WO2023185970A1 - 运动状态识别方法、装置、电子设备及存储介质 - Google Patents

运动状态识别方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023185970A1
WO2023185970A1 PCT/CN2023/084921 CN2023084921W WO2023185970A1 WO 2023185970 A1 WO2023185970 A1 WO 2023185970A1 CN 2023084921 W CN2023084921 W CN 2023084921W WO 2023185970 A1 WO2023185970 A1 WO 2023185970A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
sub
motion state
electronic device
accelerations
Prior art date
Application number
PCT/CN2023/084921
Other languages
English (en)
French (fr)
Inventor
王丰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023185970A1 publication Critical patent/WO2023185970A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a motion state recognition method, device, electronic equipment and storage medium.
  • the way to identify the batting motion is to install an acceleration sensor in the hitting target of the batting motion to determine whether the user is performing the batting motion.
  • this method often requires the use of specific equipment to perform the motion. , and in the state of hitting the ball, the hitting target equipped with the acceleration sensor is easily damaged.
  • the purpose of the embodiments of the present application is to provide a motion state recognition method, device, electronic device and storage medium, which can solve the problem of how to better determine whether the user is performing batting motion.
  • a motion state identification method which includes include:
  • each of the first accelerations includes: a first sub-acceleration and a second sub-acceleration, the first sub-acceleration and the second sub-acceleration They are all perpendicular to each other in three-dimensional space, and N is a positive integer;
  • a motion state recognition device including:
  • a first determination module configured to determine that the electronic device is in a motion state when the acceleration of the electronic device is greater than a first preset threshold
  • a first acquisition module configured to acquire N first accelerations of the electronic device in the motion state.
  • Each of the first accelerations includes: a first sub-acceleration and a second sub-acceleration.
  • the first sub-acceleration and the second sub-acceleration are perpendicular to each other, N is a positive integer;
  • Identification module configured to detect when the first sub-acceleration variation of the first acceleration is greater than a second preset threshold, the second sub-acceleration variation of the first acceleration is greater than a third preset threshold, and each of the third When there is a target first-order difference in the first-order difference of the two sub-accelerations, the motion state is identified as hitting the ball; wherein the target first-order difference is a first-order difference greater than the fourth preset threshold.
  • inventions of the present application provide an electronic device.
  • the electronic device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the programs or instructions are processed by the processor.
  • the processor is executed, the steps of the method described in the first aspect are implemented.
  • embodiments of the present application provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the first party implements The steps of the method described above.
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect. the method described.
  • embodiments of the present application provide a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the method as described in the first aspect.
  • the first acceleration in the moving state is further obtained, so as to obtain the first acceleration according to the first acceleration.
  • the first sub-acceleration and the second sub-acceleration determine whether the user is hitting the ball, effectively ensuring the convenience and accuracy of motion state recognition.
  • Figure 1 is a schematic flow chart of a motion state identification method provided by an embodiment of the present application.
  • Figure 2 is a second acceleration schematic diagram provided by the embodiment of the present application.
  • Figure 3 is one of the schematic diagrams of acceleration changes provided by the embodiment of the present application.
  • Figure 4 is the second schematic diagram of acceleration changes provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a motion state recognition device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the hardware structure of an electronic device that implements an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • Figure 1 is a schematic flow chart of a motion state identification method provided by an embodiment of the present application. As shown in Figure 1, it includes:
  • Step 110 When the acceleration of the electronic device is greater than the first preset threshold, determine that the electronic device is in a motion state
  • the electronic device described in the embodiments of the present application is an electronic device with an acceleration detection function. It can be an electronic device equipped with an acceleration sensor, and during the motion state recognition process, the electronic device needs to be carried by the user, and The electronic device often needs to be worn on the user's arm or wrist when hitting the ball, that is, the electronic device will generate acceleration variables corresponding to the movement of the user's arm.
  • the electronic device described in the embodiments of the present application can specifically be a smart bracelet, a smart watch or other smart portable device equipped with an acceleration sensor, or it can also be a bracelet connected to the smart device and only having an acceleration detection function. or other wearable devices.
  • the electronic device can also be a mobile phone equipped with an acceleration sensor.
  • the mobile phone can be fixed on the user's body with the help of a sports bag that fixes the user's arm or other user's body parts.
  • the mobile phone can also detect the user's movement state accordingly.
  • the acceleration variable produced by motion.
  • the acceleration described in the embodiments of this application may specifically be when the electronic device is running , the acceleration information detected when the user enters the motion state has not yet been determined, and the acceleration information detected after the user enters the motion state is determined as the first acceleration.
  • the first preset threshold described in the embodiment of the present application may be a preset threshold.
  • the first preset threshold may be 10 m/s 2 , when the acceleration of the electronic device does not exceed the first preset threshold.
  • the user carrying the electronic device is probably not in a state of exercise, nor is he playing batting.
  • the acceleration of the electronic device exceeds the first preset threshold, the user carrying the electronic device The user of the device is likely to be in a motion state, or may be hitting a ball. At this time, further analysis of the acceleration of his motion state is required.
  • Step 120 Obtain N first accelerations of the electronic device in the motion state.
  • Each first acceleration includes: a first sub-acceleration and a second sub-acceleration.
  • the first sub-acceleration and the second sub-acceleration are The accelerations are perpendicular to each other, and N is a positive integer;
  • the N first accelerations of the electronic device in the motion state means that the acceleration information obtained when the electronic device is in the motion state is all the first acceleration, that is, from the time when it is determined that the electronic device enters the motion state to when it is determined that the electronic device enters the motion state.
  • the acceleration obtained during the time period when the end motion state ends.
  • the first acceleration described in the embodiment of the present application may include three acceleration components in the three-dimensional space, which are the first sub-acceleration and the second sub-acceleration respectively, and may also include the third sub-acceleration, and the first sub-acceleration.
  • the sub-acceleration, the second sub-acceleration and the third sub-acceleration all have a pairwise vertical relationship in a three-dimensional space.
  • FIG 2 is a schematic diagram of the first acceleration provided by the embodiment of the present application.
  • the first acceleration can be decomposed into The X-axis of the direction, the Y-axis perpendicular to the direction of the arm, and the Z-axis perpendicular to both the X-axis and the Y-axis, that is, the first acceleration will exist on the Z-axis and the first sub-acceleration will exist on the X-axis.
  • the second sub-acceleration, the first acceleration will have a third sub-acceleration on the Y-axis.
  • Step 130 When the first sub-acceleration change amount of the first acceleration is greater than the second preset threshold value, when the change amount of the second sub-acceleration of the first acceleration is greater than the third preset threshold, and there is a target first-order difference in the first-order difference of each second sub-acceleration, the motion state is identified as Hitting the ball; wherein the target first-order difference is a first-order difference greater than the fourth preset threshold.
  • the second preset threshold, the third preset threshold and the fourth preset threshold described in the embodiments of this application are all values that can be preset.
  • the motion state in the embodiment of the present application is batting
  • there may be two stages during the batting process one stage is the stage of swing acceleration, and the other stage may be the stage of hitting the ball.
  • the first sub-acceleration direction may be the Z-axis direction in the embodiment of Figure 2. Specifically, This is manifested in the fact that the first sub-acceleration decreases from near zero to a preset negative value, such as -20m/s 2 , that is, at this time, the first sub-acceleration change amount of the first acceleration is greater than the second preset threshold.
  • the electronic device tends to fly out along the arm, causing the skin of the wrist to exert a static friction force on the electronic device along the second sub-acceleration direction to prevent the relative movement of the electronic device and the arm.
  • This static friction force causes the second sub-acceleration to increase significantly, and the amplitude of the increase is about 15m/s or more , which is positively related to the strength of the swing.
  • variable of the second sub-acceleration is greater than the third preset threshold, and during the swing When it reaches a certain level, the change amount of the adjacent second sub-acceleration will exceed the fourth preset threshold, that is, there will be at least one target first-order difference in the first-order difference of each second sub-acceleration, then at this time, the The user's motion state is identified as hitting the ball.
  • the batting described in the embodiments of this application may specifically refer to badminton batting or tennis batting, or other batting that satisfies the above acceleration change rule.
  • the first acceleration in the moving state is further obtained, so as to determine whether the user is based on the characteristics of the first acceleration. While batting, only This can be achieved only with the help of electronic devices carried by the user during exercise, without the need to add additional equipment to the hitting target, which improves the convenience of detection.
  • the method further includes:
  • the first preset time period described in the embodiment of this application may specifically refer to a preset continuous time period.
  • the first numerical value, the second numerical value and the third numerical value described in the embodiments of this application may all be preset numerical values, and the second numerical value is greater than the first numerical value and the third numerical value.
  • the wrist will exert a thrust in the first negative sub-acceleration direction of the electronic device.
  • the first value described in the embodiment of the present application may specifically be before the ball is hit.
  • the value of the first sub-acceleration during the ball's process is usually a negative value.
  • the first value may be the minimum value of the first sub-acceleration before the ball is hit.
  • the reaction force of the ball on the racket will cause the racket to have a reaction force on the arm, further causing the electronic device worn on the arm to There is a short-term impact force in the positive direction of acceleration, which is reflected in the first sub-acceleration. It will show that the first sub-acceleration increases from the first value to the second value.
  • the second value is the impact force and the impact of the wrist on the electronic device in the first value. The acceleration corresponding to the thrust exerted in the acceleration direction.
  • the short-term impact force After hitting the ball, the short-term impact force will disappear. At this time, the first sub-acceleration of the electronic device will return to a negative value. At this time, the third value is the first sub-acceleration after the impact force disappears. The third value is the ratio The second smaller value.
  • the ball will not produce a reaction force on the racket and arm, and there will be no obvious sudden increase in the first sub-acceleration.
  • the changing trend is that within the second preset time period of a swing, the electronic device will not detect the sudden increase in the first sub-acceleration to a certain value, and in the case of a missed shot, the electronic device will not detect the sudden increase in the first sub-acceleration to a certain value.
  • the values of the first acceleration should be less than the fifth preset threshold.
  • the method further includes:
  • the target period is a period between a first moment and a second moment
  • the first moment is the moment when the motion state is recognized as hitting the ball
  • the third The second moment is the moment when the first acceleration is detected for the first time to be greater than the first preset threshold after the motion state is identified as hitting the ball
  • P is a positive integer
  • a second acceleration waveform is obtained, wherein the peak similarity information is based on the first acceleration waveform.
  • the first wave peak and Q second wave peaks are determined, the second wave peak is the wave peak adjacent to the first wave peak, and Q is a positive integer;
  • the first number of movement steps is determined.
  • step counting characteristics during the batting process there is a big difference between the user's step counting characteristics during the batting process and the step counting characteristics during regular walking, especially in the period after hitting the ball and before swinging again.
  • the user does not have the action of bending down to pick up the ball.
  • the user may need to quickly adjust his position. Therefore, the user may randomly walk and run back and forth, which will lead to periodic similarity comparison of adjacent steps. Poor, it is difficult to achieve accurate step counting according to the conventional step counting method. Therefore, in the embodiment of the present application, it is necessary to further perform step counting analysis on the P first accelerations.
  • the target period described in the embodiment of the present application may specifically refer to the interval between when the user is in a moving state, after determining that the shot is hit, and when he starts swinging again.
  • the user is in a moving state of hitting the ball, If there are multiple hits, there may be multiple target periods in the motion state of the ball. If there are no hits in the motion state, there will be no target period.
  • the first moment is the moment when the motion state is recognized as hitting the ball
  • the second moment is when the first acceleration greater than the first predetermined speed is detected for the first time after the motion state is recognized as the ball hit.
  • the threshold moment is set, that is, the second moment is the moment after the first moment when the user may be swinging is detected for the first time.
  • the P first accelerations within the target period will be further analyzed to achieve step counting data analysis within the target period. Specifically, after obtaining the P first accelerations, they can be passed through a cutoff frequency of 4 Hz. After filtering with a low-pass filter, a first acceleration waveform is generated, and the peak similarity information of each first peak in the first acceleration waveform and the Q second peaks adjacent to the first peak is further analyzed. Specifically, Compare the similarity between the first wave peak and each corresponding second wave peak, and finally obtain the overall wave peak similarity information. For example, you can determine the 4 or 5 second wave peaks adjacent to each first wave peak. The period similarity, the number of Q can be preset.
  • the second wave peak corresponding to each first wave peak described in the embodiment of this application may only refer to the wave peak adjacent to the left or right of the first wave peak in the first acceleration waveform diagram.
  • the embodiment of the present application will further screen whether there may be abnormal data in each first wave peak through the peak similarity information of each first wave peak.
  • the specific method may be to combine the peak similarity information of each first wave peak.
  • the peak similarity information is compared with the first similarity threshold.
  • the first peak whose peak similarity information is greater than the first similarity threshold is considered to have higher similarity with the surrounding peaks and is normal data.
  • the peak similarity information If the peak is lower than the first similarity threshold, it is considered to have low similarity with the surrounding peaks and may be abnormal data, which is not convenient to continue to retain. Therefore, in the embodiment of the present application, only the peak similarity information in the first acceleration waveform is retained.
  • a second acceleration waveform is obtained for the first wave peak that is greater than the first similarity threshold.
  • the first similarity threshold described in the embodiments of this application may be a preset value.
  • the first similarity threshold may be set smaller than the threshold in the conventional step counting algorithm, thereby relaxing the data screening criteria. Steps with poor cycle similarity during fast movement are also included in the total number of steps.
  • the number of steps can be calculated based on how many obvious peaks there are in the second acceleration waveform per second. For example, in the embodiment of the present application, 3 steps are detected within one second. If there is an obvious peak, it is considered that the user's step count in this second is 3 steps. Finally, based on this method, the first number of exercise steps in the target period is determined.
  • the user when the ball is in motion and is determined to be a miss, the user has a short period of time to bend down to pick up the ball and remain still during the period from the current moment to the next swing. , and then the user moves to the target position by walking normally and continues to move. At this time, the steps can be counted through the conventional step counting method to determine the number of second movement steps between the missed shot and the next swing.
  • the number of steps counted by the user after hitting the ball and before the next swing can be determined.
  • the motion characteristics of the hit are used to accurately count the user's step count.
  • the method further includes:
  • the first acceleration drops rapidly and approaches zero. Therefore, when M consecutive first accelerations are detected, they are all less than the sixth preset value. In the case of a threshold value, it is determined that the motion state is over.
  • the number of consecutive hits that are determined to be hits in the sports state can also be recorded;
  • the motion state is determined to be a missed shot, the recording of the number of hits is stopped, and the number of consecutive hits in the motion state is obtained.
  • batting sports such as badminton or tennis
  • users tend to pay more attention to the number of consecutive hits.
  • This parameter can better reflect the user's batting level. Therefore, in the embodiment of the present application, the continuous motion status will be further recorded. The number of hits that were ruled a hit.
  • the number of times that a hit is determined to be a hit in a moving state described in the embodiment of the present application may specifically refer to that in the moving state, each hit is determined to be a hitting hit, that is, in the moving state, there is no The ball was judged to be a miss.
  • a hit is determined to be a hit while in motion, stop recording the number of consecutive hits that are determined to be hits, record a miss, and obtain the number of consecutive hits in the current batting motion. , and restart counting the number of consecutive hits.
  • the number of consecutive hits in the batting motion can be effectively counted, so as to facilitate the user to understand the motion status.
  • the direction along the user's arm is set as the X axis
  • the direction perpendicular to the user's arm is set as Y axis
  • the Z-axis is perpendicular to both the X-axis and the Y-axis, that is, the first acceleration will have a first sub-acceleration on the Z-axis, a second sub-acceleration on the X-axis, and a third sub-acceleration on the Y-axis.
  • Figure 3 is one of the schematic diagrams of acceleration changes provided by the embodiment of the present application.
  • the line carrying the rectangular symbol corresponds to the first sub-acceleration
  • the line carrying the triangular symbol corresponds to the second sub-acceleration
  • the line carrying the circle corresponds to the third sub-acceleration
  • the line carrying the pentagon symbol corresponds to the first acceleration.
  • the line corresponding to the first acceleration is translated upward as a whole based on the true value. 5 units, the entire batting motion state can be roughly divided into the following five stages:
  • Stage 1 310 the right hand wearing the electronic device holds the racket, the arm and racket hang down normally, the second sub-acceleration is upward in the positive direction of the X-axis, about 9.8, the electronic device is slightly tilted upward, and the first sub-acceleration of the z-axis is slightly upward. Greater than zero;
  • the user begins to prepare to hit the ball. He holds the racket with his right hand and lifts it hard. The racket is lifted from the drooping state to the horizontal position. At this time, the second sub-acceleration of the x-axis gradually decreases from around 9 to around zero; at the same time, z The first sub-acceleration of the axis gradually increases from slightly greater than zero to around 9;
  • Stage three 330 the right hand lifts the racket with force, and the racket continues to be lifted from the horizontal posture to the posture of the racket with its head turned upward; the corresponding positive direction of the x-axis changes from horizontal to pointing to the ground, that is, the second sub-acceleration of the x-axis decreases from near zero to Around -9; at the same time, the positive direction of the z-axis gradually changes from pointing to the sky to the horizontal direction, that is, the first sub-acceleration of the z-axis gradually decreases from around 9 to near zero;
  • Stage 4 340, start hitting the ball, swing your right hand forward, and your wrist exerts force on the negative direction of the z-axis of the watch.
  • the first sub-acceleration of the z-axis decreases from around zero to around -20.
  • the specific value varies.
  • the strength of the swing varies; at the same time, the watch may fly out along the arm when swinging the racket. This trend causes the skin of the wrist to exert a static friction force on the watch along the positive direction of the x-axis, preventing the relative movement of the watch and the arm.
  • This static friction force causes the second sub-acceleration of the x-axis to increase significantly, and the amplitude of the increase is probably more than 30, which is positively related to the strength of the swing;
  • Stage 5 350 when the shot is hit, when the racket hits the badminton, because the racket has an impact on the badminton, the badminton exerts a reaction force on the racket, and then the racket exerts a reaction force on the wrist, causing the wrist to press against the watch.
  • An impact force along the positive direction of the z-axis is applied, and the z-axis acceleration increases sharply instantly.
  • the first sub-acceleration is updated from the first value to the second value, because the reaction force of the badminton on the racket only exists at the moment of contact.
  • the duration is very short, as shown in the figure, it lasts for about four sampling intervals.
  • the specific contact time is related to the materials of the badminton and racket and the strength of the swing. If the toughness of the material is stronger, the contact time will be shorter, and the impact of badminton on the racket will be The greater the reaction force; if the force of the swing is greater, the contact time will be longer, and the reaction force of the badminton on the racket will be greater. After the reaction force disappears, the first acceleration will change from the second to the second. The value is updated to the third value.
  • stage five the wrist drives the watch to make a similar circular motion around the shoulder, and the watch has a tendency to fly out along the arm, causing the skin of the wrist to exert force on the watch.
  • Static friction along the positive x-axis prevents the relative movement of the watch and arm. This static friction force causes the second acceleration of the x-axis to increase significantly, and the amplitude of the increase is probably more than 30m/s2 (specifically positively related to the strength of the swing).
  • the value of the x-axis acceleration is greater than zero.
  • Figure 4 is the second schematic diagram of acceleration changes provided by the embodiment of the present application. As shown in Figure 4, it includes:
  • Stage six 410 can be specifically the stage when the user misses the ball. If the user swings the racket to hit the ball but fails to hit the badminton, because there is no reaction force from the badminton to the racket, the first sub-acceleration of the z-axis of the electronic device is not obvious. sudden increase, and during the entire process of stage six, the first sub-acceleration of the z-axis is less than zero and the mean value is less than -10, while the x-axis is greater than zero and the mean value is greater than 10.
  • the execution subject can be in the motion state. identification device.
  • the method of performing the movement state recognition by the movement state recognition device is taken as an example to illustrate the movement state recognition device provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a motion state identification device provided by an embodiment of the present application. As shown in Figure 5, it includes: a first determination module 510, a first acquisition module 520 and an identification module 530;
  • the first determination module 510 is used to determine that the electronic device is in a motion state when the acceleration of the electronic device is greater than a first preset threshold
  • the first acquisition module 520 is used to acquire N first accelerations of the electronic device in the motion state.
  • Each of the first accelerations includes: a first sub-acceleration and a second sub-acceleration.
  • the first The sub-acceleration and the second sub-acceleration are perpendicular to each other, and N is a positive integer;
  • the identification module 530 is used to detect when the first sub-acceleration change amount of the first acceleration is greater than the second preset threshold, the second sub-acceleration change amount of the first acceleration is greater than the third preset threshold, and each of the When there is a target first-order difference in the first-order difference of the second sub-acceleration, the motion state is identified as hitting the ball; wherein the target first-order difference is a first-order difference greater than a fourth preset threshold.
  • the device also includes:
  • the first determination module is used to determine whether the first sub-acceleration is updated from the first value to the second value and then from the second value to the third value within the first preset time period. Hitting the ball during the motion state, wherein the second value is greater than the first value and the third value;
  • the device also includes:
  • the second acquisition module is used to acquire P first accelerations within a target period, where the target period is a period between the first moment and the second moment, where the first moment is when the motion state is recognized is the moment of hitting the ball, the second moment is the moment when the first acceleration is detected for the first time to be greater than the first preset threshold after the motion state is recognized as the hit, and P is a positive integer;
  • a second determination module configured to determine a first acceleration waveform based on the P first accelerations
  • An analysis module configured to obtain a second acceleration waveform graph based on the first peak whose peak similarity information is greater than the first similarity threshold in the first acceleration waveform graph, wherein the peak similarity information is based on the first
  • the first wave peak and Q second wave peaks in the acceleration waveform are determined, the second wave peak is the wave peak adjacent to the first wave peak, and Q is a positive integer;
  • the third determination module is used to determine the first number of movement steps based on the number of wave peaks per second of the second acceleration waveform.
  • the device also includes:
  • the second determination module is used to determine the end of the motion state when it is detected that M consecutive first accelerations are less than the sixth preset threshold, and M is a positive integer.
  • the first acceleration in the moving state is further obtained, so as to determine whether the user is based on the characteristics of the first acceleration.
  • hitting a ball it only needs to use the electronic device carried by the user during the movement. There is no need to add additional equipment to the hitting target, which improves the convenience of detection.
  • the motion state recognition device in the embodiment of the present application may be an electronic device or a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle-mounted electronic device, a mobile Internet device (MID), or augmented reality (AR)/virtual reality (VR).
  • MID mobile Internet device
  • AR augmented reality
  • VR virtual reality
  • UMPC ultra-mobile personal computers
  • PDA personal digital assistants
  • NAS Network Attached Storage
  • PC personal computer
  • TV television
  • teller machine or self-service machine etc.
  • the motion state recognition device in the embodiment of the present application may be a device with an operating system.
  • the operating system can be an Android operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in the embodiments of this application.
  • the motion state recognition device provided by the embodiments of the present application can implement various processes implemented by the method embodiments of Figures 1 to 2. To avoid repetition, they will not be described again here.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • this embodiment of the present application also provides an electronic device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores executable data.
  • the program or instruction running on the processor 601, when executed by the processor 601, implements each step of the above motion state identification method embodiment, and can achieve the same technical effect. To avoid duplication, it will not be repeated here. Repeat.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 7 is a schematic diagram of the hardware structure of an electronic device that implements an embodiment of the present application.
  • the electronic device 700 includes but is not limited to: radio frequency unit 701, network module 702, audio output unit 703, input unit 704, sensor 705, display unit 706, user input unit 707, interface unit 708, memory 709, processor 710, etc. part.
  • the electronic device 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the electronic device shown in Figure 7 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here. .
  • the processor 710 is configured to determine that the electronic device is in a motion state when the acceleration of the electronic device is greater than a first preset threshold
  • the sensor 705 is used to obtain N first accelerations of the electronic device in the motion state.
  • Each of the first accelerations includes: a first sub-acceleration and a second sub-acceleration, the first sub-acceleration and the second sub-acceleration.
  • the sub-accelerations are perpendicular to each other, and N is a positive integer;
  • the processor 710 is configured to operate when the first sub-acceleration variation of the first acceleration is greater than a second preset threshold, the second sub-acceleration variation of the first acceleration is greater than a third preset threshold, and each of the third When there is a target first-order difference in the first-order difference of the two sub-accelerations, the motion state is identified as hitting the ball; wherein the target first-order difference is a first-order difference greater than the fourth preset threshold.
  • the processor 710 is used to update the first sub-acceleration from the first value to the second value and then from the second value to the third value within the first preset time period. , it is determined that the shot is hit during the motion state, wherein the second value is greater than the first value and the third value;
  • the sensor 705 is used to acquire P first accelerations within a target period, where the target period is a period between a first moment and a second moment, and the first moment is when the motion state is recognized as The moment of hitting the ball, the second moment is the moment when the first acceleration is detected for the first time to be greater than the first preset threshold after the motion state is recognized as the hit, and P is a positive integer;
  • the processor 710 is configured to determine a first acceleration waveform based on the P first accelerations
  • the processor 710 is configured to obtain a second acceleration waveform graph based on the first peak whose peak similarity information is greater than a first similarity threshold in the first acceleration waveform graph, wherein the peak similarity information is based on the first
  • the first wave peak and Q second wave peaks in the acceleration waveform are determined, the second wave peak is the wave peak adjacent to the first wave peak, and Q is a positive integer;
  • the processor 710 is configured to determine the first number of movement steps based on the number of peaks per second of the second acceleration waveform.
  • the processor 710 is configured to determine that the motion state ends when it detects that M consecutive first accelerations are less than a sixth preset threshold, and M is a positive integer.
  • the first acceleration during the motion is further obtained, so as to determine whether the user is hitting the ball based on the characteristics of the first acceleration. It only needs to use the electronic device carried by the user during the motion. That is, it can be realized without adding additional equipment to the hitting target, which improves the convenience of detection.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and at least one of other input devices 7072 .
  • Touch panel 7071 also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • Memory 709 may be used to store software programs as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), increased Strong synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Increase SDRAM synchronous dynamic random access memory
  • Synch link DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above embodiments of the motion state identification method is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above embodiments of the motion state identification method. Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-a-chip or system-on-a-chip.
  • Embodiments of the present application provide a computer program product, which is stored in a storage medium.
  • the program product is executed by at least one processor to implement each process of the above motion state recognition method embodiment, and can achieve the same technology. The effect will not be described here to avoid repetition.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请公开了一种运动状态识别方法、装置、电子设备及存储介质,属于通信技术领域。包括:在电子设备的加速度大于第一预设阈值的情况下,确定电子设备处于运动状态;获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和第二子加速度互相垂直,N为正整数;在所述第一加速度的第一子加速度变化量大于第二预设阈值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。

Description

运动状态识别方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求于2022年03月31日提交的申请号为202210337791.1,发明名称为“运动状态识别方法、装置、电子设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种运动状态识别方法、装置、电子设备及存储介质。
背景技术
随着人们对于健康的重视程度日益提升,大家开始提高体育运动的频率,同时也开始希望借助电子设备来记录运动参数。
相关技术中,识别击球运动的方式,往往是在击球运动的击球目标中设置加速度传感器,从而来判断用户是否在进行击球运动,但是这种方法往往需要借助特定的设备来进行运动,且在击球运动状态中,设置有加速传感器的击球目标还很容易损坏。
因此,如何更好的判断用户是否在进行击球运动已经成为业界亟待解决的问题。
发明内容
本申请实施例的目的是提供一种运动状态识别方法、装置、电子设备及存储介质,能够解决如何更好的判断用户是否在进行击球运动的问题。
第一方面,本申请实施例提供了一种运动状态识别方法,该方法包 括:
在电子设备的加速度大于第一预设阈值的情况下,确定所述电子设备处于运动状态;
获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和所述第二子加速度均在三维空间中互相垂直,N为正整数;
在所述第一加速度的第一子加速度变化量大于第二预设阈值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。第二方面,本申请实施例提供了一种运动状态识别装置,包括:
第一确定模块,用于在电子设备的加速度大于第一预设阈值的情况下,确定所述电子设备处于运动状态;
第一获取模块,用于获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和第二子加速度互相垂直,N为正整数;
识别模块,用于在所述第一加速度的第一子加速度变化量大于第二预设阈值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方 面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的方法。
在本申请实施例中,在电子设备的加速度大于第一预设阈值的情况下,识别到用户可能处于运动状态的情况下,进一步获取运动状态中的第一加速度,从而根据第一加速度的第一子加速度和第二子加速度判定用户是否在进行击球,有效保证了运动状态识别的便利性和准确性。
附图说明
图1为本申请实施例提供的运动状态识别方法流程示意图;
图2为本申请实施例提供的第二加速度示意图;
图3为本申请实施例提供的加速度变化示意图之一;
图4为本申请实施例提供的加速度变化示意图之二;
图5为本申请实施例提供的运动状态识别装置结构示意图;
图6为本申请实施例提供的电子设备结构示意图;
图7为实现本申请实施例的一种电子设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的运动状态识别方法、装置、电子设备及存储介质进行详细地说明。
图1为本申请实施例提供的运动状态识别方法流程示意图,如图1所示,包括:
步骤110,在电子设备的加速度大于第一预设阈值的情况下,确定所述电子设备处于运动状态;
具体地,本申请实施例中所描述的电子设备是具备加速度检测功能的电子设备,其具体可以设置有加速度传感器的电子设备,并且在运动状态识别过程中,该电子设备需要由用户携带,且该电子设备往往需要佩戴在用户击球的手臂或手腕上,即该电子设备会随着用户手臂的运动而相应产生加速度变量。
可以理解的是,本申请实施例中所描述的电子设备具体可以是具备加速度传感器的智能手环、智能手表等智能便携设备,还可以是与智能设备相连的,仅仅具备加速度检测功能的手环或者其它可穿戴设备。
另外,该电子设备还可以是具备加速度传感器的手机,该手机可以借助于固定用户手臂或者其它用户身体部位的运动挎包等固定于用户身体上,在用户运动状态中该手机也能够对应检测到用户运动而产生的加速度变量。
本申请实施例中所描述的加速度,具体可以是电子设备在运行过程 中,尚未判定用户进入运动状态时检测到的加速度信息,而判定用户进入运动状态后检测到的加速度信息作为第一加速度。
本申请实施例中所描述的第一预设阈值具体可以是预先设定的阈值,例如该第一预设阈值具体可以是10m/s2,在电子设备的加速度不超过第一预设阈值的情况下,则携带有电子设备的用户很可能并未进入运动状态,也不可能是在进行击球运动,对应地,在电子设备的加速度超过第一预设阈值的情况下,则携带有电子设备的用户很可能进入运动状态,也可能是在进行击球运动,此时需要对其运动状态的加速度进行进一步分析。
步骤120,获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和第二子加速度互相垂直,N为正整数;
具体地,电子设备在所述运动状态的N个第一加速度是指电子设备处于运动状态下所获取到的加速度信息均为第一加速度,即从确定电子设备进入运动状态开始,到确定电子设备结束运动状态截止的这个时间区段内所获取到的加速度。
具体地,本申请实施例中所描述的第一加速度可以包括在三维空间中的三个加速度分量,其分别为第一子加速度和第二子加速度,还可以包括第三子加速度,且第一子加速度、第二子加速度和第三子加速度在一个三维空间中均存在两两垂直的关系。
例如,在电子设备为用户佩戴的智能手表时,该智能手表检测到第一加速度,图2为本申请实施例提供的第一加速度示意图,如图2所示,第一加速度可以分解为沿手臂方向的X轴,与手臂方向垂直的Y轴,以及同时与X轴和Y轴垂直的Z轴上,即第一加速度会在Z轴存在有第一子加速度,第一加速度会在X轴存在第二子加速度,第一加速度会在Y轴存在有第三子加速度。
步骤130,在所述第一加速度的第一子加速度变化量大于第二预设阈 值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。
具体地,本申请实施例中所描述的第二预设阈值、第三预设阈值和第四预设阈值均是可以预先设定的数值。
本申请实施例中的运动状态若为击球,则在击球过程中可能存在两个阶段,一个阶段是挥拍加速的阶段,另一个阶段可能是击球命中的阶段。
在挥拍加速的过程中,手臂向前挥动击球,手臂会对电子设备的第一子加速度方向施加作用力,该第一子加速度方向可以是上述图2实施例中的Z轴方向,具体表现在第一子加速度从零附近减小到一个预设负值,例如-20m/s2,即此时第一加速度的第一子加速度变化量大于第二预设阈值。
同时,在挥拍加速的过程中,电子设备沿着手臂有往外飞出去的趋势,导致手腕的皮肤对电子设备施加了沿着第二子加速度方向的静摩擦力阻止电子设备和手臂的相对运动,该静摩擦力使第二子加速度明显上升,上升的幅度大概在15m/s2以上,具体与挥拍的力度正相关,即此时第二子加速度的变量大于第三预设阈值,并且在挥动到一定程度时,相邻第二子加速度的变化量会超过第四预设阈值,即各个所述第二子加速度的一阶差分中至少会存在一个目标一阶差分的情况,那么此时将用户的运动状态识别为击球。
本申请实施例中所描述的击球具体可以是指羽毛球击球运动或者网球击球运动,也可以是其它满足上述加速度变化规律的击球运动。
在本申请实施例中,通过用户运动过程中携带的电子设备的加速度,识别到用户可能处于运动状态的情况下,进一步获取运动状态中的第一加速度,从而根据第一加速度的特征判定用户是否在进行击球,仅 仅需要借助用户在运动过程中携带的电子设备即可以实现,不需要在击球目标中额外添加设备,提高了检测的便利性。
可选地,在识别所述运动状态为击球之后,还包括:
在第一预设时间段内,所述第一子加速度从第一数值更新为第二数值后,再从所述第二数值更新为第三数值的情况下,判定在所述运动状态的过程中击球命中,其中,所述第二数值大于所述第一数值和所述第三数值;
或,在所述第一子加速度均小于第五预设阈值的情况下,判定在所述运动状态的过程中击球未命中。
具体地,本申请实施例中所描述的第一预设时间段具体可以是指预设的连续时间段。本申请实施例所描述的第一数值、第二数值和第三数值均可以是预先设定的数值,且第二数值大于第一数值和第三数值。
具体地,在击球过程中,尚未击中球的情况下,手腕会对电子设备的第一子加速度负方向施加推力,本申请实施例中所描述的第一数值具体可以是在尚未击中球的过程中的第一子加速度的数值,其通常是一个负值,该第一数值具体可以是尚未击中球的过程中第一子加速度的最小值。
在击球过程中,击中球的情况下,在击中的短暂接触瞬间,球对球拍的反作用力会导致球拍对手臂有反作用力,进一步导致佩戴在手臂上的电子设备会在第一子加速度的正方向有短暂的冲击力,体现在第一子加速度上,会表现为第一子加速度从第一数值提升到第二数值,该第二数值是冲击力和手腕对电子设备在第一加速度方向施加推力所对应的加速度。
在击中球后,短暂的冲击力会消失,此时电子设备的第一子加速度会重新恢复负值,此时第三数值是冲击力消失后的第一子加速度,该第三数值是比第二数值更小的数值。
而由于,击球命中所产生的第一子加速度的变化发生在一个很短的 时间内,因此,仅在第一预设时间段内,检测到第一子加速度从第一数值更新为第二数值后,再从第二数值更新为第三数值的情况下,才会判定在运动状态中击球命中。
更具体地,在用户佩戴电子设备的手臂,挥拍欲击球但是没有击中球的情况下,此时球不会对球拍和手臂产生反作用力,第一子加速度不会出现明显突增的变化趋势,在一个挥拍的第二预设时间段内,电子设备不会检测到第一子加速度突然增大到一定数值的情况,并且在击球未命中的情况下,在第二预设时间段内,第一加速度的数值应该均小于第五预设阈值。
在本申请实施例中,通过对判定第一运动为击球运动后获取的Z轴加速度和X轴加速度进行分析,从而进一步判断,在该击球运动中是否击球命中,从而实现通过电子设备对于击球命中情况的有效统计。
在本申请实施例中,通过判定运动状态为击球之后,通过对第一子加速度和第二子加速度进行分析,从而进一步判断,在判定该运动状态为击球后是否击球命中,从而实现通过电子设备对于击球命中情况的有效统计。
可选地,在所述判定在所述运动状态的过程中击球命中之后,还包括:
获取目标时段内的P个第一加速度,其中,所述目标时段是第一时刻到第二时刻之间的时段,所述第一时刻是识别所述运动状态为击球的时刻,所述第二时刻是识别所述运动状态为击球之后,首次检测到所述第一加速度大于所述第一预设阈值的时刻,P为正整数;
基于所述P个第一加速度,确定第一加速度波形图;
根据所述第一加速度波形图中波峰相似度信息大于第一相似度阈值的第一波峰,得到第二加速度波形图,其中,所述波峰相似度信息是基于所述第一加速度波形图中的第一波峰和Q个第二波峰确定的,所述第二波峰是与所述第一波峰相邻的波峰,Q为正整数;
基于所述第二加速度波形图每秒的波峰数量,确定第一运动步数。
具体地,由于在击球运动的过程中,用户的计步特征和常规的步行过程中的计步特征存在很大的区别,特别是在击球命中后,到再次挥拍前的这个时段内,此时用户不存在弯腰捡球的动作,为准备下一次击球,可能需要迅速调整其位置,因此用户可能会出现前后左右随机走路跑步的行为,会导致相邻步伐的周期相似性比较差,按照常规计步方式难以实现准确的计步,因此本申请实施例中需要进一步对P个第一加速度来进行计步分析。
具体地,本申请实施例中所描述的目标时段具体可以是指用户在运动状态中,在判定击球命中后,到再次开始挥拍的这个区间,对应地,若击球的运动状态中,存在多次击球命中的情况,则在击球的运动状态中可能存在多个目标时段,若在运动状态中不存在击球命中的情况,则不会存在目标时段。
本申请实施例中第一时刻是识别所述运动状态为击球的时刻,所述第二时刻是识别所述运动状态为击球之后,首次检测到所述第一加速度大于所述第一预设阈值的时刻,即第二时刻是第一时刻之后,首次检测到用户可能在进行挥拍动作的时刻。
在本申请实施例中会进一步分析目标时段内的P个第一加速度,从而实现目标时段内的计步数据分析,具体地,获取P个第一加速度后,可以将其经过截止频率为4赫兹的低通滤波器进行滤波处理之后,生成第一加速度波形图,进一步分析第一加速波形图中每个第一波峰与该第一波峰相邻的Q个第二波峰的波峰相似度信息,具体将第一波峰与其对应的每个第二波峰进行相似性比较,最终得到整体的波峰相似度信息,例如可以确定每个第一波峰与该第一波峰相邻的4个或者5个第二波峰的周期相似性,Q的数量可以预先设定。
本申请实施例中描述的各个第一波峰对应的第二波峰可以是只指第一加速度波形图中与第一波峰左相邻或者右相邻的波峰。
为了保证步数统计数据的准确性,本申请实施例会通过每个第一波峰的波峰相似度信息,来进一步筛选各个第一波峰中是否可能存在异常数据,具体方式可以是将各个第一波峰的波峰相似度信息与第一相似度阈值来进行比较,波峰相似度信息大于第一相似度阈值的第一波峰,则认为其与周围的波峰相似度较高,为正常数据,而波峰相似度信息低于第一相似度阈值的波峰,则认为其与周围的波峰相似度较低,可能是异常数据,不便于继续保留,因此本申请实施例中仅仅保留第一加速度波形图中波峰相似度信息大于第一相似度阈值的第一波峰,得到第二加速度波形图。
本申请实施例中所描述的第一相似度阈值可以是预先设定的数值,该第一相似度阈值可以设定的比常规计步算法中的阈值更小,从而可以放宽数据的筛选标准,将快速移动过程中,周期相似性较差的步伐也计入总步数中。
更具体地,在确定第二加速度波形图之后,可以根据第二加速度波形图中每秒内有多少个明显的波峰来计算步数,例如,本申请实施例中在一秒内检测到有3个明显的波峰,则认为用户在这一秒内的计步步数为3步,最终根据该方式,确定在目标时段内的第一运动步数。
可选地,在击球的运动状态中,被判定为击球未命中的情况下,从当前到下次挥拍的时间段内,用户存在一小段时间的弯腰捡球和静止动作的时间,然后用户通过正常步行的方式移动到目标位置继续运动,此时可以通过常规的计步方式来进行计步,确定击球未命中后,到再次挥拍期间的第二运动步数。
在本申请实施例中,通过对目标区段内的P个第一加速度所组成的加速度波形图进行分析,从而确定用户在击球命后到下次挥拍之前的计步步数,能够根据击球命中的运动特征来准确的统计用户的计步步数。
可选地,在所述识别所述运动状态为击球之后,还包括:
在检测到M个连续的所述第一加速度均小于第六预设阈值的情况 下,判定所述运动状态结束,M为正整数。
具体地,本申请实施例中,为了避免击球的运动状态中的特殊计步方式对正常计步方式的影响,以及击球的运动状态中卡路里消耗的统计准确性,需要进一步有效判断击球的运动状态什么时候结束。
而在本申请实施例中,在击球的运动状态结束的阶段,此时第一加速度迅速下降并趋近于零,因此在检测到M个连续的所述第一加速度均小于第六预设阈值的情况下,判定运动状态结束。
本申请实施例在判定击球的运动状态完成后,会立刻重新开始检测该电子设备的加速度,若再次检测到电子设备的加速度超过第一预设阈值的情况下,则此时认为电子设备重新进入运动状态。
在本申请实施例中,在判定运动状态为击球之后,会进一步根据第一加速度来判定该运动状态是否结束,从而有效开始检测后续运动状态,有效区分不同运动状态的数据,避免识别错误。
可选地,本申请实施例中还可以记录运动状态中连续被判定为击球命中的次数;
在运动状态被判定为击球未命中的情况下,停止记录所述次数,得到所运动状态的击球连续命中次数。
具体地,对于击球运动,例如羽毛球或者网球,用户往往会比较在意击球连续命中次数,该参数能够较好的反应用户的击球水平,因此本申请实施例中会进一步记录记录运动状态连续被判定为击球命中的次数。
本申请实施例中所描述的运动状中被判定为击球命中的次数具体可以是指,在运动状态中,每次击球判定均被判定为击球命中,即在运动状态中,未出现被判定为击球未命中的情况。
相应地,在运动状态中若出现判定为击球未命中的情况下,停止记录连续被判定为击球命中的次数,记录一次击球未命中,并且获取当前击球运动的击球连续命中次数,重新开始记录击球连续命中次数。
在本申请实施例中,通过记录击球的运动状态中连续的击球命中次数,能够有效统计击球运动的击球连续命中次数,便于用户了解其运动情况。
可选地,在另一实施例中,以用户右手手腕佩戴电子设备,并且右手挥拍进行击球运动为例,将沿用户手臂的方向设定为X轴,垂直于用户手臂的方向为Y轴,Z轴同时与X轴和Y轴垂直,即第一加速度会在Z轴存在有第一子加速度,在X轴存在第二子加速度,在Y轴存在有第三子加速度,其具体可以参考图2中的坐标方向,图3为本申请实施例提供的加速度变化示意图之一,如图3所示,携带矩形符号的线条对应第一子加速度,携带三角符号的线条对应第二子加速度,携带圆形的线条对应第三子加速度,携带五边形符号的线条对应第一加速度,且为了避免线条重叠从而导致混淆,将第一加速度对应的线条在真实值的基础上整体向上平移了5个单位,整个击球的运动状态大致可以分为如下五个阶段:
阶段一310,佩戴电子设备的右手握住球拍,手臂和球拍正常下垂,第二子加速度处于X轴正方向朝上,大约9.8左右,电子设备略微倾斜朝上,z轴的第一子加速度略微大于零;
阶段二320,用户开始准备击球,右手握拍用力抬起,球拍从下垂状态抬起来到球拍呈水平姿态,此时x轴的第二子加速度从9附近逐渐减小到零附近;同时z轴的第一子加速度从略微大于零逐渐增大到9附近;
阶段三330,右手用力抬起球拍,球拍继续从水平姿态抬起来到球拍头朝天的姿态;对应的x轴正方向从水平变化到指向地面,即x轴第二子加速度从零附近减小到-9附近;同时z轴正方向从指向天上逐渐变成水平方向,即z轴的第一子加速度从9附近逐渐减小到零附近;
阶段四340,开始击球,右手向前挥拍,手腕对手表的z轴负方向施加作用力,具体表现在z轴的第一子加速度从零附近减小到-20附近,具体数值因不同的挥拍力度而异;同时因为挥拍时手表沿着手臂有往外飞出去的 趋势,导致手腕的皮肤对手表施加了沿着x轴正方向的静摩擦力阻止手表和手臂的相对运动。此静摩擦力使x轴的第二子加速度明显上升,上升的幅度大概在30以上,具体与挥拍的力度正相关;
阶段五350,在击球命中的情况下,当球拍击打到羽毛球的时候,因为球拍对羽毛球有冲击力,羽毛球对球拍施加了反作用力,进而球拍对手腕施加了反作用力,导致手腕对手表施加了沿着z轴正方向的冲击力,z轴加速度瞬间剧烈增大,此时第一子加速度从第一数值更新为第二数值,因为羽毛球对球拍的反作用力只有在接触的一瞬间存在,持续时间很短,如图大概持续了四个采样间隔,具体接触时长与羽毛球和球拍的材质以及挥拍击球的力度有关,如果材质的韧性越强则接触时间越短,则羽毛球对球拍的反作用力就越大;如果挥拍击球的力度越大则接触时间越长,而且羽毛球对球拍的反作用力就越大,而在反作用力消失后,此时第一子加速度会从第二数值更新为第三数值。
与此同时,与阶段四类似,因为阶段五仍然处于挥拍击球动作,手腕带动手表绕着肩膀做类似圆周运动,手表沿着手臂有往外飞出去的趋势,导致手腕的皮肤对手表施加了沿着x轴正方向的静摩擦力(类似于圆周运动的向心力)阻止手表和手臂的相对运动。此静摩擦力使x轴的第二加速度明显上升,上升的幅度大概在30m/s2以上(具体与挥拍的力度正相关),在阶段五内x轴加速度的数值都是大于零的。
可选地,在一些实施例中,用户在击球阶段可能击球未命中,图4为本申请实施例提供的加速度变化示意图之二,如图4所示,包括:
阶段六410,具体可以是用户击球未命中的阶段,如果用户挥拍欲击球但是没有击中羽毛球的时候,因为没有羽毛球对球拍的反作用力,电子设备z轴的第一子加速度没有明显突增,并且在阶段六的整个过程中,z轴的第一子加速度小于零而且均值小于-10,同时x轴大于零而且均值大于10。
本申请实施例提供的运动状态识别方法,执行主体可以为运动状态 识别装置。本申请实施例中以运动状态识别装置执行运动状态识别的方法为例,说明本申请实施例提供的运动状态识别的装置。
图5为本申请实施例提供的运动状态识别装置结构示意图,如图5所示,包括:第一确定模块510、第一获取模块520和识别模块530;
其中,第一确定模块510用于在电子设备的加速度大于第一预设阈值的情况下,确定所述电子设备处于运动状态;
其中,第一获取模块520用于获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和第二子加速度互相垂直,N为正整数;
其中,识别模块530用于在所述第一加速度的第一子加速度变化量大于第二预设阈值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。
可选地,所述装置还包括:
第一判定模块,用于在第一预设时间段内,所述第一子加速度从第一数值更新为第二数值后,再从所述第二数值更新为第三数值的情况下,判定在所述运动状态的过程中击球命中,其中,所述第二数值大于所述第一数值和所述第三数值;
或,在所述第一子加速度均小于第五预设阈值的情况下,判定在所述运动状态的过程中击球未命中。可选地,
所述装置还包括:
第二获取模块,用于获取目标时段内的P个第一加速度,其中,所述目标时段是第一时刻到第二时刻之间的时段,其中,所述第一时刻是识别所述运动状态为击球的时刻,所述第二时刻是识别所述运动状态为击球之后,首次检测到所述第一加速度大于所述第一预设阈值的时刻,P为正整数;
第二确定模块,用于基于所述P个第一加速度,确定第一加速度波形图;
分析模块,用于根据所述第一加速度波形图中波峰相似度信息大于第一相似度阈值的第一波峰,得到第二加速度波形图,其中,所述波峰相似度信息是基于所述第一加速度波形图中的第一波峰和Q个第二波峰确定的,所述第二波峰是与所述第一波峰相邻的波峰,Q为正整数;
第三确定模块,用于基于所述第二加速度波形图每秒的波峰数量,确定第一运动步数。
可选地,所述装置还包括:
第二判定模块,用于在检测到M个连续的所述第一加速度均小于第六预设阈值的情况下,判定所述运动状态结束,M为正整数。
在本申请实施例中,通过用户运动过程中携带的电子设备的加速度,识别到用户可能处于运动状态的情况下,进一步获取运动状态中的第一加速度,从而根据第一加速度的特征判定用户是否在进行击球,仅仅需要借助用户在运动过程中携带的电子设备即可以实现,不需要在击球目标中额外添加设备,提高了检测的便利性。
本申请实施例中的运动状态识别装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的运动状态识别装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的运动状态识别装置能够实现图1至图2的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,图6为本申请实施例提供的电子设备结构示意图,如图6所示,本申请实施例还提供一种电子设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,该程序或指令被处理器601执行时实现上述运动状态识别方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图7为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等部件。
本领域技术人员可以理解,电子设备700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器710用于在电子设备的加速度大于第一预设阈值的情况下,确定所述电子设备处于运动状态;
传感器705用于获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和第二子加速度互相垂直,N为正整数;
处理器710用于在所述第一加速度的第一子加速度变化量大于第二预设阈值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。
可选地,处理器710用于在第一预设时间段内,所述第一子加速度从第一数值更新为第二数值后,再从所述第二数值更新为第三数值的情况下,判定在所述运动状态的过程中击球命中,其中,所述第二数值大于所述第一数值和所述第三数值;
或,在所述第一子加速度均小于第五预设阈值的情况下,判定在所述运动状态的过程中击球未命中。
可选地,传感器705用于获取目标时段内的P个第一加速度,其中,所述目标时段是第一时刻到第二时刻之间的时段,所述第一时刻是识别所述运动状态为击球的时刻,所述第二时刻是识别所述运动状态为击球之后,首次检测到所述第一加速度大于所述第一预设阈值的时刻,P为正整数;
处理器710用于基于所述P个第一加速度,确定第一加速度波形图;
处理器710用于根据所述第一加速度波形图中波峰相似度信息大于第一相似度阈值的第一波峰,得到第二加速度波形图,其中,所述波峰相似度信息是基于所述第一加速度波形图中的第一波峰和Q个第二波峰确定的,所述第二波峰是与所述第一波峰相邻的波峰,Q为正整数;
处理器710用于基于所述第二加速度波形图每秒的波峰数量,确定第一运动步数。
可选地,处理器710用于在检测到M个连续的所述第一加速度均小于第六预设阈值的情况下,判定所述运动状态结束,M为正整数。
在本申请实施例中,通过用户运动过程中携带的电子设备的加速 度,识别到用户可能处于运动状态的情况下,进一步获取运动过程中的第一加速度,从而根据第一加速度的特征判定用户是否在进行击球,仅仅需要借助用户在运动过程中携带的电子设备即可以实现,不需要在击球目标中额外添加设备,提高了检测的便利性。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增 强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述运动状态识别方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述运动状态识别方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述运动状态识别方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方 法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种运动状态识别方法,包括:
    在电子设备的加速度大于第一预设阈值的情况下,确定所述电子设备处于运动状态;
    获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和第二子加速度互相垂直,N为正整数;
    在所述第一加速度的第一子加速度变化量大于第二预设阈值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。
  2. 根据权利要求1所述的运动状态识别方法,其中,在识别所述运动状态为击球之后,还包括:
    在第一预设时间段内,所述第一子加速度从第一数值更新为第二数值后,再从所述第二数值更新为第三数值的情况下,判定在所述运动状态的过程中击球命中,其中,所述第二数值大于所述第一数值和所述第三数值;
    或,在所述第一子加速度均小于第五预设阈值的情况下,判定在所述运动状态的过程中击球未命中。
  3. 根据权利要求2所述的运动状态识别方法,其中,在所述判定在所述运动状态的过程中击球命中之后,还包括:
    获取目标时段内的P个第一加速度,其中,所述目标时段是第一时刻到第二时刻之间的时段,所述第一时刻是识别所述运动状态为击球的时刻,所述第二时刻是识别所述运动状态为击球之后,首次检测到所述第一加速度大于所述第一预设阈值的时刻,P为正整数;
    基于所述P个第一加速度,确定第一加速度波形图;
    根据所述第一加速度波形图中波峰相似度信息大于第一相似度阈值的第一波峰,得到第二加速度波形图,其中,所述波峰相似度信息是基于所述第一加速度波形图中的第一波峰和Q个第二波峰确定的,所述第二波峰是与所述第一波峰相邻的波峰,Q为正整数;
    基于所述第二加速度波形图每秒的波峰数量,确定第一运动步数。
  4. 根据权利要求2所述的运动状态识别方法,其中,在所述识别所述运动状态为击球之后,还包括:
    在检测到M个连续的所述第一加速度均小于第六预设阈值的情况下,判定所述运动状态结束,M为正整数。
  5. 一种运动状态识别装置,包括:第一确定模块,用于在电子设备的加速度大于第一预设阈值的情况下,确定所述电子设备处于运动状态;
    第一获取模块,用于获取所述电子设备在所述运动状态的N个第一加速度,每个所述第一加速度均包括:第一子加速度和第二子加速度,所述第一子加速度和第二子加速度互相垂直,N为正整数;
    识别模块,用于在所述第一加速度的第一子加速度变化量大于第二预设阈值,所述第一加速度的第二子加速度变化量大于第三预设阈值,且每个所述第二子加速度的一阶差分中存在目标一阶差分的情况下,识别所述运动状态为击球;其中,所述目标一阶差分是大于第四预设阈值的一阶差分。
  6. 根据权利要求5所述的运动状态识别装置,其中,所述装置还包括:
    第一判定模块,用于在第一预设时间段内,所述第一子加速度从第一数值更新为第二数值后,再从所述第二数值更新为第三数值的情况下,判定在所述运动状态的过程中击球命中,其中,所述第二数值大于所述第一数值和所述第三数值;
    或,在所述第一子加速度均小于第五预设阈值的情况下,判定在所 述运动状态的过程中击球未命中。
  7. 根据权利要求6所述的运动状态识别装置,其中,所述装置还包括:
    第二获取模块,用于获取目标时段内的P个第一加速度,其中,所述目标时段是第一时刻到第二时刻之间的时段,其中,所述第一时刻是识别所述运动状态为击球的时刻,所述第二时刻是识别所述运动状态为击球之后,首次检测到所述第一加速度大于所述第一预设阈值的时刻,P为正整数;
    第二确定模块,用于基于所述P个第一加速度,确定第一加速度波形图;
    分析模块,用于根据所述第一加速度波形图中波峰相似度信息大于第一相似度阈值的第一波峰,得到第二加速度波形图,其中,所述波峰相似度信息是基于所述第一加速度波形图中的第一波峰和Q个第二波峰确定的,所述第二波峰是与所述第一波峰相邻的波峰,Q为正整数;
    第三确定模块,用于基于所述第二加速度波形图每秒的波峰数量,确定第一运动步数。
  8. 根据权利要求6所述的运动状态识别装置,其中,所述装置还包括:
    第二判定模块,用于在检测到M个连续的所述第一加速度均小于第六预设阈值的情况下,判定所述运动状态结束,M为正整数。
  9. 一种电子设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-4任一项所述的运动状态识别方法的步骤。
  10. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-4任一项所述的运动状态识别方法的步骤。
  11. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所 述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-4任一项所述的运动状态识别方法的步骤。
  12. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1-4任一项所述的运动状态识别方法的步骤。
  13. 一种电子设备,所述电子设备被配置成用于执行如权利要求1-4任一项所述的运动状态识别方法。
PCT/CN2023/084921 2022-03-31 2023-03-30 运动状态识别方法、装置、电子设备及存储介质 WO2023185970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210337791.1A CN114692691A (zh) 2022-03-31 2022-03-31 运动状态识别方法、装置、电子设备及存储介质
CN202210337791.1 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185970A1 true WO2023185970A1 (zh) 2023-10-05

Family

ID=82141320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084921 WO2023185970A1 (zh) 2022-03-31 2023-03-30 运动状态识别方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN114692691A (zh)
WO (1) WO2023185970A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118012274B (zh) * 2024-04-09 2024-06-11 深圳市晶讯技术股份有限公司 一种基于三轴活跃轴的控制智能手表的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114692691A (zh) * 2022-03-31 2022-07-01 维沃移动通信有限公司 运动状态识别方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199630A (ja) * 2009-06-09 2009-09-03 Shinsedai Kk 体感ゲーム装置、入力装置、体感ゲーム方法、及び、記録媒体
US20160084869A1 (en) * 2014-09-23 2016-03-24 Fitbit, Inc. Hybrid angular motion sensors
US20160354671A1 (en) * 2015-06-08 2016-12-08 Microsoft Technology Licensing, Llc Golf shot detection
CN107252567A (zh) * 2017-06-06 2017-10-17 阳江市智动科技有限公司 一种台球球杆运动状态的检测方法及其存储介质、装置
WO2022048573A1 (zh) * 2020-09-02 2022-03-10 华为技术有限公司 挥杆动作检测方法及可穿戴设备
CN114692691A (zh) * 2022-03-31 2022-07-01 维沃移动通信有限公司 运动状态识别方法、装置、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199630A (ja) * 2009-06-09 2009-09-03 Shinsedai Kk 体感ゲーム装置、入力装置、体感ゲーム方法、及び、記録媒体
US20160084869A1 (en) * 2014-09-23 2016-03-24 Fitbit, Inc. Hybrid angular motion sensors
US20160354671A1 (en) * 2015-06-08 2016-12-08 Microsoft Technology Licensing, Llc Golf shot detection
CN107252567A (zh) * 2017-06-06 2017-10-17 阳江市智动科技有限公司 一种台球球杆运动状态的检测方法及其存储介质、装置
WO2022048573A1 (zh) * 2020-09-02 2022-03-10 华为技术有限公司 挥杆动作检测方法及可穿戴设备
CN114692691A (zh) * 2022-03-31 2022-07-01 维沃移动通信有限公司 运动状态识别方法、装置、电子设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118012274B (zh) * 2024-04-09 2024-06-11 深圳市晶讯技术股份有限公司 一种基于三轴活跃轴的控制智能手表的方法和装置

Also Published As

Publication number Publication date
CN114692691A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US8421634B2 (en) Sensing mechanical energy to appropriate the body for data input
US8146020B2 (en) Enhanced detection of circular engagement gesture
CN105339884B (zh) 用户输入的分类
US8228292B1 (en) Flipping for motion-based input
Ruiz et al. DoubleFlip: a motion gesture delimiter for mobile interaction
US8269842B2 (en) Camera gestures for user interface control
US11776322B2 (en) Pinch gesture detection and recognition method, device and system
US20100040292A1 (en) Enhanced detection of waving engagement gesture
EP2816450B1 (en) Information processing apparatus, and information processing method
JP2015013008A (ja) 運動検出装置および運動検出プログラム並びに運動解析システム
WO2018133681A1 (zh) 搜索结果排序方法、装置、服务器及存储介质
CN103713766A (zh) 用于检测和处理对触摸屏的无意触摸的方法和系统
CN113031840B (zh) 腕戴设备的防误触发方法、装置、电子设备及存储介质
WO2023185970A1 (zh) 运动状态识别方法、装置、电子设备及存储介质
US10751601B2 (en) Automatic rally detection and scoring
WO2023134663A1 (zh) 运动的识别方法、装置、电子设备和可读存储介质
Baek et al. A sequence-action recognition applying state machine for user interface
CN111167105B (zh) 投篮检测方法、装置、设备、系统和存储介质
CN113569776A (zh) 跳绳姿势检测方法、装置、电子设备和介质
CN112540686A (zh) 智能指环及指环工作模式的确定方法和电子设备
CN111813280A (zh) 显示界面的控制方法、装置、电子设备及可读存储介质
WO2018157460A1 (zh) 一种针对人体运动的计数方法及装置
US20230333664A1 (en) Head-mounted display, tapping input signal generating method and non-transitory computer readable storage medium thereof
CN116310752A (zh) 运动项目识别方法、装置、电子设备和介质
US20230176657A1 (en) Method for activating system function, host, and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778335

Country of ref document: EP

Kind code of ref document: A1