注至所述样本容器;
所述电极组件包括多个电极,各个所述电极设置有通道且各个所述电极的通道内设置有敏感膜,各个所述电极的通道连通形成用于所述第二待测样本流经的样本流道,各个所述电极的输出端与所述第二测定组件电连接,其中,当所述第二待测样本流经所述样本流道时所述样本流道的轴线与水平面的夹角小于或等于10°;  
所述样本容器的检测出口与所述样本流道连通 ,以使所述样本容器中的第二待测样本依次流经所述电极组件的各个电极的敏感膜;
所述第二测定组件用于根据所述第二待测样本流经所述敏感膜时所述电极输出的电信号,以获得所述第二待测样本的离子浓度检测结果。
有益效果
依据上述实施例的生化分析仪,除了能进行生化项目的检测,还具有电解质测量模块,能检测待测样本的K、Cl和Na离子浓度,增加了生化分析仪的离子检测功能,对既需要做生化项目的检测又需要做离子检测的病人而言,减少了采血次数,此外,通过将样本流道略倾斜或水平设置,提高了离子浓度检测的稳定性。
附图说明
图1为一种实施例的生化分析仪的结构框图;
图2为一种实施例的生化分析仪中,一功能模块的结构示意图;
图3为一种实施例的生化分析仪中,电解质测量模块的结构框图;
图4为一种实施例的样本容器的部分结构示意图;
图5为一种实施例的Cl离子电极的实物图;
图6为一种实施例的Cl离子电极斜率与使用时间的统计图;
图7为现有Cl离子电极斜率统计图;
图8为一种实施例的采用本申请的Cl离子电极斜率统计图;
图9为一种实施例的电解质测量模块的主视图;
图10为图9所示电解质测量模块的参比电极的侧视图;
图11为图10所示参比电极沿A-A方向的剖面图;
图12为图9所示电解质测量模块的检测电极的侧视图;
图13为图12所示检测电极沿B-B方向的剖面图;
图14为图9所示电解质测量模块的X处局部放大图;
图15为一种实施例的电解质测量模块的结构示意图;
图16为一种实施例的生化分析仪的结构示意图;
10、样本容器;10a、容纳腔; 10b、第一标定液入口;10c、第二标定液入口;11、溢流口;12、溢流槽; 13、溢流管路;
20、电极组件;
21、样本流道;22a、进液口;22b、出液口;
23、参比电极;231、第一容置腔;232、第一壳体;233、第一离子敏感膜;234、第一电极芯;2341、第一端面;235、第一流道;236、第一安装孔;237、第一盖体;238、第二安装孔;239、第一弹性密封件;
24、检测电极;241、第二容置腔;242、第二壳体;243、第二离子敏感膜;244、第二电极芯;2441、第二端面;245、第二流道;246、第三安装孔;247、第二弹性密封件;
30、第二测定组件;31、导电件;311、第三端面;
40、样本液动力装置;
51、标定液仓;51a、标定液包;
52a、第一标定液容器;52b、第二标定液容器;
53a、第一标定液管路;53b、第二标定液管路;
54a、第一动力装置;54b、第二动力装置;
60、安装座;61、调节件;62、抵接件;63、安装平台;64、安装腔;
70、机架;70a、第一安装支架;70b、第二安装支架;70c、第三安装支架;
100、电解质测量模块;
200、功能模块;201、样本承载组件;202、第一样本分注组件;203、试剂承载组件;204、试剂分注组件;205、混匀机构;206、反应组件;207、第一测定组件;
300、输入模块;
400、显示模块;
500、存储器;
600、处理器;
700、报警模块;
800、废液罐。
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为组件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本申请中所称的电极的敏感膜是一种选择性穿透膜,它决定着电极的选择性、灵敏度、稳定性、检测范围及使用寿命等多方面的特性。
本发明最重要的构思在于,发现了样本流道垂直设置对离子浓度检测造成的影响,将样本流道略微倾斜或水平设置,使得离子浓度检测结果更加稳定。
本发明提供的生化分析仪,除了能进行生化项目的检测,还能进行离子检测,具体如图1所示,包括电解质测量模块100,至少一个功能模块200(或者说一个或多个功能模块200)、输入模块300、显示模块400、存储器500、处理器600和报警模块700,下面分别说明。
每个功能模块200用于完成样本分析过程中所需要的至少一种功能,这些功能模块200共同配合来完成样本分析,得到样本分析的结果。请参照图2,其为一种实施例的生化分析仪,其中对功能模块200进行了一些举例。例如功能模块200可以包括样本承载组件201、第一样本分注组件202、第二样本分注组件(图中未示出)、试剂承载组件203、试剂分注组件204、混匀机构205、反应组件206和第一测定组件207等。
样本承载组件201用于承载待测样本。待测样本的具体类型不限,可以是血清、血液、血浆、髓液、尿、胃液、肠液、胆汁、唾液、泪等体液或细胞提取液等来自生物体的溶液,也可以是透析液、输液、营养剂、药剂等医疗中所使用的溶液。一些实施例中样本承载组件201可以包括样本分配模块(SDM,Sample Delivery Module)及前端轨道;另一些例子中,样本承载组件201也可以是样本盘,样本盘包括多个可以放置诸如样本管的样本位,样本盘通过转动其盘式结构,可以将样本调度到相应位置,例如供第一样本分注组件202吸取第一待测样本的位置。
第一样本分注组件202用于将样本承载组件201中的第一待测样本分注至第一测定组件207。例如,第一样本分注组件202包括第一采样针,第一采样针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而使得第一采样针可以移动去吸取样本承载组件201所承载的第一待测样本。
试剂承载组件203用于承载试剂。在一实施例中,试剂承载组件203可以为试剂盘,试剂盘呈圆盘状结构设置,具有多个用于承载试剂容器的位置,试剂承载组件203能够转动并带动其承载的试剂容器转动,用于将试剂容器转动到特定的位置,例如被试剂分注组件204吸取试剂的位置。试剂承载组件203的数量可以为一个或多个。
试剂分注组件204用于将试剂承载组件203中的试剂移送至第一测定组件207。在一实施例中,试剂分注组件204可以包括试剂针,试剂针通过二维或三维的驱动机构来在空间上进行二维或三维的运动。
混匀机构205用于对反应杯中需要混匀的反应液进行混匀。混匀机构205的数量可以为一个或多个。反应液至少由第一待测样本和试剂混合得到。
反应组件206具有至少一个放置位,放置位用于放置反应杯并孵育反应杯中的反应液。例如,反应组件206可以为反应盘,其呈圆盘状结构设置,具有一个或多个用于放置反应杯的放置位,反应盘能够转动并带动其放置位中的反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的反应液。
第一测定组件207用于对反应液进行光检测,以获得光检测项目结果,如对孵育完成的反应液进行光测定,得到样本的反应数据。一些实施例中,第一测定组件207包括光源以及光检测模块,光源用于发出光线照射第一待测样本,光检测模块用于接收光源照射第一待测样本后的光线以得到光检测项目结果。
以上是对功能模块200的一些举例说明,下面继续对生化分析仪中的其他组件和结构进行说明。
输入模块300用于接收用户的输入。常见地,输入模块300可以是鼠标和键盘等,在一些情况下,也可以是触控显示屏,触控显示屏带来供用户输入和显示内容的功能,因此这种例子中输入模块300和显示模块400是集成在一起的。当然,在一些例子中,输入模块300甚至可以是带来识别语音的语音输入设备等。
显示模块400可以用于显示信息。在有的实施例中,生化分析仪本身可以集成显示模块400,在有的实施例中,生化分析仪也可以连接一个计算机设备(例如电脑),通过计算机设备的显示单元(例如显示屏)来显示信息,这些都属于本文中显示模块400所限定和保护的范围。
通常来说,生化分析仪还包括废液罐800,用于收集样本分注组件、试剂分注组件、承载反应液的反应杯的清洗废液中至少一者。可以理解的是,废液罐800也可以用于收集搅拌杆清洗后的清洗废液。
电解质测量模块100(ISE)用于检测第二待测样本的离子浓度。如图3所示,电解质测量模块100包括:样本容器10、电极组件20和第二测定组件30。
第二样本分注组件用于将样本承载组件201中的第二待测样本分注至样本容器10。一些实施例中,第一待测样本与第二待测样本来自同一受试者。在另一些实施例中,第一待测样本和第二待测样本来自不同的受试者,也就是说,第一测定组件207和第二测定组件30能够得到不同受试者的相关检测结果。
一些实施例中,第二样本分注组件包括第二采样针,第二采样针通过二维或三维的驱动机构来在空间上进行二维或三维的运动,从而使得第二采样针可以移动去吸取样本承载组件201所承载的第二待测样本。
一些实施例中,第一样本分注组件202与第二样本分注组件为同一样本分注组件,例如,第一采样针与第二采样针为同一采样针,即,电解质测量模块100和其他功能模块200共用样本分注组件,既能节省分析仪体积又能节约成本。在另一些实施例中,第一样本分注组件202与第二样本分注组件为不同的样本分注组件。
一些实施例中,如图4所示,样本容器10包括容纳腔10a,容纳腔10a的顶部有开口以供第二采样针将第二待测样本注入样本容器10,样本容器10的底部设置有检测出口(图中未示出)以供第二待测样本流出。第二采样针向样本容器10注入第二待测样本时的排液轴线在样本容器10底部的投影与样本容器10底部检测出口的中心不重合。这样,在第二采样针向样本容器10添加第二待测样本或其他液体时,液体在样本容器10内会经过一定的流动再从检测出口排出,液体的流动能够稳定流速,从而减少气泡的产生或减小产生的气泡。
在一些实例中,样本容器10还有贯穿样本容器10的侧壁的溢流口11和汇集从溢流口11溢出液体的溢流槽12,溢流槽12通过溢流管路13连接至废液罐800。该实施例中,从溢流口11溢流出来的液体先进入溢流槽12中,再进入溢流管路13中,溢流槽12具有缓存液体的作用,也能便于灵活布置溢流管路13。
相关技术中,将从样本容器10溢出的液体单独使用一个溢流瓶进行收集,需要操作人员定期查看并及时倾倒溢流瓶中的液体,增大生化分析仪的维护工作量。此外,由于溢流的几率本身比较小,且溢流的量也比较小,因此,溢流瓶的容积不大,因此,操作人员容易忘记查看溢流瓶,溢流瓶内的液体有满溢的风险;当操作操作人员不在场时发生溢流,生物风险仍然不可避免,严重时造成电器安全风险。本申请实施例的生化分析仪,溢流管路13及时导走样本容器10溢出的液体,起到安全防护作用,提升生化分析仪的电器安全和生物安全。此外,由于溢流管路13将溢出的液体导流至废液罐800,只需要操作人员维护整机的废液罐800即可,并不会额外增大生化分析仪的维护工作量。废液罐800作为整机维护不可缺少的对象,是生化分析仪的重要的维护对象,一方面容量较大,另一方面,几乎不会忘记维护,废液罐800满溢风险较低。
上述溢流口11的具体形状可以不同,例如,一些实施例中,溢流口11为贯穿容纳腔10a的侧壁的孔,孔的形状可以是圆孔、多边形孔、椭圆形孔等。
另一些实施例中,请参阅图4,溢流口11构造为贯穿容纳腔10a的侧壁的顶端面的缺口。该实施例中,一方面,便于在容纳腔10a的侧壁加工出缺口;另一方面,由于缺口一直延伸至容纳腔10a的侧壁的顶端面,当液位高于缺口的底边缘,随着液位越高,缺口的溢流面积越大,溢流能力越强,使得液体不会蔓延至容纳腔10a的侧壁的顶端面。
溢流槽12的形状不限。溢流槽12可以环绕容纳腔10a的侧壁,也可以位于容纳腔10a的侧壁的一侧。
示例性地,向容纳腔10a排放样本的第二采样针的排液高度低于溢流口11的底壁。如此,第二采样针的排液高度较低,降低排放样本时引入气泡的概率。其中,排液高度指的是第二采样针内的样本离开第二采样针时的高度。例如,当样本从第二采样针的尖端处排出时,第二采样针的尖端所在的高度即为排液高度。
一些实施例中,如果容纳腔10a发生溢流,当第二采样针伸入容纳腔10a进行排液时,第二采样针会接触液面,基于第二采样针的一些阻抗方面的特性即可检测到容纳腔10a内已经发生了溢流。
示例性的,电解质测量模块100包括检测电路,第二采样针作为可变阻抗接入检测电路,检测电路用于根据第二采样针的阻抗变化检测容纳腔10a是否有残留液体。
该实施例中,第二采样针作为一个广义的阻抗接入检测电路,例如,以第二采样针作为检测电路中的电容为例,检测电路能够通过工作电压来计算第二采样针当前的电容大小,当第二采样针接触到液面时其电容会发生较大的变化,此时,工作电压也会发生变化,如此,即可根据工作电压的变化来判断第二采样针是否接触到了液面。生化分析仪可以根据检测电路的检测结果暂停检测步骤,并输出报警信息。
另一些实施例中,电解质测量模块100包括传感器,传感器设置于样本容器10上,且用于检测容纳腔10a是否有液体。可以理解的是,在第二采样针即将排放样本之前,在正常情况下,容纳腔10a中不会有残留液体,此时,传感器检测到容纳腔10a中没有液体。如果发生堵塞等情况,导致容纳腔10a中有残留液体,传感器在第二采样针即将排放样本之前如果检测到了容纳腔10a中有液体,则说明有溢流风险,传感器发出表征有溢流风险的溢流信号。生化分析仪可以根据传感器的溢流信号暂停检测步骤,并输出报警信息。
由于第一测定组件207的光源发热量大,温度较高,一些实施例中,样本容器10与光源分别在生化分析仪的对角或两侧设置,从而防止光源对样本容器10中的第二待测样本造成干扰。
电极组件20包括多个电极,各个电极设置有通道且各个电极的通道内设置有敏感膜,各个电极的通道连通形成用于第二待测样本流经的样本流道21,各个电极的输出端与第二测定组件30电连接。样本流道21具有进液口22a和出液口22b,样本流道21的进液口22a与样本容器10的检测出口连通,样本流道21的出液口22b与废液罐800连通,分注至样本容器10内的第二待测样本经检测出口流入样本流道21,再从样本流道21流向废液罐800。第二待测样本流入样本流道21后会依次与电极组件20的各个电极的敏感膜(也被称为离子敏感膜)接触,即,本实施例中,电极组件20采用直接法检测离子浓度,换而言之,第二待测样本未经稀释就从样本容器10依次流经各个电极的敏感膜,对应的离子通过敏感膜选择性透过,从而被电极检测到。一些实施例中,电解质测量模块100还包括与样本流道21连通的样本液动力装置40,样本液动力装置40用于为第二待测样本流经样本流道21提供动力。
在本实施例中,当第二待测样本流经样本流道21时样本流道21的轴线与水平面的夹角小于或等于10°,一些实施例中,当第二待测样本流经样本流道21时样本流道21的轴线与水平面的夹角为0°。现有的电解质测量模块100存在液体波动导致测量结果不稳定的问题,经过深入观察分析,发明人发现虽然目前的ISE模块将样本流道21的内径设置地很小来减少第二待测样本在检测时的流动,但是由于样本流道21垂直于水平面,故第二待测样本在检测离子浓度时还是会发生流动而导致检测结果不稳定。故在本实例中的样本流道21与水平面具有较小的夹角或与水平面平行设置,从而使得检测的过程中更加稳定,并且密封性也更好。此外,随着电极的使用,各电极中的内参比溶液会流失,而样本流道21水平设置或略倾斜设置时,电极组件20中各电极中的内参比溶液流失后仍可以与电极当中的电极芯较好地接触,特别是在样本流道21与水平面夹角小于或等于10°时,大部分的电极的使用寿命可长达九个月以上,从而更好地满足使用需求。
而在电极组件20的制作与安装上,首先,样本流道21的内径也可以做的更大,例如内径可以大于或等于0.9毫米,从而降低了电极组件20的制造难度且更不容易发生堵塞,此外,样本流道21水平设置容易安装,特别是集成在生化仪的场景(仪器组件更多,对于电解质测量模块100操作空间较小),需要在生化仪上对电解质测量模块100进行操作,样本流道21竖直设置如需更换下方的电极,需要将整个电极组件20全拆卸,如果样本流道21水平设置,则只需要将更换的单个电极拆卸,更容易安装和更换。
电极组件20的各个电极的输出端与第二测定组件30电连接。即各个电极将检测产生的电信号输出给第二测定组件30,第二测定组件30根据电极组件20的各个电极输出的电信号得到第二待测样本的离子浓度检测结果。
一些实施例中,电极组件20中的多个电极包括K离子电极、Cl离子电极、Na离子电极。K离子电极、Cl离子电极、Na离子电极都有规定的寿命,需要定期更换,其中,通过将样本流道21与水平面夹角设置地小于或等于10°,能够使得K离子电极和Na离子电极的寿命延长至9个月以上。市面上的氯离子电极的敏感膜普遍以烷基氯化铵为离子交换剂。由于所采用电极材料的局限性,目前国内外市场上的氯离子电极的敏感膜普遍存在选择性不佳、稳定性差、寿命短等缺点。
而本发明的Cl离子电极,如图5所示,采用一种颜色与常规敏感膜颜色不同的敏感膜L。按RGB颜色来看,该敏感膜L颜色为:R(红)的数值范围在【50,99】,G(绿)的数值范围在【10,100】的颜色,B(蓝)的数值不限。该颜色的敏感膜的选择性、稳定性、寿命等性能得到了提高,如图6所示,电极使用寿命延长至个6月以上。
本实施例中,Cl离子电极的敏感膜L为聚氯乙烯(PVC)膜,Cl离子电极的敏感膜L颜色为棕褐色/栗色。具体的,Cl离子电极的敏感膜L颜色为:RGB的数值分别为96,40,30的颜色。若按CMYK的颜色分类,则Cl离子电极的敏感膜L颜色为:CMYK(C:Cyan = 青色,M:Magenta = 品红色,Y:Yellow = 黄色;K:blacK=黑色,即印刷四色)的数值分别为37,82,82,52的颜色。若按CSS的颜色分类,则Cl离子电极的敏感膜L颜色为:CSS颜色中HEX值(十六进制整数)为#60281e的颜色。
电解质测量模块100的清洗液主要成分为次氯酸钠,具有强氧化性,清洗过度会破坏电极的敏感膜结构,导致电极失效。现有的氯离子电极抗次氯酸钠清洗能力较弱,日清洗/周清洗维护后,需要多次定标斜率才能恢复正常,其电极斜率如图7所示。本发明采用的上述颜色的氯离子电极抗清洗能力增强,这也是电极寿命延长的一方面因素。由图8可以明显看出本发明采用的氯离子电极在频繁清洗下斜率更稳定。
一些实施例中,如图9所示,电解质测量模块100还包括用于放置电极组件20的安装座60。示例性的,安装座60包括可活动的调节件61、水平方向上相对设置的两个抵接件62及安装平台63,电极组件20的多个电极排布设置于安装平台63上,且多个电极固定于两个抵接件62之间,两个抵接件62中的至少一个可根据调节件61的活动而水平运动以调整两个抵接件62之间的距离来安装多个电极,当样本流道的轴线与水平面的夹角较小时,用户单手即可完成电极的安装,十分方便。
第二测定组件30还包括若干设置于安装座60的导电件31,电极组件20的各电极均具有对应的导电件31,每一电极均分别与各自对应的导电件31电连接,基于此,导电件31可以理解为用于对安装至安装座60的电极进行接线的电触头,从而接收各电极输出的电信号。当第二待测样本在样本流道21中时,每一电极均能够与第二待测样本接触而形成一个电位,根据电极的不同,形成的电位也不同,具体来说,多个电极包括至少一个检测电极24和参比电极23,每一检测电极24均能够形成一个膜电位,参比电极23则形成一个参比电位。
请继续参考图10和图11,图10为图9所示电解质测量模块100的参比电极23的侧视图,图11为图10所示参比电极23沿A-A方向的剖面图。可以理解的是,参比电极23可以视作电解质测量模块100中的一个耗材。其中,如图11所示,参比电极23内部具有第一容置腔231,第一容置腔231用于容置第一内参比溶液以形成上述的参比电位。通常情况下,第一内参比溶液的容量越多,参比电极23的使用寿命越长。基于此,可以通过增大第一容置腔231容积的方式,以使参比电极23内部可以容置更多的第一内参溶液来提高参比电极23的使用寿命。
请一并参考图9和图11,在增大第一容置腔231容积的一种实施方式中,若干个导电件31沿第一方向(图9中所示的左右方向)间隔设置于安装座60。参比电极23设于其对应的导电件31沿第二方向(图9中所示的垂直方向)的一侧。第二方向与第一方向不同,参比电极23与若干个检测电极24沿第一方向排列设置。其中,第一容置腔231与至少两个导电件31在第二方向上的正投影至少部分重合。例如,第一容置腔231可以是和两个、三个、四个或者五个导电件31在第二方向上的正投影至少部分重合,本申请实施例对此不作限定。
在其他实施例中,可以是第一方向为垂直方向、第二方向为水平方向,也可以是第一方向为大致垂直的方向、第二方向为倾斜向下的方向本申请对此不做限定。下面,以第一方向为水平方向、第二方向为相对于水平方向的垂直方向为例,列举几种具体实施方案,以对上述的第一容置腔231与至少两个导电件31在第二方向上的正投影至少部分重合进行解释和说明,可能的情况有:
两个导电件31中,一个导电件31与第一容置腔231在垂直方向上的正投影完全重合、另一个导电件31与第一容置腔231在垂直方向上的正投影部分重合;或者是,两个导电件31均与第一容置腔231在垂直方向上的正投影面积完全重合;又或者是,四个导电件31中,三个导电件31均与第一容置腔231在垂直方向上的正投影面积完全重合,剩余一个导电件31与第一容置腔231在垂直方向上的正投影部分重合。
一方面,相较于仅一个导电件31与第一容置腔231在第二方向(图9中所示的垂直方向)上的正投影重合,本申请实施例可以理解为参比电极23的第一容置腔231在第一方向(图9中所示的左右方向)上的宽度更宽,进而使得参比电极23的第一容置腔231的容积更大以容置更多的第一内参比溶液;最终使得参比电极23的使用寿命可以增加,以减少参比电极23的更换频率。
另一方面,请结合图9,以安装座60上设置有六个导电件31为例,安装座60上还可以预设有安装空间,以容置安装五个检测电极24和一个体积较小的参比电极23。然而,常规的临床检验中待检测溶液中需要检测的离子的种类较少,因此本申请实施例可以将原来体积较小的参比电极23的体积增大以形成本申请实施例中体积较大的参比电极23,本申请实施例中的参比电极23可以是增大至占用安装空间中预留给一个体积较小的参比电极23的位置与安装空间中预留给至少一个不常用的检测电极24的位置。基于此,参比电极23的第一容置腔231的容积也可以做得更大,以达到第一容置腔231与至少两个导电件31在第二方向上的正投影至少部分重合的目的。
请继续参考图12和图13,图12为图9所示电解质测量模块100的检测电极24的侧视图,图13为图12所示检测电极24沿B-B方向的剖面图。在增大第一容置腔231容积的另一种实施方式中,若干个导电件31沿第一方向间隔设置于安装座60。参比电极23和若干个检测电极24沿第一方向排列设置。检测电极24具有第二容置腔241,第二容置腔241用于容置第二内参比溶液以形成上述的膜电位。其中,结合图11和图13,第一容置腔231在第一方向(图9中所示左右方向)上的宽度为在第二容置腔241在第一方向上的宽度的两倍或两倍以上,进而使得参比电极23的第一容置腔231可以在第一方向上的宽度更大。
当然,为了避免参比电极23的体积过大而占用过多空间甚至于无法安装至安装座60中,第一容置腔231在第一方向上的宽度为第二容置腔241在第一方向上的宽度的四倍或四倍以下。诸如,第一容置腔231于第一方向上的宽度为第二容置腔241于第一方向上的宽度的两倍、两点六倍、三倍、三点五倍或者四倍。
还可以理解的是,当第一容置腔231在第一方向(图9中所示的左右方向)上的宽度为第二容置腔241在第一方向上的宽度的两倍或两倍以上时,第一容置腔231可以与至少两个导电件31在上述的第二方向上的正投影至少部分重合,或者说如图9所示,安装座60上安装有三个位于第一容置腔231正上方的导电件31,三个导电件31中仅最右侧的导电件31与参比电极23抵接形成电连接。
下面,结合参比电极23和检测电极24的其中一种尺寸,对本申请实施例中增大参比电极23尺寸进行进一步的解释和说明。
如图9所示,安装座60具有安装腔64,若干个导电件31、若干个检测电极24和参比电极23均至少部分设置于安装腔64内。诸如,六个导电件31沿左右方向排列设置,并设于安装腔64内的上部。三个检测电极24与一个参比电极23沿左右方向排列设置在安装平台63上,安装平台63设于安装腔64内的下部。此时,三个检测电极24沿左右方向的宽度均在12毫米至13毫米之间,参比电极23沿左右方向的宽度在45毫米至46毫米之间,三个检测电极24和一个参比电极23沿左右方向排列后可以锁紧在安装腔64内。
请参见图11,参比电极23在第一方向(图11中所示的左右方向)上的宽度可以为46毫米,第一容置腔231在第一方向上的宽度为45毫米。此时,可以是仅一个导电件31位于第一容置腔231的正上方,并且参比电极23与该导电件31电连接。或者是,三个导电件31位于第一容置腔231的正上方,并且参比电极23仅与其中一个导电件31电连接。
下面,结合图11,以参比电极23的其中一种结构为例对本申请实施例的技术方案做进一步的解释和说明。
参比电极23包括第一壳体232、第一离子敏感膜233、第一电极芯234和上述的第一内参比溶液(图中未示出)。
第一壳体232与安装座60可拆卸安装,诸如第一壳体232与安装座60卡接、套接、螺接、磁吸等,本申请实施例对此不做限定。第一壳体232具有第一容置腔231以及与第一容置腔231连通的第一流道235,第一流道235用于容纳第二待测样本。第一离子敏感膜233设置于第一壳体232,以及第一离子敏感膜233隔断第一容置腔231和第一流道235。第一电极芯234设置于第一壳体232,第一电极芯234的一端位于第一容置腔231内,第一电极芯234的另一端与对应的导电件31抵接而形成电连接。此时,第一内参比溶液容置于第一容置腔231内,并且第一内参比溶液浸没第一离子敏感膜233和至少部分第一电极芯234,以使第一内参比溶液与第一电极芯234的交界面形成上述的参比电位。
可以理解的是,当第二待测样本从第一流道235内流过并与第一离子敏感膜233接触时,参比电极23的第一电极芯234顺次通过第一内参比溶液和第一离子敏感膜233与第二待测样本形成电连接。此时,若检测电极24也同时跟该第二待测样本接触而形成一个膜电位,第二测定组件30、参比电极23、第二待测样本和该检测电极24便可形成一个回路,以使第二测定组件30能够通过参比电位和膜电位对第二待测样本进行离子浓度检测。
在一些实施方式中,第一壳体232还可以设有与第一容置腔231连通的第一安装孔236。第一安装孔236朝向第一离子敏感膜233,以及第一离子敏感膜233能够穿过第一安装孔236。进而,操作员可以通过第一安装孔236将第一离子敏感膜233装入第一容置腔231内以隔断第一容置腔231和第一流道235,或者是将需要更换的第一离子敏感膜233通过第一安装孔236取出。当然,第一安装孔236还可以用于将第一内参比溶液注入第一容置腔231内,或者将第一容置腔231内的第一内参比溶液倒出,本申请实施例对此不做限定。
相应的,参比电极23还可以包括第一盖体237,第一盖体237用于打开或者封闭第一安装孔236。诸如,第一安装孔236为螺纹孔,第一盖体237可以螺纹旋接至第一安装孔236内,本申请实施例对第一盖体237封闭或打开第一安装孔236的结构不做限定。
在一些实施方式中,第一壳体232还可以设有与第一容置腔231连通的第二安装孔238。第二安装孔238用于安装第一电极芯234,第一电极芯234通过第二安装孔238可拆卸地设置于第一壳体232。示例性的,第二安装孔238可以为螺纹孔,第一电极芯234侧壁可以具有外螺纹而能够与第二安装孔238螺纹旋接。当然,第一电极芯234自第一壳体232上取下时,第二安装孔238打开,第二安装孔238可以用于将第一内参比溶液注入第一容置腔231内,或者将第一容置腔231内的第一内参比溶液倒出,本申请实施例对此不做限定。
第一内参比溶液可以为氯化钾溶液。相关技术中,氯化钾溶液为饱和溶液,或者说第一内参比溶液为饱和氯化钾溶液。饱和氯化钾溶液中的钾离子容易穿过第一离子敏感膜233并析出结晶,最终导致第一离子敏感膜233朝向第一流道235一侧的表面被析出的结晶堵塞。
基于此,本申请实施例中,第一内参比溶液为不饱和氯化钾溶液。可以理解的是,与饱和氯化钾溶液相比,不饱和氯化钾溶液在使用过程中更不易于析出结晶,进而可以降低第一离子敏感膜233被堵塞的风险,以提高参比电极23的可靠性和使用寿命。
其中,不饱和氯化钾溶液可以是浓度低于15% w/v的氯化钾溶液。诸如,不饱和氯化钾溶液可以是浓度为14% w/v的氯化钾溶液、浓度为7.6% w/v的氯化钾溶液或者浓度为1% w/v的氯化钾溶液。
下面,结合图13,以检测电极24的其中一种结构为例对本申请实施例的技术方案做进一步的解释和说明。
检测电极24可以包括第二壳体242、第二离子敏感膜243、第二电极芯244和第二内参比溶液(图中未示出)。
第二壳体242与安装座60可拆卸安装,诸如第二壳体242与安装座60卡接、套接、螺接、磁吸等,本申请实施例对此不做限定。第二壳体242具有第二容置腔241以及与第二容置腔241连通的第二流道245,第二流道245用于容纳第二待测样本。第二离子敏感膜243与第二壳体242连接,第二离子敏感膜243隔断第二容置腔241与第二流道245。第二电极芯244与第二壳体242连接,第二电极芯244的一端位于第二容置腔241内,第二电极芯244的另一端与对应的导电件31抵接而形成电连接。第二内参比溶液容置于第二容置腔241内,第二内参比溶液浸没离子敏感膜和至少部分第二电极芯244,以使第二内参比溶液能够和容纳于第二流道245内的第二待测样本在离子敏感膜处形成上述的膜电位。
可以理解的是,当第二待测样本从第二流道245内流过并与离子敏感膜接触时,若参比电极23的第一离子敏感膜233也同时跟该第二待测样本接触,第二测定组件30、参比电极23、第二待测样本以及该检测电极24便可形成一个回路,进而使得第二测定组件30可以通过膜电位和参比电位对第二待测样本进行离子浓度的测量作业。
在一些实施方式中,如图13所示,每一第二流道245的至少一端可以设置有一个第二弹性密封件247,如图11所示,第一流道235的至少一端可以设置有一个第一弹性密封件239,以使相连的两个第二流道245之间能够通过至少一个第二弹性密封件247进行密封,以及相连的第一流道235与第二流道245之间能够通过一个第一弹性密封件239和/或一个第二弹性密封件247对进行密封。易于理解的是,当样本流道21水平设置时,依靠弹性密封件就能起到很好的密封,而如果样本流道21垂直设置,则需要更昂贵和/或更复杂的密封手段。
在一些实施方式中,如图13所示,第二壳体242还可以设有与第二容置腔241连通的第三安装孔246。第三安装孔246用于安装第二电极芯244,第二电极芯244通过第三安装孔246可拆卸地设置于第二壳体242。
示例性的,第三安装孔246可以为螺纹孔,第二电极芯244的侧壁具有外螺纹而能够与第三安装孔246螺纹旋接。当然,第二电极芯244自第二壳体242上取下时,第三安装孔246打开,第三安装孔246可以用于将第二内参比溶液注入第二容置腔241内,或者将第二容置腔241内的第二内参比溶液倒出,本申请实施例对此不做限定。
请继续参考图14,图14为图9所示电解质测量模块100的X处局部放大图。导电件31包括与对应的检测电极24或者参比电极23抵接而形成电连接的第三端面311,每一个导电件31的第三端面311可以为平面、凸面或者凹面,本申请实施例对此不做限定。
如图9或图14所示,为了方便维护和检查导电件31,至少一个导电件31的第三端面311可以设置为凸面。可以理解的是,参比电极23和检测电极24的反复拆装的过程中容易导致第三端面311被磨损或者沾染其他污渍。而本申请实施例中,将第三端面311设置为凸面,使得操作员可以直接观察到第三端面311是否存在污渍或者磨损等情况,进而形成导电件31与对应的检测电极24或者参比电极23之间的电连接的隐患。由此可见,本申请实施例的导电件31提高了电解质测量模块100的安全性,以及使得电解质测量模块100便于维护和检查。
上述为凸面的第三端面311可以呈球面状,或者也可以理解为至少一个导电件31的第三端面311为球面。将第三端面311设置为球面可以避免第三端面311存在尖锐的边角,进而导致在拆装参比电极23或者检测电极24的过程中,参比电极23、检测电极24和导电件31对应的部分被刮伤或者磨损,进而提高电解质测量模块100的安全性和使用寿命。
相应的,如图11所示,参比电极23可以具有与导电件31的第三端面311抵接形成电连接的第一端面2341。结合上述的参比电极23的其中一种结构,可以是第一电极芯234朝向导电件31的一端设有第一端面2341。第一端面2341可以凸面、平面或者与第三端面311配合的凹面,本申请实施例对此不做限定。
在第三端面311为球面、第一端面2341也为球面的方案中,理想状态下,第三端面311的下顶点与第一端面2341的上顶点均准确位于预设位置而形成点接触,以使得导电件31和参比电极23形成电连接。然而在实际的作业中,导电件31和参比电极23必然存在制造公差和装配公差等,以及在电解质测量模块100存在振动时,导电件31和参比电极23容易发生抖动而变位,这些因素都可能会使得第一端面2341的上顶点和第三端面311的下顶点在水平方向上存在错位,进而第一端面2341和第三端面311之间的电接触断开。由此可见,若第三端面311为球面、第一端面2341也为球面时,导电件31和参比电极23之间形成的电连接并不稳定。
因此,在较佳的实施方式中,第一端面2341可以为平面或者与第三端面311配合的凹面。第一端面2341为平面时,即使导电件31和第一电极芯234存在一定的位置误差时,第三端面311的下顶点依旧可以抵接至第一端面2341的不同位置,进而提高导电件31与第一电极芯234之间电连接的稳定性。若第一端面2341为凹面时,第一端面2341可以包裹住第三端面311,以对导电件31和第一电极芯234进行位置导正,进而提高导电件31与第一电极芯234之间电连接的稳定性。
相应的,如图13或图14所示,检测电极24可以具有与导电件31的第三端面311抵接形成电连接的第二端面2441。结合上述的检测电极24的其中一种结构,可以是第二电极芯244朝向导电件31的一端设有第二端面2441。第二端面2441可以凸面、平面或者与第三端面311配合的凹面,本申请实施例对此不做限定。
其中可以理解的是,在第三端面311为球面、第二端面2441也为球面的方案中,理想状态下,第三端面311的下顶点与第二端面2441的上顶点均准确地位于预设位置而形成点接触,以使检测电极24和导电件31电连接。然而在实际的作业中,导电件31和检测电极24必然存在制造公差和装配公差等,以及在电解质测量模块100存在振动时,导电件31和参比电极23容易发生抖动,这些因素都可能会使得第二端面2441的上顶点和第三端面311的下顶点在水平方向上存在错位,进而第一端面2341和第三端面311之间的电接触断开。由此可见,若第三端面311为球面、第二端面2441也为球面时导电件31和检测电极24之间形成的电连接并不稳定。
因此,在较佳的实施方式中,第二端面2441可以为平面或者与第三端面311配合的凹面。第二端面2441为平面时,即使导电件31和第二电极芯244存在一定的位置误差时,第三端面311的下顶点可以抵接至第二端面2441的不同位置,进而提高导电件31与第一电极芯234之间电连接的稳定性。若第二端面2441为凹面时,第二端面2441可以包裹住第三端面311,以对导电件31和第二电极芯244进行位置导正,进而提高导电件31与第二电极芯244之间电连接的稳定性。
在一些实施方式中,至少一个导电件31的第三端面311可以具有金属导电层(图中未标注)。金属导电层可以是镀在导电件31上的金或者铜等导电性能较佳的金属材质形成的,以提高导电件31的导电性能。
在一些实施例中,电解质测量模块100还包括标定液模块,标定液模块包括用于放置承载标定液的标定液容器的标定液仓51、标定液管路以及连接在标定液管路上提供动力的标定液动力装置,标定液管路的入口端与标定液容器连通,标定液管路的出口端与样本容器10连通,以使标定液经过样本容器10后输送到样本流道21,第二测定组件30还用于根据标定液流经样本流道21时电极组件20产生的电信号进行定标。在一些实施例中,标定液管路的出口端还可以与样本流道21直接连通,下文中以标定液管路与样本容器10连通为例进行说明。
一些实施例中,如图15所示,标定液仓51用于可拆卸地安装标定液包51a,标定液包51a包括标定液容器和用于至少记录标定液信息的芯片组件,标定液信息包括但不限于标定液的类型、标定液余量等。标定液仓51内还设置有读取芯片组件中记录的标定液信息的信息读取组件,例如,信息读取组件通过近场通信的方式读取标定液信息。通常,标定液包51a里的标定液耗尽或不足时需要更换标定液包51a,通过近场通信来读取标定液余量的方式,能够减少有线连接对电解质测量模块100的插拔损耗,从而提高电解质测量模块100的使用寿命。
为了更加直观地查看标定液容器与标定液管路的入口的连接状态,一些实施例中,标定液仓51还包括在位检测组件,该在位检测组件在标定液容器与标定液管路的入口端的连接状态在断开与连通之间切换时,产生状态变化,例如,生化分析仪还包括指示灯,当标定液容器与标定液管路的连接状态由断开切换至连通时,指示灯基于在位检测组件产生的状态变化由熄灭切换至点亮,当标定液容器与标定液管路的连接状态由连通切换至断开时,指示灯基于在位检测组件产生的状态变化由点亮切换至熄灭。
一些实施例中,如图3所示,标定液容器包括承载第一标定液的第一标定液容器52a和承载第二标定液的第二标定液容器52b,标定液管路包括入口端与第一标定液容器52a连通的第一标定液管路53a和入口端与第二标定液容器52b连通的第二标定液管路53b,样本容器10具有与第一标定液管路53a出口端连通的第一标定液入口10b和与第二标定液管路53b出口端连通的第二标定液入口10c。通常,生化分析仪开机后,可以依次用第一标定液和第二标定液走一遍测试流程,以共同进行定标,之后即可开始样本检测。各个电极对第二待测样本进行检测后,再让第一标定液依次流经各个电极,各个电极将第一标定液的检测信号输出给第二测定组件30,第二测定组件30据此对第二待测样本的离子浓度检测结果进行修正,以提高检测的准确性。由上述描述也可以看出,第一标定液的使用频次高于第二标定液的使用频次,例如,第一标定液的K离子浓度小于第二标定液的K离子浓度,在标定中这一特征会使得第一标定液的使用频次高于第二标定液的使用频次。故在一些实施例中,如图4所示,将第一标定液入口10b在样本容器10的高度方向上设置在第二标定液入口10c的下方,使得第二标定液的使用最小程度的影响第一标定液,便于清洗,此外,在样本容器10的侧壁上的入口越低,从该入口进入样本容器10的液体所产生的气泡越少或越小,对离子浓度检测结果的影响也越小,故将使用频次更高的第一标定液对应的第一标定液入口10b设置在更接近样本容器10底部的位置,使得定标中产生的气泡越少或越小。
一些实施例中,标定液动力装置包括设置在第一标定液管路53a上的提供动力的第一动力装置54a、设置在第二标定液管路53b上的提供动力的第二动力装置54b。第一动力装置54a用于将第一标定液容器52a中的第一标定液输送到样本容器10中,第一动力装置54a可以是泵或注射器等。第二动力装置54b用于将第二标定液容器52b中的第二标定液输送到样本容器10中,第二动力装置54b也可以是泵或注射器等。
一些实施例中,样本液动力装置40还用于为第一标定液以及第二标定液流经样本流道21提供动力。也就是说,第一标定液、第二标定液和第二待测样本均从样本容器10底部的检测出口流至样本流道21内,再进入废液罐800中,且这三者从样本容器10到样本流道21共用一个动力装置。在其他实施例中,第一标定液和第二标定液也可以通过与样本液动力装置40不同的动力装置流入样本流道21内。
由于第一测定组件207的光源发热量大,温度较高,一些实施例中,标定液模块与光源分别在生化分析仪的对角或两侧设置,从而防止光源对标定液模块中的标定液造成干扰。
在一些实施例中,如图15以及图16所示,生化分析仪还包括机架70, 电解质测量模块100还包括分别安装在机架70上的第一安装支架70a、第二安装支架70b以及第三安装支架70c。上述样本容器10、电极组件20以及第二测定组件30均安装在第一安装支架70a,即安装座60也安装在第一安装支架70a;第一动力装置54a、第二动力装置54b、样本液动力装置40装在第二安装支架70b;标定液仓51安装在第三安装支架70c。并且,电解质测量模块100的标定液仓51位于生化分析仪的操作侧,操作侧即通常来说用户对生化分析仪进行操作时相对于生化分析仪的一侧,通过把标定液仓51安装在操作侧,可以让用户很方便地更换标定液包51a。
在另一些实施例中,电解质测量模块100还包括控制器,控制器用于收集电解质测量模块100的工作状态信息和/或第二待测样本的离子浓度检测结果,并在电解质测量模块100满足预设条件时将电解质测量模块100的工作状态信息和/或第二待测样本的离子浓度检测结果发送至生化分析仪的处理器600,其中,电解质测量模块100的工作状态信息包括但不限于电解质测量模块100的运行情况、电解质测量模块100是否出现异常、各组件是否正常工作等,该预设条件包括:电解质测量模块100工作满足预设时间、电解质测量模块100检测第二待测样本满足预设次数、接收开机指令、接收关机指令的至少一者。也就是说,电解质测量模块100具有监控或收集信息功能,收集后的信息并非一直存储在电解质测量模块100,而是在一定条件下会自动发送至生化分析仪的处理器600中,例如,当开机或关机时,电解质测量模块100将收集到的信息自动发送至生化分析仪的处理器600,又例如,电解质测量模块100每运行一定时长或每检测一定次数的第二待测样本,就将收集到的信息自动发送至生化分析仪的处理器600。现有的生化分析仪中,对于电解质测量模块100的硬件标准要求较高,发明人发现其中一个原因就是电解质测量模块100收集到的信息是响应用户的请求再发送至生化分析仪的处理器600中,这就导致电解质测量模块100收集到的信息平时都存储在本地,对电解质测量模块100的存储芯片的内存容量要求就较高,而在本实施例中,通过在满足预设条件时电解质测量模块100自动发送信息至生化分析仪的处理器600,可以降低对电解质测量模块100自身控制器的硬件要求。
一些实施例中,电解质测量模块100还包括供电接口以及通信接口,生化分析仪还包括供电模块,供电模块通过供电接口为电解质测量模块100供电,处理器600通过通信接口向控制器发送控制指令,控制器根据控制指令控制电解质测量模块100的工作,即整个电解质测量模块100和生化分析仪之间只通过两个接口就可以实现电连接和通信连接,电解质测量模块100可以作为模块在不同生化分析仪之间进行更换。在该实施例中,生化分析仪还可以包括信息传输装置,信息传输装置用于与LIS系统信号【实验室(检验科)信息系统】连接,处理器600用于通过信息传输装置将第一待测样本的光检测项目结果发送至LIS系统;控制器通过通信接口与信息传输装置连接,控制器用于通过信息传输装置将第二待测样本的离子浓度检测结果发送至LIS系统。在另一些实施例中,控制器通过通信接口与处理器600连接,控制器将第二待测样本的离子浓度检测结果发送至处理器600,处理器600用于通过信息传输装置将第一待测样本的光检测项目结果和第二待测样本的离子浓度检测结果均发送至LIS系统。方便用户在其他设备上对第一待测样本和第二待测样本的信息进行查看和统计。
在一些实施例中,上述第一动力装置54a、第二动力装置54b和样本液动力装置40通过同一接口接收电能和通信信号,例如,该接口可以与电解质测量模块100的供电接口连接,从而接收生化分析仪的供电,三个动力装置使用一个接口接收电能的好处在于,能够有效减少所需的电线数据,以减少电线之间的互相干涉,对于将电解质测量模块100集成在生化分析仪的场景下,也利于电解质测量模块100的安装和维修。同时,该接口还可以与控制器电连接,从而接收控制器发出的控制指令,该控制指令能够控制第一动力装置54a、第二动力装置54b和样本液动力装置40依照一定的时序进行工作。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和组件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (23)

  1. 一种生化分析仪, 其特征在于,包括:样本承载组件、第一样本分注组件、第二样本分注组件、试剂承载组件、试剂分注组件、第一测定组件以及电解质测量模块,所述电解质测量模块包括样本容器、电极组件以及第二测定组件,其中:
    所述样本承载组件,用于承载待测样本;
    所述第一样本分注组件,用于将所述样本承载组件中的第一待测样本分注至所述第一测定组件;
    所述试剂承载组件,用于承载试剂;
    所述试剂分注组件,用于将所述试剂承载组件中的试剂移送至所述第一测定组件;
    所述第一测定组件,用于对至少由第一待测样本和所述试剂混合形成的反应液进行光检测,以获得光检测项目结果;
    所述第二样本分注组件将所述样本承载组件中的第二待测样本分注至所述样本容器;
    所述电极组件包括多个电极,各个所述电极设置有通道且各个所述电极的通道内设置有敏感膜,各个所述电极的通道连通形成用于所述第二待测样本流经的样本流道,各个所述电极的输出端与所述第二测定组件电连接,其中,当所述第二待测样本流经所述样本流道时所述样本流道的轴线与水平面的夹角小于或等于10°;  
    所述样本容器的检测出口与所述样本流道连通 ,以使所述样本容器中的第二待测样本依次流经所述电极组件的各个电极的敏感膜;
    所述第二测定组件用于根据所述第二待测样本流经所述敏感膜时所述电极输出的电信号,以获得所述第二待测样本的离子浓度检测结果。
  2.  如权利要求1所述的生化分析仪,其特征在于,所述第一待测样本与所述第二待测样本来自同一受试者。
  3.  如权利要求1至2任一项所述的生化分析仪,其特征在于,所述电解质测量模块还包括与所述样本流道连通的样本液动力装置,所述样本液动力装置用于为所述第二待测样本流经所述样本流道提供动力。
  4.  如权利要求1至3任一项所述的生化分析仪,其特征在于,所述第一样本分注组件与所述第二样本分注组件为同一样本分注组件。
  5.  如权利要求1至4任一项所述的生化分析仪,其特征在于,当所述第二待测样本流经所述样本流道时所述样本流道的轴线与水平面的夹角为0°。
  6.  如权利要求1至5任一项所述的生化分析仪,其特征在于,所述样本流道的内径大于或等于0.9毫米。
  7.  如权利要求至6任一项所述的生化分析仪,其特征在于,所述电解质测量模块还包括用于放置电极组件的安装座,所述第二测定组件包括若干设置于所述安装座的导电件,若干所述导电件与所述多个电极对应,所述电极组件的各电极均分别与各自对应的所述导电件电连接。
  8.  如权利要求7所述的生化分析仪,其特征在于,所述安装座包括可活动的调节件、水平方向上相对设置的两个抵接件及安装平台,所述电极组件的多个电极排布设置于安装平台上,且所述多个电极固定于两个抵接件之间,两个抵接件中的至少一个可根据所述调节件的活动而水平运动以调整两个抵接件之间的距离来安装所述多个电极。
  9.  如权利要求7所述的生化分析仪,其特征在于,所述若干个导电件沿第一方向间隔设置于所述安装座,所述多个电极包括参比电极和至少一个检测电极,所述参比电极与所述至少一个检测电极沿所述第一方向排列设置,所述参比电极设于其对应的导电件沿第二方向的一侧,所述第二方向与所述第一方向不同,所述参比电极具有第一容置腔,所述第一容置腔用于容置第一内参比溶液以形成参比电位,所述第一容置腔与至少两个所述导电件在所述第二方向上的正投影至少部分重合。
  10.  如权利要求7所述的生化分析仪,其特征在于,所述若干个导电件沿第一方向间隔设置于所述安装座,所述多个电极包括参比电极和至少一个检测电极,所述参比电极与所述至少一个检测电极沿所述第一方向排列设置,所述检测电极具有第二容置腔,所述第二容置腔用于容置第二内参比溶液以形成膜电位,所述参比电极具有第一容置腔,所述第一容置腔用于容置第一内参比溶液以形成参比电位,所述第一容置腔在所述第一方向上的宽度为所述第二容置腔在所述第一方向上的宽度的两倍或两倍以上。
  11.  如权利要求7所述的生化分析仪,其特征在于,所述导电件包括用于与所述电极抵接的端面,至少一个所述导电件的端面为凸面。
  12.  如权利要求1至11任一项所述的生化分析仪,其特征在于,多个所述电极包括K离子电极、Cl离子电极以及Na离子电极,其中,所述Cl离子电极的敏感膜颜色为:R的数值范围在【50,99】,G的数值范围在【10,100】的颜色。
  13.  如权利要求1至12任一项所述的生化分析仪,其特征在于,所述电解质测量模块还包括标定液模块,所述标定液模块包括用于放置承载标定液的标定液容器的标定液仓、标定液管路以及连接在所述标定液管路上提供动力的标定液动力装置,所述标定液管路的入口端与所述标定液容器连通,所述标定液管路的出口端与所述样本容器或所述样本流道连通,以使所述标定液输送到所述样本流道,所述第二测定组件还用于根据所述标定液流经所述样本流道时所述电极组件产生的电信号进行定标。
  14.  如权利要求13所述的生化分析仪,其特征在于,所述标定液仓用于可拆卸地安装标定液包,所述标定液包包括所述标定液容器和用于至少记录标定液信息的芯片组件;所述标定液仓内还设置有读取所述芯片组件中记录的所述标定液信息的信息读取组件。
  15.  如权利要求13至14任一项所述的生化分析仪,其特征在于,所述标定液管路的入口端设置于所述标定液仓内;所述标定液仓还包括在位检测组件,所述在位检测组件在所述标定液容器与所述标定液管路的入口端的连接状态在断开与连通之间切换时,产生状态变化。
  16.  如权利要求15所述的生化分析仪,其特征在于,所述生化分析仪还包括指示灯,在所述在位检测组件产生状态变化时,所述指示灯由点亮切换至熄灭,或者由熄灭切换至点亮。
  17.  如权利要求13至16任一项所述的生化分析仪,其特征在于,所述标定液容器包括承载第一标定液的第一标定液容器和承载第二标定液的第二标定液容器,所述标定液管路包括入口端与第一标定液容器连通的第一标定液管路和入口端与第二标定液容器连通的第二标定液管路,所述样本容器具有与第一标定液管路出口端连通的第一标定液入口和与第二标定液管路出口端连通的第二标定液入口,所述第一标定液入口在所述样本容器的高度方向上位于所述第二标定液入口的下方;其中,所述第一标定液的使用频次高于所述第二标定液的使用频次。
  18.  如权利要求13-17任一项所述的生化分析仪,其特征在于,所述标定液容器包括承载第一标定液的第一标定液容器和承载第二标定液的第二标定液容器,所述标定液管路包括入口端与第一标定液容器连通的第一标定液管路和入口端与第二标定液容器连通的第二标定液管路,所述第一标定液管路的出口端与所述样本容器或所述样本流道连通,以使所述第一标定液输送到所述样本流道,所述第二标定液管路的出口端与所述样本容器或所述样本流道连通,以使所述第二标定液输送到所述样本流道;所述标定液动力装置包括设置在第一标定液管路上的提供动力的第一动力装置、设置在第二标定液管路上的提供动力的第二动力装置,所述电解质测量模块还包括与样本流道连通的样本液动力装置,所述样本液动力装置用于为所述第二待测样本、第一标定液以及第二标定液流经所述样本流道提供动力。
  19.  如权利要求18所述的生化分析仪,其特征在于,所述生化分析仪还包括机架,所述电解质测量模块还包括分别安装在所述机架上的第一安装支架、第二安装支架以及第三安装支架;所述样本容器、电极组件以及第二测定组件安装在所述第一安装支架;所述第一动力装置、第二动力装置、样本液动力装置装在所述第二安装支架;所述标定液仓安装在所述第三安装支架。
  20.  如权利要求13至19任一项所述的生化分析仪,其特征在于,所述第一测定组件包括光源以及光检测模块,所述光源用于发出光线照射所述反应液,所述光检测模块用于接收所述光源照射所述反应液后的光线以得到光检测项目结果,所述标定液模块与所述光源分别在所述生化分析仪的对角或两侧设置,
    和/或,所述样本容器与所述光源分别在所述生化分析仪的对角或两侧设置。
  21.  如权利要求1至20任一项所述的生化分析仪,其特征在于,所述第二样本分注组件包括用于向所述样本容器注入所述第二待测样本的第二采样针,所述样本容器的顶部有开口以供所述采样针将所述第二待测样本注入所述样本容器,所述样本容器的底部有与所述样本流道连通的检测出口以供所述第二待测样本流出,所述第二采样针向所述样本容器注入所述第二待测样本时的排液轴线在所述样本容器底部的投影与所述样本容器底部检测出口的中心不重合。
  22.  如权利要求1至21任一项所述的生化分析仪,其特征在于,所述生化分析仪还包括用于容置所述样本分注组件、所述试剂分注组件、承载反应液的反应杯中至少一者清洗废液的废液罐;所述样本容器的顶部有开口以供所述第二样本分注组件将所述第二待测样本注入所述样本容器,所述样本容器还有贯穿所述样本容器的侧壁的溢流口和汇集从所述溢流口溢出液体的溢流槽,所述溢流槽通过溢流管路连接至所述废液罐。
  23.  如权利要求1至22任一项所述的生化分析仪,其特征在于,所述电解质测量模块还包括控制器,所述生化分析仪还包括处理器,所述控制器用于收集所述电解质测量模块的工作状态信息和/或所述第二待测样本的离子浓度检测结果,并在所述电解质测量模块满足预设条件时将所述电解质测量模块的工作状态信息和/或所述第二待测样本的离子浓度检测结果发送至所述生化分析仪的处理器,所述预设条件包括:所述电解质测量模块工作满足预设时间、所述电解质测量模块检测所述第二待测样本满足预设次数、接收开机指令、接收关机指令的至少一者。
PCT/CN2023/085482 2022-03-31 2023-03-31 一种生化分析仪 WO2023186095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022084676 2022-03-31
CNPCT/CN2022/084676 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023186095A1 true WO2023186095A1 (zh) 2023-10-05

Family

ID=88199453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085482 WO2023186095A1 (zh) 2022-03-31 2023-03-31 一种生化分析仪

Country Status (2)

Country Link
CN (1) CN220064066U (zh)
WO (1) WO2023186095A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843406A (ja) * 1994-07-27 1996-02-16 Shimadzu Corp 自動分析装置
CN104198745A (zh) * 2014-08-29 2014-12-10 深圳中科优瑞医疗科技有限公司 全自动多参数临床电解质分析仪
CN207457252U (zh) * 2017-11-23 2018-06-05 深圳迈瑞生物医疗电子股份有限公司 一种血红蛋白反应装置及样本分析仪
CN207457256U (zh) * 2017-09-30 2018-06-05 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪
CN110261457A (zh) * 2019-07-08 2019-09-20 深圳市康立生物医疗有限公司 离子选择性电极电解质模块
TWM615964U (zh) * 2021-04-14 2021-08-21 財團法人金屬工業研究發展中心 感測電極
CN217060045U (zh) * 2022-03-31 2022-07-26 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪和电解质测量机构
CN217277890U (zh) * 2022-03-31 2022-08-23 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪
CN217385319U (zh) * 2022-03-31 2022-09-06 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪和电解质测量机构
CN218036850U (zh) * 2022-03-31 2022-12-13 深圳迈瑞生物医疗电子股份有限公司 一种生化分析仪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843406A (ja) * 1994-07-27 1996-02-16 Shimadzu Corp 自動分析装置
CN104198745A (zh) * 2014-08-29 2014-12-10 深圳中科优瑞医疗科技有限公司 全自动多参数临床电解质分析仪
CN207457256U (zh) * 2017-09-30 2018-06-05 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪
CN207457252U (zh) * 2017-11-23 2018-06-05 深圳迈瑞生物医疗电子股份有限公司 一种血红蛋白反应装置及样本分析仪
CN110261457A (zh) * 2019-07-08 2019-09-20 深圳市康立生物医疗有限公司 离子选择性电极电解质模块
TWM615964U (zh) * 2021-04-14 2021-08-21 財團法人金屬工業研究發展中心 感測電極
CN217060045U (zh) * 2022-03-31 2022-07-26 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪和电解质测量机构
CN217277890U (zh) * 2022-03-31 2022-08-23 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪
CN217385319U (zh) * 2022-03-31 2022-09-06 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪和电解质测量机构
CN218036850U (zh) * 2022-03-31 2022-12-13 深圳迈瑞生物医疗电子股份有限公司 一种生化分析仪

Also Published As

Publication number Publication date
CN220064066U (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
CN101377520B (zh) 自动分析装置
JP4057967B2 (ja) 塩基配列自動解析装置
US7988914B2 (en) Sample analyzer and its components
US8821791B2 (en) Monitoring method, monitoring apparatus and liquid sample analyzer
US8906302B2 (en) Reagent preparing device, specimen measuring device and reagent preparing method
US9164021B2 (en) Reagent preparing device, specimen processing system and reagent preparing method
US8894932B2 (en) Reagent preparing device and specimen processing system
US20100055772A1 (en) Reagent preparing apparatus, sample processing apparatus and reagent preparing method
EP1929273B1 (en) Detection and subsequent removal of an aperture blockage
JP2708275B2 (ja) 液体試料の分析用装置
JP4901988B2 (ja) 塩基配列自動解析装置
JP4729030B2 (ja) 塩基配列検出装置
JP4786469B2 (ja) 自動分析装置
CN110869769A (zh) 试验套件、试验方法、分注装置
WO2023186095A1 (zh) 一种生化分析仪
CN217060045U (zh) 一种样本分析仪和电解质测量机构
CN218036850U (zh) 一种生化分析仪
CN217385319U (zh) 一种样本分析仪和电解质测量机构
JP2012184982A (ja) 血液分析装置
CN217277890U (zh) 一种样本分析仪
US20220203352A1 (en) Reaction vessel and automatic analyzing device
JP2007170925A (ja) 自動分析装置及びその検出方法
JP6054159B2 (ja) 自動分析装置
CN205826668U (zh) 一次性血液细胞计数及分析集成试剂传感件及血液分析仪
CN210514167U (zh) 离子选择性电极电解质模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778459

Country of ref document: EP

Kind code of ref document: A1