WO2023185893A1 - 一种卫星信号捕获方法及相关装置 - Google Patents

一种卫星信号捕获方法及相关装置 Download PDF

Info

Publication number
WO2023185893A1
WO2023185893A1 PCT/CN2023/084546 CN2023084546W WO2023185893A1 WO 2023185893 A1 WO2023185893 A1 WO 2023185893A1 CN 2023084546 W CN2023084546 W CN 2023084546W WO 2023185893 A1 WO2023185893 A1 WO 2023185893A1
Authority
WO
WIPO (PCT)
Prior art keywords
rdss
terminal
satellite
outbound signal
propagation
Prior art date
Application number
PCT/CN2023/084546
Other languages
English (en)
French (fr)
Inventor
钟继磊
甘雯昱
钱锋
林力新
王宝
孙尚帮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185893A1 publication Critical patent/WO2023185893A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/26Acquisition or tracking or demodulation of signals transmitted by the system involving a sensor measurement for aiding acquisition or tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/02Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS

Definitions

  • the present application relates to the field of satellite communication technology, and in particular to a satellite signal acquisition method and related devices.
  • Beidou satellite navigation system is a major infrastructure independently developed by my country that integrates positioning, timing, and communications.
  • Beidou short message communication service is what distinguishes Beidou satellite navigation system from global positioning system (GPS), global navigation satellite system (GLONASS), Galileo satellite navigation system (galileo satellite navigation system, GALILEO), etc.
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Galileo satellite navigation system galileo satellite navigation system
  • GALILEO Galileo satellite navigation system
  • Beidou short message communication service is particularly suitable for communication in areas such as oceans, deserts, grasslands, and uninhabited areas where mobile communications are not covered, or cannot be covered, or the communication system is damaged.
  • the short message system of the Beidou-3 satellite has upgraded the short message technical system and opened some necessary resources of the communication system of the Beidou short message service to civilians. In view of the characteristics of civilian services and equipment, it needs to be based on the Beidou short message service
  • the Beidou-3 short message business communication system is provided by three geosynchronous earth orbit (GEO) satellites.
  • GEO geosynchronous earth orbit
  • This application provides a satellite signal acquisition method and related devices, so that the terminal can quickly acquire satellite signals.
  • this application provides a satellite signal acquisition method, which includes: a terminal receives a navigation message broadcast by a satellite through a satellite radio navigation service RNSS signal, and determines the position of the terminal, the speed of the terminal and the ephemeris parameters of the satellite, Ionospheric parameters and clock synchronization pulses; the terminal determines the satellite radio determination service RDSS outbound signal from the satellite based on the terminal's position, the terminal's speed, the ephemeris parameter, the ionospheric parameter and the position of the satellite ground equipment.
  • the terminal can determine the RDSS outbound signal from the satellite ground equipment by receiving the navigation message (including ephemeris parameters, 1PPS pulses, ionospheric parameters, etc.) The propagation time of the satellite and the propagation time of the RDSS outbound signal from the satellite to the terminal. Furthermore, the terminal can determine the phase shift of the chips during the propagation process of the RDSS outbound signal. The terminal can capture the RDSS outbound signal based on the phase time shift of the RDSS outbound signal during propagation. In this way, the terminal can quickly capture the RDSS outbound signal.
  • the navigation message including ephemeris parameters, 1PPS pulses, ionospheric parameters, etc.
  • the method further includes: the terminal determines the RDSS outbound signal based on the terminal's position, the terminal's speed, the ephemeris parameter and the downlink frequency of the satellite that forwards the RDSS outbound signal.
  • the first Doppler frequency offset of the signal from the satellite to the terminal the terminal determines the receiving frequency of the RDSS outbound signal based on the downlink frequency of the satellite that forwards the RDSS outbound signal and the first Doppler frequency offset.
  • the terminal captures the RDSS outbound signal based on the phase time shift of the RDSS outbound signal during the propagation process, specifically including: the terminal captures the RDSS outbound signal based on the phase time shift of the RDSS outbound signal during the propagation process and the RDSS outbound signal
  • the receiving frequency point of the signal is used to capture the RDSS outbound signal.
  • the terminal can accurately determine the reception frequency point of the RDSS outbound signal and improve the acquisition speed of the RDSS outbound signal.
  • the method further includes: the terminal determines the local crystal oscillator frequency of the terminal 100 based on the clock synchronization pulse, the terminal's local crystal oscillator frequency, and the satellite's downlink frequency for forwarding the RDSS outbound signal. deviation; the terminal determines the reception frequency point of the RDSS outbound signal based on the downlink frequency of the satellite that forwards the RDSS outbound signal, the first Doppler frequency offset, and the second Doppler frequency offset, specifically including: The terminal determines the reception of the RDSS outbound signal based on the downlink frequency of the satellite that forwards the RDSS outbound signal, the first Doppler frequency offset, the second Doppler frequency offset and the terminal's local crystal oscillator frequency offset. Frequency.
  • the terminal can accurately determine the receiving frequency point of the RDSS outbound signal, improving the capture speed of the RDSS outbound signal.
  • the terminal determines the direction of the RDSS outbound signal from the satellite based on the terminal's position, the terminal's speed, the ephemeris parameter and the downlink frequency of the satellite that forwards the RDSS outbound signal.
  • the first Doppler frequency offset of the terminal specifically includes: the terminal determines the satellite position and satellite speed of the satellite based on the ephemeris parameters; the terminal determines the satellite position and satellite speed based on the satellite position, the satellite speed, the terminal position, the terminal The speed and the downlink frequency at which the satellite forwards the RDSS outbound signal are used to determine the first Doppler frequency offset.
  • the terminal captures the RDSS outbound signal based on the phase time shift of the RDSS outbound signal during propagation and the receiving frequency point of the RDSS outbound signal. Specifically, the terminal captures the RDSS outbound signal based on the The reception frequency point and frequency error of the RDSS outbound signal are used to determine the reception frequency search range of the RDSS outbound signal; the terminal is based on the phase time shift of the RDSS outbound signal during the propagation process and the frequency of the RDSS outbound signal. Search the receiving frequency range to capture the RDSS outbound signal.
  • the terminal captures the RDSS outbound signal based on the phase time shift of the RDSS outbound signal during the propagation process, which specifically includes: the terminal captures the RDSS outbound signal based on the phase time shift of the RDSS outbound signal during the propagation process.
  • the time shift and phase shift errors determine the phase shift range of the RDSS outbound signal; the terminal captures the RDSS outbound signal in the time domain based on the phase shift range of the RDSS outbound signal.
  • the terminal is based on the position of the terminal, the speed of the terminal, the ephemeris parameter, the The ionospheric parameters and the position of the satellite ground equipment determine the first propagation time of the satellite radiodetermination service RDSS outbound signal from the satellite ground equipment to the satellite and the second propagation time of the RDSS outbound signal from the satellite to the terminal.
  • the terminal determines the satellite position and satellite speed of the satellite based on the ephemeris parameter and the ionospheric parameter; the terminal determines the ionospheric delay of the RNSS signal based on the ionospheric parameter, and determines the ionospheric delay of the RNSS signal based on the ionospheric parameter.
  • the layer delay determines the uplink ionospheric transmission delay of the RDSS outbound signal and the downlink ionospheric transmission delay of the RDSS outbound signal; the terminal determines the first tropospheric delay based on the satellite position of the satellite and the position of the satellite ground equipment.
  • the model determines the uplink tropospheric transmission delay of the RDSS outbound signal; the terminal determines the downlink tropospheric transmission delay of the RDSS outbound signal based on the satellite position of the satellite and the position of the terminal through the second tropospheric delay model; the terminal Based on the uplink troposphere transmission delay of the RDSS outbound signal from the satellite ground equipment to the satellite, the uplink current layer transmission delay of the RDSS outbound signal from the satellite ground equipment to the satellite, the satellite ground equipment
  • the first propagation time is determined based on the launch delay, the position of the satellite ground equipment and the position of the satellite; the terminal is based on the downlink tropospheric transmission delay in the propagation process of the RDSS outbound signal from the satellite to the terminal, the RDSS outbound signal
  • the second propagation time is determined based on the transmission delay of the downlink ionosphere during propagation of the station signal from the satellite to the terminal, the position of the satellite and the position of the terminal
  • the phase time shift of the RDSS outbound signal during the propagation process includes the chip offset of the phase time shift of the RDSS outbound signal during the propagation process; the terminal is based on the RDSS outbound signal
  • the propagation delay and the clock synchronization pulse determine the phase shift of the RDSS outbound signal during the propagation process, specifically including: the terminal's propagation delay based on the RDSS outbound signal, the clock synchronization pulse, the RDSS outbound signal
  • the chip number L of the spreading code sequence, the sequence period of the spreading code sequence and the secondary code period in the RDSS outbound signal are used to determine the chip offset of the phase time shift of the RDSS outbound signal during the propagation process. .
  • the first propagation time is determined by the following formula:
  • tu is the first propagation time.
  • x c , y c and z c are the position coordinates of the satellite ground equipment in the three-dimensional coordinate system at time T.
  • x s , y s and z s are the position coordinates of the satellite in the three-dimensional coordinate system at the time T.
  • t c is the launch delay of the satellite ground equipment.
  • t trop-u is the uplink tropospheric transmission delay of the RDSS outbound signal.
  • t iu is the uplink ionospheric transmission delay of the RDSS outbound signal.
  • c is the propagation speed of electromagnetic waves.
  • the T time may be the time when the terminal triggers the process of capturing the RDSS outbound signal.
  • the second propagation time is determined by the following formula:
  • t d is the second propagation time
  • x u , yu and z u are the position coordinates of the terminal in the three-dimensional coordinate system at time T
  • x s , y s and z s are the position coordinates of the satellite at time T
  • t trop-d is the downlink tropospheric transmission delay of the RDSS outbound signal
  • t id is the downlink ionospheric transmission delay of the RDSS outbound signal
  • c is the propagation speed of electromagnetic waves.
  • ⁇ t is the transmission delay of the RDSS outbound signal
  • tu is the first propagation time
  • t d is the second propagation time.
  • the clock synchronization pulse is pulse per second 1PPS; the phase shift of the chip during the propagation process of the RDSS outbound signal is determined by the following formula:
  • initChip is the chip offset of the phase time shift of the RDSS outbound signal during the propagation process
  • T r is the secondary code period in the RDSS outbound signal
  • L is the spreading code sequence of the RDSS outbound signal. Number of chips.
  • T m is the sequence period of the spreading code sequence of the RDSS outbound signal.
  • f r is the receiving frequency point of the RDSS outbound signal
  • f s is the downlink frequency of the satellite that forwards the RDSS outbound signal
  • fd 1 is the first Doppler frequency offset
  • fd 2 is the local crystal oscillator of the terminal Frequency deviation.
  • the satellite is a GEO satellite in geosynchronous orbit.
  • the terminal pre-stores the location of the satellite ground equipment.
  • satellites may refer to satellite systems that require satellite signal acquisition, for example, the Beidou communication system based on the Beidou short message service.
  • the above-mentioned satellites may be Beidou short message satellites
  • the satellite ground equipment may be Beidou network equipment.
  • this application provides a terminal, including one or more processors and one or more memories.
  • the one or more memories are coupled to one or more processors, and the one or more memories are used to store computer program codes.
  • the computer program codes include computer instructions that, when executed by the one or more processors, cause the communication device to perform Methods in any possible implementation of any of the above aspects.
  • embodiments of the present application provide a computer storage medium that includes computer instructions.
  • the terminal is caused to execute the method in any of the possible implementations of any of the above aspects.
  • embodiments of the present application provide a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the method in any of the possible implementations of any of the above aspects.
  • the present application provides a chip or chip system, which is applied to a terminal and includes a processing circuit and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processing circuit.
  • the processing circuit is used to run the code instructions to execute the above-mentioned first step.
  • Figure 1 is a schematic architectural diagram of a Beidou communication system provided by an embodiment of the present application
  • Figure 2A is a schematic diagram of the inbound data transmission process in a Beidou communication system provided by an embodiment of the present application
  • Figure 2B is a schematic diagram of the outbound data transmission process in a Beidou communication system provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the protocol encapsulation architecture of outbound data of the Beidou communication system provided in the embodiment of the present application;
  • Figure 5 is a schematic diagram of the protocol parsing architecture of outbound data of a Beidou communication system provided in the embodiment of the present application;
  • Figure 6 is a schematic diagram of the propagation process of an RDSS outbound signal provided in the embodiment of the present application.
  • Figure 7 is a time domain phase offset diagram of an RDSS outbound signal provided in the embodiment of the present application.
  • Figure 8 is a schematic flow chart of a satellite signal acquisition method provided in an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and shall not be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of this application, unless otherwise specified, “plurality” The meaning is two or more.
  • Figure 1 shows a schematic architectural diagram of a Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou communication system 10 may include a terminal 100, a Beidou short message satellite 21, a Beidou network device 200, a short message center 25 and a terminal 300.
  • the Beidou communication system 10 may also include an emergency rescue platform 26 and an emergency rescue center 27 .
  • the terminal 100 can send short message information to the Beidou short message satellite 21.
  • the Beidou short message satellite 21 only relays and directly forwards the short message information sent by the terminal 100 to the Beidou network equipment 200 on the ground.
  • the Beidou network device 200 can parse the short message information forwarded by the satellite according to the Beidou communication protocol, and forward the message content of the general message type parsed from the short message information to the short message center (short message service center, SMSC). 25.
  • SMSC short message service center
  • the short message center 25 can forward the message content to the terminal 300 through a traditional cellular communication network.
  • the Beidou network device 200 may also send the emergency rescue type message sent by the terminal 100 to the emergency rescue center 27 through the emergency rescue platform 26 .
  • the terminal 300 can also send the short message to the short message center 25 through a traditional cellular communication network.
  • the short message center 25 can forward the short message of the terminal 300 to the Beidou network device 200.
  • the Beidou network device 200 can relay the short message of the terminal 300 to the terminal 100 through the Beidou short message satellite 21 .
  • the above-mentioned Beidou network equipment 200 may include a Beidou ground transceiver station 22, a Beidou central station 23, and a Beidou short message integrated communication platform 24.
  • the Beidou ground transceiver station 22 may include one or more devices with a sending function and one or more devices with a receiving function, or may include one or more devices with a sending function and a receiving function, which are not limited here. .
  • the Beidou ground transceiver station 22 can be used in the Beidou network equipment 200 at the physical layer (physical layer). protocol, PHY) data processing function.
  • the Beidou central station 23 can be used for the data processing function of the Beidou network equipment 200 at the satellite link layer (satellite link control protocol, SLC) layer and the message data convergence protocol (MDCP) layer.
  • the Beidou short message integrated communication platform 24 can be used to process data at the application layer protocol (APP).
  • APP application layer protocol
  • the Beidou communication system 10 since the Beidou communication system 10 communicates through satellite links, its main characteristics are: prolonged time (about 270ms in one direction) and large link loss.
  • the current services supported by the Beidou communication system 10 are mainly burst short message services, and do not support connection status management, mobility management, broadcast control information, etc.
  • the terminal 100 can actively send data to the Beidou network device 200 through the Beidou short message satellite 21.
  • the central station on the ground cannot actively page users. Due to the long propagation distance of satellite communication, the Beidou communication system 10 requires high transmission power of the terminal 100 . Due to limitations of the radio frequency devices on the current terminal 100, the terminal 100 cannot continuously send signals to the Beidou short message satellite 21 for a long time. In order to avoid damaging the radio frequency components on the terminal 100 as much as possible, after the radio frequency components of the terminal 100 continue to work in the transmitting state for a period of time, they must stop working for a period of time before they can continue to switch to the transmitting state and continue to work.
  • the duration of the sending state on the terminal 100 is determined by the underlying hardware capabilities of the terminal 100 .
  • the terminal 100 in order to ensure that the data received by the terminal 100 and the data sent do not interfere with each other, the terminal 100 does not support sending data and receiving data at the same time. The terminal 100 needs to wait to receive the data sent by the Beidou network device 200 after sending the data.
  • the working mode of the Beidou network device 200 can be a duplex mode, which can send and receive data at the same time, and the Beidou network device 200 can send and receive data for a long time.
  • Figure 2A shows the inbound transmission process of data in a Beidou communication system provided by an embodiment of the present application.
  • data inbound may refer to the terminal 100 sending data to the Beidou network device 200.
  • the terminal 100 may send a data frame to the Beidou ground transceiver station 22.
  • the Beidou ground transceiver station 22 can send the data frame to the Beidou central station 23 .
  • the Beidou central station 23 can aggregate the data frames into application layer messages and report them to the Beidou short message converged communication platform 24.
  • the Beidou central station 23 can return an SLC layer acknowledgment character (ACK) to the terminal 100.
  • the ACK may be used to indicate whether the Beidou network device 200 successfully receives the data frame sent by the terminal 100.
  • Figure 2B shows the outbound data transmission process in a Beidou communication system provided by the embodiment of the present application.
  • data outbound may refer to the Beidou network device 200 sending data to the terminal 100 .
  • the Beidou short message integrated communication platform 24 in the Beidou network equipment 200 can send the application layer message to the Beidou central station 23; then the Beidou central station 23 can split the application layer message into one or more data frames. It is sent to the Beidou ground transceiver station 22, relayed by the Beidou short message satellite 21 and then sent to the terminal 100.
  • the terminal 100 may return an SLC layer ACK to the Beidou central station 23 . This ACK can be used to determine whether the terminal 100 successfully receives the data frame sent by the Beidou network device 200.
  • Figure 3 shows a schematic structural diagram of the terminal 100.
  • the terminal 100 shown in FIG. 3 is only an example, and the terminal 100 may have more or fewer components than those shown in FIG. 3 , may combine two or more components, or may have Different component configurations.
  • the various components shown in Figure 3 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, and a universal serial bus. (universal serial bus, USB) interface 130, charging management module 140, power management module 141, battery 142, antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • a universal serial bus universal serial bus, USB
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal 100.
  • the terminal 100 may include more or fewer components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) wait.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the terminal 100 .
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can separately couple the touch sensor 180K, charger, flash, camera 193, etc. through different I2C bus interfaces.
  • the processor 110 can be coupled to the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the terminal 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 can be coupled with the audio module 170 through the I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface to implement the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface to implement the function of answering calls through a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface to implement the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 and the camera 193 communicate through the CSI interface to implement the shooting function of the terminal 100.
  • the processor 110 and the display screen 194 communicate through the DSI interface to implement the display function of the terminal 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, display screen 194, wireless communication module 160, audio module 170, sensor module 180, etc.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transmit data between the terminal 100 and peripheral devices. It can also be used to connect headphones to play audio through them. This interface can also be used to connect other electronic devices, such as AR devices, etc.
  • the interface connection relationships between the modules illustrated in the embodiment of the present invention are only schematic illustrations and do not constitute a structural limitation on the terminal 100 .
  • the terminal 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the terminal 100 . While the charging management module 140 charges the battery 142, it can also provide power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, internal memory 121, external memory, display screen 194, camera 193, wireless communication module 160, etc.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the terminal 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied to the terminal 100.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • the mobile communication module At least some of the functional modules of 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the terminal 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and global navigation satellite system. (global navigation satellite system, GNSS), satellite communication module, frequency modulation (FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the satellite communication module can be used to communicate with satellite network equipment.
  • the satellite communication module can communicate with the Beidou network equipment 200, and the satellite communication module can support short message transmission with the Beidou network equipment 200. .
  • the antenna 1 of the terminal 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 implements the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 194 is used to display images, videos, etc.
  • Display 194 includes a display panel.
  • the display panel can use a liquid crystal display (LCD).
  • the display panel can also use organic light-emitting diode (OLED), active matrix organic light-emitting diode or active matrix organic light-emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode ( Flex light-emitting diode (FLED), miniled, microLed, micro-oled, quantum dot light emitting diode (quantum dot light emitting diode, QLED), etc. are manufactured.
  • the terminal 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the terminal 100 can communicate with the ISP, camera 193, video codec, GPU, display 194 and application processor. Wait for the shooting function to be realized.
  • the ISP is used to process the data fed back by the camera 193. For example, when taking a photo, the shutter is opened, the light is transmitted to the camera sensor through the lens, the optical signal is converted into an electrical signal, and the camera sensor passes the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on image noise and brightness. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP may be provided in the camera 193.
  • Camera 193 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the terminal 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • the NPU can realize intelligent cognitive applications of the terminal 100, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes instructions stored in the internal memory 121 to execute various functional applications and data processing of the terminal 100 .
  • the internal memory 121 may include a program storage area and a data storage area. Among them, the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the terminal 100 (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the terminal 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the terminal 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the voice can be heard by bringing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 170C with the human mouth and input the sound signal to the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C. In other embodiments, the terminal 100 may be provided with two microphones 170C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the terminal 100 can also be equipped with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions, etc.
  • the headphone interface 170D is used to connect wired headphones.
  • the headphone interface 170D may be a USB interface 130, or may be a 3.5mm open mobile terminal platform (OMTP) standard interface, or a Cellular Telecommunications Industry Association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA Cellular Telecommunications Industry Association of the USA
  • the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the terminal 100 determines the intensity of the pressure based on changes in capacitance.
  • the terminal 100 detects the strength of the touch operation according to the pressure sensor 180A.
  • the terminal 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the movement posture of the terminal 100 .
  • the angular velocity of terminal 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 180B detects the angle at which the terminal 100 shakes, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shake of the terminal 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • Air pressure sensor 180C is used to measure air pressure. In some embodiments, the terminal 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • Magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 may use the magnetic sensor 180D to detect the opening and closing of the flip cover.
  • the terminal 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the terminal 100 in various directions (generally three axes). When the terminal 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices and be used in horizontal and vertical screen switching, pedometer and other applications.
  • the terminal 100 can measure distance by infrared or laser. In some embodiments, when shooting a scene, the terminal 100 can use the distance sensor 180F to measure distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the terminal 100 emits infrared light through a light emitting diode.
  • the terminal 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the terminal 100 . When insufficient reflected light is detected, the terminal 100 may determine that there is no object near the terminal 100 .
  • the terminal 100 can use the proximity light sensor 180G to detect when the user holds the terminal 100 close to the ear for talking, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in holster mode, and pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the terminal 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal 100 is in the pocket to prevent accidental touching.
  • Fingerprint sensor 180H is used to collect fingerprints.
  • the terminal 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access application lock, fingerprint photography, fingerprint answering incoming calls, etc.
  • Temperature sensor 180J is used to detect temperature.
  • the terminal 100 uses the temperature detected by the temperature sensor 180J to execute the temperature processing policy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the terminal 100 reduces the performance of a processor located near the temperature sensor 180J to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the terminal 100 heats the battery 142 to avoid the low temperature causing the terminal 100 to shut down abnormally. In some other embodiments, when the temperature is lower than another threshold, the terminal 100 performs boosting on the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194.
  • the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near the touch sensor 180K.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the terminal 100 in a position different from that of the display screen 194 .
  • Bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human body's vocal part.
  • the bone conduction sensor 180M can also contact the human body's pulse and receive blood pressure beating signals.
  • the bone conduction sensor 180M can also be provided in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibrating bone obtained by the bone conduction sensor 180M to implement the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal acquired by the bone conduction sensor 180M to implement the heart rate detection function.
  • the buttons 190 include a power button, a volume button, etc.
  • Key 190 may be a mechanical key. It can also be a touch button.
  • the terminal 100 may receive key input and generate key signal input related to user settings and function control of the terminal 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • the motor 191 can also respond to different vibration feedback effects for touch operations in different areas of the display screen 194 .
  • Different application scenarios such as time reminders, receiving information, alarm clocks, games, etc.
  • the touch vibration feedback effect can also be customized.
  • the indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to or separated from the terminal 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the terminal 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the terminal 100 adopts eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the terminal 100 and cannot be separated from the terminal 100.
  • the following introduces a protocol encapsulation architecture for outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • FIG. 4 shows a schematic diagram of the protocol encapsulation architecture of outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer in the Beidou network device 200 can be an application layer protocol (APP), a message data convergence protocol (MDCP), and a satellite link control layer.
  • control layer (satellite link control protocol, SLC) and physical layer (physical layer protocol, PHY).
  • the Beidou network equipment 200 may include a Beidou ground transceiver station 22, a Beidou central station 23, and a Beidou short message integrated communication platform 24.
  • the Beidou ground transceiver station 22 may be used to be responsible for protocol processing at the PHY layer.
  • the Beidou central station 23 can be used to be responsible for the protocol processing of the SLC layer and the MDCP layer.
  • the Beidou short message integrated communication platform 24 can be used to be responsible for protocol processing at the APP layer.
  • the workflow of the Beidou short message transmission protocol in the Beidou network device 200 can be as follows:
  • the Beidou network device 200 can compress the original data into compressed data through a compression algorithm, and add a compression indication field in front of the compressed data, where the compression indication field can be used to indicate the compression algorithm type of the compressed data. Afterwards, the Beidou network device 200 can encrypt the compressed data to obtain encrypted data, and add an encryption algorithm field to the header of the encrypted data. The encryption algorithm field is used to indicate the encryption algorithm type of the encrypted data. The Beidou network device 200 can encapsulate the encrypted data, compression indication field, and encryption indication field into an application layer message and send it to the MDCP layer.
  • the application layer message may include a message header and message data.
  • the message header may include a compression indication field, an encryption indication field, and so on.
  • the message data includes the above-mentioned encrypted data.
  • the Beidou network device 200 can also encrypt the compression indication field and the compressed data together to obtain encrypted data.
  • the Beidou network device 200 can obtain the application layer message delivered by the APP layer through the inter-layer interface, and use the application layer message as an MDCP SDU.
  • the Beidou network device 200 can split an MDCP SDU into one or more fixed-length MDCP segment data (M_segment), and add a subsequent indication field to the header of each MDCP segment data to obtain an MDCP PDU.
  • MDCP PDU includes M_segment and subsequent indication fields.
  • the successor indication field can be used to indicate that the current MDCP PDU is the starting MDCP PDU or the middle MDCP PDU or the last MDCP PDU of multiple MDCP PDUs sent continuously; or it is an MDCP PDU sent separately.
  • the Beidou network device 200 can obtain the MDCP PDU delivered by the MDCP layer through the inter-layer interface as an SLC SDU.
  • the Beidou network device 200 can segment the SLC SDU into one or more (for example, up to 4) fixed-length SLC segment data (S_segment), and add frame header information to the header of each S_segment to obtain SLC PDU.
  • S_segment fixed-length SLC segment data
  • the SLC layer needs to segment the data.
  • the design of the SLC layer can only divide an SLC SDU into up to 4 SLC PDUs, so the MDCP layer also needs to segment the data.
  • the Beidou network device 200 can obtain the SLC PDU delivered by the SLC layer through the inter-layer interface.
  • the Beidou network device 200 can obtain the SLC PDU of one user or multiple users from the SLC layer.
  • Beidou network equipment 200 can splice together the SLC PDUs of multiple users, add the frame header of the physical frame (such as version number) as the code block of the PHY layer, and add a check digit at the end of the code block (For example, cyclic redundancy check (CRC) code), and encode the code block and CRC code (such as polar encoding).
  • the encoded physical frame plus the reserved segment can form a fixed-length physical frame.
  • the encoded data of the satellite to consumer data (S2C-d) channel (referred to as the data channel) of the slot.
  • Beidou network equipment 200 can put multiple SLC PDUs of one user into different physical frames. Then, the Beidou network equipment 200 combines the coded data of the S2C-d channel branch and the pilot information of the satellite to consumer pilot (S2C-p) channel (referred to as pilot channel) to form pilot coded data. , that is, outbound data.
  • the Beidou network equipment 200 can send the outbound data to the Beidou short message satellite 21, and then relay and forward it to the terminal 100 via the Beidou short message satellite 21.
  • the pilot information of the S2C-p channel branch is related to the satellite beam.
  • the pilot information of the S2C-p channel branch is also known and does not need to be decoded.
  • the encoded data of the S2C-d channel branch is Needs to be decoded. Among them, the center frequency and bandwidth of the S2C-p channel and the S2C-d channel are the same, and the signals on the S2C-p channel and the signals on the S2C-d channel branches are orthogonal to each other.
  • the following introduces a protocol parsing architecture for outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • FIG. 5 shows a schematic diagram of the protocol parsing architecture of outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer of terminal 100 can be divided into application layer (application layer protocol, APP), message data convergence layer (message data convergence protocol, MDCP), and satellite link control layer (satellite link). control protocol (SLC) and physical layer protocol (PHY).
  • application layer protocol application layer protocol
  • MDCP message data convergence layer
  • satellite link control layer satellite link control layer
  • SLC control protocol
  • PHY physical layer protocol
  • the workflow of the Beidou short message transmission protocol layer of the terminal 100 can be as follows:
  • the terminal 100 can obtain the modulated and spread-spectrum pilot coded data sent by the Beidou network device 200.
  • the terminal 100 can despread the received spread spectrum modulated data (spread+modulated data) to obtain modulated data (modulated data).
  • the terminal 100 can demodulate the modulated data to obtain pilot coded data (pilot+data).
  • the terminal 100 can remove the pilot information in the pilot coded data to obtain coded data (code data).
  • code data code data
  • the terminal 100 can then decode the encoded data and verify the integrity of the code block through the check data in the check bit field. If it is complete, the terminal 100 can extract the code block and present it to the SLC layer through the inter-layer interface as the SLC PDU of the SLC layer.
  • the pilot coded data is the outbound data sent by the above-mentioned Beidou network device 200, and the outbound data consists of coded data of the S2C-d channel and pilot information of the S2C-p channel.
  • the terminal 100 can splice SLC PDUs belonging to the same SLC SDU into one SLC SDU based on the frame header information of the SLC PDU.
  • the terminal 100 can present the SLC SDU to the MDCP layer through the inter-layer interface as an MDCP PDU of the MDCP layer.
  • the terminal 100 can splice all MDCP PDUs belonging to the same MDCP SDU into one MDCP SDU.
  • the terminal 100 can present the MDCP SDU to the APP layer through the inter-layer interface as an application layer message received by the APP layer.
  • the terminal 100 can decrypt and decompress the application layer message based on the message header of the application layer message to obtain original data.
  • the navigation satellite and operation control application system of the satellite navigation system integrates both the satellite radio navigation service (radio navigation satellite system, RNSS) and the satellite radio determination service (radio determination satellite service, RDSS).
  • RNSS can measure the user's position, calculate speed and route parameters.
  • RDSS can realize the integration of positioning, timing and communication.
  • the navigation systems and signal formats of RNSS and RDSS are unified in the same time system.
  • the Beidou communication system 10 supports both RNSS services and RDSS services to achieve short message communication.
  • the Beidou network device 200 can forward the RDSS outbound signal to the terminal 100 through the Beidou short message satellite 21.
  • the Beidou short message satellite 21 may be a GEO satellite.
  • the RDSS outbound signal is sent from the Beidou network equipment 200 to the Beidou short message satellite 21, it needs to pass through the troposphere and the ionosphere in sequence.
  • the RDSS outbound signal is forwarded from the Beidou short message satellite 21 to the terminal 100, it needs to pass through the ionosphere and the troposphere in sequence.
  • RDSS outbound signals can include S2C-p The pilot signal of the channel branch. Among them, the pilot signal of the S2C-p channel branch continues to be sent periodically.
  • the terminal 100 can track the satellite beam by capturing the pilot signal on the S2C-p channel branch forwarded by the Beidou short message satellite 21.
  • the period of the secondary code in the pilot signal of the S2C-p channel branch in the outbound data may be a fixed duration (for example, 125 ms).
  • the spreading code sequence used in the secondary code can be a Gold code sequence generated by two 13-bit shift registers, and then truncated to a specified length (for example, 8000 bits) to obtain the code sequence.
  • the period length of the spreading code sequence may be 1 ms.
  • the terminal 100 captures the RDSS outbound signal, it needs to use the locally generated spreading code sequence sample and the spreading code sequence in the received RDSS outbound signal to perform a correlation peak operation. After each operation, the terminal 100 needs to Adjust the chip phase of the locally generated spreading code sequence and perform correlation peak calculation with the received RDSS outbound signal again until the correlation peak calculation result meets the capture conditions, that is, the capture of the RDSS outbound signal is completed.
  • the propagation time for the Beidou network equipment 200 to send outbound data to the Beidou short message satellite 21 is tu
  • the propagation time for the Beidou short message satellite 21 to forward the outbound data to the terminal 100 is td.
  • the speed components of the Beidou short message satellite 21 in the three-dimensional coordinate system are (Vxs, Vys, Vzs), and the speed components of the terminal 100 in the three-dimensional coordinate system are (Vxu, Vyu, Vzu).
  • the spreading code sequence used in the RDSS outbound signal has a long length and a high code rate, there is a propagation delay when the Beidou network equipment 200 propagates the RDSS outbound signal to the terminal 100 through the Beidou short message satellite 21.
  • the propagation delay of the RDSS outbound signal will cause the terminal 100 to adjust the chip phase range of the spreading code sequence to expand, which results in a longer time for the terminal 100 to capture the RDSS outbound signal.
  • the secondary code in the RDSS outbound signal sent by the Beidou network device 200 and the spreading code sequence used in the secondary code are known to the terminal 100 .
  • the terminal 100 can open the capture channel at time T2 and receive the RDSS outbound signal forwarded by the Beidou short message satellite 21.
  • the terminal 100 receives the RDSS outbound signal at time T2.
  • the terminal 100 still performs correlation peak calculation based on the RDSS outbound signal sent by the Beidou network device 200 at time T2 and the RDSS outbound signal that the terminal 100 can receive at time T2, it is easy for the terminal 100 to capture the time of the RDSS outbound signal. longer, or even capture fails.
  • the frequency at which the terminal 100 receives the RDSS outbound signal will be inconsistent with the frequency at which the actual Beidou network equipment 200 sends the RDSS outbound signal, so that The frequency range for the terminal 100 to search for RDSS outbound signals is expanded, which results in a longer time for the terminal 100 to capture the RDSS outbound signals.
  • the embodiment of the present application provides a satellite signal acquisition method.
  • the terminal 100 can receive the navigation message (including ephemeris parameters, 1PPS pulses, ionospheric parameters, etc.) broadcast by the Beidou short message satellite 21 through the RNSS signal, Determine the propagation time tu of the RDSS outbound signal from the Beidou network equipment 200 to the Beidou short message satellite 21, the propagation time t d of the RDSS outbound signal from the Beidou short message satellite 21 to the terminal 100, and the propagation time t d of the RDSS outbound signal from the Beidou short message satellite 21.
  • the Doppler frequency offset fd 1 from the message satellite 21 to the terminal 100.
  • the terminal 100 can determine the phase shift of the chips during the propagation process of the RDSS outbound signal and the reception frequency point f r of the RDSS outbound signal.
  • the terminal 100 can capture the RDSS outbound signal based on the phase shift of the chips during the propagation process of the RDSS outbound signal and the receiving frequency point f r of the RDSS outbound signal. In this way, the terminal 100 can quickly capture the RDSS outbound signal.
  • the following introduces a satellite signal acquisition method provided in the embodiment of the present application.
  • Figure 8 shows a schematic flowchart of a satellite signal acquisition method provided in an embodiment of the present application.
  • the method may include:
  • the terminal 100 receives the navigation message broadcast by the Beidou short message satellite 21 through the RNSS signal.
  • the navigation message can include Beidou short message satellite ephemeris parameters, ionospheric parameters, time synchronization parameters, satellite clock correction parameters, almanac data, navigation service parameters, etc.
  • the time synchronization parameters include 1PPS pulse.
  • Ionospheric parameters include the ionospheric transmission delay of RNSS signals, for example, the ionospheric delay of the B1L frequency point of the Beidou navigation system.
  • the terminal 100 determines the position and speed of the terminal 100 based on the navigation message broadcast by the RNSS signal.
  • the terminal 100 After receiving the navigation message broadcast by the RNSS signal, the terminal 100 can synchronize with the clocks of the Beidou short message satellite 21 and the Beidou network device 200 based on the time synchronization parameters and satellite clock correction parameters in the navigation message. After clock synchronization, the terminal 100 can locate the position of the terminal 100 through the above-mentioned multiple parameters parsed from the navigation message, and determine the position and speed of the terminal 100 .
  • the terminal 100 can predict the ephemeris parameters and ionospheric parameters of the Beidou short message satellite 21 through Precious Global Navigation Satellite System (PGNSS).
  • PNSS Precious Global Navigation Satellite System
  • the terminal 100 obtains the ephemeris parameters, ionospheric parameters and 1PPS pulse of the Beidou short message satellite 21.
  • the terminal 100 After receiving the navigation message broadcast by the Beidou short message satellite 21 through the RNSS signal, the terminal 100 can parse the ephemeris parameters, ionospheric parameters and time synchronization parameters of the Beidou short message satellite 21 from the navigation message, and so on.
  • the time synchronization parameters include 1PPS pulse.
  • the terminal 100 determines the satellite position and satellite speed of the Beidou short message satellite and the uplink tropospheric transmission delay t trop-u of the RDSS outbound signal based on the ephemeris parameters and ionospheric parameters of the Beidou short message satellite.
  • the RDSS outbound signal The downlink tropospheric transmission delay t trop-d of the station signal, the uplink ionospheric transmission delay t iu of the RDSS outbound signal, and the downlink ionospheric transmission delay t id of the RDSS outbound signal.
  • the ephemeris parameters describe the information of the satellite's orbit.
  • the terminal 100 can determine the satellite position and satellite speed of the Beidou short message satellite 21 based on the ephemeris parameters of the Beidou short message satellite 21 and the local synchronized clock time.
  • the terminal 100 After the terminal 100 determines the satellite position of the Beidou short message satellite 21, it can determine the downlink tropospheric transmission delay of the RNSS signal based on the position of the terminal 100, the satellite position of the Beidou short message satellite 21 and the preset tropospheric transmission delay model. . Among them, since the influence of the troposphere on the RNSS signal and the RDSS outbound signal is approximately the same, the terminal 100 can determine the downlink tropospheric transmission delay of the RNSS signal as the downlink tropospheric transmission delay t trop-d of the RDSS signal.
  • the terminal 100 can determine the uplink tropospheric transmission delay t trop-u of the RDSS signal based on the position of the Beidou network device 200 and the satellite position of the Beidou short message satellite 21 and the preset tropospheric transmission delay model.
  • the ionospheric parameters include the ionospheric transmission delay of the RNSS signal (for example, the ionospheric delay of the B1L frequency point in the Beidou navigation system), the ionospheric impact on the RNSS signal and the RDSS outbound signal is inconsistent, but the ionospheric effect of the RDSS outbound signal is inconsistent.
  • the transmission delay can be calculated based on the ionospheric delay of the RNSS signal, where the ionospheric transmission delay of the RDSS outbound signal includes the uplink ionospheric transmission delay of the RDSS outbound signal in the transmission path from the Beidou network equipment 200 to the Beidou short message satellite 21 t iu , and the downlink ionospheric transmission delay t id of the RDSS outbound signal on the transmission path from the Beidou short message satellite 21 to the terminal 100 .
  • t iu is the uplink ionospheric transmission delay of the RDSS outbound signal.
  • t i is the ionospheric transmission delay of the RNSS signal (for example, the ionospheric delay of the B1L frequency point in the Beidou navigation system).
  • a is the conversion coefficient. For example, based on test data, the value of a can be 0.0625.
  • the downlink ionospheric transmission delay of t id RDSS outbound signal t i is the RNSS letter
  • the ionospheric transmission delay of the signal (for example, the ionospheric delay of the B1L frequency point in the Beidou navigation system).
  • b is the conversion coefficient. For example, based on test data, the value of b can be 0.4.
  • the downlink troposphere transmission delay t trop-u of the terminal 100 based on the RDSS outbound signal.
  • the position of the satellite 21, the position of the Beidou network device 200, and the transmission delay t c of the Beidou network device 200 are used to determine the propagation time tu of the RDSS outbound signal from the Beidou network device 200 to the Beidou short message satellite 21 and the RDSS outbound signal.
  • the location of the Beidou network equipment 200 can specifically refer to the Beidou ground transceiver station 22 transmitting
  • the transmission delay t c of the Beidou network equipment 200 can specifically refer to the delay from when the Beidou central station 23 generates the RDSS outbound signal to when the Beidou ground transceiver station 22 starts sending the RDSS outbound signal.
  • the location of the Beidou network device 200 and the transmission delay t c of the Beidou network device 200 can be preset on the terminal 100 .
  • the terminal 100 accesses the cellular network or Wi-Fi network
  • the terminal 100 can access the Beidou server through the cellular network or Wi-Fi network to obtain the latest location of the Beidou network device 200 and the location of the Beidou network device 200
  • the transmission delay t c is determined, and the latest location of the Beidou network device 200 and the transmission delay t c of the Beidou network device 200 are saved locally in the terminal 100 .
  • the propagation time tu of the RDSS outbound signal from the Beidou network equipment 200 to the Beidou short message satellite 21 can be determined by the following formula (3):
  • tu is the propagation time of the RDSS outbound signal from the Beidou network equipment 200 to the Beidou short message satellite 21.
  • x c , y c and z c are the position coordinates of the Beidou network device 200 in the three-dimensional coordinate system (x-axis, y-axis and z-axis) at time T.
  • x s , y s and z s are the position coordinates of the Beidou short message satellite 21 in the three-dimensional coordinate system (x-axis, y-axis and z-axis) at time T.
  • t c is the transmission delay of Beidou network equipment 200 .
  • t trop-u is the uplink tropospheric transmission delay of the RDSS outbound signal.
  • t iu is the uplink ionospheric transmission delay of the RDSS outbound signal.
  • c is the propagation speed of electromagnetic waves, that is, the speed of light. The above T time may be the time when the terminal 100 triggers the process of capturing the RDSS outbound signal.
  • the propagation time t d of the RDSS outbound signal from the Beidou short message satellite 21 to the terminal 100 can be determined by the following formula (4):
  • t d is the propagation time of the RDSS outbound signal from the Beidou short message satellite 21 to the terminal 100.
  • x u , y u and zu are the position coordinates of the terminal 100 in the three-dimensional coordinate system (x-axis, y-axis and z-axis) at time T.
  • x s , y s and z s are the position coordinates of the Beidou short message satellite 21 in the three-dimensional coordinate system (x-axis, y-axis and z-axis) at time T.
  • t trop-d is the downlink troposphere transmission delay of the RDSS outbound signal.
  • t id is the downlink ionospheric transmission delay of the RDSS outbound signal.
  • c is the propagation speed of electromagnetic waves, that is, the speed of light.
  • the above T time may be the time when the terminal 100 triggers the process of capturing the RDSS outbound signal.
  • the terminal 100 determines the RDSS based on the propagation time tu of the RDSS outbound signal from the Beidou network device 200 to the Beidou short message satellite 21 and the propagation time t d of the RDSS outbound signal from the Beidou short message satellite 21 to the terminal 100 The transmission delay of the outbound signal ⁇ t.
  • ⁇ t is the transmission delay of the RDSS outbound signal.
  • tu is the propagation time of the RDSS outbound signal from the Beidou network equipment 200 to the Beidou short message satellite 21.
  • t d is the propagation time of the RDSS outbound signal from the Beidou short message satellite 21 to the terminal 100 .
  • the terminal 100 is based on the propagation delay ⁇ t of the RDSS outbound signal, 1PPS pulse, the number of chips L of the spreading code sequence in the RDSS outbound signal, the sequence period T m of the spreading code sequence, and the secondary number in the RDSS outbound signal.
  • the code period T r determines the phase shift of the chips during the propagation process of the RDSS outbound signal.
  • the units of the propagation delay ⁇ t of the RDSS outbound signal, the sequence period T m of the spreading code sequence, and the secondary code period T r in the RDSS outbound signal are all milliseconds (ms).
  • Phase time shift can refer to the offset of the initial chip in the time domain due to transmission delay during the propagation process of the RDSS outbound signal.
  • the offset amount of the phase shift can be specifically subdivided into the number of offset chips.
  • the terminal 100 can determine the millisecond count value msidx of the phase time shift of the RDSS outbound signal during the propagation process through the following formula (6):
  • msidx is the millisecond count value of the phase time shift of the RDSS outbound signal during the propagation process.
  • 1000 means that a 1PPS pulse includes 1000ms.
  • T r is the secondary code period in the RDSS outbound signal.
  • T r can be 125ms.
  • L is the number of chips of the spreading code sequence in the RDSS outbound signal.
  • the value of L can be 8000.
  • T m is the sequence period of the spreading code sequence.
  • the value of T m may be 1 ms.
  • the terminal 100 can determine the chip offset initChip of the phase time shift of the RDSS outbound signal during the propagation process through the following formula (7):
  • initChip is the chip offset of the phase time shift of the RDSS outbound signal during the propagation process.
  • 1000 means that a 1PPS pulse includes 1000ms.
  • T r is the secondary code period in the RDSS outbound signal.
  • T r can be 125ms.
  • L is the number of chips of the spreading code sequence of the RDSS outbound signal.
  • the value of L can be 8000.
  • T m is the sequence period of the spreading code sequence.
  • the value of T m may be 1 ms.
  • the terminal 100 determines the Beidou short message satellite 21 based on the position and movement speed of the Beidou short message satellite 21, the position and movement speed of the terminal 100, and the downlink frequency f s of the RDSS outbound signal forwarded by the Beidou short message satellite 21. Doppler frequency deviation fd 1 to terminal 100.
  • the terminal 100 can determine the mirror velocity component V rs from the Beidou short message satellite 21 to the terminal 100 based on the position and movement speed of the Beidou short message satellite 21 and the position and movement speed of the terminal 100 .
  • the terminal 100 can determine the distance from the Beidou short message satellite 21 to the terminal 100 based on the image velocity component V rs from the Beidou short message satellite 21 to the terminal 100 and the downlink frequency f s at which the Beidou short message satellite 21 forwards the RDSS outbound signal. Puller frequency deviation fd 1 .
  • the image velocity component V rs from the Beidou short message satellite 21 to the terminal 100 can be determined by the following formula (8):
  • V rs is the image velocity component from the Beidou short message satellite 21 to the terminal 100.
  • V xs , V ys and V zs are respectively the velocity components of the Beidou short message satellite 21 in three directions (x-axis, y-axis and z-axis) in the three-dimensional coordinate system.
  • V xu , V yu and V zu are respectively the velocity components of the terminal 100 in three directions (x-axis, y-axis and z-axis) in the three-dimensional coordinate system.
  • x u , y u and zu are the position coordinates of the terminal 100 in the three-dimensional coordinate system (x-axis, y-axis and z-axis) at time T.
  • x s , y s and z s are the position coordinates of the Beidou short message satellite 21 in the three-dimensional coordinate system (x-axis, y-axis and z-axis) at time T.
  • T The time may be the time when the terminal 100 triggers the process of capturing the RDSS outbound signal.
  • the Doppler frequency offset fd 1 from the Beidou short message satellite 21 to the terminal 100 can be determined by the following formula (9):
  • fd 1 is the Doppler frequency offset from the Beidou short message satellite 21 to the terminal 100.
  • V rs is the image velocity component from the Beidou short message satellite 21 to the terminal 100 .
  • c is the propagation speed of electromagnetic waves, that is, the speed of light.
  • the terminal 100 determines the local crystal oscillator frequency offset fd 2 of the terminal 100 based on the 1PPS pulse, the local crystal oscillator frequency f u of the terminal 100 and the downlink frequency f s of the RDSS outbound signal forwarded by the Beidou short message satellite 21.
  • the terminal 100 can count the sum offset of the difference between the 1PPS pulse time count value and the expected value of the local crystal oscillator within time t.
  • the terminal 100 can determine the offset based on the sum of the differences between the 1PPS pulse time count value and the expected value within time t, the local crystal oscillator frequency f u of the terminal 100 and the downlink frequency f s of the Beidou short message satellite 21 forwarding the RDSS outbound signal.
  • the local crystal oscillator frequency deviation of the terminal 100 is fd 2 .
  • the expected counting value of the 1PPS time counter determined according to the local crystal oscillator frequency of terminal 100 is 10,000 times. However, during actual counting, the local 1PPS time counter of terminal 100 in the first 1PPS pulse The count value is 9998 times, the count value of the local 1PPS time counter of terminal 100 in the second 1PPS pulse is 9999 times, and the count value of the local 1PPS time counter of terminal 100 in the third 1PPS pulse is 9998 times. Therefore, the sum of the differences between the local crystal oscillator’s 1PPS pulse time count value and the expected value in time t is 5.
  • the local crystal oscillator frequency offset fd 2 of the terminal 100 can be determined by the following formula (10):
  • fd 2 is the local crystal oscillator frequency offset of the terminal 100.
  • f s is the downlink frequency used by Beidou short message satellite 21 to forward the RDSS outbound signal.
  • the offset is the sum of the differences between the 1PPS pulse time count value and the expected value within time t.
  • t is the total time counted by the local 1PPS time counter.
  • f u is the local crystal oscillator frequency of terminal 100.
  • the terminal 100 determines the RDSS outbound based on the Doppler frequency offset fd 1 from the Beidou short message satellite 21 to the terminal 100, the local crystal oscillator frequency offset fd 2 of the terminal 100 and the downlink frequency f s of the Beidou short message satellite 21.
  • the receiving frequency point f r of the signal The receiving frequency point f r of the signal.
  • fr is the receiving frequency point of the RDSS outbound signal.
  • f s is the downlink frequency used by Beidou short message satellite 21 to forward the RDSS outbound signal.
  • fd 1 is the Doppler frequency offset from the Beidou short message satellite 21 to the terminal 100.
  • fd 2 is the local crystal oscillator frequency offset of terminal 100.
  • the terminal 100 captures the RDSS outbound signal based on the phase shift of the chips during the propagation process of the RDSS outbound signal and the receiving frequency point f r of the RDSS outbound signal.
  • the terminal 100 after determining the phase time shift of the chip during the propagation process of the RDSS outbound signal, the terminal 100 adds a certain chip phase time shift error ⁇ chip to the phase time shift of the chip, Obtain the phase shift range of the chips of the RDSS outbound signal (initChip- ⁇ chip, initChip+ ⁇ chip).
  • the terminal 100 may capture the RDSS outbound signal in the time domain based on the phase time shift range of the chips of the RDSS outbound signal.
  • the terminal 100 can add a certain frequency error ⁇ f to the receiving frequency point f r of the RDSS outbound signal to obtain the RDSS outbound signal.
  • the terminal 100 can capture the RDSS outbound signal in the frequency domain based on the reception frequency point search range of the RDSS outbound signal.
  • the execution order of the above-mentioned steps S805-S807 can be before or after the execution order of steps S808-S8010, or in parallel, which is not limited by this application.
  • the embodiment of the present application provides a satellite signal acquisition method.
  • the terminal 100 can calculate the RDSS outbound signal from the Beidou network device 200 to The propagation time t u of the Beidou short message satellite 21 , the propagation time t d of the RDSS outbound signal from the Beidou short message satellite 21 to the terminal 100 , the Doppler of the RDSS outbound signal from the Beidou short message satellite 21 to the terminal 100 Frequency deviation fd 1 .
  • the terminal 100 can determine the phase shift of the chips during the propagation process of the RDSS outbound signal and the reception frequency point f r of the RDSS outbound signal. In this way, the terminal 100 can quickly capture the RDSS outbound signal.
  • the above content elaborates the method provided by the present application in detail.
  • the embodiments of the present application also provide corresponding devices or equipment.
  • Embodiments of the present application can divide the terminal 100 into functional modules according to the above method examples.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device 900 may be the terminal 100 in the above embodiment.
  • the communication device 900 may be a chip/chip system, such as a Beidou communication chip.
  • the communication device 900 may include a transceiver unit 910 and a processing unit 920 .
  • the transceiver unit 910 may be used to perform the functional steps related to sending, receiving, and satellite signal acquisition performed by the terminal 100 in the method embodiment shown in FIG. 8 .
  • the processing unit 920 may be used to perform functional steps such as delay calculation and frequency point calculation performed by the terminal 100 in the method embodiment shown in FIG. 8 .
  • the communication device 900 in this design can correspondingly perform the method steps performed by the terminal 100 in the previous embodiment. For the sake of brevity, they will not be described again here.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 may be the Beidou network device 200 in the above embodiment.
  • the communication device 1000 can be a specific network element in the Beidou network equipment 200, for example, one or more network elements in the Beidou ground transceiver station 22, the Beidou central station 23, and the Beidou short message converged communication platform 24.
  • the communication device 1000 may include a transceiver unit 1010 and a processing unit 1020 .
  • the transceiver unit 1010 may be used to perform the functional steps related to sending and receiving performed by the Beidou network device 200 in the above embodiment.
  • the processing unit 1020 may be configured to perform functional steps related to RDSS outbound signal generation performed by the Beidou network device 200 in the above embodiment.
  • the communication device 1000 in this design can correspondingly perform the method steps performed by the Beidou network device 200 in the previous embodiment. For the sake of brevity, they will not be described again.
  • the terminal 100 described in the embodiment of this application can be implemented by a general bus architecture.
  • FIG 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 may be the terminal 100, or a device therein.
  • the communication device 1100 includes a processor 1101 and a transceiver 1102 that communicates internally with the processor.
  • the processor 1101 is a general-purpose processor or a special-purpose processor.
  • it can be a baseband processor or central processing unit for satellite communications.
  • the baseband processor of satellite communication can be used to process satellite communication protocols and satellite communication data.
  • the central processor can be used to control communication devices (such as baseband chips, terminals, terminal chips, etc.), execute computer programs, and process computer program data.
  • the transceiver 1102 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1102 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1100 may also include an antenna 1103 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1103 and/or the radio frequency unit may be located inside the communication device 1100 or may be separated from the communication device 1100, that is, the antenna 1103 and/or the radio frequency unit may be deployed remotely or in a distributed manner.
  • the communication device 1100 may include one or more memories 1104, on which instructions may be stored.
  • the instructions may be computer programs, and the computer programs may be run on the communication device 1100, causing the communication device 1100 to execute the above. Methods described in Method Examples.
  • the memory 1104 may also store data. The communication device 1100 and the memory 1104 can be provided separately or integrated together.
  • the processor 1101, the transceiver 1102, and the memory 1104 can be connected through a communication bus.
  • the communication device 1100 can be used to perform the functions of the terminal 100 in the aforementioned embodiment: the processor 1101 can be used to perform functions such as delay calculation and frequency point calculation performed by the terminal 100 in the method embodiment shown in Figure 8. Steps and/or other processes for the technology described herein; the transceiver 1102 can be used to perform the functional steps related to sending, receiving, and satellite signal acquisition performed by the terminal 100 in the method embodiment shown in FIG. 8 and/or use Other processes for the techniques described herein.
  • the processor 1101 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1101 may store instructions, which may be computer programs.
  • the computer programs run on the processor 1101 to cause the communication device 1100 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be solidified in the processor 1101, in which case the processor 1101 may be implemented by hardware.
  • the communication device 1100 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (application specific integrated circuit (ASIC), printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • Communication device 1100 may be a stand-alone device or may be part of a larger device.
  • the communication device 1100 may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • any network element in the Beidou network equipment 200 described in the embodiment of this application can It is implemented by a general bus architecture.
  • FIG 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device 1200 may be the Beidou network device 200, or a device therein.
  • the communication device 1200 includes a processor 1201 and a transceiver 1202 that communicates internally with the processor.
  • the processor 1201 is a general-purpose processor or a special-purpose processor.
  • it can be a baseband processor or central processing unit for satellite communications.
  • the baseband processor of satellite communication can be used to process satellite communication protocols and satellite communication data.
  • the central processor can be used to control communication devices (such as baseband chips, etc.), execute computer programs, and process data of computer programs.
  • the transceiver 1202 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1202 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1200 may also include an antenna 1203 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1203 and/or the radio frequency unit may be located inside the communication device 1200 or may be separated from the communication device 1200, that is, the antenna 1203 and/or the radio frequency unit may be deployed remotely or in a distributed manner.
  • the communication device 1200 may include one or more memories 1204, on which instructions may be stored.
  • the instructions may be computer programs, and the computer programs may be run on the communication device 1200, causing the communication device 1200 to execute the above. Methods described in Method Examples.
  • the memory 1204 may also store data.
  • the communication device 1200 and the memory 1204 can be provided separately or integrated together.
  • the processor 1201, the transceiver 1202, and the memory 1204 can be connected through a communication bus.
  • the communication device 1200 can be used to perform the functions of the Beidou network device 200 in the above embodiment: the processor 1201 can be used to perform the functional steps related to RDSS outbound signal generation performed by the Beidou network device 200 in the above embodiment. /or other processes for the technology described herein; the transceiver 1202 may be used to perform the functional steps related to sending and receiving performed by the Beidou network device 200 in the above embodiments and/or other processes for the technology described herein. .
  • the processor 1201 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1201 may store instructions, which may be computer programs.
  • the computer programs run on the processor 1201 to cause the communication device 1200 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be solidified in the processor 1201, in which case the processor 1201 may be implemented by hardware.
  • An embodiment of the present application also provides a computer-readable storage medium, which stores computer program code.
  • the processor executes the computer program code, the processor executes the method in any of the foregoing embodiments.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a communication device, which can exist in the form of a chip product.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the device executes the aforementioned The method in any embodiment.
  • An embodiment of the present application also provides a Beidou communication system, including a terminal 100 and a Beidou network device 200.
  • the terminal 100 and the Beidou network device 200 can execute the method in any of the foregoing embodiments.
  • the steps of the method or algorithm described in connection with the disclosure of this application can be implemented in hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable and removable memory. Programming in electrically EPROM, EEPROM, register, hard disk, mobile hard disk, compact disc (CD-ROM) or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the core network interface device.
  • the processor and the storage medium can also exist as discrete components in the core network interface device.
  • Computer-readable media includes computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请提供的一种卫星信号捕获方法,终端可以通过接收卫星通过RNSS信号播发的导航电文(包括星历参数、1PPS脉冲、电离层参数等等),确定RDSS出站信号从卫星地面设备到卫星的传播时间和RDSS出站信号从卫星到终端的传播时间。进而,终端可以确定RDSS出站信号在传播过程中码片的相位时移。终端可以基于RDSS出站信号在传播过程中相位时移,对RDSS出站信号进行捕获。这样,可以让终端快速捕获RDSS出站信号。

Description

一种卫星信号捕获方法及相关装置
本申请要求于2022年03月30日提交中国专利局、申请号为202210327298.1、申请名称为“一种卫星信号捕获方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信技术领域,尤其涉及一种卫星信号捕获方法及相关装置。
背景技术
北斗卫星导航系统是我国自主研制的集定位、授时、通信于一体的重大基础设施。北斗短报文通信业务是北斗卫星导航系统区别于全球定位系统(global positioning system,GPS)、全球卫星导航系统(global navigation satellite system,GLONASS)、伽利略卫星导航系统(galileo satellite navigation system,GALILEO)等其他全球导航系统的特色之一。北斗短报文通信业务特别适用于在海洋、沙漠、草原、无人区等移动通信未覆盖、或覆盖不了、或通信系统被破坏的区域进行通信。北斗三号卫星的短报文系统对短报文技术体制进行了升级将北斗短报文业务的通信系统一些必要的资源开放给民用,针对民用业务和设备特性,需要依据北斗短报文业务的通信系统的特性设计通信协议。
目前,北斗三号的短报文业务通信系统由三颗同步地球轨道(geosynchronous earth orbit,GEO)卫星提供服务,在硬件资源受限的情况下,例如,终端上的跟踪通道和相关器数量较少,终端捕获到卫星信号的耗时过程较长。
发明内容
本申请提供了一种卫星信号捕获方法及相关装置,终端可以快速捕获到卫星信号。
第一方面,本申请提供了一种卫星信号捕获方法,包括:终端接收卫星通过卫星无线电导航业务RNSS信号播发的导航电文,确定出该终端的位置和终端的速度以及该卫星的星历参数、电离层参数和时钟同步脉冲;该终端基于该终端的位置、该终端的速度、该星历参数、该电离层参数和卫星地面设备的位置,确定出卫星无线电测定业务RDSS出站信号从该卫星地面设备到该卫星的第一传播时间和该RDSS出站信号从该卫星到该终端的第二传播时间;该终端基于该第一传播时间和第二传播时间,确定出该RDSS出站信号的传输时延;该终端基于该RDSS出站信号的传播时延和该时钟同步脉冲,确定出该RDSS出站信号在传播过程中的相位时移;该终端基于该RDSS出站信号在传播过程中的相位时移,捕获该RDSS出站信号。
通过本申请提供的一种卫星信号捕获方法,终端可以通过接收卫星通过RNSS信号播发的导航电文(包括星历参数、1PPS脉冲、电离层参数等等),确定RDSS出站信号从卫星地面设备到卫星的传播时间、RDSS出站信号从卫星到终端的传播时间。进而,终端可以确定RDSS出站信号在传播过程中码片的相位时移。终端可以基于RDSS出站信号在传播过程中相位时移,对RDSS出站信号进行捕获。这样,可以让终端快速捕获RDSS出站信号。
在一种可能的实现方式中,该方法还包括:该终端基于该终端的位置、该终端的速度、该星历参数和该卫星转发该RDSS出站信号的下行频率,确定出该RDSS出站信号从该卫星到该终端的第一多普勒频偏;该终端基于该卫星转发该RDSS出站信号的下行频率和该第一多普勒频偏,确定出该RDSS出站信号的接收频点;该终端基于该RDSS出站信号在传播过程中的相位时移,捕获该RDSS出站信号,具体包括:该终端基于该RDSS出站信号在传播过程中的相位时移和该RDSS出站信号的接收频点,捕获该RDSS出站信号。
这样,通过计算该RDSS出站信号从该卫星到该终端的第一多普勒频偏,终端可以准确确定出RDSS出站信号在的接收频点,提高RDSS出站信号的捕获速度。
在一种可能的实现方式中,该方法还包括:该终端基于该时钟同步脉冲、该终端的本地晶振频率和该卫星转发该RDSS出站信号的下行频率,确定出该终端100的本地晶振频偏;该终端基于该卫星转发该RDSS出站信号的下行频率、该第一多普勒频偏和该第二多普勒频偏,确定出该RDSS出站信号的接收频点,具体包括:该终端基于该卫星转发该RDSS出站信号的下行频率、该第一多普勒频偏、该第二多普勒频偏和该终端的本地晶振频偏,确定出该RDSS出站信号的接收频点。
这样,通过进一步考虑终端的本地晶振频偏,终端可以准确确定出RDSS出站信号在的接收频点,提高RDSS出站信号的捕获速度。
在一种可能的实现方式中,该终端基于该终端的位置、该终端的速度、该星历参数和该卫星转发该RDSS出站信号的下行频率,确定出该RDSS出站信号从该卫星到该终端的第一多普勒频偏,具体包括:该终端基于该星历参数确定出该卫星的卫星位置和卫星速度;该终端基于该卫星位置、该卫星速度、该终端的位置、该终端的速度和该卫星转发该RDSS出站信号的下行频率,确定出该第一多普勒频偏。
在一种可能的实现方式中,该终端基于该RDSS出站信号在传播过程中的相位时移和该RDSS出站信号的接收频点,捕获该RDSS出站信号,具体包括:该终端基于该RDSS出站信号的接收频点和频点误差,确定出该RDSS出站信号的接收频点搜索范围;该终端基于该RDSS出站信号在传播过程中的相位时移和该RDSS出站信号的接收频点搜索范围,捕获该RDSS出站信号。
这样,在RDSS出站信号的接收频点上进一步考虑频点误差,可以增加捕获RDSS出站信号的容错率。
在一种可能的实现方式中,该终端基于该RDSS出站信号在传播过程中的相位时移,捕获该RDSS出站信号,具体包括:该终端基于该RDSS出站信号在传播过程中的相位时移和相位时移误差,确定该RDSS出站信号的相位时移范围;该终端基于该RDSS出站信号的相位时移范围在时域上捕获该RDSS出站信号。
这样,在RDSS出站信号的相位时移上进一步考虑相位时移误差,可以增加捕获RDSS出站信号的容错率。
在一种可能的实现方式中,该终端基于该终端的位置、该终端的速度、该星历参数、该 电离层参数和卫星地面设备的位置,确定出卫星无线电测定业务RDSS出站信号从该卫星地面设备到该卫星的第一传播时间和该RDSS出站信号从该卫星到该终端的第二传播时间,具体包括:该终端基于该星历参数和电离层参数确定出该卫星的卫星位置和卫星速度;该终端基于该电离层参数确定出该RNSS信号的电离层延迟,并基于该RNSS信号的电离层延迟,确定出该RDSS出站信号的上行电离层传输延迟和该RDSS出站信号的下行电离层传输延迟;该终端基于该卫星的卫星位置和该卫星地面设备的位置,通过第一对流层延迟模型确定出RDSS出站信号的上行对流层的传输延迟;该终端基于该卫星的卫星位置和该终端的位置,通过第二对流层延迟模型确定出该RDSS出站信号的下行对流层的传输延迟;该终端基于该RDSS出站信号从该卫星地面设备到该卫星传播过程中上行对流层的传输延迟、该RDSS出站信号从该卫星地面设备到该卫星传播过程中的上行电流层传输延迟、该卫星地面设备的发射延迟、该卫星地面设备的位置和该卫星的位置,确定出该第一传播时间;该终端基于该RDSS出站信号从该卫星到该终端传播过程中下行对流层的传输延迟、该RDSS出站信号从该卫星到该终端传播过程中下行电离层的传输延迟、该卫星的位置和该终端的位置,确定出该第二传播时间。
在一种可能的实现方式中,该RDSS出站信号在传播过程中的相位时移包括该RDSS出站信号在传播过程中相位时移的码片偏移量;该终端基于RDSS出站信号的传播时延和该时钟同步脉冲,确定出该RDSS出站信号在传播过程中的相位时移,具体包括:该终端基于该RDSS出站信号的传播时延、时钟同步脉冲、该RDSS出站信号的扩频码序列的码片数量L、扩频码序列的序列周期和该RDSS出站信号中的副码周期,确定出该RDSS出站信号在传播过程中相位时移的码片偏移量。
在一种可能的实现方式中,该第一传播时间通过如下公式确定:
其中,tu为该第一传播时间。xc、yc和zc为在T时刻该卫星地面设备在三维坐标系中的位置坐标。xs、ys和zs为在该T时刻该卫星在三维坐标系中的位置坐标。tc为该卫星地面设备的发射延迟。ttrop-u为该RDSS出站信号的上行对流层传输延迟。ti-u为该RDSS出站信号的上行电离层传输延迟。c为电磁波的传播速度。该T时刻可以为该终端触发捕获该RDSS出站信号过程的时刻。
在一种可能的实现方式中,该第二传播时间通过如下公式确定:
其中,td为该第二传播时间,xu、yu和zu为在T时刻该终端在三维坐标系中的位置坐标,xs、ys和zs为在该T时刻该卫星在三维坐标系中的位置坐标,ttrop-d为该RDSS出站信号的下行对流层的传输延迟,ti-d为该RDSS出站信号的下行电离层传输延迟,c为电磁波的传播速度。
在一种可能的实现方式中,该RDSS出站信号的传输时延,通过如下公式确定:
Δt=tu+td
其中,Δt为该RDSS出站信号的传输时延,tu为该第一传播时间,td为该第二传播时间。
在一种可能的实现方式中,该时钟同步脉冲为秒脉冲1PPS;该RDSS出站信号在传播过程中码片的相位时移,通过如下公式确定:
其中,initChip为该RDSS出站信号在传播过程中相位时移的码片偏移量,Tr为该RDSS出站信号中的副码周期,L为该RDSS出站信号的扩频码序列的码片数量。Tm为该RDSS出站信号的扩频码序列的序列周期。
在一种可能的实现方式中,该RDSS出站信号的接收频点通过如下公式确定:
fr=fs+fd1+fd2
其中,fr为该RDSS出站信号的接收频点,fs为该卫星转发该RDSS出站信号的下行频率,fd1为该第一多普勒频偏,fd2为该终端的本地晶振频偏。
在一种可能的实现方式中,该卫星为地球同步轨道GEO卫星。
在一种可能的实现方式中,该终端预存有该卫星地面设备的位置。
在第一方面中卫星可以指有卫星信号捕获需求的卫星系统,例如,基于北斗短报文业务的北斗通信系统。在该北斗通信系统中,上述卫星可以为北斗短报文卫星,卫星地面设备可以为北斗网络设备。
第二方面,本申请提供了一种终端,包括一个或多个处理器和一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述任一方面任一项可能的实现方式中的方法。
第三方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在终端上运行时,使得终端执行上述任一方面任一项可能的实现方式中的方法。
第四方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述任一方面任一项可能的实现方式中的方法。
第五方面,本申请提供了一种芯片或芯片系统,应用于终端,包括处理电路和接口电路,接口电路用于接收代码指令并传输至处理电路,处理电路用于运行代码指令以执行上述第一方面任一项可能的实现方式中的方法。
其中,第二方面至第五方面的有益效果,请参见第一方面的有益效果,不重复赘述。
附图说明
图1为本申请实施例提供的一种北斗通信系统的架构示意图;
图2A为本申请实施例提供的一种北斗通信系统中数据入站的传输过程示意图;
图2B为本申请实施例提供的一种北斗通信系统中数据出站的传输过程示意图;
图3为本申请实施例提供的终端的结构示意图;
图4为本申请实施例中提供的一种北斗通信系统的出站数据的协议封装架构示意图;
图5为本申请实施例中提供的一种北斗通信系统的出站数据的协议解析架构示意图;
图6为本申请实施例中提供的一种RDSS出站信号的传播过程示意图;
图7为本申请实施例中提供的一种RDSS出站信号的时域相位偏移图;
图8为本申请实施例中提供的一种卫星信号捕获方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面介绍本申请实施例中提供的一种北斗通信系统10。
图1示出了本申请实施例中提供的一种北斗通信系统10的架构示意图。
如上图1所示,北斗通信系统10可以包括终端100、北斗短报文卫星21、北斗网络设备200、短消息中心25和终端300。可选的,该北斗通信系统10还可以包括紧急救援平台26、紧急救援中心27。
其中,终端100可以发送短报文信息给北斗短报文卫星21,北斗短报文卫星21只进行中继,直接将终端100发送的短报文信息转发给地面的北斗网络设备200。北斗网络设备200可以根据北斗通信协议解析卫星转发的短报文信息,并将从短报文信息中解析出的通用报文类型的报文内容转发给短消息中心(short message service center,SMSC)25。短消息中心25可以通过传统的蜂窝通信网络,将报文内容转发给终端300。北斗网络设备200也可以将终端100发送的紧急求救类型的报文,通过紧急救援平台26发送给紧急救援中心27。
终端300也可以通过传统的蜂窝通信网络,将短消息发送给短消息中心25。短消息中心25可以将终端300的短消息转发给北斗网络设备200。北斗网络设备200可以将终端300的短消息通过北斗短报文卫星21中继发送给终端100。
其中,上述北斗网络设备200可以包括北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24。其中,北斗地面收发站22可以包括分别具有发送功能的一个或多个设备和具有接收功能的一个或多个设备,或者可以包括具有发送功能和接收功能的一个或多个设备,此处不作限定。北斗地面收发站22可用于北斗网络设备200在物理层(physical layer  protocol,PHY)对数据的处理功能。北斗中心站23可用于北斗网络设备200在卫星链路层(satellite link control protocol,SLC)层和消息数据汇聚层(message data convergence protocol,MDCP)对数据的处理功能。北斗短报文融合通信平台24可用于在应用层(application layer protocol,APP)对数据的处理功能。
其中,由于北斗通信系统10是通过卫星链路进行通信,其主要特性是:时延长(单向约270ms),链路损耗大。当前北斗通信系统10支持的业务主要是突发短消息业务,不支持连接状态管理、移动性管理和广播控制信息等。
终端100可以主动通过北斗短报文卫星21给北斗网络设备200发送数据。但是,由于没有空口信令,地面的中心站无法主动寻呼用户。由于卫星通信传播距离远,北斗通信系统10中对终端100的发送功率要求高。受限当前终端100上射频器件的限制,终端100无法向北斗短报文卫星21长时间持续发送信号。为了尽量不损坏终端100上射频器件,终端100的射频器件在发送状态持续工作一段时间后,必须停止工作一段时间后才能继续切换到发送状态继续工作。其中,终端100上发送状态的持续时长由终端100的底层硬件能力所决定。在上述北斗通信系统10中,为了保证终端100接收到的数据和发送的数据互不干扰,终端100不支持发送数据和接收数据同时发生。终端100需要在发送数据后,再等待接收北斗网络设备200发送的数据。
其中,北斗网络设备200的工作模式可以是双工模式,可以同时收发数据,且北斗网络设备200可以长时间发送和接收数据。
图2A示出了本申请实施例提供的一种北斗通信系统中数据入站的传输过程。
如图2A所示,数据入站可以指终端100将数据发送给北斗网络设备200。例如,终端100可以向北斗地面收发站22发送数据帧。北斗地面收发站22可以将数据帧发送给北斗中心站23。北斗中心站23可以将数据帧汇聚成应用层报文上报给北斗短报文融合通信平台24。北斗中心站23可以在接收到终端100发送的数据帧后,向终端100返回SLC层的确认字符(acknowledge character,ACK)。该ACK可用于指示北斗网络设备200是否成功收到终端100发送的数据帧。
图2B示出了本申请实施例提供的一种北斗通信系统中数据出站的传输过程。
如图2B所示,数据出站可以指北斗网络设备200将数据发送给终端100。例如,北斗网络设备200中的北斗短报文融合通信平台24可以将应用层报文发送给北斗中心站23;然后北斗中心站23可以将该应用层报文拆分成一个或多个数据帧发送给北斗地面收发站22,由北斗短报文卫星21中继后发送给终端100。可选的,终端100接收到数据帧后可以向北斗中心站23返回SLC层的ACK。该ACK可用于终端100是否成功接收到北斗网络设备200发送的数据帧。
图3示出了终端100的结构示意图。
下面以终端100为例对实施例进行具体说明。应该理解的是,图3所示终端100仅是一个范例,并且终端100可以具有比图3中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图3中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线 (universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(serail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块 150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),卫星通信模块,调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
其中,卫星通信模块可用于与卫星网络设备进行通信,例如在北斗通信系统中,卫星通信模块可以与北斗网络设备200通信,卫星通信模块的可支持与北斗网络设备200之间的短报文传输。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD)。显示面板还可以采用有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),miniled,microLed,micro-oled,量子点发光二极管(quantum dot light emitting diodes,QLED)等制造。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器 等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行终端100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。 终端100可以设置至少一个麦克风170C。在另一些实施例中,终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端100根据压力传感器180A检测所述触摸操作强度。终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端100是翻盖机时,终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端100附近有物体。当检测到不充分的反射光时,终端100可以确定终端100附近没有物体。终端100可以利用接近光传感器180G检测用户手持终端100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端100对电池142加热,以避免低温导致终端100异常关机。在其他一些实施例中,当温度低于又一阈值时,终端100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端100中,不能和终端100分离。
下面介绍本申请实施例中提供的一种北斗通信系统10的出站数据的协议封装架构。
图4示出了本申请实施例中提供的一种北斗通信系统10的出站数据的协议封装架构示意图。
如图4所示,北斗网络设备200中的北斗短报文传输协议层可以应用层(application layer protocol,APP)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控 制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。其中,北斗网络设备200可以包括北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24。北斗地面收发站22可用于负责PHY层的协议处理。北斗中心站23可用于负责SLC层和MDCP层的协议处理。北斗短报文融合通信平台24可用于负责APP层的协议处理。
北斗网络设备200发送数据给终端100时,北斗网络设备200中的北斗短报文传输协议的工作流程可以如下:
在APP层,北斗网络设备200可以将原始数据通过压缩算法,压缩成压缩数据,并在压缩数据前面添加压缩指示字段,其中,压缩指示字段可用于表示该压缩数据的压缩算法类型。之后,北斗网络设备200可以将压缩数据加密,得到加密后数据,并在加密后数据的头部添加加密算法字段,该加密算法字段用于表示该加密后的数据的加密算法类型。北斗网络设备200可以将加密后数据、压缩指示字段、加密指示字段封装成应用层报文下发给MDCP层。其中,该应用层报文可以包括报文头和报文数据。该报文头中可以包括压缩指示字段和加密指示字段等等。该报文数据包括上述加密后数据。
可选的,北斗网络设备200也可以将压缩指示字段和压缩数据一起进行加密,得到加密后数据。
在MDCP层,北斗网络设备200可以通过层间接口获取到APP层下发的应用层报文,并将应用层报文作为一个MDCP SDU。在MDCP层,北斗网络设备200可以将一个MDCP SDU拆分成一个或多个固定长度的MDCP分段数据(M_segement),并在每个MDCP分段数据的头部添加后继指示字段,得到MDCP PDU,即MDCP PDU包括M_segement和后继指示字段。其中,后继指示字段可用于表示当前的MDCP PDU是连续发送的多个MDCP PDU的起始MDCP PDU或中间MDCP PDU或最后一个MDCP PDU;或者是单独发送的一个MDCP PDU。
在SLC层,北斗网络设备200可以通过层间接口获取到MDCP层下发的MDCP PDU,作为SLC SDU。在SLC层,北斗网络设备200可以将SLC SDU分段成一个或多个(例如,最多4个)固定长度的SLC分段数据(S_segement),并在每个S_segement头部添加帧头信息,得到SLC PDU。
这里,可以理解的是,为了适应物理层的帧长,SLC层需要将数据进行分段。而SLC层的设计一个SLC SDU最多只能分成4个SLC PDU,因此MDCP层也需要将数据进行分段。
在PHY层,北斗网络设备200可以通过层间接口获取到SLC层下发的SLC PDU。北斗网络设备200可以从SLC层获取到一个用户或多个用户的SLC PDU。北斗网络设备200可以将多个用户的SLC PDU拼接在一起,再加上物理帧的帧头(例如版本号)作为PHY层的编码块(code block),并在code block的尾部添加校验位(例如,循环冗余校验(cyclic redundancy check,CRC)码),并对code block和CRC码进行编码(例如polar编码),编码后的物理帧加上保留段可以组成一个固定长度的物理时隙的卫星到消费者数据(satellite to consumer data,S2C-d)信道(简称,数据信道)的编码数据。其中,北斗网络设备200可以将一个用户的多个SLC PDU分别放到不同的物理帧中。然后,北斗网络设备200将S2C-d信道支路的编码数据和卫星到消费者导频(satellite to consumer pilot,S2C-p)信道(简称,导频信道)的导频信息组成导频编码数据,即出站数据。北斗网络设备200可以将出站数据发送给北斗短报文卫星21,经由北斗短报文卫星21中继转发给终端100。
可以理解的是,S2C-p信道支路的导频信息与卫星波束相关。当卫星波束号是已知信息时,S2C-p信道支路的导频信息也是已知的,无需解码的。而S2C-d信道支路的编码数据是 需要解码的。其中,S2C-p信道与S2C-d信道的中心频率和带宽相同,S2C-p信道上的信号与S2C-d信道支路上的信号相互正交。
下面介绍本申请实施例中提供的一种北斗通信系统10的出站数据的协议解析架构。
图5示出了本申请实施例中提供的一种北斗通信系统10的出站数据的协议解析架构示意图。
如图5所示,终端100的北斗短报文传输协议层可以分为应用层(application layer protocol,APP)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。
终端100在接收到北斗网络设备发送的数据时,终端100的北斗短报文传输协议层的工作流程可以如下:
在PHY层,终端100可以获取到北斗网络设备200发送的经过调制和扩频后的导频编码数据。终端100可以对接收到的扩频调制数据(spread+modulated data)进行解扩频,得到调制数据(modulated data)。然后,终端100可以对调制数据进行解调,得到导频编码数据(pilot+data)。接着,终端100可以去除导频编码数据中的导频信息,得到编码数据(code data)。然后,终端100可以对编码数据进行解码,并通过校验位字段中的校验数据验证编码块(code block)的完整性。若完整,则终端100可以提取出编码块(code block),通过层间接口呈递给SLC层,作为SLC层的SLC PDU。
这里,该导频编码数据即为上述北斗网络设备200发送的出站数据,该出站数据由S2C-d信道的编码数据和S2C-p信道的导频信息组成。
在SLC层,终端100可以基于SLC PDU的帧头信息,将属于同一个SLC SDU的SLC PDU拼接成一个SLC SDU。终端100可以将SLC SDU通过层间接口呈递给MDCP层,作为MDCP层的MDCP PDU。
在MDCP层,终端100可以将属于同一个MDCP SDU的所有MDCP PDU拼接成一个MDCP SDU。终端100可以将MDCP SDU通过层间接口呈递到APP层,作为APP层接收到的应用层报文。
在APP层,终端100可以基于应用层报文的报文头,对应用层报文进行解密、解压缩,得到原始数据。
本申请实施例中,上述协议处理过程仅为示例说明,本申请对协议处理的具体操作不作限定。
下面介绍本申请实施例中北斗通信系统中卫星信号捕获过程。
卫星导航系统的导航卫星及运控应用系统中同时集成有卫星无线电导航业务(radio navigation satellite system,RNSS))和卫星无线电测定业务(radio determination satellite service,RDSS)。其中,RNSS可以对用户的位置进行测量、速度以及航线参数计算。RDSS可以实现定位、授时、通信的集成。RNSS和RDSS的导航体制和信号格式统一在同一时间系统中。北斗通信系统10中同时支持RNSS业务和RDSS业务,以实现短报文通信。
如图6所示,北斗网络设备200可以将RDSS出站信号通过北斗短报文卫星21转发给终端100。其中,北斗短报文卫星21可以是GEO卫星。RDSS出站信号从北斗网络设备200发送给北斗短报文卫星21时需要依次通过对流层和电离层,RDSS出站信号从北斗短报文卫星21转发给终端100时需要依次通过电离层和对流层。其中,RDSS出站信号可以包括S2C-p 信道支路的导频信号。其中,S2C-p信道支路的导频信号持续周期性发送。终端100可以通过捕获北斗短报文卫星21转发的S2C-p信道支路上导频信号,来实现对卫星波束的跟踪。出站数据中S2C-p信道支路的导频信号中副码的周期可以为固定时长(例如125ms)。其中,副码中采用的扩频码序列可以采用两路13位移位寄存器产生的Gold码序列,然后再截断至指定长度(例如8000位)得到的码序列。该扩频码序列的周期时长可以为1ms。
然而,终端100对RDSS出站信号的捕获时,需要使用本地生成的扩频码序列样本与接收到的RDSS出站信号中的扩频码序列进行相关峰运算,每次运算后,终端100需要调整本地生成的扩频码序列的码片相位重新与接收到的RDSS出站信号进行相关峰运算,直至相关峰运算结果满足捕获条件,即完成对RDSS出站信号的捕获。
北斗网络设备200在向北斗短报文卫星21发送出站数据的传播时间为tu、北斗短报文卫星21将出站数据转发给终端100的传播时间为td。北斗短报文卫星21的运动速度在三维坐标系下速度分量为(Vxs,Vys,Vzs),终端100在三维坐标系下速度分量为(Vxu,Vyu,Vzu)。
由于RDSS出站信号使用的扩频码序列的长度较长且码率较高,北斗网络设备200将RDSS出站信号通过北斗短报文卫星21传播给终端100的过程中存在的传播时延。RDSS出站信号的传播时延,会导致终端100调整扩频码序列的码片相位范围扩大,这导致了终端100捕获RDSS出站信号的时间较长。
如图7所示,北斗网络设备200发送的RDSS出站信号中的副码以及副码中采用的扩频码序列,对于终端100是已知的。终端100可以在时刻T2时开启捕获通道接收到北斗短报文卫星21转发的RDSS出站信号,但由于RDSS出站信号的传播时延Δt,终端100在时刻T2时接收到的RDSS出站信号实际上是北斗网络设备200在时刻T1时发送的。也即,终端100在时刻T2接收到的RDSS出站信号,与北斗网络设备200在时刻T2发送的RDSS出站信号出现了码片相位时移。如果终端100还是按照北斗网络设备200在时刻T2时发送的RDSS出站信号与终端100可以在时刻T2时接收到的RDSS出站信号进行相关峰计算,容易导致终端100捕获RDSS出站信号的时间较长,甚至捕获失败。
并且,考虑到终端100可以北斗短报文卫星21都在移动以及晶振偏差等因素,会导致终端100接收到RDSS出站信号的频率与实际北斗网络设备200发送RDSS出站信号的频率不一致,使得终端100搜索RDSS出站信号的频率范围扩大,这导致了终端100捕获RDSS出站信号的时间较长。
因此,本申请实施例中提供了一种卫星信号捕获方法,终端100可以通过接收北斗短报文卫星21通过RNSS信号播发的导航电文(包括星历参数、1PPS脉冲、电离层参数等等),确定RDSS出站信号从北斗网络设备200到北斗短报文卫星21的传播时间tu、RDSS出站信号从北斗短报文卫星21到终端100的传播时间td、RDSS出站信号从北斗短报文卫星21到终端100的多普勒频偏fd1。进而,终端100可以确定RDSS出站信号在传播过程中码片的相位时移和RDSS出站信号的接收频点fr。终端100可以基于RDSS出站信号在传播过程中码片的相位时移和RDSS出站信号的接收频点fr,对RDSS出站信号进行捕获。这样,可以让终端100快速捕获RDSS出站信号。
下面介绍本申请实施例中提供的一种卫星信号捕获方法。
图8示出了本申请实施例中提供的一种卫星信号捕获方法的流程示意图。
如图8所示,该方法可以包括:
S801.终端100接收北斗短报文卫星21通过RNSS信号播发的导航电文。
其中,导航电文中可以包括北斗短报文卫星的星历参数、电离层参数、时间同步参数、卫星时钟修正参数、历书数据、导航服务参数等等。其中,时间同步参数包括1PPS脉冲。电离层参数包括RNSS信号的电离层传输延迟,例如,北斗导航系统B1L频点的电离层延迟。
S802.终端100基于RNSS信号播发的导航电文,确定出终端100的位置和速度。
终端100在接收到RNSS信号播发的导航电文后,可以基于从导航电文中时间同步参数以及卫星时钟修正参数与北斗短报文卫星21以及北斗网络设备200的时钟进行同步。在时钟同步之后,终端100可以通过从导航电文中解析出的上述多个参数对终端100的位置进行定位,确定出终端100的位置和速度。
可选的,终端100可以通过精确全球导航卫星系统(precious GNSS,PGNSS)预测北斗短报文卫星21的星历参数和电离层参数。
S803.终端100获取北斗短报文卫星21的星历参数、电离层参数和1PPS脉冲。
终端100在接收到北斗短报文卫星21通过RNSS信号播发的导航电文后,可以从导航电文中解析出北斗短报文卫星21的星历参数、电离层参数和时间同步参数,等等。其中,时间同步参数中包括1PPS脉冲。
S804.终端100基于北斗短报文卫星的星历参数和电离层参数,确定出北斗短报文卫星的卫星位置和卫星速度、RDSS出站信号的上行对流层的传输延迟ttrop-u,RDSS出站信号的下行对流层的传输延迟ttrop-d、RDSS出站信号的上行电离层传输延迟ti-u和RDSS出站信号的下行电离层传输延迟ti-d
其中,星历参数描述了卫星运动轨道的信息。终端100可以基于北斗短报文卫星21的星历参数以及本地同步后的时钟时间,确定出北斗短报文卫星21的卫星位置和卫星速度。
终端100在确定出北斗短报文卫星21的卫星位置后,可以基于终端100的位置、北斗短报文卫星21的卫星位置和预设的对流层传输延迟模型,确定出RNSS信号的下行对流层传输延迟。其中,由于对流层对RNSS信号和RDSS出站信号的影响近似一致,因此,终端100可以将RNSS信号的下行对流层传输延迟确定为RDSS信号的下行对流层传输延迟ttrop-d。其中,终端100可以基于北斗网络设备200的位置和北斗短报文卫星21的卫星位置,和预设的对流层传输延迟模型,确定出RDSS信号的上行对流层传输延迟ttrop-u
由于电离层参数包括RNSS信号的电离层传输延迟(例如,北斗导航系统中B1L频点的电离层延迟),电离层对RNSS信号和RDSS出站信号的影响不一致,但RDSS出站信号的电离层传输延迟可以根据RNSS信号的电离层延迟换算得到,其中,RDSS出站信号的电离层传输延迟包括RDSS出站信号在北斗网络设备200至北斗短报文卫星21的传输路径的上行电离层传输延迟ti-u、以及RDSS出站信号在北斗短报文卫星21到终端100的传输路径的下行电离层传输延迟ti-d
其中,RDSS出站信号的上行电离层传输延迟ti-u可以通过如下公式(1)确定:
ti-u=a*ti  公式(1)
其中,在上述公式(1)中,ti-u为RDSS出站信号的上行电离层传输延迟。ti为RNSS信号的电离层传输延迟(例如,北斗导航系统中B1L频点的电离层延迟)。a为换算系数,例如,经试验数据得,a的取值可以为0.0625。
其中,RDSS出站信号的下行电离层传输延迟ti-d可以通过如下公式(2)确定:
ti-d=b*ti  公式(2)
其中,在上述公式(2)中,ti-d RDSS出站信号的下行电离层传输延迟。ti为RNSS信 号的电离层传输延迟(例如,北斗导航系统中B1L频点的电离层延迟)。b为换算系数,例如,经试验数据得,b的取值可以为0.4。
S805.终端100基于RDSS出站信号的下行对流层的传输延迟ttrop-u。RDSS出站信号的下行对流层的传输延迟ttrop-d、RDSS出站信号的上行电离层传输延迟ti-u、RDSS出站信号的下行电离层传输延迟ti-d、终端100的位置,北斗短报文卫星21的位置、北斗网络设备200的位置、北斗网络设备200的发射延迟tc,确定出RDSS出站信号从北斗网络设备200到北斗短报文卫星21的传播时间tu和RDSS出站信号从北斗短报文卫星21到终端100的传播时间td
当北斗网络设备200包括有上述图1所示的北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24时,北斗网络设备200的位置可以具体指北斗地面收发站22上发射天线的地理位置,北斗网络设备200的发射延迟tc可以具体指北斗中心站23生成RDSS出站信号至北斗地面收发站22开始发送RDSS出站信号的时延。
其中,北斗网络设备200的位置和北斗网络设备200的发射延迟tc可以预置在终端100上。可选的,终端100在接入蜂窝网络或者Wi-Fi网络时,终端100可以通过蜂窝网络或者Wi-Fi网络访问到北斗服务器上获取到最新的北斗网络设备200的位置和北斗网络设备200的发射延迟tc,并将最新的北斗网络设备200的位置和北斗网络设备200的发射延迟tc保存至终端100本地。
RDSS出站信号从北斗网络设备200到北斗短报文卫星21的传播时间tu可以通过如下公式(3)确定:
其中,在上述公式(3)中,tu为RDSS出站信号从北斗网络设备200到北斗短报文卫星21的传播时间。xc、yc和zc为在T时刻北斗网络设备200在三维坐标系(x轴、y轴和z轴)中的位置坐标。xs、ys和zs为在T时刻北斗短报文卫星21在三维坐标系(x轴、y轴和z轴)中的位置坐标。tc为北斗网络设备200的发射延迟。ttrop-u为RDSS出站信号的上行对流层传输延迟。ti-u为RDSS出站信号的上行电离层传输延迟。c为电磁波的传播速度,即光速。其中,上述T时刻可以为终端100触发捕获RDSS出站信号过程的时刻。
RDSS出站信号从北斗短报文卫星21到终端100的传播时间td可以通过如下公式(4)确定:
其中,在上述公式(4)中,td为RDSS出站信号从北斗短报文卫星21到终端100的传播时间。xu、yu和zu为在T时刻终端100在三维坐标系(x轴、y轴和z轴)中的位置坐标。xs、ys和zs为在T时刻北斗短报文卫星21在三维坐标系(x轴、y轴和z轴)中的位置坐标。ttrop-d为RDSS出站信号的下行对流层的传输延迟。ti-d为RDSS出站信号的下行电离层传输延迟。c为电磁波的传播速度,即光速。其中,上述T时刻可以为终端100触发捕获RDSS出站信号过程的时刻。
S806.终端100基于RDSS出站信号从北斗网络设备200到北斗短报文卫星21的传播时间tu和RDSS出站信号从北斗短报文卫星21到终端100的传播时间td,确定出RDSS出站信号的传输时延Δt。
其中,RDSS出站信号的传输时延Δt可以通过如下公式(5)确定:
Δt=tu+td  公式(5)
在上述公式(5)中,Δt为RDSS出站信号的传输时延。tu为RDSS出站信号从北斗网络设备200到北斗短报文卫星21的传播时间。td为RDSS出站信号从北斗短报文卫星21到终端100的传播时间。
S807.终端100基于RDSS出站信号的传播时延Δt、1PPS脉冲、RDSS出站信号中扩频码序列的码片数量L、扩频码序列的序列周期Tm和RDSS出站信号中的副码周期Tr,确定出RDSS出站信号在传播过程中码片的相位时移。
其中,RDSS出站信号的传播时延Δt、扩频码序列的序列周期Tm和RDSS出站信号中的副码周期Tr的单位都是毫秒(ms)。
相位时移可以指RDSS出站信号在传播过程中由于传输延迟,导致初始码片在时域上出现的偏移量。其中,在本申请中,相位时移的偏移量可以具体细分到偏移的码片数量。
具体的,终端100可以通过如下公式(6)确定出RDSS出站信号在传播过程中相位时移的毫秒计数值msidx:
其中,在上述公式(6)中,msidx为RDSS出站信号在传播过程中相位时移的毫秒计数值。1000表示1个1PPS脉冲中包括有1000ms。Tr为RDSS出站信号中的副码周期,例如,Tr可以为125ms。L为RDSS出站信号中扩频码序列的码片数量,例如L的取值可以为8000。Tm为扩频码序列的序列周期,例如,Tm的取值可以为1ms。
终端100可以通过如下公式(7)确定出RDSS出站信号在传播过程中相位时移的码片偏移量initChip:
其中,在上述公式(7)中,initChip为RDSS出站信号在传播过程中相位时移的码片偏移量。1000表示1个1PPS脉冲中包括有1000ms。Tr为RDSS出站信号中的副码周期,例如,Tr可以为125ms。L为RDSS出站信号的扩频码序列的码片数量,例如,L的取值可以为8000。Tm为扩频码序列的序列周期,例如,Tm的取值可以为1ms。
S808.终端100基于北斗短报文卫星21的位置和运动速度、终端100的位置和运动速度、北斗短报文卫星21转发RDSS出站信号的下行频率fs,确定出北斗短报文卫星21到终端100的多普勒频偏fd1
终端100可以基于北斗短报文卫星21的位置和运动速度、终端100的位置和运动速度,确定出北斗短报文卫星21到终端100的镜像速度分量Vrs。终端100可以基于北斗短报文卫星21到终端100的镜像速度分量Vrs和北斗短报文卫星21转发RDSS出站信号的下行频率fs,确定出北斗短报文卫星21到终端100的多普勒频偏fd1
其中,北斗短报文卫星21到终端100的镜像速度分量Vrs可以通过如下公式(8)确定:
在上述公式(8)中,Vrs为北斗短报文卫星21到终端100的镜像速度分量。Vxs、Vys和Vzs,分别为北斗短报文卫星21在三维坐标系中三个方向(x轴、y轴和z轴)上的速度分量。Vxu、Vyu和Vzu,分别为终端100在三维坐标系中三个方向(x轴、y轴和z轴)上的速度分量。xu、yu和zu为在T时刻终端100在三维坐标系(x轴、y轴和z轴)中的位置坐标。xs、ys和zs为在T时刻时北斗短报文卫星21在三维坐标系(x轴、y轴和z轴)中的位置坐标。其中,上述T 时刻可以为终端100触发捕获RDSS出站信号过程的时刻。
其中,北斗短报文卫星21到终端100的多普勒频偏fd1,可以通过如下公式(9)确定:
其中,在上述公式(9)中,fd1为北斗短报文卫星21到终端100的多普勒频偏。Vrs为北斗短报文卫星21到终端100的镜像速度分量。c为电磁波的传播速度,即光速。
S809.终端100基于1PPS脉冲、终端100的本地晶振频率fu和北斗短报文卫星21转发RDSS出站信号的下行频率fs,确定出终端100的本地晶振频偏fd2
具体的,终端100在获取到1PPS脉冲之后,可以统计本地晶振在时间t内1PPS脉冲时间计数值与预期值的差值之和offset。终端100可以基于时间t内1PPS脉冲时间计数值与预期值的差值之和offset、终端100的本地晶振频率fu和北斗短报文卫星21转发RDSS出站信号的下行频率fs,确定出终端100的本地晶振频偏fd2
例如,在3s内,可以有3个1PPS脉冲,按照终端100本地晶振频率确定出的1PPS时间计数器的计数预期值为10000次,但实际计数时,第1个1PPS脉冲中终端100本地1PPS时间计数器的计数值为9998次、第2次1PPS脉冲中终端100本地1PPS时间计数器的计数值为9999次、第3次1PPS脉冲中终端100本地1PPS时间计数器的计数值为9998次。因此,本地晶振在时间t内1PPS脉冲时间计数值与预期值的差值之和offset为5。
终端100的本地晶振频偏fd2可以通过如下公式(10)确定:
其中,在上述公式(10)中,fd2为终端100的本地晶振频偏。fs为北斗短报文卫星21转发RDSS出站信号的下行频率。offset为时间t内1PPS脉冲时间计数值与预期值的差值之和。t为本地1PPS时间计数器计数的总时间。fu为终端100的本地晶振频率。
S810.终端100基于北斗短报文卫星21到终端100的多普勒频偏fd1、终端100的本地晶振频偏fd2和北斗短报文卫星21的下行频率fs,确定出RDSS出站信号的接收频点fr
其中,RDSS出站信号的接收频点fr可以通过如下公式(11)确定:
fr=fs+fd1+fd2公式(11)
其中,在上述公式(11)中,fr为RDSS出站信号的接收频点。fs为北斗短报文卫星21转发RDSS出站信号的下行频率。fd1为北斗短报文卫星21到终端100的多普勒频偏。fd2为终端100的本地晶振频偏。
S811.终端100基于RDSS出站信号在传播过程中码片的相位时移和RDSS出站信号的接收频点fr,对RDSS出站信号进行捕获。
在一种可能的实现方式中,终端100在确定出RDSS出站信号在传播过程中码片的相位时移后,在码片的相位时移上加上一定的码片相位时移误差Δchip,得到RDSS出站信号的码片的相位时移范围(initChip-Δchip,initChip+Δchip)。终端100可以基于RDSS出站信号的码片的相位时移范围在时域上对RDSS出站信号进行捕获。
在一种可能的实现方式中,终端100在确定出RDSS出站信号的接收频点fr后,可以给RDSS出站信号的接收频点fr加上一定频点误差Δf,得到RDSS出站信号的接收频点搜索范 围(fr-Δf,fr+Δf)。终端100可以基于RDSS出站信号的接收频点搜索范围在频域上对RDSS出站信号进行捕获。
在本申请实施例中,上述步骤S805-S807的执行顺序可以在步骤S808-S8010的执行顺序之前或之后,或并行执行,本申请不作限定。
本申请实施例中提供了一种卫星信号捕获方法,终端100可以通过获取北斗短报文卫星21的星历参数、1PPS脉冲、电离层参数等等,计算RDSS出站信号从北斗网络设备200到北斗短报文卫星21的传播时间tu、RDSS出站信号从北斗短报文卫星21到终端100的传播时间td、RDSS出站信号从北斗短报文卫星21到终端100的多普勒频偏fd1。进而,终端100可以确定RDSS出站信号在传播过程中码片的相位时移和RDSS出站信号的接收频点fr。这样,可以让终端100快速捕获RDSS出站信号。
上述内容详细阐述了本申请提供的方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对终端100和进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面将结合图9至图12详细描述本申请实施例的通信装置。
在采用集成的单元的情况下,参见图9,图9是本申请实施例提供的通信装置900的结构示意图。该通信装置900可以为上述实施例中的终端100。可选的,通信装置900可以为一种芯片/芯片系统,例如,北斗通信芯片。如图9所示,该通信装置900可以包括收发单元910和处理单元920。
一种设计中,收发单元910,可用于执行上述图8所示方法实施例中终端100执行的有关发送、接收、卫星信号捕获的功能步骤。
处理单元920,可用于执行上述图8所示方法实施例中终端100执行的时延计算、频点计算等功能步骤。
应理解,该种设计中的通信装置900可对应执行前述实施例中终端100执行的方法步骤,为了简洁,在此不再赘述。
在采用集成的单元的情况下,参见图10,图10是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为上述实施例中的北斗网络设备200。可选的,通信装置1000可以为北斗网络设备200中的具体网元,例如,北斗地面收发站22、北斗中心站23、北斗短报文融合通信平台24中的一个网元或多个网元的组合。如图10所示,该通信装置1000可以包括收发单元1010和处理单元1020。
一种设计中,收发单元1010,可用于执行上述实施例中北斗网络设备200执行的有关发送和接收的功能步骤。
处理单元1020,可用于执行上述实施例中北斗网络设备200执行的有关RDSS出站信号生成的功能步骤。
应理解,该种设计中的通信装置1000可对应执行前述实施例中北斗网络设备200执行的方法步骤,为了简洁,在此不再赘述。
以上介绍了本申请实施例的终端100和北斗网络设备200,应理解,但凡具备上述图9所述的终端100的功能的任何形态的产品,但凡具备上述图10所述的北斗网络设备200的功能的任何形态的产品,都落入本申请实施例的保护范围。
作为一种可能的产品形态,本申请实施例所述的终端100,可以由一般性的总线体系结构来实现。
参见图11,图11是本申请实施例提供的通信装置1100的结构示意图。该通信装置1100可以是终端100,或其中的装置。如图11所示,该通信装置1100包括处理器1101和与所述处理器内部连接通信的收发器1102。其中,处理器1101是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯片,终端、终端芯片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1102可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1102可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1100还可以包括天线1103和/或射频单元(图未示意)。所述天线1103和/或射频单元可以位于所述通信装置1100内部,也可以与所述通信装置1100分离,即所述天线1103和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1100中可以包括一个或多个存储器1104,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1100上被运行,使得通信装置1100执行上述方法实施例中描述的方法。可选的,所述存储器1104中还可以存储有数据。通信装置1100和存储器1104可以单独设置,也可以集成在一起。
其中,处理器1101、收发器1102、以及存储器1104可以通过通信总线连接。
一种设计中,通信装置1100可以用于执行前述实施例中终端100的功能:处理器1101可以用于执行上述图8所示方法实施例中终端100执行的时延计算、频点计算等功能步骤和/或用于本文所描述的技术的其它过程;收发器1102可以用于执行上述图8所示方法实施例中终端100执行的有关发送、接收、卫星信号捕获的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1101可以存有指令,该指令可为计算机程序,计算机程序在处理器1101上运行,可使得通信装置1100执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
在一种实现方式中,通信装置1100可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific  integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置1100可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置1100可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的北斗网络设备200中的任一网元(例如、北斗地面收发站22、北斗中心站23、北斗短报文融合通信平台24),可以由一般性的总线体系结构来实现。
参见图12,图12是本申请实施例提供的通信装置1200的结构示意图。该通信装置1200可以是北斗网络设备200,或其中的装置。如图12所示,该通信装置1200包括处理器1201和与所述处理器内部连接通信的收发器1202。其中,处理器1201是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1202可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1202可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1200还可以包括天线1203和/或射频单元(图未示意)。所述天线1203和/或射频单元可以位于所述通信装置1200内部,也可以与所述通信装置1200分离,即所述天线1203和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1200中可以包括一个或多个存储器1204,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1200上被运行,使得通信装置1200执行上述方法实施例中描述的方法。可选的,所述存储器1204中还可以存储有数据。通信装置1200和存储器1204可以单独设置,也可以集成在一起。
其中,处理器1201、收发器1202、以及存储器1204可以通过通信总线连接。
一种设计中,通信装置1200可以用于执行前述实施例中北斗网络设备200的功能:处理器1201可以用于执行上述实施例中北斗网络设备200执行的有关RDSS出站信号生成的功能步骤和/或用于本文所描述的技术的其它过程;收发器1202可以用于执行上述实施例中北斗网络设备200执行的有关发送和接收的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1201可以存有指令,该指令可为计算机程序,计算机程序在处理器1201上运行,可使得通信装置1200执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,处理器执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种北斗通信系统,包括终端100和北斗网络设备200,该终端100和北斗网络设备200可以执行前述任一实施例中的方法。
本申请全文介绍了北斗通信系统中卫星信号捕获的方法,可以理解的是,其他卫星系统中也可能存在支持卫星信号捕获的需求。因此,不限制在北斗通信系统中,若有其他卫星系统也支持卫星信号捕获,本申请中介绍的方法,也同样适用于其他卫星系统的通信。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种卫星信号捕获方法,其特征在于,包括:
    终端接收卫星通过卫星无线电导航业务RNSS信号播发的导航电文,确定出所述终端的位置和终端的速度以及所述卫星的星历参数、电离层参数和时钟同步脉冲;
    所述终端基于所述终端的位置、所述终端的速度、所述星历参数、所述电离层参数和卫星地面设备的位置,确定出卫星无线电测定业务RDSS出站信号从所述卫星地面设备到所述卫星的第一传播时间和所述RDSS出站信号从所述卫星到所述终端的第二传播时间;
    所述终端基于所述第一传播时间和第二传播时间,确定出所述RDSS出站信号的传输时延;
    所述终端基于所述RDSS出站信号的传播时延和所述时钟同步脉冲,确定出所述RDSS出站信号在传播过程中的相位时移;
    所述终端基于所述RDSS出站信号在传播过程中的相位时移,捕获所述RDSS出站信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端基于所述终端的位置、所述终端的速度、所述星历参数和所述卫星转发所述RDSS出站信号的下行频率,确定出所述RDSS出站信号从所述卫星到所述终端的第一多普勒频偏;
    所述终端基于所述卫星转发所述RDSS出站信号的下行频率和所述第一多普勒频偏,确定出所述RDSS出站信号的接收频点;
    所述终端基于所述RDSS出站信号在传播过程中的相位时移,捕获所述RDSS出站信号,具体包括:
    所述终端基于所述RDSS出站信号在传播过程中的相位时移和所述RDSS出站信号的接收频点,捕获所述RDSS出站信号。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端基于所述时钟同步脉冲、所述终端的本地晶振频率和所述卫星转发所述RDSS出站信号的下行频率,确定出所述终端100的本地晶振频偏;
    所述终端基于所述卫星转发所述RDSS出站信号的下行频率和所述第一多普勒频偏,确定出所述RDSS出站信号的接收频点,具体包括:
    所述终端基于所述卫星转发所述RDSS出站信号的下行频率、所述第一多普勒频偏和所述终端的本地晶振频偏,确定出所述RDSS出站信号的接收频点。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端基于所述终端的位置、所述终端的速度、所述星历参数和所述卫星转发所述RDSS出站信号的下行频率,确定出所述RDSS出站信号从所述卫星到所述终端的第一多普勒频偏,具体包括:
    所述终端基于所述星历参数确定出所述卫星的卫星位置和卫星速度;
    所述终端基于所述卫星位置、所述卫星速度、所述终端的位置、所述终端的速度和所述卫星转发所述RDSS出站信号的下行频率,确定出所述第一多普勒频偏。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述终端基于所述RDSS出站信号在传播过程中的相位时移和所述RDSS出站信号的接收频点,捕获所述RDSS出站信号, 具体包括:
    所述终端基于所述RDSS出站信号的接收频点和频点误差,确定出所述RDSS出站信号的接收频点搜索范围;
    所述终端基于所述RDSS出站信号在传播过程中的相位时移和所述RDSS出站信号的接收频点搜索范围,捕获所述RDSS出站信号。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述终端基于所述RDSS出站信号在传播过程中的相位时移,捕获所述RDSS出站信号,具体包括:
    所述终端基于所述RDSS出站信号在传播过程中的相位时移和相位时移误差,确定所述RDSS出站信号的相位时移范围;
    所述终端基于所述RDSS出站信号的相位时移范围在时域上捕获所述RDSS出站信号。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述终端基于所述终端的位置、所述终端的速度、所述星历参数、所述电离层参数和卫星地面设备的位置,确定出卫星无线电测定业务RDSS出站信号从所述卫星地面设备到所述卫星的第一传播时间和所述RDSS出站信号从所述卫星到所述终端的第二传播时间,具体包括:
    所述终端基于所述星历参数和电离层参数确定出所述卫星的卫星位置和卫星速度;
    所述终端基于所述电离层参数确定出所述RNSS信号的电离层延迟,并基于所述RNSS信号的电离层延迟,确定出所述RDSS出站信号的上行电离层传输延迟和所述RDSS出站信号的下行电离层传输延迟;
    所述终端基于所述卫星的卫星位置和所述卫星地面设备的位置,通过第一对流层延迟模型确定出RDSS出站信号的上行对流层的传输延迟;
    所述终端基于所述卫星的卫星位置和所述终端的位置,通过第二对流层延迟模型确定出所述RDSS出站信号的下行对流层的传输延迟;
    所述终端基于所述RDSS出站信号从所述卫星地面设备到所述卫星传播过程中上行对流层的传输延迟、所述RDSS出站信号从所述卫星地面设备到所述卫星传播过程中的上行电流层传输延迟、所述卫星地面设备的发射延迟、所述卫星地面设备的位置和所述卫星的位置,确定出所述第一传播时间;
    所述终端基于所述RDSS出站信号从所述卫星到所述终端传播过程中下行对流层的传输延迟、所述RDSS出站信号从所述卫星到所述终端传播过程中下行电离层的传输延迟、所述卫星的位置和所述终端的位置,确定出所述第二传播时间。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述RDSS出站信号在传播过程中的相位时移包括所述RDSS出站信号在传播过程中相位时移的码片偏移量;
    所述终端基于RDSS出站信号的传播时延和所述时钟同步脉冲,确定出所述RDSS出站信号在传播过程中的相位时移,具体包括:
    所述终端基于所述RDSS出站信号的传播时延、时钟同步脉冲、所述RDSS出站信号的扩频码序列的码片数量L、扩频码序列的序列周期和所述RDSS出站信号中的副码周期,确定出所述RDSS出站信号在传播过程中相位时移的码片偏移量。
  9. 根据权利要求7所述的方法,其特征在于,所述第一传播时间通过如下公式确定:
    其中,tu为所述第一传播时间,xc、yc和zc为在T时刻所述卫星地面设备在三维坐标系中的位置坐标,xs、ys和zs为在所述T时刻所述卫星在三维坐标系中的位置坐标,tc为所述卫星地面设备的发射延迟,ttrop-u为所述RDSS出站信号的上行对流层传输延迟,ti-u为所述RDSS出站信号的上行电离层传输延迟,c为电磁波的传播速度,所述T时刻可以为所述终端触发捕获所述RDSS出站信号过程的时刻。
  10. 根据权利要求7所述的方法,其特征在于,所述第二传播时间通过如下公式确定:
    其中,td为所述第二传播时间,xu、yu和zu为在T时刻所述终端在三维坐标系中的位置坐标,xs、ys和zs为在所述T时刻所述卫星在三维坐标系中的位置坐标,ttrop-d为所述RDSS出站信号的下行对流层的传输延迟,ti-d为所述RDSS出站信号的下行电离层传输延迟,c为电磁波的传播速度。
  11. 根据权利要求9或10所述的方法,其特征在于,所述RDSS出站信号的传输时延,通过如下公式确定:
    Δt=tu+td
    其中,Δt为所述RDSS出站信号的传输时延,tu为所述第一传播时间,td为所述第二传播时间。
  12. 根据权利要求8所述的方法,其特征在于,所述时钟同步脉冲为秒脉冲1PPS;所述RDSS出站信号在传播过程中码片的相位时移,通过如下公式确定:
    其中,initChip为所述RDSS出站信号在传播过程中相位时移的码片偏移量,Tr为所述RDSS出站信号中的副码周期,L为所述RDSS出站信号的扩频码序列的码片数量,Tm为所述RDSS出站信号的扩频码序列的序列周期。
  13. 根据权利要求3所述的方法,其特征在于,所述RDSS出站信号的接收频点通过如下公式确定:
    fr=fs+fd1+fd2
    其中,fr为所述RDSS出站信号的接收频点,fs为所述卫星转发所述RDSS出站信号的下行频率,fd1为所述第一多普勒频偏,fd2为所述终端的本地晶振频偏。
  14. 根据权利要求1-13所述的方法,其特征在于,所述卫星为地球同步轨道GEO卫星。
  15. 根据权利要求2-4中任一项所述的方法,其特征在于,所述终端预存有所述卫星地面设备的位置。
  16. 一种终端,其特征在于,包括:一个或多个处理器、一个或多个存储器;其中,所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程 序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器在执行所述计算机指令时,使得所述终端执行如权利要求1-15中任一项所述的方法。
  17. 一种计算机存储介质,包括计算机指令,其特征在于,当所述计算机指令在终端上运行时,使得所述终端执行如权利要求1-15中任一项所述的方法。
PCT/CN2023/084546 2022-03-30 2023-03-28 一种卫星信号捕获方法及相关装置 WO2023185893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210327298.1 2022-03-30
CN202210327298.1A CN116931019A (zh) 2022-03-30 2022-03-30 一种卫星信号捕获方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023185893A1 true WO2023185893A1 (zh) 2023-10-05

Family

ID=88199208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084546 WO2023185893A1 (zh) 2022-03-30 2023-03-28 一种卫星信号捕获方法及相关装置

Country Status (2)

Country Link
CN (1) CN116931019A (zh)
WO (1) WO2023185893A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117478207B (zh) * 2023-12-25 2024-04-02 广东世炬网络科技有限公司 星地链路通信方法、装置、设备、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676634A (zh) * 2013-12-18 2014-03-26 中国电子科技集团公司第五十四研究所 基于rdss卫星导航系统中的时间脉冲同步方法
CN105959091A (zh) * 2016-04-21 2016-09-21 中国科学院光电研究院 基于卫星共星rdss与rnss信号的高精度授时与校频方法
EP3130943A1 (en) * 2015-08-14 2017-02-15 Trimble Inc. Navigation satellite system positioning involving the generation of tropospheric correction information
CN111060940A (zh) * 2019-12-09 2020-04-24 辰芯科技有限公司 基于卫星通信网络的卫星定位方法、装置、终端及介质
CN112968746A (zh) * 2021-02-03 2021-06-15 北京国电高科科技有限公司 基于位置和多普勒信息的星地通信同步捕获方法及装置
CN113447964A (zh) * 2021-06-15 2021-09-28 深圳市远东华强导航定位有限公司 一种基于rnss辅助的rsmc接收方法
CN113703011A (zh) * 2021-08-19 2021-11-26 泰斗微电子科技有限公司 卫星信号捕获方法、装置、rdss接收机及卫星信号捕获系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676634A (zh) * 2013-12-18 2014-03-26 中国电子科技集团公司第五十四研究所 基于rdss卫星导航系统中的时间脉冲同步方法
EP3130943A1 (en) * 2015-08-14 2017-02-15 Trimble Inc. Navigation satellite system positioning involving the generation of tropospheric correction information
CN105959091A (zh) * 2016-04-21 2016-09-21 中国科学院光电研究院 基于卫星共星rdss与rnss信号的高精度授时与校频方法
CN111060940A (zh) * 2019-12-09 2020-04-24 辰芯科技有限公司 基于卫星通信网络的卫星定位方法、装置、终端及介质
CN112968746A (zh) * 2021-02-03 2021-06-15 北京国电高科科技有限公司 基于位置和多普勒信息的星地通信同步捕获方法及装置
CN113447964A (zh) * 2021-06-15 2021-09-28 深圳市远东华强导航定位有限公司 一种基于rnss辅助的rsmc接收方法
CN113703011A (zh) * 2021-08-19 2021-11-26 泰斗微电子科技有限公司 卫星信号捕获方法、装置、rdss接收机及卫星信号捕获系统

Also Published As

Publication number Publication date
CN116931019A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2023011376A1 (zh) 一种北斗通信系统中密钥更新方法、系统及相关装置
EP4355024A1 (en) Inbound transmission control method and system in beidou communication system, and related apparatus
EP4369632A1 (en) Outbound data transmission method and system in beidou communication system, and related apparatus
EP4358430A1 (en) Control method and system for outbound transport in beidou communication system, and related apparatus
WO2023011380A1 (zh) 一种北斗通信系统中多帧融合传输方法及相关装置
CN115696237A (zh) 一种北斗通信系统中加密方法、系统及相关装置
WO2023030152A1 (zh) 一种切换网络的方法及相关装置
WO2023185893A1 (zh) 一种卫星信号捕获方法及相关装置
CN114422340A (zh) 日志上报方法、电子设备及存储介质
CN111935705A (zh) 数据业务管理方法及装置、计算机可读介质及终端设备
WO2023124186A1 (zh) 通信方法和通信装置
WO2022199613A1 (zh) 同步播放方法及装置
WO2023083027A1 (zh) 一种北斗通信系统中的参数更新方法、系统及相关装置
WO2023011603A1 (zh) 一种北斗通信系统中位置上报方法、系统及相关装置
CN116032336A (zh) 北斗通信系统中波束选择方法、系统及相关装置
EP4354759A1 (en) Method, system and apparatus for application layer receipt transmission in beidou communication system
CN115706603A (zh) 北斗通信系统中紧凑传输方法、系统及相关装置
CN116708317B (zh) 数据包mtu的调整方法、装置和终端设备
WO2023011329A1 (zh) 一种北斗通信系统中数据传输控制方法、系统及相关装置
CN115941016A (zh) 北斗通信系统中紧凑反馈方法、系统及相关装置
CN112996066B (zh) 驻网方法及相关设备
CN116667875B (zh) 上网通路的切换方法、装置和终端设备
CN115706602A (zh) 一种北斗通信系统中位置上报方法、系统及相关装置
WO2022152323A1 (zh) 数据传输方法、芯片、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778258

Country of ref document: EP

Kind code of ref document: A1