WO2023185906A1 - 一种活塞压缩机和包括该活塞压缩机的移动冰箱 - Google Patents

一种活塞压缩机和包括该活塞压缩机的移动冰箱 Download PDF

Info

Publication number
WO2023185906A1
WO2023185906A1 PCT/CN2023/084600 CN2023084600W WO2023185906A1 WO 2023185906 A1 WO2023185906 A1 WO 2023185906A1 CN 2023084600 W CN2023084600 W CN 2023084600W WO 2023185906 A1 WO2023185906 A1 WO 2023185906A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankcase
cylinder head
exhaust
air guide
hole
Prior art date
Application number
PCT/CN2023/084600
Other languages
English (en)
French (fr)
Inventor
郝海波
王鹏
管伟献
Original Assignee
多美达瑞典有限公司
多美达(珠海)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 多美达瑞典有限公司, 多美达(珠海)科技有限公司 filed Critical 多美达瑞典有限公司
Publication of WO2023185906A1 publication Critical patent/WO2023185906A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/128Crankcases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/30Insulation with respect to sound

Definitions

  • the present invention relates to a piston compressor, and more particularly to a piston compressor having a plurality of gas discharge paths. Furthermore, the present invention also relates to a mobile refrigerator including such a piston compressor.
  • a piston compressor including a cylinder head, a cylinder head gasket, a valve plate, an intake valve, a valve gasket and a crankcase, wherein the cylinder head includes a cylinder head high-pressure chamber and a cylinder head exhaust hole, so
  • the crankcase includes a crankcase passage, a crankcase high-pressure chamber, a crankcase exhaust passage and a crankcase exhaust hole corresponding to the cylinder head exhaust hole.
  • the characteristic is that the piston compressor has a structure for passing gas into the cylinder. Multiple gas discharge paths for gas discharge from the high-pressure chamber, wherein the multiple gas discharge paths include:
  • crankcase exhaust passage enters the crankcase exhaust hole and then exhausts through the cylinder head.
  • the piston compressor according to the present invention provides an improved exhaust structure having multiple gas discharge paths exiting from the cylinder head high pressure chamber and returning to be discharged through the cylinder head exhaust hole.
  • the above-mentioned exhaust structure significantly reduces gas pulsation through the offset effect formed by the stroke differences between multiple gas discharge paths, thereby reducing the overall vibration and noise of the piston compressor during operation.
  • the crankcase passage is a recess connected to the crankcase high-pressure chamber; and the crankcase exhaust passage has one end connected to the crankcase high-pressure chamber and the other end connected to the crankcase high-pressure chamber.
  • the crankcase exhaust hole is connected to the recess.
  • At least one other gas discharge path includes a path leaving from the high pressure chamber of the cylinder head and passing through additional air guide holes on the cylinder head gasket, additional air guide holes on the valve plate, additional air guide holes on the intake valve and the valve gasket.
  • the additional air guide hole leads to the additional crankcase passage to enter the high pressure chamber of the crankcase, then enters the crankcase exhaust hole through the crankcase exhaust channel, and then is discharged through the cylinder head exhaust hole.
  • At least one other gas discharge path includes a path leaving from the high pressure chamber of the cylinder head and passing through additional air guide holes on the cylinder head gasket, additional air guide holes on the valve plate, additional air guide holes on the intake valve and the valve gasket.
  • At least one other gas discharge path includes a path leaving from the high pressure chamber of the cylinder head and passing through additional air guide holes on the cylinder head gasket, additional air guide holes on the valve plate, additional air guide holes on the intake valve and the valve gasket.
  • the additional air guide hole to the additional crankcase passage to enter the crankcase high-pressure chamber then enter the crankcase exhaust hole through the crankcase exhaust channel, and then be discharged through the cylinder head exhaust hole; and all the way from the cylinder head high-pressure chamber
  • the cavity leaves in turn through another additional air guide hole on the cylinder head gasket, another additional air guide hole on the valve plate, another additional air guide hole on the intake valve, and another additional air guide hole on the valve pad to the additional crankcase exhaust passage.
  • the additional crankcase passage is a recess communicating with the crankcase high pressure chamber; and the additional crankcase exhaust passage is a recess communicating with the crankcase exhaust hole. .
  • At least one other gas discharge path includes leaving from the high-pressure chamber of the cylinder head and passing through additional air guide holes on the cylinder head gasket, additional air guide holes on the valve plate, additional air guide holes on the intake valve, and additional air guide holes on the valve gasket. Additional air guide holes are added to the crankcase air guide channel, and then enter the crankcase high-pressure chamber respectively, then enter the crankcase exhaust hole through the crankcase exhaust channel, and then discharge through the cylinder head exhaust hole, and enter the crankcase exhaust hole, and then Two-way gas exhaust path through cylinder head exhaust holes.
  • the crankcase air guide passage is in the form of an L-shaped recess, including a first guide portion for guiding gas to the crankcase high-pressure chamber and a first guide portion for guiding gas to the crankshaft.
  • At least one other gas discharge path includes a path leaving from the high pressure chamber of the cylinder head through the additional air guide hole on the cylinder head gasket to the valve plate exhaust channel on the valve plate, then entering the valve plate exhaust hole, and then passing through The gas exhaust path from the cylinder head vent.
  • valve plate exhaust channel is a through-slit or recess connected to the valve plate exhaust hole.
  • a mobile refrigerator is also provided.
  • the mobile refrigerator includes the piston compressor according to the above aspect.
  • the mobile refrigerator may be a vehicle-mounted refrigerator, for example.
  • Figure 1A shows an exploded view of a first embodiment of a piston compressor according to the invention with two gas discharge paths;
  • FIG. 1B shows a schematic diagram of the gas flow direction in the first embodiment of the piston compressor with two gas discharge paths according to the present invention
  • FIG. 1C shows a schematic structural diagram of the crankcase in the first embodiment of the piston compressor with two gas discharge paths according to the present invention
  • Figure 2A shows an exploded view of a second embodiment of a piston compressor according to the invention with two gas discharge paths;
  • FIG. 2B shows a schematic diagram of the gas flow direction in the second embodiment of the piston compressor with two gas discharge paths according to the present invention
  • Figure 2C shows a piston compressor with two gas discharge paths according to the present invention. Structural diagram of the crankcase in the second embodiment
  • Figure 3A shows an exploded view of a third embodiment of a piston compressor according to the invention with two gas discharge paths;
  • 3B shows a schematic diagram of the gas flow direction in the third embodiment of the piston compressor with two gas discharge paths according to the present invention
  • FIG. 3C shows a schematic structural diagram of a valve plate in a third embodiment of a piston compressor with two gas discharge paths according to the present invention
  • Figure 4A shows an exploded view of a first embodiment of a piston compressor according to the invention with three gas discharge paths;
  • FIG. 4B shows a schematic diagram of the gas flow direction in the first embodiment of the piston compressor with three gas discharge paths according to the present invention
  • FIG. 4C shows a schematic structural view of the crankcase in the first embodiment of the piston compressor with three gas discharge paths according to the present invention
  • Figure 5A shows an exploded view of a second embodiment of a piston compressor according to the invention with three gas discharge paths;
  • 5B shows a schematic diagram of the gas flow direction in the second embodiment of the piston compressor with three gas discharge paths according to the present invention
  • FIG. 5C shows a schematic structural diagram of the crankcase in the second embodiment of the piston compressor with three gas discharge paths according to the present invention.
  • FIGS. 1A, 2A, 3A, 4A and 5A schematically show the main components of the piston compressor 100 and its assembly structure.
  • the piston compressor 100 includes a crankcase 1, a piston 2, a valve gasket 3, an intake valve 4, a valve plate 5, a cylinder head gasket 6 and a cylinder head 7; wherein the valve gasket 3 is disposed between the intake valve 4 and the crankcase 1 between the intake valve 4 and the crankcase 1, and the cylinder head gasket 6 is provided between the cylinder head 7 and the valve plate 5, for sealing between the cylinder head 7 and the valve plate 5 seal.
  • the crankcase 1 is provided with four screw holes 11, 12, 13, 14.
  • the four screw holes are approximately located at the four corners of the end face of the crankcase.
  • the screw hole 13 is not only used for the threaded connection, but also serves as a gas passage (i.e., the crankcase exhaust hole).
  • the crankcase 1 is also provided with a compression chamber 15. When the compressor is working, the piston 2 makes linear reciprocating motion in the compression chamber 15 to compress the gas.
  • the crankcase 1 is further provided with a crankcase high-pressure chamber 16, which can be used for gas discharge to reduce pulsation when the compressor is working.
  • crankcase exhaust passage 17 a passage, namely the crankcase exhaust passage 17, is provided between the crankcase high-pressure chamber 16 and the screw hole (ie, the crankcase exhaust passage 17). between the air holes) 13 to achieve communication between the crankcase high-pressure chamber 16 and the screw hole 13.
  • the crankcase exhaust passage 17 shown in the drawing is in the form of a recess/groove, but it can also be in the form of a through hole in the hole wall of the screw hole 13, etc., as long as it connects the screw hole 13 with the crankcase high-pressure chamber 16. .
  • crankcase 1 is also provided with a crankcase passage 18 (for example, it can be in the form of a recess/groove), which is generally Extends parallel to the edge of crankcase 1.
  • a crankcase passage 18 (for example, it can be in the form of a recess/groove), which is generally Extends parallel to the edge of crankcase 1.
  • One end of the crankcase passage 18 is connected to the crankcase high-pressure chamber 16 , and the other end is in gas communication with an air guide hole 35 on the valve pad 3 in the assembled state.
  • the function of the valve gasket 3 is to ensure the seal between the intake valve 4 and the crankcase 1 in the assembled state.
  • the valve gasket 3 is provided with four screw holes 31, 32, 33 and 34, the positions of which correspond to the four screw holes 11, 12, 13 and 14 respectively.
  • the screw hole 33 corresponding to the hole 13 is used as a valve pad vent hole.
  • the intake valve 4 is provided with four screw holes 41, 42, 43 and 44, the positions of which respectively correspond to the four screw holes 11, 12, 13 and 14 on the end face of the crankcase 1, among which the screw holes corresponding to the screw hole 13 43 is used as the intake valve exhaust hole.
  • the intake valve 4 also has an air guide hole 45 in gas communication with the air guide hole 35 .
  • the valve plate 5 is also formed with four fixing screw holes 51, 52, 53 and 54, the positions of which respectively correspond to the four screw holes on the end face of the crankcase 1 11, 12, 13 and 14, among which the fixing screw hole 53 corresponding to the screw hole 13 is used as the valve plate exhaust hole.
  • the valve plate 5 is also provided with an air guide hole 55 in gas communication with the air guide hole 45 .
  • the valve plate 5 also has an exhaust valve plate limiting plate 8 and an exhaust valve plate 9 fixed on one end thereof, for example, by riveting. The function of the exhaust valve plate limiting plate 8 is to prevent exhaust gas from being discharged.
  • the function of the cylinder head gasket 6 is to, in the assembled state, Ensure the sealing between the valve plate 5 and the cylinder head 7; it is also formed with through holes 61, 62, 63 and 64 to correspond to the screw holes 11, 12, 13 and 14 respectively for passing screws (wherein with the screw holes).
  • the through hole 63 corresponding to 13 is used as a cylinder head gasket exhaust hole), and an air guide hole 65 in gas communication with the air guide hole 55 is also formed.
  • the cylinder head 7 may be made of aluminum, for example, and a cylinder head high-pressure chamber 75 is defined therein.
  • the cylinder head high-pressure chamber 75 includes a first part 76, a second part 77 and a third part. Part 78.
  • the first part 76 of the cylinder head high-pressure chamber is in gas communication with the second part 77 and the third part 78 via passages in the partition wall (for example, in the form of gaps 79 ).
  • the second part 77 of the high pressure chamber 75 of the cylinder head is in gas communication with the air guide hole 65 on the cylinder head gasket 6 .
  • the cylinder head 7 includes four screw holes 71, 72, 73 and 74, which correspond to the screw holes 11, 12, 13 and 14 respectively.
  • the screw hole 73 corresponding to the screw hole 13 is used as a cylinder head row. pores.
  • the electric motor (not shown) rotates to drive the piston 2 to make linear reciprocating motion in the compression chamber 15 , thereby compressing the gas.
  • the gas pushes open the exhaust valve plate 9 and enters the cylinder head high-pressure chamber 75 , specifically the first part 76 of the cylinder head high-pressure chamber, and then the gas enters the second part 77 respectively through the passage 79 and Part Three 78.
  • the gas entering the second part 77 leaves the cylinder head high-pressure chamber and sequentially passes through a (first) air guide hole 65 on the cylinder head gasket 6 , a (first) air guide hole 55 on the valve plate 5 , and the air intake valve 4 A (first) air guide hole 45 and a (first) air guide hole 35 on the valve pad 3 to the crankcase passage 18 to enter the crankcase high pressure chamber 16, and then enter the crankcase exhaust through the crankcase exhaust passage 17 hole 13, and then discharged through the valve gasket exhaust hole 33, the intake valve exhaust hole 43, the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73, forming the first gas emission Path 101.
  • the gas entering the third part 78 leaves the cylinder head high-pressure chamber and passes through the additional (second) air guide hole 66 on the cylinder head gasket 6, the additional (second) air guide hole 56 on the valve plate 5, and the air intake valve 4 in sequence.
  • the additional (second) air guide hole 46 and the additional (second) air guide hole 36 on the valve pad 3 go to the additional crankcase passage 19 to enter the crankcase high-pressure chamber 16, and then enter the crankcase exhaust passage 17 through the crankcase exhaust passage 17.
  • the air hole 13 is then discharged through the valve pad exhaust hole 33, the intake valve exhaust hole 43, the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73, that is, Second gas discharge path 102 .
  • the additional crankcase passage may adopt a recessed/groove form similar to the crankcase passage, or alternatively adopt any other form, as long as the additional crankcase passage is ensured to be connected to the crankcase high-pressure chamber That’s it.
  • the electric motor (not shown) rotates to drive the piston 2 to make linear reciprocating motion in the compression chamber 15 , thereby compressing the gas.
  • the gas pushes open the exhaust valve plate 9 and enters the cylinder head high-pressure chamber 75 , specifically the first part 76 of the cylinder head high-pressure chamber, and then the gas enters the second part 77 respectively through the passage 79 and Part Three 78.
  • the gas entering the second part 77 leaves the cylinder head high-pressure chamber and sequentially passes through a (first) air guide hole 65 on the cylinder head gasket 6 , a (first) air guide hole 55 on the valve plate 5 , and the air intake valve 4 A (first) air guide hole 45 and a (first) air guide hole 35 on the valve pad 3 to the crankcase passage 18 to enter the crankcase high pressure chamber 16, and then enter the crankcase exhaust through the crankcase exhaust passage 17 hole 13, and then discharged through the valve gasket exhaust hole 33, the intake valve exhaust hole 43, the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73, forming the first gas emission Path 101.
  • the gas entering the third part 78 leaves the cylinder head high-pressure chamber and passes through the additional (second) air guide hole 66 on the cylinder head gasket 6, the additional (second) air guide hole 56 on the valve plate 5, and the air intake valve 4 in sequence.
  • the intake valve exhaust hole 43, the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73 are discharged, that is, the second gas discharge path 102 is formed.
  • the additional crankcase exhaust passage may adopt a recessed/groove form similar to the crankcase exhaust passage, or alternatively adopt any other form, as long as the additional crankcase exhaust passage is ensured
  • the channel is connected to the crankcase exhaust hole.
  • the electric motor (not shown) rotates to drive the piston 2 in the compression chamber. It performs linear reciprocating motion within 15 seconds to compress the gas. When the gas reaches a certain pressure When the force reaches the value of 78.
  • the gas entering the second part 77 leaves the cylinder head high-pressure chamber and sequentially passes through a (first) air guide hole 65 on the cylinder head gasket 6 , a (first) air guide hole 55 on the valve plate 5 , and the air intake valve 4 A (first) air guide hole 45 and a (first) air guide hole 35 on the valve pad 3 to the crankcase passage 18 to enter the crankcase high pressure chamber 16, and then enter the crankcase exhaust through the crankcase exhaust passage 17 hole 13, and then discharged through the valve gasket exhaust hole 33, the intake valve exhaust hole 43, the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73, forming the first gas emission Path 101.
  • the gas entering the third part 78 leaves from the cylinder head high pressure chamber through the additional (second) air guide hole 66 on the cylinder head gasket 6 to the valve plate exhaust channel 58 on the valve plate 5, and then enters the valve plate exhaust hole 53 , and then discharged through the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73 in sequence, that is, the second gas discharge path 102 is formed.
  • the valve plate exhaust passage 58 may be a through-slit communicating with the valve plate exhaust hole 63 .
  • valve plate exhaust passages such as recesses/grooves formed on the end surface of the valve plate facing the cylinder head gasket, are also feasible, as long as the valve plate exhaust passage and the valve plate can be ensured
  • the gas connection between the plate exhaust holes is enough.
  • the exhaust gas is divided into two parts, and the stroke difference between these two different exhaust paths creates an offset effect, which can significantly reduce gas pulsation, thereby reducing vibration and noise when the compressor is working. .
  • the structure of forming a new exhaust channel on the valve plate can relatively simplify the structure of a compressor with multiple exhaust paths to a certain extent (since there is no need to set additional/additional exhaust channels on the intake valve, valve cushion and crankcase end face air guide holes and/or exhaust channels).
  • the piston compressor according to the present invention may also have an exhaust structure of three gas discharge paths.
  • the electric motor (not shown) rotates to drive the piston 2 to make a straight line in the compression chamber 15 reciprocating motion, thereby compressing the gas.
  • the gas pushes open the exhaust valve plate 9 and enters the cylinder head high-pressure chamber 75 , specifically the first part 76 of the cylinder head high-pressure chamber, and then the gas enters the second part 77 respectively through the passage 79 and Part Three 78.
  • the gas entering the second part 77 leaves the cylinder head high-pressure chamber and sequentially passes through a (first) air guide hole 65 on the cylinder head gasket 6 , a (first) air guide hole 55 on the valve plate 5 , and the air intake valve 4 A (first) air guide hole 45 and a (first) air guide hole 35 on the valve pad 3 to the crankcase passage 18 to enter the crankcase high-pressure chamber 16, then through the crankcase exhaust passage 17 into the crankcase exhaust hole 13, and then through the valve pad exhaust hole 33, the intake valve exhaust hole 43, and the valve plate in sequence
  • the exhaust hole 53 , the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73 are discharged, that is, the first gas discharge path 101 is formed.
  • the gas entering the third part 78 of the cylinder head high-pressure chamber leaves the cylinder head high-pressure chamber through the additional (second) air guide hole 66 on the cylinder head gasket 6, the additional (second) air guide hole 56 on the valve plate 5, and Additional (second) air guide holes 46 on the intake valve 4 and additional (second) air guide holes 36 on the valve pad 3 to the additional crankcase passage 19 to enter the crankcase high pressure chamber 16 and then through the crankcase exhaust passage 17 enters the crankcase exhaust hole 13, and then discharges through the valve gasket exhaust hole 33, the intake valve exhaust hole 43, the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73. That is, the second gas discharge path 102 is formed.
  • the gas entering the third part 78 of the cylinder head high-pressure chamber leaves the cylinder head high-pressure chamber and sequentially passes through another additional (third) air guide hole 67 on the cylinder head gasket 6 and another additional (third) air guide hole 67 on the valve plate 5.
  • air guide hole 57, another additional (third) air guide hole 47 on the intake valve 4 and another additional (third) air guide hole 37 on the valve pad 3 to the additional crankcase exhaust passage 171 to enter the crankcase exhaust
  • the air hole 13 is then discharged sequentially through the valve pad exhaust hole 33, the intake valve exhaust hole 43, the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73, forming the third gas. Emission path 103.
  • crankcase 1 is formed with additional crankcase exhaust passages and additional crankcase passages at the same time, which causes the exhaust gas to be divided into three parts, and the stroke difference between these three different discharge paths creates a further offset effect, This can further reduce gas pulsation, thereby further reducing vibration and noise during compressor operation.
  • the electric motor (not shown) rotates to drive the piston 2 in the compression chamber. It performs linear reciprocating motion within 15 seconds to compress the gas.
  • the gas pushes open the exhaust valve plate 9 and enters the cylinder head high-pressure chamber 75 , specifically the first part 76 of the cylinder head high-pressure chamber, and then the gas enters the second part 77 respectively through the passage 79 and Part Three 78.
  • the gas entering the second part 77 leaves the cylinder head high-pressure chamber and sequentially passes through a (first) air guide hole 65 on the cylinder head gasket 6 , a (first) air guide hole 55 on the valve plate 5 , and the air intake valve 4 A (first) air guide hole 45 and a (first) air guide hole 35 on the valve pad 3 to the crankcase passage 18 to enter the crankcase high pressure chamber 16, and then enter the crankcase exhaust through the crankcase exhaust passage 17 Hole 13, and then through the valve pad exhaust hole 33 and the intake valve exhaust hole in sequence 43.
  • the valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73 are discharged, that is, the first gas exhaust path 101 is formed.
  • the gas entering the third part 78 leaves the cylinder head high-pressure chamber and passes through the additional (second) air guide hole 66 on the cylinder head gasket 6, the additional (second) air guide hole 56 on the valve plate 5, and the air intake valve 4 in sequence.
  • the additional (second) air guide hole 46 and the additional (second) air guide hole 36 on the valve pad 3 to the L-shaped crankcase air guide passage 111 (specifically to the intersection of the two branch parts of the crankcase air guide passage ), then enter the crankcase high-pressure chamber 16 through the first guide part 112, then enter the crankcase exhaust hole 13 through the crankcase exhaust passage 17, and then pass through the valve pad exhaust hole 33 and the intake valve exhaust hole in sequence. 43.
  • valve plate exhaust hole 53, the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73 are discharged, that is, the second gas exhaust path 102 is formed; and enters the crankcase exhaust hole 13 through the second guide part 113, and then The gas is discharged through the valve pad exhaust hole 33 , the intake valve exhaust hole 43 , the valve plate exhaust hole 53 , the cylinder head gasket exhaust hole 63 and the cylinder head exhaust hole 73 in sequence, forming the third gas exhaust path 103 .
  • the crankcase 1 includes a crankcase gas guide passage on its end face with a first part and a second part respectively connected with the crankcase high-pressure chamber and the crankcase exhaust hole, which allows the exhaust gas to be divided into three parts,
  • the stroke difference between these three different discharge paths creates a further offset effect, which can further reduce gas pulsation, thereby further reducing vibration and noise during compressor operation.
  • the crankcase air guide passage may be in the form of an L-shaped recess, for example, or alternatively adopt any other branched form, as long as the connection between the high-pressure cavity of the crankcase and the crankshaft is ensured. Just connect the box exhaust hole.
  • the piston compressor with multiple gas discharge paths according to the present invention is very advantageous for refrigeration equipment with limited size and space, because the piston compressor according to the present invention is not subject to the need to use a larger volume.
  • a mobile refrigerator such as a vehicle-mounted refrigerator
  • a piston compressor defined according to any of the above embodiments. Due to the above-mentioned advantages of the piston compressor, the vibration and noise of the vehicle-mounted refrigerator including the piston compressor during operation will be significantly reduced and reduced.
  • first”, “second” and “third” are used for descriptive purposes only and are not to be construed as indicating or implying relative importance. Thus, defining a “first”, “second” or “third” feature may explicitly or implicitly include one or more of these features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)

Abstract

一种活塞压缩机和移动冰箱,移动冰箱包括活塞压缩机(100),该活塞压缩机(100)包括缸盖(7)、缸盖垫(6)、阀板(5)、进气阀(4)、阀垫(3)和曲轴箱(1),其中,缸盖(7)包括缸盖高压腔(75)和缸盖排气孔(63),曲轴箱(1)包括曲轴箱高压腔(16)和与该缸盖排气孔(63)相对应的曲轴箱排气孔(13),活塞压缩机(100)具有用于将进入缸盖高压腔(75)的气体排出的多个气体排放路径,其中该多个气体排放路径包括:一路从缸盖高压腔(75)离开依次通过缸盖垫(6)上的导气孔(65)、阀板(5)上的导气孔(55)、进气阀(4)上的导气孔(45)和阀垫(3)上的导气孔(35)至曲轴箱通道以进入曲轴箱高压腔(16)中、然后通过曲轴箱排气通道(17)进入曲轴箱排气孔(13)、再通过缸盖排气孔(73)排出的气体排放路径;以及另外至少一路从缸盖高压腔(75)离开并返回以通过缸盖排气孔(63)排出的气体排放路径。

Description

一种活塞压缩机和包括该活塞压缩机的移动冰箱 技术领域
本发明涉及一种活塞压缩机,更具体地,涉及一种具有多个气体排放路径的活塞压缩机。此外,本发明还涉及一种包括这种活塞压缩机的移动冰箱。
背景技术
对于活塞压缩机而言,工作时产生的振动及噪音一直是业界致力于解决的问题,尤其是对于噪音要求很高的使用环境下。但是由于在排气过程中高压气体的冲击,活塞压缩机不可避免地产生相当剧烈的振动及较大的噪音。
对于尺寸和体积相对较大的活塞压缩机而言,通常使用体积较大的排气消音器来缓冲振动并减小噪音。然而,对于小型/微型活塞压缩机,例如在移动冰箱(比如车载冰箱)中使用的活塞压缩机而言,由于其尺寸对排气消音器的体积的限制以及气体在排出过程中始终为一路气体,这类活塞压缩机在工作时仍然会产生相当大的冲击振动和较大的噪音。
发明内容
本发明旨在至少在一定程度上解决相关技术中的上述技术问题。为此,提出一种活塞压缩机,包括缸盖、缸盖垫、阀板、进气阀、阀垫和曲轴箱,其中,所述缸盖包括缸盖高压腔和缸盖排气孔,所述曲轴箱包括曲轴箱通道、曲轴箱高压腔、曲轴箱排气通道和与该缸盖排气孔相对应的曲轴箱排气孔,其特征在于,所述活塞压缩机具有用于将进入缸盖高压腔的气体排出的多个气体排放路径,其中该多个气体排放路径包括:
一路从缸盖高压腔离开依次通过缸盖垫上的导气孔、阀板上的导气孔、进气阀上的导气孔和阀垫上的导气孔至曲轴箱通道以进入曲轴箱高压腔中、然后通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气 孔排出的气体排放路径;以及
另外至少一路从缸盖高压腔离开并返回以通过所述缸盖排气孔排出的气体排放路径。
根据本发明的活塞压缩机提供了改进的排气结构,即具有从缸盖高压腔离开并返回以通过所述缸盖排气孔排出的多个气体排放路径。上述排气结构通过多个气体排放路径之间的行程差形成的抵消效应显著地减小了气体脉动,从而降低了活塞压缩机在工作时的整机振动和噪音。
根据本发明的一个方面,所述曲轴箱通道为与所述曲轴箱高压腔相连通的凹进;以及所述曲轴箱排气通道为其中一端与所述曲轴箱高压腔相连通、另一端与所述曲轴箱排气孔相连通的凹进。
根据本发明的一个方面,另外至少一路气体排放路径包括一路从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至附加曲轴箱通道以进入曲轴箱高压腔中、然后通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气孔排出的气体排放路径。
根据本发明的一个方面,另外至少一路气体排放路径包括一路从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至附加曲轴箱排气通道以进入曲轴箱排气孔、然后通过缸盖排气孔排出的气体排放路径。
根据本发明的一个方面,另外至少一路气体排放路径包括一路从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至附加曲轴箱通道以进入曲轴箱高压腔中、然后通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气孔排出的气体排放路径;以及一路从缸盖高压腔离开依次通过缸盖垫上的另一附加导气孔、阀板上的另一附加导气孔、进气阀上的另一附加导气孔和阀垫上的另一附加导气孔至附加曲轴箱排气通道以进入曲轴箱排气孔、然后通过缸盖排气孔排出的气体排放路径。
根据本发明的一个方面,所述附加曲轴箱通道为与所述曲轴箱高压腔相连通的凹进;以及所述附加曲轴箱排气通道为与所述曲轴箱排气孔相连通的凹进。
根据本发明的一个方面,另外至少一路气体排放路径包括从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至曲轴箱导气通道、然后分别进入曲轴箱高压腔、接着通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气孔排出,以及进入曲轴箱排气孔、再通过缸盖排气孔排出的两路气体排放路径。
根据本发明的一个方面,所述曲轴箱导气通道呈L型凹进形式,包括用于将气体引导至所述曲轴箱高压腔的第一引导部分和用于将气体引导到至所述曲轴箱排气孔的第二引导部分。
根据本发明的一个方面,另外至少一路气体排放路径包括一路从缸盖高压腔离开通过缸盖垫上的附加导气孔至阀板上的阀板排气通道、然后进入阀板排气孔、再通过缸盖排气孔排出的气体排放路径。
根据本发明的一个方面,所述阀板排气通道为与所述阀板排气孔相连通的贯通缝或凹进。
根据本发明的另一方面,还提供一种移动冰箱,该移动冰箱包括根据以上方面的活塞压缩机,该移动冰箱例如可以是车载冰箱。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
附图1A示出了根据本发明的活塞压缩机的具有两个气体排放路径的第一实施例的爆炸图;
附图1B示出了根据本发明的活塞压缩机的具有两个气体排放路径的第一实施例中的气体流动走向的示意图;
附图1C示出了根据本发明的活塞压缩机的具有两个气体排放路径的第一实施例中的曲轴箱的结构示意图;
附图2A示出了根据本发明的活塞压缩机的具有两个气体排放路径的第二实施例的爆炸图;
附图2B示出了根据本发明的活塞压缩机的具有两个气体排放路径的第二实施例中的气体流动走向的示意图;
附图2C示出了根据本发明的活塞压缩机的具有两个气体排放路径的 第二实施例中的曲轴箱的结构示意图;
附图3A示出了根据本发明的活塞压缩机的具有两个气体排放路径的第三实施例的爆炸图;
附图3B示出了根据本发明的活塞压缩机的具有两个气体排放路径的第三实施例中的气体流动走向的示意图;
附图3C出了根据本发明的活塞压缩机的具有两个气体排放路径的第三实施例中的阀板的结构示意图;
附图4A示出了根据本发明的活塞压缩机的具有三个气体排放路径的第一实施例的爆炸图;
附图4B示出了根据本发明的活塞压缩机的具有三个气体排放路径的第一实施例中的气体流动走向的示意图;
附图4C示出了根据本发明的活塞压缩机的具有三个气体排放路径的第一实施例中的曲轴箱的结构示意图;
附图5A示出了根据本发明的活塞压缩机的具有三个气体排放路径的第二实施例的爆炸图;
附图5B示出了根据本发明的活塞压缩机的具有三个气体排放路径的第二实施例中的气体流动走向的示意图;
附图5C示出了根据本发明的活塞压缩机的具有三个气体排放路径的第二实施例中的曲轴箱的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
首先,附图1A、2A、3A、4A和5A示意性地显示了活塞压缩机100的主要部件及其装配结构。活塞压缩机100包括曲轴箱1、活塞2、阀垫3、进气阀4、阀板5、缸盖垫6以及缸盖7;其中,该阀垫3设置在进气阀4与曲轴箱1之间,以用于进气阀4与曲轴箱1之间的密封,而缸盖垫6则设置在缸盖7与阀板5之间,以用于缸盖7与阀板5之间的密封。 如附图1A、2A、3A、4A和5A所示,曲轴箱1设置有四个螺孔11、12、13、14,该四个螺孔分别大致位于曲轴箱端面的四个角落处,用于曲轴箱1与阀板5及缸盖7之间的螺钉连接,其中螺孔13在用于螺纹连接的同时,还用做气体通道(即曲轴箱排气孔)。该曲轴箱1还设置有压缩腔15,在压缩机工作状态下,活塞2在压缩腔15中作直线往复运动以压缩气体。该曲轴箱1进一步设置有曲轴箱高压腔16,可用于气体的排出,以减小压缩机工作时的脉动。另外,如附图1B-1C、2B-2C、3B、4B-4C和5B-5C所示,一通道,即曲轴箱排气通道17设置在曲轴箱高压腔16与螺孔(即曲轴箱排气孔)13之间,以实现曲轴箱高压腔16与螺孔13之间的连通。附图中所示的曲轴箱排气通道17为凹进/凹槽形式,但其也可以是螺孔13的孔壁中的通孔形式等,只要其使螺孔13与曲轴箱高压腔16相连通。同时从附图1B-1C、2B-2C、3B、4B-4C和5B-5C可以看出,曲轴箱1还设置有曲轴箱通道18(例如可以为凹进/凹槽形式),其大致上平行于曲轴箱1边缘延伸。该曲轴箱通道18的一端连通到曲轴箱高压腔16,而其另一端在装配状态下,与阀垫3上的一个导气孔35气体连通。参见附图1A、2A、3A、4A和5A,阀垫3的作用在于在装配状态下,确保进气阀4与曲轴箱1之间的密封。与曲轴箱1端面类似地,阀垫3设置有四个螺孔31、32、33和34,其位置分别对应于曲轴箱1端面的四个螺孔11、12、13和14,其中与螺孔13相对应的螺孔33用作阀垫排气孔。进气阀4设置有四个螺孔41、42、43和44,其位置分别对应于曲轴箱1端面的四个螺孔11、12、13和14,其中与螺孔13相对应的螺孔43用作进气阀排气孔。同时,该进气阀4上还具有与导气孔35气体连通的一个导气孔45。此外,如附图1A、2A、3A、4A和5A所示,阀板5还形成有四个固定螺孔51、52、53和54,其位置分别对应于曲轴箱1端面的四个螺孔11、12、13和14,其中与螺孔13相对应的固定螺孔53用作阀板排气孔。该阀板5上还设置有与导气孔45气体连通的一个导气孔55。同时,该阀板5还在其一端上固定有排气阀片限位板8和排气阀片9,例如通过铆接的方式固定,其中该排气阀片限位板8的作用是防止排气阀片9打开过度而发生塑性变形,以保证压缩机的工作寿命。参见附图1A、2A、3A、4A和5A,该缸盖垫6的作用在于在装配状态下, 确保阀板5与缸盖7之间的密封;其还形成有通孔61、62、63和64,以分别与螺孔11、12、13和14相对应用于穿过螺钉(其中与螺孔13相对应的通孔63用作缸盖垫排气孔),以及还形成有与导气孔55气体连通的一个导气孔65。参见附图1B、2B、3B、4B和5B,缸盖7例如可以由铝制成,其中限定有缸盖高压腔75,该缸盖高压腔75包括第一部分76、第二部分77和第三部分78。该缸盖高压腔的第一部分76经由分隔壁上的通道(例如缺口79的形式)与第二部分77和第三部分78相气体连通。其中,该缸盖高压腔的75的第二部分77是与缸盖垫6上的导气孔65气体连通的。同时,该缸盖7包括四个螺孔71、72、73和74,其分别与螺孔11、12、13和14相对应,其中与螺孔13相对应的螺孔73用作缸盖排气孔。
以下将详细说明根据本发明的活塞压缩机的工作状态下排出气体在排气结构中的多条路径的不同实施例。
在如附图1A-1C所示的具有两个气体排放路径的第一实施例中,当活塞压缩机工作时,电动机(未示出)旋转以驱动活塞2在压缩腔15内做直线往复运动,从而压缩气体。当气体达到一定压力值时,气体推开排气阀片9,进入到缸盖高压腔75,具体地进入到缸盖高压腔的第一部分76,之后气体通过通道79分别进入到第二部分77和第三部分78。进入到第二部分77的气体从缸盖高压腔离开依次通过缸盖垫6上的一个(第一)导气孔65、阀板5上的一个(第一)导气孔55、进气阀4上的一个(第一)导气孔45和阀垫3上的一个(第一)导气孔35至曲轴箱通道18以进入曲轴箱高压腔16中、然后通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第一气体排放路径101。进入到第三部分78的气体从缸盖高压腔离开依次通过缸盖垫6上的附加(第二)导气孔66、阀板5上的附加(第二)导气孔56、进气阀4上的附加(第二)导气孔46和阀垫3上的附加(第二)导气孔36至附加曲轴箱通道19以进入曲轴箱高压腔16中、然后通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成 第二气体排放路径102。在此过程中,排出气体分成两部分,这两个不同排放路径之间的行程差形成抵消效应,从而可以减小气体脉动,进而减小压缩机工作时的振动和噪音。其中,在实施例中,该附加曲轴箱通道可以采用与曲轴箱通道相类似的凹进/凹槽形式,或者可选地采用任何其他形式,只要保证该附加曲轴箱通道与曲轴箱高压腔连通即可。
在如附图2A-2C所示的具有两个气体排放路径的第二实施例中,当活塞压缩机工作时,电动机(未示出)旋转以驱动活塞2在压缩腔15内做直线往复运动,从而压缩气体。当气体达到一定压力值时,气体推开排气阀片9,进入到缸盖高压腔75,具体地进入到缸盖高压腔的第一部分76,之后气体通过通道79分别进入到第二部分77和第三部分78。进入到第二部分77的气体从缸盖高压腔离开依次通过缸盖垫6上的一个(第一)导气孔65、阀板5上的一个(第一)导气孔55、进气阀4上的一个(第一)导气孔45和阀垫3上的一个(第一)导气孔35至曲轴箱通道18以进入曲轴箱高压腔16中、然后通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第一气体排放路径101。进入到第三部分78的气体从缸盖高压腔离开依次通过缸盖垫6上的附加(第二)导气孔66、阀板5上的附加(第二)导气孔56、进气阀4上的附加(第二)导气孔46和阀垫3上的附加(第二)导气孔36至附加曲轴箱排气通道171以进入曲轴箱排气孔13、然后依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第二气体排放路径102。在此过程中,排出气体分成两部分,这两个不同排放路径之间的行程差形成抵消效应,从而可以显著减小气体脉动,进而减小压缩机工作时的振动和噪音。其中,在该实施例中,该附加曲轴箱排气通道可以采用与曲轴箱排气通道相类似的凹进/凹槽形式,或者可选地采用任何其他形式,只要保证该附加曲轴箱排气通道与曲轴箱排气孔连通即可。
此外或可替换地,在如附图3A-3C所示的具有两个气体排放路径的第三实施例中,当活塞压缩机工作时,电动机(未示出)旋转以驱动活塞2在压缩腔15内做直线往复运动,从而压缩气体。当气体达到一定压 力值时,气体推开排气阀片9,进入到缸盖高压腔75,具体地进入到缸盖高压腔的第一部分76,之后气体通过通道79分别进入到第二部分77和第三部分78。进入到第二部分77的气体从缸盖高压腔离开依次通过缸盖垫6上的一个(第一)导气孔65、阀板5上的一个(第一)导气孔55、进气阀4上的一个(第一)导气孔45和阀垫3上的一个(第一)导气孔35至曲轴箱通道18以进入曲轴箱高压腔16中、然后通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第一气体排放路径101。进入到第三部分78的气体从缸盖高压腔离开通过缸盖垫6上的附加(第二)导气孔66至阀板5上的阀板排气通道58、然后进入阀板排气孔53、再依次通过缸盖垫排气孔63和缸盖排气孔73排出,即形成第二气体排放路径102。其中,例如如附图3A-3C所示,该阀板排气通道58可以是与所述阀板排气孔63相连通的贯通缝。而应当理解的是,其他形式的阀板排气通道,例如形成于阀板的面向于缸盖垫的端面上的凹进/凹槽,也是可行的,只要能够保证阀板排气通道与阀板排气孔之间的气体连通即可。在此实施例的排气过程中,排出气体分成两部分,这两个不同排放路径之间的行程差形成抵消效应,从而可以显著减小气体脉动,进而减小压缩机工作时的振动和噪音。并且在阀板上形成新的排气通道的结构可以在一定程度上相对简化具有多条排气路径的压缩机的结构(由于无需在进气阀、阀垫和曲轴箱端面上设置另外/附加的导气孔和/或排气通道)。
可替换地,根据本发明的活塞压缩机还可以具有三个气体排放路径的排气结构。例如,在如附图4A-4C所示的具有三个气体排放路径的第一实施例中,当活塞压缩机工作时,电动机(未示出)旋转以驱动活塞2在压缩腔15内做直线往复运动,从而压缩气体。当气体达到一定压力值时,气体推开排气阀片9,进入到缸盖高压腔75,具体地进入到缸盖高压腔的第一部分76,之后气体通过通道79分别进入到第二部分77和第三部分78。进入到第二部分77的气体从缸盖高压腔离开依次通过缸盖垫6上的一个(第一)导气孔65、阀板5上的一个(第一)导气孔55、进气阀4上的一个(第一)导气孔45和阀垫3上的一个(第一)导气孔35 至曲轴箱通道18以进入曲轴箱高压腔16中、然后通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第一气体排放路径101。进入到缸盖高压腔的第三部分78的气体从缸盖高压腔离开依次通过缸盖垫6上的附加(第二)导气孔66、阀板5上的附加(第二)导气孔56、进气阀4上的附加(第二)导气孔46和阀垫3上的附加(第二)导气孔36至附加曲轴箱通道19以进入曲轴箱高压腔16中、然后通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第二气体排放路径102。进入到缸盖高压腔的第三部分78的气体从缸盖高压腔离开还依次通过缸盖垫6上的另一附加(第三)导气孔67、阀板5上的另一附加(第三)导气孔57、进气阀4上的另一附加(第三)导气孔47和阀垫3上的另一附加(第三)导气孔37至附加曲轴箱排气通道171以进入曲轴箱排气孔13、然后依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第三气体排放路径103。在该实施例中,曲轴箱1同时形成有附加曲轴箱排气通道和附加曲轴箱通道,这使得排出气体分成三部分,这三个不同排放路径之间的行程差形成更进一步的抵消效应,从而可以进一步减小气体脉动,进而进一步减小压缩机工作时的振动和噪音。
此外或可替换地,在如附图5A-5C所示的具有三个气体排放路径的第二实施例中,当活塞压缩机工作时,电动机(未示出)旋转以驱动活塞2在压缩腔15内做直线往复运动,从而压缩气体。当气体达到一定压力值时,气体推开排气阀片9,进入到缸盖高压腔75,具体地进入到缸盖高压腔的第一部分76,之后气体通过通道79分别进入到第二部分77和第三部分78。进入到第二部分77的气体从缸盖高压腔离开依次通过缸盖垫6上的一个(第一)导气孔65、阀板5上的一个(第一)导气孔55、进气阀4上的一个(第一)导气孔45和阀垫3上的一个(第一)导气孔35至曲轴箱通道18以进入曲轴箱高压腔16中、然后通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔 43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第一气体排放路径101。进入到第三部分78的气体从缸盖高压腔离开依次通过缸盖垫6上的附加(第二)导气孔66、阀板5上的附加(第二)导气孔56、进气阀4上的附加(第二)导气孔46和阀垫3上的附加(第二)导气孔36至L型曲轴箱导气通道111(具体地至该曲轴箱导气通道的两个分支部分的相交汇处)、然后分别经由第一引导部分112进入曲轴箱高压腔16、接着通过曲轴箱排气通道17进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第二气体排放路径102;以及经由第二引导部分113进入曲轴箱排气孔13、再依次通过阀垫排气孔33、进气阀排气孔43、阀板排气孔53、缸盖垫排气孔63和缸盖排气孔73排出,即形成第三气体排放路径103。在此过程中,曲轴箱1在其端面包括具有分别与曲轴箱高压腔和曲轴箱排气孔相连通的第一部分和第二部分的曲轴箱导气通道,这使得排出气体能够分成三部分,这三个不同排放路径之间的行程差形成更进一步的抵消效应,从而可以进一步减小气体脉动,进而进一步减小压缩机工作时的振动和噪音。在该实施例中,如附图5A-5C所示,曲轴箱导气通道例如可以呈L型凹进形式,或者可选地采用任何其他具有分支的形式,只要保证与曲轴箱高压腔和曲轴箱排气孔的连通即可。
应理解的是,根据本发明的具有多条气体排放路径的活塞压缩机对于尺寸和空间受限的制冷设备是十分有利的,这是由于根据本发明的活塞压缩机不会受到需要使用体积较大的排气消音器所引起的对于尺寸和空间增加的影响。而根据本发明的另一方面,则涉及一种移动冰箱,例如车载冰箱,其包括根据以上任一实施例所限定的活塞压缩机。由于该活塞压缩机的上述优点,包括其的车载冰箱在运行时的振动和噪声将被显著降低和减小。
在本发明的描述中,需要理解的是,术语“上”、“下”、“内”、“外”、“侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。由此,限定有“第一”、“第二”、“第三”特征可以明示或者隐含地包括一个或者更多个该特征。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种活塞压缩机,包括缸盖、缸盖垫、阀板、进气阀、阀垫和曲轴箱,其中,所述缸盖包括缸盖高压腔和缸盖排气孔,所述曲轴箱包括曲轴箱通道、曲轴箱高压腔、曲轴箱排气通道和与该缸盖排气孔相对应的曲轴箱排气孔,其特征在于,所述活塞压缩机具有用于将进入缸盖高压腔的气体排出的多个气体排放路径,其中该多个气体排放路径包括:
    一路从缸盖高压腔离开依次通过缸盖垫上的导气孔、阀板上的导气孔、进气阀上的导气孔和阀垫上的导气孔至曲轴箱通道以进入曲轴箱高压腔中、然后通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气孔排出的气体排放路径;以及
    另外至少一路从缸盖高压腔离开并返回以通过所述缸盖排气孔排出的气体排放路径。
  2. 根据权利要求1所述的活塞压缩机,其特征在于,所述曲轴箱通道为与所述曲轴箱高压腔相连通的凹进;以及所述曲轴箱排气通道为其中一端与所述曲轴箱高压腔相连通、另一端与所述曲轴箱排气孔相连通的凹进。
  3. 根据权利要求1所述的活塞压缩机,其特征在于,另外至少一路气体排放路径包括一路从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至附加曲轴箱通道以进入曲轴箱高压腔中、然后通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气孔排出的气体排放路径。
  4. 根据权利要求1所述的活塞压缩机,其特征在于,另外至少一路气体排放路径包括一路从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至附加曲轴箱排气通道以进入曲轴箱排气孔、然后通过缸盖排气孔排出的气体排放路径。
  5. 根据权利要求1所述的活塞压缩机,其特征在于,另外至少一路气体排放路径包括一路从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至附加曲轴箱通道以进入曲轴箱高压腔中、然后通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气孔排出的气体排放路径;以及一路从缸盖高压腔离开依次通过缸盖垫上的另一附加导气孔、阀板上的另一附加导气孔、进气阀上的另一附加导气孔和阀垫上的另一附加导气孔至附加曲轴箱排气通道以进入曲轴箱排气孔、然后通过缸盖排气孔排出的气体排放路径。
  6. 根据权利要求3-5中任一项所述的活塞压缩机,其特征在于,所述附加曲轴箱通道为与所述曲轴箱高压腔相连通的凹进;以及所述附加曲轴箱排气通道为与所述曲轴箱排气孔相连通的凹进。
  7. 根据权利要求1所述的活塞压缩机,其特征在于,另外至少一路气体排放路径包括从缸盖高压腔离开依次通过缸盖垫上的附加导气孔、阀板上的附加导气孔、进气阀上的附加导气孔和阀垫上的附加导气孔至曲轴箱导气通道、然后分别进入曲轴箱高压腔、接着通过曲轴箱排气通道进入曲轴箱排气孔、再通过缸盖排气孔排出,以及进入曲轴箱排气孔、再通过缸盖排气孔排出的两路气体排放路径。
  8. 根据权利要求7所述的活塞压缩机,其特征在于,所述曲轴箱导气通道呈L型凹进形式,包括用于将气体引导至所述曲轴箱高压腔的第一引导部分和用于将气体引导到至所述曲轴箱排气孔的第二引导部分。
  9. 根据权利要求1所述的活塞压缩机,其特征在于,另外至少一路气体排放路径包括一路从缸盖高压腔离开通过缸盖垫上的附加导气孔至阀板上的阀板排气通道、然后进入阀板排气孔、再通过缸盖排气孔排出的气体排放路径。
  10. 根据权利要求9所述的活塞压缩机,其特征在于,所述阀板排气通道为与所述阀板排气孔相连通的贯通缝或凹进。
  11. 一种移动冰箱,其特征在于,该移动冰箱包括根据前述权利要求中任一项所述的活塞压缩机。
  12. 根据权利要求11所述的移动冰箱,其特征在于,所述移动冰箱为车载冰箱。
PCT/CN2023/084600 2022-03-29 2023-03-29 一种活塞压缩机和包括该活塞压缩机的移动冰箱 WO2023185906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210320381.6 2022-03-29
CN202210320381.6A CN116928060A (zh) 2022-03-29 2022-03-29 一种活塞压缩机和包括该活塞压缩机的移动冰箱

Publications (1)

Publication Number Publication Date
WO2023185906A1 true WO2023185906A1 (zh) 2023-10-05

Family

ID=88199287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084600 WO2023185906A1 (zh) 2022-03-29 2023-03-29 一种活塞压缩机和包括该活塞压缩机的移动冰箱

Country Status (2)

Country Link
CN (1) CN116928060A (zh)
WO (1) WO2023185906A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613836A (en) * 1994-09-16 1997-03-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Flow restricting structure of communicating passages between chambers of a reciprocating type compressor
CN101876309A (zh) * 2010-07-30 2010-11-03 丹佛斯制冷设备(天津)有限公司 排气结构及包括该排气结构的活塞压缩机
CN201818464U (zh) * 2010-07-30 2011-05-04 丹佛斯制冷设备(天津)有限公司 排气结构及包括该排气结构的活塞压缩机
CN206738123U (zh) * 2017-05-24 2017-12-12 安徽美芝制冷设备有限公司 往复式压缩机的压缩机构及往复式压缩机
CN110761969A (zh) * 2018-07-26 2020-02-07 安徽美芝制冷设备有限公司 往复式压缩机和制冷设备
CN113266551A (zh) * 2021-06-21 2021-08-17 浙江冰峰压缩机有限公司 一种阀板嵌入式活塞压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613836A (en) * 1994-09-16 1997-03-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Flow restricting structure of communicating passages between chambers of a reciprocating type compressor
CN101876309A (zh) * 2010-07-30 2010-11-03 丹佛斯制冷设备(天津)有限公司 排气结构及包括该排气结构的活塞压缩机
CN201818464U (zh) * 2010-07-30 2011-05-04 丹佛斯制冷设备(天津)有限公司 排气结构及包括该排气结构的活塞压缩机
CN206738123U (zh) * 2017-05-24 2017-12-12 安徽美芝制冷设备有限公司 往复式压缩机的压缩机构及往复式压缩机
CN110761969A (zh) * 2018-07-26 2020-02-07 安徽美芝制冷设备有限公司 往复式压缩机和制冷设备
CN113266551A (zh) * 2021-06-21 2021-08-17 浙江冰峰压缩机有限公司 一种阀板嵌入式活塞压缩机

Also Published As

Publication number Publication date
CN116928060A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US6206655B1 (en) Electrically-operated sealed compressor
KR890000685B1 (ko) 압축기의 맥동 저감기구
JP2008540891A (ja) 冷却コンプレッサ用サクションマフラ
KR980009894A (ko) 압축기의 머플러 구조제
MXPA03004787A (es) Compresor hermetico.
KR20110013444A (ko) 밀폐압축기용 방출밸브 장치
CN215595841U (zh) 压缩机及制冷制热设备
KR100461232B1 (ko) 유체 압축장치
WO2024002116A1 (zh) 一种活塞压缩机和包括该活塞压缩机的移动冰箱
JP2000130147A (ja) マフラー
KR20030045877A (ko) 유체 압축장치
WO2023185906A1 (zh) 一种活塞压缩机和包括该活塞压缩机的移动冰箱
EP2037122A1 (en) Compressor
US20060018778A1 (en) Hermetic compressor
US20070264137A1 (en) Hermetic compressor
KR101120569B1 (ko) 압축기용 배출 시스템
JP3755917B2 (ja) 圧縮機のバルブ装置
CN220705945U (zh) 一种消声结构及压缩机
CN220705946U (zh) 一种消声结构及压缩机
CN113864197B (zh) 一种泵体结构、压缩机及空调器
JP2000120532A (ja) 往復動型圧縮機
JPH04219488A (ja) 密閉型回転圧縮機
JPH06317249A (ja) 往復動型圧縮機
WO1997027402A2 (en) Electrically-operated sealed compressor
KR20180027857A (ko) 맥동 저감용 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778271

Country of ref document: EP

Kind code of ref document: A1