WO2023185945A1 - 民航飞行动态电报与空域单元运行状态的自动校验方法 - Google Patents

民航飞行动态电报与空域单元运行状态的自动校验方法 Download PDF

Info

Publication number
WO2023185945A1
WO2023185945A1 PCT/CN2023/084790 CN2023084790W WO2023185945A1 WO 2023185945 A1 WO2023185945 A1 WO 2023185945A1 CN 2023084790 W CN2023084790 W CN 2023084790W WO 2023185945 A1 WO2023185945 A1 WO 2023185945A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
flight
time
estimated
status
Prior art date
Application number
PCT/CN2023/084790
Other languages
English (en)
French (fr)
Inventor
庄青
程先峰
周禄华
李翠霞
邬秋香
吴伯军
董慧芳
雷馥鸣
陶敬财
陈雅彬
Original Assignee
南京莱斯信息技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京莱斯信息技术股份有限公司 filed Critical 南京莱斯信息技术股份有限公司
Publication of WO2023185945A1 publication Critical patent/WO2023185945A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management

Definitions

  • the invention belongs to the technical field of civil aviation flight dynamic telegram processing of civil aviation air traffic management (ATM), and specifically relates to an automatic verification method of civil aviation flight dynamic fixed-format telegrams and airspace unit operating status.
  • ATM civil aviation air traffic management
  • the purpose of the present invention is to provide an automatic verification method for civil aviation flight dynamic telegrams and airspace unit operating status, so as to solve the problem of fixed civil aviation flight dynamic telegrams and each airspace unit during existing flight operations. Operation status comparison only relies on manual judgment, and the result feedback is not timely; the method of the present invention combines the analysis results of pilotage plan report (FPL), revised pilotage plan report (CHG) and delay report (DLA) with the digital traffic status of each airspace unit Compare and timely discover that a certain airspace unit is prohibited or restricted for a certain period of time, and provide immediate feedback to the air operator.
  • the air operator can coordinate with the control department as early as possible to formulate a new flight plan for the flight and report the results Inform passengers as early as possible to improve flight safety and service quality.
  • the present invention provides an automatic verification method for civil aviation flight dynamic telegrams and airspace unit operating status. The steps are as follows:
  • the information obtained includes flight number, estimated departure time, estimated landing time, estimated departure airport, estimated landing airport, route, and point format route;
  • Route operation status verification Determine whether any route on which the flight is flying has a prohibited or restricted status during the flight. If yes, go to step 5); if not, go to step 6);
  • One-way operation route verification Determine whether the flight route has one-way operation requirements during the flight. If the flight passes through this route segment and violates the one-way route rules, the process will be terminated and manual processing will be performed;
  • the airspace unit basic information database includes: equivalent route verification setting table, route status setting table, airport status setting table, one-way route setting table, and airspace status setting table;
  • the equivalent route verification setting table is used to temporarily plan an alternative route for flights if any section of the original route is prohibited from passing during a certain period.
  • the alternative section is called an equivalent route;
  • the main fields include: original route, Equivalent flight segment, effective date, end date, departure/landing airport, original flight segment in point format, equivalent flight segment in point format;
  • Route status setting table is used to set any route to be prohibited or restricted for any period of time. Routes not set in this table are open by default; the main fields include: route code, start/end point, status, and start time. , end time, segment in point format;
  • Airport status setting table is used to set the closure or restriction of any airport at any time. Airports not set in this table are open by default; the main fields include: airport code, status, start time, and end time;
  • One-way route setting table is used to set any route to be open in one direction from the start point to the end point in any period. Routes not set in this table are open in both directions by default; the main fields include: route code, start/end Point, start time, end time, point format segment;
  • Airspace status setting table is used to set any airspace range to be closed or restricted at any time. Airspaces not set in this table are open by default; the main fields include: airspace range, status, start time, end time, point format Segment, line format segment.
  • step 2) specifically includes:
  • step 24 Update the flight advance flight plan record matched in step 23), and at the same time split the route field information into a standard waypoint sequence in order, and assign the result to the field item point format route.
  • the route matching rule in step 23) is: when the telegram type is a pilot plan report, determine whether the planned route field information contains route field information, and if it does, update the route field information to the matching pre-flight plan record The expected route field information; when the telegram type is a revised pilot plan report or a delay report, the expected route field information is assigned to the route.
  • supplementary time processing rules in step 23) are:
  • Estimated landing time reporting time + estimated total flight time + T;
  • step 3) specifically includes:
  • Step 31 Use the estimated departure airport and estimated departure time data items to match the airport status setting table to determine the operating status of the flight's departure airport at the estimated departure time. If the status is closed or restricted, terminate the process and transfer to manual processing; otherwise, execute Step 32);
  • step 32 Use the expected landing airport and estimated landing time data to match the airport status setting table to determine the operating status of the flight's landing airport at the estimated landing time. If the status is closed or restricted, terminate the process and transfer to manual processing; otherwise, perform step 33) ;
  • step 33 Determine the execution process of the next stage based on the telegram type. If it is a pilot plan message or a revised pilot plan message, continue to step 4); if it is a delay message, proceed to step 7).
  • step 4) specifically includes:
  • step 6 Use the estimated takeoff time, estimated landing time, and point format route data items to match the route status setting table to determine whether any route on the route of the flight has a prohibited or restricted status during the flight; if the match is successful, the route status If the verification fails, assign a value to the origin format segment field item to be replaced, and proceed to step 5); otherwise, proceed to step 6).
  • step 5 specifically includes:
  • step 51 Use the data items of the origin format to be replaced, estimated takeoff time, and estimated landing time to match the equivalent route verification setting table. If the match is unsuccessful and the message is a difficult or error message, the process will be terminated and transferred to manual processing; If the match is successful, proceed to step 52);
  • step 53 Use the matching equivalent route verification setting table in step 51) to obtain the equivalent route segment in the record, and the field value of the equivalent segment in point format replaces the disabled or restricted segment value in the original value of the route and point format route.
  • step 6) specifically includes:
  • step 62) Use the point format route-reverse, estimated takeoff time, and estimated landing time data items to match the one-way route setting table to determine whether the flight route has one-way operation requirements during the flight. If the one-way route setting table If the match is successful, the flight passes through the route segment, the process is terminated, and manual processing is performed; otherwise, step 7) is performed.
  • the invention realizes the automatic verification of civil aviation flight dynamic fixed-format telegram analysis results and airspace unit operating status, changes the current detection method that only relies on manual comparison and judgment, and timely analyzes the operating status of airports, flight segments, routes, and airspace units in the information system.
  • FPL pilotage plan report
  • CHG revised pilotage plan report
  • DLA delay report
  • the control department can immediately return the information of a certain airspace unit to be prohibited or restricted for a certain period of time to the air operator.
  • the air operator can coordinate with the control department as early as possible to provide aviation services.
  • the airline will re-formulate a new flight plan and inform passengers of the results as early as possible to improve flight safety and service quality.
  • the present invention can automatically calculate all "way points" within the area based on longitude and latitude, aggregate them into prohibited or restricted "route segment” information, and automatically insert them into the route status setting table; equivalent routes are substituted
  • the function can automatically replace the original route with available temporary routes, improve the automation rate, reduce the controller's workload, avoid manual errors, improve the intelligence of the entire system, and improve the processing performance of the entire telegram processing process.
  • Figure 1 is a flow chart of the method of the present invention.
  • the airspace unit operating status verification refers to comparing the telegram analysis results with the traffic conditions of each airspace unit. If an airspace unit is inaccessible for a certain period of time due to flight routes, dynamic navigation information, or emergencies, the system can automatically prompt.
  • the pilotage plan report is issued by the air traffic service unit to 45 minutes before the aircraft's estimated off-block time (should not be earlier than 6 hours before the expected off-block time), based on the flight plan data submitted by the aircraft operator or its agent. Cables to relevant air traffic services units along the route.
  • the revised pilot plan message is a telegram used to revise the relevant contents of the pilot plan.
  • Delay Alert is a telegram used to notify the relevant units of the delay information when the aircraft's estimated departure time is more than 30 minutes later than the estimated off-block time in the original pilotage plan.
  • a method of automatic verification of civil aviation flight dynamic telegrams and airspace unit operating status of the present invention has the following steps:
  • the airspace unit basic information database includes: equivalent route verification setting table, route status setting table, airport status setting table, one-way route setting table, airspace status setting table;
  • Equivalent route verification setting table used to temporarily plan an alternative route for flights if any section of the original route is closed to traffic during a certain period.
  • the alternative route is called an equivalent route;
  • the main fields include: original route Segment, equivalent flight segment, effective date, end date, departure/landing airport, original flight segment in point format, equivalent flight segment in point format;
  • Original flight segment and equivalent flight segment the format is: "point way point way point... point", "point” must exist in the way point database of the Civil Aviation Administration of China's NAIP; "road” must exist in the route database of the Civil Aviation Administration of China's NAIP exist.
  • the flight segments filled in the original flight segment and equivalent flight segment fields must be connected.
  • Departure/landing airport optional. If there is no value, it means that the equivalent route can replace all flights passing through the original segment within the effective date and end date range; if there is a value, it can only replace the designated departure/landing airport and pass through the original segment within the effective date and end date range. For flights flying on this segment, other flights are prohibited from flying.
  • the airport information value filled in the departure/landing airport field must exist in the airport database of the Civil Aviation Administration of China's NAIP.
  • the original flight segment (point) (that is, the original flight segment in point format), corresponding to the "original flight segment” value, is converted into the "point, point, point...point” format, that is, the standard route is split into a standard waypoint sequence in sequence.
  • Equivalent flight segments (points) (i.e. equivalent flight segments in point format), corresponding to the "equivalent flight segment” value, are converted into the "point, point, point...point” format, that is, the standard route is split into a standard waypoint sequence in sequence.
  • Route status setting table used to set any route to be prohibited or restricted for any period of time. Routes not set in this table are open by default; the main fields include: route code, start/end point, status, Start time, end time, segment in point format;
  • Route code the route information value filled in must exist in the NAIP route database of the Civil Aviation Administration of China.
  • the start/end point must exist in the route.
  • Segment (point) i.e. point format segment
  • the format is: “point...point”, it is automatically processed according to the information in the "route code” and “start/end point” fields, and the processing result is assigned to “segment ( point)” field.
  • the "route code” is sequentially removed from the NAIP waypoint database according to the "start/end point” range into a "point, point, point...point” format, that is, the standard route is sequentially split into a standard waypoint sequence. For example: when the "route code” is A, the "start point” is A3, and the "end point” is A7, the “segment” can be parsed as "A3A4A5A6A7".
  • Airport status setting table used to set the closure or restriction of any airport at any time. Airports not set in this table are open by default; the main fields include: airport code, status, start time, and end time;
  • One-way route setting table used to set any route to be open in one direction from the start point to the end point in any period of time. Routes not set in this table are open in both directions by default; the main fields include: route code, start /Finish Point, start time, end time, point format segment;
  • Route code the route information value filled in must exist in the NAIP route database of the Civil Aviation Administration of China.
  • the start/end point must exist in the route.
  • Segment (point) i.e. point format segment
  • the format is: “point...point”, it is automatically processed according to the information in the "route code” and “start/end point” fields, and the processing result is assigned to “segment ( point)” field.
  • the "route code” is sequentially removed from the NAIP waypoint database according to the "start/end point” range into a "point, point, point...point” format, that is, the standard route is sequentially split into a standard waypoint sequence. For example: when the "route code” is A, the "start point” is A3, and the "end point” is A7, the "segment” can be parsed as "A3 A4 A5 A6 A7".
  • Airspace status setting table used to set any airspace range to be closed or restricted at any time. Airspaces not set in this table are open by default; the main fields include: airspace range, status, start time, end time, Point format flight segments, line format flight segments;
  • the airspace range consists of at least three or more latitude and longitude points, or a circle, a sector, or a polygon.
  • Flight segments (points) (i.e. point format segments), classify all "waypoints" within the "airspace range" in the Civil Aviation Administration of China's NAIP waypoint database by routes, and sort by the order of the waypoints to obtain all flight segment information, that is, standard routes Split into a standard waypoint sequence in sequence; multiple segments are separated by "/". Specific format: "Dot dot dot... dot/dot dot dot dot... dot";
  • the flight segment (line) (that is, the segment in line format) corresponds to the “segment (point)” value and is converted into: “point waypoint” format.
  • the operator fills in field information such as "airspace range, status, start time, end time" through the human-machine interface GIS map or form;
  • Route code "Road” value in "Route Segment (Line)" in the airspace status setting table;
  • Route code 1 "A”
  • route code 2 "B”
  • Flight segment (point) Airspace status setting table "Flight segment (point)” (multiple flight segments need to be split into multiple segments and assigned values in sequence);
  • the information obtained includes flight number, estimated departure time, estimated landing time, estimated departure airport, estimated landing airport, route, and point format route;
  • Estimated landing time Estimated takeoff time + Estimated total flight time.
  • step 231) Combine the "flight number, estimated departure time, estimated landing time, estimated departure airport, estimated landing airport” field information obtained in step 22) with the flight plan information (flight number, planned departure time, estimated landing time) in the pre-flight plan database Planned landing time, planned departure airport, planned landing airport) matching, when a corresponding record is matched, obtain the "planned route” and “estimated route” information of the record, and continue to the next step; otherwise, it will prompt "This message "There is no corresponding flight plan", define the message as a problem report or error message, terminate the process, and transfer to manual processing.
  • the "planned route” is "AGAVO G597 DONVO A326 SANKO W107 CHI A588 HRB G212 ARGUK/AGAVO G597 DONVO A326 SANKO W107 CHI A588 SIMLI",
  • Estimated landing time reporting time + estimated total flight time + T;
  • the new "estimated departure time” will be reassigned to "1205".
  • the new "estimated departure time” will be reassigned to "0130", and the "execution date” will be reassigned to "20210422".
  • step 24 Update the flight advance flight plan record matched in step 23), and at the same time split the route field information into a standard waypoint sequence (format: dot dot dot...dot), and assign the result to the field item point format route (i.e. route(point)).
  • a standard waypoint sequence format: dot dot dot...dot
  • the route matching rule in step 23) is: when the telegram type is a pilot plan report, determine whether the planned route field information contains route field information, and if it does, update the route field information to the matching pre-flight plan record Estimated route field information; when the telegram type is pilot plan revision or delay report, the expected route field information is assigned to the route.
  • Route operation status verification Determine whether any route on which the flight is flying has a prohibited or restricted status during the flight. If yes, go to step 5); if not, go to step 6);
  • said step 4) specifically includes:
  • the specific matching conditions are:
  • Route status setting table Route segment (point) IN "route (point)”.
  • said step 5 specifically includes:
  • step 51 Use the "original flight segment (point) to be replaced", “estimated departure time”, and “estimated landing time” data items to match the "equivalent route verification setting table". If the matching is unsuccessful, the message will be a problem report or error. message, terminate the process, and transfer to manual processing; if the match is successful, enter step 52);
  • the specific matching conditions are:
  • One-way operation route verification Determine whether the flight route has one-way operation requirements during the flight. If the flight passes through this route segment and violates the one-way route rules, the process will be terminated and manual processing will be performed;
  • said step 6 specifically includes:
  • the specific matching conditions are:
  • Route segment (point) IN "route (point) - reverse”.
  • the present invention maintains the operating status of airports, flight segments, routes, and airspace units in a timely manner.
  • DLA digital advanced Integrated Security
  • the present invention automatically compares the telegram analysis results with the traffic conditions of each airspace unit, promptly prompts that a certain airspace unit is inaccessible during a certain period, and feeds it back to the aviation operator to solve the problem of information timeliness and transparency at the operational level. and other issues, improve communication efficiency during flight operations, air operators can re-formulate new flight plans for flights as early as possible, reduce resource waste to a certain extent, avoid safety accidents, and improve the quality of aviation operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种民航飞行动态电报与空域单元运行状态的自动校验方法,建立空域单元基础信息库(步骤1);解析、校验民航飞行动态电报,并匹配预先飞行计划(步骤2);机场运行状态校验(步骤3);航路运行状态校验(步骤4);等效航路替代(步骤5);单向运行航路校验(步骤6);空域单元运行状态校验流程结束(步骤7)。通过建立空域状态信息标准库,及时对各空域单元运行状态进行维护,当空管部门对领航计划报、修订领航计划报和延误报进行电报处理时,将电报解析结果与各空域单元通行情况自动进行比对,及时提示某空域单元在某时段禁止或受限通行,第一时间反馈给航空营运人,航空营运人可以尽早与管制部门进行协调,为航班重新制定新的飞行方案,提升航班飞行安全和服务质量。

Description

民航飞行动态电报与空域单元运行状态的自动校验方法 技术领域
本发明属于民用航空空中交通管理(ATM)的民航飞行动态电报处理技术领域,具体涉及一种民用航空飞行动态固定格式电报与空域单元运行状态的自动校验方法。
背景技术
根据民用航空飞行动态固定格式电报(简称:民航飞行动态电报)管理规定,航空营运人向空中交通管理部门拍发领航计划类报文都有拍发时间要求,如FPL报拍发时间规定:在航空器预计撤轮档时间(EOBT)2小时前拍发。当前,影响航班飞行的空域资源开放/关闭的因素涉及气候、流量、事件等多类条件制约,航空营运人无法通过数据交互方式第一时间从空中交通管理部门获取该类信息;该类信息仅能通过航行情报(NOTAM报)发布,而NOTAM报本身种类繁多,格式非数字化、非标准化,很难被信息系统自动处理。因此,当航空营运人发送领航计划报(FPL)、修订领航计划报(CHG)和延误报(DLA)给空中交通管理部门飞行计划集中处理中心时,无法全面掌握航班沿途航路的各空域运行状态,经常要到航班起飞或者将要飞行到受限空域时,相关管制单位发布指令,通知航班改航、绕飞或返航,一定程度上影响飞行安全性,引起航班延误,造成运行效率和服务质量的降低。
发明内容
针对于上述现有技术的不足,本发明的目的在于提供一种民航飞行动态电报与空域单元运行状态的自动校验方法,以解决现有航班运行过程中民用航空飞行动态固定电报与各空域单元运行状况比对仅靠人工判断、结果反馈不及时性的问题;本发明方法将领航计划报(FPL)、修订领航计划报(CHG)和延误报(DLA)解析结果与各空域单元数字化通行状态进行比对,及时发现某空域单元在某时段禁止或受限通行,第一时间反馈给航空营运人,航空营运人可以尽早与管制部门进行协调,为航班重新制定新的飞行方案,并将结果及早告知旅客,提升航班飞行安全和服务质量。
为达到上述目的,本发明采用的技术方案如下:
本发明的一种民航飞行动态电报与空域单元运行状态的自动校验方法,步骤如下:
1)建立空域单元基础信息库;
2)解析、校验民用航空飞行动态固定格式电报,并匹配预先飞行计划,得到的信息包括航班号、预计起飞时间、预计降落时间、预计起飞机场、预计降落机场、航路、点格式航路;
3)机场运行状态校验:判断航班在预计起飞时间时起飞机场的运行状态,在预计降落时间时降落机场的运行状态,若运行状态是关闭或限制,终止流程,转人工处理;否则,执行步骤4);
4)航路运行状态校验:判断航班执行飞行的航路在飞行过程中是否有航路存在禁止通行或限制通行状态,若是,则进入步骤5);若否,则进入步骤6);
5)等效航路替代:判断是否存在可替代的临时航段供航班飞行,若是,执行步骤6);若否,终止流程,转人工处理;
6)单向运行航路校验:判断航班执行飞行的航路在飞行过程中是否有航路存在单向运行要求,若航班飞行经过该航路段,违反单向航路规则,终止流程,转人工处理;
7)空域单元运行状态校验流程结束,转入电报处理其他流程。
进一步地,所述空域单元基础信息库包括:等效航路校验设置表、航路状态设置表、机场状态设置表、单向航路设置表、空域状态设置表;
等效航路校验设置表,用于原航路中任意一段在某时段禁止通行,临时规划一个替代航段供航班飞行,所述替代航段称为等效航路;主要字段包括:原航段、等效航段、生效日期、结束日期、起飞/落地机场、点格式原航段、点格式等效航段;
航路状态设置表,用于设置任意一航路在任意一时段禁止通行或限制通行,未在该表中设置的航路,默认为开放;主要字段包括:航线代码、开始/结束点、状态、开始时间、结束时间、点格式航段;
机场状态设置表,用于设置任意一机场在任意一时段关闭或限制,未在该表中设置的机场,默认为开放;主要字段包括:机场代码、状态、开始时间、结束时间;
单向航路设置表,用于设置任意一航路在任意一时段从开始点到结束点单向开放,未在该表中设置的航路,默认为双向开放;主要字段包括:航线代码、开始/结束点、开始时间、结束时间、点格式航段;
空域状态设置表,用于设置任意一空域范围在任意一时段关闭或限制,未在该表中设置的空域,默认为开放;主要字段包括:空域范围、状态、开始时间、结束时间、点格式航段、线格式航段。
进一步地,在空域状态设置表发生数据变更时,归集所变更空域内的所有航段,根据该空域的运行状态,联动维护航路状态设置表。
进一步地,所述步骤2)具体包括:
21)解析民用航空飞行动态固定格式电报报文报头信息,判断电报类型,若是领航 计划报(FPL)、修订领航计划报(CHG)或延误报(DLA)报文,则需要进行空域单元运行状态校验;否则,执行步骤7);
22)解析民用航空飞行动态固定格式电报报文主体信息,获取报文中航班计划信息,其包括航班号、预计起飞时间、预计总飞行时间、预计降落时间、预计起飞机场、预计降落机场、执行日期、航路;对于修订领航计划报或延误报的航路字段信息暂时为空;
23)匹配预先飞行计划,并根据航路匹配规则和补时处理规则,对航路、预计起飞时间、预计降落时间、执行日期进行校验和重新赋值;
24)更新步骤23)中匹配到的航班预先飞行计划记录,同时将航路字段信息按序拆为一个标准航路点序列,结果赋值给字段项点格式航路。
进一步地,所述步骤23)中航路匹配规则为:当电报类型是领航计划报时,判断计划航路字段信息内是否包含航路字段信息,若包含,则将航路字段信息更新到匹配的预先飞行计划记录的预计航路字段信息;当电报类型是修订领航计划报或延误报时,将预计航路字段信息赋值给航路。
进一步地,所述步骤23)中补时处理规则为:
231)对领航计划报、修订领航计划报报文进行补时操作,设置补时参数T(FPL报为150分钟、CHG报为45分钟);
232)将收报时间与预计起飞时间进行比较,当小于所述补时参数T时;对预计起飞时间、预计降落时间重新赋值;
预计起飞时间=收报时间+T;
预计降落时间=收报时间+预计总飞行时间+T;
233)当预计起飞时间的新值比原值跨天时,执行日期加1。
进一步地,所述步骤3)具体包括:
31)使用预计起飞机场、预计起飞时间数据项匹配机场状态设置表,判断航班在预计起飞时间时起飞机场的运行状态,若状态是关闭或限制,终止流程,转人工处理;否则,执行步骤32);
32)使用预计降落机场、预计降落时间数据匹配机场状态设置表,判断航班在预计降落时间时降落机场的运行状态,若状态是关闭或限制,终止流程,转人工处理;否则,执行步骤33);
33)根据电报类型判断下阶段执行流程,如果是领航计划报或修订领航计划报报文,继续执行步骤4);如果是延误报报文,则执行步骤7)。
进一步地,所述步骤4)具体包括:
使用预计起飞时间、预计降落时间、点格式航路数据项匹配航路状态设置表,判断航班执行飞行的航路在飞行过程中是否有任意一航路存在禁止通行或限制通行状态;如果匹配成功,则航路状态校验不通过,赋值待替换原点格式航段字段项,执行步骤5);否则,执行步骤6)。
进一步,所述步骤5)具体包括:
51)使用待替换原点格式航段、预计起飞时间、预计降落时间数据项匹配等效航路校验设置表,如果匹配不成功,报文为疑难报或错误报文,终止流程,转人工处理;如果匹配成功,则进入步骤52);
52)当匹配等效航路校验设置表得到记录中的起飞/落地机场数据项不为空时,判断是否与本航班的预计起飞机场、预计降落机场相同,如果不同,则终止流程,转人工处理;
53)使用步骤51)中匹配等效航路校验设置表得到记录中的等效航段、点格式等效航段的字段值替换航路、点格式航路原值中禁用或受限的航段值。
进一步,所述步骤6)具体包括:
61)将点格式航路字段值反向排序,赋予变量点格式航路-逆;
62)使用点格式航路-逆、预计起飞时间、预计降落时间数据项匹配单向航路设置表,判断航班执行飞行的航路在飞行过程中是否有航路存在单向运行要求,若单向航路设置表匹配成功,则航班飞行经过该航路段,终止流程,转人工处理;否则,执行步骤7)。
本发明的有益效果:
本发明实现了民用航空飞行动态固定格式电报解析结果与空域单元运行状态自动效验,改变当前只靠人工比对判断的检测方式,在信息系统内及时对机场、航段、航线、空域单位运行状态数据化基础上,实现了百分百的领航计划报(FPL)、修订领航计划报(CHG)和延误报(DLA)的解析结果与各空域单元通行状态进行自动比对,主动提示某时段内影响航班飞行的某空域单元;同时管制部门能够第一时间将某空域单元在某时段禁止或受限通行信息发还给航空营运人,航空营运人可以尽早与管制部门进行协调,为航 班重新制定新的飞行方案,并将结果及早告知旅客,提升航班飞行安全和服务质量。
此外,本发明在空域状态维护时,可自动按经纬度计算出该区域范围内所有“航路点”,归集成禁止或受限的“航路段”信息,自动插入航路状态设置表;等效航路替代功能能够将可使用的临时航路自动替代原航路,提高自动化率,减轻管制员的工作负荷,避免人工失误,提升整个系统的智能性,提高了整个电报处理流程的处理性能。
附图说明
图1为本发明方法的流程图。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
对本发明中所用的专用术语和常用缩写进行定义:
空域单元运行状态校验是指电报解析结果与各空域单元通行情况进行比对,如因班期航线、动态航行情报、突发事件造成某空域单元在某时段不能通行,系统能够自动提示。
领航计划报(FPL)由空中交通服务单位在航空器预计撤轮档时间前45min(不应早于预计撤轮档时间6h),根据航空器运营人或其代理人提交的飞行计划数据,拍发给沿航路有关空中交通服务单位的电报。
修订领航计划报(CHG)用于修订领航计划中有关内容的电报。
延误报(DLA)用于当航空器预计起飞时间比原领航计划中的预计撤轮档时间推迟超过30min时,向各有关单位通报其延误信息的电报。
参照图1所示,本发明的一种民航飞行动态电报与空域单元运行状态的自动校验方法,步骤如下:
1)建立空域单元基础信息库;
其中,所述空域单元基础信息库包括:等效航路校验设置表、航路状态设置表、机场状态设置表、单向航路设置表、空域状态设置表;
11)等效航路校验设置表,用于原航路中任意一段在某时段禁止通行,临时规划一个替代航段供航班飞行,所述替代航段称为等效航路;主要字段包括:原航段、等效航段、生效日期、结束日期、起飞/落地机场、点格式原航段、点格式等效航段;
核心字段数据规则:
原航段、等效航段,格式为:“点路点路点……点”,“点”必须在民航局NAIP的航路点库中存在;“路”必须在民航局NAIP的航路库中存在。原航段、等效航段字段项内所填的航段必须保证连通。
起飞/落地机场,非必填。如果无值,表示该等效航路可以替代在生效日期和结束日期范围内所有经过原航段飞行的航班;如果有值,只能替代指定起飞/落地机场在生效日期和结束日期范围内经过原航段飞行的航班,其他航班禁止飞行。起飞/落地机场字段项内所填的机场信息值必须在民航局NAIP的机场库中存在。
原航段(点)(即点格式原航段),对应“原航段”值,转变成“点点点……点”格式,即标准航路按序拆为一个标准航路点序列。
等效航段(点)(即点格式等效航段),对应“等效航段”值,转变成“点点点……点”格式,即标准航路按序拆为一个标准航路点序列。
12)航路状态设置表,用于设置任意一航路在任意一时段禁止通行或限制通行,未在该表中设置的航路,默认为开放;主要字段包括:航线代码、开始/结束点、状态、开始时间、结束时间、点格式航段;
核心字段数据规则:
航线代码,所填的航线信息值必须在民航局NAIP的航路库中存在。
开始/结束点,需在航线中存在。
状态,字段内可填写:S(关闭)、(C)限制。
航段(点)(即点格式航段),格式为:“点点点……点”,根据“航线代码”和“开始/结束点”字段内信息自动处理,处理结果赋值给“航段(点)”字段。将“航线代码”根据“开始/结束点”范围从NAIP的航路点库中按顺序撤分为“点点点……点”格式,即标准航路按序拆为一个标准航路点序列。例如:当“航线代码”为A,“开始点”为A3,“结束点”为A7时,可解析得“航段”为“A3A4A5A6A7”。
13)机场状态设置表,用于设置任意一机场在任意一时段关闭或限制,未在该表中设置的机场,默认为开放;主要字段包括:机场代码、状态、开始时间、结束时间;
核心字段数据规则:
机场代码,所填的机场信息值必须在民航局NAIP的机场库中存在。
状态,字段内可填写:S(关闭)、(C)限制。
14)单向航路设置表,用于设置任意一航路在任意一时段从开始点到结束点单向开放,未在该表中设置的航路,默认为双向开放;主要字段包括:航线代码、开始/结束 点、开始时间、结束时间、点格式航段;
核心字段数据规则:
航线代码,所填的航线信息值必须在民航局NAIP的航路库中存在。
开始/结束点,需在航线中存在。
航段(点)(即点格式航段),格式为:“点点点……点”,根据“航线代码”和“开始/结束点”字段内信息自动处理,处理结果赋值给“航段(点)”字段。将“航线代码”根据“开始/结束点”范围从NAIP的航路点库中按顺序撤分为“点点点……点”格式,即标准航路按序拆为一个标准航路点序列。例如:当“航线代码”为A,“开始点”为A3,“结束点”为A7时,可解析得“航段”为“A3 A4 A5 A6 A7”。
15)空域状态设置表,用于设置任意一空域范围在任意一时段关闭或限制,未在该表中设置的空域,默认为开放;主要字段包括:空域范围、状态、开始时间、结束时间、点格式航段、线格式航段;
核心字段数据规则:
空域范围,至少由3个以上经纬度点组成,或圆形、或扇形、或多边形。
状态,字段内可填写:S(关闭)、(C)限制。
航段(点)(即点格式航段),将民航局NAIP航路点库中在“空域范围”内所有“航路点”按航路分类,按航路点顺序排序得到所有航段信息,即标准航路按序拆为一个标准航路点序列;多航段之间用“/”隔开。具体格式:“点点点……点/点点点……点”;
航段(线)(即线格式航段),对应“航段(点)”值,转变为:“点路点”格式。
151)操作人员通过人机界面GIS地图或表格形式,填写“空域范围、状态、开始时间、结束时间”等字段信息;
152)按经纬度将在“空域范围”内所有“航路点”(民航局NAIP航路点库)取出,按航路段分类,各航路段航路点顺序排序得到所有航段信息,多航段之间用“/”隔开,赋值给“航段(点)”字段;同时将“航段(点)”字段内标准航路点序列组合成标准航路格式,赋值给“航段(线)”字段;
例如:“航段(点)”为“A3 A4 A5 A6/B5 B6 B7”(注:“点点……点”格式)时,
“航段(线)”为“A3 A A6/B5 B B7”(注:“点路点”格式)。
153)当“空域范围”内是多航段时,按“航段(线)”字段中“/”字符分拆,按多 条记录处理,依次向航路状态设置表中自动插值;否则,只需向航路状态设置表中自动插入单条记录。
航路状态设置表.航线代码=空域状态设置表“航段(线)”中“路”值;
如步骤152)例子:
航线代码1=“A”;航线代码2=“B”;
航路状态设置表.开始点=空域状态设置表“航段(线)”中“路”前面的“点”值;
如步骤152)例子:
开始点1=“A3”;开始点2=“B5”;
航路状态设置表.结束点=空域状态设置表“航段(线)”中“路”后面的“点”值;
如步骤152)例子:
结束点1=“A6”;结束点2=“B7”;
航路状态设置表.状态=空域状态设置表“状态”;
航路状态设置表.航段(点)=空域状态设置表“航段(点)”(多航段需分拆成多条,依次赋值);
如步骤152)例子:
航段(点)1=“A3 A A6”;航段(点)2=“B5 A B7”。
其中,在空域状态设置表发生数据变更时,归集所变更空域内的所有航段,根据该空域的运行状态,联动维护航路状态设置表。
2)解析、校验民用航空飞行动态固定格式电报,并匹配预先飞行计划,得到的信息包括航班号、预计起飞时间、预计降落时间、预计起飞机场、预计降落机场、航路、点格式航路;
21)解析民用航空飞行动态固定格式电报报文报头信息,判断电报类型,若是领航计划报(FPL)、修订领航计划报(CHG)或延误报(DLA)报文,则需要进行空域单元运行状态校验;否则,执行步骤7);
22)解析民用航空飞行动态固定格式电报报文主体信息,获取报文中航班计划信息,其包括航班号、预计起飞时间、预计总飞行时间、预计降落时间、预计起飞机场、预计降落机场、执行日期、航路;对于修订领航计划报或延误报的航路字段信息暂时为空;
预计降落时间=预计起飞时间+预计总飞行时间。
23)匹配预先飞行计划,并根据航路匹配规则和补时处理规则,对航路、预计起飞时间、预计降落时间、执行日期进行校验和重新赋值;
231)将步骤22)中获得的“航班号、预计起飞时间、预计降落时间、预计起飞机场、预计降落机场”字段信息与预先飞行计划库中航班的计划信息(航班号、计划起飞时间、计划降落时间、计划起飞机场、计划降落机场)匹配,当匹配上对应的一条记录,获取该记录的“计划航路”、“预计航路”信息,继续执行下一步;否则,提示“该报文没有对应航班计划”,定义报文为疑难报或错误报文,终止流程,转人工处理。
232)当“电报类型”是“FPL”时,判断“计划航路”字段信息内是否包含“航路”字段信息,当包含时,将“航路”字段信息更新步骤231)匹配那条预先飞行计划记录的“预计航路”字段信息,继续执行下一步;
例如“计划航路”为“AGAVO G597 DONVO A326 SANKO W107 CHI A588 HRB G212 ARGUK/AGAVO G597 DONVO A326 SANKO W107 CHI A588 SIMLI”,
“航路”是“AGAVO G597 DONVO A326 SANKO W107 CHI A588 HRB G212 ARGUK”或“AGAVO G597 DONVO A326 SANKO W107 CHI A588 SIMLI”时,
“预计航路”=“AGAVO G597 DONVO A326 SANKO W107 CHI A588 HRB G212 ARGUK”或“AGAVO G597 DONVO A326 SANKO W107 CHI A588 SIMLI”。
否则,提示“该报文航路信息不符合计划航路要求”,定义报文为疑难报或错误报文,终止流程,转人工处理。
当“电报类型”是“CHG”或“DLA”时,将“预计航路”字段信息赋值给“航路”。
233)根据MH/T4007标准内规定的管制单位对航空公司拍发“FPL”、“CHG”时间要求,对“FPL”、“CHG”报文开展补时操作,“DLA”报不执行此步骤。
设置补时参数T,“FPL”报为150分钟、“CHG”报为45分钟。
补时处理规则:
a.将步骤21)中获得的“收报时间”与步骤22)中获得的“预计起飞时间”比较,当小于“补时参数T”时;对“预计起飞时间”、“预计降落时间”从新赋值;
预计起飞时间=收报时间+T;
预计降落时间=收报时间+预计总飞行时间+T;
例如:“收报时间”为“0935”,原“预计起飞时间”为“1100”时,
新的“预计起飞时间”将重新赋值为“1205”。
b.需要考虑跨天情况,当“预计起飞时间”新值比原值跨天时,“执行日期”需要+1;
例如:“收报时间”为“2300”,原“预计起飞时间”为“2350”,原“执行日期”为“20210421”时,
新的“预计起飞时间”将重新赋值为“0130”,“执行日期”将重新赋值为“20210422”。
24)更新步骤23)中匹配到的航班预先飞行计划记录,同时将航路字段信息按序拆为一个标准航路点序列(格式:点点点……点),结果赋值给字段项点格式航路(即航路(点))。
其中,所述步骤23)中航路匹配规则为:当电报类型是领航计划报时,判断计划航路字段信息内是否包含航路字段信息,若包含,则将航路字段信息更新到匹配的预先飞行计划记录的预计航路字段信息;当电报类型是修订领航计划报或延误报时,将预计航路字段信息赋值给航路。
3)机场运行状态校验:判断航班在预计起飞时间时起飞机场的运行状态,在预计降落时间时降落机场的运行状态,若运行状态是关闭或限制,终止流程,转人工处理;否则,执行步骤4);
31)用“预计起飞机场”、“预计起飞时间”数据项匹配“机场状态设置表”,具体匹配条件为:
“预计起飞机场”=机场状态设置表.机场代码AND
“预计起飞时间”>=机场状态设置表.开始时间AND
“预计起飞时间”<=机场状态设置表.结束时间
如果匹配上,提示“该航班在XX机场预计起飞时间时处于关闭或受限状态”,定义报文为疑难报或错误报文,终止流程,转人工处理;
否则,继续执行下一步;
32)用“预计降落机场”、“预计降落时间”数据匹配“机场状态设置表”,具体匹配条件为:
“预计降落机场”=机场状态设置表.机场代码AND
“预计降落时间”>=机场状态设置表.开始时间AND
“预计降落时间”<=机场状态设置表.结束时间
如果匹配上,提示“该航班在XX机场预计降落时间时处于关闭或受限状态”,定义报文为疑难报或错误报文,终止流程,转人工处理;
否则,继续执行下一步;
33)根据电报类型判断下阶段执行流程,如果“FPL”或“CHG”继续执行步骤4);否则,如果是“DLA”,整个空域单元效验流程结束,执行步骤7)。
4)航路运行状态校验:判断航班执行飞行的航路在飞行过程中是否有航路存在禁止通行或限制通行状态,若是,则进入步骤5);若否,则进入步骤6);
其中,所述步骤4)具体包括:
使用“预计起飞时间”、“预计降落时间”、“航路(点)”数据项匹配“航路状态设置表”,判断航班执行飞行的航路在飞行过程中是否有任意一航路存在禁止通行或限制通行状态;如果匹配成功,则航路状态校验不通过,赋值待替换原点格式航段(即待替换原航段(点))字段项,执行步骤5);否则,执行步骤6);
具体匹配条件为:
((“预计起飞时间”>=航路状态设置表.开始时间AND
“预计起飞时间”<=航路状态设置表.结束时间)OR
(“预计降落时间”>=航路状态设置表.开始时间AND
“预计降落时间”<=航路状态设置表.结束时间))AND
航路状态设置表.航段(点)IN“航路(点)”。
如果匹配成功,赋值变量为:
待替换原航段(点)=航路状态设置表.航段(点)
5)等效航路替代:判断是否存在可替代的临时航段供航班飞行,若是,执行步骤6);若否,终止流程,转人工处理;
其中,所述步骤5)具体包括:
51)使用“待替换原航段(点)”、“预计起飞时间”、“预计降落时间”数据项匹配“等效航路校验设置表”,如果匹配不成功,报文为疑难报或错误报文,终止流程,转人工处理;如果匹配成功,则进入步骤52);
具体匹配条件为:
((“预计起飞时间”>=等效航路校验设置表.生效日期AND
“预计起飞时间”<=等效航路校验设置表.结束时间)OR
(“预计降落时间”>=等效航路校验设置表.生效日期AND
“预计降落时间”<=等效航路校验设置表.结束时间))AND
“待替换原航段(点)”=等效航路校验设置表.原航路(点);
52)当匹配等效航路校验设置表得到记录中的“起飞/落地机场”数据项不为空时,判断是否与本航班的预计起飞机场、预计降落机场相同,如果不同,则终止流程,转人工处理;
具体判断规则为:
“预计起飞机场”=“等效航路校验设置表.起飞机场”AND
“预计降落机场”=“等效航路校验设置表.落地机场”;
53)用步骤51)匹配到记录里的“等效航段”、“等效航段(点)”替换“航路”、“航路(点)”原值中禁用或受限的航段,例如:
“航路”字段项的原值=“A3 A A6 B B5……T6”;
“航路(点)”字段项的原值=“A3 A4 A5 A6 B2 B3 B4 B5……T6”;
“待替换原航段(点)”=“A6 B2 B3 B4 B5”;
“等效航段”=“A6 C C5 D B5”;
“等效航段(点)”=“A6 C4 C5 D4 B5”;
“航路”字段项的新值=“A3 A A6 C C5 D B5……T6”;
“航路(点)”字段项的新值=“A3 A4 A5 A6 C4 C5 D4 B5……T6”;
6)单向运行航路校验:判断航班执行飞行的航路在飞行过程中是否有航路存在单向运行要求,若航班飞行经过该航路段,违反单向航路规则,终止流程,转人工处理;
其中,所述步骤6)具体包括:
61)将“航路(点)”字段值反向排序,赋予变量“航路(点)-逆(即点格式航路-逆)”。例如:
航路(点)=“A3 A4 A5 A6 B2 B3 B4 C5 C6 C7”;
航路(点)-逆=“C7 C6 C5 B4 B3 B2 A6 A5 A4 A3”;
62)使用“航路(点)-逆”、“预计起飞时间”、“预计降落时间”数据项匹配“单向 航路设置表”,判断航班执行飞行的航路在飞行过程中是否有航路存在单向运行要求,若单向航路设置表匹配成功,说明航班飞行经过该航路段,终止流程,转人工处理;否则,执行步骤7);
具体匹配条件为:
((“预计起飞时间”>=单向航路设置表.开始日期AND
“预计起飞时间”<=单向航路设置表.结束时间)OR
(“预计降落时间”>=单向航路设置表.开始日期AND
“预计降落时间”<=单向航路设置表.结束时间))AND
单向航路设置表.航段(点)IN“航路(点)-逆”。
7)空域单元运行状态校验流程结束,转入电报处理其他流程。
本发明通过建立空域状态信息标准库,及时对机场、航段、航线、空域单位运行状态进行维护,当空中交通管理部门对领航计划报(FPL)、修订领航计划报(CHG)和延误报(DLA)进行电报处理时,将电报解析结果与各空域单元通行情况自动进行比对,及时提示某空域单元在某时段不能通行,并反馈给航空营运人,在运行层面解决信息及时性,透明性等问题,提高航班运行过程中沟通效率,航空营运人可以尽早为航班重新制定新的飞行方案,一定程度上降低资源浪费,避免安全事故发生,提升航空运行质量。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (10)

  1. 一种民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,步骤如下:
    1)建立空域单元基础信息库;
    2)解析、校验民用航空飞行动态固定格式电报,并匹配预先飞行计划,得到的信息包括航班号、预计起飞时间、预计降落时间、预计起飞机场、预计降落机场、航路、点格式航路;
    3)机场运行状态校验:判断航班在预计起飞时间时起飞机场的运行状态,在预计降落时间时降落机场的运行状态,若运行状态是关闭或限制,终止流程,转人工处理;否则,执行步骤4);
    4)航路运行状态校验:判断航班执行飞行的航路在飞行过程中是否有航路存在禁止通行或限制通行状态,若是,则进入步骤5);若否,则进入步骤6);
    5)等效航路替代:判断是否存在可替代的临时航段供航班飞行,若是,执行步骤6);若否,终止流程,转人工处理;
    6)单向运行航路校验:判断航班执行飞行的航路在飞行过程中是否有航路存在单向运行要求,若航班飞行经过该航路段,违反单向航路规则,终止流程,转人工处理;
    7)空域单元运行状态校验流程结束,转入电报处理其他流程。
  2. 根据权利要求1所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述空域单元基础信息库包括:等效航路校验设置表、航路状态设置表、机场状态设置表、单向航路设置表、空域状态设置表;
    等效航路校验设置表,用于原航路中任意一段在某时段禁止通行,临时规划一个替代航段供航班飞行,所述替代航段称为等效航路;主要字段包括:原航段、等效航段、生效日期、结束日期、起飞/落地机场、点格式原航段、点格式等效航段;
    航路状态设置表,用于设置任意一航路在任意一时段禁止通行或限制通行,未在该表中设置的航路,默认为开放;主要字段包括:航线代码、开始/结束点、状态、开始时间、结束时间、点格式航段;
    机场状态设置表,用于设置任意一机场在任意一时段关闭或限制,未在该表中设置的机场,默认为开放;主要字段包括:机场代码、状态、开始时间、结束时间;
    单向航路设置表,用于设置任意一航路在任意一时段从开始点到结束点单向开放,未在该表中设置的航路,默认为双向开放;主要字段包括:航线代码、开始/结束点、 开始时间、结束时间、点格式航段;
    空域状态设置表,用于设置任意一空域范围在任意一时段关闭或限制,未在该表中设置的空域,默认为开放;主要字段包括:空域范围、状态、开始时间、结束时间、点格式航段、线格式航段。
  3. 根据权利要求2所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,在空域状态设置表发生数据变更时,归集所变更空域内的所有航段,根据该空域的运行状态,联动维护航路状态设置表。
  4. 根据权利要求2所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述步骤2)具体包括:
    21)解析民用航空飞行动态固定格式电报报文报头信息,判断电报类型,若是领航计划报、修订领航计划报或延误报报文,则需要进行空域单元运行状态校验;否则,执行步骤7);
    22)解析民用航空飞行动态固定格式电报报文主体信息,获取报文中航班计划信息,其包括航班号、预计起飞时间、预计总飞行时间、预计降落时间、预计起飞机场、预计降落机场、执行日期、航路;对于修订领航计划报或延误报的航路字段信息暂时为空;
    23)匹配预先飞行计划,并根据航路匹配规则和补时处理规则,对航路、预计起飞时间、预计降落时间、执行日期进行校验和重新赋值;
    24)更新步骤23)中匹配到的航班预先飞行计划记录,同时将航路字段信息按序拆为一个标准航路点序列,结果赋值给字段项点格式航路。
  5. 根据权利要求4所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述步骤23)中航路匹配规则为:当电报类型是领航计划报时,判断计划航路字段信息内是否包含航路字段信息,若包含,则将航路字段信息更新到匹配的预先飞行计划记录的预计航路字段信息;当电报类型是修订领航计划报或延误报时,将预计航路字段信息赋值给航路。
  6. 根据权利要求4所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述步骤23)中补时处理规则为:
    231)对领航计划报、修订领航计划报报文进行补时操作,设置补时参数T;
    232)将收报时间与预计起飞时间进行比较,当小于所述补时参数T时;对预计起飞时间、预计降落时间重新赋值;
    预计起飞时间=收报时间+T;
    预计降落时间=收报时间+预计总飞行时间+T;
    233)当预计起飞时间的新值比原值跨天时,执行日期加1。
  7. 根据权利要求2所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述步骤3)具体包括:
    31)使用预计起飞机场、预计起飞时间数据项匹配机场状态设置表,判断航班在预计起飞时间时起飞机场的运行状态,若状态是关闭或限制,终止流程,转人工处理;否则,执行步骤32);
    32)使用预计降落机场、预计降落时间数据匹配机场状态设置表,判断航班在预计降落时间时降落机场的运行状态,若状态是关闭或限制,终止流程,转人工处理;否则,执行步骤33);
    33)根据电报类型判断下阶段执行流程,如果是领航计划报或修订领航计划报报文,继续执行步骤4);如果是延误报报文,则执行步骤7)。
  8. 根据权利要求2所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述步骤4)具体包括:
    使用预计起飞时间、预计降落时间、点格式航路数据项匹配航路状态设置表,判断航班执行飞行的航路在飞行过程中是否有任意一航路存在禁止通行或限制通行状态;如果匹配成功,则航路状态校验不通过,赋值待替换原点格式航段字段项,执行步骤5);否则,执行步骤6)。
  9. 根据权利要求2所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述步骤5)具体包括:
    51)使用待替换原点格式航段、预计起飞时间、预计降落时间数据项匹配等效航路校验设置表,如果匹配不成功,报文为疑难报或错误报文,终止流程,转人工处理;如果匹配成功,则进入步骤52);
    52)当匹配等效航路校验设置表得到记录中的起飞/落地机场数据项不为空时,判断是否与本航班的预计起飞机场、预计降落机场相同,如果不同,则终止流程,转人工处理;
    53)使用步骤51)中匹配等效航路校验设置表得到记录中的等效航段、点格式等效航段的字段值替换航路、点格式航路原值中禁用或受限的航段值。
  10. 根据权利要求2所述的民航飞行动态电报与空域单元运行状态的自动校验方法,其特征在于,所述步骤6)具体包括:
    61)将点格式航路字段值反向排序,赋予变量点格式航路-逆;
    62)使用点格式航路-逆、预计起飞时间、预计降落时间数据项匹配单向航路设置表,判断航班执行飞行的航路在飞行过程中是否有航路存在单向运行要求,若单向航路设置表匹配成功,则航班飞行经过该航路段,终止流程,转人工处理;否则,执行步骤7)。
PCT/CN2023/084790 2022-03-30 2023-03-29 民航飞行动态电报与空域单元运行状态的自动校验方法 WO2023185945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210329006.8 2022-03-30
CN202210329006.8A CN114783213B (zh) 2022-03-30 2022-03-30 民航飞行动态电报与空域单元运行状态的自动校验方法

Publications (1)

Publication Number Publication Date
WO2023185945A1 true WO2023185945A1 (zh) 2023-10-05

Family

ID=82426781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084790 WO2023185945A1 (zh) 2022-03-30 2023-03-29 民航飞行动态电报与空域单元运行状态的自动校验方法

Country Status (2)

Country Link
CN (1) CN114783213B (zh)
WO (1) WO2023185945A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116720715B (zh) * 2023-08-08 2023-11-28 华航信航空科技(浙江)有限公司 应用于程序管制条件下的电子进程单管控方法
CN117171289B (zh) * 2023-11-02 2024-01-23 中航材导航技术(北京)有限公司 一种生成结构化航行限制数据的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150379875A1 (en) * 2014-06-27 2015-12-31 The Boeing Company Automatic aircraft monitoring and operator preferred rerouting system and method
CN106846919A (zh) * 2017-01-16 2017-06-13 南京航空航天大学 一种基于ads‑b信息更新的四维航迹动态预测方法
CN112382136A (zh) * 2020-11-12 2021-02-19 民航数据通信有限责任公司 一种基于航行通告分析受影响航班的装置
CN112700681A (zh) * 2020-12-25 2021-04-23 中国航空无线电电子研究所 一种支持tbo运行的4d航迹协同管理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572016B (zh) * 2009-03-25 2011-04-20 民航数据通信有限责任公司 提供航班运行数据的方法及系统
WO2011128836A2 (en) * 2010-04-12 2011-10-20 Flight Focus Pte. Ltd. Onboard flight planning system
FR3067802B1 (fr) * 2017-06-16 2019-12-13 Thales Gestion de routes alternatives pour un aeronef
CN107566049B (zh) * 2017-07-12 2021-02-12 上海民航华东空管工程技术有限公司 一种利用计算机实现民航电报智能拍发的方法
US11270593B2 (en) * 2019-09-20 2022-03-08 Honeywell International Inc. Advisory method and system for flight trajectory optimization
CN110648560A (zh) * 2019-09-27 2020-01-03 中国民用航空飞行学院 一种基于分布式决策模型的fab的流量管理方法
CN113037809B (zh) * 2021-02-18 2022-08-05 民航数据通信有限责任公司 一种用于飞行全阶段数字化信息推送的装置
CN112948161B (zh) * 2021-03-09 2022-06-03 四川大学 一种基于深度学习的航空报文纠错修正方法及系统
CN113205705B (zh) * 2021-03-26 2022-05-27 南京莱斯信息技术股份有限公司 基于电报标签的飞行电报集中处理系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150379875A1 (en) * 2014-06-27 2015-12-31 The Boeing Company Automatic aircraft monitoring and operator preferred rerouting system and method
CN106846919A (zh) * 2017-01-16 2017-06-13 南京航空航天大学 一种基于ads‑b信息更新的四维航迹动态预测方法
CN112382136A (zh) * 2020-11-12 2021-02-19 民航数据通信有限责任公司 一种基于航行通告分析受影响航班的装置
CN112700681A (zh) * 2020-12-25 2021-04-23 中国航空无线电电子研究所 一种支持tbo运行的4d航迹协同管理方法

Also Published As

Publication number Publication date
CN114783213B (zh) 2023-11-21
CN114783213A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023185945A1 (zh) 民航飞行动态电报与空域单元运行状态的自动校验方法
CA2898527C (en) Flight object communications system
US10121384B2 (en) Aircraft performance predictions
US9697737B2 (en) Automatic real-time flight plan updates
US9472106B2 (en) Automated flight object procedure selection system
US9443434B2 (en) Flight path discontinuities
CA2772482C (en) Method and system for aerial vehicle trajectory management
US7877197B2 (en) Systems and methods for real-time conflict-checked, operationally preferred flight trajectory revision recommendations
CN109711619B (zh) 考虑空地运行限制的多机场战略航班时刻协同优化方法
CN110751858B (zh) 适用于连乘航班状态信息异常的多元运行信息关联方法
CN113037809B (zh) 一种用于飞行全阶段数字化信息推送的装置
CN107566049B (zh) 一种利用计算机实现民航电报智能拍发的方法
CN114299762B (zh) 一种基于一致性监测的航班时隙自动优化方法及系统
Chevalley et al. Nasa atd-2 trajectory option set prototype capability for rerouting departures in metroplex airspace
Wargo et al. Performance of data link communications in surface management operations
Jung et al. Develpment of the Surface Management System Integrated with CTAS Arrival Tool
Chen et al. Travel Time Prediction for Multi-Airport Systems Via Multiclass Queuing Networks
EP3989204A1 (en) System and method for generating, supplying, and implementing an optimized descent approach profile for an aircraft
Sandhu et al. 4DT Live Flight Demonstrations—Paving the Way to a Better CDM Environment
WO2022146161A2 (ru) Способ планирования графика безопасного обслуживания воздушных судов (вс)
Hughes et al. Can Multi-Regional Trajectory Based Operations Reduce Workload-Related Aviation Incidents?
Liang et al. Operational & Technical Evaluation of The FF-ICE/Execution Strategic Phase Across Boundaries
LIM et al. Variable Taxi-Out Time Prediction Based on Machine Learning with Interpretable Attributes
McNally et al. Integration of dynamic weather routes automation with air/ground data communications
Wang et al. Research on global tracking and monitoring technology of aircraft based on multi-information sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778310

Country of ref document: EP

Kind code of ref document: A1